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Volatiles, particularly H20, play an important role in subduction zone

magmatism, from instigating melting of the mantle wedge to influencing the explosivity

of eruptions at the surface. To better understand both small-scale eruptive processes and

large-scale melt generation processes, concentrations of H20, CO2, Cl and S were

measured in olivine-hosted melt inclusions from nine monogenetic volcanoes across the

Michoacan-Guanajuato Volcanic Field (MGVF) in central Mexico.

Melt inclusions, tiny blebs of melt trapped within crystals during growth, record

pre-eruptive melt compositions and dissolved volatile contents. Analyses of olivine­

hosted melt inclusions from the long-lived (15 years) eruption of Volcan Jorullo illustrate

the complexities of cinder cone eruptions. The later-erupted melt inclusions record

decreases in crystallization depths, increases in magma storage time, and shallow
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assimilation of granitic bedrock, suggesting significant evolution of the magma plumbing

system over time.

Because melt inclusions are trapped at variable depths during magma

crystallization, they record progressive degassing of melts during ascent and eruption.

Degassing of basaltic melts is variable due to differences in solubility of the volatile

components. Estimated volatile solubilities based on variations in melt inclusion data for

the MGVF suggest that CI and S have high solubility, with little to no degassing of these

species during ascent and eruption, whereas H20 and CO2 show evidence of substantial

degassing. Furthermore, increases in concentrations of incompatible elements in melt

inclusions correlate with extents of degassing, suggesting that degassing during ascent

drives melt crystallization in many cinder cone eruptions.

The volatile contents of mafic arc magmas as revealed by melt inclusions reflect

the influx of H20-rich components from the subducted slab to the mantle wedge. Across­

arc patterns in volatile and incompatible trace element concentrations for MGVF magmas

show that the flux ofH20-rich subduction components remains high for large distances

across the arc. These data, combined with oxygen isotope analyses of olivine

phenocrysts and 2-D thermo-mechanical models of the subduction zone, suggest a

complex origin for the H20-rich subduction components, involving dehydration of

subducted sediment and storage of volatiles in hydrous minerals in the mantle wedge.

This dissertation includes co-authored materials both previously published and

submitted for publication.
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CHAPTER I

INTRODUCTION

The majority of currently active subaerial volcanoes on Earth are located in arc

settings above subduction zones. The aptly named "Ring of Fire", the semi-continuous

chain of arc volcanoes rimming the Pacific Ocean, is produced by subduction of oceanic

plates beneath the over-riding plates (continental or oceanic). In subduction zones, the

downgoing oceanic slab descends beneath the overriding plate, experiencing

progressively higher pressure and temperature regimes in the mantle. Due to the increase

in pressure and temperature, the subducting plate undergoes a series of metamorphic

reactions that change the mineralogy of the slab. At higher pressures and temperatures,

hydrous minerals become unstable and eventually break down, releasing H20-bearing

fluids into the overlying mantle wedge. Introduction of fluids into the mantle wedge

lowers the melting temperature of mantle peridotite, producing the partial melts that

eventually rise to the surface and create arc volcanoes.

The processes of fluid-fluxing and melt production are complex and are affected

by the material being subducted. Subducting oceanic crust is not homogenous

worldwide; the age of the crust varies greatly depending on the location of the subduction

zone compared to the mid-ocean ridge where the crust forms. Relatively young oceanic

crust is hotter than old oceanic crust, and this temperature difference affects the stability

of hydrous minerals in the subducting slab. Additionally, the crust can be variably
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altered by the flow of hydrothermal fluids at the mid-ocean ridge, and some slabs are

extensively hydrated prior to subduction (e.g., Abers et aI., 2003). The oceanic crust is

overlain by sediments, of variable thickness, that can also be subducted with the oceanic

slab. These factors vary in subduction zones around the world, and thus the volcanoes

produced in arcs should reflect these variations.

The release of fluids from the slab and their transfer to the mantle wedge is also

complex. Until recently, the conventional model for subduction zones suggested that the

breakdown of one mineral, amphibole, in the subducted oceanic crust beneath the

volcanic arc front was the primary reaction driving the release of fluids into the wedge

and producing melting (Tatsumi, 1986). Following this model, volcanoes behind the

volcanic arc front should erupt magmas that are more H20-poor. However, recent

experimental studies of the stability of hydrous minerals in subduction zones have

suggested that not only are fluids produced by a series of continuous and discontinuous

reactions in the slab (e.g., Schmidt and Poli, 2004), but hydrous minerals in both the

oceanic slab and mantle wedge are stable to higher pressures than previously thought

(e.g., Schmidt and Poli, 2004; Kerrick and Connolly, 2001; Grove et aI., 2006). This

suggests that H20-rich melt production may occur over a greater range of pressures and

temperatures than previously thought.

Due to the involvement ofH20 in producing mantle melting beneath arcs, arc

magmas can have high concentrations of H20. The high dissolved H20 concentrations in

turn affect the eruption style of arc volcanoes. As these H20-rich melts rise to the

surface, the pressure decrease allows H20 and other volatile components to exsolve,

resulting in significant degassing ofthe melts. Recent studies have shown that degassing
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can induce crystallization of arc magmas (e.g., Blundy et aI., 2006; Johnson et aI., 2008:

Chapter II). Furthermore, the high volatile contents affect eruption explosivity (e.g.,

Roggensack et aI., 1997; Spilliaert et aI., 2006).

In this dissertation I explore the influence of volatiles, particularly H20, on the

processes of arc volcanism from subduction to melt generation to eruption at the surface.

I start by examining the evolution of melt compositions and volatile contents of a

subduction-related cinder cone in Mexico that erupted explosively (Chapter II). This

study illustrates that melts erupted from basaltic cinder cones in arcs can have high

volatile contents, which affect crystallization of the magmas during ascent. From this

study of volatile contents in a single cinder cone eruption, I compare and contrast the

volatile contents and degassing behavior of cinder cones from across the Michoacan­

Guanajuato Volcanic Field (MGVF) of central Mexico with the published data for larger

arc volcanoes (Chapter III). Using the analyses from these nine volcanoes in the MGVF,

I then investigate across-arc (trench-perpendicular) variations in melt volatile contents

and compositions (Chapter IV). The across-arc patterns reflect addition of H20-rich

components to the mantle wedge and the generation of melts in the mantle. Together

with oxygen isotope analyses of olivine phenocrysts and thermal models of the

subduction zone in Mexico, I assess the origin of fluid fluxing and melt production

beneath the MGVF. The results presented in this dissertation provide a detailed picture

of the processes of melt generation and eruption in subduction zone settings.

I am the first author on all chapters in this dissertation, and I was responsible for

the bulk of the analyses in each chapter. Chapter II has been published in Earth and

Planetary Science Letters and is coauthored with my advisor, Paul Wallace, committee
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member Kathy Cashman, and scientists Dr. Hugo Delgado Granados (Universidad

Nacional Aut6noma de Mexico) and Dr. Adam Kent (Oregon State University). All

assisted with the editorial process, and Drs. Wallace, Cashman, and Delgado Granados

aided with field work. Dr. Adam Kent assisted with LA ICP-MS analyses of samples at

Oregon State University. Chapter III is in preparation for submission to the Journal of

Volcanology and Geothermal Research and is coauthored with advisor Paul Wallace and

committee member Kathy Cashman, who assisted with field work and editing of the

document. Chapter IV is in preparation for submission to Geochemistry, Geophysics,

Geosystems, and is coauthored with advisor Paul Wallace and Dr. Ilya Bindeman (UO)

and Dr. Vlad Manea (Universidad Nacional Aut6noma de Mexico, Juriquila). All

collaborators assisted in the editorial process, and Dr. Wallace aided with field work.

Oxygen isotopic analyses were performed with the assistance of Dr. Bindeman in his

laboratory here at the University of Oregon, and the 2-D thermal models were created by

Dr. Manea. Chapter V is a summary of the work discussed in the previous chapters.



5

CHAPTER II

MAGMATIC VOLATILE CONTENTS AND DEGASSING-INDUCED

CRYSTALLIZATION AT VOLCAN JORULLO, MEXICO: IMPLICATIONS FOR

MELT EVOLUTION AND THE PLUMBING SYSTEMS OF MONOGENETIC

VOLCANOES

This work was published in volume 269 of Earth and Planetary Science Letters in

May, 2008. Coauthors Paul Wallace, Kathy Cashman, and Hugo Delgado Granados

assisted in the field and Adam Kent assisted with the LA ICP-MS analyses, and all aided

in the editorial process. I performed the laboratory work and was the primary author.

1. Introduction

Water is fundamental to magma production in subduction zones by initiating

melting ofthe mantle wedge above the downgoing slab. Furthermore, the presence of

water and other volatiles in magma prior to eruption affects crystallization during ascent

and eruption explosivity. Melt inclusion analyses have shown that arc magmas can have

high H20 (3.5-8 wt%; Sisson and Layne, 1993; Roggensack et aI., 1997; Cervantes and

Wallace, 2003; Wade et al., 2006; Spilliaert et aI., 2006) that may correlate with high

explosivity (Roggensack et aI., 1997; Spilliaert et aI., 2006). Degassing ofthese H20­

rich magmas during ascent may also induce rapid and extensive crystallization (e.g.,
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Sisson and Layne, 1993; Metrich et aI., 2001; Roggensack, 2001; Atlas et aI., 2006;

Blundy et aI., 2006). However, most studies have focused on persistently active, larger

volcanoes, often with evolved melt compositions.

Our research focuses on high-Mg basaltic magmas from a cinder cone eruption.

Cinder cones are the most numerous volcanoes on land (Vespermann and Schmincke,

2000), and due to their small volumes and relatively short eruption durations (~1 day to

15 years), the magmas often undergo limited evolution by fractional crystallization and

assimilation. In spite of their relative abundance, the hazards posed by cinder cone

eruptions are commonly underestimated, and the eruption processes that form cinder

cones are not well understood. Most cinder cone eruptions are brief «1 year; Wood,

1980) and the magmas do not evolve over the course ofthe eruption. Longer lived

eruptions, like Jorullo and Paricutin in Mexico (15 and 9 years, respectively) are more

complex; at both volcanoes, magmas evolved progressively during the eruptions, and

such evolution has been explained by combinations of fractional crystallization and

crustal assimilation (McBimey et aI., 1987; Luhr, 2001; Rubin et aI., 2004). Recently,

fractionation and assimilation in the lower crust in a "deep crustal hot zone" (Annen et

aI., 2006) or "MASH zone" (Hildreth and Moorbath, 1988) has been invoked to explain

intermediate magma compositions erupted from long-lived stratovolcanoes. However, in

monogenetic systems, where do fractionation and assimilation occur? A recent study of

an eroded cinder cone has shown a network of dikes and sills feeding the volcano just

beneath the surface (Valentine and Krogh, 2006). Such a network provides possible

shallow magma storage locations where magma could evolve in composition; however,



7
the development and evolution of such plumbing systems during the course of an

eruption are not known.

Here we use melt inclusions trapped in forsterite (Fo) -rich olivine (F085-91 , where

Fo = I00*Mg/(Mg+Fe2+)), combined with measurements of melt crystallinity and

estimates of crystal residence times and magma storage depths, to characterize changes in

the plumbing system during the eruption of Jorullo. Our data constrain the undegassed,

near-primary volatile contents of the melt and track the degassing, crystallization and

compositional evolution of the magma before and during the eruption, thereby providing

new insight into cinder cone eruption processes. Our results show that cinder cones, in

spite of their relatively small size, are capable of evolving both compositionally and

structurally during eruption. In longer-lived eruptions like Jorullo (15 years), the

plumbing systems may be more complex than a simple feeder-dike.

2. Geologic setting and eruption history

Jorullo is located in the Michoacan-Guanajuato Volcanic Field (MGVF), in the

central part of the subduction-related Trans-Mexican Volcanic Belt (Fig 2.1). Volcanism

in the MGVF is due to subduction ofthe Cocos plate beneath the North American plate

off the southwest coast of Mexico. The MGVF contains nearly 1000 cinder cones, many

of them Holocene in age (Hasenaka and Carmichael, 1985). Jorullo is located along the

volcanic front in the MGVF, roughly 80-90 km above the Cocos plate (Pardo and Suarez,

1995). The most recent activity in the MGVF was the eruption of the cinder cone

Paricutin from 1943-1952, 84 km NW of Jorullo.
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Jorullo erupted from 1759 until 1774, producing a thick blanket of tephra and ash

as well as numerous lava flows (Luhr and Carmichael, 1985). Early accounts indicate

that the eruption began violently, with explosive activity that persisted for many years

(Gadow, 1930). These accounts, combined with the abundance of fine ash in the tephra

blanket, suggest that like Paricutin, Jorullo exhibited violent Strombolian activity, which

is characterized by simultaneous explosive eruptions producing large amounts of fine ash

and effusion oflava from the base ofthe cone (Pioli and Cashman, 2006). The

widespread lava flows at Jorullo were the focus of an important study by Luhr and

Carmichael (1985) that described the eruption and the compositional evolution of the

lavas over time. They noted that the earliest lavas were primitive basalt, with 9.3 wt%

MgO and phenocrysts of magnesian olivine (FOS6-90), and that as the eruption progressed,

the lavas evolved to basaltic andesite compositions (Luhr and Carmichael, 1985).
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Figure 2.1. Map of Jorullo and surrounding area, modified from Luhr and Carmichael
(1985). Squares mark locations of the two tephra sections used in this study; the 2004
section contains the 'Early' (in contact with the paleosol) and 'Middle' samples, and the
more complete 2006 section contains the 'Late' sample. Inset shows plate tectonic
boundaries associated with the Trans-Mexican Volcanic Belt, with major volcanoes
shown as dots.

3. Sample description and analytical procedures

We present results from two sections excavated through the tephra deposit,

located ~1 km from the vent to the south and southeast, respectively (Fig. 2.1). The

tephra sections expose the earliest erupted explosive material (in contact with the

underlying paleosol) and are composed of bedded ash and lapilli layers that provide a

time sequence of the eruption. The tephra also contains abundant, loose olivine

phenocrysts throughout the section. Samples for this study were chosen from three

representative tephra layers - the basal (in contact with the paleosol), middle, and upper

9
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parts of the section - that will be referred to as the 'early', 'middle', and 'late' samples,

respectively.

We analyzed olivine-hosted melt inclusions to obtain pre-eruptive volatile and

melt compositions. Loose olivine crystals from each of the three layers were separated,

cleaned in HBF4, and examined in immersion oil (refractive index 1.678). Most olivine

crystals are euhedral, but subhedral and skeletal crystals are also present. Melt inclusions

identified as suitable (those that are fully enclosed by host crystal, are bubble-poor, and

appear to be sealed) were prepared as doubly polished wafers and were analyzed for H20

and CO2 (FTIR), major elements, S, and CI (electron microprobe), and trace elements

(laser ablation ICP-MS). Melt inclusion compositions were corrected for post­

entrapment crystallization of olivine and Fe-loss; corrected values are shown in Table 2.1

and uncorrected values are shown in Supplementary Table 1 (Appendix A) (for details on

the correction method and error propagation see Supplementary Material, Appendix B).

All data shown in figures and discussed in the text are corrected values. Bulk tephra

samples from the three layers were analyzed by XRF at Washington State University for

major and trace elements (Supplementary Data Table 2, Appendix C). We also analyzed

the compositions of olivine phenocrysts (Table 2.1) and tephra groundmass glass

(Supplementary Data Table 3, Appendix D) throughout the tephra stratigraphy. Major

elements, S, and CI were measured with a Cameca SX-I00 electron microprobe at the

University of Oregon using a 15 kV accelerating voltage, 10 nA beam current, and a

beam diameter of 10 /lm. A combination of glass and mineral standards was used. Trace

element concentrations in the melt inclusions were measured by laser ablation ICP-MS at
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Oregon State University (Supplementary Data Table 4, Appendix E). Details of the

technique are found in Kent et aI. (2004).

Water and CO2 concentrations in melt inclusions were analyzed by Fourier

Transform Infrared Spectroscopy (FTIR) at the University of Oregon. Concentrations of

H20 and CO2 were calculated using Beer's law: c = MAlpdE, where M is the molecular

weight of H20 or C02, A is the measured absorbance of the band of interest, p is the

room temperature density of basaltic glass, d is the thickness of the melt inclusion and E

is the molar absorption coefficient. In most samples, water concentrations were

calculated using the total OH peak at 3550 cm- I and an absorption coefficient of 63 ± 3

Llmol-cm (P. Dobson et aI., unpublished data, cited by Dixon et aI., 1995). In some

instances, however, total H20 was calculated using an average ofthe molecular H20

peaks at 1630 cm- I and 5200 cm-I and the OR" peak at 4500 cm-I
. In these cases

absorption coefficients were calculated based on major element compositions (Dixon et

aI., 1995) and are as follows: 1630 cm- I
= 26.4 Llmol-cm, 5200 cm- I = 0.66 Llmol-cm,

4500 cm- I = 0.56 Llmol-cm. C02 was calculated using the carbonate peaks at 1515 and

1435 cm- I
; an absorption coefficient of296 Llmol-cm was calculated following Dixon

and Pan (1995). Based on uncertainties in thickness measurements and absorbance

values, average 1 standard deviation uncertainty in H20 is ± 0.2 wt% and in C02 ± 80

ppm. The background subtraction procedure that we used for the carbonate peaks is

described in Roberge et aI. (2005).



Table 2,1, Corrected melt inclus'lon major and volatile element concentrations, host olivine compositions, and inclusion entrapment pressures
Group Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early
Inclusion 1 12_1 12_2 12_3 13_1 13_2 14 17_1 17_2 17_A 20 23 24 28 29_1 29_3

SIO, 51.15 51.54 52.06 51.58 50.60 50.11 50.93 52.90 51.32 51.19 51.22 50.63 49.89 51.57 51.01 50.26
TIO, 0.79 0.68 0.63 0.75 0.88 0.75 0.67 0.74 0.80 0.74 0.88 0.75 0.73 0.65 0.76 0.71
AI,O, 15.66 16.77 17.25 16.96 18.90 19.46 17.15 16.44 17.21 17.46 16.74 17.15 17.87 16.63 17.69 17.55
FeOT 7.84 7.38 7.30 7.36 7.65 7.26 7.46 7.47 7.52 7.41 7.55 7.56 7.62 7.48 7.65 7.57
MnO 0.15 0.13 0.06 0.08 0.08 0.21 0.02 0.10 0.10 0.04 0.15 0.07 0.05 0.10 0.14 0.09
MgO 10.51 9.23 9.00 9.44 7.75 7.43 9.99 9.29 9.64 9.25 9.91 10.03 10.46 9.82 8.69 9.56
CaO 9.20 9.34 8.57 8.91 8.92 9.21 9.01 8.28 8.55 8.93 9.14 8.96 8.60 8.55 8.92 9.21
Na,O 3.74 4.13 4.20 4.04 4.26 4.59 3.89 4.01 4.04 4.17 3.60 4.00 3.92 4.25 4.21 4.21
K,O 0.77 0.65 0.77 0.73 0.81 0.83 0.70 0.65 0.67 0.68 0.61 0.66 0.72 0.84 0.77 0.66
P,O, 0.18 0.15 0.16 0.15 0.16 0.16 0.17 0.13 0.15 0.14 0.19 0.19 0.14 0.12 0.16 0.16
H,O 0.9 4.7 2.5 4.2 3.4 n.a. 1.2 5.4 2.6 n.a. 1.5 3.8 2.2 1.0 2.9 3.4
CO,ppm 118 243 207 915 n.a. 307 805 692 n.a. 594 988 358 556
S ppm 1149 1195 1379 1751 1591 1560 1718 1751 1665 2066 1847 1882 1776 688 1737 1644
CI ppm 1103 1179 1197 1239 1285 1406 1381 1239 1308 1286 1267 1196 1185 1105 1176 1206
Total- 99.17 97.05 97.18 96.28 97.07 98.22 97.50 96.18 96.14 95.42 95.34 94.10 95.88 96.99 96.36 96.72
P (bars) 343 2542 1064 3445 1152 n.a. 808 4027 2080 n.B. 1481 3444 515 101 1668 2309
Olivine (Fo%) 91.1 90.3 89.9 90.4 88.4 88.4 90.5 90.1 90.3 90.1 90.5 90.7 90.6 90.0 89.3 90.2
%PEC ** 14.2 6.9 12.4 10.6 3.5 4.4 17.9 9.1 12.5 9.7 11.6 10 20.6 18 8.5 11

Group Middle Middle Middle Middle Middle Late Late Late Late Late Late Late Late
Inclusion 4 5 6 7_1 10 1 3_1 3_2 4 5 p1 p2 p3a

SiO, 52.92 52.99 50.15 50.24 51.70 51.34 52.54 55.21 53.66 51.95 50.66 54.13 55.14
TiO, 0.76 0.88 0.90 0.89 0.76 0.98 0.95 1.12 0.88 0.84 1.06 0.98 0.91
AI,O, 17.42 18.09 20.14 19.69 20.32 19.83 19.07 18.02 18.01 20.42 20.25 18.59 17.87
FeOT 7.48 6.75 6.79 7.07 6.92 6.76 7.07 6.69 7.47 6.68 6.89 6.73 6.76
MnO 0.12 0.11 0.10 0.12 0.07 0.08 0.15 0.03 0.06 0.10 0.08 0.06 0.04
MgO 7.26 6.53 5.97 6.93 6.80 6.06 5.83 5.53 5.91 5.15 6.15 6.05 6.06
CaO 9.05 8.87 10.61 9.70 7.28 9.71 8.96 8.29 8.13 9.55 9.50 8.26 8.72
Na,O 4.02 4.45 4.32 4.30 5.06 4.29 4.34 4.07 4.66 4.24 4.50 4.28 3.72
K,O 0.82 1.15 0.83 0.84 0.93 0.74 0.85 0.85 1.02 0.83 0.72 0.75 0.60
P,O, 0.15 0.17 0.20 0.21 0.17 0.22 0.23 0.20 0.20 0.24 0.19 0.17 0.17
H,O 1.4 0.5 1.1 1.1 0.8 0.5 0.8 0.8 0.8 1.0 n.a. n.a. n.a.
CO,ppm n.a. n.a. n.a.
S ppm 1407 1299 2040 1786 1781 1442 1143 74 918 1490 2106 1477 1479
CI ppm 910 1247 1094 1127 1419 1239 1162 1020 994 1065 1298 1206 936
Total- 99.47 102.86 97.24 99.93 100.11 100.10 100.01 99.25 99.39 98.51 100.02 100.00 99.96
P (bars) 186 24 115 121 62 26 64 65 68 87 n.a. n.a. n.a.
Olivine (Fo%) 88.2 88.0 86.6 88.4 87.3 86.7 85.6 85.6 84.9 85.0 86.7 86.2 86.8
%PEC" 4.8 6.7 2.0 3.8 11.2 4.5 5.9 6.4 8.1 1.6 4.1 11.8 2.3

Table 2.1. Total * - sum of all oxides plus S and Cl in original (uncorrected) microprobe analyses, %PEC** - wt% post-entrapment crystallization. All melt inclusion data were corrected for post-
entrapment crystallization (%PEC) ofolivine (Sobolev and Chaussidon, 1996) and diffusive loss of Fe (Danyushevsky et aI., 2000; see Supplementary Material). Major element oxides reported are
normalized to 100% on a volatile-free basis. The average standard deviation (absolute) based on multiple (2-4 points) analyses is as follows: SiO,: 0.27, AhO): 0.20, FeO: 0.16, MgO: 0.22, CaO: 0.36,
Na,O: 0.27, K,O: 0.03, TiO,: 0.10, MnO: 0.05, P,Os: 0.03, S: 90, CI: 60.

.........
N
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We measured compositional profiles across zoned olivine crystals by electron

microprobe. We calculated residence times for the olivine crystals predicated on the

assumption that the zoning was produced by a magma mixing event (discussed in section

5.5), and followed the methods of Costa and Chakraborty (2004). We used the simple, 1­

D diffusion equation:

(1)

where C is the concentration, x is distance, D is the diffusion coefficient, and t is time.

We calculated diffusion coefficients, D, for Fe-Mg exchange using the equation from

Jurewicz and Watson (1988):

DFe-Mg = 8 x 1O-7*exp(-29708/T) m2s-1 (2)

where D is diffusion parallel to the c-axis, and we assumed that Da = Db= 6Dc (Dohmen

et aI., 2003). Using equation (1) we fit a modeled diffusion profile to our data, and

calculated the time required to produce that profile. Our calculations were based on

compositional profiles along the a- and b-axes of olivine crystals, and we used eruption

temperatures calculated using the method of Sugawara (2000), which generally agree

with eruption temperatures calculated using MELTS and pMELTS (Ghiorso and Sack,

1995; Asimow and Ghiorso, 1998; Ghiorso et aI., 2002).

To track changes in crystallinity of the melts throughout the eruption we took

images of the groundmass from the three representative tephra layers. Images were

collected using an FEI Quanta scanning electron microscope (SEM) at the University of

Oregon. These images were then analyzed using SCION image analysis software to

calculate the groundmass crystallinity and the size (crystal area) of groundmass

microlites for each sample.
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4. Results

4.1. Melt inclusion and groundmass compositions

Jorullo lavas evolved from initially primitive basalt to basaltic andesite over the

course of the ~15 year eruption (Luhr and Carmichael, 1985). Our corrected melt

inclusion compositions show a similar evolutionary pattern (Table 2.1), though there are

some important compositional differences between melt inclusions and lavas. The early

melt inclusions have high MgO (7.5-10.5 wt%) and low K20 (0.6-0.8 wt%), suggesting

that early olivine crystals trapped primitive melts that had undergone little to no

differentiation from a parental magma (Fig. 2.2). The later-erupted melt inclusions

sampled progressively more evolved melt compositions, with decreasing MgO (5-7.4

wt%) and increasing K20 (0.8-1.1 wt%). Groundmass glasses have low MgO (3.7-4.3

wt%) and higher K20 (1.3-1.6 wt%), indicating that extensive crystallization occurred

after melt inclusion entrapment. Importantly, the lavas show increases in K20 and

decreases in CaO with decreasing MgO that differ from many of the melt inclusions.

These deviations imply differences in magmatic processes for lavas and melt inclusions,

and the significance of this will be discussed in section 5.3.
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Figure 2.2. Major elements vs. MgO for Jorullo melt inclusions, tephra groundmass glass,
bulk tephra, and lava whole-rock samples (lava analyses are from Luhr and Carmichael,
1985). In both figures, MELTS calculations (see Fig. 2.8) indicate that olivine-only
crystallization explains much of the range in MgO, KzO, and CaO whereas some
inclusions record plagioclase ± clinopyroxene crystallization. The MELTS calculations
simulate a probable ascent path (varying both pressure and temperature), and the solid
line shows an ascent path with greater cooling than the path of the dotted line. In
contrast, the bulk melt evolution, as shown by the lava trend, corresponds to fractionation
of 17.3 wt% amphibole + 6.7 wt% olivine (thick dashed line), based on major element
modeling. Also shown are the average standard deviations based on multiple analyses
per sample.
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Melt inclusion incompatible trace element concentrations also generally increase

from the early to late stages of the eruption (Fig. 2.3). While some elements show steady

increases from early to late in the eruption, several elements seem to be anomalously

enriched in the late melt inclusions. Similar enrichments were seen in some trace

elements in the late-stage lavas (Luhr and Carmichael, 1985).

The bulk tephra analyses from the early, middle and late tephra layers are all less

evolved than the earliest lavas (Fig. 2.2), suggesting that the preserved tephra sequence

that we sampled may have been erupted prior to most, if not all, of the lava flows. This

interpretation is supported by descriptions of the eruption that suggest that the early

phases of activity were mainly explosive and that lava flows may not have issued from

the cone until the eruption was in its fifth year (Gadow, 1930). An alternative possibility

is that the proximal tephra deposits that we sampled were enriched in dense olivine

relative to the lower density, vesicular pyroclasts ejected during eruption and fallout of

the tephra.
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Figure 2.3. Trace element analyses for melt inclusions (laser ablation ICP-MS) and bulk
tephra (ICP-MS). Figure 2.3a shows Ba vs La and Figure 2.3b shows Zr vs Y. Both
figures show a solid line representing 40% fractionation (an upper limit of crystallization,
as suggested by Fig. 2.9) and an analysis of the La Huacana granite bedrock (Luhr and
Carmichael, 1985). Light gray bands indicate mixing between the Jorullo melts and the
granite, suggesting a role for assimilation in the later melts.

4.2. Olivine compositions and zoning

Comparison of olivine compositions in the tephra and lava supports our

interpretation that the explosive eruptions largely preceded effusive activity, and shows

that the olivine forsterite content decreased throughout the eruption. Figure 2.4 shows

probability density curves for olivine core compositions from the lava flows (LOOr and

Carmichael, 1985) and the tephra throughout the eruption. Olivine from the early and
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middle tephra are overall more forsterite-rich than olivine from the early and middle lava

flows, suggested they were erupted prior to effusion of the lavas. The olivine cores

exhibit an increasing compositional range from the early tephra (F088-91 ) to the late tephra

(F083-88) to the latest lava flows (F073-87).

Olivine crystals from both the tephra and lava flows are normally zoned (Fig.

2.5). Zoned rims range from abrupt in the early tephra (Fig. 2.5a) to more gradual in the

late tephra (Fig. 2.5b), suggesting that crystals may have resided in more evolved

magmas for varying lengths of time. Using transects across these zoned crystals and the

equations described earlier, we have modeled the zoning profiles (solid lines, Figs. 2.5a,

b) and the corresponding residence times for olivine from the early, middle and late

stages of the eruption. We calculate a range of olivine residence times, from ~10-200

days for the early-erupted olivine to ~80-1300 days for the late-erupted olivine (Fig.

2.5c). Implications for these residence times are discussed in section 5.5.
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Figure 2.4. Probability density curves for olivine core compositions from tephra (lower)
and lava (upper; Luhr and Carmichael, 1985), where E = Early, M = Middle, L = Late
(for olivine from both tephra and lava), and LS = latest (lava). These plots illustrate the
general decrease in olivine core Fo content throughout the eruption. Early and middle
tephra samples appear to correspond to an earlier phase ofthe eruption based on high
olivine Fo content, the narrow range of olivine compositions, and the primitive
composition of bulk tephra. Observations of the eruption that describe explosive activity
only during the first few years of the eruption (Gadow, 1930) and a thinning of tephra
onto the earliest lava flows support this interpretation. The early phase of erupted lava
appears to correlate roughly with our middle tephra.
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Figure 2.5. Olivine zoning and residence time calculations. Figs. 2.5a and 2.5b show
representative electron microprobe transects from core-to-rim for early and late olivine
crystals, respectively. Also shown are modeled diffusion profiles (thick solid lines).
Fig. 2.5c shows the calculated residence times for olivine from the early, middle and late
stages of the tephra section. Fig. 2.5d illustrates the positive relationship between olivine
residence time and olivine core composition from the late olivine samples. This suggests
that earlier, less evolved melts crystallized olivine that then resided for potentially long
periods of time in more evolved melts. Standard deviations were calculated based on
multiple transects and models, but error bars are smaller than the symbol size.

4.3. Melt inclusion volatile concentrations

Melt inclusions preserved in Jorullo olivine trap some of the highest volatile

contents yet recorded in primitive arc magmas and suggest a complex and evolving

degassing history throughout the eruption (Fig. 2.6). Inclusions in early erupted olivine

record a wide range of volatile contents and trapped both relatively undegassed melts,

with up to 5.3 wt% H20 and 1000 ppm CO2, and degassed melts, with low H20 and CO2

below detection « 50 ppm). This diversity in H20 and C02 concentrations indicates that
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olivine crystallized over a wide range of depths, corresponding to entrapment pressures

of 10 to ~ 400 MPa. The later-erupted inclusions are much more uniform in volatile

concentrations, with all melt inclusions recording CO2 below detection and consistently

low H20 (0.2-1.4 wt% in middle samples; 0.4-1.0 wt% in late samples) that indicate

olivine crystallization only at very low pressures « 20 MPa). In contrast, melt inclusion

8 and CI contents do not vary significantly during the eruption (8 mostly 1200-1800 ppm;

CI 1000-1400 ppm, Table 2.1) and do not correlate with H20.
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Figure 2.6. Melt inclusion C02 vs. H20 for early (diamonds), middle (squares), and late
(triangles) samples. Also shown are calculated vapor saturation isobars, open and closed
system degassing paths, and vapor isopleths for 40,60 and 80% C02, all calculated using
VolatileCalc (Newman and Lowenstem, 2002). For many inclusions, the pressures based
on dissolved H20 and CO2 are minimum values because the inclusions contain a small
shrinkage vapor bubble (formed post-entrapment) that contains some additional CO2.
However, most low H20, low C02 inclusions contain no such shrinkage bubble. The
average standard deviation was calculated based on multiple analyses per inclusion.
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4.4. Groundmass crystallinity

The tephra groundmass contains abundant microlites of plagioclase, as well as

minor olivine and clinopyroxene (Figs. 2.7a, b). Measurements of microlite abundance in

the groundmass from the three tephra layers show a slight increase in crystallinity from

early (41 ± 1%, average ± I s.e.) to late (47 ± 2%) in the eruption (Fig. 2.7c).

Additionally, there are notable increases in microlite size (area), as seen visually in the

comparison of the early groundmass (Fig. 2.7a) and late groundmass (Fig. 2.7b). The

average size of olivine and clinopyroxene crystals increases from 60 ± 13 j.1m2 (early) to

145 ± 13 j.1m2 (late), and the average size of plagioclase laths increases from 124 ± 7 j.1m2

(early) to 180 ± 20 j.1m2 (late) (Fig. 2.7d).
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Figure 2.7. Groundmass crystallinity from SEM image analyses. Figs. 2.7a and 2.7b
show images of groundmass tephra from the early and late tephra samples, respectively.
Fig. 2.7c shows the average crystallinity for early, middle and late samples based on
SCION image analysis estimates. Fig. 2.7d shows an increase in size of groundmass
plagioclase from early to late in the eruption, where size is the area of a groundmass
crystal as calculated using SCION image analysis software. Error bars show ± 1 standard
error based on analysis of multiple images for each sample.
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5. Discussion

5.1. Degassing processes

The scatter in the melt inclusion H20 and CO2 concentrations shown in Figure 2.6

reflects a complex magma degassing history. Calculated degassing paths (solid lines,

Fig. 2.6) show that some of the variation in H20 and CO2 can be explained by either

open-system degassing, where C02 degasses almost entirely with little loss of H20, or

closed-system degassing, in which the ascending melt and exsolving gas remain in

equilibrium. However, many inclusions have elevated CO2for a given H20 content that

cannot be explained by closed-system degassing models. Similar scatter has been seen in

other magmatic systems (e.g., Rust et aI., 2004; Atlas et aI., 2006; Spilliaert et aI., 2006).

The low H20, high C02 inclusions could result from several processes, including

disequilibrium degassing of melts before entrapment (Gonnermann and Manga, 2005) or

post-entrapment diffusive loss ofH2 or H20 through the melt inclusion host crystals. The

former process is difficult to evaluate because of the lack of data on H20 and C02

diffusivities in hydrous basaltic melts (Baker et aI., 2005), but it is probably more

effective in low temperature, silicic magmas. Loss of water by H2 diffusion is probably

limited to :s 1 wt% H20 by redox effects (Danyushevsky et aI., 2002), and thus could not

explain all of the scatter we see in our data. Loss of water by molecular H20 diffusion

through the olivine host (Portnyagin and Almeev, 2007) is not limited by redox reactions.

However, the loss of2.5 to 4 wt. % H20 that would be required to account for our data

(assuming all high C02 inclusions started along the closed-system degassing curve in Fig.

2.6) would cause considerable crystallization of olivine, plagioclase, and clinopyroxene

inside the inclusions and formation of a substantial shrinkage vapor bubble. None of
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these features are observed in the high C02, low H20 inclusions, leading us to conclude

that significant H20 diffusive loss through the host olivine has not occurred.

Additionally, we see no correlation between diffusive Fe-loss from the melt inclusions

(see Supplementary Material) and the deviation of H20 contents from the closed system

degassing curve in Figure 2.6.

An alternative possibility is that the scatter in Figure 2.6 may be the result of

melts equilibrating with more CO2-rich vapor percolating through the system from below,

where it is released by magma degassing deeper in the system (Rust et aI., 2004;

Spilliaert et aI., 2006). Vapors with 40-80 mol% CO2fit most of the scatter in our data

(C02 vapor isopleths, dashed lines, Fig. 2.6). This gas fluxing hypothesis requires that

melts have initially high C02 contents (2: 0.7 wt%) in order to create such CO2-rich gases

during ascent in the deep crust. Although such high values have not been found in melt

inclusions, an analysis based on arc volcanic C02 fluxes suggests that such high values

are common in mafic arc magmas (Wallace, 2005). The gas fluxing effect may be

enhanced by repeated cycles of decompression and repressurization within the conduit

(Rust et aI., 2007).

The melt inclusions record evidence for loss of H20 and C02 by degassing, but

there is no indication of Sand Cl degassing throughout the eruption, probably because

these components have higher solubility. Lack of Cl degassing has been observed

previously (e.g., Sisson and Layne, 1993), but the lack of S degassing is more peculiar

and may result from relatively high oxygen fugacity and presence of S primarily as

sulfate.
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5.2 Crystallization during ascent and degassing

The primitive composition of the early Jorullo melts combined with initially high

magmatic volatiles, gas fluxing, and degassing caused olivine-only crystallization over

the wide range of depths indicated by our melt inclusion data. These inferences are

supported by a phase diagram for early Jorullo melts constructed using MELTS and

pMELTS (Fig. 2.8). The high MgO and H20 contents of the early Jorullo melts produce

a large field of olivine-only crystallization. Melt inclusion data demonstrate that olivine

crystals formed at a maximum pressure of 400 MPa; however, at this pressure the melts

are H20-undersaturated. Deep crystallization would have been facilitated by CO2-rich

vapor fluxing through the system, as suggested by some of the melt inclusion data (Fig.

2.6). Fluxing of CO2-rich gas would remove H20 from the melt, even though the melts

were H20 undersaturated. Thus the melts would have been below their relevant H20

undersaturated liquidii (Fig. 2.8), forcing small quantities of olivine to crystallize during

ascent. Larger amounts of olivine would have crystallized once the melts crossed the

H20 saturated liquidus (at ~150-200 MPa).

The phase relations (Fig. 2.8) are also consistent with the complicated degassing

history shown in the plot of C02 vs. H20 (Fig. 2.6). In this plot there are essentially two

groups of inclusions; the first group are those that roughly fit either open or closed

system degassing paths, in other words, melts that have degassed all of their CO2prior to

olivine crystallization. These crystals would have grown along or below the H20­

saturated olivine-in curve at pressures commencing at ~150 MPa, as recorded by the

entrapment pressure of the C02-poor melt inclusion with the highest H20 (Fig. 2.6). The

second group of inclusions are those that cannot be explained by either closed or open
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system degassing, and instead require fluxing of C02-rich vapor through the system.

According to our melt inclusion data, nearly all inclusions trapped at pressures >200 MPa

require interaction with C02-rich vapor; these pressures correspond to the region above

the H20-saturated olivine-in curve where the ability to crystallize olivine depends on

addition of C02 and subsequent loss of H20 from the melt.
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Figure 2.8. Phase diagram for early Jorullo melt composition (10.5 wt% MgO)
constructed using MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) and
pMELTS (Ghiorso et aI., 2002). Circle with cross indicates hypothetical starting melt
based on the highest melt inclusion entrapment pressure of 400 MPa with 5.3 wt% H20.
The adiabatic ascent path was calculated using MELTS and pMELTS and includes the
effects of crystallization, gas exsolution, and gas expansion; the widening at low
pressures reflects variability between the two models. Amphibole liquidus region is
based on experimental studies by Holloway (1973), Holloway and Ford (1975), Moore
and Carmichael (1998), Grove et aI., (2003), and Nicholis and Rutherford (2004).
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The adiabatic ascent path in Figure 2.8 shows that olivine would be the only

crystallizing phase over a large range of pressures (~400-30 MPa), with plagioclase

joining olivine only at low pressures « 30 MPa), followed by near-surface crystallization

of clinopyroxene. This predicted ascent and crystallization path agrees with the melt

inclusion data, the modal abundance of olivine in the tephra, and the presence of late

stage plagioclase and minor clinopyroxene as groundmass crystals in the quenched tephra

glass (Figs. 2.7a, b).

The later-erupted melt inclusions indicate that crystallization moved to shallow

levels as the eruption progressed. The lower MgO content of the later melts would have

decreased the olivine-only field, such that olivine could only have crystallized at

pressures :s 100 MPa (based on an eruption temperature of~1150° C and the phase

diagram of Moore and Carmichael, 1998). However, melt inclusion entrapment pressures

later in the eruption vary only from 3-19 MPa, suggesting that either deeper crystallizing

olivine fractionated out of the melt and was not erupted, or, that olivine preferentially

crystallized only shallowly in the plumbing system. This shallow crystallization further

suggests that the CO2 fluxing that enabled deep olivine crystallization early had shut off

later in the eruption. Additionally, some later-erupted melt inclusions show the

compositional effects of plagioclase +/- clinopyroxene crystallization (see section 5.3).

These phases would also have crystallized at low pressures « 40 MPa), lending further

support to the development of a shallow region of melt crystallization.

Our data show that the crystallization recorded by melt inclusions is driven by

H20 loss during ascent. At higher pressures (200-400 MPa) loss of H20 is likely caused

by gas fluxing, but at lower pressures, CO2-depleted melts lose H20 by direct exsolution
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of H20-rich vapor. Both processes cause melts to degas H20 and thus can result in

crystallization. Variations in K20, which is incompatible during crystallization, are

consistent with a model of degassing-induced crystallization (Fig. 2.9). Based on the

K20 content of the highest pressure inclusion (0.66 wt% K20), increases in K20 with

decreasing pressure for all early erupted melt inclusions are consistent with up to 14%

crystallization. Later in the eruption, low pressure degassing resulted in extensive

shallow crystallization of olivine, plagioclase, and minor clinopyroxene, producing K20

increases that require up to 29-36% crystallization prior to melt inclusion entrapment
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Figure 2.9. Pressure (MPa) vs. K20 for melt inclusions and groundmass glasses.
Pressures for melt inclusions were calculated based on dissolved C02 and H20 (Fig. 2.6)
using the VolatileCalc solubility model (Newman and Lowenstem, 2002). Percent total
crystallization required to relate various compositions to the parental melt is calculated
assuming that K20 is perfectly incompatible. Also shown is the calculated MELTS
ascent path, which predicts 48% total crystallization and agrees well with the data (gray
curve). Error bars show ± 1 standard deviation based on multiple analyses. Where not
shown, error is smaller than symbol size.
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Whereas the late inclusions were trapped shallowly (3-19 MPa), crystallization of

the groundmass in the tephra clasts occurred shallower still, likely during rise in the

upper conduit and during eruption. Groundmass glass analyses for the three tephra layers

indicate that significant crystallization of microlites occurred after the melt inclusions

were trapped (Fig. 2.9). The K20 in tephra groundmass glass increases steadily from the

early (1.3 wt%) to late (1.6 wt%) samples, corresponding to approximately 50% total

crystallization (early) and 59% total crystallization (late) of initially primitive melt.

These values suggest that ~25% crystallization occurred between the last melt inclusion

trapped and eruption and quenching of the pyroclasts, and that much of this extensive

crystallization was shallow « 10 MPa).

Additionally, the temporal increase in both crystallinity and crystal size measured

in groundmass glass images (Figs. 2.7c, 2.7d) suggests an increased time scale for

groundmass crystallization prior to eruption. This could have been achieved by either

decreasing ascent rate in the latter stages of the eruption or storage of later melts en route

to the surface. Shallow storage of magma at the base of a growing cinder cone has been

suggested elsewhere (Krauskopf, 1948; Cervantes and Wallace, 2003; Pioli and

Cashman, 2006) to explain both lava effusion from the base of cinder cones and shallow

growth of olivine crystals.

5.3. Lava vs. tephra - the role ofdeep crustal fractionation

The melt compositions trapped in olivine during the eruption ofVo1can Jorullo

record the importance of olivine crystallization throughout the eruption, with the addition

of shallow plagioclase +/- clinopyroxene crystallization later in the eruption. Olivine
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crystallization played a key role in changing the liquid composition, as evidenced by the

abundance of olivine in the tephra and lava flows and the decrease in melt inclusion MgO

contents as the eruption progressed (Fig. 2.2). Much ofthe melt inclusion data can be

explained by ~ 13 wt% olivine fractionation (solid line in Fig. 2.2). However, lower CaO

contents in some of the later inclusions and the groundmass glass require additional

crystallization of plagioclase +/- clinopyroxene (solid and dotted lines, Fig. 2.2b).

Whereas the melt inclusion data record crystallization of olivine ± plagioclase ±

clinopyroxene in the upper crust caused by ascent and degassing, the bulk lava

compositions (gray field, Fig. 2.2) differ from the melt inclusions, suggesting a different

fractionation history. Unlike the melt inclusions, the lavas gradually increase in K20 and

decrease in CaO with decreasing MgO beginning early in the eruption. As no

combination of the main erupted phenocrysts (olivine ± plagioclase) can generate this

trend, Luhr and Carmichael (1985) explained this evolution by high pressure

fractionation of clinopyroxene, olivine, and plagioclase. However, they noted that this

explanation was problematic because ofthe absence of clinopyroxene phenocrysts in

most lavas, and abundances of a number of incompatible trace elements were not

satisfactorily accounted for with this fractionation model.

The presence of amphibole phenocrysts in some of the late-stage, most evolved,

Joru110 lavas (Luhr and Carmichael, 1985) provides strong evidence that at least some

portion of the crystallization process occurred at pressures high enough to stabilize

amphibole (> 500 MPa); we propose that fractionation of amphibole + olivine ±

clinopyroxene drove the bulk melt evolution at depth. We modeled simple amphibole ±

olivine fractionation with major element least squares modeling using the early and late
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bulk lava data, the amphibole composition from an analyzed phenocryst in a late lava

(Luhr and Carmichael, 1985), and F090 olivine. We found that fractionation of amphibole

+ olivine has a good fit (I r2 = 0.99) compared to amphibole only (I r2 = 4.66). Plotted

in the major element diagrams of Figure 2.2 is the amphibole + olivine fractionation trend

(thick dashed line), which corresponds to fractionation of 17.3 wt% amphibole and 6.7

wt% olivine. Because there is uncertainty as to whether amphibole would have been

stable in the highest temperature melts (e.g., Moore and Carmichael, 1998; Grove et aI.,

2003; Nicholis and Rutherford, 2004), the earliest stages of fractionation may have

involved olivine + clinopyroxene, with amphibole joining the assemblage (or replacing

clinopyroxene by reaction relation) at temperatures between 1100-1150°C. We

hypothesize that most of the original fractionating crystals were left behind at depth,

perhaps in a deep crustal hot zone sill (Annen et aI., 2006), and that ascending batches of

melt then crystallized olivine during degassing. Thus most or all of the crystals in the

tephra and lavas were formed during ascent, whereas the bulk composition of melt

batches emanating from the deep reservoir became progressively more evolved over time

due to deep fractionation.

5.4. Role ofshallow assimilation - trace elements

While it seems that most of the bulk melt evolution can be explained by

fractionation of amphibole + olivine ± clinopyroxene at depth, there is also evidence for

shallow assimilation of granitic bedrock (Rubin et aI., 2004). Granitic xenoliths were

erupted in several of the middle and late lava flows at Jorullo, and in some localities are

quite abundant. Disaggregated xenoliths in the lavas and the presence of plagioclase and
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quartz xenocrysts in thin section suggest efficient consumption of the granites by the

Jorullo magmas. Additionally, some trace elements are far more enriched in the late melt

inclusions and bulk lavas (Luhr and Carmichael, 1985) than would be expected from

simple fractionation. Figure 2.3 shows trace element data for melt inclusions and bulk

tephra. The early and middle samples show increases in trace elements (Ba, La, Zr, Y)

that fit well with simple fractionation (solid line). However, the late melt inclusions and

late bulk tephra show enrichments in some elements (La, Zr, Y) that do not fit with the

modeled 40% crystal fractionation. Also plotted in these figures are analyses of the La

Huacana granite that comprises the bedrock around Jorullo and the xenoliths present in

the lava flows; mixing between this granite and Jorullo melts can explain the enrichments

in the later samples. Furthermore, these data suggest that the plumbing system at Jorullo

evolved such that efficient assimilation ofthe shallow granite occurred, lending

additional support to the development of a shallow storage region late in the eruption.

5.5. Olivine residence times

Olivine crystals in both the tephra and lava flows (Luhr and Carmichael, 1985)

show Fo-rich cores with more evolved rims. Most olivine from the early and middle

tephra have broad homogeneous cores and narrow, normally zoned rims. Olivine from

the late tephra have more gradual normal zoning. We interpret the narrowness of the

zoned rims in early and middle tephra to be the result of magma mixing or entrainment of

earlier formed crystals by less Mg-rich melts just before eruption. Additionally, early

olivine crystallized at a wide range of depths but were deposited within the same tephra

layer, or eruptive unit. This suggests that olivine from various levels of the plumbing
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system were re-entrained by the evolving melts rising from depth, consistent with the

Jorullo bulk melt evolution driven by amphibole + olivine fractionation in the middle to

lower crust.

The olivine residence time data (Figs. 2.5c, d) also support the formation of a

shallow reservoir or storage system as the eruption progressed. The range of timescales

for olivine storage increases from early to late in the eruption, suggesting that longer

storage of crystals is facilitated late in the eruption by such a reservoir. Additionally, the

observed correlation in the late-erupted olivine between crystal residence time and

olivine core compositions (Fig. 2.5d) suggests that the olivine with more Fo-rich cores

crystallized far earlier in the eruption (with residence times up to 1300 days), and then

resided at shallow levels (based on the low entrapment pressures of middle and late melt

inclusions) in a more evolved melt. Together, these data require the development of a

region for long-term (months to years) crystal and melt storage at shallow levels, and

support the idea of deep melt evolution followed by shallow olivine-dominated

crystallization.

6. Cinder cone plumbing systems

This research gives new insight into the volatile content, crystallization processes,

and plumbing system evolution of a cinder cone volcano. The eruption of Jorullo is the

longest historically recorded cinder cone eruption, during which time the melts evolved.

By comparing the bulk lava record (Luhr and Carmichael, 1985) to the melt inclusion

record, we have found evidence for a multi-stage crystallization history at Jorullo. The

melt inclusions record extensive crystallization in the upper crust driven by ascent,
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degassing, and gas streaming, whereas the bulk lava and tephra compositions record

deeper fractionation processes. Primitive, volatile-rich magma likely rose from the

mantle beneath Jorullo, stalled and cooled in the lower crust, where it fractionated

amphibole + olivine during the IS-year eruption. Such "cryptic amphibole fractionation"

in the lower arc crust has recently been suggested by Davidson et al. (2007) to be a

widespread phenomenon.

Whereas this initial stage of fractionation was likely driven by deep cooling, the

Jorullo melt inclusions record evidence for crystallization driven by degassing during

magma ascent. The early Jorullo melts rose from depth, likely in a complex network of

dikes and sills, and crystallized olivine from 16 km to the near-surface (calculated

assuming upper crustal density of2600 kg/m\ Olivine crystallized at pressures of200­

400 MPa due to fluxing of C02-rich gases through the conduit system, which forced

melts to degas H20, and thus placed the melts below the relevant H20-undersaturated

olivine-in curves. Subsequent degassing under near H20-saturated conditions as the

melts rose induced further crystallization. The later-erupted melt inclusions record a

significant change in the plumbing system, with olivine crystallization localized very

shallowly beneath the volcano (80-700 m) and the addition of plagioclase ±

clinopyroxene as crystallizing phases.

The shallowing of olivine crystallization depths, combined with both the

extensive crystallization recorded by the groundmass and the increasing olivine residence

times indicated by diffusion profiles, suggest that a shallow reservoir developed as the

eruption of Jorullo progressed, facilitating degassing, crystallization, and melt storage. A

similar shallow degassing region was suggested by Krauskopf (1948) to explain the
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extrusion of degassed lava laterally from the base of Paricutin. This model would also

hold for Jorullo, as degassed lavas effused from the base ofthe cone for much of the

eruption. Additionally, degassing, crystallization, and release of latent heat in this

shallow network would have enabled crustal assimilation of the granitic bedrock, a

process seen both at Paricutin (McBimey et aI., 1987) and Jorullo (Rubin et aI., 2004).

Development of such a reservoir seems applicable to long-lived cinder cones like Jorullo.

For example, the eruption of Paricutin lasted for nine years and the melts similarly

evolved over time, both due to fractionation and assimilation (Wilcox, 1954; McBimey et

aI., 1987). Because such reservoirs are capable of storing melts for extended periods of

time and may feed the extensive lava flows, they may be a common feature of other long­

lived cinder cone eruptions.
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Bridge

In the previous chapter I described the degassing behavior and melt evolution of

one cinder cone eruption. In the following chapter, I will compare and contrast the

degassing behavior of several cinder cones throughout Mexico, and compare their

behavior with that of larger volcanoes, such as Mt. Etna in Italy.
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CHAPTER III

DEGASSING OF VOLATILES (H20, C02, S, CL) IN MONOGENETIC BASALTIC

ERUPTIONS: IMPLICATIONS FOR VOLATILE SOLUBILITIES, VAPOR-MELT

PARTITIONING, CRYSTALLIZATION, AND ERUPTION PROCESSES

This work is co-authored with Paul Wallace and Kathy Cashman who assisted

with fieldwork and editing. I performed the laboratory work and was the primary author.

1. Introduction

The exsolution of volatiles from magma during ascent is the driving force for

explosive eruptions. Until recently, studies of explosive volcanism have focused mainly

on silicic systems. However, recent measurements of the pre-eruptive volatile

concentrations in basaltic melts have demonstrated that mafic magmas can have high

volatile contents « 8 wt% H20, < 3000 ppm C02, < 4000 ppm S, < 3000 ppm CI; Sisson

and Layne, 1993; Roggensack et aI., 1997; Cervantes and Wallace, 2003; Spilliaert et aI.,

2006a, 2006b; Wade et aI., 2006; Benjamin et al., 2007; Johnson et aI., 2008: Chapter II)

and that these high volatile contents affect the explosivity of basaltic eruptions

(Roggensack et aI., 1997; Spilliaert et aI., 2006b). Furthermore, an increasing number of

studies have emphasized the effects of degassing on crystallization of ascending melts
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(e.g., Sisson and Layne, 1993; Metrich et aI., 2001; Roggensack; 2001; Atlas et aI., 2006;

Blundy and Cashman, 2005; Blundy et aI., 2006; Johnson et aI., 2008: Chapter II).

Degassing of volatiles is complex because the solubility ofthe different volatiles

is variable and depends on melt composition, temperature, pressure, and in some cases,

oxygen fugacity (e.g., Dixon and Stolper, 1995; Webster et aI., 1999; Newman et aI.,

2000; Jugo et aI., 2005). Melt inclusion H20 and C02 concentrations, which can be used

to calculate entrapment pressures, can be combined with Sand Cl contents of melt

inclusions and matrix glasses to provide estimates of the depth and extent of degassing of

different volatiles (Metrich et aI., 1993; Metrich et aI., 2001; Gurenko et aI., 2005;

Spilliaert et aI., 2006a, 2006b). However, these studies have focused on large or

persistently active basaltic volcanoes (e.g., Etna), and similar studies have not been done

on monogenetic volcanoes, in spite of the fact that they are the most abundant type of

volcano on land (Vespermann and Schminke, 2002).

Here we present the pre-eruptive volatile concentrations (H20, CO2, S, CI) and

major element compositions of olivine-hosted melt inclusions and matrix glasses from

monogenetic volcanoes in central Mexico. Using these data, we assess the degassing

behavior of volatiles in the basaltic magmas, including estimates of the vapor-melt

partition coefficients for S and CI, depths of degassing of the different volatiles, the role

of degassing in causing crystallization, and the loss of Sand CI during ascent and

eruption. Our data suggest that the degassing behavior of basaltic volcanoes is highly

variable and may be influenced by the longevity of the eruption.
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2. Samples and methods

We sampled tephra from nine monogenetic volcanoes (eight cinder cones and one

maar) across the Michoacan-Guanajuato Volcanic Field (MGVF), Mexico (Fig. 3.1).

When possible, samples were taken from throughout the tephra stratigraphy, from the

basal layers of the tephra directly above the paleosol to the top of the tephra section.

Loose olivine crystals from the tephra samples were separated, washed, and cleaned of

adhered glass using HBF4, and those with suitable melt inclusions (fully enclosed, glassy)

were prepared for analysis.

102'30W

~

z
I:.
N

z
~

102°30W

102'W

102°W

101'30W

101'30'W

101°W

101'W

z
~

Figure 3.1. Map of samples from the Michoacan-Guanajuato Volcanic Field (MGVF).
White contours indicate distance from Middle America Trench (MAT). Inset shows map
of Mexico and tectonic setting, with location of MGVF denoted by a box. Dots indicate
locations of volcanoes in Mexico and Central America.



40
Water and CO2 concentrations in melt inclusions were analyzed by Fourier

Transform Infrared Spectroscopy (FTIR) at the University of Oregon. Concentrations of

H20 and CO2 were calculated using Beer's law: c = MA/pdl:>, where M is the molecular

weight of H20 or C02, A is the measured absorbance of the band of interest, p is the

room temperature density of basaltic glass, d is the thickness of the melt inclusion and I:>

is the molar absorption coefficient. In most samples, water concentrations were

calculated using the total OH peak at 3550 cm- I and an absorption coefficient of 63 ± 3

Llmol-cm (P. Dobson et aI., unpublished data, cited by Dixon et aI., 1995). In some

instances, however, total H20 was calculated using an average of the molecular H20

peaks at 1630 cm- I and 5200 cm-I and the OH- peak at 4500 cm- I
. In these cases

absorption coefficients were calculated based on major element compositions (Dixon et

aI., 1995). CO2 was calculated using the carbonate peaks at 1515 and 1435 cm- I
; an

absorption coefficient was calculated (typically 290-300 L/mol-cm) based on the major

element composition of each sample (Dixon and Pan, 1995). The background around the

carbonate peaks is complex, and thus it is necessary to subtract a carbonate-free spectrum

from each sample spectrum to obtain a flat background (Dixon et aI., 1995). We

measured the absorbance of the carbonate doublet peaks using a peak-fitting program

(unpublished program by S. Newman).

Major and minor element (including S and CI) compositions of melt inclusions,

their olivine hosts, and tephra groundmass glass were analyzed on the Cameca SX-IOO

electron microprobe at the University of Oregon using a 15 kV accelerating voltage, 10

nA beam current (20 nA for olivine analyses), and a beam diameter of 10 !lm. The beam

current was increased to 40 nA when analyzing Sand CI, and count times were increased
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to 80 s for S and 100 s for CI. Based on previous analyses ofFeO and Fe203 in MGVF

lavas, we estimated the oxidation state of basaltic melts in the MGVF (Hasenaka and

Carmichael, 1985). The slightly oxidized nature of the MGVF magmas (~L1NNO + 0.5)

corresponds to a peak position for S that is two-thirds of the way from anhydrite to pyrite

(Wallace and Carmichael, 1994). In order to correct for decreasing counting rates for

volatile elements (e.g., Na, K, Si, and AI) with time, we used a volatile correction routine

that fits an exponential function to the decaying count rates for these elements, and then

we extrapolated back to time zero. A combination of glass and mineral standards was

used in the microprobe analyses.

To precisely determine the speciation of dissolved S in the melt inclusions,

wavelength dispersive S Ka scans were performed on 2-4 inclusions per sample.

Exposure to the electron beam has been shown to cause an increase in sulfur oxidation

state for glasses in which most S is present as S2- (Wallace and Carmichael, 1994) and to

cause reduction of S6+ to S4+ in more oxidized glasses (Wilke et al., 2008). In order to

minimize these effects the sample was moved relative to the electron beam every 20

seconds. A peak-fitting program was used to locate the position of the S Ka peak, and

the oxygen fugacity ofthe melt was calculated following Wallace and Carmichael

(1994).

All melt inclusion data were corrected for the effects of post-entrapment

crystallization of olivine (Sobolev and Chaussidon, 1996) and diffusive loss ofFe

(Danyushevsky et aI., 2000). Post-entrapment crystallization correction involves adding

equilibrium olivine, in incremental fractions of 0.1 wt%, into the melt inclusion

composition until it is in equilibrium with its host olivine (as analyzed by electron
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microprobe). There are two variables used in calculating the equilibrium olivine

composition: the KD value and the FeO/FeOT ratio. We used a KD of 0.3 ± 0.01 (Toplis,

2005) and FeO/FeOT values of 0.7-0.9, based on whole rock lava data (Hasenaka and

Carmichael, 1985) for each cone. Following the procedure of Danyushevsky et al. (2000)

we also corrected the inclusions, if necessary, for post-entrapment Fe-loss. We plotted

the melt inclusion FeOT vs MgO data and either the bulk tephra XRF data or whole rock

data from Hasenaka and Carmichael (1985). Inclusions with low FeOT compared to the

whole rock trend had FeO added back into their compositions until they matched the

whole rocktrend. All major element and volatile data discussed in the text and shown in

figures are corrected values and are presented in tables in Appendix F.

3. Results

3.1. Melt compositions

The melt inclusions from the MGVF have mostly basaltic to basaltic andesitic

compositions (Fig. 3.2). Melt inclusions from the cinder cones are medium-K calc­

alkaline in composition, whereas the maar locality erupted more alkalic compositions.

Fo-rich olivine (F088-91 ) phenocrysts are present in tephra from many of the cones, but

some of the more evolved magmas crystallized olivine (F075-87) +/- plagioclase +/­

clinopyroxene phenocrysts. Some suites ofmelt inclusions from individual volcanoes

show decreasing MgO and increasing K20 over time or within an individual layer

suggesting evolution of the melt compositions by fractional crystallization and/or

assimilation (Fig. 3.3). In general, the melt inclusions trap melts that are less evolved,



43
with lower incompatible element (KzO, TiOz, PzOs) concentrations, than the groundmass

glasses.

3,---------------------r----.".,------,---------,

2.5
Shoshonite

• •
Basalt Andesite

Figure 3.2. Melt inclusion KzO and SiOz concentrations. Most MGVF melts plot in the
medium-K basalt to basaltic andesite fields. Roya Alvarez melts are more alkalic, with
low SiOz and higher alkali contents.
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Figure 3.3. Melt inclusion and matrix glass KzO and MgO concentrations. Melt
inclusion compositions are less evolved than their respective matrix glasses.
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3.2. Volatile concentrations - melt inclusions and matrix glasses

Melt inclusions trapped variably degassed melts with a wide range of dissolved

volatile concentrations. The range in H20 measured for inclusions at a given cinder cone

is typically between 1 and 4 wt% H20, with higher concentrations (4-5.3 wt%) found at

four localities (Fig. 3.4). Melt CO2concentrations for the cinder cones are highly

variable, from levels below detection « ~50 ppm) to 1500 ppm. However, the melt

volatile contents of the maar locality, Hoya Alvarez, are consistently different from the

cinder cones. Hoya Alvarez melt inclusions record low H20 (0.4-1.4 wt%) and variable

but elevated C02 (up to 3000 ppm, with one measurement of~6000 ppm). The Hoya

Alvarez melts roughly fit a closed-system degassing path (Fig. 3.4). Most cinder cone

melt volatile contents, however, show significant variability, which cannot be explained

entirely by closed-system degassing models (Fig. 3.4). Sulfur concentrations generally

range between 1100 and 2000 ppm and measured Cl contents are typically between 900

and 1400 ppm, with lower Cl at Hoya Alvarez (400-700 ppm) (Fig. 3.5). The melt

inclusions show no decrease in Cl as melt H20 decreases and only low S concentrations

in a few inclusions with low H20 (Fig. 3.5). Within the cinder cones, concentrations of S

in the matrix glasses are very low « 70 ppm), indicating significant shallow degassing of

S during eruption. Conversely, Cl concentrations in the matrix glasses remain high

( ~700-1000 ppm), suggesting Cl generally remains soluble in the melt through degassing

and eruption. In a later section we use systematics of volatiles and K20 to quantitatively

assess extent of degassing and vapor-melt partitioning for Cl and S.
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Figure 3.4. Melt inclusion C02 vs H20. Vapor saturation isobars (light gray), degassing
paths (solid black), and isopleths of constant vapor composition (dashed lines) were
calculated with VolatileCalc (Newman and Lowenstern, 2002). The low-H20 degassing
path (closed system, 1 wt% initial exsolved vapor) fits most of the Hoya Alvarez data.
Two closed-system degassing paths are shown at ~ 4 wt% H20, one with 1 wt% initial
exsolved vapor, the other with 2%. Neither curve sufficiently fit the melt inclusion CO2
and H20 data, but a large number of the melt inclusions plot between the isopleths
representing vapors with 50 and 70 mol% C02.
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Figure 3.5. Melt inclusion and matrix glass S (a) and CI (b) vs H20. Few inclusions
show decreases in S with decreasing H20 (a), but matrix glass S contents are generally
low. Melt CI concentrations show no change with decreasing H20, even in the matrix
glasses.

4. Discussion

4.1. Melt evolution - importance ofmagma mixing and assimilation

Assessing the degassing behavior of a volcano requires knowledge of the melt

evolution during eruption. The crystallization history of the melt is vital, as fractional

crystallization can increase or decrease the concentrations of volatile elements in the

melt. For example, fractionation of apatite could decrease melt CI and F concentrations.

Furthermore, as seen in studies of cinder cone eruptions like Paricutin (McBirney et aI.,
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1987; Luhr, 2001) and Jorullo (Luhr and Carmichael, 1995; Johnson et aI., 2008: Chapter

II), these systems are often very complex, and processes such as assimilation may be

common, especially in longer-lived eruptions.

An additional complication in using melt inclusion data is the possibility that the

compositions of trapped melts do not represent the compositions of the bulk melt. Melt

inclusions form when the growing crystal traps small volumes of melt at the crystal-melt

interface. Because melt inclusions are often trapped during relatively fast growth,

elements that are slow to diffuse in the melt, like P20S, may be preferentially enriched in

the "boundary layer" surrounding the growing crystal. Thus, such elements may be

more abundant in the melt inclusion than in the bulk melt. Recent crystallization

experiments involving forsterite in the CMAS system (Faure and Schiano, 2005) and

plagioclase and pyroxene in hydrous basaltic melt (Baker, 2008) show that crystals

formed by initially rapid growth followed by isothermal annealing trap inclusions that are

enriched in slowly diffusing species like Ah03 and P20S. In contrast, polyhedral

forsterite formed by slow cooling in the CMAS system commonly trap melt inclusions

that are similar to parental melt. For such crystals, there are no compositional gradients

surrounding the olivine, suggesting growth is controlled by interface attachment rather

than diffusion processes (Faure and Schiano, 2005).

To investigate the viability ofthe melt inclusion compositions in this study and to

test for complexities in melt evolution, such as assimilation or magma mixing, we plotted

ratios of incompatible elements in melt inclusions and bulk rock compositions (Fig. 3.6).

Discrepancies between melt inclusion and bulk rock data may be indicative of factors

such as boundary layer enrichment ofthe melts during inclusion formation, assimilation
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of crustal rocks, mixing of crystals and inclusions that formed in compositionally distinct

magmas, and fractional crystallization involving titanomagnetite or apatite. Figure 3.6a

illustrates the generally good agreement between melt inclusion and whole rock data at

Jorullo and Boya Alvarez. However, the Hoya Alvarez inclusions record lower

Ti02/P20 s concentrations than bulk rock, whereas K20/P20 Sremains constant. This

suggests that the melts were affected by variable crystallization oftitanomagnetite before

melt inclusion entrapment, resulting in lower Ti02 in the melts with progressive

fractionation. Although this has a small affect on the Hoya Alvarez Ti02 melt

concentrations, other elements, including volatiles, should not be affected. Plotted in

Figure 3.6b are melt inclusions that show significant variation from whole rock values.

The samples from La Loma and San Miguel appear to have two separate melt

populations; some groups of inclusions plot near the bulk rock data, whereas other groups

are compositionally very different, suggesting that some of the olivines erupted may be

xenocrysts. Figure 3.6c illustrates the complex evolution of the melts erupted at

Paricutin. The early melt inclusions from this study and from Luhr (200 I) all plot near

the early lavas, but as the eruption progresses the K20/P20S ratio of the melts increases.

This progressive evolution is likely the result of substantial assimilation of granitic

bedrock, which has high K20IP20 Sand low Ti02IP20s values (McBirney et aI., 1987).

These plots illustrate the complexities of magma compositions from cinder cone

volcanoes and show that they are susceptible to mixing and assimilation. However, we

did not find evidence of boundary layer enrichment affects, which would cause melt

inclusions to have lower ratios ofK20 or Ti02 to P20S than whole rock samples due to

very slow diffusion of P20 Sin the melt. This suggests that our melt inclusion
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compositions are representative of the bulk melt from which they formed. Processes like

assimilation would affect the bulk composition of the magma by adding certain elements,

like K, to the basaltic melt, which would affect estimates of the extent of fractional

crystallization based on incompatible elements. Melt inclusions from mixed populations

of olivine could record very different ascent, degassing, and crystallization histories.

Therefore, we have used only melt inclusion data from eruptions, or phases of an eruption

in the case of Paricutin, that are representative of the bulk melt when assessing the

degassing and solubility of volatile components (in section 4.3.).
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Figure 3.6. Melt inclusion and whole rock K20/P20S vs Ti02/P20 s. (a) Melt inclusions
from Jorullo and Hoya Alvarez melt plot near the whole rock compositions, illustrating
that they accurately represent the bulk melt compositions. (b) Melt inclusions from San
Miguel and La Loma are variable; some plot with the bulk rock compositions, while
others are compositionally different, suggesting that some of the melt inclusions are
hosted in xenocrystic olivine. (c) Melt inclusions from Paricutin show evolution toward
higher K20/P20 S, which likely represents assimilation of granitic bedrock (McBimey et
aI., 1987). However, melt inclusions from this study and the early inclusions from Luhr
(2001) plot near the early lava flows (McBirney et aI., 1987), suggesting that these early
melts have not been affected by assimilation.



51
4.2. Volatile degassing

Degassing of H20 and C02 from magmas during ascent and eruption at MGVF

cinder cones is complex. Based on vapor saturation isobars (Fig. 3.4), the melts with the

highest volatile contents were trapped at pressures of 300-500 MPa. However, melt

inclusions also record crystallization at very low pressures « 50 MPa). Furthermore,

whereas degassing of C02 and H20 at volcanoes like Arenal and Irazu follow trends for

closed-system degassing (e.g., Wade et aI., 2006; Benjamin et aI., 2007), closed-system

models cannot account for all of the scatter in the MGVF volatile data. Similar scatter

has been described at Etna (Spilliaert et aI., 2006) and Jorullo (Johnson et aI., 2008:

Chapter II). In both cases, the melt inclusions that trapped high-C02, low-H20 melts

were explained by gas fluxing of C02-rich vapor from depth (e.g., Johnson et aI., 2008:

Chapter II and references therein). We find that this process not only applies to Jorullo

but to many of the other MGVF cinder cones as well.

To illustrate the effects of gas fluxing, we have shown isopleths corresponding to

vapors with 50 and 70 mol% C02 in Figure 3.4. The isopleths bracket nearly all of the

data not explained by closed-system degassing, suggesting that fluxing of gases with 50­

70 mol% C02 is a common process during basaltic eruptions throughout Mexico. These

vapor compositions are similar to those estimated for Etna melts (Spilliaert et aI., 2006),

Jorullo (Johnson et aI., 2008: Chapter II), and high-K minettes and basanites erupted at

cinder cones in the Colima Graben to the west (Vigouroux et aI., in review). Moreover, a

compilation of basaltic melt volatile contents from arcs worldwide shows that many melts

are in equilibrium with vapors with 50-75 mol% CO2 (Fig. 3.7). This suggests that much

of the variation in H20 and C02 from basaltic magmas can be explained if primitive
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mafic magmas in arcs typically have 2: 0.7 wt% CO2, similar to the estimate by Wallace

(2005). The evidence for the pervasive effects of gas fluxing in volcanic conduit systems

suggest that such magmas pond and degas CO2-rich vapor at lower crustal depths
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Figure 3.7. Compilation of CO2 and H20 from basaltic melts worldwide (from Wallace,
2005). Dashed lines are vapor isopleths, and the solid line represents the closed-system
degassing path for a basalt with 5.3 wt% H20 and 7000 ppm CO2 at 1125"C (calculated
using VolatileCalc, Newman and Lowenstern, 2002). Most of the melt CO2and H20
concentrations in this plot fall between the 50 and 75 mol% C02 isopleths.

Furthermore, the gas-fluxing process seems to be restricted to pressures> 100

MPa. A large number of melt inclusions, from across the MGVF, were trapped between

100-300 MPa and plot between the two vapor isopleths. Spilliaert et al. (2006) reported a

similar abundance of melt inclusions trapped at ~200 MPa, which they attribute to a

magma ponding zone where melts stall, are fluxed with CO2-rich gases from depth, and

crystallize olivine. While a similar process may occur beneath the MGVF, the pressure
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region between 100 and 300 MPa also corresponds to the pressures at which ascending

basaltic andesite melts should cross the H20-saturated liquidus (based on eruption

temperatures of ~1100-1150°Cand the phase diagram of Moore and Carmichael, 1998)

and begin extensive olivine crystallization. Therefore, the abundance of melt inclusions

trapped between 100 and 300 MPa may simply be an artifact of the large amounts of

olivine crystallization, and melt inclusion entrapment, that would occur at and below

these pressures. The observation that fluxing of a vapor phase with 50-70 mol% C02 is

common to basaltic melts throughout the MGVF suggests that the CO2contents of the

parental basaltic magmas were similar, and that extensive and variable degassing

occurred during ascent and crystallization to create the variability in C02 and H20

observed in the melt inclusion data.

In spite of the complex degassing histories exhibited by MGVF magmas, it is

clear from the melt inclusion data that CO2is less soluble in the melt than H20,

consistent with experimental solubility data (Dixon and Stolper, 1995; Newman et aI.,

2000). Degassing of C02 must begin at pressures> 500 MPa. The degassing of IhO is

complicated by the effects of gas fluxing, but based on the closed-system degassing

paths, H20 begins substantial degassing at pressures of ~ 200 MPa.

Evidence for degassing of Sand CI, however, is minimal in the MGVF melt

inclusions. Unlike other basaltic systems (e.g., Etna and Arenal; Spilliaert et aI., 2006;

Wade et aI., 2006), the MGVF melt inclusions do not record degassing of S with H20

(Fig. 3.5), suggesting S remains soluble in the melt during much ofthe magma ascent.

However, the low S contents measured in matrix glasses suggest that significant

degassing occurs shallowly, prior to or during eruption. Chlorine contents remain
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constant with degassing of H20 but unlike S, this pattern has been found at other basaltic

volcanoes (e.g., Spilliaert et aI., 2006; Wade et aI., 2006). Comparison of the melt

inclusion Sand Cl to matrix glass Sand Cl provides a rough estimate of the percent

degassing of these volatile elements. For the cinder cones, the difference in melt

inclusion S and matrix glass S suggest a loss of~ 98% S during shallow ascent and

eruption, whereas loss of Cl is only ~ 0-13%. The maar, Hoya Alvarez, has much higher

groundmass glass S contents (~450 ppm) and similar Cl (~650 ppm) with a bulk loss of

only ~ 50% S and no loss of CI. This suggests that volatile degassing at this locality is

different than the cinder cones, which will be explored below.

4.3. Degassing and melt evolution

Fractional crystallization of the MGVF melts increases the concentrations of

incompatible elements, including volatiles and K20, in the melt. In order to assess the

degassing behavior of volatiles during crystallization, we plotted H20/K20, S/K20 and

Cl/K20 vs. K20 for lorullo, Paricutin, and Hoya Alvarez melt inclusions (Fig. 3.8).

Whereas Paricutin melt inclusion compositions are clearly affected by assimilation later

in the eruption, the melt inclusions analyzed in this study and those analyzed by Luhr

(2001) from the early years of the eruption (1943-1945) do not show strong effects of

assimilation. We assume that K20 is totally incompatible, and thus is a proxy for the

extent of fractional crystallization experienced by the melts. By normalizing the volatiles

to K20 we remove the effect of increasing volatile concentrations due to crystallization.

Decreases in the volatile/K20 ratios with increasing K20 illustrate that degassing during

crystallization occurred in both the lorullo and Paricutin melts (Fig. 3.8). Both lorullo



and Paricutin melt inclusions record decreasing S/K20 with crystallization (i.e.,

increasing K20). Conversely, the constant ratios of S/K20 and Cl/K20 in the Hoya

Alvarez melt inclusions suggests little to no degassing of these volatiles with

crystallization, although lower concentrations ofH20/K20 and S/K20 ratios in the

groundmass suggest degassing ofH20 and S occurred shallowly. Hoya Alvarez melt

Cl/K20 contents remain constant with increasing K20, even in the groundmass,

suggesting that no degassing of Cl occurred during eruption.

55
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Figure 3.8. Ratios ofvolatiles/K20 vs K20 in melt inclusions and groundmass glasses
from Jorullo, Paricutin (light squares from this study, dark squares from Luhr, 2001), and
Roya Alvarez. Decreases in R 20/K20 (a), S/K20 (b), and C1/K20 (c) with increasing
K20 indicate degassing of the volatiles during differentiation of the magmas at Jorullo
and Paricutin. Roya Alvarez melts appear not to have degassed during differentiation,
though decreases in R 20/K20 and S/K20 in matrix glasses suggest shallow degassing of
these volatiles.
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Our results show that the degassing of Cl and S and crystallization of MGVF

magmas were variable. The increase in K20 with decreasing H20/K20 in the Jorullo and

Paricutin melts suggests that degassing of H20 drove crystallization of these melts. The

melt inclusion data show that crystallization of the melts at Jorullo and Paricutin was

driven by loss of H20 during ascent. Based on Figure 3.8, the exsolution of H20 from

the melt into the vapor phase stripped the melt of some Sand Cl, resulting in decreases in

these volatiles with increasing crystallization. The Hoya Alvarez melt inclusions,

however, indicate that degassing of H20 and S was minor, even during eruption.

Although the melt inclusions record crystallization, as indicated by increases in K20, it

was not induced by degassing of H20. This suggests a different mechanism for melt

crystallization at Hoya Alvarez. Because most melt inclusions were trapped at pressures

> 200 MPa (based on H20 and C02), it seems likely that the Hoya Alvarez melts stalled

in the middle to upper crust and cooled and crystallized without loss of volatiles.

Furthermore, the relatively high Sand Cl contents in the groundmass glass at Hoya

Alvarez suggest that only minor degassing of S and no loss of Cl occurred during

eruption. The high volatile content ofthe matrix glass is puzzling, as no other MGVF

glasses record such high concentrations of volatiles, and possible explanations will be

discussed in section 4.6.

4.4. Variations in Sand CI degassing with pressure

To further investigate the variations in degassing, we plotted melt inclusion and

matrix glass S/K20 and Cl/K20 vs. pressure (calculated based on the concentrations of

H20 and C02 in the melt inclusions using VolatileCalc; Newman and Lowenstem, 2002)
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for Jorullo, Paricutin, and Hoya Alvarez (Fig. 3.9). Of the three localities, Jorullo and

Paricutin melt inclusions record decreases in S, more noticeably at Paricutin, beginning at

pressures less than ~200 MPa. Conversely, Hoya Alvarez melt inclusions record no

change in S during ascent. The low S in the groundmass glasses of Paricutin and Jorullo

indicates extensive shallow degassing after the entrapment of the last melt inclusions «

40 MPa for Paricutin, < 6 MPa for Jorullo). The high S in the matrix glass of Hoya

Alvarez is unique; concentrations this high were not found at any of the other MGVF

localities. Sulfur concentrations at Hoya Alvarez do not decrease over the pressures at

which melt inclusions were trapped (> 200 MPa), but the slightly lower S in the

groundmass suggest minimal (50%) loss of S at shallow levels. Melt inclusion Cl/K20

decreases slightly with decreasing pressure at both Jorullo and Paricutin, but the matrix

glass CI contents are higher than the initial melt CI, because the increase in concentration

due to crystallization is greater than the decrease caused by minor degassing. Chlorine

appears to degas primarily at shallow levels « 100 MPa) in the Jorullo and Paricutin

melts, and matrix glass CI/K20 contents are lower than in the melt inclusions. Similarly

to S, Hoya Alvarez Cl contents show no change with decreasing pressure, and the matrix

glass concentrations indicate no degassing of CI, even at shallow levels. Overall, the

melts at Jorullo and Paricutin degassed S deeper than CI, at pressures similar to those

calculated for Etna (~140 MPa). Based on the high concentrations of S and CI in

groundmass glasses, the Hoya Alvarez melts had not completely degassed at the time of

eruption and quenching of the tephra clasts.
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Figure 3.9. Pressure dependence of S/K20 (a) and Cl/K20 (b) at Jorullo, Paricutin, and
Hoya Alvarez. Pressures are calculated based on the concentrations of H20 and CO2in
the melt inclusions using VolatileCalc (Newman and Lowenstem, 2002). Based on these
plots, degassing of S occurs at pressures < 200 MPa at Jorullo and Paricutin, and Cl
degasses at lower pressures « 100 MPa). Paricutin data from Luhr (2001) shown in dark
squares.

4.5. Vapor-melt partitioning ofS and Cl

The degassing behavior of Sand Cl in MGVF melts is variable and, based on both

melt inclusion and groundmass glass analyses, is dependent on pressure. Using the melt

inclusion and matrix glass Sand Cl concentrations, we modeled the vapor-melt

partitioning of these volatiles during differentiation. Following the method described for
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simple open-system degassing in Spilliaert et al. (2006), we estimated vapor-melt Ds and

DCI values for lorullo, Paricutin, and Hoya Alvarez. The D-values are calculated

assuming that during open-system degassing, the vapor phase leaves the melt and the

concentration of the volatile species in the melt, Xi, can be calculated using the Rayleigh

fractionation equation:

X X f Di-1
i = iO X

where Xio is the initial concentration of species i, Di is the vapor-melt partition

coefficient, and f is the remaining melt fraction, which can be approximated from

increases in melt K20. Thus in plots of In(Xi) vs. In(K20) best-fit lines have a slope of 1-

Di, enabling us to estimate Di. The partition coefficients, Di, indicate the affinity ofa

species for the vapor versus the melt. Values of Di> 1 indicate preferential partitioning

of the species into the vapor phase, whereas Di < 1 indicates preferential partitioning into

the melt. A partition coefficient equal to I indicates that the species is distributed equally

between the melt and vapor, thus for Di = 1 there is some loss ofthe volatile species into

the vapor.

Figure 3.10 shows InS and lnCl vs lnK20 for our melt inclusion and matrix glass

data. The Ds values estimated from these plots agree with the variations in S/K20 with

pressure shown in Figure 3.9; at high pressures, Hoya Alvarez melts have the lowest Ds

values (0.7), followed by lorullo (Ds ~1.2) and Paricutin (Ds ~2). The Ds values increase

at low pressures, as indicated by the trends defined by the matrix glass data (Ds ~6-l4).

At higher pressures, the Ds values calculated for MGVF melts are slightly higher than

those for high pressure Etna inclusions (Ds = 0.35; Spilliaert et aI., 2006). The Ds values

at Etna also increase at lower pressures, reaching high values (Ds ~25) near the surface.
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Overall, the Ds values ofMGVF melts are similar, although Ds values are slightly lower

at Hoya Alvarez, which is consistent with the lack of S degassing deduced from melt

inclusion S/K20. The general degassing pattern of the MGVF melts is similar to Etna

(gray fields, Fig. 3.10), although Etna melts degas S more vigorously at low pressures «

140 MPa).
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These observations about the pressure dependence of Ds are supported by

calculations of the behavior of Ds with pressure based on thermodynamic modeling

(Scaillet and Pichavant, 2005). Figure 3.11 shows the variation in Ds with decreasing

pressure, calculated at 11 OO°C and an oxygen fugacity ofNNO +1. This modeled

relationship illustrates that Ds values are < ~2.5 at pressures> 200 MPa, and that Ds

increases rapidly at pressures < 200 MPa. This supports the high calculated Ds values

based on the groundmass glasses and the low values at higher pressures calculated from

the melt inclusion data.
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Figure 3.11. Pressure dependence of S vapor-melt partitioning based on thermodynamic
modeling (Scaillet and Pichavant, 2005).

The vapor-melt partition coefficients for Cl in the MGVF melts calculated from

melt inclusion data also agree with the behavior of Cl during differentiation inferred from

Cl/K20 values (Fig. 3.10). The values calculated for DCI in Hoya Alvarez melts are low

(DCl ~0.18), which supports the lack of Cl degassing during differentiation. Melt

inclusions from Paricutin and Jorullo have similar values of Dc1(l and 1.23; Fig. 3.l0b).



63
Unlike S, the partitioning of CI does not change with pressure; melt inclusion and

groundmass glass measurements of CI and K20 plot on the same linear trend, with no

indication of increased degassing of CI at very low pressures. Overall, the values of DCl

for MGVF melts suggest that CI partitioned preferentially into the melt, with little

degassing during ascent and eruption. The low values ofDcl at Hoya Alvarez are

strikingly similar to DCl calculated for Etna (Dcl ~O), indicating that these melts, unlike

Jorullo and Paricutin, degassed little to no CI.

4.6. Sources ojvariable degassing in basaltic melts

Magmas erupted at three localities in the MGVF show variability in the degassing

behavior of Sand CI. Although the degassing behavior of S is similar for magmas from

both the MGVF and Etna, degassing of CI is more variable. In the following sections we

investigate the roles of magmatic oxygen fugacity, eruption style and longevity, and melt

composition on the degassing of S and CI in basaltic melts.

4.6.1. Oxygenjugacity

The oxygen fugacity of basaltic magmas influences the speciation of S, which in

turn affects S degassing. Several studies have demonstrated that sulfate is the dominant S

species in basaltic melts at highj02 (> FMQ +1) and that sulfide is the dominant species

in lowj02 melts (Carroll and Rutherford, 1985; 1987; Luhr, 1990; Jugo et aI., 2005).

Furthermore, experimental studies have shown that S solubility in mafic magmas

increases dramatically at higher oxygen fugacities (Carroll and Rutherford, 1985; 1987;

Luhr, 1990; Jugo et aI., 2005). Not only does the oxygen fugacity ofthe melt affect
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concentrations of S, but it also affects degassing. Sulfate preferentially partitions into a

hydrous vapor phase, thus, exsolution of H20 during degassing should decrease melt S

concentrations (Keppler, 1999). This suggests that the partitioning of S into the vapor

phase should increase with increasing melt}02' Plotted in Figure 3.12 are the oxygen

fugacities ofMGVF melts and the melt S contents. Using the SKu peak positions of

MGVF melt inclusions, the calculated oxygen fugacities ofMGVF magmas range from

FMQ +1.2 to FMQ +2.1. There is significant scatter in the data, but melts with high S

contents (1500-2000 ppm) have higher}02 (+1.8-2). Our data generally agree with the

sulfur solubility limits calculated by Jugo et al. (2005). They found that the solubility of

S in a basaltic melt dramatically increases at FMQ +1.8. MGVF melts plot around this

transition: Hoya Alvarez melts, with their low}02, were likely saturated in sulfide,

Jorullo melts plot around the transition in stability from sulfide to sulfate, and the other

MGVF melts generally plot in the region of much higher S solubility where solubility is

controlled by sulfate saturation. Although our samples bridge the transition, the melts

that should be saturated in sulfide (Hoya Alvarez) do have lower concentrations of S than

those with higher}O2.

Low}02 (FMQ +1.3) may also explain the lack of S degassing observed in Hoya

Alvarez melts. The higher}02 values of Jorullo melts (FMQ +1.6), Paricutin melts

(similar to Jorullo, based on SKu peak positions reported in Luhr, 2001), and Etna melts

(FMQ+ 1.2 to +2; Kamenetsky et al., 1996) also correspond to similar S degassing

behavior inferred from melt inclusions, and all have higher inferred Ds values than Hoya

Alvarez. However, the difference in}02 between Hoya Alvarez and the other basaltic

melts does not seem to be large enough to explain the surprising lack of degassing of S
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even at very low pressures. Based on the calculations of the pressure dependence of Ds

(Fig. 3.11) lower oxygen fugacities should correspond to lower values ofDs. However,

this effect would be small for Hoya Alvarez, and we would still expect the Ds value of

the melt to increase significantly at low pressures. This suggests that differences in

oxygen fugacity alone are not enough to explain the lack of degassing during the eruption

of Hoya Alvarez.
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Figure 3.12. Concentration of S in MGVF melt inclusions and the oxygen fugacity of the
melts (.6. FMQ). The solid horizontal line represents sulfide saturation (Jugo et aI., 2005).
The transition to sulfate stability occurs atj02 of ~ FMQ +1.8, which corresponds to an
increase in the concentration of S dissolved in basaltic melts (Jugo et aI., 2005). The
experimentally determined sulfate solubility limit is 1.3 wt% S (Jugo et aI., 2005).

4.6.2. Longevity oferuptions and eruption style

Factors such as eruption longevity and eruption style may also affect the

degassing of basaltic magmas. In long-lived volcanoes, like Etna, conduit systems

beneath the volcano are well-established, likely causing degassing of melts. The same
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may be true for longer lived cinder cones, like Jorullo and Paricutin. The plumbing

system at Jorullo evolved over the IS-year eruption, developing a shallow region of

magma storage and crystallization where degassing and assimilation occurred (Johnson et

aI., 2008: Chapter II). Such a region may have formed during the eruption of Paricutin as

well, as suggested by the localization of degassing and crystallization « 150 MPa) late in

the eruption as well as evidence for assimilation of bedrock. While the degassing

behavior of these long-lived eruptions is generally similar, the lack of shallow degassing

recorded by the Hoya Alvarez melt inclusions makes it unique. The eruption of Hoya

Alvarez was both phreatomagmatic and magmatic, and was likely shorter in duration than

the eruptions of Paricutin or Jorullo. Thus, it seems unlikely that a well-defined conduit

system had time to develop during the explosive, maar-forming eruption. Furthermore,

the phreatomagmatic nature of the eruption requires that the rising magma interacted with

groundwater. This magma-water interaction may have occurred at or below the Earth's

surface, and the groundwater would rapidly quench the rising magma (Mastin et aI.,

2004). This may have prevented the complete degassing of the Hoya Alvarez melts

during final ascent and eruption.

4.6.3. Melt composition

While the high concentrations of S in the matrix glasses at Hoya Alvarez may be

the result of quenching at higher pressures, the behavior of CI in the melt inclusions

remains perplexing. The increase in melt CI concentrations during crystallization is not

observed in any of the other MGVF melts, but the vapor-melt partitioning of CI is very

similar in the Hoya Alvarez and Etna melts (Fig. 3.1 Ob). The Hoya Alvarez and Etna
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melts are compositionally similar, with higher alkalis and lower Si02 than other MGVF

melts (Fig. 3.2). This compositional difference may be the reason for the high solubility

ofCI and low DCl at these volcanoes. Experiments by Webster et al. (1999) demonstrate

the compositional dependence of CI solubility, which increases strongly with increased

molar (Ah03+Na20+CaO+MgO)/Si02 of the melt. This suggests that the high alkali and

low Si02 contents of both Etna and Hoya Alvarez melts increased the solubility of CI,

resulting in lower DCI values.

5. Conclusions

We analyzed the pre-eruptive compositions and volatile contents of melts from

monogenetic volcanoes in the MGVF of Mexico using olivine-hosted melt inclusions.

Using these data, we were able to compare and contrast the degassing behavior and melt

compositional evolution within these localities, and compare them with larger, long-lived

basaltic systems (Etna and Arenal). However, an important precursor to this work was

assessing the reliability of our melt inclusion data. We found that, in spite of the relative

simplicity and small volume of cinder cone eruptions, factors such as magma mixing and

assimilation are fairly common in monogenetic volcanoes, which complicate the melt

evolution and degassing history. However, we did find that most melt inclusions are

representative of the bulk melt compositions from which they formed and were not

affected by boundary layer effects.

Degassing in basaltic systems is complex. We found that most MGVF melts

required gas-fluxing of a vapor with 50-70 mol% C02 to explain the CO2 and H20

variations in the melt inclusions. Interestingly, this vapor composition is similar to those
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estimated for CO2-fluxing in other basaltic systems, suggesting that primary basaltic

magmas in arcs have similar and high initial C02 concentrations. In nearly all melts, S

partitioned equally between the melt and vapor (inferred Ds values of~1-2) until low

pressures « ~ 10 MPa), when extensive shallow degassing occurred prior to and during

eruption (Ds values of 6-14 inferred using matrix glass compositions). The inferred DCl

values ofMGVF melts were low for both melt inclusions and groundmass glasses «1.2

for all volcanoes) suggesting that degassing of Cl was not pressure dependent. Overall

we find that the degassing behavior of the long-lived basaltic cinder cones in the MGVF

is very similar to that of larger basaltic volcanoes, like Etna.

We discovered that there exists significant variability in degassing and

crystallization processes within monogenetic volcanoes ofthe MGVF. Melts erupted at

Hoya Alvarez, a maar, showed little to no degassing of S or Cl, even upon eruption. We

attribute the lack of degassing to a combination of melt composition, low melt./02, which

would favor partitioning of S into the melt, and the phreatomagmatic eruption style, in

which groundwater would have interacted with and quenched the rising magma. The

more alkaline melt compositions at Hoya Alvarez increased the solubility of Cl in the

melt, which caused a low vapor-melt DCI . The melts erupted at the cinder cones, Jorullo

and Paricutin, have higher Ds and DCl values, higher melt./02, and melt inclusions record

evidence for degassing-induced crystallization.
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Bridge

In the previous chapters I assessed the melt evolution and degassing of one cinder

cone volcano (Ch. II) and compared and contrasted the degassing behavior of several

cinder cones (Ch. III) in a subduction-zone setting. In the following chapter I discuss the

origin of such subduction-zone volcanoes, in terms of subduction processes and melt

generation in the mantle.



70

CHAPTER IV

THE ORIGIN OF H20-RICH SUBDUCTION COMPONENTS BENEATH THE

MICHOACAN-GUANAJUATO VOLCANIC FIELD, MEXICO: INSIGHTS FROM

MAGMATIC VOLATILE CONCENTRATIONS, OXYGEN ISOTOPES, AND

THERMAL MODELS

This work is co-authored with Paul Wallace, who assisted in the field, Ilya

Bindeman, who aided in the oxygen isotope analyses, and Vlad Manea, who created the

2-D thermal models. All co-authors aided in the editorial process and I was the primary

author and performed the laboratory analyses.

1. Introduction

The role of volatiles, most importantly H20, in arc magmas is broad. H20-rich

fluids or melts released from the subducting slab flux the mantle wedge, producing the

partial melts that lead to arc volcanism (Gaetani et aI., 1993; Gaetani and Grove, 1998;

Sisson and Grove, 1993a, 1993b; Stolper and Newman, 1994). Furthermore, the amount

of H20 added to the mantle wedge governs the extent of partial melting in the mantle

(Carr et aI., 1990; Stolper and Newman, 1994; Kelley et aI., 2006). While some arc

magmas are produced by decompression melting and have low volatile contents (Sisson

and Bronto; 1998; Cervantes and Wallace, 2003; Grove et aI., 2006), most arc magmas
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result from flux melting of the mantle wedge. Magmas in volcanic arcs often erupt

explosively and have been shown to contain high concentrations of volatiles (H20, CO2,

S, CI), with H20 concentrations of 3-5 wt% commonly measured in arc basalts

worldwide (Sisson and Layne, 1993; Roggensack et aI., 1997, Roggensack, 2001b;

Walker et aI., 2003; Cervantes and Wallace, 2003; Wade et aI., 2006; Benjamin et aI.,

2007; Johnson et aI., 2008: Chapter II).

While there have been numerous studies of the volatile contents of individual arc

volcanoes in recent years (e.g., Gurenko et aI.,2005; Wade et aI., 2006; Benjamin et aI.,

2007) there have been few studies looking at volatile variations across arcs (Walker et aI.,

2003; Sadofsky et aI., 2007; Portnyagin et aI., 2007). Since volatiles are added to the

mantle wedge by an H20-rich subduction-derived component, variations in volatile

concentrations across a volcanic arc reflect devolatilization in the subducting material

and melting processes in the mantle wedge. Across-arc datasets that include volatiles,

trace elements, and stable andlor radiogenic isotopes are useful for determining the

composition and origin of subduction-derived components added to the mantle wedge

(Stolper and Newman, 1994; Eiler et aI., 2005; Wysoczanski et aI., 2006; Sadofsky et aI.,

2007; Portnyagin, 2007).

Understanding devolatilization of subducted materials and magma production in

arc settings has been a fundamental problem for many fields in geology. Many studies

have focused on the stability and pressure-temperature breakdown of hydrous minerals in

the subducting slab (e.g., Schmidt and Poli, 1998; Kerrick and Connolly, 2001, Schmidt

and Poli, 2004). Recent work has shown that the breakdown of hydrous phases in the

oceanic crust is a continuous process, with H20 being stored in a wide range of hydrous
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phases that are stable at progressively higher pressures (~3 GPa) and temperatures

(Schmidt and Poli, 2004; Kerrick and Connolly, 2001). Furthermore, studies have shown

that fluids released from the downgoing slab could hydrate the mantle wedge, forming

hydrous minerals such as serpentine and chlorite, and that the subsequent downdragging

of this hydrated peridotite by the downgoing slab may be an important process in

producing hydrous melts in volcanic arcs (Grove et aI., 2006; Wysoczanski et aI., 2006).

However, low concentrations of H20 and fluid mobile elements (e.g., B, Ba) measured in

some arc magmas behind the volcanic front have suggested that the flux of H20-rich

components decreases behind the volcanic front (Walker et aI., 2003; Hochstaeder et aI.,

1996).

Knowledge of the materials being subducted and the specific pressure­

temperature conditions during subduction are fundamental to understanding dehydration

processes. For example, the role of sediments in formation of fluids or melts in

subduction zones has been increasingly shown to be important in arcs worldwide (Plank

and Langmuir, 1992; Johnson and Plank, 1999; Kelemen et aI., 2003; Plank, 2005; Singer

et aI., 2007; Portnyagin et aI., 2007). Trace element data are good indicators of sediment­

derived fluids or melts (e.g., high Th/La or ThlNd ratios; Plank, 2005) and of melts from

subducted oceanic crust (e.g., high Sr/Y ratios; Martin et aI., 2005). However, the

stability of hydrous minerals in subducted oceanic crust and sediment varies from arc to

arc and is dependent on the specific pressure-temperature conditions within the slab and

mantle wedge. Recent studies of subduction zones have employed 2-D thermal models to

predict the pressure-temperature regimes in the subducting slab (e.g., Rupke et aI., 2002;

Manea et aI., 2004, 2005). Combining thermal models with phase diagrams for
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subducting components (sediment, altered oceanic crust, serpentinized mantle) and

geochemical data for arc magmas has been extremely useful in investigating the origin of

H20-rich subduction components in arcs (e.g., Rupke et aI., 2002).

Quantifying the composition and origin of hydrous fluids or melts added to the

mantle wedge beneath arcs begins with measurements of magmatic volatile contents at

the surface. Combining primary magma trace element data and measurements of melt

volatile concentrations has enabled estimates of the composition of the H20-rich

subduction component (fluid and/or melt) (e.g., Stolper and Newman, 1994; Eiler et aI.,

2005; Eiler et aI., 2007; Portnyagin et aI., 2007). However, to ascertain the origin of such

H20-rich components, oxygen isotopic data have also proven extremely important.

Recent work has shown that low 8180 values in arc settings may be related to the

dehydration of serpentinite in the mantle portion ofthe subducting slab (Eiler et aI.,

2005), whereas high 8180 values may be the result of crustal assimilation (Harmon and

Hoefs, 1995) or inherited from fluids or melts from altered oceanic crust (Dorendorf et

aI., 2000) or sediments (Eiler et aI., 2005).

Here we present the results of an across-arc study of volatile contents and melt

compositions from olivine-hosted melt inclusions from the Michoacan-Guanajuato

Volcanic Field of central Mexico (MGVF). The primitive nature (e.g., F087-90 olivine in

many samples) of the MGVF magmas allows us to calculate both primary melt

compositions and mantle volatile contents. These data, combined with oxygen isotope

ratios of olivine phenocrysts and 2-D thermal models of the subduction zone beneath the

MGVF, allow us to estimate the source and composition of the H20-rich subduction

components added to the mantle wedge. This multi-disciplinary approach permits us to
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more precisely distinguish the specific components in the subducted slab that produced

the H20-rich components and to constrain where devolatilization of the slab and flux­

melting in the mantle wedge occurred.

2. Geologic setting - Michoacan-Guanajuato Volcanic Field, Mexico

Volcanism in Mexico is related to subduction of the Rivera (in the west) and

Cocos plates beneath the North American plate at the Middle America Trench (Fig. 4.1).

The Cocos plate subducting beneath the MGVF is young (11-17 Ma at the trench; Pardo

and Suarez, 1995), and is thus relatively hot. The Trans-Mexican Volcanic Belt (TMVB)

is a broad zone of volcanism that spans the country from west to east and contains several

discrete volcanic fields. The Michoacan-Guanajuato Volcanic Field (MGVF) is located

to the west of Mexico City and contains ~ 900 cinder cones (Hasenaka and Carmichael,

1985). The MGVF is an ideal locality for this study. First, it has an abundance of young

(Holocene) cinder cones (Hasenaka and Carmichael, 1985) that are distributed over large

distances behind the volcanic front. Second, most of the cinder cones are basaltic to

basaltic andesite in composition, and published bulk rock geochemical data for many

cones (Hasenaka and Carmichael, 1985) enabled us to sample those that are

compositionally most primitive.
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Figure 4. 1.The Trans-Mexican Volcanic Belt and offshore plate boundaries. Ages of the
subducting Cocos plate near the Middle America Trench and contours to the top of the
subducting slab are from Pardo and Suarez (1995). Locations of discrete volcanic fields
in central Mexico are abbreviated as follows: MGVF = Michoacan-Guanajuato Volcanic
Field, ZVB = Zitacuaro-Valle de Bravo volcanic field, CVF = Chichinautzin Volcanic
Field, COL = Colima Volcano.

3. Samples and Analytical Methods

3.1. Melt inclusions and olivine hosts

We sampled tephra from nine monogenetic volcanoes (eight cinder cones and one

maar) across the MGVF at varying distances from the Middle America Trench spanning

from the volcanic front to roughly 175 kIn behind the front (Fig. 4.1). When possible,

samples were taken from the basal layers of the tephra blanket (in contact with the soil) in

order to compare the earliest erupted samples at each volcano, which commonly have the

most primitive compositions of the sequence (e.g., Johnson et aI., 2008: Chapter II).
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Loose olivine crystals from the tephra samples were separated, washed, and those with

suitable melt inclusions (fully enclosed, glassy) were prepared for analysis.

1D2'3D'W 1D2'W 1D1'3D'W 1D1'W

102'30'W 102'W 101'30'W 1D1'W

Figure 4.2. Sample locations from this study within the MGVF. White lines show
distance from the Middle America Trench.

Major and minor element (including Sand Cl) analyses of melt inclusions and

their olivine hosts were obtained on the Cameca SX-I00 electron microprobe at the

University of Oregon using a 15 kV accelerating voltage, 10 nA beam current (20 nA for

olivine analyses), and a beam diameter of 10 11m. The beam current was increased to 40

nA when analyzing Sand Cl, and count times were increased to 80 s for Sand 100 s for

Cl. Based on previous analyses ofFeO and Fe203 in MGVF lavas, we estimated the

oxidation states of basaltic magmas in the MGVF (NNO = +0.5-1; Hasenaka and
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Carmichael, 1985), which correspond to a SKu peak position that is two-thirds of the way

from anhydrite to pyrite (Wallace and Carmichael, 1994). In order to minimize loss of

counts on volatile elements (e.g., Na, K, Si, and AI) we used a volatile correction

program that fit an exponential function to the decaying count rates for these elements

and then extrapolated back to time zero. A combination of glass and mineral standards

was used in microprobe analyses, and analytical errors are reported in Table 4.1. Melt

inclusion trace element concentrations were measured using laser ablation ICP-MS at

Oregon State University. Details of the technique are summarized in Kent et aI. (2004)

Water and CO2concentrations in melt inclusions were analyzed by Fourier

Transform Infrared Spectroscopy (FTIR) at the University of Oregon. Concentrations of

H20 and CO2 were calculated using Beer's law: c = MA/pdl::, where M is the molecular

weight of H20 or CO2, A is the measured absorbance of the band of interest, p is the

room temperature density of basaltic glass, d is the thickness of the melt inclusion and I::

is the molar absorption coefficient. In most samples, water concentrations were

calculated using the total OH peak at 3550 cm- I and an absorption coefficient of 63 ± 3

Llmol-cm (P. Dobson et aI., unpublished data, cited by Dixon et aI., 1995). In some

instances, however, total H20 was calculated by summing the average concentrations of

the molecular H20 peaks at 1630 cm-1 and 5200 cm-1 together with the concentration

from the OR peak at 4500 cm-1
• In these cases absorption coefficients were calculated

based on major element compositions (Dixon et aI., 1995). C02 was calculated using the

carbonate peaks at 1515 and 1435 cm- I
; an absorption coefficient was calculated

(typically 290-300 Llmol-cm) based on the major element composition of each sample

(Dixon and Pan, 1995). The background around the carbonate peaks is complex, and
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thus it is necessary to subtract a carbonate-free spectrum from each sample spectrum to

obtain a flat background (Dixon et aI., 1995). We measured the absorbance of the

carbonate doublet peaks using a peak-fitting program (unpublished program by S.

Newman). Based on uncertainties in thickness measurements and absorbance values,

average 1 standard deviation uncertainty in H20 is ± 0.2 wt% and in C02 ± 80 ppm.

Oxygen isotopes were measured on separated and cleaned olivine crystals that did

not contain obvious melt inclusions and that had minimal inclusions of spinel or other

oxides. Isotope analyses were performed at the University of Oregon using C02 laser

fluorination and BrFs reagent on multiple grains of olivine. Oxygen was converted to

CO2 gas in a platinum-graphite converter, and the gas was measured and then analyzed

on an MAT 253 mass spectrometer. Measurements were made on two to three samples

of olivine from each cone, with each sample weighing between 1.1-2.0 mg, yielding

precision on multiple analyses of± 0.01-0.02. Eight to eleven standards of San Carlos

olivine (8180 = 5.35%0) and Gore Mt. Gamet (8180 = 5.75%0) were analyzed along with

the unknowns.

3.2. Geodynamic modeling of subduction beneath the MGVF

Modeling of subduction beneath the MGVF was performed by Vlad Manea at the

Universidad Nacional de Mexico (Juriquilla). The models were created using a system of

2-D Stokes equations and a 2-D steady-state heat transfer equation, assuming a strong

temperature-dependent viscosity in the mantle wedge (details in Manea et aI., 2004,

2005). The rheological parameters used in the thermal models are as follows: a mantle

wedge viscosity (110) of 1020 Pa s and an activation energy for olivine (Ea) of250 kllmo!.
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Variations in Ea from 150 to 300 kllmol only result in very small temperature increases in

the mantle wedge « 2SO C; Manea et ai., 2005). A small degree of frictional heating was

introduced (~= 0.017) along the thrust fault between the subducting and continental

plates. Models were created for the present-day slab geometry and the geometry at 3 Ma,

which is assumed to be similar to the present-day geometry to the east of the MGVF (i.e.,

slab depth of 100 krn at 350 krn from the trench). In both models, the convergence rate is

5 cmlyr and the slab age is 13 Ma.

3.3. Melt inclusion corrections

All melt inclusion data were corrected for post-entrapment crystallization of

olivine (Sobolev and Chaussidon, 1996) and diffusive loss of Fe (Danyushevsky et aI.,

2000). We have corrected for post-entrapment crystallization by adding equilibrium

olivine, in incremental fractions of 0.1 wt%, back into the melt inclusion until the melt

inclusion composition is in equilibrium with its host olivine (as analyzed by electron

microprobe). There are two variables used in calculating the equilibrium olivine

composition: the KD value and the FeO/FeOT ratio. We used a KDof 0.3 ± 0.01 (Toplis,

2005) and FeO/FeOT values of 0.7-0.9, based on the whole rock lava data (Hasenaka and

Carmichael, 1985) for each cone. Following the procedure of Danyushevsky et ai. (2000)

we also corrected the inclusions, if necessary, for post-entrapment Fe-loss. We plotted

the melt inclusion FeOT vs MgO data and either the bulk tephra XRF data or whole rock

data from Hasenaka and Carmichael (1985). Inclusions with low FeOT compared to the

whole rock trend had FeO added back into their compositions until they matched the

whole rock trend.
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4. Results

4.1. Melt compositions

In order to compare volatile contents and melt compositions across the MGVF,

we calculated primary (parental) melt compositions for each volcano in this study. For

the purpose of calculating primary melt compositions, we have assumed that such melts

were in equilibrium with mantle olivine (F090). Two of the cinder cones sampled erupted

melts with F090-91 olivine and thus were considered primary melts. With the exception of

one locality, Hoya Alvarez, the remainder of our samples contained olivine crystals that

are close to mantle compositions (F086-91). For these samples, we assumed that the

slightly lower-Fo olivine resulted from fractionation of olivine alone, an assumption

supported by olivine being the only or dominant phenocryst in the deposits. Thus, we

estimated primary melt compositions for these samples by incrementally adding olivine

into the melt inclusion major element composition until it was in equilibrium with F090

olivine. As illustrated in Figure 4.3, this correction was minimal, as most melts

crystallized olivine with compositions ofF088-91 . One locality, Hoya Alvarez, erupted

more evolved melts, with F065-78 olivine. Correcting these melts to F090 by olivine

addition only yields erroneous results, as these melts were clearly evolved and contained

large megacrysts of olivine, plagioclase, and clinopyroxene. Because of these

complexities, we modeled the fractionation paths of melts with similar compositions (i.e.,

alkali basalts, see Chapter III) that were in equilibrium with F090 olivine. We found that

an alkalic basalt from the Rio Grande rift, New Mexico (McMillan et al., 2000), when

fractionated via isobaric crystallization in MELTS (Ghiorso and Sack, 1995), produced

the melt compositions erupted at Hoya Alvarez by fractionation of23% olivine, 20%
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plagioclase, and 6% clinopyroxene (a total of 49% fractionation). Thus, we corrected the

volatile and trace element compositions at Hoya Alvarez for 49% fractionation, and we

assumed that the major element composition of the primary melts resembled that of the

Rio Grande basalts. In this paper we present melt compositions and volatile

concentrations that represent the primary mantle melts in equilibrium with Fo90 (both

melt and primary compositions are shown in Table 4.1).
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Table 4.1. Mean compositions of melt inclusions, parental melts, and subduction-derived components
SanJuan EI Hunaaro Jorullo EIAstiliero Paricutin San Miguel EI Pelon La Loma Hova Alvarez

Melt inclusion compositions corrected for PEG and Fe-loss
SiOz 51.41 ± 0.53 53.69 ± 0.92 51.12±0.75 51.10 ± 1.11 53.12 ± 0.61 53.62 ± 2.97 53.30 ± 0.85 52.67 ± 0.96 47.00 ± 0.91
TiOz 1.11 ± 0.11 0.92 ± 0.05 0.74 ± 0.07 17.37±1.11 18.92 ± 0.33 18.20 ± 1.75 18.82 ± 0.75 17.88 ± 1.33 17.64 ± 0.48
AIz0 3 18.18 ± 0.43 18.01 ± 0.87 17.31 ± 0.91 8.36 ± 0.52 7.18 ± 0.07 7.87 ± 1.42 7.58 ± 0.24 8.25 ± 0.27 12.03 ± 0.50
FeO 9.29 ± 0.16 7.49±0.18 7.50 ± 0.15 9.09 ± 0.95 6.44 ± 0.39 5.60 ± 1.48 5.26 ± 0.29 6.82 ± 1.90 5.25 ± 0.94
MnO 0.10 ± 0.02 0.09 ± 0.01 0.10 ± 0.05 8.73 ± 0.39 8.16±0.12 8.44 ± 2.08 8.44 ± 0.35 9.05 ± 0.81 8.10 ± 0.56
MgO 6.93 ± 0.33 7.12±0.51 9.38 ± 0.85 3.53 ± 0.73 4.11 ± 0.37 3.93 ± 0.22 4.09 ± 0.23 3.31 ± 0.52 4.13±0.51
GaO 8.29 ± 0.36 7.85 ± 0.48 8.89 ± 0.30 0.66 ± 0.14 0.80 ± 0.01 0.91 ± 0.41 0.89 ± 0.05 0.80 ± 0.19 1.87 ± 0.26
NazO 3.51 ± 0.17 3.79 ± 0.47 4.08 ± 0.23 0.89 ± 0.07 0.95 ± 0.05 1.08 ± 0.10 1.21 ± 0.07 0.94 ± 0.22 2.94 ± 0.37
KzO 0.94 ± 0.10 0.84 ± 0.17 0.72 ± 0.07 0.12 ± 0.05 0.09 ± 0.02 0.12±0.05 0.10 ± 0.05 0.13 ± 0.03 0.17 ± 0.04
PzOs 0.25 ± 0.03 0.21 ± 0.03 0.16 ± 0.02 0.17±0.02 0.24 ± 0.02 0.23 ± 0.05 0.32 ± 0.02 0.15 ± 0.06 0.65 ± 0.14
HzO (max) wt% 3.40 3.69 5.30 4.13 4.24 3.86 3.67 4.20 1.42
S (max) ppm 1232 1507 2066 1969 1895 2107 2108 2021 1180
GI (max) ppm 833 1061 1406 1200 980 911 1082 1172 1002
Fo % (range) 83.3 - 84.9 86.7 - 88.2 88.4 - 91.1 86.9 - 89.4 85.4 - 87.4 72.5 - 88.8 81.1 - 84.5 79.7 - 90.3 63.6 - 78.7

Parental melt compositions
Rb 13 ± 2 9 ± 1 7 ± 1 5 ± 1 8 ± 1 6 ± 1 16 ± 1 8 ± 1 11 ± 1
Ba 263 ± 18 267 ± 26 183 ± 15 173 ± 21 211 ± 9 170 ± 5 292 ± 41 125 ± 25 154 ± 20
Th 0.93 ± 0.00 0.48 ± 0.01 0.40 ± 0.08 0.35 ± 0.09 0.62 ± 0.03 0.54 ± 0.02 1.27 ± 0.14 0.77 ± 0.16 1.43 ± 0.26
U 0.35 ± 0.15 0.26 ± 0.04 0.08 ± - 0.15 ± 0.03 0.25 ± 0.05 0.13 ± 0.05 0.51 ± 0.02 0.25 ± 0.04 0.45 ± 0.07
Nb 11.4 ± 0.9 4.6 ± 0.3 2.0 ± 0.2 2.9 ± 0.4 4.1 ± 0.3 3.9 ± 0.2 7.5 ± 0.4 2.8 ± 0.9 24.3 ± 1.7
Ta 0.53 ± 0.05 0.25 ± 0.05 0.15 ± - 0.11 ± 0.03 0.22 ± 0.05 0.17 ± 0.02 0.37 ± 0.12 0.18 ± 0.05 1.37 ± 0.16
La 12 ± 2 10 ± 1 7 ± 1 6 ± 1 8 ± 1 7 ± 1 14 ± 1 5 ± 1 14 ± 2
Ge 28 ± 2 23 ± 2 15 ± 2 16 ± 2 20 ± 1 19 ± 1 35 ± 2 12 ± 2 29 ± 1
Pb 3.72 ± 0.38 4.24 ± 0.21 3.73 ± 0.33 2.98 ± 0.64 3.97 ± 0.57 2.87 ± 0.16 4.55 ± 0.33 2.53 ± 0.42 1.28 ± 0.09
Sr 390 ± 44 478 ± 11 448 ± 35 455 ± 50 538 ± 20 450 ± 13 751 ± 104 485 ± 38 311 ± 30
Nd 13.5 ± 1.2 11.4 ± 2.0 9.8 ± 2.0 9.6 ± 0.5 10.6 ± 0.2 10.5 ± 0.9 16.8 ± 2.1 7.2 ± 1.4 13.2 ± 1.2
Zr 91 ± 6 83 ± 4 71 ± 1 58 ± 9 70 ± 5 76 ± 5 113 ± 5 48 ± 9 91 ± 11
Sm 2.75 ± 0.44 2.08 ± 0.47 3.24 ± 2.46 2.42 ± 0.28 2.58 ± 0.39 3.04 ± 1.27 3.02 ± 0.42 1.48 ± 0.46 2.70 ± 0.74
Eu 0.89 ± 0.16 0.87 ± 0.05 1.01 ± 0.31 0.85 ± 0.14 0.81 ± 0.11 0.94 ± 0.11 1.18 ± 0.08 0.74 ± 0.22 0.88 ± 0.11
Ti 5306 ± 437 4685 ± 438 3746 ± 482 4725 ± 601 4870 ± 148 5857 ± 115 6141 ± 264 3890 ± 730 7902 ± 944
Dy 2.42 ± 0.33 2.19 ± 0.46 2.54 ± 0.57 2.06 ± 0.27 2.14 ± 0.10 2.75 ± 0.61 2.64 ± 0.29 1.69 ± 0.32 1.91 ± 0.40
Y 14 ± 1 11 ± 1 14 ± 2 12 ± 2 12 ± 1 16 ± 2 16 ± 2 10 ± 2 11 ± 2
Yb 1.41 ± 0.30 1.25 ± 0.67 1.51 ± 0.50 1.06 ± 0.37 1.01 ± 0.28 1.63 ± 0.21 1.43 ± 0.26 1.04 ± 0.34 0.91 ± 0.14
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Table 4.1. (continued)

Sanjuan EI Hungaro Jorullo El Astillero Paricutin San Miguel EI Pelon La Loma Hova Alvarez
Mantle melting

F 0.16 ± 0.04 0.21 ± 0.06 0.16 ± 0.05 0.20 ± 0.05 0.19±0.04 0.14 ± 0.03 0.14 ± 0.03 0.24 ± 0.06 0.09 ± 0.01
H20 (max) 2.27 ± 0.25 3.27 ± 0.33 5.30 ± 0.76 3.99 ± 0.27 3.95 ± 0.40 3.17 ± 0.33 3.18 ± 0.28 4.06 ± 0.52 0.65 ± 0.14

H 2 0-rich subduction-related components

% added 0.580 ± 0.028 1.405 ± 0.078 1.565 ± 0.120 1.595 ± 0.035 1.530 ± 0.085 0.995 ± 0.035 0.865 ± 0.078 1.590 ± 0.071
CI 17917 ± 429 14257 ± 568 11653 ± 1043 14015 ± 492 11792 ± 485 9998 ± 283 14046 ± 1021 17366 ± 1068
Rb 232 ± 48 89 ± 16 59 ± 9 46 ± 15 66 ± 7 59 ± 11 190 ± 5 90 ± 24
Sa 5690 ± 345 3352 ± 341 1727 ± 284 1815±377 2322 ± 57 2143 ± 52 4318 ± 1331 1510 ± 351
U 4.8 ± 4.0 2.4 ± 0.8 -0.2 ± 0.0 1.3 ± 0.3 1.9 ± 0.5 0.9 ± 0.7 6.0 ± 0.1 2.8 ± 0.2
Th 10.2 ± 0.4 3.0 ± 0.2 1.3 ± 3.2 2.7 ± 1.6 4.4 ± 0.3 4.5 ± 0.3 11.7 ± 0.3 9.1 ± 3.5
K 141205 ± 5838 87349 ± 612 52080 ± 637 64329 ± 9319 69075 ± 431 52016 ± 268 85488 ± 4487 80822 ± 5882
Nb

Ta 2.6 ± 1.3 -0.2 ± 0.5 -1.0 ± 0.1 -0.3 ± 0.4 -0.5 ± 0.2 -0.3 ± 0.0 0.1 ± 2.1 0.7 ± 0.9
La 173 ± 49 99 ± 9 54 ± 7 52 ± 10 57 ± 2 66 ± 7 148 ± 3 40 ± 10
Pb 90 ± 13 58 ± 1 41 ± 4 30 ± 7 55 ± 2 37 ± 1 67 ± 2 34 ± 9
Ce 382 ± 49 210 ± 30 117 ± 44 129 ± 33 148 ± 0 197 ± 8 386 ± 20 101 ± 20
H2Owl% 59 ± 2 48 ± 2 54 ± 5 49 ± 2 52 ± 2 54 ± 2 49 ± 4 62 ± 4
Nd 143 ± 31 93 ± 42 68 ± 9 80 ± 9 75 ± 1 88 ± 6 178 ± 52 59 ± 17
P2Oswl% 0.42 ± 0.85 1.80 ± 0.32 1.36 ± 0.49 1.40 ± 0.45 1.78 ± 0.05 1.55 ± 0.63 2.40 ± 0.26 0.44 ± 0.17
Sr 7028 ± 1107 6094 ± 194 4305 ± 830 4781 ± 931 6100 ± 291 5654 ± 8 11928 ± 580 6322 ± 742
Zr 712 ± 162 693 ± 37 537 ± 45 351 ± 105 366 ± 99 595 ± 14 1059 ± 215 316 ± 147
Sm 8 ± 13 5±2 11 ± 9 17 ± 4 13 ± 3 30 ± 25 20 ± 14 5±4

Na20wl% 20 ± 3 37 ± 2 35 ± 6 39 ± 1 36 ± 2 37 ± 1 34 ± 4 24 ± 4
Ti

Y

Yb

Table 4.1. Melt inclusion major element compositions shown are the averages based on analyses of 15-25 melt inclusions per cone. Errors
represent ± 1 s.d. Parental melt compositions shown are the averages ofF09o normalized trace element data. H20-rich rich components are shown
as the average ± 1 sd of two fluids calculated for each cone, with the amount of fluid added indicated by "% added".
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4.1.1. Primary melt compositions

The heterogeneity ofMGVF primary melt compositions is illustrated by a

primitive-mantle-normalized incompatible trace element diagram (Fig. 4.4). Most melts

have emichments in large ion lithophile (LIL) elements and depletions in Nb and Ta, a

pattern typical of subduction-related magmas. Elements thought to be strongly

partitioned into a fluid or hydrous melt during dehydration or melting of hydrothermally

altered oceanic crust or subducted sediment (eg., Ba, Pb, Sr; Kessel et aI., 2005) are

variably emiched, suggesting variability in the degree of addition of slab-derived

components to the mantle beneath the MGVF. Additionally, there are large variations in

the degree ofNb and Ta depletion. The variations in Nb and Ta concentrations are large

enough that they cannot be explained by variations in the degree of partial melting of one

mantle source composition, which suggests the mantle beneath the MGVF is

heterogeneous in composition (Luhr, 1997). Because Nb and Ta are elements that are

generally thought not to be added to the mantle by subduction-related fluids (Pearce and

Peate, 1995), melts with high Nb and Ta must tap a mantle source region that is less

depleted, whereas melts with depletions in Nb and Ta (i.e., most arc magmas) tap mantle

that has been variably depleted by previous melting events (Pearce and Peate, 1995).
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Primary melt compositions are spatially heterogeneous, both along the arc and

across the arc. For example, melts erupted along the volcanic front show variations in

both extent of mantle depletion (e.g., Nb concentrations) and influence of subduction-

related fluids over short spatial distances. Jorullo and Astillero (~80 km apart) erupted

melts with low Nb and Ta concentrations and high concentrations of fluid mobile

elements such as Ba and Pb (Fig. 4.4). However, the other arc-front volcanoes have

much more variable melt compositions. Hungaro melts are less depleted in Nb and Ta

than Jorullo and Astillero, and San Juan, which is located only 12 km from Hungaro,

86

erupted melts that lack the depletion entirely (Fig. 4.4), suggesting these melts originated

from less depleted mantle sources. Melts erupted far behind the front exhibit similar

trench-parallel spatial variability; La Lorna melts have large Nb-Ta depletions whereas
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Hoya Alvarez (70 km away) erupted melts with high Nb and Ta. Additionally, Hoya

Alvarez melts lack the slab-fluid signature seen at the other volcanoes, with the lowest

BalLa and Pb concentrations; together these data suggest that the mantle beneath Hoya

Alvarez is less depleted and has not been significantly influenced by fluids or hydrous

melts from the subducting slab.

The MGVF primary melts display no clear across-arc trends in major or trace

element compositions. Figure 4.3 shows indicators of subduction-fluid addition and

mantle depletion (BalLa and Nb/La, respectively) across the arc. Primary melt ratios of

BalLa are low compared to other arc environments; melts in the Aleutian arc have BalLa

ratios of20-50 ppm (Singer et aI., 2007) and much higher values are recorded in Central

America (up to 100 ppm; Eiler et aI., 2005); however, values for the MGVF are elevated

compared to average NMORB mantle (2.6 ppm; Stolper and Newman, 1994). There are

no systematic trends in BalLa with distance from the trench, as BalLa remains high in

melts erupted 350 km from the trench. The locality farthest from the trench, Hoya

Alvarez, has much lower BalLa (~14), suggesting a decrease in or lack of subduction

derived fluids during melt generation. The mantle beneath the MGVF is variably

depleted, as indicated by variable Nb/La ratios. Again, there is no systematic change in

Nb/La values across the arc, with volcanoes both at the arc front (San Juan) and far

behind the front (Hoya Alvarez) having erupted high Nb/La melts.

4.2. Across-arc variations in melt inclusion volatile concentrations

Melt inclusions at each volcano trapped variably degassed melts (S 5.3 wt% H20

and S 1200 ppm CO2, with C02 up to 6000 ppm at Hoya Alvarez), reflecting degassing
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during ascent and eruption (Fig. 4.5). The maximum H20, C02, S « 2100 ppm), and CI

«1340 ppm) concentrations measured in melt inclusions across the MGVF are similar to

volatile concentrations documented for other arc volcanoes in Central America (e.g.,

Roggensack et aI., 1997; Wade et aI., 2006; Benjamin et aI., 2007), and are similar to

concentrations found further to the east in Mexico in the Chichimlutzin Volcanic Field

(Cervantes and Wallace, 2003).
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Figure 4.5. Melt inclusion CO2 vs H20 for all MGVF volcanoes. Melt inclusions trapped
variably degassed melts, which generally fall along one of two degassing paths
(calculated using VolatileCalc, Newman and Lowenstem, 2002). Most data scatter
around the closed-system degassing path (l % exsolved vapor) for the high-H20, high­
C02 inclusions. The Hoya Alvarez melts plot along a low-H20, high C02 closed-system
degassing path (l% exsolved vapor).

The melt inclusions record variable degassing of H20 and C02 during eruption,

chlorine, which is highly soluble in basaltic melts (Webster et aI., 1999), does not

decrease with melt H20 at individual cones, suggesting CI was not degassed significantly
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during eruption. Similarly MGVF melts exhibit little to no degassing of S during

eruption. Due to the pressure dependent solubility of H20 and CO2 in basaltic melts,

degassing during ascent and eruption decreases the concentration of these volatiles in the

melt. Thus, the highest H20 and CO2melts trapped within inclusions at a given volcano

most closely represent the primary melt volatile contents (or at least provide a minimum

value). However, due to the extreme insolubility of C02, melt inclusions likely never

trap melts with primary C02 values (Wallace, 2005). Similarly, we assume that the

highest Sand CI concentrations measured are closest to primary melt concentrations,

although these data show less variability than H20 and C02. We present here the

maximum H20, CI, and S concentrations (recalculated for melts in equilibrium with F090,

if necessary) at each locality across the arc.

4.2.1. Primary magma volatile contents across the arc

Maximum H20, CI, and S concentrations in the primary magmas remain high (3­

5.3 wt% H20, 700-1350 ppm CI, 1500-2000 ppm S) for large distances (~150 km) across

the are, with the exception of Hoya Alvarez and San Juan (Fig. 4.6). The persistence of

high volatile contents for great distances across the arc is surprising given the young age

of the subducting Cocos plate. The relatively hot temperatures in the downgoing slab

should cause most hydrous minerals to undergo dehydration reactions beneath the forearc

region (based on the phase diagrams of Kerrick and Connolly, 2001). Furthermore, low

concentrations of B measured in MGVF volcanic rocks led Hochstaedter et al. (1996) to

suggest that H20 concentrations in MGVF magmas must be low. The persistently high

volatile contents of MGVF primary magmas differ from previous across-arc studies. In
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Guatemala, measured H20 values are variable but highest « 6 wt%) in the volcanic front,

but decrease rapidly (within < 80 km) to values of~ 2 wt% behind the front (Walker et

aI., 2003). An across-arc study of the Kamchatka arc showed melt H20 contents remain

nearly constant but moderate (~2-2.5 wt%) across the arc (Portnyagin et aI., 2007).
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Interestingly, the ratios of maximum CI to H20 and S to H20 are constant across

the arc, suggesting that the compositions of the H20-rich component transferred from the

slab to the mantle wedge is relatively constant beneath the arc (Fig. 4.7). The Cl/H20

ratio corresponds to a salinity of~ 4 wt%, which is slightly higher than the salinity of

seawater (~3 wt%). The strong correlations ofCl/H20 and S/H20 across the MGVF

lends added support to our use of the maximum melt H20 contents measured at each

volcano; although H20 degassed during ascent and eruption, the maximum melt inclusion

H20 values we measured must be very close to the primary melt H20 concentrations in

order for this ratio to be constant. Furthermore, the constant ratios of these volatile

elements throughout the MGVF suggests that there is a phase or phases in the mantle or

subducting material that is controlling their concentration in the subduction component

added to the mantle wedge.
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4.2.2. Extrapolation of H20 for the larger MGVF

Our study sampled nine of the nearly 1000 cinder cones in the MGVF (Hasenaka

and Carmichael, 1985). In order to assess broader patterns in H20, we used correlations

between H20 and trace elements in our melt inclusion data to estimate H20 contents for

cinder cones with published geochemical data in the surrounding MGVF. WE also
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applied our calibrated relationship between H20 and incompatible trace elements to data

from cinder cones to the east in the Zitacuaro-Valle de Bravo (ZVB) and Chichinautzin

Volcanic Field (CVF). We found that ratios of fluid mobile trace elements (Ba, Sr) to

other incompatible elements (Nb, La, Ti, Rb) in the MGVF melt inclusions correlate

strongly with melt inclusion H20 contents (Fig. 4.8). Using the linear regressions for

these correlations, we calculated H20 contents for other cinder cones in the MGVF, ZVB,

and CVF where trace element data had been previously published. We filtered the

available data to include only compositions similar to those in our study; thus we limited

the data to basalt and basaltic andesite compositions. Because some datasets did not have

reliable Nb data that particular correlation was not always used.
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inclusions. The equations for the linear regressions fit to the data were used to calculate
H20 for melts throughout the MGVF and central Mexico with existing trace element
data.
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We assessed the error in our calibration by back-calculating H20 contents ofthe

MGVF melt inclusions that were used fin the calibration and also by calculating H20 for

CVF melt inclusions of known H20 that were not used in the calibration (Cervantes and

Wallace, 2003), and for the cinder cones in our study using bulk tephra LA ICP-MS trace

element data. We found that our calibration reproduced the measured H20 values in the

MGVF and CVF with a root mean squared error (RMSE) of ±1.2 wt% H20 (see

Appendix G).

We calculated H20 contents for 284 localities in the MGVF and the central

TMVB. Using these calculated H20 concentrations we produced a map of magmatic

H20 across central Mexico (Fig. 4.9). The spatial pattern of H20 concentrations

throughout the MGVF supports the trends seen in our melt inclusion data. The map

shows variable but high H20 « 7 wt%) along the volcanic front and a striking broad

region of moderately high H20 (> ~3 wt%) continuing over a large region behind the

volcanic front. Far behind the front (~175 00) the data display an abrupt decrease in

melt H20 with a large region of consistently low H20 contents «1.5 wt%). In order to

test how representative the nine cones sampled for this study are of the broader field, we

plotted our measured melt inclusion maximum H20 contents and the calculated H20

contents against distance from the trench (Fig. 4.10). While there is significant scatter in

the MGVF calculated H20 contents, our nine samples seem to be broadly representative

ofthe MGVF basaltic melts and their spatial variability in H20 across the arc.
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Figure 4.9. Map of interpolated H20 contents across central Mexico. The small dots
represent the locations of cones for which H20 contents were estimated based on
published trace element data (Hasenaka and CaImichael, 1985; Blatter et aI., 2001;
Siebeti and Carrasco-Nunez, 2002; Cervantes and Wallace, 2003; Siebe et aI., 2004;
Schaaf et aI., 2005; Gomez-Tuefia et aI., 2007). The map was produced using the kriging
function in ArcMap, where H20 contents were interpolated (using the two nearest
datapoints) over a defined space, and the H20 concentrations were then contoured,
grading from warms colors (low-H20) to cool colors (high-H20). Also shown are the
locations of the MGVF samples from this study, whose data points are also color coded
according to the legend, and contours to the top of the subducting slab (Pardo and Suarez,
1995). Some small scale features in the interpolated values (e.g., along the NW side) are
aItifacts of the kriging procedure.

The spatial variations in melt H20 to the east of the MGVF are very different. In

the ZVB to the east, our modeled data show high H20 in the volcanic front ( ~ 6 wt%),

but unlike the MGVF, the melt H20 contents decrease with distance behind the front.

Futiher to the east in the CVF the data are more sparse, but the volcanic front magmas
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generally contain high H20 contents. In addition to the error assessment described above

for our H20 estimates, we also assessed the validity of our H20 calibration in the ZVB by

comparison with melt H20 contents estimated from experimental phase equilibria. For

the ZVB, both the pattern of decreasing H20 with distance from the trench and the high

H20 in the volcanic front volcanoes agree with the H20 estimates of Blatter et al. (2007)

based on phase equilibria.
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Figure 4.10. Melt H20 contents vs. distance from the trench for all MGVF localities.
The small grey diamonds are the localities in the MGVF where H20 contents were
calculated using the correlations shown in Fig. 4.8. Also shown are the maximum melt
inclusion H20 concentrations measured in this study (symbols as in Fig. 4.5).

There are two abrupt transitions from H20-rich magmas to H20-poor « 1.5 wt%)

magmas; one in the far northeast of the MGVF and one in the CVF (Fig. 4.9). The

compositions of the magmas in these regions appear to be distinct as well. Because high

field strength element (HFSE) concentrations are indicative of the mantle source region,
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we plotted Ti02 concentrations on the spatial map of H20 (Fig. 4.11). The magmas in

the low-H20 regions contain higher concentrations of Ti02 overall than do magmas in the

high-H20 regions. This suggests that either the magmas in these regions originate from a

more enriched mantle source region or that they represent a different degree of partial

melting of the source region. However, the melt inclusion trace element data from Hoya

Alvarez, located in the far NE of the MGVF, suggest that the mantle source for this

volcano is OIB-like, with enrichments in Nb-Ta. Thus, we conclude that the low H20

regions most likely correlate with enriched, OIB-like, mantle source regions. The

implications for this correlation will be discussed further in section 6.1.
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Figure 4.] 1. Map of H20 for central Mexico with melt Ti02 concentrations. Same
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TiO2 1.15-4 wt% are represented by black circles. There is a strong spatial relationship
between regions of low melt lhO contents and high Ti02 .

4.3. Oxygen isotopes in olivine

Oxygen isotope values of olivine phenocrysts across the MGVF are variable, but

are high overall with respect to typical mantle values. MGVF olivine have 81800livine

values that range from 5.5 ± 0.2%0 to 6.0 ± 0.1 %0 (Fig. 4.12), which are high in

comparison to olivine in mantle peridotites (5.2 ± 0.2%0; Mattey et aI., ]994; Eiler, 2001).

Arc basalts contain variable 8J80 ol ivine; most arc basalts around the world have 818001ivine=

5.2 ± 0.2%0 (Eiler et aI., 2000a; Eiler, 2001), but both lower values (4.6-4.9 %0,
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Nicaragua; Eiler et aI., 2005) and higher values «5.7%0 in Central America; Eiler et aI.,

2005; ~ 7.2%0, Klyuchevskoy volcano in Kamchatka; Dorendorf et aI., 2000; Auer et aI.,

in review) have been measured. The high 818001ivine values found in the MGVF are

higher than in olivine from most arc basalts from Central America. Interestingly, the

MGVF data extend the observed trend of increasing 81800livine values from the south

(Costa Rica) to the north (Guatemala; Eiler et aI., 2005) in Central America. There are

no correlations between MGVF 81800livine values and distance from the trench, nor do the

oxygen isotope values correlate with trace element ratios.
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Figure 4.12. Oxygen isotope ratios for MGVF olivine and primary melt H20 contents
(symbols as in Fig. 4.5). Also shown are lines representing mixing between a peridotite
mantle and a slab-derived fluid with 20% solute and between peridotite and a sediment
melt with 20% H20. The MGVF melts plot between these two mixing lines, suggesting
that the H20-rich component added to the wedge is a mixture of slab- and sediment­
derived fluids/melts.
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5. Mantle heterogeneity in the MGVF

Variability in the Nb and Ta depletion of the MGVF lavas suggests that the

magmas tapped a heterogeneous mantle source at depth. In order to assess the mantle

source region compositions beneath the MGVF, we plotted ratios of conservative

elements, which are elements that are probably not transferred to the mantle wedge by

subduction-related fluids (Pearce and Peate, 1995). Figure 4.13 illustrates the

heterogeneity in the mantle source compositions and suggests that most magmas

originate from mantle that is less depleted, to varying degrees, than the depleted MORB

mantle (DMM) source for NMORB. The magma compositions range from highly

enriched (Hoya Alvarez) to near-NMORB values (Jorullo), and unlike studies of other

arc volcanoes (e.g., Kamchatka), none of the MGVF magmas originate from a depleted

MORB mantle (DMM) source. For most localities the primary melts show no indication

of garnet in the mantle source (i.e., low Yb, Y). However, melts at Hoya Alvarez display

lower Yb and Y (Fig. 4.14). The high Dy/Yb and Y/Yb values at Hoya Alvarez (Fig.

4.14) suggest that garnet was present in the source region, as elevated Dy/Yb ratios have

been shown to be indicators of the presence of garnet during mantle melting (Davidson et

ai., 2007) and Yb fractionates more strongly into garnet than Y. The presence of garnet

creates an added complexity in modeling partial melting, as discussed below.
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NMORB and EMORB from Sun and McDonough (1989) and average OIB from Sun
(1980).

The presence of garnet in the source region for an alB-type magma is at odds

with the results of work in western Mexico. Luhr (1997) suggested that alB and calc-

alkaline melts in western Mexico originated from different source regions, with alB

melts tapping spinellherzolites (shallower melting) and calc-alkaline melts generated

from garnet lherzolite (deeper melting). These conclusions were based, in part, on the

high concentrations of Yb in the alkaline magmas, and low Yb in calc-alkaline samples.

However, the MGVF magmas illustrate the opposite, with low Yb in the Hoya Alvarez

magmas. To test whether or not the source for the calc-alkaline magmas contained garnet

we calculated the Dy/Yb ratios of melts that would be generated by partial melting of a
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garnet lherzolite and a spinel lherzolite to the Dy/Yb ratios in the MGVF magmas. We

found that 10% partial melting of a lherzolite (EMORB in composition) with 3.7 wt%

garnet produces melts with Dy/Yb = 3.4, which are much higher than the observed ratios

for calc-alkaline MGVF magmas (~2). However, 10% partial melting ofa spinel

lherzolite produces melts with Dy/Yb = 2.2, suggesting that the calc-alkaline magmas of

the MGVF originated from a spinel lherzolite, whereas the source for the Hoya Alvarez

magmas contained garnet.
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Figure 4.14. Primary melt Dy/Yb vs Y/Yb. Higher Dy/Yb and Y/Yb in Hoya Alvarez
melt inclusions and bulk tephra suggest that the mantle source beneath this volcano
contained residual garnet. Open circles represent bulk tephra ICP-MS analyses for El
Pelon, La Lorna, and Hoya Alvarez.

6. Modeling partial melting, mantle volatile contents, mantle compositions, and

H20-rich subduction component compositions

The combination of primary melt compositions, volatile concentrations and

oxygen isotope data allows us to calculate: 1) degrees of mantle melting (F) across the
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arc, 2) mantle volatile concentrations, 3) mantle trace element compositions, and 4)

compositions ofH20-rich slab-derived components and their origin. We followed and

expanded on the methods described in Kelley et al. (2006) to calculate F and mantle

concentrations of H20 and Cl. For calculations of mantle composition we assumed

modal batch melting of a spinel lherzolite source with a mineralogy similar to that used

by Eiler et al. (2000a, 2005).

6.1. Partial melting of the mantle

As shown above, the mantle beneath the MGVF appears to be less depleted than

DMM and is spatially heterogeneous, and thus we have used ratios of conservative

elements (Ti, Nb) to Y to determine the mantle source composition for each cone. Kelley

et al. (2006) demonstrated that the ratio Ti02/Y varies little during mantle melting at mid-

ocean ridges, so variations in Ti02/Y must reflect source composition variations. Our

data show that Ti02/Y and Nb/Y correlate positively, suggesting Nb/Y can also be used

to calculate mantle compositions and degree of partial melting. In order to determine the

composition of the mantle source regions, we used the ratios ofTi02/Y and Nb/Y in our

F090 melt inclusion compositions to calculate the mantle composition of each

conservative element using the following equation:

COx = iQx/Y)sample x CDMMTi
(CX/Y)MORB

(1)

where (Cx IY)sample is the concentration of the species (Ti02, Nb)/Y from melt inclusion

F090 compositions, (CX/Y)MORB is the concentration of the species/Y in NMORB (Ti02/Y

= 0.047, Nb/Y = 0.094), and CDMMX is the concentration of each species in depleted



104
MORB mantle (Ti02 = 0.133, Nb = 0.21; Salters and Stracke, 2004). Using these mantle

source concentrations for Ti02 and Nb we used the batch melting equation to calculate F,

the fraction of melting:

F = (coX/C1x) - Dx
(l-Dx)

(2)

where Cox is the concentration of species X (Ti02, Nb) in the mantle source, C1
X is the

concentration of that species in the F090 melts, and Dx is the bulk distribution coefficient

for the species during melting (DTi = 0.04, DNb = 0.003; Kelley et aI., 2006).

The calculation for Hoya Alvarez, which has garnet in the mantle source region,

was more complex. Garnet in the source region will deplete melts in Y, thus increasing

Ti02/Y, resulting in estimates ofF that are too high. In order to account for this effect,

we calculated Ti02/Y for partial melting of a DMM mantle source that contained garnet.

We used the same Ti02 and Y values for the NMORB source region as Kelley et aI.,

2006 (e.g., Stolper and Newman, 1994), and we assumed that the NMORB lava is

produced by 5% partial melting of the NMORB source. Using the batch melting

equation, we then calculated the concentration of Y in an NMORB lava with garnet in the

source region, using a higher value ofDY (0.121, based on a 5x increase to approximate

the effects of residual garnet; Stolper and Newman, 1994). This yields a lower

concentration of Y in the NMORB lava (14.6 ppm), and thus the ratio ofTi02/Y in the

NMORB increases to 0.093. We did the same for Nb/Y in an NMORB from a garnet

source (Nb/Y = 0.22), and then input these values for MORB in equation (1), and

performed the calculation for the Hoya Alvarez melt composition. Accounting for garnet

in the source results in much lower values ofF (9%).
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Figure 4.15 shows primary melt H20 contents and the calculated degrees of

partial melting for each volcano. The values ofF are averages based on using Ti02 and

Nb in equation (2), and both models yielded similar results, with standard deviations for

F of ~0.003-0.04. Based on these calculations, we conclude that most MGVF primitive

magmas form by 16-24% partial melting, with lower melt fractions at Hoya Alvarez

(9%). Overall, the calculated MGVF melt fractions overlap with the average values ofF

calculated for back-arc basins (8-18%; Kelley et aI., 2006), and are slightly higher than

extents of melting for the Kamchatka arc (5-14%; Portnyagin et aI., 2007).
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Figure 4.15. Primary melt H20 and the calculated degree of partial melting of the mantle,
F. Also shown are dotted curves that represent temperature deviations from the dry
peridotite solidus (Portnyagin et aI., 2007). Gray fields are data from the Kamchatka Arc
(Portnyagin et aI., 2007) and for back-arc basins (Kelley et aI., 2006).

These partial melting calculations, combined with primary melt compositions and

volatile contents, allow us to differentiate between flux melting and decompression

melting of the mantle wedge beneath the MGVF. The high volatile contents, elevated
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concentrations of fluid mobile elements, depletions in Nb and Ta, and moderate values of

F for most of the MGVF cones suggest that fluid-flux melting generated these magmas.

However Hoya Alvarez, which is the farthest locality from the trench, originated from a

much less depleted (OIB-like) source region and has low concentrations of fluid mobile

elements, suggesting that the mantle had not experienced previous episodes of hydration

or melting. The low degree of partial melting calculated for Hoya Alvarez is uncommon

for fluid-fluxed mantle melting, but is similar to other back-arc basin melts (Fig. 4.15).

Furthermore, the high-C02, low-H20 melts of Hoya Alvarez are similar to melts

associated with decompression melting (e.g., Galunggung; Sisson and Bronto, 1998).

Together these data suggest that low-H20, alkalic magmas erupted at Hoya Alvarez and

other localities far behind the front (Fig. 4.9), result from decompression melting of the

mantle, with only minor involvement of slab-derived fluids.

6.2. Using melt fractions to calculate mantle volatile contents

Using the F090 across-arc H20 and CI contents and the melt fractions from

equation (2), we calculated mantle volatile concentrations across the MGVF using the

batch melting equation:

where COv is the concentration of H20 or CI in the mantle source, Cl
y is the concentration

of the volatile species in the F090 melt, F is the melt fraction from equation (2), and Dy is

the bulk distribution coefficient of the volatile species (assumed to be 0.012 for both H20

and CI, from Kelley et aI., 2006).
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Mantle H20 concentrations in the MGVF remain high across most ofthe are,

between 0.4-1.0 wt%, with lower values at Hoya Alvarez (0.2 wt%; Fig. 4.16). Mantle

CI contents range from 130-250 ppm, but again have lower values for Hoya Alvarez (60

ppm). These mantle H20 concentrations, with the exception of Hoya Alvarez, are higher

than mantle source H20 concentrations calculated for the Kamchatka arc (0.13-0.4 wt%;

Portnyagin, 2007) and are significantly higher than NMORB mantle (70-450 ppm;

Sobolev and Chaussidon, 1996; Workman and Hart, 2005) and OlB sources « 900 ppm;

Dixon et aI., 1997; Wallace et aI., 1998). Similarly, the MGVF mantle CI concentrations

are higher than primitive mantle (0.4-17 ppm; McDonough and Sun, 1995). Like the

primary melt volatile concentrations, there is no trend in across-arc mantle H20 or CI,

and the persistence of high mantle volatile contents requires influence of subduction­

related H20-rich component(s) beneath a large portion of the arc.
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Figure 4.16. Mantle volatiles across the MGVF. (a) Mantle H20 remains elevated (0.4-1
wt%) across much of the arc, with the exception of low H20 at Hoya Alvarez. (b) Mantle
Cl shows a similar pattern to across-arc H20, with elevated values (100-250 ppm) across
most of the arc.

6.3. Modeling mantle source compositions

In order to estimate the compositions of the H20-rich components added to the

mantle beneath the MGVF, we first need to calculate the composition(s) of the

unmodified MGVF mantle for a more complete set of trace elements than were used in
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the model described in the previous section. Due to the large variability in HFSE across

the arc, applying one mantle composition to all volcanoes seems umeasonable. Thus, we

used the concentrations of elements assumed not to be contributed by subduction-related

components (Nb, Ta, Ti, and to a lesser extent, Y and Yb) to calculate a mantle source

composition for each volcano. The procedure for calculating F included calculations of

mantle concentrations of Ti and Nb (section 5.2.1.); however, the bulk trace element

composition of the mantle source region for each volcano is needed in order to assess the

amount of subduction components added to the mantle wedge.

In previous studies where the compositions of slab-derived components were

calculated, the mantle beneath the volcanic arc has been assumed to be compositionally

similar to NMORB mantle or DMM (e.g., Stolper and Newman, 1994; Eiler et aI., 2005;

Portnyagin et aI., 2007). However, as all MGVF primary magmas have Nb/Y

concentrations higher than NMORB compositions (Fig. 4.13), an EMORB mantle source

composition is more applicable. Since there is not a standard EMORB source mantle

composition available, we created an EMORB source by back-calculating from an

average EMORB lava composition (Sun and McDonough, 1989). For these calculations

we used the mantle mineralogy and melting stoichiometry of Baker and Stolper (1994),

the mineral-melt D values from Eiler et aI. (2005), and we calculated bulk D values for

each element. However, the variations in HFSE in MGVF primary melts suggest a

heterogeneous mantle source, indicating that the EMORB source itself was variably

depleted by previous partial melting and melt extraction (Wallace and Carmichael, 1999).

We accounted for this variability by assuming that the average EMORB composition

represents 2-15% partial melting of the mantle. Using this variation in degree of melting,
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we can construct more-depleted EMORB sources to more enriched EMORB sources,

respectively.

Once the EMORB source compositions were calculated, we used the value ofF

determined for each cone in section 4.2 to partially melt each source, producing EMORB

lavas with the same degree of partial melting as each of our primary melts. Plots of the

incompatible element compositions of the primary magma for each cone with the melt

compositions from partial melting of the EMORB sources enable assessment ofthe fit

between the MGVF melts and the generated EMORB melts (see Fig. 4.17). Following

the assumption that melt Nb, Ta, Ti, and other HFSE are contributed from the mantle

source alone, the mantle source region that produced a melt that best fits these elements

was assumed to be the source for that particular volcano (Fig. 4.17). Again, the only

exception to this method is Hoya Alvarez, whose melt composition is so enriched that it

is compositionally more similar to an OIB than an EMORB. However, when comparing

the Hoya Alvarez primary melts to an OIB source region, none of the trace elements

appear to be enriched above mantle values, and thus, no addition of subduction-related

H20-rich components is necessary in the mantle beneath this volcano.
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Figure 4.17. The trace element concentrations of a primary MGVF melt (San Miguel;
solid line) and the compositions of four EMORB lavas generated by 14% partial melting
of four variably depleted EMORB mantle source regions (dashed lines). The EMORB
lava represented by the thick dashed line best fits the San Miguel primary melt in terms
ofNb, Ta, Y and Yb concentrations. Thus, the mantle source composition that generated
this lava is assumed to be the mantle source for the San Miguel melts.

6.4. Subduction component trace element and volatile compositions

Trace element concentrations that are high compared to the model melt from an

EMORB source region are assumed to be contributed by an H20-rich subduction-related

component (fluid and/or melt). We used the following derivation of the mass balance

equation (following Stolper and Newman, 1994) to calculate the contributions and

compositions of the H20-rich component:

Cv = [CL*[F+(D*(l-F))] - (l-y)*Co]/y

where Cv= concentration of a species in the "fluid", CL = concentration of a species in

the primary melt, F = degree of partial melting, D = bulk distribution coefficient, y =
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fraction of "fluid" added, and Co = concentration in the EMORB source. We calculated

the concentration of incompatible trace elements as well as CI, Na20, K20, and P20 S in

the H20-rich component. In this equation there are two unknowns, Cv and y, which were

solved for by adding two constraints to this equation. First, we stipulated that the

concentrations of all trace and minor elements in oxide form plus H20 must sum to

100%. Thus the sum of all oxides subtracted from 100% gives us the concentration of

H20 in the fluid. Importantly, in this study we have the added constraint of knowing the

concentration of H20 in the primary melts. Thus we re-arranged equation (3) to solve for

CL, where CL is the concentration of H20 in the primary melts, and Cv is the

concentration in the fluid based on input values ofy. Using these constraints we then

input our known parameters (CL, F, D, and Co) and iteratively varied y until the results

yielded the concentration of H20 we measured in the primary melts.

The H20-rich component compositions for the MGVF are very similar to slab

fluids calculated for the Marianas (Stolper and Newman, 1994) and for Central America

(Eiler et aI., 2005) (Fig. 4.18). Similarly, the amount of fluid added to the mantle wedge

«2 wt%) is similar to other studies (2.5-3 wt%, Eiler et aI., 2005). The concentrations of

H20 in all components are very similar, however, the MGVF subduction-related

components overall have higher concentrations of some LILE and fluid mobile elements,

such as Ba, K, and Pb. There are distinct trends in the concentrations of some trace

elements in these H20-rich components across the arc. With the exception of La Lorna,

K, CI, and H20 in the fluid decrease with distance from the volcanic front, and with the

exception of San Juan, P20 S and Na20 decrease behind the front. Conversely,

concentrations of Th in the H20-rich component are much higher far behind the front.
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Figure 4.18. Volatile and trace element compositions of calculated MGVF H20-rich
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Marianas (Stolper and Newman, 1994) and Central America (Eiler et aI., 2005). All
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7. Origin of H20-rich subduction components

The high magmatic volatile concentrations for large distances across the MGVF

are puzzling; in "hot" subduction zones such as Mexico, devolatilization of hydrous

phases in the subducting slab should occur mainly beneath the forearc (Kerrick and

Connolly, 2001; Schmidt and Poli, 2004). Here we use a combination of &180olivine

values, trace element data, estimated compositions of H20-rich components, and 2-D

thermal models of the subducted slab and mantle wedge to develop hypotheses regarding

the origin of subduction-related H20-rich components beneath the MGVF.
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7.1. Isotopic and trace element evidence for sediment involvement

The high 818001ivine values found in the MGVF provide an important constraint on

the origin of subduction fluids, in that they require that the fluid added to the mantle

wedge is isotopically heavy. Olivine in the mantle wedge typically has 8180 values of 5.2

± 0.2%0 (Eiler et al., 2000a), significantly lower than the values measured in the MGVF

(5.5-6%0). Fluids or hydrous melts derived from subducted sediment and altered oceanic

crust would have higher 8180 than mantle values. The uppermost altered oceanic crust

has 8180 values of7-15%0 (Alt et al., 1986; Staudigel et al., 1995) and hemipelagic and

pelagic sediments are even more isotopically heavy (15-25%0; Kolodny and Epstein,

1976; Arthur et al., 1983; Alt and Shanks, 2006). Fractional crystallization of primitive

magma can increase 8180 values, but the MGVF melts are compositionally primitive,

with only minor fractionation of olivine (in most cases) having occurred. Fractionation

of olivine would increase the 8180 value ofthe melt by ~ 0.1 %0 (Zheng, 1993); such a

small increase does not explain the high MGVF values. Although crustal assimilation

can emich 8180 in arc magmas (Harmon and Hoefs, 1995), the primitive nature and small

volumes of the MGVF melts suggest that this process is unlikely.

The high 8180 0livine values in the MGVF most likely originated from components

with heavy 8180 values such as altered oceanic crust and/or subducted sediment. The

contribution of slab and sediment (or both) to the H20-rich components can be assessed

by modeling the 8180 values of slab- and sediment-derived fluids or melts during

progressive partial melting of the mantle wedge. Assuming a slab-derived fluid with a

8180 value of9%0 and a sediment-derived melt with a 8180 value of 15%0, these

components were mixed with variable proportions of mantle material, which has a 8180
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value of 5.2%0. This calculation involves multi-step modeling of the melt or fluid

composition as it ascends (following Grove et aI., 2006). As hydrous melts ascend, the

temperature increases due to the inverted thermal gradient in the mantle wedge, resulting

in further melting of the surrounding peridotite. As the melt ascends to regions of higher

temperature and lower pressure, continued melting of peridotite causes a decrease in the

H20 concentration of the hydrous melt due to dilution. The slab and sediment H20-rich

component curves produced from this model are shown in Figure 4.12, plotted with the

MGVF 81800livine values and melt H20 contents. These curves suggest that the high

818001ivine values in the MGVF require components of both slab-derived fluid (from

altered oceanic crust) and sediment-derived melts, with higher 818001ivine values

corresponding to greater input of sediment components. Some magmas, such as lorullo,

plot closer to the slab-derived H20-rich component curve, suggesting that sediment­

derived melts were not important in melt generation.

The isotopically heavy 8180 01ivine values in the MGVF suggest that the subduction

component added to the mantle wedge is composed of a combination of slab-derived

fluid and sediment-derived melts. Sediment-derived melts have been shown to be an

important component in many arcs worldwide (e.g., Marianas, Kamchatka, Aleutians;

Plank, 2005; Portnyagin et aI., 2007). Although the sediment package subducted at the

Middle America trench is relatively thin compared to other subduction zones (~170 m;

Plank and Langmuir, 1998; Lagatta, 2003), recent work in central Mexico has suggested

a role for sediments in generating the melt compositions erupted in the Zitacuaro-Valle

de Bravo volcanic field. Isotope ratios (Pb, Sr, Nd) suggest that melts result from mixing

of subducted sediment and fluids or melts from altered oceanic crust (G6mez-Tueiia et
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aI.,2007). Furthermore, this interpretation is supported by the results of Eiler et aI.

(2005) in Central America, where 818001ivine values up to 5.7%0 were measured. They

concluded that to produce these values, which are slightly lower than the MGVF (up to

6%0), the subduction-derived component must be a partial melt of sediment.

Although Mexico is a low sediment flux margin, there are correlations between

arc magma Th/Rb and subducting sediment Th/Rb (Fig. 4.19). Plotting MGVF primary

magma Th/Rb and an average Th/Rb ratio for the entire package of subducting sediment

(Lagatta, 2003) shows that most MGVF magmas fall close to a 1: 1 line, suggesting that

sediment melts are required to impart Th to the magmas (e.g., Johnson and Plank, 1999).

The low concentrations of Th/Rb in the subducting oceanic crustal slab and slab-derived

fluids « 0.01, slab data from Verma, 2000) suggest that the elevated Th/Rb seen in

MGVF magmas is not inherited from a slab source.
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Furthermore, if sediment-derived melts were important in flux melting of the

MGVF mantle wedge, the compositions ofthe H20-rich components added to the mantle

should reflect this influence. Figure 4.20 shows Ba and Th vs La concentrations in the

calculated subduction components for each volcano. Using bulk compositions of

sediments overlying the Cocos Plate (Lagatta, 2003), an average altered oceanic crust

composition (Staudigel et aI., 1996), the composition of the subducting Cocos plate

(Verma, 2000), and fluid-eclogite D-values (Kessel et aI., 2005), we calculated

hypothetical slab and sediment fluid and melt compositions. Comparison of the MGVF

fluids and slab and sediment components suggest that, similar to our interpretation based
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on 8180 values, the material added to the MGVF mantle wedge is a combination of slab

and sediment components. Again, some of the modeled H20-rich components plot near

the slab fluid field, suggesting less involvement of sediments. However, compositions

with elevated Ba, Th, and La suggest higher amounts of sediment melt involvement.
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Mixing of slab fluids and sediment melts is also evident in plots of Rb and Pb vs

La, but the relationship fails for Sr, Zr, and Ceo The subduction-derived components

appear to have higher Sr, Zr, and Ce than can be produced by slab or sediment fluids or

melts. However, as seen in Figure 4.18, the subduction components calculated for the

MGVF are very similar to those calculated for other arcs worldwide. Calculated

subduction components contain high levels of Sr (3000-15000 ppm; Stolper and

Newman, 1994; Eiler et aI., 2002; Portnyagin et aI., 2007), but dehydration or melting of

oceanic crust or sediment cannot produce such high concentrations. One possibility is

that the presence of components such as Cl, F, and S in subduction-derived fluids

changes the partitioning of elements compared to experimental systems lacking these

elements. Another possibility is that mineral breakdown reactions in natural systems are

more complex than in equilibrium experiments, leading to greater concentrations of some

elements in the fluid phase (John et aI., 2008).

7.2. Devolatilization of subducted material

While trace elements and oxygen isotopes provide information on the origin of

the H20-rich subduction components, understanding the thermal structure of the

subduction zone is vital to assessing the stability of hydrous phases in the subducted slab.

Two-dimensional thermal models of the MGVF subduction zone were created to estimate

the pressure-temperature (P-T) conditions of hydrous phase breakdown reactions in the

slab and melt generation in the mantle wedge. However, the history of subduction

beneath the MGVF is complex, and this requires consideration when assessing

production of subduction-related fluids and melts. Currently the subducting slab dips at
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an angle of approximately 30° (Pardo and Suarez, 1995) beneath the MGVF, but there is

evidence that the slab geometry has changed in the past 3 Ma. To the east of the MGVF,

the Cocos slab trenchward of Mexico City is currently flat to shallowly dipping, and it is

likely that >3 Ma the slab geometry in the MGVF resembled that of central Mexico

today. Between 3 Ma and the present, the Cocos plate geometry steepened, recorded by

the progressive trenchward movement ofMGVF volcanism in the last 2 Ma (Fig. 4.21;

Hasenaka and Carmichael, 1985; Ban et aI, 1992). This transformation in slab geometry

creates an added complexity in the assessment of slab dehydration over time. To account

for this, we used two different 2-D thermal models to look at production of subduction-

related H20-rich components: 1) using the current slab geometry, and 2) using the

inferred flat slab geometry of 3 Ma.
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Figure 4.21. Age of MGVF volcanic rocks vs distance from the trench. Ages based on
C14

, K-Ar, and 4oAr_39Ar dates (Hasenaka and Carmichael, 1985; Ban et aI., 1992; Suter
et aI., 2001; Ownby et aI., 2007; S. Ownby and R. Lange, unpublished data). Squares
indicate four volcanoes sampled in this study: Hungaro, Paricutin, Jorullo, and Astillero.
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7.2.1. Dehydration of subducted material- present-day slab configuration

Figure 4.22 shows the thermal model of the MGVF subduction zone with the

location of the MGVF volcanoes at the surface. Using this thermal structure, magmas

erupted in the volcanic front region of the MGVF correspond to oceanic slab depths of

~80 km and maximum slab surface temperatures (SST) of~ 600°C. Melts erupted far

behind the front (350 km from the trench) correspond to slab depths of~170 km and

maximum SSTs of ~850°C.



122

E
2£ ·150

.c
15.
t3 -ZOO

Trench

I X.::· 13(':\ C

T

-100

-150

-200

-250- -250

-300
Top of 11'10 oceonlC CRJ!I

Bottom of lnlt oooanlC crust (7 km !nIck)
7 km below the bollom 01 tho oeeonlO!lfU I

-:)00

400

- 00

-150

MOHO

-50

400
o

350300250

...-....._.-... -.-.-.--_.-~.- ....

Distance from the trench (km)

1200-1300'

...,
I

•200 :
I
I

150

Figure 4.22. (a) 2-D thermal model of the subduction zone beneath the MGVF from the
Middle America Trench to 400 km from the trench. (b) thermal stnlcture beneath the
MGVF, showing regions where sediment should dehydrate (tan region; based on
sediment phase diagram of Rupke et aI., 2004), and upper stability limits of serpentine
(from Rupke et aI, 2004) and chlorite (Grove et aI., 2006), and the depth at which
dehydration of the entire section of altered oceanic crust should be complete (Rupke et
aI.,2004).



123

Using the P-T conditions predicted for the subducting oceanic crust and phase

diagrams for altered oceanic crust, serpentinized mantle, and sediments (Schmidt and

Poli, 2004; Rupke et aI., 2004; Grove et aI., 2006), we can predict where H20 should be

released from the subducted slab. Based on the P-T conditions in the slab and mantle

wedge and P-T diagrams for fluid release from subducted sediment (Rupke, 2004), the

subducted sediment should release most of its H20 beneath the forearc region (Fig.

4.22b). The altered oceanic crust should dewater beneath the forearc and extend to the

region beneath the volcanic front. Based on the temperatures at the top of the slab,

dehydration of the uppermost oceanic crust should cease at depths of~ 100 km, but

limited fluid release from deeper in the subducted crust would continue to greater depths.

Our model results are supported by correlations between the cessation of earthquakes in

subducting slabs and the transition from blueschist (hydrous) facies to eclogite (dry)

facies (Abers et al., 2006). Applying this theory to the subducting Cocos plate, which

lacks seismic events at depths> 70 km (Pardo and Suarez, 1995), suggests that beyond

the volcanic front in Mexico the oceanic slab is eclogitic and is no longer dewatering.

While these results are not surprising given the young age (and thus higher temperature)

of the subducting slab, they do conflict with the presence of volatile-rich, high- 8180

melts erupted over large distances from the volcanic front across the MGVF.

Although the subducted sediment and altered oceanic crust largely dehydrate

beneath the forearc and volcanic front, there are several ways that an H20-rich, high 8180

fluid could consequently partially melt the mantle further down-dip beneath the MGVF.

First, several studies of subduction zones have suggested that hydration and subsequent
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down-dragging of the overlying mantle wedge through comer flow may aid in

transferring hydrous phases to greater depths. Recent experimental work by Grove et al.

(2006) suggest that fluids released at lower pressures and temperatures into the mantle

wedge could react with the peridotite to form hydrous phases, such as chlorite, that are

subsequently coupled with the plate and dragged to higher pressures and temperatures.

Their experimental work also shows that a high pressure chlorite phase in mantle

peridotite may be stable up to 3.2 GPa and could contain up to 12 wt% H20 (Grove et al.,

2006). The stability of this phase to great depths could expand the P-T zone over which

hydrous melts are produced during subduction. A similar model has been recently

invoked to explain homogenous fluid compositions in an arc, where fluids released by the

subducting slab serpentinize the overlying mantle wedge, which subsequently couples to

the plate and is similarly dragged to greater depths beneath the arc (Wysoczanski et al.,

2006).

Added to the 2-D thermal model in Figure 4.22b are the upper stability limits for

serpentine and chlorite in the overlying mantle wedge. Dehydration of subducted

sediment and altered oceanic crust at low P-T beneath the forearc region could release

fluids into the overlying mantle wedge, where mantle peridotite would react with the

fluids to form serpentinite. This hydrated material would be down-dragged with the slab,

and eventually the serpentinite would break down at depths of <1 00 km and temperatures

of~600°C (based on the phase stability of serpentinized mantle; Rupke et al., 2004).

However, the fluids released by this breakdown could be incorporated into chlorite in the

mantle wedge, which would continue its slab-coupled movement to greater depths until

the breakdown of chlorite at ~800°C (Grove et al., 2006). The stability of chlorite to
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these depths would enable production of hydrous fluids over fairly large distances (~100

Ian) behind the volcanic front in the MGVF. However, there is still a significant region

of the MGVF at distances> 100 Ian behind the front with high H20 that still cannot be

explained by these mechanisms (Figs. 4.9, 4.1 0).

The strong correlations of H20 with both CI and S in the MGVF primitive melts

support the role of a single phase, such as serpentine or chlorite, controlling fluids

released into the mantle wedge. Figure 4.7a illustrates the constant salinity displayed by

the MGVF melts. In order for such a constant CI/H20 ratio to be maintained across the

arc, it seems that a single phase must be controlling this ratio. Studies of serpentinite and

associated fluids suggest that the salinities of fluids released during serpentinite

breakdown range from 4-8 wt% NaCI (light gray field in Fig. 4.7; Scambelluri, 2004),

which overlaps with the MGVF data. The salinity of fluids related to chlorite breakdown

is unknown, but the fluids released by serpentinite should be incorporated by chlorite and

may have similar salinities. The MGVF CI/H20 data are also very similar to the salinities

of fluids released from the upper oceanic crust (4-30 wt% NaCI; Philippot et aI., 1998).

Another model invoked for fluid release at great depth involves the breakdown of

serpentinite in the subducting oceanic lithosphere (Rupke et aI., 2002; Abers et aI., 2003;

Schmidt and Poli, 2004; Spandler et aI., 2008). For example, the subducting Cocos plate

beneath Nicaragua is extremely H20-rich (Abers et aI., 2003); such hydration has been

linked to extensive fracturing ofthe subducting slab prior to subduction that allowed sea

water to penetrate the oceanic crust to great depths, resulting in converstion of the mantle

in the subducting slab to serpentinite (Rupke et aI., 2002; Abers et aI., 2003). Rupke et

aI. (2002) showed that the serpentinite in the slab beneath Nicaragua is stable to high
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pressures, releasing its H20 at depths of 130-160 km. However, fluids released by

serpentinite breakdown should have low 8
180; Nicaragua magmas have 8

18
0 0livine values

of 4.6-5.2%0 (Eiler et ai., 2005), the only arc in the world to have 818001ivine values lower

than normal mantle. Furthennore, fluids released from the breakdown of serpentinite

typically have high fluid mobile element concentrations (Tenthorey and Hennann, 2004),

and magmas in Nicaragua have high BalLa ratios (Fig. 4.23; Eiler et ai., 2005). In order

to reconcile this model of oceanic lithosphere-derived fluids with the high 8180 values for

MGVF olivine and the influence of sediment fluids/melts suggested by trace element

data, the fluids rising through the slab from serpentinite breakdown would have to

interact with the previously dehydrated sediment overlying the slab and partially melt it.

While this model could potentially produce the high MGVF 8180 values, the MGVF

magmas lack the high Ba/La ratios associated with serpentinite-derived fluids, and there

is no evidence for pervasive serpentinization ofthe Cocos plate offshore of Mexico.

Therefore, we conclude that this model is unlikely for generation of HzO-rich

components beneath the MGVF.
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The H20-rich, high ()180 fluids in the MGVF could be produced by dehydration

of sediment and altered oceanic crust beneath the forearc, where the fluids are

subsequently stored in hydrous phases like serpentine and chlorite in the mantle wedge.

Down-dragging of this hydrated mantle material with the subducting slab and breakdown

of the hydrous minerals could release fluids further behind the volcanic front. Although

this model can explain the oceanic crust-derived fluid signature in the MGVF magmas,

the high ()180 values and trace element compositions ofMGVF magmas and modeled

subduction components all suggest involvement of sediment melts in the H20-rich

component rather than fluids generated by sediment dehydration. In order to melt the

subducted sediment beneath the volcanic are, fluxing of fluids is required to lower the

melting temperature of the sediments. Although the top of the altered oceanic crust has
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dehydrated by ~ 100 km depth, the temperatures at the bottom of the subducting crust are

cool enough that dehydration should occur until ~130 km (based on the phase equilibria

of meta-basalt; Rupke et aI., 2004). Based on wet solidus temperatures for pelagic clays

of~650°C (Nichols et aI., 1996), the percolation of fluids through the oceanic crust and

into the overlying sediment package could induce melting of the sediments. The rising

sediment melt may in turn melt the overlying hydrated mantle, or the sediment melts may

mix with the fluids being released from the downdragged chlorite. Either scenario can

produce the complex high-H20, high- (5180 subduction component with both sediment

melt and altered oceanic crust-derived fluid components. However, based on our thermal

model of the subduction zone and constraints on the origin of the subduction-derived

components, it does not appear possible to generate high-H20, high- (5180 magmas

derived from sediment melts and slab fluids beyond slab depths of~130 km (or ~ 175 km

behind the volcanic front). Thus, another model is required to explain the broad region of

H20-rich melts far behind the front in the MGVF.

7.2.2. Dehydration of subducted material- 3 Ma

As mentioned earlier, modeling slab devolatilization beneath the MGVF has the

added complexity of changes in the subducting slab geometry over the past ~ 3 Ma.

While it is not possible to know the exact slab geometry at 3 Ma, it seems likely that the

slab had a configuration similar to the current geometry near Mexico City. Following

this assumption, a second 2-D thermal model was created for the MGVF at 3 Ma (Fig.

4.24). Employing the same P-T assumptions for sediment and metabasalt dehydration

(Rupke et aI., 2004) in this configuration, fluids released from dehydration of sediment
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could have hydrated the mantle wedge in the region now just behind the modem arc

(~250 Ian from the trench, Fig. 4.21b). Dehydration of the altered oceanic crust would

have continued into the regions of the MGVF now ~300 Ian from the volcanic front; such

fluids could also have melted the overlying sediment package, as discussed above.

Additionally, the stability fields for serpentine and chlorite in the mantle wedge in the

shallow slab configuration suggest that fluids could have been efficiently transported to

depths in the mantle wedge that correspond to the regions of high-H20 far behind the

front today (~350 Ian from the trench, Fig. 4.21b). Thus, the slab geometry at 3 Ma

would have enabled production of sediment melts and hydrous, oceanic crust-derived

fluids at the high-H20 localities located far behind the volcanic front today.
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Unfortunately, it is not possible to definitively resolve the influence of slab

migration on the generation of hydrous melts across the MGVF. While much of the

volcanism at 3 Ma is concentrated in the region far behind the front, it is also clear that

activity in this region has persisted into recent times. Using a compilation of age

estimates of MGVF cinder cones (Hasenaka and Carmichael, 1985; Ban et aI., 1992;

Suter et aI., 2001; Ownby et aI., 2008) it is clear that most of the volcanic activity

younger than 1 Ma is located near the region ofthe current volcanic front (Fig. 4.21).

However, there is wide variability in the ages of cinder cones across the arc, and

volcanoes far behind the front have been active as recently as ~ 50,000 ybp (Suter et aI.,

2001; Fig. 4.21). Thus, it is possible that at least some of the volatile-rich magmas

erupted far behind the front at 2-3 Ma when the slab was shallower or moving

trenchward. However, it is also possible that some of the volatile-rich magmas far behind

the front erupted more recently, produced by melting of previously hydrated mantle.

Whether or not this same process affected volcanoes near the current volcanic front is

difficult to ascertain. The geometry of the slab in the 3 Ma 2-D model (based on the

present-day configuration near Mexico City) is relatively flat until ~250 km from the

trench, suggesting that no mantle wedge was present trenchward of the change in slab

dip. Based on this geometry, pre-hydration of the mantle wedge near the current volcanic

front is not a viable option. However, this is based on our best estimate of the previous

slab configuration, and other geometries could allow for a larger mantle wedge that could

have been affected by pre-hydration.

The change in slab geometry over the past 3 Ma has important implications for

mantle flow and production of melts by decompression. Trenchward migration of
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subducting slabs creates suction in the mantle wedge, which would increase the comer

flow of mantle from far behind the arc. Melting of this mantle, which has not undergone

previous fluid-flux melting, would yield melts that are relatively enriched (i.e., high

HFSE). This advection of mantle has been suggested to produce alkaline, decompression

melts erupted in western Mexico (Luhr, 1997). This model fits well with the relatively

enriched, low-H20, low degree partial melts present far behind the front in the MGVF

(e.g., Hoya Alvarez). The abrupt transition into low-H20, high HFSE melts seen in the

spatial map of H20 contents (Figs. 4.9, 4.11) may indicate a region dominated by

decompression melts, resulting from strong advection caused by the trenchward

migration of the Cocos slab in the past 3 Ma.

The arc in Mexico has the added complexity of having been active since the

Miocene (Nixon et ai., 1987; Ferrari et ai., 1994), suggesting that the mantle wedge has

potentially been metasomatized over the past 10-20 Ma. Changes in the geometry of the

subduction zone over this time would have permitted different regions of the mantle

wedge to be hydrated by fluids derived from a variety of subducted material (e.g., slab,

sediments). Furthermore, it is possible that repeated hydration of the mantle wedge could

also produce melts with high 8180 values (Dorendorf et ai., 2000). These pre-hydration

events are difficult to detect because they are not old enough to cause strong isotopic

aging of the mantle wedge, but it does seem likely that in such a long-lived subduction

zone the mantle wedge (particularly lithospheric mantle) may have been repeatedly

hydrated by a variety of fluids and melts. However, our data and modeling suggest that

such older hydration and enrichment are not required to produce the geochemical patterns

of magmatism during the past 3 Ma.
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8. Conclusions

In spite of the young age of the subducting Cocos plate, primary melt H20 (~3-5

wt%) and other volatile concentrations remain high for large distances (~150 Ian) behind

the volcanic front in the MGVF. Additionally, 8180 0livine values measured for the MGVF

(5.6-6%0) are higher than values obtained in Central America and most other arcs

worldwide. The MGVF magmas originate from an EMORB mantle source that has been

variably depleted by previous partial melting and melt extraction, producing

compositional heterogeneity. By calculating source region compositions specific to each

volcano, we were able to calculate the amount and composition of H20-rich subduction­

derived components added to the mantle wedge.

The combination of high 818001ivine values, correlation between magma and

sediment Th/Rb, and trace element compositions of the modeled H20-rich components

all suggest that the H20-rich, subduction-related components originated from mixtures of

sediment melts and altered oceanic crust-derived fluids. However, 2-D thermal models

suggest that dehydration of sediment and much of the oceanic crust should occur beneath

the forearc region. To reconcile these data, we propose two models, which are not

mutually exclusive:

1. Sediments and much of the altered oceanic crust dehydrated beneath the

forearc, hydrating the overlying mantle wedge and producing hydrous

minerals such as serpentine. The hydrated mantle wedge was subsequently

down-dragged with the subducting slab and the serpentine eventually broke

down, causing H20 to be stored in chlorite, a hydrous mineral stable to higher

P and T. Dehydration of the middle and lower portions of the oceanic slab
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continued until depths of~130 krn. Percolation of these fluids through the

overlying subducted sediment induced melting of the sediment. The

sediment-derived melts rose and melted or mixed with the hydrated overlying

mantle wedge, producing high-H20, high-Sl80 magmas with variable

sediment melt and oceanic-ernst-derived fluid signatures. However, this

model is incapable ofproducing hydrous melts at distances far behind the

volcanic front.

2. The MGVF mantle wedge was previously hydrated over the past ~3 Ma, when

the slab migrated trenchward from a relatively flat geometry. The shallower

slab dip at 3 Ma and subsequent slab steepening would have caused hydration

oflarge regions of the mantle wedge, which now underlie the MGVF.

Dehydration and melting would have proceeded as outlined in model 1,

however, the shallow slab dip would have enabled production of H20-rich,

high- SI80 magmas far behind the current volcanic front.

These scenarios are not necessarily applicable to all arcs worldwide, due to the

fact that Mexico is a "hot" subduction zone. In comparison with other arcs where young

ernst is subducted, the MGVF SI800livine values are similar only to northern Central

America, where SI800livine values reach 5.7%0. These regions share similarities in

subducting material, specifically that the mantle beneath the oceanic ernst in the

downgoing slab is not heavily serpentinized, and oceanic sediments are being efficiently

subducted. Both of these factors contribute to high magmatic SI80 values. Furthermore,

it is important to remember that the MGVF magmas are unique in both the persistently

high volatile contents across the arc and their high SI800livine values. It seems that the
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longevity of subduction beneath the MGVF and the recent change in slab geometry make

this volcanic field somewhat unique. These factors allowed for hydration of a much

larger region of mantle wedge than in other some other arcs. Slab rollback and

trenchward migration of subduction-related volcanism have occurred in other arcs as

well, so results of this study have applicability to other arcs that have migrated over time.
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CHAPTER V

CONCLUSIONS

In this dissertation I investigated the physical and chemical processes of

subduction zone volcanism from the crust and Earth's surface (degassing, crystallization,

and eruptions of cinder cone volcanoes) to the mantle (melt generation) and subducted

slab (release of H20-rich components). In this chapter I summarize the results and

implications of this work.

In Chapter II, I presented a detailed study of the eruption of one subduction­

related cinder cone, Volclin Jorullo, in central Mexico. Using a variety of datasets, I

showed that, in spite of the relatively small size of cinder cone volcanoes, their eruptions

can be complex. Analysis of melt inclusion volatile contents and compositions revealed

the high initial volatile concentrations and compositional evolution over time of the

Jorullo magmas. The evolution of Jorullo magmas was driven by deep crystallization of

several phases - amphibole + olivine ± clinopyroxene. Pressures of melt inclusion

entrapment indicate that olivine crystallized over a wide range of depths early in the

eruption, and that crystallization depths shallowed as the eruption progressed. Olivine

compositional zoning and measurements of groundmass crystallinity suggest that crystals

were stored for increasing periods of time shallowly beneath the volcano as the eruption

progressed, and that more extensive crystallization of the groundmass occurred late in the

eruption. Together, these data point to the formation of a shallow storage region beneath
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the volcano where degassing, crystallization, and melt storage occurred late in the

eruption. Overall, this study illustrates that the magmatic processes driving cinder cone

eruptions can be very complex, and this may be true especially for long-lived volcanoes

like Joru1lo. The longevity of the eruption (15 years) may have allowed the plumbing

system to develop such a storage region over time, whereas in shorter-lived cinder cone

eruptions, the plumbing systems are simpler, dike-like systems.

I hope that this study motivates further research on the intricacies and variability

of cinder cone eruptions and for hazard assessment of cinder cone volcanoes. Such an

explosive, IS-year cinder cone eruption could be devastating on the surrounding

population and environment from a hazards perspective. Considering that cinder cones

are the most abundant type of volcano on land, assessing their potential hazards is

essential.

Building on my study of the Jorullo cinder cone eruption, I then assessed the

degassing behavior of subduction-related several cinder cone eruptions from Mexico

(Chapter III). Using melt inclusion and groundmass glass volatile concentrations, I

investigated the degassing of volatiles (H20, C02, S, Cl) in these basaltic melts. I

concluded that the process of gas fluxing - or flushing of C02-rich gas from depth

through the conduit system - seems to be a common process at most of the cinder cones

in Mexico. Interestingly, the composition of the fluxed vapor is very similar for basaltic

melts worldwide (50-75% CO2), suggesting that subduction zone magmas have similar

and high C02 concentrations (> 7000 ppm) at depth. In this chapter I also investigated

the vapor-melt partitioning of S and Cl in basaltic melts. In most melts degassing of S

was minimal until low pressures, when extensive shallow degassing occurred prior to and
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during eruption, whereas degassing of CI was not pressure dependent. I suggested that

the variations in degassing behavior among the MGVF volcanoes can be attributed to

several factors: 1) melt composition, 2) oxygen fugacity of the melt, and 3) eruption

style.

Overall, this study highlighted the similarities and differences of degassing in

basaltic melts, and the different factors that can affect the degassing process.

Furthermore, the degassing behavior of long-lived cinder cones of the MGVF is very

similar to larger basaltic volcanoes, like Mt. Etna in Italy, suggesting that in spite ofthe

differences in eruption longevity and volume, these systems are not all that different.

Again, cinder cone systems are not well studied and this research only sampled a very

small portion ofthe population, and thus I hope that this study leads to further research

on degassing in cinder cone systems worldwide.

From these studies of arc cinder cone eruptions, I broadened the scope of my

research to investigate the complex process of producing such subduction-zone melts

(Chapter IV). Using a variety of datasets, I sought to better understand the origin ofH20-

rich components added to the mantle wedge beneath the MGVF. In studying the

compositions and volatile contents across the arc in the MGVF, I found that magmatic

H20 remains high (3-5.3 wt%) for large distances (150 km) behind the volcanic front.

These results were surprising, given that the young age, and therefore relatively high

temperature, of the subducting plate beneath the MGVF would suggest that the

subducting material should dehydrate beneath the forearc. Analyses of the oxygen

isotopic composition of olivine phenocrysts in the MGVF reveal that oxygen isotopic

ratios are higher (5.6-6%0) than for typical mantle-derived magmas, but do not vary
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systematically across the arc. Based on the high 81800livine values measured for the

MGVF, I suggested that the compositions of the H20-rich subduction-related components

added to the mantle wedge appear to be mixtures of slab-derived fluids and sediment­

derived melts. This hypothesis was supported by a 1:1 correlation of ThlRb in MGVF

magmas and subducting sediment ThlRb, suggesting involvement of sediment melts in

formation of the MGVF magmas. Using these data combined with new 2-D thermal

models of the subduction zone beneath the MGVF, I proposed two models, not mutually

exclusive, to explain the origin of H20-rich subduction-related components: 1) fluids

released from the dehydration ofthe altered oceanic crust flux-melt the overlying

subducted sediment, and these melts then mix with or melt the hydrated, downdragged

mantle wedge; and 2) a shallower slab geometry at ~ 3 Ma facilitated dehydration and

melt production (in a scenario similar to (1)) far behind the current volcanic front.

Overall, this study illuminated the complexities of dehydration and melt

production in subduction zones. It also demonstrated the need for utilizing a multi­

disciplinary approach when addressing such complex systems. Without the combination

of datasets that I used in this study, it would not have been possible to pinpoint the origin

of the H20-rich subduction components, nor to assess where these components were

added to the mantle wedge.

In summary, my dissertation addresses both the small scale processes in

subduction zone volcanism, such as degassing and compositional evolution of melts at

basaltic cinder cones, and the large scale issues of melt generation in subduction settings.

This work illustrates that basaltic cinder cones, in spite of their relatively small size, are

complex and similar in many ways to larger-volume basaltic volcanoes. Furthermore, the
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generation ofthese melts in subduction zones is exceedingly complex. Factors such as

the type of material being subducted, the age/temperature of the subducting slab, and the

tectonic history of the subduction zone need to be considered when assessing fluid

fluxing and melt production in a subduction zone setting. Finally, this work illustrates

the importance of utilizing multiple types of data in order to deal with these complexities

and assess the origin of H20-rich components in a subduction zone.



APPENDIX A

SUPPLEMENTARY DATA TABLE 1: UNCORRECTED MELT INCLUSION COMPOSITIONS
Group Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early Early
Inclusion 1 12_1 12_2 12_3 13_1 13_2 14 17_1 17_2 17_A 20 23 24 28 29_1 29_3

Si02 51.98 50.49 51.80 50.78 49.19 49.27 50.83 51.66 50.01 49.71 50.05 49.22 49.19 52.23 49.64 50.07
Ti02 0.90 0.71 0.68 0.89 0.88 0.76 0.76 0.68 0.87 0.81 0.89 0.80 0.90 0.85 0.79 0.77
AI203 17.65 17.32 18.77 17.98 18.89 19.81 19.46 17.49 18.57 18.31 18.05 18.43 20.55 19.14 18.36 19.01

FeOT 7.23 6.35 5.95 5.70 7.24 6.86 5.65 6.04 5.82 6.14 5.76 5.56 5.32 6.12 6.95 5.30

MnO 0.16 0.13 007 0.06 0.08 0.21 0.02 0.10 0.15 0.04 0.12 0.07 0.06 0.12 0.14 0.10
MgO 5.13 6.29 4.13 5.28 6.14 5.53 3.26 5.32 4.70 4.96 4.88 4.99 2.81 2.92 5.16 5.22

CaO 10.37 9.64 9.32 9.42 8.91 9.38 10.23 8.26 9.18 8.95 9.87 9.34 10.05 9.54 9.25 9.97

Na20 4.24 5.01 5.14 4.92 4.43 5.07 5.85 5.01 5.61 5.18 4.42 4.30 5.62 5.16 4.77 5.00

K20 0.86 0.67 0.84 0.75 0.81 0.84 0.80 0.71 0.73 0.73 0.70 0.74 0.83 0.98 0.80 0.72

P20S 0.21 0.16 0.17 0.14 0.16 0.16 0.19 0.15 0.16 0.15 0.18 0.24 0.15 0.17 0.17 0.17
S ppm 1339 1284 1574 1958 1648 1632 2093 1926 1903 2288 2089 2091 2237 839 1899 1848

CI ppm 1286 1266 1366 1386 1332 1471 1683 1363 1494 1424 1433 1328 1492 1348 1285 1356

Total 99.17 97.05 97.18 96.28 97.07 98.22 97.50 96.18 96.14 95.42 95.34 94.10 95.88 96.99 96.36 96.72

Group Middle Middle Middie Middle Middle Late Late Late Late Late Late Late Late
Inclusion 4 5 6 7_1 10 1 3_1 3_2 4 5 p1 p2 p3a

Si02 53.03 55.05 48.94 50.31 53.39 51.90 53.09 56.02 54.30 51.14 51.13 53.91 55.04

Ti02 0.79 0.96 0.89 0.92 0.85 1.02 1.00 1.19 0.94 0.84 1.10 1.06 0.93

AI20 3 18.10 19.74 19.91 20.34 22.75 20.74 20.11 19.11 19.28 20.35 21.09 20.05 18.14

FeOT 7.17 6.46 6.06 6.85 4.85 5.96 6.52 5.45 6.59 6.42 5.98 4.68 5.65

MnO 0.12 0.12 0.10 0.12 0.08 0.08 0.16 0.03 0.07 0.10 0.08 0.06 0.04

MgO 5.28 4.03 5.04 5.36 2.62 4.29 3.54 3.06 2.88 4.42 4.53 1.69 5.09

CaO 9.41 9.68 10.50 10.01 8.15 10.16 9.46 8.79 8.71 9.52 9.89 8.91 8.85

Na20 4.20 5.02 4.26 4.46 5.70 4.49 4.58 4.31 4.99 4.22 4.69 4.61 3.78

K20 0.85 1.26 0.82 0.87 1.03 0.77 0.90 0.90 1.09 0.83 0.75 0.81 0.61

P20 S 0.16 0.19 0.19 0.21 0.19 0.23 0.24 0.21 0.22 0.24 0.20 0.18 0.17

S ppm 1478 1392 2039 1856 1887 1442 1143 74 918 1490 1477 2106 1479

CI ppm 956 1336 1094 1171 1503 1239 1162 1020 994 1065 1206 1298 936

Total 99.47 102.86 97.24 99.93 100.11 100.10 100.01 99.25 99.39 98.51 100.02 100.00 99.96

--+>---
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APPENDIXB

CORRECTION PROCEDURES FOR MELT INCLUSION COMPOSITIONS

All melt inclusion data were corrected for post-entrapment crystallization of

olivine (Sobolev and Chaussidon, 1996) and diffusive loss of Fe (Danyushevsky et

al.,2000). Post-entrapment crystallization correction involves adding equilibrium olivine,

in incremental fractions of 0.1 wt%, back into the melt inclusion until the melt inclusion

composition is in equilibrium with its host olivine (as analyzed by electron microprobe).

There are two variables used in calculating the equilibrium olivine composition: the KD

value and the FeO/FeOT ratio. We used a KD of 0.3 ± 0.01 (Toplis, 2005), and we used

an FeO/FeOT value of 0.78 ± 0.01, based on the Jorullo whole rock lava data from Luhr

and Carmichael (1985). Following the procedure of Danyushevsky et al. (2000) we also

corrected the inclusions, if necessary, post-entrapment Fe-loss. We plotted the melt

inclusion FeOT vs MgO data along with the whole rock data from Luhr and Carmichael

(1985), and those inclusions with low FeOT compared to the whole rock trend had Fe

added into their compositions until they fell along the trend. We calculated an error for

this procedure by fitting a regression line to the whole rock FeOT vs MgO data, and we

used the maximum residuals, ± 0.16, as the error in our Fe addition calculation. Using

these three potential sources of error, KD, FeO/FeO\ and the error in Fe-addition, we ran

melt inclusion compositions through the post-entrapment correction varying one variable

at a time. This resulted in a range of compositions for each inclusion, with our restored

values representing the average value. The errors (absolute) we report are maximum

errors, as they are the maximum differences between our average composition and the

most and least corrected runs: Si02 : ± 0.29, Ab03: ± 0.39, FeOT
: ± 0.23, MgO: ± 0.79,
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CaO: ± 0.21, Na20: ± 0.09, K20: ± 0.02, Ti02: ± 0.02, MnO: ±0.002, P20S: ± 0.004. The

most affected element is Mg, however, even the errors in our MgO data are relatively

small (± 0.8).



Si02

Ti02
Ah03
FeO'

MnO

MgO

CaO

Na20
K20
P20.
Total

APPENDIXC

SUPPLEMENTARY TABLE 2: BULK TEPHRA XRF

Unnormalized Major Elements (Wt %):

Early Middle Late
52.84 51.36 52.89
0.67 0.70 0.88

15.56 14.86 15.96
7.18 7.58 7.54
0.13 0.13 0.13

11.46 11.53 10.39
7.82 7.77 7.41
3.36 3.11 3.44
0.70 0.69 0.82
0.14 0.14 0.19

99.86 97.88 99.66

Unnormalized Trace Elements (ppm):
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Ni
Cr

Sc
V

Sa

Rb
Sr

Zr
y

Nb

Ga
Cu

Zn
Pb

La
Ce

Th

Nd

357
625

23
162
222

11
443

78
14

3
16
51
71

3
5

18
o

14

318
630

24
170
221

11
408

79
14
2

16
57
72

3
5

20
o

12

256
448

21
163
248

13
465
100

16
5

17
37
76
4

10
18
o

15 I

X-Ray Fluorescence (XRF) analyses conducted at the GeoAnalytical
Laboratory at Washington State University. LOI (loss on ignition)

values were less than zero for all samples. Detailed discussion of
analytical techniques and sample preparation can be found in

Johnson et al. (1999).



APPENDIXD

SUPPLEMENTARY DATA TABLE 3: TEPHRA GROUNDMASS GLASS

COMPOSITIONS

Oxides
Early Middle Late

(wt%)

8i02 58.28 (0.27) 58.36 (0.43) 58.34 (0.38)

Ti02 1.33 (0.15) 1.37 (0.19) 1.46 (0.13)

AbOs 14.70 (0.31) 14.74 (0.30) 14.52 (0.22)

FeO 8.92 (0.24) 8.63 (0.39) 8.74 (0.19)

MnO 0.17 (0.07) 0.19 (0.04) 0.15 (0.04)

MgO 4.32 (0.13) 3.86 (0.16) 3.68 (0.09)

CaO 7.56 (0.34) 6.90 (0.37) 6.62 (0.40)

Na20 4.29 (0.17) 4.44 (0.28) 3.79 (0.30)

K20 1.30 (0.03) 1.43 (0.08) 1.62 (0.06)

P20S 0.26 (0.02) 0.28 (0.03) 0.34 (0.03)

8 ppm 35 (71 ) 35 (70) 12 (63)

Clppm 1074 (127) 865 (161 ) 1063 (103)

Total 101.34 100.37 99.44

Groundmass glass analyses by electron microprobe for tephra
from early, middle and late samples. Averages are reported

based on 10-25 points per sample with standard deviations in
parentheses.
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APPENDrXE

SUPPLEMENTARY DATA TABLE 4: MELT INCLUSION TRACE ELEMENT...

CONCENTRATIONS MEASURED BY LA rCP-MS.

Trace Early Early Early Early Early Middle Middle Middle Late Late Late Late
element
(ppm)

12_3 13_1 20 24 28 4 6 10 1 3_1 3_2 4

Rb 9 10 7 6 10 12 10 13 13 15 16 16
Ba 195 236 184 164 231 236 257 233 265 300 264 242

Th 0.3 0.4 BOL 0.4 1 1 1 1 1 1 2 1

Nb 2 3 2 2 3 3 3 2 7 6 5 5

Ta 0.2 BOL BOL BOL BOL 0.2 BOL BOL 0.4 0.4 0.3 BOL

U 0.1 0.2 BOL BOL 0.2 0.1 BOL 0.2 0.4 0.3 0.3 0.2

La 7 8 6 6 8 9 9 6 12 13 14 12

Ce 16 17 16 12 17 19 24 14 26 26 25 23

Pb 3 4 4 9 4 4 4 3 4 5 6 5

Sr 467 523 463 402 424 467 622 492 614 586 551 525

Nd 12 11 9 8 13 12 15 9 17 17 16 18

Zr 72 94 70 69 83 88 107 89 134 169 165 144

Sm 6 2 2 1 1 3 3 2 4 3 5 4

Eu 1 1 1 1 1 1 2 1 1 1 1 1

Y 15 17 13 12 17 17 20 16 24 27 26 25

Yb 2 1 1 1 2 2 2 2 1 3 1 2

Ti 4088 4715 3900 3148 3989 4614 5862 4104 6582 5907 5676 5451

Above values are corrected for post-entrapment crystallization (PEC) of olivine

Trace Early Early Early Early Early Middle Middle Middle Late Late Late Late
element
(ppm)

12_3 13_1 20 24 28 4 6 10 1 3_1 3_2 4

Rb 10 11 8 8 13 12 10 15 13 16 17 17

Ba 219 244 208 207 282 248 262 263 277 319 282 263

Th 0.4 0.4 0.6 1 1 1 1 1 1 2 1

Nb 3 4 2 2 3 3 3 2 7 6 5 6

Ta 0.2 BOL BOL BOL BOL 0.2 BOL BOL 0.4 0.4 0.3 BOL

U 0.1 0.2 BOL BOL 0.2 0.1 BOL 0.3 0.4 0.3 0.3 0.2

La 8 8 7 8 10 9 10 7 13 14 15 13

Ce 17 18 18 15 20 20 24 16 27 28 26 25

Pb 4 4 4 11 4 4 4 4 4 5 6 6

Sr 523 542 524 506 517 491 634 554 642 623 589 571

Nd 14 11 10 10 16 13 15 10 18 18 17 20

Zr 80 98 79 87 101 92 109 100 140 179 176 157

Sm 7 2 3 2 1 3 3 2 4 4 5 5

Eu 1 1 1 1 1 1 2 1 1 1 1 1

Y 17 18 15 15 20 18 21 18 25 29 28 27

Yb 2 2 1 2 2 2 2 2 1 3 1 3

Ti 4572 4886 4412 3965 4864 4847 5976 4622 6892 6277 6064 5932

Above values are original LA ICP-MS values.

Laser ablation ICP-MS analyses of melt inclusions from early, middle and late samples. BOL indicates element
was below detection limit. Average 1 standard error values (in ppm) are as follows: Rb: 0.7, Ba: 10.9, Th: 0.2, Nb:

0.5, Ta: 0.1, U: 0.1, La: 0.6, Ce: 0.9, Pb: 0.8, Sr: 18.4, Nd: 1.7, Zr: 4.8, Sm: 0.9, Eu: 0.2, Y: 1.3, Vb: 0.5, Ti: 169
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MAJOR ELEMENT AND VOLATILE CONTENTS OF MELT INCLUSIONS FROM ALL MGVF CINDER CONES

Table 1: Major element and volatile compositions of melt inclusions, and host olivine composition (corrected values)

Cerro San Juan

CSJ-1 CSJ-5 CSJ-31 CSJ-32 CSJ-33 CSJ-39 CSJ-41 CSJ-44 CSJ-45s CSJ-45L CSJ-46 CSJ-48 CSJ-51

SiO, 51.79 51.52 50.40 52.01 51.29 50.61 51.59 51.54 52.30 51.79 51.43 50.91 51.56

TiO, 1.18 1.04 1.03 1.08 1.07 1.23 1.31 0.97 1.08 1.11 0.93 1.17 1.19

AI,03 17.64 18.11 18.54 17.21 17.92 18.74 18.79 18.35 18.04 18.12 18.36 18.59 17.95

FeOT
9.35 9.24 9.41 9.48 9.41 9.41 9.03 9.15 9.25 9.29 9.41 9.26 8.97

MnO 0.08 0.12 0.09 0.14 0.10 0.10 0.11 0.11 0.06 0.08 0.10 0.06 0.11

MgO 7.12 6.76 7.31 7.17 7.09 6.88 6.26 6.62 6.93 6.95 6.49 7.16 6.83

CaO 8.34 8.58 8.68 7.88 8.76 8.35 8.24 8.37 7.36 8.04 8.53 8.21 8.43

Na,O 3.39 3.52 3.48 3.72 3.28 3.52 3.52 3.71 3.65 3.19 3.52 3.45 3.79

K,O 0.86 0.84 0.86 1.07 0.85 0.93 0.93 0.92 1.11 1.14 0.98 0.95 0.90

P,05 0.23 0.27 0.21 0.23 0.23 0.25 0.22 0.25 0.23 0.29 0.24 0.23 0.25

H,O 2.39 2.30 1.65 0.83 2.30 2.36 2.88 1.21 2.67 3.40 2.18 1.66 0.35

Sppm 834 988 957 451 852 1049 1105 1083 1232 1162 1044 1095 1024

Clppm 582 597 619 570 485 832 793 820 833 775 782 771 735

Fo 84.62 84.19 84.60 84.51 84.49 84.11 83.62 84.09 84.50 84.50 83.33 84.88 84.77

Cerro el Hungaro

CeH 15 CeH 24 CeH 39a CeH 39b CeH 86 CeH 88 CeH 91 CeH 93 CeH 95 CeH 98 CeH 99

SiO, 53.53 54.21 55.80 54.53 52.93 53.98 53.64 52.95 53.33 52.56 53.12

TiO, 0.95 0.97 0.93 0.81 0.91 0.85 0.93 1.00 0.92 0.96 0.92

AI,03 18.56 18.09 16.05 17.43 17.65 17.47 18.20 18.42 18.71 19.41 18.15

FeOT
7.52 7.38 7.54 7.20 7.59 7.35 7.39 7.82 7.40 7.47 7.71

MnO 0.07 0.10 0.10 0.08 0.08 0.08 0.10 0.08 0.10 0.06 0.09

MgO 5.92 7.31 7.39 7.00 7.83 7.71 6.86 7.29 6.81 7.01 7.17

CaO 8.27 8.22 6.68 7.48 7.87 7.60 7.77 8.04 8.38 8.07 7.95

Na,O 4.09 2.61 4.07 4.23 4.13 3.90 3.98 3.51 3.55 3.54 4.06

K,O 0.85 0.87 1.22 1.01 0.80 0.84 0.94 0.70 0.64 0.73 0.65

P,05 0.24 0.24 0.22 0.23 0.21 0.21 0.19 0.19 0.17 0.19 0.18

H,O 0.00 1.85 0.55 0.00 1.37 0.00 0.56 2.59 2.49 1.77 1.51

S ppm 1490 1507 57 168 1457 255 386 1404 1423 1435 1439

Clppm 721 725 703 643 679 540 1025 909 1059 1056 1061

Fo 87.40 87.80 87.53 87.53 88.07 88.21 87.01 86.70 86.95 87.12 87.27

-~
-....l



Table 1 (cont.): Major element and volatile compositions of melt inclusions, and host olivine composition (corrected values)

Jorullo

1 .1.f.....1 12 2 12 3 H....1 13 2 14 .1L.1 17 2 17 A 20 23 24 28 29 1 29 3

SiOz 51.15 51.54 52.06 51.58 50.60 50.11 50.93 52.90 51.32 51.19 51.22 50.63 49.89 51.57 51.01 50.26

TiOz 0.79 0.68 0.63 0.75 0.88 0.75 0.67 0.74 0.80 0.74 0.88 0.75 0.73 0.65 0.76 0.71

Alz0 3 15.66 16.77 17.25 16.96 18.90 19.46 17.15 16.44 17.21 17.46 16.74 17.15 17.87 16.63 17.69 17.55

FeOT
7.84 7.38 7.30 7.36 7.65 7.26 7.46 7.47 7.52 7.41 7.55 7.56 7.62 7.48 7.65 7.57

MnO 0.15 0.13 0.06 0.08 0.08 0.21 0.02 0.10 0.10 0.04 0.15 0.07 0.05 0.10 0.14 0.09

MgO 10.51 9.23 9.00 9.44 7.75 7.43 9.99 9.29 9.64 9.25 9.91 10.03 10.46 9.82 8.69 9.56

CaO 9.20 9.34 8.57 8.91 8.92 9.21 9.01 8.28 8.55 8.93 9.14 8.96 8.60 8.55 8.92 9.21

NazO 3.74 4.13 4.20 4.04 4.26 4.59 3.89 4.01 4.04 4.17 3.60 4.00 3.92 4.25 4.21 4.21

KzO 0.77 0.65 0.77 0.73 0.81 0.83 0.70 0.65 0.67 0.68 0.61 0.66 0.72 0.84 0.77 0.66

PzOs 0.18 0.15 0.16 0.15 0.16 0.16 0.17 0.13 0.15 0.14 0.19 0.19 0.14 0.12 0.16 0.16

HzO 0.95 4.58 4.74 2.47 4.16 3.47 1.23 5.31 2.51 1.52 3.95 2.27 1.02 3.01 3.42

S ppm 1149 1195 1379 1751 1591 1560 1718 1751 1665 2066 1847 1882 1776 688 1737 1644

CI ppm 1103 1179 1197 1239 1285 1406 1381 1239 1308 1286 1267 1196 1185 1105 1176 1206

Fo 91.05 90.29 89.93 90.36 88.37 88.44 90.48 90.14 90.28 90.14 90.54 90.70 90.61 90.03 89.32 90.21

Cerro el Astillero

CA-2 CA-5 CA-6-1 CA-7 CA-10 CA-11 CA-12 CA-12b CA-14 CA-15

SiOz 53.56 49.67 51.85 51.75 51.50 50.87 50.31 50.64 50.50 50.34

TiOz 16.25 17.97 19.02 15.41 17.75 17.94 17.49 16.01 17.88 17.94

Alz0 3 8.74 8.03 7.98 9.58 8.05 8.09 8.06 8.79 8.10 8.13

FeOT
7.04 10.11 8.59 9.55 8.76 8.93 9.49 10.50 8.66 9.28

MnO 8.39 8.56 9.00 8.37 9.12 8.88 9.08 7.93 8.98 8.95

MgO 3.75 3.89 1.63 3.72 3.08 3.55 3.81 4.26 3.95 3.70

CaO 1.01 0.60 0.59 0.59 0.58 0.61 0.60 0.77 0.61 0.61

NazO 0.96 0.91 0.94 0.77 0.83 0.91 0.84 0.88 1.02 0.83

KzO 0.14 0.10 0.21 0.09 0.14 0.07 0.16 0.08 0.12 0.07

PzOs 0.16 0.18 0.18 0.17 0.19 0.16 0.15 0.14 0.19 0.14

HzO 1.12 2.51 2.42 2.95 2.86 3.29 4.13 2.86

S ppm 400 1513 1583 1876 1486 1969 1735 1914

CI ppm 1200 1029 983 1078 1049 1148 986 1059

Fo 87.28 89.29 86.91 89.27 88.81 88.91 89.43 89.43 88.58 89.19

........
~
00



Table 1 (cont.): Major element and volatile compositions of melt inclusions, and host olivine composition (corrected values)
Paricutin

P506-1 P506-2 P506-3 1 P506-3 3 P506-4 P506-5 P506-6 P506-7 P506-8 P506-10

SiOz 52.79 52.81 52.35 52.19 53.61 53.22 53.08 53.33 54.19 53.59

TiOz 18.94 18.55 19.09 19.29 18.50 19.26 18.42 18.90 19.01 19.24

Alz0 3 7.16 7.24 7.21 7.13 7.23 7.25 7.15 7.15 7.26 7.02

FeOT 6.52 6.84 6.96 6.85 6.51 6.28 6.60 5.98 590 5.95

MnO 8.15 8.14 8.04 8.04 8.24 8.18 836 8.11 7.99 8.34

MgO 4.38 4.38 4.26 4.43 3.80 3.70 4.45 4.43 3.52 3.73

CaO 0.80 0.79 0.80 0.78 0.80 0.79 0.78 0.81 0.81 079

NazO 095 0.94 0.97 0.95 1.02 1.01 0.85 0.97 0.91 0.98

KzO 0.09 0.07 0.09 0.08 0.08 0.07 0.06 0.07 0.15 0.11

Pps 0.22 0.24 0.25 0.26 0.20 0.24 0.25 0.24 0.24 0.23

Hp 4.01 4.21 3.44 3.73 3.87 3.92 3.93 3.52 4.24

S ppm 1524 1749 1895 1579 1662 1691 1669 1613 1324

CI ppm 980 905 936 930 889 952 946 954 957

Fo 86.88 86.96 87.35 87.35 86.59 85.97 86.85 85.35 86.66 86.10

Cerro San Miguel

CSM-A 2 CSM-A 3 CSM-A 4 CSM-A 6 CSM-A 7 CSM-A 8 CSM-A 12 CSM-A 13 CSM-A 14

SiOz 51.06 57.74 53.69 55.12 55.63 57.24 51.75 49.81 50.50

TiOz 20.17 15.88 18.34 19.37 16.37 15.71 19.38 19.86 18.69

Alz0 3 6.64 8.99 6.75 8.55 9.66 10.00 6.40 6.78 7.09

FeOT 6.32 4.48 5.69 3.27 5.05 4.16 6.54 7.25 7.66

MnO 10.12 6.11 9.41 6.65 6.06 6.35 10.10 10.73 10.46

MgO 3.81 3.89 4.17 4.07 4.36 3.78 3.86 3.71 3.76

CaO 0.62 1.29 0.66 1.52 1.26 1.23 0.54 0.50 0.54

NazO 0.97 1.19 0.98 1.13 1.24 1.12 1.10 1.00 1.02

KzO 0.11 0.15 0.09 0.02 0.11 0.19 0.11 0.19 0.11

PzOs 0.20 0.28 0.21 0.31 0.27 0.23 0.22 0.19 0.16

HzO 2.40 2.89 3.61 3.31 3.86 3.26 1.13 3.26 2.96

S ppm 2092 1190 1690 1220 1190 1260 1944 2107 2036

CI ppm 904 877 883 881 753 895 911 848 731

Fo 87.98 75.17 87.15 72.54 75.78 74.08 88.27 88.61 88.76
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Table 1 (cont.): Major element and volatile compositions of melt inclusions, and host olivine composition (corrected values)

Cerro el Pelon

CeP-1 CeP-2 CeP-7 CeP-8 CeP-9 1 CeP-9 2 CeP-10 CeP-11 CeP-12 CeP-14 CeP-15 CeP-16 CeP-17 1 CeP-17 2 CeP-18

Si02 53.84 53.18 53.17 52.80 52.42 52.45 52.40 51.80 53.07 53.98 53.89 54.85 53.76 53.41 54.51

Ti02 18.62 18.70 19.02 19.24 19.23 19.67 19.44 19.54 19.02 18.32 18.62 18.06 19.08 19.07 16.64

AI20 3 7.45 7.55 7.52 7.59 7.60 7.45 7.52 7.60 7.51 7.58 7.42 7.57 7.43 7.48 8.43

FeOT
5.10 5.68 5.31 5.36 5.31 5.24 5.25 5.42 5.17 5.54 4.96 5.32 4.72 4.82 5.73

MnO 8.63 8.16 8.55 8.27 8.69 8.69 8.55 8.85 8.45 8.38 8.35 8.17 8.42 8.90 7.49

MgO 3.98 4.28 4.04 4.23 4.13 4.08 4.33 4.25 4.11 3.75 4.23 3.67 4.03 3.73 4.43

CaO 0.81 0.80 0.89 0.89 0.85 0.90 0.86 0.88 0.90 0.91 0.92 0.88 0.91 0.94 1.03

Na20 1.23 1.29 1.16 1.21 1.23 1.11 1.20 1.27 1.25 1.14 1.20 1.04 1.22 1.26 1.31

K20 0.06 0.02 0.02 0.09 0.19 0.05 0.12 0.07 0.20 0.09 0.11 0.13 0.12 0.09 0.13

P20 S 0.27 0.33 0.33 0.32 0.35 0.35 0.32 0.31 0.31 0.31 0.30 0.33 0.31 0.31 0.30

H2O 3.32 2.58 2.09 2.75 0.91 2.38 1.47 2.66 2.52 2.56 3.67 2.00 2.11 1.37

S ppm 1337 2108 1398 1514 1536 1439 1417 1384 1458 1280.33 1392 555 1309 1489 532

CI ppm 907 1017 1029 956 1044 1036 1005 989 983 919.53 924 873 990 992 1082

Fo 83.53 84.51 83.93 83.76 83.70 83.70 83.69 84.03 83.44 84.03 81.10 83.82 82.50 82.50 83.21

Cerro La Loma

CLL-1 in1 CLL-1 in2 CLL-1 in3 CLL-2 CLL-3 CLL-1 2 CLL-1 3 CLL-1 4 CLL-1 5 1 CLL-1 5 2 CLL-1 6 CLL-17 CLL-1 8 CLL-19 CLL-1 10

Si02 53.09 53.45 54.13 52.47 51.62 51.15 52.66 52.66 51.80 51.68 52.79 52.86 54.59 53.33 51.84

Ti02 17.84 18.08 17.55 16.45 15.26 14.81 18.59 18.59 18.72 18.99 18.42 18.88 18.29 18.52 19.16

AI20 3 8.48 8.08 8.03 8.46 8.28 8.78 8.14 8.14 8.20 8.14 8.17 8.20 7.99 7.87 8.84

FeOT
6.13 5.39 5.49 8.02 10.66 11.54 6.19 6.19 6.91 6.85 6.78 5.75 5.16 5.52 5.75

MnO 8.11 8.41 8.45 10.33 9.68 9.44 8.24 8.24 9.74 9.95 10.02 9.02 7.73 9.40 8.97

MgO 3.69 3.88 3.79 2.72 2.62 2.77 3.83 3.83 3.22 2.97 2.30 3.36 3.82 3.42 3.44

CaO 1.07 1.07 1.11 0.68 0.76 0.77 0.91 0.91 0.53 0.55 0.65 0.67 0.94 0.66 0.65

Na20 1.25 1.25 1.09 0.68 0.89 0.59 1.08 1.08 0.68 0.66 0.70 1.00 1.12 0.99 1.02

K20 0.11 0.15 0.13 0.10 0.13 0.08 0.16 0.16 0.10 0.12 0.09 0.14 0.12 0.16 0.19

P20 S 0.24 0.25 0.23 0.09 0.10 0.07 0.21 0.21 0.10 0.10 0.09 0.14 0.23 0.15 0.14

H2O 2.95 2.28 2.77 1.27 4.06 2.71 3.81 3.51 4.20 3.27 2.75 2.70 2.34 3.25 3.25

S ppm 651 684 611 931 953 942 711 783 1633 1075 1963 1005 1010 2021 1872

CI ppm 618 645 598 1022 1024 1172 632 782 829 960 720 794 656 685 749

Fo 82.01 82.01 82.01 87.38 90.24 90.25 82.05 80.47 86.13 86.13 86.01 81.76 82.06 82.25 79.69
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Table 1 (cont.): Major element and volatile compositions of melt inclusions, and host olivine composition (corrected values)

Haya Alvarez

HA-A 1 HA-A 1-2 HA-A 2 HA-A 3 HA-A 6 HA-A 7 HA-A 8 HA-A 10 HA-A 12 HA-A 13-1 HA-A 13-2 HA-A 14 HA-A 15 HA-A 17

Si02 46.35 46.60 46.74 45.81 47.59 46.17 47.29 48.07 46.98 46.40 46.40 46.96 49.40 47.30

Ti02 18.19 18.14 17.36 18.46 17.81 18.10 17.59 16.72 17.57 17.33 17.46 17.79 16.97 17.41

AI20 3 12.17 12.25 11.10 11.89 11.02 11.89 12.01 12.19 12.27 12.32 12.27 12.18 13.01 11.91
FeOT 4.96 5.03 6.49 5.80 5.14 5.52 5.77 5.18 5.31 6.27 6.23 4.91 3.06 3.77

MnO 8.40 8.44 7.81 8.46 8.43 8.48 8.02 7.66 8.16 8.56 8.53 8.32 6.54 7.54

MgO 4.14 3.44 3.11 3.95 4.23 4.19 4.02 4.63 4.10 3.99 4.05 4.10 5.19 4.76

CaO 1.83 1.86 1.57 1.71 1.85 1.70 1.74 1.82 1.86 1.82 1.76 1.80 2.52 2.37

Na20 3.21 3.45 2.94 3.16 3.18 3.20 2.70 2.98 2.99 2.58 2.52 3.13 2.00 3.04

K20 0.14 0.17 0.12 0.16 0.18 0.20 0.18 0.15 0.17 0.09 0.13 0.20 0.22 0.21

P20S 0.61 0.63 0.59 0.60 0.59 0.55 0.57 0.59 0.60 0.63 0.64 0.60 1.11 0.78

H2O 1.26 1.42 1.05 0.83 0.82 1.15 1.06 0.96 0.83 0.56 1.01 0.42 0.61

Sppm 1180 1147 1040 1116 1101 948 806 979 950 1008.63 943 1101 1166

CI ppm 550 536 413 404 592 411 633 551 473 394.36 440 1002 684

Fa 75.55 75.55 76.78 77.29 77.25 77.19 76.26 76.44 78.67 78.67 74.77 63.62 78.36

.......
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APPENDIXG

CALIBRATION FOR H20-TRACE ELEMENT CORRELATIONS

We tested the H20-trace element correlations by using them to calculate H20 for

melt inclusions in which H20 had previously been measured by FTIR. This plot shows

the calculated H20 vs measured H20 for the MGVF melts from this study as well as for

volcanoes from the Chichimiutzin Volcanic Field (CVF; Cervantes and Wallace, 2003).

Shown in this plot are the I-to-l line (solid grey) and the root mean squared error (± 1.2,

dotted lines).
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