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1 Introduction

In matters of conflict, players frequently evaluate situations on the basis of several criteria. Still,

games with multiple criteria and in particular cooperative games with multiple criteria have

received relatively little attention in game theoretic literature. Some exceptions are Bergstresser

and Yu (1977) and Lind (1996).

In the current paper, we introduce a new class of cooperative multicriteria games. Two

fundamentally different types of criteria are considered: private criteria and public criteria.

Private or divisible criteria share the characteristics of the criterion one usually works with when

studying games with transferable utility, the characteristics of money: the amount obtained can

be divided over coalition members so that one member consumes a different quantity than

another member, and that which is consumed by one member cannot be consumed by another.

In economic terms, these criteria are rival and excludable. Public or indivisible criteria have the

same value for all members of a coalition; they are non-rival and non-excludable. Examples of

such criteria are global warming, investment in medical research, or, on a different scale, the

national rate of unemployment and its effect on the economy, political stability, and the safety

in your country.

The introduction of public criteria is new to cooperative game theory, presumably because

it is assumed that some central authority takes a (socially optimal) decision on such criteria.

However, the value of a public criterion is often influenced by decisions made on private criteria

by individual agents (think of pollution levels, for example). Hence, it seems that decisions on

private and public criteria should not be treated separately. An integrated view on private and

public criteria might expose the trade-offs faced by individuals not only between criteria in the

same category, but also between criteria in different categories.

The ‘value’ of a coalition is usually interpreted as that which its members can guarantee

themselves by joining forces. If multiple criteria are involved, then improvement in one criterion

(number of fish caught) may well have detrimental effects on other criteria (environmental

issues like biodiversity). So, the relative importance of different criteria plays a significant role.

But the relative importance of two criteria may differ with their values. For example, rich

countries attach relatively more importance to controlling pollution levels than to increasing

production since production levels and pollution levels are already high. For developing countries

with low production levels, however, increasing production is more important than controlling
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pollution levels. We believe that ‘collapsing’ the different criteria to one number by means

of a utility function ignores some of the most interesting issues associated with multicriteria

decision situations. By leaving the different criteria in their own right, one can investigate what

kind of trade-offs players face between the criteria. Moreover, such an approach respects the

incommensurability of some attributes: in many cases agents may be incapable of or morally

opposed against aggregating the value of money and the value of — for instance — a human life

to a common scale. In cooperative multicriteria games we therefore consider it natural to assign

a set of vector values to each coalition, i.e., we consider characteristic correspondences instead

of single valued characteristic functions and an obtainable ‘value’ is a vector that specifies the

value of all the criteria for a particular alternative that is feasible to a coalition.

Cooperative multicriteria games with private and public criteria as defined and studied in

the current paper generalize the games used in Bergstresser and Yu (1977) and Lind (1996).

These authors do not discriminate between several types of criteria; they only use what we call

private criteria. Moreover, the characteristic functions in their games are single-valued instead

of set-valued.

After defining multicriteria cooperative games with private and public criteria, the obvious

next step is the search for reasonable solutions to such games. This paper concentrates on core

concepts, which rule out those outcomes which are in a sense unstable because subcoalitions of

agents are able to reach agreements that are better for all their members. Taking into account

the features of the model, the distinction between private and public criteria and the introduction

of set-valued characteristic functions, we define two concepts: the dominance outcome core and

the core.

Well-known axiomatizations of core concepts for single-criterion cooperative games (see Peleg

(1985, 1986, 1987)) use a consistency or reduced game property. The consistency principle

essentially means that if the grand coalition of players reaches an agreement, then no subcoalition

of players has an incentive to renegotiate within the coalition after giving the players outside

the coalition their part of the solution, because the proposed agreement is also a part of the

solution of the reduced game played within the subcoalition.

The current paper investigates consistency properties of the proposed core for cooperative

multicriteria games. We provide three axiomatic characterizations of the core that are based on

the notion of consistency. One of these characterizations uses converse consistency, a property

that postulates that a proposed agreement must be in the solution of a game if for every sub-
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coalition it holds that the restriction of this agreement to the subcoalition is in the solution of

the reduced game. A second axiomatization of the core uses a converse consistency requirement

that restricts attention to subcoalitions of two players. The two axiomatizations of the core

of cooperative multicriteria games that use converse consistency properties are similar to the

axiomatizations of core concepts for cooperative games with or without transferable utility by

Peleg (1985, 1986, 1987).

The third axiomatization of the core provided in this paper differs significantly from the

previous two. It uses a new definition of reduced games, one that stresses the fact that there

are players outside each subcoalition that cannot be ignored altogether by requiring players in

a subcoalition to cooperate with at least one outside player. Consistency with respect to this

new definition of reduced games is used to give an axiomatic characterization of the core for

multicriteria games with an enlightenment property (see section 5) instead of converse consis-

tency. It is shown by means of a counterexample that this characterization does not hold if the

old definition of reduced games is used.

The set-up of the paper is as follows. Cooperative multicriteria games with private and

public criteria are defined in section 2, along with the core and the dominance outcome core.

In section 3 we prove that the dominance outcome core always contains the core and that both

concepts coincide for games satisfying some additional assumptions. In the remainder of the

paper, sections 4 and 5, we provide several axiomatizations of the core based on the notion of

consistency. In section 4 converse consistency is used to characterize the core and in section 5 we

give the new definition of reduced games that was mentioned before and use this to characterize

the core without requiring converse consistency.

2 Definitions

For vectors x, y ∈ IRm, we write x >= y if xi ≥ yi for all i = 1, . . . , m, x ≥ y if x >= y and x 6= y,

and x > y if xi > yi for all i = 1, . . . , m. For a set A ⊆ IRm, we define its Pareto edge by

Par(A) := {x ∈ A | there is no y ∈ A with y > x}. The number of elements of a finite set A is

denoted by |A|, the collection of all of its subsets by 2A. For two subsets A and B of a vector

space V we define A+B = {a+ b | a ∈ A, b ∈ B}. For an arbitrary set A we denote by IRA the

vector space of all real-valued functions on A.

Let U be an infinite set of players. A cooperative multicriteria game with public and private
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criteria, or a game for ease of notation, is described by

• A finite set D of divisible or private criteria;

• A finite set P of indivisible or public criteria;

• A finite, nonempty set N ⊂ U of players;

• A correspondence v : 2N \ {∅}→→IRD∪P ;

such that D ∩ P = ∅, D ∪ P 6= ∅ and v(S) 6= ∅ for each coalition S ∈ 2N \ {∅}. The sets D

and P that define a certain game will not be mentioned explicitly and a game is simply denoted

(N, v). For one-person coalitions we write v(i) instead of v({i}). Let Γ denote the set of games

as defined above.

Example 2.1 Two neighbouring countries, A and B, negotiate to reduce CO2 levels in the air.

The marginal costs of reducing CO2 levels increase as abatements increase: there are relatively

cheap methods that can be used to reduce CO2 levels at first, but to effect higher reductions,

more expensive methods have to be employed as well. Suppose country A on its own can abate

in a low-cost way by spending 100 to reduce the level of CO2 in the air by 1, and it can abate

more, a reduction of 3, at a cost of 600. Country B on its own can reduce the CO2 level by 2 at

a cost of 150 and by 7 at a cost of 900. If the countries cooperate, they can realize all the above

mentioned possibilities but also profit from each other’s expertise and abate relatively cheaper.

They can reduce CO2 levels by 3 at a cost of 200 and by 10 at a cost of 1200.

The cooperative multicriteria game describing this situation has one private criterion, minus

the cost of the abatements, and one public criterion, the decrease in the CO2 level in the air.

The player set is N = {A,B}, the characteristic function is given by

v(A) = {(0, 0), (−100, 1), (−600, 3)},

v(B) = {(0, 0), (−150, 2), (−900, 7)},

v({A,B}) = v(A) ∪ v(B) ∪ {(−200, 3), (−1200, 10)}.

Several subsets of Γ correspond to well-known classes of games.

Example 2.2 A game (N, v) with P = ∅, |D| = 1, and |v(S)| = 1 for each coalition S ∈ 2N \{∅}

is essentially a TU-game.
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Example 2.3 A game (N, v) with P = ∅ and v(S) a compact and comprehensive (in the sense

that b ∈ v(S) and 0 <
= a <= b implies a ∈ v(S)) subset of IRD

+ is a multi-commodity game as

studied by van den Nouweland et al. (1989).

The characteristic function of NTU-games is also set-valued and vector-valued, but describes for

a coalition the payoff for each separate member, so that the value of a coalition S is a subset

of IRS . This differs from our cooperative multicriteria games, where the correspondence v maps

the coalitions to a fixed vector space IRD∪P .

Cooperative multicriteria games with private and public criteria generalize the cooperative

multicriteria games used by Bergstresser and Yu (1977) and Lind (1996) in the sense that these

authors do not use set-valued characteristic functions and do not discriminate between different

types of criteria.

In what follows, we need a definition of an allocation. In a game (N, v) ∈ Γ, an allocation

takes an element of the set of values attainable by the grand coalition N and divides it among

the players in accordance with the characteristics of the criteria: when restricted to divisible

criteria everything is divided, whereas for indivisible criteria every player gets the same fixed

amount. Before formally defining allocations, some more notation is needed.

Consider a game (N, v) ∈ Γ and a vector x = (xi)i∈N with xi ∈ IRD∪P for each i ∈ N . Let

S ∈ 2N \ {∅}. Then xS denotes the vector (xi)i∈S, i.e., x restricted to the components of the

members of coalition S and x(S) denotes the sum of the elements (xi)i∈S, x(S) :=
∑
i∈S x

i. For

a vector (or function) y ∈ IRD∪P the restriction of y to P is denoted y|P and the restriction of

y to D is denoted y|D.

Definition 2.4 Given a game (N, v) an allocation is a vector x = (xi)i∈N with xi ∈ IRD∪P for

each player i ∈ N that satisfies the requirement that there exists a y ∈ v(N ) for which∑
i∈N x

i
|D = y|D and

xi|P = y|P for each i ∈ N.

The set of allocations of (N, v) is denoted A(N, v).

A coalition can improve upon an allocation if there is an outcome it can guarantee itself

which — when distributed over its members in a feasible way — is at least as good for each

member and better in some criterion for at least one coalition member. Formally, a coalition

5



S ⊆ N can improve upon an allocation x if there exists a vector y ∈ v(S) such that∑
i∈S x

i
|D

<
= y|D and

xi|P
<
= y|P for each i ∈ S,

where at least one of the inequalities is strict (≤). Such a vector y is said to dominate x via

S. An allocation in a game (N, v) is individually rational if one-player coalitions, i.e. individual

players, cannot improve upon it and it is an imputation if neither N nor individual players can

improve upon it. The set of individually rational allocations and the set of imputations of a

game (N, v) are denoted by IR(N, v) and I(N, v), respectively.

A solution concept σ on the class Γ is a map that assigns to each game (N, v) ∈ Γ a set of

allocations σ(N, v). Hence, σ(N, v)⊆ A(N, v) for all (N, v) ∈ Γ.

This paper concentrates on core concepts, i.e. concepts that rule out allocations that are in

some sense unstable. We define two different core concepts.

Definition 2.5 The core C(N, v) of a game (N, v) is the set of allocations upon which no

coalition can improve:

C(N, v) = {x ∈ A(N, v) | there exist no S ∈ 2N \ {∅} and y ∈ v(S) s.t.∑
i∈S x

i
|D

<
= y|D and

xi|P
<
= y|P for each i ∈ S

with at least one of the inequalities being strict (≤)}

Definition 2.6 The dominance outcome core DOC(N, v) of a game (N, v) is the set of impu-

tations for which there is no coalition S and another imputation y such that yi is better than

xi for each player i ∈ S and such that the players in S can jointly guarantee themselves at least

what they get according to the allocation y:

DOC(N, v) = {x ∈ I(N, v) | there exist no S ∈ 2N \ {∅}, y ∈ I(N, v), and z ∈ v(S) s.t.
yi ≥ xi for each i ∈ S,∑
i∈S y

i
|D

<
= z|D and

yi|P
<
= z|P for each i ∈ S }

3 Relations between the Core and the Dominance Outcome
Core

In this section we prove that the core of a game is always included in the dominance outcome

core. Moreover, we prove that the core equals the dominance outcome core under some mild

conditions.

6



Proposition 3.1 For each game (N, v) ∈ Γ it holds that C(N, v) ⊆ DOC(N, v).

Proof. Let (N, v) ∈ Γ. If C(N, v) = ∅ we are done. So, assume C(N, v) 6= ∅ and let x =

(xi)i∈N ∈ C(N, v). Then

• xi ∈ IRD∪P for each player i ∈ N and

• there exists a y ∈ v(N ) such that
∑
i∈N x

i
|D = y|D

xi|P = y|P for each i ∈ N.

• Since x ∈ C(N, v), neither N nor individual players can improve upon it.

Consequently, x ∈ I(N, v). Now suppose x 6∈ DOC(N, v). Then let S ∈ 2N \ {∅}, y ∈ I(N, v),

and z ∈ v(S) be such that

yi ≥ xi for each i ∈ S;∑
i∈S y

i
|D

<
= z|D;

yi|P
<
= z|P for each i ∈ S.

Hence, there exist an S ∈ 2N \ {∅}, z ∈ v(S) such that∑
i∈S x

i
|D

<
=

∑
i∈S y

i
|D

<
= z|D

xi|P
<
= yi|P

<
= z|P for each i ∈ S

with at least one strict inequality since yi ≥ xi for all i ∈ S. This contradicts x ∈ C(N, v). 2

In general, the core is not equal to the dominance outcome core. In the following example both

cores do not coincide.

Example 3.2 Consider a three-player, bicriteria game (N, v) where the first criterion is divisible

and the second public. Define v(i) = {(1, 10)} for all i ∈ N and v({1, 2}) = v({1, 3}) =

v({2, 3}) = v({1, 2, 3}) = {(3, 10)}. Then I(N, v) = DOC(N, v) = {(x1, x2, x3) | x1 = x2 =

x3 = (1, 10)}. However, C(N, v) = ∅, since every two-player coalition can improve upon the

unique imputation. For instance, for S = {1, 2} and y = (3, 10) ∈ v(S): x1
1 + x2

1 < 3 = y1 and

x1
2 = x2

2 = 10 = y2.

Under some restrictions, however, the two cores coincide.

Proposition 3.3 Let (N, v) ∈ Γ be a game for which the following four properties hold:
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1. Comprehensiveness of v(i) for each i ∈ N and of v(N ):{
for all i ∈ N and all a ∈ v(i) : {x ∈ IRD∪P | x <= a} ⊆ v(i)

for all a ∈ v(N ) : {x ∈ IRD∪P | x <= a} ⊆ v(N )

2. Compactness conditions:{
for all i ∈ N and all a ∈ v(i) : ({a}+ IRD∪P

+ ) ∩ v(i) is compact
for all a ∈ v(N ) : ({a}+ IRD∪P

+ ) ∩ v(N ) is compact

3. Nonlevelness of v(i) for each i ∈ N and of v(N ):{
for all i ∈ N and all a, b ∈ Par(v(i)) : if a >= b, then a = b

for all a, b ∈ Par(v(N )) : if a >= b, then a = b

4. A superadditivity condition:

For each S ∈ 2N \ {∅}, y ∈ v(S), and zi ∈ v(i) for each i ∈ N \ S it holds that

if y|P
>
= zi|P for all i ∈ N \ S, then a ∈ v(N ), where a ∈ IRD∪P is defined as

follows:
a|D = y|D +

∑
i∈N\S z

i
|D

a|P = y|P

Then C(N, v) = DOC(N, v).

Remark 3.4 The definition of nonlevel sets given above is a standard definition. In the proof

of the proposition it is convenient to use the following equivalent formulation:{
for all i ∈ N, all b ∈ Par(v(i)), and all a ∈ IRD∪P : if a ≥ b, then a 6∈ v(i)

for all b ∈ Par(v(N )) and all a ∈ IRD∪P : if a ≥ b, then a 6∈ v(N )

Proof (prop. 3.3). By proposition 3.1: C(N, v) ⊆ DOC(N, v). To prove that DOC(N, v) ⊆

C(N, v), let x = (xi)i∈N ∈ I(N, v) and assume that x 6∈ C(N, v). Then there exist S ∈

2N \ {∅, N} and y ∈ v(S) such that
∑
i∈S x

i
|D

<
= y|D

xi|P
<
= y|P for each i ∈ S

(1)

where at least one inequality is strict (≤). For each i ∈ N \ S, let zi ∈ v(i) be such that

zi|P
<
= y|P and zi ∈ Par(v(i)), the Pareto edge of v(i). Such zi exist: let i ∈ N \ S and a ∈ v(i),

which is possible by nonemptiness of v(i). Either a|P
<
= y|P or, using comprehensiveness of v(i),
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one can lower the coordinates in {k ∈ P | ak > yk} without leaving v(i). So let b ∈ v(i) be

such that b|P
<
= y|P . By assumption the set {c ∈ v(i) | c >= b} is compact and hence the set

{c ∈ v(i) | c >= b, c|P = b|P} is compact. Define u ∈ IRD∪P such that uk = 1 for k ∈ D and

uk = 0 for k ∈ P . By nonemptiness and compactness of {c ∈ v(i) | c >= b, c|P = b|P}, we know

that

α∗ := max{α ∈ IR+ | b+ αu ∈ {c ∈ v(i) | c >= b, c|P = b|P}} (2)

exists. We claim that b+ α∗u ∈ Par(v(i)). Suppose to the contrary, that b+ α∗u is not on the

Pareto edge of v(i). Then d > b+α∗u for some d ∈ v(i). In particular, dk > bk+α
∗uk = bk+α

∗ for

each k ∈ D. Take β = min{dk−bk | k ∈ D}. Then β > α∗ and b+βu <= d. By comprehensiveness

of v(i) it follows that b+βu ∈ v(i). Also b+βu ∈ {c ∈ v(i) | c >= b, c|P = b|P}. Hence by (2), β ≤

α∗ must hold. This yields a contradiction. So b+α∗u ∈ {c ∈ v(i) | c >= b, c|P = b|P} ∩Par(v(i)).

Since b|P
<
= y|P , we can now define the desired zi by zi := b+ α∗u.

By the superadditivity condition the vector a ∈ IRD∪P with a|D = y|D +
∑
i∈N\S z

i
|D and

a|P = y|P is an element of v(N ). Using the comprehensiveness of v(N ) and the compactness

assumption on v(N ), it follows in a similar manner as demonstrated above, that the set {c ∈

v(N ) | c >= a, c|P = a|P} contains an element b on the Pareto edge of v(N ). Take such a b ∈ v(N ).

This b is used to construct an imputation x̂ that dominates imputation x via coalition S. Define

x̂ = (x̂i)i∈N ∈ (IRD∪P )N as follows:

x̂i|P = b|P for each i ∈ N

x̂i|D = zi|D + 1
|N\S|(b− y −

∑
i∈N\S z

i)|D for each i ∈ N \ S

x̂i|D = xi|D + 1
|S|(y −

∑
i∈S x

i)|D for each i ∈ S

Notice that

•
∑
i∈N x̂

i
|D = b|D and x̂iP = b|P for all i ∈ N . Since b ∈ v(N ), it follows that x̂ is an

allocation;

• Since b is on the Pareto edge of v(N ), using the nonlevelness of v(N ) yields that the

allocation x̂ cannot be improved upon by the grand coalition N ;

• Since y|D
>
=
∑
i∈S x

i
|D and b|P = a|P = y|P

>
= xi|P for all i ∈ S, we have that x̂i >= xi for

each player i ∈ S. Also, x ∈ I(N, v) by assumption. Hence, singleton coalitions {i} with

i ∈ S cannot improve upon x̂;

• Since b >= a, a|D = y|D+
∑
i∈N\S z

i
|D, and b|P = a|P = y|P

>
= zi|P for each i ∈ N \S, we have

that x̂i >= zi for each i ∈ N \ S. Using the nonlevelness of v(i) and the fact that zi lies
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on the Pareto edge of v(i), we derive that singleton coalitions {i} with i ∈ N \ S cannot

improve upon x̂.

From the four points above we deduce that x̂ ∈ I(N, v). Moreover, y ∈ v(S),
∑
i∈S x̂

i
|D = y|D,

and x̂i|P = b|P = y|P for each i ∈ S. Thus, by (1) and the construction of x̂: x̂i ≥ xi for

each i ∈ S (recall that x̂i|P = x̂j|P for all players i, j). Conclude that x 6∈ DOC(N, v). Hence,

DOC(N, v) ⊆ C(N, v), which completes the proof. 2

4 Axiomatizations of the Core with Converse Consistency

In this section we study some properties of the core and provide several axiomatizations, all based

on the notions of consistency and converse consistency. The consistency principle essentially

means that if the grand coalition of players reaches an agreement, then no subcoalition of

players has an incentive to renegotiate within the subcoalition after giving the players outside it

their part of the solution, because the proposed agreement is also in the solution of the reduced

game played within the subcoalition. The converse consistency axiom requires that a proposed

agreement must be in the solution of a game if for every subcoalition it holds that the restriction

of this agreement to that subcoalition is in the solution of the reduced game. Hence, it provides

information about the solution of a game, given information about the solution of its reduced

games, justifying the name ‘converse’ consistency. The axiomatizations are similar to those of

Peleg (1985, 1986, 1987).

Definition 4.1 Let (N, v) ∈ Γ, x ∈ A(N, v), and S ∈ 2N \ {∅, N}. The reduced game (S, vxS) of

(N, v) with respect to allocation x and coalition S is the game defined by

vxS(S) = v(N )− x̃(N \ S)
vxS(T ) = ∪Q⊆N\S (v(T ∪Q)− x̃(Q)) for all T ∈ 2S \ {∅, S},

where x̃ = (x̃i)i∈N ∈ (IRD∪P )N is defined for all i ∈ N by

x̃ik =

{
xik if k ∈ D
0 if k ∈ P.

The interpretation of the reduced game is as follows. Suppose the group of all players initially

agrees on an allocation x, and the players in N \ S withdraw from the decision-making process

taking their agreed-upon share of the private goods with them. Then, if the agents in S recon-

sider, they are facing the game vxS, because in their negotiations they take into account that they

can cooperate with some of the players in N \ S as long as those are given their shares of the
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private goods. Note that the players who leave the decision-making process are not guaranteed

anything about the public criteria. Since these criteria are public, their level will ultimately be

determined by the players who still take part in the decision-making process. Hence, players

who leave this process take a risk, but if the solution concept is consistent, then the remaining

players will not change their minds about the initially agreed-upon levels of the public criteria.

This is similar to the treatment of public goods in van den Nouweland et al. (1998).

Let us consider some axioms that are used in the remainder of this section. A solution

concept σ on Γ satisfies:

• One Person Efficiency (OPE) if for each game (N, v) ∈ Γ with |N | = 1 it holds that

σ(N, v) = IR(N, v);

• Individual Rationality (IR) if for each game (N, v) ∈ Γ it holds that σ(N, v) ⊆

IR(N, v);

• Inclusion of Imputation Set for two-player Games (II2) if for every two-player

game (N, v) ∈ Γ it holds that σ(N, v) ⊇ I(N, v);

• Restricted Nonemptiness (r-NEM) if for each game (N, v) ∈ Γ it holds that if

C(N, v) 6= ∅, then σ(N, v) 6= ∅;

• Consistency (CONS) if for each game (N, v) ∈ Γ it holds that x ∈ σ(N, v) implies

xS ∈ σ(S, vxS) for each coalition S ∈ 2N \ {∅, N};

• Converse Consistency (COCONS) if for each game (N, v) ∈ Γ with |N | ≥ 2 and

each allocation x ∈ A(N, v) it holds that if xS ∈ σ(S, vxS) for each S ∈ 2N \ {∅, N}, then

x ∈ σ(N, v);

• Converse Consistency for Two-Player Reductions (COCONS2) if for each game

(N, v) ∈ Γ with |N | ≥ 3 and each allocation x ∈ A(N, v) it holds that if xS ∈ σ(S, vxS) for

each S ∈ 2N \ {∅, N} with |S| = 2, then x ∈ σ(N, v).

The next proposition states that the core satisfies all these axioms.

Proposition 4.2 The core satisfies OPE, IR, II2, r-NEM, CONS, COCONS, and COCONS2.

Proof. It is obvious that the core satisfies OPE, IR, II2 and r-NEM.

11



To prove that the core satisfies CONS, let (N, v) ∈ Γ, x ∈ C(N, v), and S ∈ 2N \ {∅, N}.

Suppose that xS 6∈ C(S, vxS). Then there exist a coalition T ∈ 2S \ {∅} and a vector z ∈ vxS(T )

such that ∑
i∈T x

i
|D

<
= z|D

xi|P
<
= z|P for all i ∈ T

with at least one strict inequality (≤). Since z ∈ vxS(T ), there exist a Q ⊆ N \S and y ∈ v(T ∪Q)

such that z = y − x̃(Q). Observe that by definition of the reduced game, Q = N \ S if T = S.

Now we have∑
i∈T∪Q x

i
|D =

∑
i∈T x

i
|D +

∑
i∈Q x̃

i
|D

<
= (z + x̃(Q))|D = y|D

xi|P
<
= z|P = (y − x̃(Q))|P = y|P for all i ∈ T ∪Q

where at least one of the inequalities is strict (≤). But then x cannot be in the core of (N, v),

since T ∪Q can improve upon it. Hence xS ∈ C(S, vxS) and the core satisfies CONS.

To prove that the core satisfies COCONS2, Let (N, v) ∈ Γ with |N | ≥ 3 and x ∈ A(N, v)

such that xS ∈ C(S, vxS) for every two-player coalition S ∈ 2N \ {∅, N}. We will prove that no

coalition of players can improve upon x, and hence x ∈ C(N, v).

Suppose that N can improve upon x. Then, for some y ∈ v(N ):∑
i∈N x

i
|D

<
= y|D

xi|P
<
= y|P for all i ∈ N

where at least one of the inequalities is strict (≤). Let S ∈ 2N \ {∅, N} have two players. Then,

for a y as mentioned above it holds that∑
i∈S x

i
|D

<
= y|D −

∑
i∈N\S x

i
|D = (y− x̃(N \ S))|D

xi|P
<
= y|P = (y − x̃(N \ S))|P for all i ∈ S

where at least one of the inequalities is strict (≤). Since y − x̃(N \ S) ∈ vxS(S), we find that S

can improve upon xS in (S, vxS). This contradicts xS ∈ C(S, vxS). We conclude that N cannot

improve upon x in (N, v).

Now, let T ∈ 2N \ {∅, N}. To prove that T cannot improve upon x in (N, v), let i ∈ T, j ∈

N \ T , and S := {i, j}. Then xS ∈ C(S, vxS), so in particular {i} cannot improve upon xS in

(S, vxS). Consequently, for T \ {i} ⊆ N \S, there is no z ∈ v((T \ {i})∪{i})− x̃(T \ {i}) ⊆ vxS(i)

such that xi|D
<
= z|D and xi|P

<
= z|P , where at least one of the inequalities is strict (≤). So there

is no y ∈ v(T ) such that∑
k∈T x

k
|D = xi|D +

∑
k∈T \{i} x

k
|D

<
= y|D

xk|P
<
= y|P for all k ∈ T

12



where at least one of the inequalities is strict (≤). Consequently, T cannot improve upon x on

(N, v).

We conclude that x ∈ C(N, v) and that the core satisfies COCONS2.

Notice that COCONS is not implied by COCONS2, since COCONS2 is not applicable to

games (N, v) ∈ Γ with |N | = 2. The proof that the core satisfies COCONS, however, is similar

to the proof that it satisfies COCONS2 and is therefore omitted. 2

Our next proposition lays the basis for the first axiomatization of the core.

Proposition 4.3 Let φ and ψ be two solution concepts on Γ. If φ satisfies OPE and CONS

and ψ satisfies OPE and COCONS, then φ(N, v) ⊆ ψ(N, v) for each game (N, v) ∈ Γ.

Proof. The proof is by induction on the number of players. First, let (N, v) ∈ Γ have only

one player. Then φ(N, v) = ψ(N, v) by OPE. Next, assume that the claim holds for each game

with at most n ∈ IN players and let (N, v) ∈ Γ have n+ 1 players. Let x ∈ φ(N, v). By CONS

of φ: xS ∈ φ(S, vxS) for every S ∈ 2N \ {∅, N}. By induction φ(S, vxS) ⊆ ψ(S, vxS) for every

S ∈ 2N \ {∅, N}. Using COCONS of ψ we obtain x ∈ ψ(N, v). 2

Applying this proposition twice gives us the following axiomatization of the core.

Theorem 4.4 A solution concept σ on Γ satisfies OPE, CONS, and COCONS, if and only if

σ is the core.

Proof. The core satisfies the three axioms according to proposition 4.2. Let σ be a solution

concept on Γ that also satisfies the axioms. Now apply proposition 4.3. Since σ satisfies OPE

and CONS and the core satisfies OPE and COCONS, we find that σ(N, v) ⊆ C(N, v) for each

(N, v) ∈ Γ. Since the core satisfies OPE and CONS and σ satisfies OPE and COCONS, we find

that C(N, v) ⊆ σ(N, v) for each (N, v) ∈ Γ. Hence, σ(N, v) = C(N, v) for all (N, v) ∈ Γ. 2

According to our next result, if a solution concept σ on Γ satisfies individual rationality and

consistency, then it is included in the core.

Proposition 4.5 Let σ be a solution concept on Γ that satisfies IR and CONS. Then σ(N, v)⊆

C(N, v) for each game (N, v) ∈ Γ.

Proof. Let (N, v) ∈ Γ. We discern three cases.

13



• If |N | = 1, then σ(N, v) ⊆ IR(N, v) = C(N, v) by IR of σ;

• If |N | = 2, let x ∈ σ(N, v). Individual players cannot improve upon x by IR of σ. It

remains to show that N cannot improve upon x. Suppose to the contrary that N can

improve upon x. Then there exists a vector y ∈ v(N ) such that∑
i∈N x

i
|D

<
= y|D

xi|P
<
= y|P for all i ∈ N

where at least one of the inequalities is strict (≤). Let i ∈ N . Then

xi|D
<
= y|D −

∑
j∈N\{i} x

j
|D = (y − x̃(N \ {i}))|D

xi|P
<
= y|P = (y − x̃(N \ {i}))|P

where at least one of the inequalities is strict (≤). Since y−x̃(N \{i}) ∈ v(N )−x̃(N \{i}) =

vx{i}(i), it follows that xi 6∈ IR({i}, vx{i}). By IR of σ, xi 6∈ σ({i}, vx{i}). But x ∈ σ(N, v)

and CONS of σ imply that xi ∈ σ({i}, vx{i}), a contradiction. Hence, one has to conclude

that N cannot improve upon x in (N, v).

This leads to the conclusion that σ(N, v)⊆ C(N, v) for two-player games (N, v) ∈ Γ;

• If |N | ≥ 3, let x ∈ σ(N, v). By CONS of σ, xS ∈ σ(S, vxS) for each S ∈ 2N \ {∅} with

|S| = 2. By the previous step, σ(S, vxS) ⊆ C(S, vxS) for such two-player coalitions S. Using

COCONS2 of the core, it follows that x ∈ C(N, v). 2

In the part of the proof of proposition 4.5 where we indicate that the grand coalition N in a

two-player game (N, v) cannot improve upon an allocation x ∈ σ(N, v) the use of summation

signs and notations like N \ {i} seems unnecessarily complicated, since N \ {i} consists of only

one player. We adopt the more general notation, however, because with this notation it is easily

seen that it also proves that the grand coalition cannot improve upon an allocation x ∈ σ(N, v)

in games with an arbitrary number of players.

Our next axiomatization applies the converse consistency axiom for two-player reductions.

Theorem 4.6 A solution concept σ on Γ satisfies IR, II2, CONS, and COCONS2 if and only

if σ is the core.

Proof. The core satisfies the four axioms by proposition 4.2. Let σ be a solution concept on Γ

that also satisfies the axioms. Proposition 4.5 shows that σ(N, v) ⊆ C(N, v) for every (N, v) ∈ Γ.

14



It remains to show that C(N, v) ⊆ σ(N, v) for each (N, v) ∈ Γ. We consider three separate

cases in which the game has one, two, or more than two players. First we consider two-player

games, since this result is required for the argumentation in one-player games.

• If |N | = 2, we know that σ(N, v)⊆ C(N, v) from proposition 4.5 and C(N, v) = I(N, v)⊆

σ(N, v) by II2 of σ. So C(N, v) = σ(N, v);

• Consider a one player game ({i}, v) and let xi ∈ C({i}, v). Consider j ∈ U \ {i} and the

game ({i, j}, w) ∈ Γ defined by w(i) = w({i, j}) = v(i) and w(j) = {a} with a|D = 0 and

a|P = xi|P . Denote the allocation in ({i, j}, w) ∈ Γ which gives xi to player i and a to

player j by (xi, a). Then (xi, a) ∈ C({i, j}, w) = σ({i, j}, w). Also, ({i}, w(xi,a)
{i} ) = ({i}, v),

since w
(xi,a)
{i} (i) = w({i, j})− ã = v(i). By CONS of σ, xi ∈ σ({i}, w

(xi,a)
{i} ) = σ({i}, v).

Hence, C(N, v) ⊆ σ(N, v) if |N | = 1;

• If |N | ≥ 3, let x ∈ C(N, v). By CONS of the core: xS ∈ C(S, vxS) = σ(S, vxS) whenever

|S| = 2, hence x ∈ σ(N, v) by COCONS2 of σ.

We conclude that σ(N, v) = C(N, v) for all games (N, v) ∈ Γ. 2

5 An Axiomatization of the Core with Enlightening

In the proofs of theorems 4.4 and proposition 4.5, we showed that a solution concept σ on Γ

satisfies σ(N, v)⊆ C(N, v) for each game (N, v) ∈ Γ by assuming that σ satisfies consistency and

some form of individual rationality or one person efficiency, i.e, an assumption that focusses on

individual players. The other inclusion, C(N, v) ⊆ σ(N, v) was harder to prove. In the previous

section two notions of converse consistency were used to establish this part. In the article of Peleg

(1985) on an axiomatization of the core of NTU games, it was shown that — given an infinite

set of potential agents from which the finite player sets are drawn — the converse consistency

axiom can be replaced by a (restricted) nonemptiness axiom to establish inclusion of the core in

σ. The same is observed in axiomatizations of equilibria in noncooperative games (cf. Peleg and

Tijs (1996) and Norde et al. (1996)), where properties like restricted nonemptiness, individual

rationality, consistency and converse consistency are studied in a different set-up. Peleg and Tijs

(1996) prove that if a solution concept on a set of noncooperative games satisfies consistency and

a requirement on single player games, it is a subset of the Nash equilibrium set. If, in addition,
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a converse consistency property is imposed, the solution concept coincides with the set of Nash

equilibria. Norde et al. (1996) show that in mixed extensions of finite noncooperative games

converse consistency can be replaced by nonemptiness.

In the current section we slightly modify the definition of reduced games of the previous

section and show that the core can be axiomatized by means of restricted nonemptiness, con-

sistency with respect to the new type of reduced games, and individual rationality. A similar

definition of reduced games is used in Voorneveld and van den Nouweland (1997) to provide a

new axiomatization of the core for games with transferable utility.

The section concludes with an example showing that converse consistency cannot be replaced

with restricted nonemptiness if the definition of reduced games from section 4 is used.

Definition 5.1 Let (N, v) ∈ Γ, x ∈ A(N, v), and S ∈ 2N \ {∅, N}. The reduced game (S, vxS) of

(N, v) with respect to allocation x and coalition S is the game defined by:

vxS(S) = v(N )− x̃(N \ S)
vxS(T ) = ∪Q⊆N\S,Q 6=∅ (v(T ∪Q)− x̃(Q)) for all T ∈ 2S \ {∅, S}.

The difference between this definition of a reduced game and the one in definition 4.1 is that we

require the set Q in the specification of vxS(T ) to be nonempty. This reflects the intuition that,

although attention is restricted to the players in S, the players in N \ S do not leave the game,

but strongly influence the game from behind the scenes. The remaining players don’t ignore

those in N \ S, but always cooperate with at least some of them.

With the reduction as given in definition 5.1, we obtain a new consistency axiom CONS. A

solution concept σ on Γ satisfies:

• CONS if for each game (N, v) ∈ Γ it holds that x ∈ σ(N, v) implies xS ∈ σ(S, vxS) for

each coalition S ∈ 2N \ {∅, N}.

The core satisfies CONS. This is shown in the following proposition, along with other statements

concerning the core and CONS.

Proposition 5.2 The following claims are true:

1. The core satisfies CONS;

2. Consider a game (N, v) ∈ Γ with |N | ≥ 3. If x ∈ IR(N, v) and xS ∈ C(S, vxS) for each

S ∈ 2N \ {∅, N} with |S| = 2, then x ∈ C(N, v);
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3. Let σ be a solution concept on Γ that satisfies IR and CONS. Then σ(N, v)⊆ C(N, v) for

each (N, v) ∈ Γ.

Proof.

1. The proof that the core satisfies CONS is similar to the proof that the core satisfies

consistency in proposition 4.2;

2. Suppose x ∈ IR(N, v) and xS ∈ C(S, vxS) for each S ∈ 2N \ {∅, N} with |S| = 2. Then

individual players cannot improve upon x because x ∈ IR(N, v). To show that N and

other coalitions T ∈ 2N with |T | ≥ 2 cannot improve upon x, apply the arguments used

in the proof that the core satisfies COCONS2 in proposition 4.2;

3. Let (N, v) ∈ Γ. The proof that σ(N, v) ⊆ C(N, v) if |N | ∈ {1, 2} is completely analogous

to the corresponding part of the proof of proposition 4.5. If |N | ≥ 3, let x ∈ σ(N, v). By

CONS of σ, xS ∈ σ(S, vxS) for each S ∈ 2N \{∅, N} with |S| = 2. Hence, using the previous

step of this proof, we find that xS ∈ C(S, vxS) for each S ∈ 2N \ {∅, N} with |N | = 2. By

IR of σ, x ∈ σ(N, v) ⊆ IR(N, v). Then, by part 2 of the current proposition, it follows

that x ∈ C(N, v). 2

The main result of this section is the following axiomatization of the core.

Theorem 5.3 A solution concept σ on Γ satisfies IR, CONS, and r-NEM if and only if σ is

the core.

Proof. We have already seen that the core satisfies the three axioms. Let σ be a solution

concept on Γ that also satisfies the three axioms. From Proposition 5.2, part 3, we know that

σ(N, v) ⊆ C(N, v) for each (N, v) ∈ Γ. It remains to show that C(N, v) ⊆ σ(N, v) for each

(N, v) ∈ Γ.

Let (N, v) ∈ Γ. If C(N, v) = ∅ we are done, so assume C(N, v) 6= ∅, and let x = (xi)i∈N ∈

C(N, v). Also, let n ∈ U \N and define a game (N ∪ {n}, w) ∈ Γ as follows:

w(n) = {y ∈ IRD∪P | there exists a k ∈ D s.t. yk < 0}
∪ {y ∈ IRD∪P | there exists a k ∈ P s.t. yk < xik}

w(i) = {y ∈ IRD∪P | there exists a k ∈ D ∪ P s.t. yk < xik} for i ∈ N
w(S ∪ {n}) = v(S) for S ⊆ N, S 6= ∅
w(S) = v(S) for S ⊆ N, |S| ≥ 2.
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(Recall that for public criteria k ∈ P one has that xik = xjk for all players i, j ∈ N . Consequently,

it does not matter which player i ∈ N is chosen in the definition of w(n) above.)

We show that C(N ∪ {n}, w) = {(x, d)}, where (x, d) is the allocation that gives xi ∈ IRD∪P

to each player i ∈ N and d ∈ IRD∪P to player n, with d|D = 0 and d|P = xi|P (for arbitrary i ∈ N ,

as above). Obviously, (x, d) ∈ C(N ∪ {n}, w). Now, let (bi)i∈N × {bn} ∈ C(N ∪ {n}, w). Using

the definitions of (w(j))j∈N∪{n}, we see that it must hold that bi >= xi for each player i ∈ N and

bn >= d, to make sure that individual players in N ∪ {n} cannot improve upon (bi)i∈N ×{bn}. If

one or more of these inequalities are strict, then∑
i∈N∪{n} b

i
|D

>
=

∑
i∈N x

i
|D + d|D =

∑
i∈N x

i
|D

bi|P
>
= xi|P for each player i ∈ N ∪ {n},

with at least one strict inequality. This would contradict (x, d) ∈ C(N ∪ {n}, w). Hence,

(bi)i∈N = (xi)i∈N and bn = d and this proves that (x, d) is the unique core element of (N∪{n}, w).

Also, we claim that (N,w
(x,d)
N ) = (N, v). Namely,

w
(x,d)
N (N ) = w(N ∪ {n})− d̃ = w(N ∪ {n})− 0 = v(N )

w
(x,d)
N (S) = w(S ∪ {n})− d̃ = w(S ∪ {n})− 0 = v(S) for S 6∈ {∅, N}.

By r-NEM of σ we know that σ(N ∪ {n}, w) 6= ∅ and we already saw that σ(N ∪ {n}) ⊆

C(N ∪ {n}, w) = {(x, d)}. So, σ(N ∪ {n}, w) = {(x, d)}. Hence, by CONS of σ: x = (x, d)N ∈

σ(N,w
(x,d)
N ) = σ(N, v). This proves that C(N, v) ⊆ σ(N, v), finishing our proof. 2

The main step in the proof, showing that C(N, v) ⊆ σ(N, v) for each game (N, v) ∈ Γ, proceeds

by ‘enlightening’ core elements. In this procedure, one considers a game with a nonempty

core and an arbitrary allocation in this core. Then, a game is constructed with a player set

that strictly includes the players of the original game in such a way that this larger game has a

unique core element and such that this new, enlarged, game and its unique core element reduced

to the original player set are the original game and core element. Restricted nonemptiness is

then used to derive the desired inclusion.

We conclude by showing that the analogon of theorem 5.3 does not hold if we replace CONS

by consistency with respect to the old definition of reduced games. In particular, we construct

a solution concept σ on Γ that satisfies IR, CONS, and r-NEM, which is not equal to the core.

Let T ⊂ Γ be the class of games with a nonempty core, one divisible criterion, and zero

public criteria:

T := {(N, v) ∈ Γ | C(N, v) 6= ∅, |D| = 1, P = ∅}.

18



Since for each game (N, v) ∈ T the core is nonempty, there is only one criterion, and v takes

nonempty values (see section 2), we conclude that the function v is bounded from above. Hence,

the function sup v, where sup v(S) is the supremum of v(S) for each S ∈ 2N \{∅}, is well-defined.

Define a solution concept σ on Γ as follows:

σ(N, v) =

{
C(N, v) if (N, v) 6∈ T
{Nu(N, supv)}, the nucleolus of (N, sup v) if (N, v) ∈ T

If (N, v) ∈ T , then C(N, v) = C(N, sup v). The game (N, sup v) is a TU-game. Recall (cf.

Schmeidler (1969)) that the nucleolus of a TU-game with a nonempty core is always included

in the core. The solution concept σ satisfies r-NEM because the nucleolus exists for TU-games.

To prove IR of σ, we distinguish between (N, v) ∈ T and (N, v) 6∈ T . If (N, v) 6∈ T , it is clear

that σ(N, v) = C(N, v) ⊆ IR(N, v) by IR of the core. If (N, v) ∈ T , then C(N, v) = C(N, sup v).

Consequently,

σ(N, v) = {Nu(N, supv)} ⊆ C(N, sup v) = C(N, v) ⊆ IR(N, v)

by IR of the core and inclusion of the nucleolus in the core if the core of a TU-game is nonempty

(Schmeidler (1969)).

The solution concept σ also satisfies CONS. If (N, v) 6∈ T , then (S, vxS) 6∈ T for each x ∈

A(N, v) and S ∈ 2N \ {∅, N} and hence it follows from consistency of the core that xS ∈

σ(S, vxS) for each x ∈ σ(N, v) and S ∈ 2N \ {∅, N}. So, suppose (N, v) ∈ T , so that σ(N, v) =

{Nu(N, supv)}. Let S ∈ 2N \ {∅, N} and x ∈ σ(N, v), i.e., x = Nu(N, supv).

Notice, first of all, that the reduced game (S, vxS) is again an element of T . It is clear

that the reduced game has no public and exactly one private criterion. Also, x ∈ σ(N, v) =

{Nu(N, supv)} ⊆ C(N, sup v) = C(N, v) and the core satisfies CONS. This shows that xS ∈

C(S, vxS) and, hence, C(S, vxS) 6= ∅.

We know by consistency of the nucleolus for TU-games (cf. Peleg (1986)) that xS is the

nucleolus of (S, w), where the reduced game w is defined by

w(S) = (sup v)(N )− x(N \ S)

w(T ) = maxQ⊆N\S{(sup v)(T ∪Q)− x(Q)} for T ∈ 2S \ {∅, S}.

Notice that

w(S) = (sup v)(N )− x(N \ S)

= sup(v(N )− x(N \ S))

= sup vxS(S),
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and for T ∈ 2S \ {∅, S}:

w(T ) = max
Q⊆N\S

{(supv)(T ∪Q)− x(Q)}

= max
Q⊆N\S

{sup(v(T ∪Q)− x(Q))}

= sup∪Q⊆N\S{v(T ∪Q)− x(Q)}

= sup vxS(T ).

So xS = Nu(S, w) = Nu(S, sup vxS) ∈ σ(S, vxS), completing our proof that σ satisfies CONS.

To show that σ 6= C, consider the two-player game ({1, 2}, v) ∈ T with v(1) = v(2) = {0}

and v({1, 2}) = {1}. Then σ({1, 2}, v) = {Nu({1, 2}, v)}= {( 1
2 ,

1
2)} 6= C({1, 2}, v) = {(x1, x2) ∈

IR2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 = 1}.

As an aside, notice that the solution concept σ also satisfies OPE. This follows from OPE

of the core and σ(N, v) = C(N, v) if |N | = 1. This implies that in theorem 4.4 the converse

consistency axiom cannot be replaced by restricted nonemptiness and individual rationality.
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