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Oak savanna was a dominant ecosystem of Oregon's Willamette Valley prior to

Euro-American settlement but has declined precipitously due to urbanization, agriculture,

and reduced fire regimes. Some areas have retained their savanna structure while others

have succeeded into woodland or forest. I investigated the relationships of current

community type to edaphic (bulk density, texture, carbon, nitrogen, depth, and pH) and

topographic (slope and heatload) factors at seven sites using analysis of variance and

principal components analysis. Results indicate that edaphic and topographic conditions

strongly influence successional pathways in former oak savanna, but the specific effects

depend on site location. Soil moisture was also measured seasonally at three of the sites

in community types representing the current successional stages. Results indicate that



dry conditions restrict succession to dense forest, and that soil depth is an important

control over soil moisture within the soil profile.
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CHAPTER I

INTRODUCTION

Oak savanna has been a major ecosystem in North America for many years, its

existence dating back to 20-25 million years ago (Thomas and Spicer 1987). Twelve­

hundred thousand hectares of oak savanna was present in the northern part of the

Midwestern United States in the early1800s, which had been stable for thousands of years

(Nuzzo 1986). Oak savanna is one of the most threatened ecosystems in the Midwestern

United States and in the world (Henderson 2006). Oak savanna has declined in the

United States for multiple reasons, and is currently considered critically endangered in

the Midwestern United States and in the Willamette Valley, Oregon (Noss et al. 1995).

One of the primary reasons for the decline of savannas is tree invasion, resulting

in large changes in community structure and composition. Some areas have succeeded to

woodlands or forests, while others have maintained their savanna structure. In the

Willamette Valley, about one-third of historic savanna has succeeded to conifer forest

(Hulse et al. 2002).

An understanding ofthe edaphic and topographic factors underlying the

ecological dynamics in former oak savanna in the Willamette Valley is imperative. To

examine the relationships between environmental variables and succession, I did two

separate studies. The first examines the relationships between edaphic and topographic

factors and succession (Chapter 2). The second study looks at the effects of soil moisture

on succession (Chapter 3).

Oregon White Oak Savanna

Oregon white oak (Quercus garryana) ranges from Vancouver Island, British

Columbia to Southern California (Vesely and Tucker 2004), and was the dominant tree of

historic savanna in the Willamette Valley. Approximately 500,000 ha of oak savanna
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were present in the Pacific Northwest prior to 1850 (Vesely and Tucker 2004).

Typically, Oregon white oak is found below elevations of about 1150 m in Oregon

(Vesely and Tucker 2004).

In the Willamette Valley, Oregon white oak savanna was a dominant ecosystem

prior to Euro-American settlement, covering over 200,000 ha (Boyd 1999, Thilenius

1968, Hulse et al. 2002). The open, park like structure of the savanna was maintained by

natural fires or fires set by the Native Americans. After Euro-American settlement in the

Willamette Valley in the mid 1800s, the burning practices of the Native Americans were

largely eliminated. In the early 1900s, fire suppression became a prominent land

management strategy (Agee 1993). Conifer invasion of the savanna ecosystem due to

reduced fire frequency, as well as urbanization and agriculture, have led to the decline of

oak savanna in the Willamette Valley (Agee 1993, Vesely and Tucker 2004). Fire

suppression has also resulted in higher tree densities and fuels accumulation, increasing

the risk of catastrophic wildfire in the Willamette Valley (Amo and Allison-Bunnell

2002).

The decline of the oak savanna ecosystem has also resulted in a decrease of local

and regional biodiversity (Gumtow-Farrier and Gumtow-Farrier 1994). Many species of

birds and mammals depend on the oak savanna ecosystem, and some are becoming rarer.

For example, the acorn woodpecker is currently listed as a Species of Concern and the

western grey squirrel is listed as a Sensitive Species in Oregon (Oregon National

Heritage Information Center 2007). Currently, less than 1% of the oak savanna

ecosystem remains in Oregon (Noss et al. 1995, Hulse et al. 2002).

The loss of oak savanna has not been complete. Some areas in the Willamette

Valley have maintained their savanna structure, while others have succeeded to

woodlands or forests of various compositions. Environmental and soil conditions may be

influencing the successional dynamics of oak savanna, allowing accelerated succession in

some areas, while restricting tree invasion in others. The objective ofmy research is to

understand how environmental factors have accelerated or restricted forest succession in
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former oak savanna, and, where succession has occurred, the factors that control its

extent.

Vegetation and Soil Dynamics

Both above- and below- ground factors have affected successional trajectories in

former oak savanna in the Willamette Valley. The life history strategies of different tree

species influences how they respond to disturbances such as fire, as well as below­

ground factors like moisture regime, soil texture and nutrients. In addition, these above­

and below- ground factors influence tree species competition in former oak savanna.

Fire, Growth Rates, and Competition

The reduction of fire frequency has altered the vegetation dynamics in the

Willamette Valley. The fires that once blazed through the valley kept tree density low,

maintaining the scattered open-grown oak trees and a ground layer of grasses and forbs.

The continuous ground layer of grasses and forbs created fine fuels, which bum easily

and reinforced a regime of frequent, low intensity fires. Although Oregon oak seedlings

are susceptible to fire, larger oaks are highly fire resistant (Stein 1990). Oregon white

oaks also can re-sprout after fire (Stein 1990). The fire regime that kept the tree density

low in the Willamette Valley also kept the competition experienced by the mature oaks

for light, space, nutrients, and water to a minimum. Without fire as a disturbance, prairies

and savannas in the Willamette Valley have experienced increased invasion by deciduous

trees and conifers, mainly Douglas-fir, which are far less adapted to fire than the oaks

(Stein 1990, Hermann and Lavender 1990, Day 2005).

The reduction in fire frequency in the Willamette Valley has resulted in

dramatically higher tree densities in some areas. Recent studies of a mid-elevation site in

the Willamette Valley show that this area was historically an Oregon white oak­

ponderosa pine savanna that is now dominated by Douglas-fir forest (Winkler & Bailey

2002, Day 2005). Prior to Euro-American settlement, tree densities at Jim's Creek are
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estimated to be 17 trees/hectare, while post Euro-American settlement tree densities are

around 582 trees/hectare (Day 2005).

In the absence of fire, several characteristics of Oregon white oak make it a poor

competitor to Douglas-fir in all but the most stressful environmental conditions. Oregon

white oak is a slow-growing tree, with growth rates of about 0.13 to 0.17 cm/year of bole

wood production (Stein 1990). Higher growth rates are possible, and growth rates greater

than O.2cm/year have been documented (Stein 1990). Oregon white oak is also relatively

short compared to coniferous trees, reaching a maximum height of around 27 m (Stein

1990), whereas old growth Douglas-fir can reach heights up to 76 m tall (Hennann and

Lavender 1990). First-year Douglas-fir seedlings grow best under light shade (Hennann

and Lavender 1990), thus finding an ideal environment at the base of an oak tree, where

they are partially shaded. Older Douglas-fir seedlings prefer more sun than the first­

years.

During the first five years of life the growth rate ofDouglas-fir is relatively slow.

Growth then accelerates and reaches a maximum growth rate at about 30 years of age

(about 61 cm growth in height per year) (Hennann and Lavender 1990). Thus, young

Douglas-firs growing under oaks soon grow tall and begin to shade the oaks. Oregon

white oak is highly intolerant to shade (Stein 1990). It is only a matter of time until the

oak will die due to lack of light, and it is common to find dead oaks under large Douglas­

fir trees in the Willamette Valley (Stein 1990). The old oak trees essentially nurse their

own death by providing an ideal habitat for Douglas-fir seedlings. This is the natural

plant succession in most of the Willamette Valley in the absence of disturbances such as

fire.

Rooting and Soil Dynamics

The rooting morphology of Oregon white oak is important for understanding why

the species is able to survive under a broad range of environmental conditions. Oregon

white oak can fonn a deep taproot and a well developed lateral root system (Stein 1990),

which may lead to its ability to utilize both rare summer precipitation (with its lateral
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roots) and ground water (with its deep taproot). Seedlings develop a taproot quickly,

which allows them to establish on dry or grassy sites (Vesely and Tucker 2004, Stein

1990). In Washington on coarse-textured glacial soil, Devine and Harrington (2005)

found that the root morphology of Oregon white oak seedlings is dominated by a taproot,

while small and large tree root morphologies tended to be dominated by large, shallow,

first-order lateral root systems.

The taproots ofDouglas-fir and Oregon white oak are similar in some ways but

differ in important ways. Douglas fir is a potentially deep-rooting species, but grows a

taproot only when there are no barriers in the soil (Hermann and Lavender 1990). When

Douglas-fir roots hit obstructions in the soil such as bedrock, the taproot proliferates and

grows laterally, instead of growing deeper (Hermann and Lavender 1990). Thus,

Douglas-fir may not be able to exploit groundwater sources on shallow soils where

bedrock would limit the growth of the taproot. On shallow soils, Oregon white oak may

be able to tap groundwater sources that Douglas-fir cannot, since the roots of Douglas-fir

tend to grow laterally when rooting depth is obstructed.

In addition, the shallow roots of Oregon white oak and Douglas-fir root

morphologies differ. Oregon white oak tends to have denser surface roots than Doug1as­

fir (Krygier 1971). For example, in a root excavation of both species in the Willamette

Valley, 11 % of oak roots were found below 76 cm, whereas 28% of Douglas-fir roots

were found below 76 cm in the same soil (Krygier 1971). Because a larger percentage of

oak's roots remain in the shallower soi11ayers, this may enable oaks to take advantage of

rare summer precipitation, which is important in the Willamette Valley where there is

extreme summer drought. This may be part ofthe reason why Oregon white oak is able

to establish and succeed in drier environments than Douglas-fir.

Overall, it appears that Oregon white oak has several main rooting advantages

over Douglas-fir: 1) Douglas-fir will not form a taproot ifthere are obstructions in the

soil profile, 2) Oregon white oak has more surface roots than Douglas-fir, and 3) Oregon

white oak seedlings form a prominent taproot quickly.
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Oregon white oaks are found on a wide variety of habitats and soils, from

droughty exposed areas, to areas that are flooded for part of the year. Douglas-firs,

however, prefer well-aerated deep soils and will not survive on soils with poor drainage

or compaction. Oregon white oak can also occur in very wet areas, such as river terraces,

flood plains, and heavy clay soils (Stein 1990). These habitats have a long wet season,

but are droughty in the summer months. Douglas-fir roots are completely intolerant of

soils with poor drainage, and tend to form lateral roots when they encounter a water table

(Hermann and Lavender 1990). Douglas-fir prefers soils in a pH range of 5 to 6

(Hermmlli and Lavender 1990). Similarly, Oregon white oak is typically found in soils

ranging from a pH of 4.8 to 5.9 (Stein 1990).

Soil texture has been linked to successional dynamics and could be influencing

plant succession in the Willamette Valley. A study of savanna systems in Australia

found that tree cover and basal area decreased with increasing clay content (Williams et

al. 1996). A world-wide savanna study found that woodland cover decreased with

increasing clay content (Johnson and Tothill 1985).

Soil texture can also have a profound effect on the level of soil moisture the plant

experiences. Clay soils tend to hold onto water tightly (due to the increased surface area

of the clay particles, leading to a greater surface tension between the clay particles and

water), which limits the amount of moisture the roots experience (Chapin et al. 2002). In

addition to holding water more tightly, clay soils also allow less infiltration, causing

water to accumulate on the surface of clay soils. Clay soils are also droughty in summer.

The amount of nitrogen and organic matter in the soil also influence species

distribution. Douglas-fir is typically found on acidic soils with high total nitrogen and

low base saturation (Hermann and Lavender 1990). In the Pacific Northwest, Douglas-fir

has been shown to be limited by nitrogen (Hermann and Lavender 1990). Similarly, a

study in coastal British Columbia found Oregon white oak communities were associated

with nitrogen-medium to nitrogen-rich soils (Klinka et al. 1996). Soil nutrient levels

were found to be correlated with vegetation type in a study in a South African savalllia

system. Grass species were associated with lower nutrient (nitrogen, phosphorous,
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calcium, and magnesium) levels, while tree species were associated with medium to high

levels of nutrients (Ben-Shahar 1991). The separation of grass and tree species could be

due to differences in their nutritional requirements (Ben-Shahar 1991).

Soil depth has also been shown to be a determining factor in vegetation structure

and composition (Bradfield and Scagel1984, Heikens and Robertson 1995, Fulton and

Prentice 1997, Arabas 2000). In particular, shallow soil appears to lead to areas with less

or smaller trees. In a study of barrens and forest openings in Southern Illinois, soil depth

was an important factor in discriminating among community types. Open-grown trees

with prairie understory were associated with shallow and rocky soils (Heikens and

Robertson 1995). Arabas (2000) found that in Pennsylvania and Maryland, pine savanna

had the shallowest median soil depth, whereas hardwood forest and oak woodlands had

the deepest soils, although these differences were not statistically significant. Pine

woodland had intermediate soil depth in this study (Arabas 2000). On the British

Columbia coast, Oregon white oak communities are found on shallow soils of rocky

outcrops and on their adjacent steep and south-facing slopes (Klinka et al. 1996). Oregon

white oak communities on the British Columbia coast were also found on deeper soils,

but in areas with low rainfall (Klinka et al. 1996).

Soil moisture may be the environmental variable which has controlled the

successional patterns in the Willamette Valley the most following the cessation of

widespread fire. Oregon white oak has a unique ability to establish itself and persist in

areas where precipitation is sparse and soils are shallow and/or droughty (Stein 1990).

Douglas-fir will yield to Oregon white oak on droughty soils (Hermann and Lavender

1990). Since Oregon white oak is drought resistant, it may be able to establish seedlings

in areas with low soil moisture. In contrast, Douglas-fir seedlings are limited by soil

moisture in their first year (Hermann and Lavender 1990), restricting their establishment

to areas with greater soil moisture. Oregon white oak communities were found on dry

soils in British Columbia (Klinka et al. 1996).

Savanna structure in areas outside the Pacific Northwest has also been shown to

be influenced by soil moisture, especially across precipitation and soil moisture gradients
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(Prach and Rehounkova 2006, Ringrose et al. 1998, Skarpe 1996, Skarpe 1990, Johnson

and Tothill1985). A study in Australia showed that tree cover decreased with decreasing

rainfall (Williams et al. 1996). In contrast, in a South African savanna system, soil

moisture alone did not appear to be the determining factor affecting encroachment by

woody plants (Ben-Shahar 1990). Rainfall in South Africa occurs in the summer,

however, in the Willamette Valley, the summers (which are the growing seasons) are dry

and the winters are wet. The climate of the Willamette Valley may make soil moisture a

more important variable in the Oregon white oak savanna than found in the South African

savanna system.

In addition to sub-surface soil factors, the organic layer may have an impact on

successional trajectories in the Willamette Valley. Seedlings ofDouglas-fir do not

survive well in areas with a thick layer of duff (Hermann and Lavender 1990), but rather

prefer a more mineral soil. Areas with a large amount of organic layer may inhibit the

establishment of Douglas-fir. Douglas-fir may find it easy to establish in

prairie/savannas since there is relatively little duff layer in these areas, provided other

conditions are suitable for its establishment.

Hypotheses and Research Questions

The endangered status Oregon white oak savanna, as well as the resulting

decrease in biodiversity and increased risk of catastrophic wildfire, has made oak savanna

restoration imperative. A better understanding of the edaphic and topographic factors

affecting succession in the Willamette Valley would strengthen the ability of land

managers to assess successional trajectories. A description of the relationships between

edaphic variables and succession in former oak savanna is needed to inform restoration

strategies.

The relationships between community structure and environmental variables in

former Oregon white oak savanna in the Willamette Valley have not been thoroughly

examined at the landscape scale. However, one study at a mid-elevation site in the

Willamette Valley (Jim's Creek) has suggested that remnant prairie and savanna have
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resisted invasion by Douglas-fir due to the high clay content and shallowness of the soil

(Sonnenblick 2006).

Succession appears to be occurring at different rates under various edaphic and

environmental conditions in the Willamette Valley. Some areas in the Willamette Valley

have maintained their savanna structure while others have experienced succession.

I hypothesize that the distinct gradients in vegetation structures over short

distances in the Willamette Valley are due to edaphic factors. My research focuses on the

following questions: 1) How have edaphic and topographic conditions influenced

succession in former oak savanna? 2) What are the characteristics of areas where

succession has been restricted? 3) How has soil moisture influenced successional

dynamics?

To answer these questions, I performed two separate studies. In the first study, I

examined seven sites in the Willamette Valley that were chosen because they historically

had a mosaic of oak savanna and prairie, and had undergone different successional

trajectories. At each site, there were areas that had maintained remnant oak and prairie

communities, as well as those that had succeeded to woodland or forest. I used Analyses

Of Variance (ANOVAs) to investigate the relationships between community structure

and edaphic variables, including bulk density, soil texture, carbon and nitrogen content,

pH, and soil depth. Principal Components Analyses (PCAs) were used to supplement to

the ANOVAs, describing the relationships between community type and edaphic and

topographic variables in a multivariate context.

In the second study, I measured soil moisture seasonally throughout the soil

profile at three of the seven sites to gain an understanding of the relationships between

soil moisture and community type. The relationships between soil moisture and

community type were evaluated using repeated measures ANOVAs.

This study is part of a larger project examining the potential for integrating fuels

management with oak savanna restoration. This project is a collaboration between the

University of Oregon and the USDA Forest Service, funded by the Joint Fire Science

Program.
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CHAPTER II

THE RELATrONSHIPS BETWEEN COMMUNITY TYPES AND EDAPHIC AND

TOPOGRAPHIC FACTORS

Introduction

Oale savanna was a major ecosystem in the United States for millennia (Thomas

and Spicer 1987), but has declined precipitously over the last few hundred years. The

decline of oak savanna has lead to its current status as critically endangered in the

Midwestern United States and in Oregon's Willamette Valley (Noss et al. 1995). In

Oregon's Willamette Valley, Oregon white oak (Quercus garryana) savanna historically

was a dominant ecosystem in the landscape (Hulse et al. 2002). Currently, less than one

percent of the oak savanna ecosystem remains in the Willamette Valley (Noss et al. 1995,

Hulse et al. 2002). Primary causes for decline of this ecosystem include agriculture,

urbanization, and reduced fire frequency (Hulse et al. 2002). Reductions in fire

frequency have allowed conifers and other tree species to invade the oak savanna,

increasing tree densities. Coniferous trees such as Douglas-fir (Psuedotsuga menziesii)

grow taller than the oaks and eventually overtop them, leading to higher mortality of the

shade-intolerant oaks. Some areas in the Willamette Valley have maintained their

savanna structure, while other areas have succeeded into woodlands and forests.

This study describes the edaphic and site physiographic conditions of historic oak

savanna. Former oak savannas have undergone different successional trajectories,

varying from areas that have maintained their savanna structure to areas that have

succeeded into woodland or forest. In addition, the species composition in historic oak

savanna has also changed. Some areas have infilled with oak or other deciduous trees,

while others have infilled with conifers (primarily Douglas-fir), or some combination of

the two (Stein 1990, personal observation). The differences in successional stages and

species composition may be due to varying edaphic and site physiographic conditions.



11

This study investigates the relationships between edaphic and site physiographic factors

and the current community types found in former oak savanna.

In particular, I focused on the following questions: How have soil variables

(texture, nutrients, depth, pH, and bulk density) and topographic factors influenced

succession in former oak savanna? How are these variables related to each other?

Methods

StudvAreas

Seven sites were selected throughout the Willamette Valley to encompass a broad

range of environmental conditions and the current successional stages found in former

oak savanna. Sites are arranged from low to high average elevation in all figures and

tables. Sites overlap in elevation and some have a substantial range in elevation (Table

2.1).

Table 2.1 Study sites in the Willamette Valley. Name, code, latitude/longitude, and
elevation of seven sites in the Willamette Valley.

Site

Finley
Chip Ross

Mount Pisgah
South Eugene

Lowell
Brownsville
Jim's Creek

Code

FN
CR
MP
SE
LW
BR
IC

Latitude/Longitude

44°25'N,123°l9/W
44°34'N, 123°16/W
44° O/N, 122° 58'W
44°3'N, 123°6'37"W
43°55'N, 122°46'W
44°23'N, 122°59'W
122°25 W, 43°30'N

Elevation Range
(m)

85 -165
183 - 259
171-347
201- 347
305 - 488
183 - 610
597 - 988

Mean Elevation
(m)
125
221
259
274
396
396
792

Soils series were determined from maps of each site, developed from the Pacific

Northwest Ecological Research Consortium GIS data layers

(http://www.fsl.orst.edu/pnwerc/wrb/access.html). Descriptions of each soil series are

from the USDA Natural Resources Conservation Service

(http://soils.usda.gov/technical/classification/osdlindex.html).
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Finley National Wildlife Refuge (FN) is located along the foothills of the Coast

Range, about 15 km south of Corvallis, Oregon. FN has a rolling topography and ranges

in elevation from 85 - 165 m above sea level. The lower elevations ofFN contain mainly

lory and Bellpine series soils, which are deep well-drained silty clay loam Ultisols.

Other soil series found in the lower elevations of Finley include Price, which are very

deep, well drained clayey Inceptisols, and Hazelair, which are moderately deep silty clay

loam Mollisols. The soils in the upper elevations ofFN (Pigeon Butte) are Mollisols,

including the Dixonville series, which are moderately deep, well-drained clayey soils on

hills, and Woodburn, which are very deep, moderately well-drained silty soils (Table

2.2).

Chip Ross (CR) is a public park along the northern edge of the city of Corvallis,

Oregon. CR is a small butte ranging in elevation from 183 - 259 m above sea level.

Soils at CR include Dixonville, and a complex of Price-Ritner, which is a clayey

moderately to very deep Inceptisol (Table 2.2).

Mount Pisgah (MP) is a public park located near the confluence of the Coast and

Middle forks of the Willamette River, 7.5 km southeast of Eugene, Oregon and contains

some of the highest quality oak savanna and prairie habitats left in the Willamette Valley.

MP ranges in elevation from 171 - 347 m. MP soils are mainly Mollisols, including

Witzel soils, which are shallow, well-drained, loamy soils, and Philomath, which are

shallow, well-drained, clayey soils. Other soil series found at MP include Ritner, which

are moderately deep, well-drained clayey-gravelly Inceptisols found on ridge tops and the

sides of hills, Nekia, which are moderately deep, well-drained silty clay loam Ultisols

found on foothills, and a complex of Dixonville-Philomath-Hazelair, which are

moderately deep to shallow, clayey Mollisols found on hillsides (Table 2.2).

The South Eugene (SE) site is located on along the southern edge of the urban

growth boundary of Eugene, Oregon and contains transects on both private and public

land. SE ranges in elevation from 201 - 347 m. Soils at SE are primarily Mollisols,

including Dixonville, a complex of Dixonville-Philomath-Hazelair, and Chehulpum,

which are shallow, well-drained, loamy soils. Other soil series found at SE include
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Witzel, Ritner, and Panther, which are deep to very deep clayey, poorly drained

Inceptisols found in swales and concave slopes (Table 2.2).

The Lowell site (LW) is located along the eastern edge of Lowell, Oregon, just

outside the urban growth boundary. This site is located on private land at the south end

of the Willamette Valley and ranges in elevation from 305 - 488 m above sea level. LW

is located in the foothills of the Cascades, and contains rolling to steeply sloped hillsides.

Soils in LWare mainly Mollisols, including the Witzel series and a complex of

Dixonville-Philomath-Hazelair. However, Inceptisols are also present at the site,

including the Ritner series (Table 2.2).

The Brownsville site (BR) is located 6.5 kIn south ofBrownsville on rolling to

steep slopes at the eastern edge of the Willamette Valley. This site is located on private

land and ranges in elevation from 183- 610 m above sea level. BR soils are mainly

Mollisols, including the soil series Witzel and Philomath. Other soil series found at BR

are Panther, Bellpine, and Ritner (Table 2.2).

Jim's Creek (IC) is in the Willamette National Forest in the lower elevations of

the Cascade Mountains and ranges in elevation from 597 - 988 m above sea level. IC is

near the upper elevation limit of Oregon white oak (1150 m) (Vesely and Tucker, 2004).

IC is 25 kIn south of Oakridge, Oregon and contains mainly steeply sloped hillsides. IC

soils are Inceptisols, and include several soil series: Klickitat, which are deep, well­

drained, gravelly clay loam, Kinney, which are deep, well drained cobbly-loam soils, and

McCully, which are deep, well-drained, fine-textured clay-loam soils (Table 2.2).

Plant Sampling Methods and Communities

We established transects using stratified random sampling to encompass the

variety of environmental conditions and community types found at each site. Transects

were oriented up and down slope to cover distinct changes in environmental gradients

and community types, and were then randomly placed. Circular plots with an area of

200-m2 were located every 60 meters along transects. Species and diameter at breast
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Table 2.2 Soil series found at each site.
Site Soil Series
FN Jory: fine, mixed, active, mesic Xeric Palehumults

Bellpine: fine, mixed, active, mesic Xeric Haplohumults
Price: fine, mixed, superactive, mesic Typic Haploxerepts
Hazelair: very-fine, smectitic, mesic Vertic Haploxerolls
Dixonville: fine, mixed, superactive mesic Pachic Ultic Argixerolls
Woodburn: fine-silty, mixed, superactive, mesic, Aquultic Argixerolls

CR Dixonville: fine, mixed, superactive, mesic Pachic Ultic Argixerolls
a complex ofRitner (clayey-skeletal, mixed superactive, mesic Typic

Haploxerepts) and Price (fine, mixed, superactive, mesic Typic Haploxerepts)
MP Witzel: loamy-skeletal, mixed, superactive, mesic Lithic Ultic Haploxerolls

Philomath: clayey, smectitic, mesic, shallow Vertic Haploxerolls
Ritner: clayey-skeletal, mixed superactive, mesic Typic Haploxerepts
Nekia: fine, mixed, active, mesic Xeric Haplohumults
a complex of Dixonville (fine, mixed, superactive, mesic Pachic Ultic
Argixerolls), Philomath (clayey, smectitic mesic, shallow Vertic
Haploxerolls) and Hazelair (very-fine, smectitic, mesic Vertic Haploxerolls)

SE Dixonville: fine, mixed, superactive, mesic Pachic Ultic Argixerolls
a complex of Dixonville (fine, mixed, superactive, mesic Pachic Ultic
Argixerolls), Philomath (clayey, smectitic mesic, shallow Vertic
Haploxerolls) and Hazelair (very-fine, smectitic, mesic Vertic Haploxerolls)
Witzel: loamy-skeletal, mixed, superactive, mesic Lithic Ultic Haploxerolls
Ritner: clayey-skeletal, mixed superactive, mesic Typic Haploxerepts
Panther: very-fine, smectitic, mesic Vertic Epiaquolls
Chehulpum: loamy, mixed, superactive, mesic, shallow Ultic Haploxerolls

LW Witzel: loamy-skeletal, mixed, superactive, mesic Lithic Ultic Haploxerolls
Ritner: clayey-skeletal, mixed superactive, mesic Typic Haploxerepts
a complex of Dixonville (fine, mixed, superactive, mesic Pachic Ultic
Argixerolls), Philomath (clayey, smectitic mesic, shallow Vertic
Haploxerolls) and Hazelair (very-fme, smectitic, mesic Vertic Haploxerolls)

BR Witzel: loamy-skeletal, mixed, superactive, mesic Lithic Ultic Haploxerolls
Philomath: clayey, smectitic, mesic, shallow Vertic Haploxerolls
Panther: very-fine, smectitic mesic Vertic Epiaquolls
Bellpine: fine, mixed, active, mesic Xeric Haplohumults
Ritner: clayey-skeletal, mixed, superactive, mesic typic Haploxerepts

IC Klickitat: loamy-skeletal, isotic, mesic Humic Dystrudepts
Kinney: fine-loamy, isotic, mesic Andic Dystrudepts
McCully: fine, isotic, mesic Humic Dystrudepts
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height (DBH) was recorded for every tree within a plot. Because large trees, including

former savanna trees, are found in only low densities, oaks> 40 cm DBH and other

species> 75 cm DBH were recorded in 30 m x 30 m square plots centered on the circular

plot to more accurately assess their densities. Canopy cover was measured at each plot

center using a spherical densitometer. Plots were classified as prairie/savanna, woodland,

or forest based on canopy cover: prairie/savanna (0-25% canopy cover), woodland (26­

60% canopy cover), and forest (> 60% canopy cover). Prairie and savanna were

combined into one community type for this analysis because of the small number of

prairie and/or savanna plots at any single site. We considered it appropriate to group

savanna and prairie because savannas are essentially upland prairies with a small number

of widely dispersed trees, and both have a continuous grassland ground layer. To

incorporate an important ecotone, edge plots were also established on the tree line

boundary separating a forest or woodland from a prairie/savanna.

The dominant tree species at all sites were Oregon white oak and Douglas-fir.

The typical forest dominate was Douglas-fir at every site. Woodland was mixed

deciduous- coniferous, typically dominated by oak and Douglas-fir. Oregon white oak

was the dominant oak species at all sites. Ponderosa pine (Pinus ponderosa) was

sampled at SE, LW, BR, and IC only. Incense cedar (Calocedrus decurrens) was

sampled at FN, CR, LW, SE, MP, and IC, and big leaf maple (Acer macrophyllum) was

sampled at FN, CR, SE, MP, and LW.

Environmental and Soil Sampling Methods

We measured environmental variables at each plot, with the exception that soil

depth was measured in a subset of plots at all sites except IC, where soil depth was

measured at every plot. Percent slope was measured with a clinometer as an average

between one up-slope and one down-slope measurement. Aspect was recorded with a

compass. Soil depth was measured with a 0.635-cm drill bit to a maximum depth of 1.22

m at eight (IC) or nine (all other sites) random locations throughout each plot. Soil

depth, as it was measured in this study, is essentially the depth to obstruction.
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We randomly sampled soils from 0-5 cm depth with a bulb planter and from 5-20

cm depth with an Eigelkamp soil auger. Each depth was sampled three times and

composited. Soil bulk density was calculated based upon oven dry mass (at 600 C) and

the volume of the auger (diameter = 5 cm) or bulb planter (diameter = 5.70 cm) cores.

Soil pH was measured with a pH meter in a 1: 1 soil-water slurry. Soil texture was

determined using a modified hydrometer method (Gee and Bauder, 1986), and sand was

isolated with a 53-flm sieve, which was then oven dried and weighed. Total carbon and

nitrogen levels were measured with a Costech Analytical CN analyzer.

We randomly sampled the O-horizon layer 10 times throughout each plot using a bulb

planter (diameter = 5.70 cm) and composited. Mineral matter was inadvertently included

with the O-horizon in some sites, so the mineral component was separated from the

organic matter with a O.2-mm sieve for samples from FN, CR, MP, SE, LW, and BR.

Organic layer samples with less than 30% carbon were assumed to have mineral matter

contamination and were excluded from analysis. As this separation was only

approximate, this process may have compromised our O-horizon data to an unknown

extent.

Statistical Analyses

We used three-way analyses of variance (ANOVAs) to examine the effect of

community type, site, and sample depth on percent carbon and nitrogen, texture, and bulk

density (SPSS v. 16.0). Differences in percent nitrogen and carbon, texture, and bulk

density at the two depths were analyzed by a paired t-test for each site. Percent carbon

was natural log transformed to normalize its distribution. The number of 0-5 cm samples

for the different variables ranged from 250 to 312 and the number of 5-20 cm samples

ranged from 245 to 310. Bulk density was sampled at only 20 out of 81 plots at Jim's

Creek. The number of plots in each community type at each site is listed in Table 2.3.

Plot data for each soil variable was calculated by taking the average weighted by

depth across the soil profile. Carbon and nitrogen content (g/m2
) were calculated based

on bulk density and their respective percents. Because of the large sample-to-sample
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variability in bulk density, we used the average bulk density for each distinct combination

of site, community type, and depth, rather than the plot bulk densities. We also found

that bulk density did not significantly vary among communities within a site.

Two-way ANOVAs were performed on the plot-level data to examine the effect

of site and community type on bulk density, texture, percent carbon and nitrogen, carbon

and nitrogen content (g/m2
), soil depth, and pH (SPSS v. 16.0). Carbon and nitrogen

were analyzed as both percent and in g/m2 because these measurements represent two

ways that nitrogen could be varying in the environment, either as a percent of the total, or

as a measure of the total amount over an area. Univariate ANOVAs were performed at

each site individually for each soil variable and post-hoc multiple comparisons were used

to determine differences among community types with Tukey's test of Honestly

Significant Difference (HSD).

Table 2.3 Number ofplots in each site by community type.

Site
Prairie/

Edge Woodland Forest Total
Savanna

CR 11 7 11 8 37
FN 14 5 31 24 74
MP 8 8 8 4 28
SE 4 3 11 8 26
LW 8 6 9 12 35
BR 6 9 2 14 31
JC 12 11 24 34 81

Total 63 49 96 104 312

Two-way ANOVAs were used to analyze the organic layer. Jim's Creek was

excluded from the analysis of the organic layer due to excessive mineral matter

contamination. Table 2.4 lists the number of organic layer samples by community type in

each site. Organic matter, carbon content, and nitrogen content (g/m2
) were natural log

transformed to normalize their distributions.
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Table 2.4 Number of organic layer samples in each site by community type.

Site
Prairie/

Edge Woodland Forest TotalSavanna
CR 8 5 11 7 31
FN 12 5 31 24 72
MP 6 8 8 3 25
SE 3 1 11 8 23
LW 8 4 8 11 31
BR 4 10 2 14 30

Total 41 33 71 67 212

Soil depth was examined on a subset of plots at each site (Table 2.5). Soil depth

was natural log transformed to normalize its distribution.

Table 2.5 Number ofplots sampled for soil depth by site and community type.

Site
Prairie/

Edge Woodland Forest Total
Savanna

FN 5 3 4 11 23
CR 7 7 10 8 32
MP 6 6 7 4 23
SE 3 1 11 9 24
LW 6 2 3 4 15
BR 4 10 2 13 29
JC 13 11 24 33 81

Total 44 40 61 82 227

The effects of topographic and soil variables were examined using principal

components analysis (PCA) (Systat v. 12). Soil variables included soil depth, carbon

(g/m2
), nitrogen (g/m\ pH, percent clay and percent sand. These variables have been

shown to be important in studies examining the effects of edaphic and environmental

conditions on community structure and composition (Prach and Rhounkova 2006,

Sonnenblick 2006, Williams et al. 1996, Johnson and Tothill1985, Ben-Shahar 1990,

Heikens and Robertson 1995). Slope and heatload are the topographic variables in the

analysis. Heatload is a function of slope, aspect, and latitude and longitude.

Slope and soil depth were natural log transformed to normalize their distributions.

Because soil depth was measured in a subset of plots, the PCAs were performed with and
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without soil depth. PCAs that included all sites were run. FN and IC were analyzed

individually because they are the two primary sites in this study and contain the largest

numbers of plots. FN and IC also represent the elevation extremes in this study; IC is

highest elevation site, with steep, south-facing slopes, whereas FN is the lowest elevation

site, with gentle slopes. All PCAs were rotated with the Varimax procedure.

Pearson correlations were performed in addition to the PCAs to examine the

relationships among the soil and topographic variables, including elevation.

Results

Soils Analysis: Analyses of Variance

We observed strong interactions among the main effects of community type, site,

and depth for all of our soil response variables (Table 2.6). The effect of community type

depended upon site (p < 0.05) for all three-way ANOVAs. The effect of depth depended

upon site for bulk density and soil texture (p < 0.05) and was marginally significant for

percent nitrogen (p = 0.067). The effect of community type depended on depth for

percent carbon (p = 0.044).
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Table 2.6 Three-way ANOVA p-values for soil bulk density, texture, and percent carbon
and nitrogen. Significant p-values are in bold (a = 0.05), and marginally significant p-

values are italicized (a = 0.10).

Source
Bulk Clay Silt Sand Nitrogen Carbon

Density (%) (%) (%) (%) (%)

Community Type 0.069 0.573 0.556 0.683 0.131 <0.001

Depth 0.048 0.026 0.427 0.011 <0.001 <0.001

Site 0.425 0.002 <0.001 <0.001 0.001 0.001

Community Type x
0.747 0.143 0.315 0.138 0.116 0.044

Depth
Community Type x

0.012 <0.001 <0.001 <0.001 0.003 0.004
Site

Depth x Site <0.001 <0.001 0.010 0.012 0.067 0.728

Community Type x
0.982 0.998 0.999 0.998 0.426 0.570

Depth x Site

Similarly, the effect of community type depended upon site for all variables when

they were integrated over the top 20-cm of the soil profile in the two-way ANOVAs (p <

0.05), except for bulk density and pH (Table 2.7). Community type had a marginal effect

on bulk density (p = 0.091) and pH (p = 0.084).



Table 2.7 Two-way ANOVA p-values for variables integrated over the top 20-cm of the soil profile: bulk density, soil depth,
texture, nitrogen, carbon, and pH. Significant p-values are in bold (a = 0.05) and marginally significant values are italicized (a

=0.10).

Source
Bulk Soil Clay Silt Sand Nitrogen Carbon Nitrogen Carbon

pH
Density Depth (%) (%) (%) (g/m2

) (g/m2
) (%) (%)

Community
0.091 0.164 0.764 0.531 0.795 0.226 0.002 0.164 <0.001 0.084

Type

Site <0.001 0.013 <0.001 <0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001

Community
0.717 <0.001 <0.001 0.002 <0.001 <0.001 0.012 0.006 0.026 0.198

Type x Site

tv,.....
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Bulk Density

The effect of community type on bulk density depended upon site (p = 0.012) (n =

495). Similarly, the effect of depth depended upon site (p < 0.001). Bulk densities varied

among sites from 5-20 cm depth (p < 0.001), but not from 0-5 cm depth (p = 0.16)

(Figure 2.1). Bulk density varied by depth within five of the seven sites (FN, CR, MP,

LW, and IC) (p < 0.05). Bulk density was higher in the 5-20 cm increment at all sites

except LW.
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Figure 2.1 Bulk densities at two depths at seven sites. Mean bulk density (g/cm3
) ± one

standard error at 0-5 cm and 5-20 cm depth within each site. Primes indicate the 0-5 cm
depth. Unique letters represent significant differences among sites within the 0-5 cm and
5-20 cm depth at the a = 0.05 level by Tukey's HSD.

Bulk density also varied among sites from 0-20 cm (p < 0.001) (n = 254).

Commlmity type had a marginally significant effect on bulk density (p = 0.091), but this

effect did not depend on site (p = 0.266). Prairie/savannas and edges had higher bulk
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densities on average than woodlands and forests at three of the seven sites (CR, BR, and

Je) (Figure 2.2).
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Figure 2.2 Bulk density in four community types at seven sites. Mean bulk density
(g/cm3

) ± one standard error in each community type at each site.

Soil Texture

The effect of community type on percent clay, sand and silt depended upon site

(p < 0.001) (Tables 2.6 and 2.7). Similarly, the effect of depth depended upon site for the

three texture variables (p < 0.05).

Clay Content

The effect of community type on percent clay depended upon site (p < 0.001) (N

= 622). Similarly, the effect of depth depended upon site (p < 0.001). Percent clay from

0-5 cm and 5-20 cm depth differed among sites (p < 0.001) (Figure 2.3). Percent clay

was higher in the 5-20 cm depth at all sites except at JC, where it was higher in the 0-5
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cm depth (p < 0.001). Overall, there is a decrease in clay content with increasing

elevation (Figures 2.3 and 2.4).
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Figure 2.3 Percent clay at two depths at seven sites. Mean percent clay ± one standard
error at 0-5 cm and 5-20 cm depth within each site. Primes indicate the 0-5 cm depth.
Unique letters represent significant differences among sites within the 0-5 cm and 5-20
cm depth at the a = 0.05 level by Tukey's HSD.

The effect of community type on percent clay from 0-20 cm depth depended upon

site (p < 0.001) (n = 309). At the lowest elevation sites (FN and CR), percent clay was

higher in forests than in prairie/savannas (p < 0.05). In contrast, percent clay was higher

in prairie/savannas and edges than in forests at JC (p < 0.01) (Figure 2.4).



25

60 ,----------------------------.,

50

_ Prairie/savanna

I32S2SJ Edge
1,,','::':'1 Woodland
[=:::::J Forest

a

40

30

20

b

aa
bb)

b

a
a

a

a
a

a

a

a a
a a

a
a

a
"'~ a

a
La

b
b

FN CR MP SE

Site

LW BR JC

Figure 2.4 Percent clay in four community types at seven sites. Mean percent clay ±
one standard error in each community type at each site. Unique letters represent
significant differences among community types within a site at a = 0.05 by Tukey's
HSD.

Silt Content

The effect of community type on percent silt depended upon site (p < 0.001) (n =

622). Similarly, the effect of depth depended upon site (p = 0.01). Percent silt at both the

0-5 cm and 5-20 cm depth differed among sites (p < 0.001). Percent silt was higher in the

0-5 cm depth than in the 5-20 cm at FN, MP, and LW (p < 0.01) (Figure 2.5).
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Figure 2.5 Percent silt at two depths at seven sites. Mean percent silt ± one standard
error at 0-5 cm and 5-20 cm depth within each site. Primes indicate the 0-5 cm depth.
Unique letters represent significant differences among sites within the 0-5 cm and 5-20
cm depth at the a = 0.05 level by Tukey's HSD.

The effect of community type on percent silt from 0-20 cm depended upon site (p

= 0.002) (N = 309). At BR, prairie/savannas had higher percent silt than edges and

forests (p < 0.02). In contrast, at Ie, woodlands had higher silt than prairie/savannas (p =

0.037) (Figure 2.6). Silt did not exhibit a clear pattern with elevation.
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Figure 2.6 Percent silt in four community types at seven sites. Mean percent silt ± one
standard error in each community type at each site. Unique letters represent significant
differences among community types within a site at a = 0.05 by Tukey's HSD.

Sand Content

The effect of community type on percent sand depended upon site (p < 0.001) (n

= 622). Similarly, the effect of depth depended upon site (p = 0.012). Percent sand at

both the 0-5 cm and 5-20 cm depths differed among sites (p < 0.001) (Figure 2.7).

Percent sand was higher in the 0-5 cm depth than in the 5-20 cm depth at FN, CR, SE,

LW, and BR (p < 0.01).
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Figure 2.7 Percent sand at two depths at seven sites. Mean percent sand ± one standard
error at 0-5 cm and 5-20 cm depth within each site. Primes indicate the 0-5 cm depth.
Unique letters represent significant differences among sites within the 0-5 cm and 5-20
cm depth at the a = 0.05 level by Tukey's HSD.

The effect of community type on percent sand from 0-20 cm depended upon site

(p < 0.001) (n = 309). At FN, prairie/savannas had higher sand than woodlands and

forests (p < 0.001) (Figure 2.8). Other sites showed variation in percent sand by

community type, but not in a distinct pattern.
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Figure 2.8 Percent sand in four community types at seven sites. Mean percent sand ±
one standard error in each community type at each site. Unique letters represent
significant differences among community types within a site at a = 0.05 by Tukey's
HSD.

Carbon Content

The effect of community type on percent carbon depended upon site (p = 0.004)

and depth (p = 0.044) (n = 622). Percent carbon at both the 0-5 cm and 5-20 cm depths

differed among community types (p < 0.001) (Figure 2.9). Prairie/savannas had lower

percent carbon than edges, forests, and woodlands within both the 0-5 cm and 5-20 cm

depth (p < 0.002). Percent carbon was higher in the 0-5 cm depth than in the 5-20 cm

depth in every community type (p < 0.001).
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Figure 2.9 Percent carbon at two depths in four community types. Mean percent carbon
± one standard error at 0-5 cm and 5-20 cm depth within community type. PS is
prairie/savanna, E is edge, W is woodland, and F is forest. Primes indicate the 0-5 cm
depth. Unique letters represent significant differences among community types within
the 0-5 cm and 5-20 cm depth at the a = 0.05 level by Tukey's HSD.

The effect of community type on percent carbon from 0-20 cm depended upon

site (p = 0.026) (n = 308). Similarly, the effect of community type on carbon (g/m2
)

from 0-20 cm depended upon site (p = 0.012). Prairie/savannas had less percent carbon

on average than edge, woodland, and forest at all sites (Figure 2.1 OA), and carbon in g/m2

showed a similar result (Figure 2.1 OB), which illustrates the main effect of community

type on carbon content (p < 0.002) (Table 2.7).
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Figure 2.10 Soil carbon content. A) Percent carbon in four community types at seven
sites. Mean percent carbon ± one standard error in four community types at seven sites.
B) Carbon (g/m2

) in four community types at seven sites. Mean carbon (g/m2
) ± one

standard error in four community types at seven sites. Unique letters represent significant
differences among community types within a site at the a = 0.05 level by Tukey's HSD

Nitrogen Content

The effect of community type on percent nitrogen depended upon site (p = 0.003)

and marginally depended upon depth (p = 0.067) (n = 622). Percent nitrogen from 0-5
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cm depth and from 5-20 cm depth differed among sites (p < 0.001). Percent nitrogen

was higher in the 0-5 cm depth than in the 5-20 cm depth within every site (p < 0.001).

0.5

----e- 0-5 em a'

-0-- 5-20 em a'

a'
004

c
Q.l
Ol ab
0
"- 0.3:!::
Z
~ be0 e

0.2

d

0.1

FN CR MP SE LW BR JC

Site

Figure 2.11 Percent nitrogen at two depths at seven sites. Mean percent nitrogen ± one
standard error at 0-5 cm and 5-20 cm depth within each site. Primes indicate the 0-5 cm
depth. Unique letters represent significant differences among sites within the 0-5 cm and
5-20 cm depth at the a = 0.05 level by Tukey's HSD.

The effect of community type on nitrogen in both percent (p = 0.006) and g/m2 (p

= 0.012) from 0-20 cm depended upon site (n = 307). Woodlands and forests have

significantly higher nitrogen content (g/m2
) than prairie/savannas at FN (p < 0.02)

(Figure 2.l2B). This trend is reversed at JC, where prairie/savannas and edges have

significantly higher nitrogen content (g/m2
) than forests (p < 0.02). JC has lower

nitrogen levels on average than the lower elevation sites (Figure 2.12).
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pH

Site significantly influenced soil pH (p < 0.001), however, this effect did not

depend on community type (p = 0.198) (n = 305) (Table 2.7). Community type had a

marginally significant effect on pH (p = 0.084). FN had a much lower pH than the other

sites (Figure 2.13). In general, prairie/savannas had higher pH than edges, woodlands,

and forests at CR, MP, SE, and IC, although these results were not statistically

significant.
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Figure 2.13 pH in four community types at seven sites. Mean pH ± one standard error
in each community type at each site.

Soil Depth

The effect of community type on soil depth depended upon site (p < 0.001) (n =

227). Forests had deeper soils than prairie/savannas at FN (p = 0.023). Forests and

woodlands had deeper soils than prairies and edges at IC (p < 0.002) (Figure 2.14).

Other sites showed various patterns with community type.
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Figure 2.14 Soil depth in four community types at seven sites. Mean soil depth (cm) ±
one standard error in each community type at each site. Unique letters represent
significant differences among community types within a site at a = 0.05 by Tukey's
HSD.

Organic Laver Analysis: Analyses of Variance

The effect of community type on carbon content (% and g/m2
) depended upon site

(p < 0.05) (Table 2.8). The effect of community type on the amount of bulk organic layer

(p = 0.056) and nitrogen content (g/m2
) (p = 0.074) marginally depended upon site.

Table 2.8 Two-way ANOVA p-values for the organic layer.
Bulk

Nitrogen Nitrogen Carbon Carbon
Source O-Layer (%) (g/m2

) (%) (g/m2
)

(g/m2
)

Community Type 0.003 0.062 0.003 <0.001 0.001

Site .404 0.005 0.405 0.224 0.480

Community Type
0.056 0.445 0.074 0.041 0.035

x Site
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Bulk Organic Layer

The amount of organic layer (g/m2
) was influenced by community type (p =

0.003), and marginally depended upon site (p = 0.056) (n = 210). Bulk organic layer was

higher on average in forests and woodlands than in prairie/savannas at FN, CR, LW, and

BR (Figure 2.15).
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Figure 2.15 Bulk organic layer in four community types at six sites. Mean bulk organic
layer (g/cm3

) ± one standard error in each community type at each site.

Carbon Content

Community type influenced percent carbon (p < 0.001) and grams of carbon per

square meter (p = 0.001) in the organic layer, however, this effect also depended upon

site (p = 0.041 and 0.035, respectively) (n = 210). In general, forests and woodlands had

higher percent carbon than prairie/savannas at every site (Figure 2.16A), and carbon

content in g/m2 showed a similar result (Figure 2.16B).
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Figure 2.16 Organic layer carbon. A) Percent carbon in four community types at six
sites. Mean percent carbon ± one standard error in four community types at six sites. B)
Carbon (g/m2

) in four community types at six sites. Mean carbon (g/m2
) ± one standard

error in four community types at six sites. Unique letters represent significant differences
among community types within a site at the a = 0.05 level by Tukey's HSD.

Nitrogen Content

Percent nitrogen varied by site (p = 0.005) and was marginally influenced by

community type (p = 0.062) (n = 210). The effect of community type on percent nitrogen

did not depend on site (p = 0.445) (Table 2.8). Grams of nitrogen per square meter varied
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by community type (p = 0.003), and the effect of community type marginally depended

upon site (p = 0.074). In general, nitrogen (g/m2
) was lower in the prairie/savannas than

in the forests (Figure 2.17B).
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Figure 2.17 Organic layer nitrogen. A) Percent nitrogen in four community types at six
sites. Mean percent nitrogen ± one standard error in four community types at six sites.
B) Nitrogen (g1m2

) in four community types at six sites. Mean nitrogen (g/m2
) ± one

standard error in four community types at six sites.
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Relationships Among Soil Variables

Strong relationships existed between some of the soil variables (Table 2.10).

Percent sand was negatively correlated with silt and clay. Nitrogen and carbon were

strongly positively correlated. In addition, elevation was related to several soil variables.

Elevation was negatively correlated with percent clay and nitrogen content (% and g/m2
),

and was positively correlated with percent sand. Elevation was not included in the PCAs

because elevation data was taken on a site level only.

PCAs were performed with and without soil depth because it was measured in

only about two-thirds of the plots (see Methods). In a PCA that did not include soil

depth, carbon, nitrogen, clay, sand, pH, heatload, and slope explained 61.0% of the

variation in the data (n = 296). The first axis explained 35.5% of the variance and the

second axis explained an additional 25.5% ofthe variance in the soil parameters across

the seven sites. On the first axis, carbon, nitrogen, and clay loaded positively, while

sand and heatload loaded negatively. On the second axis, clay loaded positively, while

pH, sand, and slope loaded negatively (Table 2.9).

Table 2.9 Factor loadings for soil variables in the PCA including all seven sites. PCA
does not include soil depth.

Variable Factor 1 Factor 2
pH 0.148 -0.651

Percent Clay 0.545 0.572
Percent Sand -0.539 -0.613

Nitrogen Content (g1m2
) 0.846 0.283

Carbon Content (g/m2
) 0.817 0.102

Heatload -0.688 0.137
Slope -0.143 -0.741

Figure 2.18 illustrates the relationships among the soil variables across the seven

sites. Clay and sand are inversely related to each other. Carbon and nitrogen are closely

related to each other. Areas that are high in clay are also high in nitrogen and carbon. In

addition, steeply sloped areas tend to be high in sand and have high pHs.



Table 2.10 Correlation matrix for all soil variables measured. Correlations CR?) greater than 0.5 are in bold.

Bulk Clay
density (%)

Silt
(%)

Sand
(%)

C
(%)

C
(g/m2

)

N
(%)

N
(g/m2

)
pH

Soil Heat-
depth load

Slope
Ele­

vation

Bulk
1.000

density

Clay
0.192 1.000

(%)

Silt
0.288 0.020 1.000

(%)

Sand
-0.299 -0.795 -0.623 1.000(%)

C
-0.426 0.123 0.040 -0.121 1.000

(%)

C -0.095 0.312 0.091 -0.299 0.814 1.000
(g/m2

)

N -0.309 0.317 0.096 -0.307 0.816 0.694 1.000(%)

N
0.048 0.456 0.143 -0.445 0.588 0.810 0.832 1.000

(g/m2
)

pH -0.151 -0.073 -0.171 0.161 -0.061 -0.089 -0.076 -0.104 1.000

Soil
0.053 0.417 0.291 -0.499 0.129 0.188 0.083 0.093 -0.179 1.000

Depth

Heat-
-0.041 -0.251 -0.201 0.318 -0.129 -0.327 -0.303 -0.352 0.015 -0.241 1.000

load

Slope -0.399 -0.340 -0.201 0.388 -0.091 -0.265 -0.259 -0.412 0.266 -0.055 0.018 1.000

Ele-
-0.230 -0.635 -0.220 0.630 -0.205 -0.285 -0.512 -0.563 0.213 -0.273 0.337 0.358 1.000

vation

~
o
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Figure 2.18 PCA vectors including seven sites, without soil depth.

I graphed each plot in the PCA by community type within each site (data not

shown). Figure 2.19 shows the results of the same PCA, but plots the mean factor scores

(± one standard error) for each community type within each site.

2.0,-------------------------,

1.5

1.0

0.5
N

~ 0.0
I1l

LL

-0.5

-1.0

• Edge
'Y Forest
• Prairie/Savanna
• Woodland

-1.5
I--,,--.

2.52.01.51.00.5
-2.0 --'---------------------~

-2.0 -1.5 -1.0 -0.5 0.0

Factor 1

Figure 2.19 Factor loading scores in four community types at seven sites. Mean factor
score ± one standard error for factors 1 and 2 in the PCA without soil depth.
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Adding soil depth to the PCA slightly decreased the amount of variance explained

to 54.5% (n = 207). The first axis explained 27.4% of the variation and the second axis

explained an additional 27.1 % of the variation in the soil parameters across seven sites.

On the first axis, sand loaded positively while clay and soil depth loaded negatively. On

the second axis, slope loaded positively, while carbon and nitrogen loaded negatively

(Table 2.11). Adding soil depth to the PCA diminished the effect of slope dramatically

and the effect of heatload somewhat (Tables 2.10 and 2.11).

Table 2.11 Factor loadings for soil variables in the PCA including all seven sites. PCA
includes soil depth.

Variable Factor 1 Factor 2
pH 0.035 0.099

Percent Clay -0.801 -0.312
Percent Sand 0.870 0.249

Nitrogen Content (g/m2
) -0.231 -0.911

Carbon Content (g/m2
) -0.124 -0.872

Soil Depth -0.750 0.085
Heatload 0.395 0.338

Slope 0.027 0.540

Similarly to the PCA without soil depth, clay and sand are negatively correlated

with each other (Figure 2.20). Nitrogen and carbon levels also were highly correlated.

1.0,---.,---,.-

10-0.5 00 05

Factor(1 )
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-1.0

0.5

Figure 2.20 PCA vectors including seven sites, with soil depth.
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I again graphed each plot in the PCA by community type and site (data not

shown). Figure 2.21 shows these results, but plots the mean of each factor score by

community type within each site.
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Figure 2.21 Factor loading scores in four community types at seven sites. Mean factor
score ± one standard error for factors 1 and 2 in the PCA including soil depth.

Finley peA

The PCAs at FN were performed with and without soil depth because soil depth

was only measured at a subset of the plots. The inclusion of clay, sand, nitrogen, carbon,

pH, heatload, and slope in the PCA together explained 58.4% of the variation in the data

(n = 74). The first axis explained 30.8% of the variation and the second axis explained an

additional 27.6% of the variation in the soil parameters at FN. On the first axis, nitrogen

and carbon loaded positively, while heatload loaded negatively. On the second axis,

percent sand loaded positively, while percent clay loaded negatively (Table 2.12). Slope

and pH did not load onto either axis in a significant way.
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Table 2.12 Factor loadings for soil variables in the PCA at FN.
include soil depth.

Variable Factor 1

This PCA does not

Factor 2
pH

Percent Clay
Percent Sand

Nitrogen Content (g/m2
)

Carbon Content (g/m2
)

Heat10ad
Slope

0.165
0.261
-0.008
0.959
0.915
-0.548
-0.039

-0.248
-0.814
0.945
0.008
-0.202
0.410
0.327

Similarly to the other PCAs, clay and sand were negatively correlated to each

other and carbon and nitrogen were closely related (Figure 2.22).
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Figure 2.22 PCA vectors at FN only, without soil depth.

I graphed the factor scores of each plot by community type to see if community

types would group together. Prairies tended to group together, and so did forests and

woodlands {Eigure2.23}.------- -
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Figure 2.23 Plots by community type at FN (PCA without soil depth). F is forest, W is
woodland, E is edge, and P is prairie/savanna.

To visualize the differences among community types at FN, I again graphed the

mean factor scores for each community type (Figure 2.24). Prairie/savannas are distinct

from forests, woodlands, and edges. The edge is between the prairie/savannas and the

forests and woodlands. Prairie/savannas tended to load positively on factor 2 and

negatively on factor 1, with a few exceptions.
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Figure 2.24 Factor loading scores in four community types at FN. Mean factor score ±
one standard error for factors 1 and 2 in the PCA without soil depth.
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Adding soil depth to the PCA of FN increased the amount of variance explained

in the soil variables by over 10%. Clay, sand, nitrogen, carbon, pH, heatload, slope, and

soil depth together explained 69.0% of the variation in the data at FN (n = 23). The first

axis explained 42.0% of the variation and the second axis explained an additional 27.0%

of the variation in the soil parameters at FN. On the first axis, sand and heatload loaded

positively, while clay and soil depth loaded negatively. On the second axis, carbon and

nitrogen loaded positively, while slope loaded negatively (Table 2.13). pH did not load

onto either axis in a significant way.

Table 2.13 Factor loadings for the soil variables in the PCA ofFN, including soil depth.
Variable Factor 1 Factor 2

pH 0.081 0.420
Percent Clay -0.930 -0.125
Percent Sand 0.927 0.011

Nitrogen Content (g/m2
) 0.113 0.895

Carbon Content (g/m2
) -0.257 0.888

Soil depth -0.948 0.031
Heatload 0.745 -0.223

Slope 0.154 -0.631

Areas that are high in clay also tend to have deeper soils (Figure 2.25). In

addition, areas that have a high heatload also have high sand content.
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Figure 2.25 PCA vectors at FN, including soil depth.
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I graphed the factors scores for each plot at FN by community type to see if there

was any pattern with community type (Figure 2.26). Prairie/savannas tended to group

together and so did forests and woodlands.
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Figure 2.26 Plots by community type at FN (PCA including soil depth). F is forest, W
is woodland, E is edge, and P is prairie/savanna.

In the PCA of FN including soil depth, I graphed the mean factor scores of each

community type to better visualize the differences among them. Prairie/savannas are

distinct from edges, woodlands, and forests at FN (Figure 2.27). The edges are between

prairie/savannas and woodlands and forests. Prairie/savannas tended to load positively

on axis one and negatively on axis two.



48

... Edge

• Forest
• Prairie/Savanna
• Woodland

1.5

1.0

0.5

N
L-
a 0.01:5
rn
u..

-0.5

-1.0

-1.5
-1.0 -0.5 0.0 0.5

Factor 1

1.0 1.5 2.0

Figure 2.27 Factor loading scores in four community types at FN. Mean factor score ±
one standard error for factors 1 and 2 in the PCA including soil depth.

Jim's Creek PCA

This PCA of JC was performed only once including soil depth because soil depth

was measured at every plot at Je. Clay, sand, carbon, nitrogen, pH, slope, heat load, and

soil depth together explained 50.7% of the variation in the data (n = 74). The first axis

explained 31.9% of the variation and the second axis explained an additional 18.8% of

the variation in the soil parameters. On the first axis, clay, nitrogen and carbon loaded

postively, while sand loaded negatively. On the second axis, slope and pH loaded

positively, while soil depth loaded negatively (Table 2.14). Heatload did not load onto

either axis in a significant way.
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Table 2.14 Factor loadings for soil variables in the PCA of IC, including soil depth.
Variable Factor 1 Factor 2

pH 0.329 0.644
Percent Clay 0.743 0.229
Percent Sand -0.499 0.245

Nitrogen (g/m2
) 0.914 0.134

Carbon (g/m2
) 0.803 -0.115

Soil depth -0.017 -0.635
Heatload -0.204 0.179

Slope -0.351 0.714

Areas in IC that are high in clay are also high in nitrogen and carbon (Figure

2.28). Areas with steep slopes also tend to have high heatload and sand content.
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Figure 2.28 PCA vectors for IC, including soil depth.

I graphed the factor scores for each plot in the PCA of IC by community type

(Figure 2.29). The grouping of community types was slightly less distinct than the PCAs

at FN, although woodlands and forests tended to group separately from prairie/savannas

and edges (Figure 2.29).
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Figure 2.29 Plots by community type at JC (PCA includes soil depth). F is forest, W is
woodland, E is edge, and P is prairie/savanna.

I graphed the mean factor scores by community type for the PCA of JC.

Community types were somewhat more distinct at JC than at FN (Figure 2.30).

Figure 2.30 Factor loading scores in four community types at JC. Mean factor score ±
one standard error for factors 1 and 2 in the PCA including soil depth.



51

Discussion

My results demonstrate that edaphic and topographic conditions have a strong

influence on successional pathways in former oak savanna, but that the specific effects

depend heavily on where the communities are located in the Willamette Valley.

Although I had hypothesized that environmental factors would show consistent

influences across the breadth of environmental conditions represented by the different

sites, my results show a much more complex picture of environmental factors affecting

succession and community structure in different ways depending on location. Overall,

there was a stronger effect of site than of community type, which was illustrated in the

ANOVA results by the consistent site by community type interaction (Table 2.7) and by

similar results in the PCAs. In the PCA analysis, sites tended to group together

consistently but community types did not group together independently of sites, though

some community types showed similar patterns at more than one site (Figures 2.19 and

2.21). The average elevation of the seven sites ranged from 125 to 792 m and each

contained unique topography, which may be part of the reason for the strong effect of

site. Community types tended to be distinct within sites in the PCAs (Figures 2.27 and

2.30). In addition to the clustering of community types within sites, the sites are in .

general ordered from high elevation to low elevation as one follows from the lower left to

upper right on the graph (Figure 2.19), suggesting that elevation plays a strong role in

determining edaphic conditions.

Although a strong site effect was present in this study, edaphic conditions clearly

have a strong influence on the successional pathways within sites. Low nitrogen content

may be limiting succession in lower elevation sites, such as FN and CR (Figure 2.12B).

In contrast, high nitrogen content may be inhibiting succession at higher elevation sites

like lC (Figure 2.12B). Prairie/savannas tend to have a higher clay content than forests

and woodlands at the higher elevation sites of lC, BR, MP, and SE (Figure 2.4). This

trend is reversed at the 10wever elevation sites ofFN and CR (which are also close in

proximity), where prairie/savamla areas tend to have a lower clay content than woodlands

and forests (Figure 2.4).
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Soil depth may be one of the more important variables in determining rates of

succession. Prairie/savannas had significantly shallower soil depth than forests at both

JC and FN in the ANOVA results (Figure 2.14). Prairie/savannas were strongly

associated with shallow soils in the PCA results for both FN and JC (Table 2.13, Figure

2.27, and Table 2.14, Figure 2.30). FN and JC represent the elevation extremes in this

study. Thus, if soil depth is restricting succession at these sites, it may be restricting

succession at the more moderate elevation sites as well, although this was mot consistent

at all of the other sites. This maybe a result of historic grazing and land management at

these sites.

JC has never had livestock grazing, agriculture, or logging, therefore, JC may

represent the soil and topographic factors that are restricting succession with few

confounding anthropogenic factors. Prairie/savannas tend to have shallow soils, high

clay, high carbon and nitrogen, high pH, and steep slopes at JC (Figure 2.30). Further

study is needed to determine the impacts of site history on successional trajectories at the

other sites. Despite the potential influences of confounding factors such as grazing, I was

still able to get strong statistical results.

In addition to the relationships between soil factors and community types, this

study also illustrates the characteristics of soils in areas of former Willamette Valley oak

savanna. As one would expect, soils that are high in carbon also tend to be high in

nitrogen, and soils that have high clay content tend to be low in sand (Figure 2.18, Table

2.9). Areas that have steeper slopes tend to have higher sand content and higher pH

(Figures 2.18 and 2.20). However, this last effect is most likely due to the presence of JC

in the study, which is steeply sloped, has a high soil pH, and high sand content. JC is

also the highest elevation site in this study, suggesting this may be characteristic of soils

in higher elevations of the Willamette Valley.

Areas with high clay content tend to have deeper soils, however, this effect is

most likely due to the presence ofFN in the study (Figure 2.20). FN is in the lowlands of

the Valley, with deep clay soils, which may also be characteristic of other low-elevation
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sites. In addition, there was an overall decrease in clay content as elevation increased

(Figure 2.3).

Conclusions and Implications for Management

This study illustrates the importance of both site location and edaphic factors in

determining successional trajectories in former oak savanna. Shallow soils appear to be

one of the few characteristics that have restricted succession across a wide variety of sites

in the Willamette Valley, while other factors appear to be having important but often site­

specific influences. These results are important not only for understanding the

complexities of how and why former oak savanna is changing, but for site managers who

wish to redirect these trajectories. Restoration professionals in particular must take site

factors such as elevation, topography, and soil characteristics into consideration when

planning restoration and management of Oregon white oak savanna. Areas with soil and

topographic characteristics more conducive to succession will require more management.

It is important to restore these areas as well as those that may not be as prone to

succession. If only areas that have resisted succession thus far are restored, the range of

Oregon white oak savanna will be limited to the harshest environmental conditions,

which are only a tiny fraction of its former range.
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CHAPTER III

THE EFFECTS OF MOISTURE ON SUCCESSION

Introduction

Oak savanna was once a major ecosystem in the United States, but has declined

over the last several hundred years (Thomas and Spicer 1987). In the early 1800s,

approximately 12,000,000 ha of oak savanna were present in the northern part of the

Midwestern United States (Nuzzo 1986). Multiple reasons underlie the decline of oak

savanna, and it is currently considered critically endangered in the Midwestern United

States and in Oregon's Willamette Valley (Noss et al. 1995).

One of the major reasons for the decline of oak savanna in the Willamette Valley,

and also in the Midwestern United States, has been the reduction in fire regimes

following Euro-American settlement (Henderson 2006, Hulse et al. 2002). In the

Willamette Valley, the open, park-like structure of the savanna was maintained by natural

fires or those set by the Native Americans (Boyd 1999, Agee 1993, Whitlock and Knox

2002). Oak savanna in the Willamette Valley is dominated by Oregon white oak

(Quercus garryana), which is a highly fire tolerant species. Prior to the Euro-American

settlement of the Willamette Valley, frequent low-intensity fires kept the tree density low,

maintaining the open-grown oak trees and a ground layer of grasses and forbs. Without

fire as a disturbance, Oregon white oak savannas are prone to tree invasion, especially by

conifers (Stein 1990).

Remnant Willamette Valley oak savannas have experienced different levels of

tree invasion; some areas have succeeded to woodland or forest, while other areas have

maintained their open, park-like savanna structure. Succession in the Willamette Valley

primarily has been driven by conifer invasion, principally Douglas-fir (Stein 1990),

although infill in some areas has been dominated by Oregon white oak or big 1eafmap1e

(Acer macrophyllum). To date, however, there has been little investigation of the
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controls over forest succession in oak savanna following fire regime reduction, and in

particular, on the mechanisms that explain the spatial variability in succession.

Soil nutrients, texture, depth, pH, and site physiographic factors appear to have

affected the degree of succession in the Willamette Valley, both within and among sites

(Chapter 2). In particular, soil and topography have a complex relationship with plant

community type, and these relationships are highly dependent on site location (Chapter

2). Although these factors are strongly linked to successional trajectories, their primary

effects may be through their control over other factors that plants experience.

Soil moisture, in particular, has been linked to successional dynamics in disturbed

areas world-wide (Prach and Rehounkova 2006). Although climate and surrounding

vegetation were found to be the most important factors influencing succession at the

landscape scale in the review by Prach and Rehounkova (2006), soil moisture was the

most important edaphic factor, followed by nitrogen, texture, and pH. Furthermore,

because soils and soil moisture frequently show fine-scale spatial heterogeneity,

differences in soil moisture may have important localized effects on succession within

areas of former Willamette Valley savanna and prairie.

Oregon white oak has a unique ability to persist in areas with sparse precipitation

and droughty soils (Stein 1990), which may give the species a competitive edge over

Douglas fir in these areas. In the Pacific Northwest, K1inka et al. (1996) found Oregon

white oak communities in British Columbia to be distinctive based on their association

with the driest and shallowest environments. In the same study, Douglas-fir was found

on moisture deficient sites, though these sites were not as dryas the sites where Oregon

white oak was found.

As described in Chapter 1, limited soil moisture and shallow soils may favor

Oregon white oak over Douglas-fir in some locations due to the differences in rooting

dynamics, mainly by inhibiting Douglas-fir invasion. Oregon white oak has the ability to

develop a deep taproot as well as an extensive lateral root system (Stein 1990, Devine

and Harrington 2005). This gives Oregon white oak the ability to tap ground water

resources with its deep taproot, and also to take advantage of rare summer precipitation
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with its shallow later roots, which may account for its ability to survive on droughty soils.

The ability to take advantage of summer precipitation is especially important in the

Willamette Valley, where there is summer drought. Douglas-fir will grow a taproot only

when there are no barriers in the soil (Hermann and Lavender, 1990), which may limit its

ability to obtain water in areas with shallow or rocky soils. In addition, Douglas-fir does

not have as extensive a lateral root system as Oregon white oak, limiting its ability to

utilize summer precipitation (Krygier 1971). Droughty soils thus may limit invasion by

Douglas-fir, and allow these areas to maintain their savanna structure and/or dominance

by oaks.

However, competitive interactions between Douglas-fir and Oregon white oak

may be more complex than Douglas-fir being simply excluded from drier sites. Removal

ofDouglas fir in a former oak savanna increased soil moisture during the growing season

(Devine and Harrington 2007), which may havebeen due in part to the increase in

throughfall where Douglas fir were removed, and/or to the reduced water uptake by

Douglas fir. Devine and Harrington (2007) conclude that competition for soil water may

be an important reason for the Oregon white oak decline in areas invaded by Douglas fir,

in addition to competition for light.

Soil depth can influence moisture availability by restricting the volume of soil

available for water storage. The deeper the soil, the more water that can be stored in the

soil profile. In a study ofWillamette Valley oak savanna, soil depth affected community

type, but the specific effects depended on site (Chapter 2). Soil depth was found to be

significantly greater in forests than in prairies at two of the seven sites, and was greater in

forest than in the forest-prairie edge at a third site. This suggests that soil depth maybe an

important factor in determining community type, and because soil depth has a likely

effect on soil moisture, it was important to incorporate in this study.

My research thus focused on the following questions: 1) How has soil moisture

influenced succession in former oak savanna? 2) How is soil depth related to soil

moisture? 3) Is soil depth or moisture driving the successional dynamics in former oak

savanna?
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Methods

Study Areas and Plant Communities

This study was conducted on a subset of the seven sites in the larger study

described in Chapter 2. Jim's Creek (JC), Chip Ross (CR), and Finley (FN) were chosen

for this study because they encompass a broad range of the environmental conditions and

the current seral stages of succession found in former oak savanna. Twelve to fourteen

soil moisture wells were installed at each site in key community types representing

different successional stages and measured seasonally throughout one year. Basic

vegetation data was taken previously (Chapter 2) and used to classify and select plots by

community type for this study. At each site, moisture wells were installed in forest, edge,

and prairie plots. Species and diameter at breast height were recorded for every tree

within a plot. Canopy cover was measured at each plot center using a spherical

densitometer. Forest was defined as having a canopy cover greater than 60% and prairie

was defined as having few to no trees ( < 5% canopy cover). The edge was defined as the

tree-line boundary separating a forest or woodland from a savanna or prairie.

At FN, forest plots were categorized into two types, those dominated by oak with

some fir and maple, and those dominated by fir with some oak (Table 3.1).

Table 3.1 Number of moisture well plots in each community type at FN.
Community type Number of plots

Prairie 3
Edge 3

Forest, oak-fir-maple 3
Forest, fir-oak 3

At CR, moisture wells were installed in forest, edge, savanna and prairie plots

(Table 3.2). Forest was broken down into two types, those dominated by fir with some

oak and maple, and those dominated by oak with some fir. Because only two moisture

wells were established in savanna plots at CR, savanna was not included as a community

type in the statistical analysis.
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Table 3.2 Number of moisture well plots in each community type at CR.
Community type Number of plots

Prairie 3
Edge 3

Savanna 2
Forest, fir-oak-maple 3

Forest, oak-fir 3

At JC, moisture wells were installed in prairie, edge, meadow infill, and forest

community types (Table 3.3). "Meadow infill" was defined as former meadow-savannas

lightly infilled with trees, but not in a distinct pattern like in the edge. Infilled meadows

are situated near a current meadow or savanna. This community type was unique to JC

and displays a moderate rate of succession, faster than prairie but slower than forest. One

of the forest plots at JC was a significant outlier for soil depth, not just for the 12 plots

used in this study, but based on sampling of 81 plots at the site for the larger study

(Chapter 2). This outlier was excluded from all analyses. In addition, a moisture well

cap in an infilled meadow plot at JC was removed by an elk in March. Only three infilled

meadow plots were included in the March sampling, rather than four.

Table 3.3 Number of moisture well plots in each community type at JC.
Community type Number of plots

Prairie 3
Edge 4

Meadow infill 3
Forest 2

Moisture Well Installation. Monitoring, and Precipitation

PVC tubes (5-cm diameter) were installed with the slurry method (Sentek Sensor

Technologies 2003) to the maximum depth possible within each plot, which ranged from

10 cm to a maximum tube depth of 130 cm. Soil moisture was measured with a soil

moisture probe, the Diviner 2000 (Sentek Sensor Technologies, Stepney, Australia),

starting at 10 cm depth and then at each successive 10 cm increment for the depth profile.
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Moisture well readings were taken eight times from the spring of 2006 to the end

of winter 2007 to encompass of the range of seasonal moisture levels. The climate of the

Willamette Valley is Mediterranean, with summer drought and wet winters. CR and FN

are near Corvallis, Oregon, where the long-term average annual precipitation is 104 cm.

In 2006, the precipitation in Corvallis was 136 cm, which is slightly above average. In

2007, the precipitation was 97cm, which is slightly below average. IC is near Oakridge,

Oregon, where the long-term average annual precipitation is 116 cm. In 2006,

precipitation was 130 cm, slightly above average, whereas in 2007, precipitation was

slightly below average (112cm) (Western Regional Climate Center 2007).

Soil Water Content Calibration

The Diviner 2000 contains a default calibration equation that is used to estimate

soil water content, but this equation may not be accurate for a particular site due to

differences in soil texture, depth, structure, vegetation, and other characteristics (Sentek

Sensor Technologies 2001). To obtain absolute volumetric soil moisture readings, a

laboratory calibration was performed with soil from the three sites (Sentek Sensor

Technologies 2001, Platineanu and Starr 1997). Soils were sampled in forest and prairie

vegetation types at IC, FN, and CR to a depth of 0-20 cm and 20-40 cm. Due to the high

clay content of FN soils at depths greater than 40 cm, soils were sampled to a depth of 60

cm at this site.

Wells were installed in 18.9 L buckets to a depth of20 cm with the slurry method

(Sentek Sensor Technologies 2003) at three different moisture levels that spanned the

range typically observed in the field. Soils were air dried to achieve low moisture levels.

The maximum percent moisture in the field moisture wells was just under 52% moisture

by volume, so this moisture content was used as the maximum moisture content for the

calibration. Water was added to the medium and high moisture level soils until a

volumetric water content of26% and 52% was achieved, respectively. Soils were sealed

in buckets and allowed to equilibrate until a constant soil moisture was read by the probe.
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Then three soil cores were taken from each bucket and wet and dry oven weights were

used to determine the gravimetric water content.

Bulk density was determined by the amount of dry soil added to the bucket

divided by the total volume of soil. Volumetric water content (8) was calculated by

multiplying the bulk density (P) by the gravimetric water content (W) (Sentek

Environmental Technologies 1999).

8=p*W

Volumetric water content (8) is the percent moisture by volume. For example, if

the volumetric water content is 1% (or 1 mm of volumetric water content per 10 cm of

soil), that means it takes one liter of water to cover one square meter to a soil depth of 1

mm (Sentek Environmental Technologies 1999). Volumetric water content was plotted

against the probe's reading (in scaled frequency, SF) to determine the calibration

equation (Figure 3.1).
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Figure 3.1 Calibration curve. The relationship between the probe reading in scaled
frequency (SF) and soil moisture (8) in L/m2

. Calibration equation: 8 = 0.572*e4.476*SF

The potential effects of soil texture on the calibration were investigated by

performing a multiple regression of the residuals from the calibration equation (Figure
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3.1) against percent clay, silt and carbon, but none of these variables were significant (p =

ns).

Data and Statistical Analyses

Repeated measures analyses of variance were used to analyze the relationship

between community type and soil moisture over time at each site. Sites were analyzed

individually for three reasons. First, although the community types that were the primary

focus of this study (forest, prairie, and forest-prairie edge) were found at each site, the

species composition of the forests differed, and at IC, infilled meadows were an

important community type not present at the other sites. In addition, each site has a

unique elevation range, topography, and climate. And finally, based on the results of

Chapter 2, site plays an important role in determining how edaphic variables are related

to community type.

Soil moisture was measured starting at 10 cm depth and at each successive 10 cm

increment for the depth profile. The 10 cm depth reading, for example, represents the

total soil moisture from 5 cm to 15 cm depth in L/m2
.

Soil moisture was summed from the surface to 15 cm depth (0-15 cm) using the

reading at 10 cm and extrapolating to include the 0-5 cm depth increment. Soil moisture

was summed from the surface to 25 cm depth (0-25 cm), to 35 cm depth (0-35 cm), to 45

cm depth (0-45 cm), and to the depth ofthe entire profile (profile) to a maximum depth of

1.22 m.

The depth of the soil profile varied by plot. Soil depth was measured with a

0.635-cm drill bit to a maximum depth of 1.22 m at eight (IC) or nine (FN and CR)

random locations throughout each plot. Soil depth was averaged across all depth

readings for use a covariate in analyses. The average soil depth for each plot was used as

the cut-off for summing moisture across depth. For example, if the average soil depth

was 32 cm, the soil moisture for the 0-35 cm, 0-45 cm, and the profile variables is: soil

moisture from 0-15 cm + soil moisture from 15-25 cm + 0.7* soil moisture from 25-35

cm.
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Soil moisture data were analyzed with repeated measures Analysis of Variance

(ANDVA) (SPSS v. 16.0). The effect of community type on soil moisture was analyzed

with and without soil depth as a covariate because the depth of the soil limits the amount

of water in the soil profile. To examine the relationships between soil moisture and soil

depth, each soil moisture variable at each time point within each site was regressed

against the average depth of the profile. In addition, soil depth was also analyzed with a

univariate ANOVA at each site to determine whether soil depth varied by community

type.

Because there was often a significant interaction between time of sampling and

community type, univariate ANOVAs were performed at each time point within each

site. Post-hoc comparisons were made among community types at each time point for

each moisture variable at each site with Tukey's test of Honestly Significant Difference

(HSD). At Je, the soil moisture of the entire profile and from 0-45 em were natural log

transformed to normalize their distributions.

Results

Selected examples of moisture readings from a forest and a prairie plot at each

site are shown in Figures 3.2, 3.3, and 3.4. Soil moisture was consistently lower in the

shallower depths than in the deeper depths. The figures also show that surface soils dried

out faster than deeper soils, and the shallower depths had greater variation in soil

moisture than the deeper depths. Soils were driest in the late summer and early fall and

wettest in late fall, winter, and spring. Note that prairies were generally shallower than

forests and thus show moisture readings for fewer depth increments.
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Finley

Results from ANOVAs show that the effect of community type on soil water

content from 0-15 cm, 0-25 cm, 0-35 cm, 0-45 cm, and for the entire profile depended

upon time at FN both with and without the covariate of soil depth (p < 0.05) (n = 12)

(Table 3.4). Time also had a strong direct effect on soil moisture in both analyses (p <

0.001).

Based on a univariate ANOVA, soil depth did not vary by community type at FN

(p = 0.41). At FN, soil depth did not affect soil moisture from 0-15 cm or 0-25 cm (p =

0.65, P = 0.17, respectively), but did affect soil moisture from 0-35 cm, 0-45 cm and the

entire profile (p < 0.05) (Table 3.4).

Table 3.4 FN repeated measures results for each soil moisture variable, including all
eight time points, both without the covariate of soil depth and with the covariate.

Significant p-values are in bold (ex = 0.10). For each variable, n = 12.

Source 0-15 em 0-25 em 0-35 em 0-45 em profile

Without Covariate

Community type 0.017 0.051 0.043 0.037 0.427

Time <0.001 <0.001 <0.001 <0.001 <0.001

Community type x
0.004 0.005 0.003 0.002 0.049

Time

With Covariate

Community type 0.033 0.079 0.058 0.039 0.140

Soil depth 0.653 0.173 0.049 0.017 <0.001

Time <0.001 <0.001 <0.001 <0.001 <0.001

Community type x
0.005 0.005 0.003 0.002 0.017

Time

The correlation between soil depth and soil water content increased as the depth

that soil moisture was summed over increased (Table 3.5). For soil moisture in the entire

profile, the correlation with soil depth was always greater than 90% at all time points.
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However, no significant correlation existed between soil depth and soil moisture from 0-

15 cm at any time point.

Table 3.5 Correlations between soil moisture and soil depth at FN (R2
). Correlations

significant at a = 0.10 are indicated in bold. For each variable, n = 12.

Variable
Mid- Late -

June July August Oct. Dec. MarchMay May

0-15 cm 0.030 0.050 0.010 0.025 0.030 0.022 0.142 0.156

0-25 cm 0.222 0.281 0.251 0.122 0.127 0.165 0.338 0.350

0-35 cm 0.423 0.473 0.404 0.272 0.277 0.362 0.503 0.515

0-45 cm 0.540 0.525 0.506 0.390 0.398 0.442 0.598 0.563

Profile 0.936 0.942 0.935 0.931 0.943 0.926 0.969 0.968

An example of the correlation between soil water content in the entire profile and

soil depth is shown in Figure 3.5. Soil water content increased as soil depth increased.
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Figure 3.5 Soil moisture for the entire soil profile vs. soil depth at FN. Data is from
mid-May (R2

= 0.936).
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At FN, differences among community types were present at different times of the

year for the various moisture variables, with the soil moisture being most similar among

communities in the driest months oflate summer and autumn (Table 3.6). Soil moisture

in the entire profile never varied by community type at any individual time point.

Table 3.6 Differences in soil moisture among community types at individual time points
at FN. Significant p-values are in bold (a = 0.10).

Variable
Mid- Late -

June July August Oct. Dec. March
May May

0-15 cm 0.021 0.036 0.011 0.039 0.118 0.099 0.036 0.022

0-25 cm 0.031 0.030 0.019 0.057 0.151 0.216 0.035 0.025

0-35 cm 0.046 0.030 0.017 0.041 0.099 0.201 0.027 0.019

0-45 cm 0.061 0.038 0.019 0.028 0.067 0.158 0.029 0.020

Profile 0.489 0.441 0.385 0.393 0.527 0.641 0.354 0.306

Soils in the fir-oak forest contained more water in the 0-15 cm depth than soils in

the oak-fir-maple forest in mid-May, late-May, June, July, August, October, and

December (p < 0.10) (Figure 3.6). They also contained more water than the prairies in

June, December, and March, and more water than edges in mid-May and March (p <

0.10). At this depth increment there was no significant differences in soil water content

among the oak-fir-maple forests, prairies, or edges.
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Figure 3.6 Soil moisture (Llm2
) from 0-15 em ± one standard error at FN at eight time

points in four community types. Unique letters represent significant differences among
community types within a time point at the a = 0.10 level by Tukey's HSD.

Soil water content in the entire profile did not differ significantly by community

type at any time point due to high variance among plots (p = ns) (Table 3.6), but there

was a trend for prairies and edges to be drier than both forest types on average (Figure

3.7).
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Figure 3.7 Soil moisture for the entire profile (L/m2
) ± one standard error at FN at eight

time points in four community types.

Chip Ross

The effect of community type on soil water content from 0-15 cm, 0-25 cm, 0-35

cm, 0-45 cm, and for the entire profile depended upon time at CR, with and without the

covariate of soil depth (p < 0.05) (n = 12) (Table 3.7). Time had a strong effect on all

soil moisture variables in both analyses (p < 0.001).

Based on a univariate ANOYA, soil depth varied by community type (p = 0.04).

Soil depth did not affect soil water content from 0-15 cm (p = 0.291), had a marginal

effect on soil water content from 0-25 cm (p = 0.096), and affected soil water content

from 0-35 cm, 0-45cm, and for the entire profile (p < 0.05) (Table 3.7).

The correlation between soil depth and soil water content increased as the depth

that soil moisture was summed over increased (Table 3.8). The correlation between soil

water content for the entire profile and soil depth was always greater than 89%.

However, no correlation existed between soil depth and soil moisture from 0-15 cm at

any time point (Table 3.8).
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Table 3.7 CR repeated measures results including all eight time points without the soil
depth covariate and with the covariate. Significant p-values are in bold (a = 0.10). For

each variable, n = 12.

Source 0-15 cm 0-25 cm 0-35 cm 0-45 cm profile
Without Covariate

Community type 0.014 0.275 0.299 0.231 0.023

Time <0.001 <0.001 <0.001 <0.001 <0.001

Community type x
<0.001 0.001 0.002 0.019 <0.001

Time

With Covariate

Community type 0.014 0.271 0.357 0.465 0.047

Soil depth 0.291 0.096 0.020 0.007 <0.001

Time <0.001 <0.001 <0.001 <0.001 <0.001

Community type x
<0.001 <0.001 <0.001 0.010 0.002

Time

Table 3.8 Correlations between soil moisture and soil depth at CR (R2
). Correlations

significant at a = 0.10 are indicated in bold.

Variable
Mid- Late -

June July August Oct. Dec. March
May May

0-15 cm 0.134 0.039 0.003 0.001 0.004 0.094 0.076 0.181

0-25 cm 0.320 0.219 0.088 0.060 0.026 0.008 0.252 0.357

0-35 cm 0.506 0.447 0.303 0.319 0.304 0.151 0.492 0.560

0-45 cm 0.712 0.689 0.529 0.575 0.632 0.501 0.684 0.725

Profile 0.983 0.982 0.933 0.924 0.919 0.891 0.951 0.960
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An example of the correlation between soil water content in the entire profile and

soil depth is shown in Figure 3.8. Soil water content increased as soil depth increased.
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Figure 3.8 Soil moisture for the entire soil profile vs. soil depth at CR. Data is from
mid-May (R2 = 0.983).

At CR, differences among community types were present at different times of the

year for the various moisture variables (Table 3.9). The soil water content of the entire

profile varied by community type at every time point (p < 0.10).

Table 3.9 Differences among community types at individual time points at CR.
Significant p-values are in bold (u = 0.10).

Variable
Mid- Late -

June July August Oct. Dec. March
May May

0-15 cm 0.011 0.065 0.006 0.034 0.079 0.121 0.329 0.115

0-25 cm 0.416 0.443 0.080 0.106 0.228 0.278 0.619 0.301

0-35 cm 0.297 0.272 0.143 0.209 0.433 0.668 0.445 0.252

0-45 cm 0.271 0.253 0.148 0.175 0.285 0.536 0.337 0.232

Profile 0.023 0.023 0.013 0.021 0.041 0.092 0.030 0.024
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Prairies contained less water in the 0-15 cm interval than fir-oak-map1e forests in

mid-May, late-May, Jqne and July (p < 0.10) (Figure 3.9). They also contained less

water than oak-fir forests in mid-May and March, and less water than edges in mid-May

and July (p < 0.10). There were no significant differences among community types in

August, October, or December.
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Figure 3.9 Soil moisture from 0-15 cm (L/m2
) ± one standard error at CR at eight time

points in four community types. Unique letters represent significant differences among
community types within a time point at the a = 0.10 level by Tukey's HSD.

Prairies and edges contained less water in their entire profiles than oak-fir forests

in mid-May, late-May, June, July, August, December, and March (p < 0.10) (Figure

3.1 0). At the driest reading in the beginning of October, edges contained less water in

their entire profile than oak-fir forests (p = 0.097), but there was no difference between

prairies and oak-fir forests at this time point (p = 0.14).
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Figure 3.10 Soil moisture for the entire profile ± one standard error at CR at eight time
points in four community types. Unique letters represent significant differences among
community types within a time point at the a = 0.10 level by Tukey's HSD.

Jim's Creek

The effect of community type on soil water content from 0-35 cm depended upon

time, with and without the covariate of soil depth (p = 0.036) (n = 12 for all time points

except March, where n = 11) (Table 3.10). There was no effect of community type on

soil water content from 0-15 cm, 0-25 cm, 0-45 cm, or on the entire profile (p = ns) at IC,

regardless of whether the covariate was included in the analysis. Time had a strong effect

on water content for all depth intervals (p < 0.001).

Based on a univariate ANOVA, soil depth did not vary by community type at IC

(p = 0.34). Soil depth did not affect soil water content from 0-15 cm (p = 0.84), but

affected water content from 0-25 cm, 0-35 cm, 0-45 cm, and in the entire profile (p <

0.10) (Table 3.10).
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Table 3.10 JC repeated measures results, including all eight time points without the soil
depth covariate and with the covariate. Significant p-values are in bold (a =0.10). For

each soil variable, n = 12 (except in March when n = 11).

Source 0-15 em 0-25 em 0-35 em 0-45 em profile
Without Covariate

Community type 0.755 0.452 0.256 0.284 0.290

Time <0.001 <0.001 <0.001 <0.001 <0.001

Community type x
0.416 0.442 0.036 0.740 0.746Time

With Covariate

Community type 0.781 0.881 0.629 0.800 0.824

Soil depth 0.841 0.092 0.009 0.003 0.003

Time <0.001 <0.001 <0.001 <0.001 <0.001

Community type x 0.415 0.440 0.036 0.740 0.745
Time

The correlation between soil depth and soil water content increased as the depth

that soil water content was summed over increased (Table 3.11). The correlation

between water content of the entire profile and soil depth was greater than 90% in mid­

May, late May, June, December, and March, however, the correlation was not as strong

in the driest months of July, August, and early October. No correlation existed between

soil depth and soil water content from 0-15 cm (Table 3.11). An example of the

correlation between water content in the entire profile and soil depth is shown in Figure

3.11. Water content increased as soil depth increased.
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Table 3.11 Correlations between soil moisture and soil depth at IC (R\ Correlations
significant at a = 0.10 are indicated in bold.

Variable
Mid- Late -

June July August Oct. Dec. MarchMay May

0-15 em 0.044 0.012 0.024 0.000 0.001 0.223 0.012 0.090

0-25 em 0.653 0.635 0.607 0.208 0.193 0.103 0.615 0.617

0-35 em 0.878 0.874 0.863 0.432 0.399 0.346 0.817 0.806

0-45 em 0.932 0.938 0.918 0.630 0.571 0.533 0.911 0.900

Profile 0.939 0.946 0.919 0.662 0.590 0.555 0.923 0.912
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Figure 3.11 Soil moisture in the entire profile vs. soil depth at Ie. Data is from mid­
May (R2

= 0.939).
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No differences among community types were present at any individual time point

at IC (Table 3.12), although there was a trend for prairies to contain less water than

forests from 0-15 em (Figure 3.12). There was also a trend for prairies, edges, and

infilled meadows to be lower in soil moisture for the entire profile than forests (Figure

3.13).

Table 3.12 Differences in soil moisture among community types at individual time
points at Ie. No p-values were significant.

Variable
Mid- Late -

June July August Oct. Dec. March
May May

0-15 cm 0.765 0.889 0.551 0.515 0.469 0.841 0.687 0.849

0-25 cm 0.612 0.592 0.600 0.297 0.229 0.437 0.615 0.675

0-35 cm 0.379 0.355 0.377 0.144 0.135 0.238 0.370 0.459

0-45 cm 0.389 0.377 0.401 0.204 0.163 0.203 0.411 0.361

Profile 0.394 0.384 0.406 0.208 0.165 0.205 0.419 0.356
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Figure 3.12 Soil moisture from 0-15 (L/m2
) ± one standard error at IC at eight time

points in four community types.
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Figure 3.13 Soil moisture for the entire profile (Llm2
) ± one standard error at IC at eight

time points in four community types. Note the magnitude of the outlier.

Comparison ofChip Ross, Finley, and Jim's Creek

The effect of soil moisture varied across the sites. FN and CR showed differences

in soil moisture by community type (both as a main effect and as an interaction with

time), but overall at IC there was no effect of community type on soil moisture (Tables

3.4, 3.7, and 3.10). Soil depth was never a significant covariate at the 0-15 cm moisture

increment.

The correlation between soil moisture of the entire profile and soil depth was

great than 89% at FN and CR and at most time points at IC (Tables 3.5,3.8, and 3.11).

However, the correlation between soil moisture and soil depth was weaker in the driest

months at IC (Table 3.11). Soil moisture from 0-15 cm was never correlated with soil

depth at any site.

Discussion

Prior to Euro-American settlement, frequent fires maintained prairie and oak

savanna across large areas of the Willamette Valley. With the loss of historic fire
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regimes, succession has occurred rapidly in some areas and not at all in others. My

results demonstrate that differences in soil moisture and soil depth play important roles

underlying the spatial variability of forest succession following Euro-American

settlement.

Successional pathways in former oak savanna appear to have been influenced by

soil moisture. In general, areas that have experienced the least succession (prairies and

edges) contain less water in the soil profile than areas that have experienced more

succession (forests) (Figures 3.7, 3.10, and 3.13). This relationship between community

type and soil moisture was consistent at each site, although it was not significant at IC

(Figure 3.13). The lack of a significant community effect at IC could be due to the small

number of replicates and the exclusion of the outlier, leaving only two forest plots in the

analysis.

The amount ofwater present in the soil profile is highly dependent on soil depth.

The strong correlation between soil depth and soil water is logical because the deeper the

soil, the larger the volume of water the soil profile is able to hold. Since total soil

moisture is so closely tied to soil depth, it is difficult to determine if one is a more

important control over succession than the other. Based on this analysis, it appears that

both are important controls over succession.

The shallower depths of the soil profiles tended to be drier and exhibited greater

variation in moisture than the deeper depths (Figures 3.2, 3.3, and 3.4). This is most

likely due to evaporation and to uptake by shallow plant roots. Soils in areas that have

experienced less succession tend to be shallower (see Chapter 2), and these shallow soils

are also dry. Trees trying to establish in these areas not only have less soil to exploit, but

the soil they have access to is also drier than areas with deeper soils.

Soil moisture is highest in the late fall, winter, and early spring (Figures 3.2, 3.3,

and 3.4). Soil moisture begins to decrease in the late spring/early summer, reaching a

minimum in late summer/early fall. Oregon white oak begins to leaf out in the spring,

when soil moisture is high, and continues to photosynthesize throughout the summer and

into the fall, when it loses its leaves. The growing season of Oregon white oak is
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primarily during the driest time of the year, while Douglas-fir is able to photosynthesize

year round in the lower elevations of the Willamette Valley. The ability of Douglas-fir to

photosynthesize year round may give the species a competitive advantage over Oregon

white oak in more mesic soils, but the extreme summer drought may prevent Douglas-fir

from establishing or increase its mortality over time in harsher areas.

The rooting morphology of oaks is important to consider when thinking about the

ability of Oregon white oak to survive in harsh areas. A study in glacial outwash soil

found that Oregon white oaks developed a prominent taproot at a young age, which

dominated the root morphology in seedlings and young trees (Devine and Harrington

2005). This may enable oaks to establish in dry areas as seedlings. As the trees age,

however, the root systems of Oregon white oak became dominated by lateral roots

(Devine and Harrington 2005). The shallow roots enable Oregon white oak to take

advantage of rare summer precipitation, which is important in the Willamette Valley due

to the extreme summer drought. Similar rooting morphologies of Oregon white oak were

found in the Willamette Valley (Krygier 1971).

Several differences in rooting morphology may give Oregon white oak an

advantage over Douglas fir in dry and/or shallow areas. The main rooting differences

between Douglas-fir and Oregon white oak appears to be that Douglas-fir will grow a

taproot only when there are no barriers in the soil (Hermann and Lavender 1990), which

may limit its ability to obtain water in areas with shallow soils. On shallow soils,

Douglas-fir may not be able to survive. In addition, Douglas fir has fewer shallow roots

than Oregon white oak (Krygier 1971), thus, they may not be able to take advantage of

summer precipitation. Physiological differences between the two species may also be

determining the competitive advantages of one species over another under varying

moisture conditions.

Oregon white oak may be able to survive in areas with shallower and drier soils

for two main reasons: 1) Their ability to form a taproot when young allows them to

obtain moisture from deeper soils that retain their moisture longer, allowing them to
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establish in dry/shallow soils, and 2) Their ability to fonn a prominent lateral root system

as they age allows them to survive and mature on dry/shallow soils.

Conclusions and hnplications for Management

My results suggest that drier and shallower soils are limiting the establishment of

trees in fonner oak savanna in the Willamette Valley. Areas with high soil moisture and

deep soils may be conducive to accelerated succession. In light of restoration efforts of

Oregon white oak savanna in the Willamette Valley, areas with high moisture and deep

soils may require more management than drier and shallower areas. However, areas with

higher moisture and deeper soils also represent an important part of the historic range of

variability of oak savanna, potentially with greater productivity and substantially

different species composition and diversity. Although Oregon white oak has been

excluded from much of this habitat type, not restoring areas that are conducive to

succession will limit Oregon white oak to only the harshest sites, a small fraction of its

fonner range.

This study focused on several key questions. First, I wanted to detennine how

soil moisture has influenced succession in fonner oak savanna. It appears that low soil

moisture is associated with areas that have experienced less succession, suggesting that

soil moisture may be restricting the establishment of trees. Secondly, I wanted to

investigate the relationship between soil depth and soil moisture. Based on the results of

this study, soil depth is an important control over soil moisture in the soil profile. And

finally, I was interested in detennining whether soil depth or moisture is the primary

control over succession in Willamette Valley fonner oak savanna. Because both soil

moisture and depth are related to successional dynamics in fonner oak savanna, and

because soil moisture and soil depth are strongly correlated, it is difficult to detennine

which is a more important control over succession.
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CHAPTER IV

CONCLUSION

Based on the combined results of the two studies, edaphic and topographic

conditions appear to have influenced the successional dynamics in former Oregon white

oak (Quercus garryana) savanna in the Willamette Valley. However, the specific effects

of these conditions depends heavily on location. For example, soil texture appears to be

strongly influencing succession within sites, but how texture is related to community type

depends on site. Clay content was higher in the forests than in the prairie/savannas at

Finley, whereas at Jim's Creek, clay content was higher in prairie/savannas than in

forests. A similarly complex relationship between soil nitrogen content (g/m2
) and

community type was also present in this study. At Finley, forests had higher nitrogen

than prairie/savmmas, whereas at Jim's Creek, prairie/savannas had higher nitrogen than

forests. The complex relationships between soil characteristics, sites, and community

types could be due in part to differences in elevation among the sites.

Soil depth appears to be restricting succession across most sites in this study,

especially at Finley and Jim's Creek. Shallower soils were associated with areas that

have experienced less succession (prairie/savannas and edges) at both of these sites.

Although this relationship was less consistent at the other sites, site historical factors such

as recent grazing may be influencing succession at these sites. Further investigation into

the impacts of historical land use on succession is needed.

Soil moisture appears to have a dramatic influence on succession in former

Oregon white oak savanna. Dry soil conditions are associated with areas that have

experienced less succession, such as prairies and edges. Dry conditions may be

restricting the establishment of trees in prairies and edges.

Soil depth is as an important control over soil moisture in the soil profile. Soil

moisture and soil depth are related in that the deeper the soil, the higher the volume of
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moisture the soil can hold. Thus, as soil depth increases, so does the volume of soil

water. Since soil moisture depends on soil depth, it is difficult to determine if one is a

more important control over succession than the other. Based on this analysis, it appears

that both are important controls over succession.

Final Thoughts and Implications for Management

Oregon white oak savanna existed under a broad range of environmental

conditions in the Willamette Valley 150 years ago. Currently, it exits in a tiny fraction of

its former range. Restoration of this endangered ecosystem is important not only

culturally and ecologically, but also in terms of managing the risk of catastrophic

wildfire.

Based on the results of this study, Oregon white oak savanna restoration efforts in

the Willamette Valley must take edaphic and topographic factors into account as well as

site location and history. The successional dynamics in former oak savanna in the

Willamette Valley are complex, and vary highly by site factors. Some areas in the

Willamette Valley will have edaphic and topographic conditions that are highly

conducive to succession, and these areas will require more management. Restoration of a

broad range of environmental conditions is important because currently, oak savanna is

restricted to some of the harshest environments in the Willamette Valley. Although it

will take more management to restore areas that are prone to succession, not doing so will

restrict Oregon white oak savanna to a small portion of its former range, and the

heterogeneity of its former range will be lost.
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