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Abstract

We extend common factor analysis to a multi-dimensional setting
by considering a bivariate reduced form model consistent with many
Real Business Cycle type models. We show how to obtain new rep-
resentations of sunspots and find that there are parameter regions in
which these sunspots are stable under learning. However, once the
parameters are restricted to coincide with those generated by certain
standard models of indeterminacy, we find, under one information
assumption, that no stable sunspots exist, and under another infor-
mation assumption, that they exist only for a very small part of the
indeterminacy region. This leads to the following puzzle: why does
indeterminacy almost always imply instability in RBC-type models?

JEL classification: E32, D83, D84.

Keywords: business cycles, sunspots, expectations, learning, sta-
bility.

1 Introduction

The possibility that business cycle fluctuations are at least in part due to
self-fulfilling shifts in private sector expectations was demonstrated in simple
dynamic models by (Shell 1977), (Azariadis 1981), (Cass and Shell 1983)
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and (Guesnerie 1986). This line of thought has more recently received re-
newed emphasis in applied stochastic growth models with nonconvexities. In
particular, the possibility of multiple equilibria in RBC-type models due to
increasing returns, externalities or tax distortions has been emphasized in
(Benhabib and Farmer 1994), (Farmer and Guo 1994) and (Farmer 1999).
For appropriate parameter regions, such models can have an indeterminate
steady state near which there exist “sunspot solutions,” i.e. solutions depend-
ing on an extraneous exogenous stochastic process. Such a sunspot variable
in effect acts as a coordinating device that generates changes in expectations
that are self-fulfilling and fully consistent with rational expectations.

A question raised early in the theoretical literature concerns the stability
under learning of sunspot equilibria. Are sunspot equilibria plausible in the
sense that they could be attained by private agents as a result of an adaptive
learning process, such as the least squares updating rules described by (Bray
and Savin 1986) and (Marcet and Sargent 1989)? Once again, this possibility
was demonstrated first in the context of simple dynamic models: for the
overlapping generations model with money, (Woodford 1990) showed that
under an adaptive learning rule, the economy could converge to a sunspot
equilibrium driven by a two-state Markov process.

Despite extensive theoretical work on the new generation of growth mod-
els with nonconvexities, as well as considerable efforts to calibrate such mod-
els to the data, relatively little work has been done on the stability under
learning of the sunspot solutions to these models. (Evans and Honkapohja
2001), Section 10.5, looked at the standard representation of the sunspot so-
lution in the Farmer-Guo model and found that at the calibrated parameter
values this solution was not stable under learning. This finding was con-
firmed and extended in (Packalén 1999). However, these investigations did
not examine the stability of some types of sunspot solutions, as discussed
below, nor did they consider recently developed models that are considered
more realistic from the viewpoint of empirical calibration.

The current paper undertakes such an investigation and in doing so we
focus on two key points. First, we extend the analysis to include new rep-
resentations of sunspot solutions. A major contribution of this paper is to
demonstrate existence and analyze stability of a “common factor” or “reso-
nance frequency” class of stationary sunspot solutions in multivariate models
with predetermined variables. This analysis extends some earlier results that
found such solutions to be stable under learning in cases where the “general
form” sunspot solutions, which are often the focus, are not stable.



Secondly, in addition to the Farmer-Guo model, which we analyze as
a benchmark, we examine stability of sunspot equilibria in two more re-
cent formulations of growth models with nonconvexities, (Benhabib and
Farmer 1996) and (Schmitt-Grohé and Uribe 1997). In the two-sector model
of (Benhabib and Farmer 1996) it is shown that indeterminacy can arise
with much lower degrees of increasing returns than in the Farmer-Guo set-
up, while (Schmitt-Grohé and Uribe 1997) demonstrate that tax distortions
at empirically realistic income tax rates can also generate indeterminacies.!

The central results of our analysis are easily summarized. For a general
reduced form that includes all three models as special cases, we are able to
find large regions of the reduced form parameter space in which there are
sunspot solutions that are stable under learning. In some parameter regions
these take the form of the general form sunspot solutions that were previously
studied, while in other regions it is instead the new common factor solutions
that are stable. However, surprisingly, we do not find regions of stability for
sunspot solutions in the structural stochastic growth models that we analyze.
We call this result the “stability puzzle,” because there is no obvious reason
for this finding, and the puzzle is intensified by previous results in which we
found regions of stability for common factor sunspot solutions in a linear-
quadratic model of investment with tax or externality distortions.

Our results for the structural models are not entirely negative. The find-
ings just summarized are based on an information assumption, which we
find natural, that when forming expectations private agents have available
data on all past variables and on current exogenous variables, but not on the
current endogenous variables that those expectations in part determine. Sta-
bility under learning can, in principle, be affected by allowing expectations
to be made contingent on current endogenous variables, and thus, in Section
5 we examine this case as well.

! After completing a draft of this paper we became aware of the closely related work by
(Rudanko 2002). Both papers, which were developed independently, consider stability un-
der learning of sunspot equilibria in irregular RBC-type models, and the main differences
are as follows. (Rudanko 2002) focuses on what we call general form sunspot solutions
and on minimal state variable solutions, and examines in detail the (Schmitt-Grohé and
Uribe 1997) model, including alternative specifications of the fiscal rule. She also in-
vestigates stability within the determinacy region. Our paper develops Common Factor
representations of sunspot solutions and examines stability for these new solutions as well
as for general form sunspots. We investigate an encompassing reduced form model and
use it to study the stability of sunspot solutions, within the regions of indeterminacy, for
three applied nonconvex RBC models.



For almost all of the parameter space examined the stability results are
unchanged. However, now, for each of the models, there is indeed a small
part of the indeterminacy region in which common factor sunspot solutions
are stable under learning. Clearly this provides hope for the possibility of
developing versions of nonconvex growth models, which exhibit sunspot so-
lutions that are robustly stable under learning. However, the stability puzzle
remains: Why is the stability area such a small part of the indeterminacy
region, and why is stability in this area sensitive to the detailed information
assumptions?

2 Model and Theory

We consider the following reduced form model:

ct +eky = foEfci + fiE ke + givs
ke = doci1 +diki—1 — govi1 (1)

Vg = PU_1 + Uy,

where |p| < 1 and w, is iid with mean zero and finite variance. In all of
the structural growth models we consider below, k; is the logarithm of the
capital stock, ¢; is the logarithm of consumption and v; can be interpreted as
a productivity shock. Ejc;1 and E; k.1 denote forecasts by private agents
of ¢;y1 and k¢ 1, respectively, where the expectations are formed in period .
These reduced form equations are assumed to determine ¢; and k; whether or
not expectations are formed rationally. Under the standard rational expecta-
tions assumption we denote these expectations by Eic;.; and E:k; 1, where
these are now interpreted as mathematical expectations, conditional on all
variables dated ¢ or earlier and given the actual stochastic process followed
by (ct, ki, vt).
Under rational expectations we have k; 1 = E;k;,1 and we can write

1 e ct o f Eiciq g
oo lle] - L s ] e
Hy, = FEwy.1+ Gy (3)

where y; = (¢, kt)'. We begin with an analysis of the solutions under rational
expectations (RE).



2.1 Representations

In (Evans and McGough 2002) we note the importance of distinguishing
between rational expectations equilibria (REE) and their representations
(REER); we recall this distinction here. An REE is any stochastic process
satisfying the expectational difference equation (3). An REER is a linear
difference equation, any solution to which is an REE. In the literature it is
standard to identify an REE with its REER; however, as we showed in (Evans
and McGough 2002), and as will be the case here, a given REE may have
several different REERs. Furthermore, the notion of stability under learn-
ing applies to the representations, not the equilibria themselves; and, in some
cases, a given equilibrium will have both stable and unstable representations.

For simplicity we take all processes to be doubly infinite, and we restrict
attention to stationary REE.2 To obtain the standard representation of REE
in this model, note that rational expectations implies that e;,1 = ¢; 11— FEiciyq
satisfies Fye; 1 = 0, i.e. 441 is a martingale difference sequence (mds). We
can therefore write

Y = FﬁlHytfl — FﬁlG'Utfl + l %t :| . (4)

This is an REER, which we call the general form representation (or GF
solution), and all REE can be represented by (4).®

If the eigenvalues of F"!H are inside the unit circle then the general form
representation yields stationary solutions for any mds &;. Thus there are an
infinity of equilibria and the model is said to be indeterminate. If precisely
one of the eigenvalues is inside the unit circle then there is a unique stationary
solution and the model is said to be determinate. If both eigenvalues are
outside the unit circle, all solutions are explosive.

In case the matrix ' 'H has real eigenvalues with norm less than one
the rational expectations equilibria of model (3) have an alternate represen-
tation, which we will call a “common factor” representation. This type of
representation is nicely motivated by considering the unique REE in the de-
terminate case in which the two eigenvalues satisfy 0 < |\o| <1 < |M\].* We
require some notation: If A and B are real numbers then their direct sum is

2All arguments are easily modified to account for initial conditions.

3The definition of a general form representation will be modified slightly in Section
2.2.1.

*Without loss of generality we are assuming that [A;| > |Xa].



written

A 0
A® B = lo B} .
We can stack the model to include the intrinsic shock v; in the state variable
to get

I e1 —q Ct fo fi O Cit1 Ety1
dy di —go ke | =10 1 0 ki1 | + 0 )
0 0 p Uy 0 0 1 Vg1 — Ui

Hzy = F(i1 + $iya),
where the second equation is written to define notation. Now write
F_lfif = S()q D Ay D p)S_1

and notice that A; is an eigenvalue of F' ~1H. Changing coordinates to z; =
S~ 1z, and writing n, = —S~'¢,, the solution becomes

=M X®p)z 1+, (5)

In the determinate case |A;| > 1. For the process (5) to be stationary, zy
must then be zero; accordingly, the martingale difference sequence ; must
be such that n;, = 0. Imposing this requirement restricts the dynamics of the
solution process to the contracting eigenspace, and the corresponding process
is stationary.® This method yields the unique (stationary) REE and selects
the same solution as the method developed by (Blanchard and Kahn 1980).
Note that in this case the solution does not depend on sunspots, i.e. on
exogenous variables other than v;.°

One can proceed from (5) slightly differently, and obtain a method of
solution that generalizes to the indeterminate case. Rewrite (5) as

(I-ML)& (1 —=XL)& (1 —pL)z = ;. (6)

°In case of models with initial conditions, the initial value of the free variables must be
chosen so that the corresponding state vector lies in the contracting eigenspace.

6To see this note that z;; = 0 implies that ¢; is a linear function of %k, and v,. This
relationship, together with the second two equations from (1), fully specify the solution.
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Restricting ¢; as above, we get that n;, = 0. Now act on each side of the
equation by (1 — ML) 1@ 1@ 1 so that equation (6) becomes’

1e(1—=XL)® (1—pL)z =, (7)

Notice that since 7,, = 0, by dividing out (1 — A\ L), we deny the solution
21t = A121:-1. Thus we have restricted the dynamics just as above and the
corresponding solution is the unique REE in the determinate case.

We call the method of solution described in the preceding paragraph
“common factor analysis”. This method does not require a determinate
model, and, in fact, becomes more interesting in the indeterminate case, as
we proceed to discuss now. Assume both eigenvalues are real and are inside
the unit circle. Equation (5) still holds and the solution is stationary for any
;. We can again act on each side of the equation by (1 — ML)' & 161,
but this time we can permit 7, # 0, so that the solution z;; = A;21;_1 is not
discarded; rather, the corresponding dynamics are captured by

zp = (1— >‘1L)_1771t =&,

where the second equality defines notation. We can now untangle the co-
ordinates to discover the implications of this equation for our original state
variables. Not surprisingly, we have the exogenous noise term and the prede-
termined capital motion expressed as before. However, using the definition
of z1;, now we know to write consumption as

312 12 312 513

_ﬁdQthl - @Chktq + ST d2Ue-1 oy + &4

Ct =

where S% is the ij-component of S~!. We summarize these results in the
following proposition, using the fact that S can be normalized so that S = 1
fori=1,2.

Proposition 1 Assume the eigenvalues \; of F~'H are real with norm less
than one. Let g; be any martingale difference sequence, n,, = &; + S®™u;, and

§ = Ni&y 1+ 1y (8)

"Technically, (1 — Ay L) is not invertible; but the argument can be made formally by
using the fact that 7, = 0 to rewrite equation (6) with (1 — A\ L) @ 1 @ 1 modifying n,.
Then it is clear that (7) implies (6) so that (7) defines an REE.




Then

_Sz’Qd _Sz’Qd Si2 Sz’B
=[5 e ][ e [

g2

is an REER and all REE can be represented by (9).

We call such REERs Common Factor Representations (or CF solutions).
If e, = —S®u; then &, = 0 and the resulting REER is often called a minimum
state variable solution.® Notice that in the determinate case |A\;| > 1, so that
¢; must be chosen equal to —Su; and the above REER then determines the
unique REE. In contrast, in the indeterminate case ¢; is not restricted, and
the minimal state variable solutions are special cases of the common factor
solutions.

2.2 T-maps

A useful way to analyze representations of REE’s is to view them as fixed
points of a map. Specifically, assume that agents know the functional form of
the representation, but do not know the corresponding parameter values; we
assume they have some perception of what the parameter values are and we
call the subsequent functional form with these values imposed the perceived
law of motion (PLM). Agents use the PLM to form their expectations of
future values of y;. The actual law of motion (ALM) is obtained by inserting
these expectations into the reduced form model. Provided the PLM is well-
specified, the ALM will have the same functional form and the associated
parameter values, which we think of as the actual parameter values, will
depend on the agents’ perceptions. If 6 represents the agents’ perceived
parameter values, let T'(0) represent the actual parameter values. Then a
fixed point of this 7" — map determines an REER.

This mapping, from PLM to ALM parameters, plays a central role in the
analysis of stability under learning. Under least squares learning the PLM
parameters are assumed to be estimated by least squares regressions and
the parameter estimates updated over time as new data are generated. The
question of interest is whether these parameters can converge to an REER

SFor further discussion of minimal state variable solutions see (McCallum 1983) and
chapters 8-10 of (Evans and Honkapohja 2001). McCallum also advocates a subsidiary
selection criterion, whereas we instead examine stability under learning.



fixed point, and as is discussed below, this question can be answered by
examining the properties of the T-map.

Because of the different structure of general form and common factor
representations, we will assume PLMs that have functional forms tailored
specifically for each type. It is possible to write down a PLM so that the
corresponding T-map has, as fixed points, both general form and common
factor solutions; however, stability under learning of a particular type of
representation would subsequently require a stronger form of stability than
is typically sought; specifically, the stability of the REER would have to be
robust to over-parameterization. Since the principal stability results of this
paper are negative, it makes sense to focus on the weaker notion of stability,
and thus we ignore such robustness issues here.

There is one further subtlety that arises in connection with obtaining
the map from PLM to ALM parameters, which is that the T-map will be
affected by the detailed information set available to agents when forecasts
are made. Of course, REE themselves can be affected by the information
assumed available to agents, but the issue is even more acute when studying
out of equilibrium learning behavior. The main issue is whether expectations
can be conditioned on current endogenous variables, as well as on current
exogenous variables; although under RE these are equivalent assumptions,
they are not equivalent outside of RE. Throughout the remainder of this
Section, and in Sections 3 and 4, we assume that agents do not condition
on current values of the endogenous variables. In Section 5 we take up the
alternative information assumption.

2.2.1 General Form PLMs

To capture general form representations we postulate for our agents the fol-
lowing PLM:

¢t =aci 1+ bk 1+ c+dve 1+ evy + fey. (10)

Here ¢; is the observable sunspot. We take the functional form of the capital
accumulation equation as known. Thus agents are aware that

ke = diki—1 + daci—1 — govi_1. (11)

As indicated above and in the Introduction, the precise information assump-
tions can affect learning stability. Our first information assumption will be

9



that when they form their expectations private agents have available data
on all past variables and on current exogenous variables, v; and &;, but not
on the current endogenous variables ¢; and k; that these expectations in part
determine. Using their PLM, expectations are thus formed as

Efciyn = aBEjci +bE Kk + ¢+ duy
Eiki1 = diEk + doEfci — gavy,

where

Efc, = aci—1 + bk +c+dvi_1 +evy + fer
Efk, = diki—1 + daci—1 — gav—1.

Thus Efciq and Efk.,q are linear functions of (¢—1, ki—1, 1, vi, v4—1, €1).

To obtain the T-map from PLM to ALM parameters we insert these
expectations into (1) to obtain the implied equation for ¢; as a linear function
of (¢t—1, ki—1,1,vi_1, v, €¢). The associated T-map is computed to be

—  —eidy + fi(dida + daa) + fo(a® + bdy)
—eydy + fi(d} + dab) + fo(ab + bdy)
c(fidz + f2(1 + a))
e1g2 + fi(dad — diga) + fa(ad — bgs)
91+ fi(dzee — g2) + fo((a + p)e + d)
f = (fa+ fid)f.

Let 6 = [a, b, c,d, e, f]'. Any solution to the system of equations T'(0) = 6

defines an REER. The subsystem (12) and (13) decouples from the rest and

so can be solved separately. This subsystem simplifies into a cubic in a and
the corresponding solutions are given as

_ 1—dsofh by = er —difi
fo fa

We proceed to analyze these solutions separately.

o QL o o e
I

ao and a; = S%dy, b; = S2dy, i =1,2.

Case 1: a = ag, b = by. In this case, c = 0 and fsa + fid; = 1. This implies
that d and f are free and

o fod — fig2 + g1
L— fala+p) = fidy

(18)
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Let Qg be the set of all fixed points of T' so that (61,62) = (ag,by), and
notice that Qgr is a two dimensional affine subspace. We would like to
identify general form representations with elements of ¢ r; however, there is
one caveat, which requires us to slightly modify our definition. Because d is
free, it will not necessarily coincide with the coefficient of v; ; as determined
by (4).? To avoid this complication, we generalize our definition slightly and
say that for fixed mds ¢;, an REER is a general form representation if its
coefficients can be identified with a fixed point in Qgr. Notice this includes
all representations of the form (4).

Case 2: a = a;, b = b;. Again we have that ¢ = 0, but in this case,
foa + fidy # 1 so that f = 0 as well. Also, d and e are pinned down and
algebra shows these fixed points correspond to the minimum state variable
solutions.

2.2.2 Common Factor PLMs

Common factor representations require a PLM of the following form:
¢ = aci_1 + bky_1 + ¢+ dv_1 + evy + fE,, (19)
where it is assumed that &, is observable and follows a process of the form
§ = N1 + My
Expectations of ¢ are now formed as

Efciy1 = aEfei+bE 'k + ¢+ dv + fNE, (20)
Et*Ct = ac_1 + bki_1 + c+ dvi_q + eve + fE,, (21)

where Efk; and Efk. are as before.
The corresponding 7" — map is given by items (12)-(16) above and

f— (fida + fala+ N))f. (22)

0f course there is an alternative mds, €}, so that the corresponding REER satisfies (4)
exactly. If d = (fig2 — g1)/f2 then, by (18), e = 0 and the result follows for the original
mds. If d is some other real number then v, = pv,_1 + u; implies

dvi_1 + evy = (d + ep)vg—1 + ey,

which shows this fixed point defines a general form REER with sunspot mds e} = fe;+eu,.
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Case 1: a =ag, b = by. Here f =0, d is free, and e is pinned down by the
choice of d. This fixed point corresponds to REER which capture general
form solutions that depend only on intrinsic noise, though, in case e # 0,
these solutions are not minimal.

Case 2: a = a;, b = b;. Now d and e are determined and a; + \; = ay.
This implies f is free and algebra shows these fixed points correspond to
the common factor representations. Note that if f = 0 then the fixed point
corresponds to a minimum state variable solution.

Let Qcr,; be the set of fixed points of the T-map so that (61, 62) = (a;, b;),
and notice that ¢, is a one dimensional affine subspace. We identify i-th
root common factor representations with points in Qcp;.

2.3 E-stability

Let 6" be a fixed point of the T-map. We say 6" (and the associated REER)
is F-stable provided the differential equation

do
= T#)—06 (23)
is locally asymptotically stable at 6. The E-stability Principle says that if
the REER is E-stable then it is learnable by a reasonable algorithm such
as recursive least squares.!" The definition of expectational stability just
given is inadequate when there is a non-trivial connected set of rest points
of the differential equation (23), as is the case for our model; if Q is locally
connected then no point in €2 is locally asymptotically stable. In this case
the notion of E-stability is extended as follows: we say that a set of fixed
points, @, is E-stable provided there is a neighborhood U of ) so that for
any 0y € U the trajectory of 6 determined by the differential system (23)
converges to a point in (). A necessary condition for E-stability of ) is that
for all ¢ € @ the non-zero eigenvalues of the derivative 7'(6) — 6 evaluated at
q have negative real part. Sufficient conditions are more difficult to obtain
because of the presence of zero eigenvalues.

WFor a general discussion of the connection between E-stability and least-squares learn-
ing see (Evans and Honkapohja 2001). (Evans and McGough 2002) provides numerical
support, for the types of solution discussed here, within a univariate set-up.

12



2.3.1 E-stability of General Form PLMs

The decoupled nature of the T-map allows us to analyze separately the sta-
bility of certain subsystems. The relevant derivatives are given below:

| 2fea+ fidy fads
DIw = [ fab fg(a + dl) + fids ] (24)
DT. = fo(1+a)+ fide (25)
DTy = faa+ fids (26)
_ | fela+p)+ fud 0
DIy = [ i 0 o fids + fea } (27)

Notice that these derivatives are invariant over the set Qqr. From the def-
inition above, the set ()npr satisfies the necessary condition for E-stability
provided the eigenvalues of these derivatives have real part less than or equal
to one. In this case, slightly abusing terminology, we will call the set Qgp
E-stable. If Qqr is E-stable, we also say that the general form representation
is stable under learning.

2.3.2 E-stability of Common Factor PLMs

Analysis similar to the above can be preformed in case of common factor
PLMs. The only difference is DT.; and the new form of this derivative is
given here.

fala =+ p) + fidy 0

DTef - 0 f1d2 -+ fg(a + )\i)

(28)
As above, these derivatives are invariant over the set {cp;. The one di-
mensional nature of the set Q¢p; together with the form of the system of
differential equations implies that a necessary and sufficient condition for
Qcr; to be E-stable is that all eigenvalues of the derivative have real part
less than or equal to one and only one eigenvalue has real part equal to one;
for details on this result, see p. 6 of (Evans and Honkapohja 1992). If Q¢
is E-stable, we say that the i-th root common factor representation is stable
under learning.

We remark that for both PLMs our definition of E-stability, and the E-
stability conditions given, include convergence of the intercept term. While
its REE value is equal to zero in the linearization given, this is simply because

13



variables have been expressed as (log) deviations from their steady state
values. Since the intercept value in the PLM, for variables not expressed in
deviation form, depends on these steady state values as well as on structural
parameters, it is most natural to assume that the intercept as well as slope
parameters would need to be estimated under least squares learning. As
noted in the earlier literature, including stability of the intercept coefficient
can in some cases be a binding requirement.

3 Stability in the Reduced Form Model

The first piece of the stability puzzle comes from the analysis of the reduced
form model itself. We ask whether there are parameter values for which the
model is indeterminate and for which either the general form representation
or one or both of the common factor representations is stable under learning.
We find the answer is a resounding yes; in fact, regions of stability are not
difficult to find. Unfortunately, the algebraic complexity of the indeterminacy
and stability conditions makes an analytic characterization of parameters for
which both stability and indeterminacy hold intractable. Also, because the
parameter space is seven dimensional, a complete numerical analysis is not
feasible. We are therefore forced to report numerical results for a lattice over
a small region in parameter space.

To choose parameters in a somewhat meaningful way, we take as our
benchmark a standard calibration of the Benhabib-Farmer model; see Section
4.3 below for details. The corresponding reduced form parameter values are
given by

di = 1.078, dy = —0.2201, e; = —1.0821, f; = —1.0524,
fo = 0.8537, g1 = 0.3839, g» = 0.2042.

We note that these reduced form parameters result in unstable sunspot equi-
libria.

Intuitively, the parameters most likely to affect stability and determinacy
are those modifying the expectations terms. Thus, to search for regions of
stability, we allow f; and f2 to vary between —2 and 2 with step size .04,
and hold the remaining parameters fixed. We then check for indeterminacy
and in case it holds, we check the stability of Qgp. Finally, we check for
existence of CF-solutions and in case they exist, we analyze the stability of
Qcr;. We find that for f; € [—.4,2] there are multiple corresponding values
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of fy for which exactly one of the common factor sunspots is E-stable, and
that the corresponding values of f5 are always negative and range from —.9
to —1.9; for example, f; = —.4 and fo = —.92 yields an E-stable sunspot
equilibrium. Also, we find that for no parameter values is the general form
solution stable.

To obtain more general results we allowed all parameters to vary by con-
sidering a coarse lattice around the origin; the computational intensity of this
exercise prohibits a more careful analysis. Besides regions of instability for
all types of representations, we found regions for which each of the following
was true:

1. Exactly one of the CF-solutions is stable and the GF-solution is unsta-
ble.

2. Both CF-Solutions are stable and the GF-solution is unstable.
3. Both CF-solutions are unstable and the GF-solution is stable.

4. The GF-solution is stable and exactly one of the CF-solutions is sta-
ble.!!

These results suggest that stable sunspots can exist in applied models that
yield this reduced form, and that cases of stable sunspot solutions may well
take the specific form of stable CF-solutions. The key to obtaining to obtain-
ing stability of CF-solutions, in regions where GF-solutions are not stable, is
for agents to use a PLM that conditions on an exogenous AR(1) process &,
with precisely the right autoregressive parameter. Such an exogenous pro-
cess can be described as having a “resonant frequency” since its time series
properties are just right for generating stable sunspot fluctuations. The term
“resonant frequency condition” was used in (Evans and Honkapohja 2002)
and (Evans, Honkapohja, and Marimon 2001), in connection with finite state
Markov sunspots, to describe the (well-known) condition required on their
transition probabilities. For univariate models, (Evans and McGough 2002)
showed that this phenomenon extends to more general exogenous processes
and to models with predetermined variables.

Recall that we say the GF-solution is stable when the set Qg satisfies the necessary
condition for E-stability.
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4 Instability in Applied Models

The second piece of the stability puzzle comes from the analysis of applied
models that yield our reduced form. We study three well known Real Busi-
ness Cycle type models: the Farmer-Guo Model (FG-model), the Schmitt-
Grohé-Uribe Model (SGU-model), and the Benhabib-Farmer Model (BF-
model). We begin by outlining the theory behind the model, and then derive
maps from the models’ structural parameters to the reduced form parame-
ters. Then, for different values of the structural parameters, we consider the
stability of general form and common factor sunspots in the corresponding
reduced form model. We find, in all cases, that all sunspot equilibria are
unstable.'?

4.1 The Farmer-Guo Model

We begin with this model because it is a well-known benchmark. To obtain a
model exhibiting indeterminacy, Farmer and Guo rely on increasing returns
to scale in certain production functions. There are several interpretations of
the model; we base ours on monopolistic competition as is consistent with
(Farmer and Guo 1994).

4.1.1 Theory

Assume the economy is populated by a continuum of identical agents who
are consumer-producers. Each agent produces a unique intermediate good.
The intermediate goods are then combined using an aggregation technology
and sold competitively as a single final good. The utility function of the
representative consumer is given by

— it L~
U=EY» B~ [bg(ot)— 1+>J’
t=1

and consumer ¢ maximizes this utility subject to the constraint

Ciu+ Kiy1 < Kiy(1 —06) + PyYi.

12Recall the timing assumption in this section that expectations are not conditioned on
the current value of the endogenous variable.
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The final summand on the right hand side of this budget constraint represents
the income received by the i**-consumer-producer for producing Y;; units
of her intermediate good; P is price relative to final goods. Assume the
aggregation technology is given by

1/
Y, = ( / Y;?dz') :

Perfect competition in the final goods market implies

Y; A—1
()
Y:

The firm of the i*-producer is small and so she takes the aggregate output
level as given; but she does have market power so that her problem can be
written

Yit

A—1
maX{ (71) Yit —wiLiy — T’th't}
t

where w; is the competitive wage and r; is the competitive rental rate on
capital. The producer’s production function is given by
Yir = Vil (v Lir)”

where V; is a technology shock, v represents growth, and g+ > 1 indicating
increasing returns to scale. Concavity of the objective function is guaranteed
provided A(p+v) < 1.

Solving the agent’s problem, combining and aggregating yields the fol-
lowing five equations describing the aggregate economy:

Kt+1 = }/;5 + (]. - 6)Kt - Ct
Y; = ViK{'(y'Ly)"

Y,
ni = G (29)
— = [(F 1—64+m
o ~ B [Om ( K
Vi = thfpgt

where m = Ay and n = A\v.

To obtain a reduced form model, normalize the variables by dividing out
the growth and then log-linearize around the steady state; see the Appendix
for details.
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4.1.2 Results

Following (Farmer and Guo 1994), we take § = .99, 6 = .025, y = 0,
and 7 = 1. The standard RBC model is obtained with A = 1 indicating
competitive markets, and v = 1 — p indicating constant returns to scale.
With these parameter values the model is determinate so that sunspots do
not exist, and the unique equilibrium is stable under learning.'* To obtain
indeterminacy in their model, Farmer-Guo choose A = .58, u = .4, and
v = 1.21. These parameters correspond to firms having market power and
the technology exhibiting increasing returns to scale. The subsequent model
is indeed indeterminate so that sunspots exist. However, these sunspots
are not stable under learning. Instability of the general form solution was
reported by (Evans and Honkapohja 2001), Section 10.5. Furthermore, for
these parameters, the relevant eigenvalues are complex so that common factor
solutions do not exist. Setting v = 1.1 yields real eigenvalues and the model
remains indeterminate so that common factor sunspots do exist, but, again,
they are not stable under learning.

We analyzed a lattice over a region of parameter space corresponding to
AMp+v) =1for A € (.2,1] and g > 0. These restrictions were chosen to
obtain the RBC model as a limiting case.

FIGURE 1 ABOUT HERE

The results are reported in Figure 1. Here, marked lattice points correspond
to indeterminate models. A lattice point marked by an “x” or “O” indicates
existence of common factor representations (the distinction will be discussed
in Section 5), and a lattice point marked by a dot indicates only general form
solutions exist. Points east of the eastern boundary of the pictured lattice
correspond to parameter pairs for which the corresponding value of p was
negative, and points west of the western boundary correspond to parameter
pairs for which the model is determinate. None of the point analyzed yielded
a stable representation.

13In the determinate case, the equilibrium is obtained by requiring agents to choose
initial consumption on the stable saddle path. Note that common factor analysis yields
this solution by advising the modeler to divide out the explosive eigenspace.
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4.2 The Schmitt-Grohé & Uribe Model

To obtain an indeterminate model for calibrated values of the structural pa-
rameters, (Schmitt-Grohé and Uribe 1997) consider a simple RBC model
with potentially income-elastic government spending and endogenous capital
and labor income tax rates. While for calibration purposes they considered
four policy methods, for simplicity we consider only the case of fixed exoge-
nous government spending which, in their paper, is denoted Policy 1. We
use a discrete time version of their model.

4.2.1 Theory

This model is a simple modification of a standard RBC model. Agents have
the same utility as specified in the FG-model and maximize this subject
to a budget constraint which includes labor income tax rate 7! and capital
income tax rate 7. The latter is levied on capital income after depreciation.
Firms have access to a Cobb-Douglas production function ¥ = K™L!=™,
and behave competitively so that capital and labor are paid their marginal
products. Government spending is assumed fixed and the budget is balanced
so that the government’s budget constraint is given by

g= Titht + T,’f(rt — ) K.

To simplify matters, we assume, as did Schmitt-Grohé-Uribe, that the
ratio of tax rates is constant: 7F = R7l. Letting 7; = 7! be the endogenous
labor income tax rate and imposing the equilibrium conditions results in the
following equations describing the dynamics of the economy:

g = (1 + (R - 1)m) Tt}/;g - 6RTth
Kt+1 Y;‘,‘i‘(l—é)Kt—Ct—g
Y, = uKrLt™ (30)
CtLiH_l = (1 - m)Y}(l — Tt)
C;' = BECL 1+ (m

The reduced form model is obtained by log-linearizing about the steady-state;
see the Appendix for details.
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4.2.2 Results

Following SGU, we take § = .96, xy =0, m = .3 and ¢ = .1 (annual depreci-
ation rate and discount factor.)!* Two exogenous parameters remain: fixed
government spending ¢g; and the fixed tax ratio R.

FIGURE 2 ABOUT HERE

SGU report the numerically computed region of indeterminacy for their
model in terms of the endogenously determined tax rates, and subsequently,
we do as well; this region, as determined by our computations is reported
in Figure 2, and is broadly consistent with the region reported by SGU [See
page 987 of (Schmitt-Grohé and Uribe 1997)].> For convenience, a nonlinear
lattice structure was used and the lattice points are marked as in Figure 1.
For reference, we include the approximate income tax rates of Canada, US,
UK, Japan, Italy, Germany, and France as reported by SGU. Notice that
some countries are quite near values for which common factor solutions ex-
ist; however, all sunspot representations obtained from the SGU-model are
unstable under learning.!®

4.3 The Benhabib-Farmer Model

The Farmer-Guo model has been criticized because the degree of increasing
returns required for indeterminacy can not be empirically supported. To
address this criticism, (Benhabib and Farmer 1996) develop a model that
relies on sector specific externalities to generate regions of indeterminacy.
We consider this model here.

4.3.1 Theory

Assume the economy is populated by a continuum of agents who are consumer-
producers. Each agent owns a firm that produces consumption goods C' and

14To create Figure 2, we used 3 = .99 and § = .025; these being the quarterly analogues
of SGU’s annual calibrations. A quarterly calibration of our discrete model yields results
that more closely approximate the continuous time model analyzed by SGU.

15Some differences can be expected due to our use of a discrete time model.

16The values for the UK and Japan were clearly in the indeterminacy region as reported
by SGU; however, they appear to lie on the boundary of our region of indeterminacy.
Again, we attribute this to our discretation of their model.
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investment goods I according to the following constant returns to scale tech-
nologies:

Ci = AVi(K)™LS)"
i = BVi(KL)™LL)"

where A and B are defined by

a=|f <K5>M<L5>ndz’]9

B = | [uhrtya

and represent sector specific externalities, and V; represents technology shocks.
Agents are assumed to maximize the same utility function as presented in
the Farmer-Guo model. Factor markets are assumed competitive; optimizing
behavior by the firm then implies a budget constraint of the form
Ay
Cit + E(Kit-H — (1 =96)Ki) < AYy,
t
where Y, = V,K'L}, and m +n = 1.
The following six equations describe the aggregate behavior of the econ-
omy:

Kt+1 = (1 - 6)Kt + It

Y, = CP+ 1P
Y, = V,KI'L}
1
Y, = —oin” o
- o Y,
I, 9¢C’t ¢ = BE; [It+91¢ct+¢i (1 —o+ mlffl K:ll)}
‘/t = ‘/tp_lst

where ¢ = 1/(14-6). To obtain the reduced form model, log-linearize around
the steady-state. This linearization process is outlined in the Appendix.
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4.3.2 Results

Consistent with (Benhabib and Farmer 1996) (BF), we choose § = .025,
8 = .99, m = .35 and n = .65. We analyze numerically a lattice over a
subregion of (6, x)-space roughly corresponding to the region presented in
(Benhabib and Farmer 1996).'

FIGURE 3 ABOUT HERE

The results of our analysis are presented in Figure 3 and the lattice points
are marked as in Figure 1. Points to the west of the region of indeterminacy
correspond to determinate models.

BF suggest values of x = 0 and 8 = .2. According to Figure 3, the
corresponding model would be indeterminate and only general form repre-
sentations would exist. Again, we see that near the boundary of the region of
indeterminacy, the CF-solutions exist. None of the points analyzed yielded
a stable representation.

4.4 The Stability Puzzle

While there exist reduced form models that yield stable sunspots, corre-
sponding structural models remain elusive. This apparent incompatibility
is the stability puzzle. To analyze more carefully the relationship between
indeterminacy and stability we consider the evolution of these characteris-
tics while varying one parameter in the BF-model. Specifically, we hold x
fixed at zero and let  increase from zero so that the model transitions from
determinacy to indeterminacy, and we consider the stability of the REE as
this transition takes place.

Recall that, when the model is determinate, the unique stationary REE
is given by a particular (minimal state variable) common factor solution.
Thus, eliminating f from the PLM (10), we can analyze the stability of the
determinate REE by analyzing the associated CF-representation.

FIGURE 4 ABOUT HERE

This observation was used to produce Figure 4. The top panel of Figure 4
represents the maximum modulus of the eigenvalues of F~1H; the model is

17Qur region of indeterminacy differs slightly from theirs because while they consider a
continuous time model, ours is discrete.
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indeterminate if and only if this modulus is less than one, and indeterminacy
obtains for 6 greater than approximately .11. The model’s equilibria are
stable under learning provided the real part of the eigenvalues of DT are less
than one. The bottom panel plots the minimum among representations of the
maximum of this real part.'® Notice that throughout most of the determinate
region, the CF-representation is stable under learning. As 6 approaches .1 a
singularity is crossed beyond which the CF-representation becomes unstable.
This qualitative relationship repeats itself for other parameter values and
for other models; determinate solutions are typically stable, and then, as the
boundary of indeterminacy is approached, the unique REE becomes unstable.

5 Results for Alternative Information Assump-
tion

In the above analysis, we assumed that agents do not use current consump-
tion to forecast future consumption. Alternatively, we can suppose that
agents forecast c;y1 using ¢; as well, in which case, E;c,y1 and ¢; are de-
termined simultaneously. For the general form PLM expectations are then
given by

Efciyv = ac +bki+c+ dy,
Et*kt+1 == dlkt + dQCt — g2,

while for common factor PLMs E;k;,; is as above and Fj ¢y, is given by
E;(Ct+1 = ac; + bkt +c+ dvt + f)\zft

Note that in an REE the previous information assumption and the alternative
information discussed in this section are identical, since in an REE ¢; and k;
are exact functions of predetermined variables and the observable exogenous
variables. However, learning takes place outside of a rational expectations
equilibrium and thus this assumption can have a non-trivial impact on sta-
bility.

To analyze stability when ¢; is in the information set, we can specify our
PLMs as before; see equations (10) and (19). However, the T-map is different

18Tn case of indeterminacy there are possibly three representations obtained as fixed
points of the T-map whereas the determinate model has only one.
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and is given as follows: let Q = fid; + fob—e; and A = 1 — fids — foa. Then

doA710

di A7

A foc (32)
— AT

A7 (fo(d + pe) — figa + g1)

AT NS

o QU o o L

L A A

f

where, in the general form case, A = 0, and in the common factor case,

When evaluated at a = ag, we have A = 0 so that the T-map is not defined
at the point corresponding to the general form representation. This does
not necessarily prevent the general form solution from being stable under
learning; the T-map could still direct perceptions toward this singularity.
However, (32) shows that in fact this singularity is unstable.

The fixed points of the T-map are exactly the common factor represen-
tations. As usual, stability is assessed by considering the derivative of the
T-map. We have

f2doQA™2 fodaA™?

Dlay =\ % 1.0A~2 fods A1
and
DT, = A'f,
DT, = 0

DT, = Ailf?ﬂ

As with the earlier information assumption, we first investigate stability
for the unrestricted reduced form using a coarse lattice. Besides the analytic
result that the GF-solutions are always unstable, we find the following;:

1. There are parameter regions in which neither of the CF-solutions is
stable.

2. There are parameter regions in which exactly one CF-solution is stable.

3. There are parameter regions in which both CF solutions are stable.
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In addition we find that there are regions in which a CF-solution is stable
under both information assumptions.

For each of the structural models analyzed above, we now reconsider
the stability of the common factor REE. In particular, we re-analyze each
lattice of parameter values and report the relevant properties of the associated
REE. The results are identical with those described earlier, except for points
marked by “O” in Figures 1, 2 and 3. These represent CF solutions that
are now stable under learning, though they were unstable under the previous
information assumption.”

Thus corresponding to each model are several parameter values that yield
stable common factor solutions. Furthermore in the SGU model the cali-
brations for US and Canada are tantalizingly close to stable CF-solutions.
However, for each of the models the region of stable CF-solutions is a very
thin subset of the indeterminacy region. Our stability puzzle can thus be
restated as follows: why do the structural models have such limited areas of
stability within the indeterminacy region, and why do even these stability
results depend delicately on the information assumptions?

6 Conclusions

One approach to explaining the business cycle phenomenon is that it is at
least in part due to self-fulfilling fluctuations, formally modeled as rational
expectations equilibria depending on extraneous exogenous variables known
as sunspots. Such solutions can be reached through natural adaptive learning
rules provided an appropriate stability condition is satisfied, and examples
of stable sunspot solutions have been provided in the theoretical literature.
The current paper has examined whether the required stability condi-
tions hold for sunspot solutions in several prominent applied macroeconomic
models that use non-convex versions of standard RBC models to generate
indeterminacy. To examine the stability question we have shown how to ap-
ply the common factor approach to obtain new representations of sunspot
solutions in a bivariate reduced form that includes the models of interest, and
we have tested both these common factor sunspot solutions and the standard

9ntriguingly, for each stable CF-representation discovered, the following holds: the
derivative of DT, evaluated at the stable CF-representation has one eigenvalue equal to
(or at least within 1076 of) zero, and this zero eigenvalue appears to be robust to small
changes in the parameter values.
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general form solutions for stability under learning. In addressing this ques-
tion we have also considered two alternative information assumptions for out
of equilibrium learning behavior.

Our answer to the stability question is both striking and puzzling. For
the unrestricted reduced form there are large parameter regions in which
sunspot solutions are stable. Furthermore, common factor sunspots are sta-
ble in many cases in which general form sunspots are not, extending our
earlier findings for a univariate framework. However, when the reduced form
parameters are restricted to agree with the calibrated structural models the
stability results are almost wholly negative: under one of our information
assumptions, none of the sunspot solutions are stable under learning, while
under the alternative information assumption only small parts of the inde-
terminacy region have stable sunspots. Our results lead to the puzzle: why
are sunspot solutions stable under learning in such small parts of the param-
eter space and why is the stability, even there, sensitive to the information
assumptions?

Although we have cast these results in a negative light, they could be rein-
terpreted as a challenge to construct calibrated versions of nonconvex RBC
models that are stable under learning. That this may indeed be possible is
indicated by our equally striking positive stability results for the unrestricted
reduced form model. Finally, we remark that the common factor technique
introduced here can be generalized and applied to other multivariate frame-
works. This is the subject of current research.
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Appendix

To obtain the REE given a system of nonlinear expectational difference
equations it is standard to log-linearize the model about a steady-state and
interpret the transformed variables as percent deviation from mean. For
completeness we outline the log-linearizations of our models in this Appendix.

6.1 General Method

Following (Evans and Honkapohja 2001), we begin by considering the general
model

f(Y2) + Erg(Yig) = 0.

Letting f; = 0f/0Y; and f (Y) +g(Y) = 0, the first order Taylor expansion
about Y yields

constant + Z (Y)Y + Z 6i(Y)EYiry1 = 0.
i—1
Letting y;; = log(Y;;/Y;) and using exp(yi) =~ iz + 1 yields

Z?lfl( Yit + Z ngz Etynﬂ =0.
i=1

6.2 FG-Linearization

Our first application is to the structural equations of the Farmer-Guo model:
see (29). The steady state is determined by the following system of equations:

K 1/6(Y - O)

Y = K'T

C = nY/L

1 B(1—6+mY/K).

Applying the log-linearization technique yields a linear system of expecta-
tional difference equations in four endogenous variables. This system may
be reduced to obtain

v —_ —_
¢ = (14 ——=BmY /K) ey + fmY /K (1 - 1f—y)Etkt+1

- — U — — UV
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6.3 SGU-Linearization

We now apply the technique to the structural equations given by (30). Let
0 =1+ (R — 1)m. The steady state is determined by the following system
of equations:

= T(0Y — ROK)

- K" "

CL"" = (1-mY(1-7)
OK+C+g

B(1+ (mY /K — 6)(1 — R7)).

I <
|

— =l
|

Using these values, the log-linearization technique yields

OFY SRTK
0 = 74—y, - 272,
g g

=
Yy = Ct+(1+X)lt+1 ?Tt

G = Etct+1 + ﬁm?/?(l — RF)Et(k'H_l — yt+1) + ﬁR?(m?/? — 6)Et7't+1
vy = mki+ (1 —m)l + v
k’t = ?/Fyt + (]_ — 6)]€t — U/Fct.

These five equations can be combined to eliminate the variables y, 7, and [,
leading to the reduced form model.

6.4 BF-Linearization

Finally, we apply this technique to the structural equations given by (31).
The steady state is determined by the following system of equations:

= 6K

_ Yaso
= K'T"
oYX

= B -6 +mT /)T,

n 71/0+0)

3

A ias By O

28



Using these values, the log-linearization technique yields

Kty

Yt

Yt

Yt

0, + ¢

(%

(1= 8k + (I/K)i

mky + nly + vy

1+0)T/ Ve, + (1+0) T/ 1,

(14+6) e+ (1+ X))

B(L — 8)0Eyivsr + Erceir + B+ 0)mI”" Y[R (ks — o)
PU—1 + S¢.

These six linear equations can be combined to eliminate the variables [, y,
and ¢ leading to the reduced form model (1).
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