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Klyuchevskoy volcano, located in Kamchatka's subduction zone, is one of

the most active arc volcanoes in the world and contains some of the highest

8 180 values for olivines and basalts. I present an oxygen isotope and melt

inclusion study of olivine phenocrysts in conjunction with major and trace

element analyses of 14C and tephrochronologically-dated tephra layers and

lavas spanning the eruptive history and the Al-Mg compositional range of the

basalt to basaltic andesites found at Klyuchevskoy. A hybrid model of

moderately-high 6 180 silicate melt from the subducting slab, coupled with high

6 180 fluid is provided to best explain Klyuchevskoy's 1) voluminous, high-rate

volcanism, 2) unusual high- 6 180 signature, 3) two endmember basaltic magma,

and, 4) hydrous high-Al, high-6 180 component.
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CHAPTER I
 

INTRODUCTION
 

Part A: Geologic Overview of the Kamchatka Peninsula 

1.1 Tectonic History of Kamchatka 

The Kamchatka Peninsula, located in far eastern Russia, is an active 

component of the Pacific 'Ring of Fire' (Figure 1). The area has had a complex 

Figure 1. Map view of Kamchatka Peninsula, 
Eastern Russia. Three major volcanic zones are 
present: The Sredinny Ridge (SR), Central 
Kamchatka Depression (CKD), and the Eastern 
Volcanic Belt (EVB). Dashed lines indicate 
depth of the subducting Pacific plate below 
Kamchatka. Modified after Portnyagin et al. 2007b 
and Bindeman et al. 2004. 

tectonic history as illustrated in 

Figure 2. Around 80 m.y.a. 

Kamchatka did not exist as we 

know it today. Instead the area 

was occupied from northwest to 

southeast by the Asian plate, the 

Eurasian plate, the Kula plate, and 

the Pacific plate. At this time there 

were two primary zones of 

subduction below the Kula plate: 

the Eurasian plate to the NWand 

the Pacific plate to the SE (Figure 

2a; Konstantinovskaia 2000). Over 
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the next 20 m.y. this relationship continued until the transition of the Kula plate to 

encompass two spreading centers at the plate's NW and Se boundaries (Figure 

2b). By the Early Eocene the Sredinny Massif, a proposed micro-continent from 
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Figure 2. Synthetic cross-section of the evolution of Kamchatka through the interaction of the 
Asian continental margin, the Kula plate, and the Pacific Plate starting in the Late Cretaceous 
(-80 my) to the present. Primary features are: OCVB, Okhotsk-Chukotsky Volcanic Belt; SM, 
Sredinny Massif; IVB, Iruney-Vatuna oceanic Basin; AVA, Acahivayam-Valaginskaya arc; 
KRA, Kronotskaya arc; VOB, Vetlovka Oceanic Basin; ASIA, Asian Plate; EURASIA, Eurasian 
Plate; KULA, Kula plate; PACIFIC, Pacific plate; CKVB, Central Kamchatka Volcanic Belt; 
EKVB, Eastern Kamchatka Volcanic Belt. Adapted from Konstantinovskaia 2000. 

the Sea of Okhotsk (Bindeman et al. 2002) located on the Eurasian plate, had 

accreted onto the northwestern section of the Kula plate essentially stalling 

subduction and forcing the subduction of the Kula plate below the Eurasian plate 

with in the next 30 my (Figure 2 c-e Konstantinovskaia 2000). By the Late 

Eocene the accreted terrain at the Eurasian-Kula plate boundary had become 

volcanically active and formed the Central Kamchatka Volcanic Belt. Accretion of 
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other terrains from the Kula plate continued eastwards until the Pliocene with the 

accretion of peninsulas onto Eastern Kamchatka, resulting in the locking of the 

subduction zone. This resulted in the break-oft and sinking of the subducting 

Kula plate and subsequent subduction zone migration to the East, to its present 

location, with the Pacific plate subducting under the Asian plate. This transition 

initiated the formation of the Eastern Kamchatka Volcanic Belt (Figure 2 f,g; 

Konstantinovskaia 2000). As a result, today the Kamchatka peninsula is a 

complex jumble of accreted oceanic terrains, microcontinents, and accretionary 

wedges. These properties and their impact on volcanism are further examined in 

the following chapters. 

1.2 Volcanic Zones of Kamchatka 

Kamchatka's rich tectonic history is expressed in three main geologic 

regions (Figure 3): the accreted terrain of the Sredinny Massif, named the 

Sredinny Ridge to the northwest, the Eastern Volcanic Belt (EVB) to the 

southeast and the Central Kamchatka Depression (CKD), which falls between 

the two (Churikova et al. 2001; Dorendorf et al. 2000). The Sredinny Ridge was 

the most volcanically active until approximately 5 m.a. with the migration of the 

volcanic front to the east (Figure 2 f-g). Current volcanism in the region is 

represented by Khangar and Ichinsky volcanoes. As it has little bearing on this 

study, the Srdinny Ridge is not further discussed. The EVB, a -100 km wide 

region parallel to the trench, is generally considered to be a frontal subduction­



4 

related arc (Portnyagin et al. 2007b). The CKD, a 200 km wide graben feature, 

is home to some of the most active of Kamchatkan volcanoes, most notably the 

Klyuchevskoy Group volcanoes. The source of their voluminous volcanism is not 

yet well constrained but will be further examined in this study. 

1.3 Regional Geologic Structures 

At present Kamchatka is bordered by three plates: the Okhotsk plate to 

the west; the Komandorsky plate to the NE; and the Pacific plate to the SE. As 

shown in Figure 3, the boundary between the latter two plates is a series of 

fracture zones (FZ) with the Alpha FZ to the northeast, followed by the Bering FZ 

and Aleutian FZ to the southeast. The subducting Hawaii-Emperor Seamount 

580N 

S70N 

560N 

550N 

540N 
1590E 1610E 1630E 1650E 

Figure 3. A map view of the eastern Kamchatka peninsula and local plate boundaries modified 
after Portnyagin et al. (2007b). White dashed lines indicate boundaries between volcanic zones. 
Short black dashed lines indicate inferred subducted plate depth below the crust. Solid black 
lines indicate major fracture zones. White circles represent volcanoes. EVB- Eastern Volcanic 
Belt; .CKD-Central Kamchatka Depression. 
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Chain is located further to the SE of the Kurile-Kamchatka trench (Dorendorf et 

al. 2000) within the Pacific plate. The Pacific plate is subducting under the 

Eurasian plate at a fast rate of -7.8cm/yr at a moderate slab angle of 55°, which 

shallows to the north to around 25° (e.g. Gorbatov et al. 1997; 1999). For the 

volcanic front this translates to a slab depth of -1 00-140 km, while for the CKD 

volcanoes depths range from 140-180 km, although the slab shallows to a depth 

of -100 km below Shiveluch, the northernmost active volcano, adjacent to the 

Aleutian trench (Portnyagin et al. 2007a). 

1.4 Volcanoes of the Central Kamchatka Depression "CKD" 

The CKD is host to well over a dozen volcanoes (Figure 3), with the 

largest cluster found at the Klyuchevskoy Group Volcanoes. Active volcanoes 

are all less then 50,000 years old (Dorendorf et al. 2000) and lay on a thick base 

of Middle to Late Pleistocene plateau basalts (Melekestsev 1980). The group 

includes active volcanoes such as Plosky Tolbachik and Bezymianny which abut 

Klyuchevskoy, the most active of the group, and the hydrothermally-active 

Ushkovsky volcano. Extinct volcanoes include Ostry Tolbachik, Malya and 

Bolshaya Udina, Ostaraya and Ovalanaya Zimina, and Kamen (Portnyagin et al. 

2007b). 

Adjacent to the Aleutian FZ, north of the Klyuchevskoy Group, is the 

Shiveluch Group volcanoes which consist of the highly active Shiveluch volcano 

and dormant Zarechny and Kharchinsky volcanoes. The next volcanic group, the 
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Shisheisky complex, is located inland of the Bering Fl approximately 50 km 

north the Shiveluch Group Volcanoes. At the northern extent of the CKD, and 

adjacent to the Alpha Fl, are Nachikinsky and Khailulia volcanoes. Volcanism 

related to the Shisheisky complex and Nachikinsky and Khailulia volcanoes is not 

directly subduction related and for the sake of relevance is not further discussed. 

Seismic tomographic P-wave imaging of the Klyuchevskoy Group area 

shows a significant narrow P-wave anomaly from 20km depth which broadens at 

30-40km below the edifice (Lees et al. 2007). Piyp and Yefimova (1993) infer 

this conical zone to be the primary magma source for the entire Klyuchevskoy 

group, with narrow conduits emanating from this source to smaller, secondary 

magma chambers for each individual volcano. 

1.5 Geochemistry and Mineralogy of the CKD 

Volcanoes of the CKD have not been uniformly researched and thus 

whole rock and mineral chemical analyses are skewed in favor of the most active 

and tectonically "interesting" volcanoes such as Klyuchevskoy, Tolbachik, 

Bezymianny, Shiveluch. Products from these Holocene volcanoes span a wide 

compositional range from medium-K and low- to medium-Fe basalts, which make 

up the majority of the rocks, to andesites of normal alkalinity (e.g. Kersting and 

Arculus 1994; Volynets 1994; Ariskin et al. 1995; Dorendorf et al. 2000; Ozerov 

2000; Churikova et al. 2001; Mironov et al. 2001; Portnyagin et al. 2007b). 

Locally, the base of the Klyuchevskoy group is composed of mega­

plagiophyric trachybasalts. This basalt is easily identified by the up to several 
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centimeter plagioclase crystals, which comprise up to 30% of the rock in hand 

sample. The edifice of Klyuchevskoy volcano, its predecessor Kamen volcano, 

and Bezymianny volcano are all medium-K basalts to basaltic andesites, 

respectively. Products range from high-Mg to high-AI within individual volcanoes. 

Klyuchevskoy and Kamen lavas and tephra contain olivine, pyroxene, and 

plagioclase phenocrysts whereas Bezymianny products contain of pyroxene­

plagioclase and amphibole-plagioclase assemblages (e.g. Kersting and Arculus 

1994; Bindeman et al. 2004). 

Volcanoes to the north, including Shiveluch, Zarechny, and Kharchinsky, 

(Figure 3) are composed of medium-to low-Fe, medium-K calc-alkaline basalts 

to andesites. The rocks are similar in major element composition to their 

neighbors in the south, although they are generally higher in MgO. Amphibole 

and Ca-rich pyroxene and olivine are common phenocryst phases in both 

andesitic and more primitive compositions (Portnyagin et al. 2007b). 

1.6 Tephrachronology 

Tephras from explosive Kamchatkan eruptions are found across the 

Kamchatka peninsula, providing tephra layers from numerous volcanoes in a 

single outcrop. Within the last two decades many of these ash layers have been 

14C dated (Braitseva et al. 1997). By identifying dated ash layers interspersed in 

tephra or lava deposits, age interval estimates of bracketed tephra or lava 

deposits can be determined. A single outcrop may contain thousands of years 

worth of volcanic deposits that can be sampled in a matter of days. 
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Eruptions providing these "marker beds" found in the Klyuchevskoy area 

include: 1955-56 and 2300 BP Bezymianny Volcano (BZ); periodic eruptions 

from 250-4800 BP at Shiveluch Volcano (SH); 1800 and 6000 BP Ksudach 

Volcano; 6600 Khungar Volcano (KHG); and 7550 Kizimen Volcano (KZ). 

Part B: Geologic Overview of Klyuchevskoy Volcano 

1.7 Klyuchevskoy Geology and Magma Types 

Klyuchevskoy is the dominant volcano of the Klyuchevskoy Group 

Volcanoes, located in Kamchatka's CKD (Figure 4). Its 4750 m high edifice 

consists of basaltic to basaltic andesitic tephra and lavas, and according to the 

14C dating of its basement formed entirely over the last -7000 years 

Figure 4. Klyuchevskoy Volcano aerial photograph of the north-east flank including satellite 
cones: I-Podkova, II-Lepyshka, III-Cone D, IV-Levashov, v-o, VI-E, VII-I, VIII-Ochki, IX­
Biliukai, X-So Photograph by Vasilii Podtabachnyi. 
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(Melekestsev et al. 1980; Khrenov et al. 1991). Klyuchevskoy is built upon the 

flanks of the extinct basalt-andesite volcanoes of Kamen and Lavovy Shish, late 

Pleistocene shield volcanoes, and on the mid Pleistocene plateau basalts that 

serve as pedestal under most of giant stratacones in the Central Kamchatka 

Depression. Products more differentiated than basaltic andesites are not found 

at Klyuchevskoy, but are abundant at the neighboring Bezymianny volcano which 

shares common 0, Sr, Pb, Nd isotopic characteristics with Klyuchevskoy 

(Bindeman et al. 2004; Almeev 2005) and may be supplied by the same mantle 

source as for Klyuchevskoy. The pre-Pleistocene basement under the CKD is 

made of mafic intra-oceanic accretionary terrain (Konstantinovskaia, 2001). 

Klyuchevskoy is the most volcanically active of the group and possibly is 

the most active arc volcano on earth, yielding prolific magma production rates of 

0.008 to 0.035 km3/yr (Khrenov et al. 1991). The voluminous volcanism in this 

area and the CKD in general cannot simply be explained by the fast rate of 

subduction (-7.8 cm/yr; e.g Gorbatov et al. 1997;1999). Instead, substantial 

partial melting and/or fluid fluxing of the subducted thick hydrated crust (Kersting 

and Arculus 1994) of the Hawaii-Emperor Seamount chain has been called upon 

to explain this high rate of volcanism (Volynets 1994; Kersting and Arculus 1994; 

Dorendorf et al. 2000). Alternatively or in addition, an episode of "catastrophic 

slab loss" in the Pliocene (e.g. Levin et al. 2002), in which a portion of the 

subducted slab breaks off and sinks into the mantle (Figure 2g), is theorized to 

have caused hot mantle upwelling and mantle-lower crust interaction and 

melting, resulting in voluminous volcanism in the CKD. Mantle edge flow 
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(Yogodzinski et al. 2001) can explain slab melting and adakitic volcanism at 

northern CKD volcanoes such as Shiveluch, but Klyuchevskoy exhibits stronger 

subduction-flux-related trace element patterns (see Portnyagin et al. 2007a,b and 

below). 

Klyuchevskoy basalts and basaltic andesites have been studied for 

several decades, resulting in the creation of several major and trace elemental 

databases (Appendix A; see also GEOROC website). Klyuchevskoy's volcanic 

rocks consist of both high-Mg and high-AI end members, as well as intermediate 

products. However, nearly all of the published analyses represent sampling of 

the same 10-20 historic to <200 BP lavas and scoria cones and repeated 

analyses of "prehistoric" Bulochka cone, the most magnesian, olivine-rich lava at 

Klyuchevskoy in the 2200-2700 BP range. Based on analyses of these lavas, 

Ariskin et al. (1995) has suggested that high-Mg basalts erupted earlier in the 

history of Klyuchevskoy and that later magmas were more differentiated 

(predominantly high-AI compositions). 

1.8 Oxygen Isotope Studies 

Motivation for this study stems from an effort to better understand the 

source of Klyuchevskoy's extremely high 8180 values for basalts and their olivine 

phenocrysts, which have some of the highest 8180 values in the world for arc 

volcanism. We used both lava and tephra to provide a chronologically extensive 

dataset so that we could investigate the 8180 signatures of both phenocrysts and 

the melt (glass) over time. 
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Kersting (1991), Pineau et al. (1999), and Pokrovsky and Volynets (1999) 

reported 8180 whole-rock values displaying a range of 5.5-8.5%0 (normal mantle 

derived melts values to up to 3%0 higher). Dorendorf et al. (2000), using the laser 

fluorination technique, found Klyuchevskoy lava-derived olivines range from 5.8 

to 7.1%0 (0.4-1.7%0 higher than mantle-derived olivine) and suggested that these 

elevated 8180 values reflect the involvement of high-8180 fluids derived from the 

subducted Hawaii-Emperor crust into the mantle wedge to produce melt. 

However, prohibitively large prop0l1ions of 20% or more (by weight) high 8180 

fluid are required in this model and thus time integration (i.e. multiple small 

additions) of 8180 (but not water) would be needed. A second possibility is that 

this 8180 enrichment could be linked to fractional crystallization and/or crustal 

assimilation of high 8180 arc roots from accreted terrain such as amphibolite or 

other similar material (likely metamorphosed remnants of the Kula plate; 

Osipenko et al. 2007) beneath the CKD (Bindeman et al. 2004; Portnyagin et al. 

2007a,b). A third possibility, the incorporation of subducted oceanic sediments, 

which have high 8180 valuesdue to low temperature reaction with seawater 

(Kersting and Arculus 1994, Muehlenbachs, 1986), could contribute to this 8180 

anomaly by providing high 8180 sediment melt. However, Kersting and Arculus 

(1995) argued that a significant sediment contribution would result in the 

presence of radiogenic isotopes of Pb and Sr and non-radiogenic Nd in the 

magma source relative to MORB, which is not seen. Likewise, Volynets (1994) 

using 10Be and the Tera date method (Tera et al. 1986), calculated subduction­
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recycled sediment added to the mantle wedge beneath the Kamchatkan arc to be 

<1.5%. Duggen et al. (2007) offers an alternative explanation for the lack of a 

"sediment signature" in that current characterization of North Pacific sediments 

fails to take into account the possibility of a greater accumulation of volcanic ash 

in the sediment column closer to the subduction zone, which, if present, could 

create a different marine pelagic "sediment signature" than previously expected. 

Finally, Portnyagin et al. (2007b) suggested that a "dacite component" that 

results from slab melting is required to explain major and trace element features 

of mafic CKD magmas. They provide two basic models: (1) where dacitic slab 

melt and mantle melt mix to produce a pyroxenite which, at a later stage, 

undergoes further melting and mixing with mantle melts before reaching the 

plumbing system below CKD volcanoes; (2) slab dehydration triggers slab 

melting which in turn instigates mantle melting in a continuous reaction. Both 

models assume some shallow mixing/assimilation of lithospheric crust. 

Here we present oxygen isotope analyses of olivine and matrix glass from 

throughout the eruptive history of Klyuchevskoy, with values ranging from 5.1­

7.2%0 and 5.8-8.1%0, respectively. Major and trace element analyses of bulk 

tephra, olivine phenocrysts, olivine-hosted melt inclusions, and matrix glasses, 

are examined for crustal or subducted-slab-derived fluid signatures. The melt 

inclusion analyses also provide H20 and CO2 concentrations and approximate 

depths that reveal features of the plumbing system and crystallization processes 

beneath the volcano. 
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1.9 Klyuchevskoy from a World Perspective 

Klyuchevskoy Volcano is not the only volcano in the world 

producing high-8180 olivine and magmas. Mount Shasta, located in the Northern 

California Cascade Arc (Grove et al. 2002; 2006), also shows elevated 8180 01 

values ranging from 5.3%0 to 6.0%0 (i.e. as much as 1%0 higher than mantle­

derived olivine values; Martin et al. in prep). Like Klyuchevskoy, Mt. Shasta is a 

very active volcano, located in a subduction zone setting, whose magmas are 

hydrous. Compositionally, Mt. Shasta rocks are more evolved ("high-Mg 

andesites") than the surrounding area. Likewise, the majority of basalts in 

Klyuchevskoy are somewhat more silica rich than their counterparts elsewhere in 

the Central Kamchatka depression. High-Mg varieties of basalts contain 52-53 

wt% Si02 and 10-12 wt% MgO, unlike the 47-48 wt% Si02 as is more commonly 

found for such a high MgO content. Therefore, it is useful to consider the 

components of subduction in the Cascade arc as they can be used to elucidate 

on the factors contributing to the substantial 8180 enrichment at Klyuchevskoy. 
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CHAPTER II
 

SAMPLING AND ANALV"nCAl METHODS
 

2.1 Sampling of Klyuchevskoy Tephra and lava 

Lavas available for sampling cover primarily the most recent 200 years of 

activity at Klyuchevskoy. These flows originated from the summit as well as flank 

vents at lower altitudes in the eastern half of the volcano (see Appendix B for 

lava flows sampled; Figure 5). 

In this work we concentrate primarily on tephra, a product not studied by 

previous researchers. Tephra samples come from several riverbank outcrops 

around the NE quadrangle of Klyuchevskoy volcano and were deposited by both 

summit and parasitic cone eruptions (Figure 5). These ages range from historic 

deposits to those before the onset of Klyuchevskoy's cone (-7000 BP) up to 

8500 BP. Major sample locations are denoted by stars in Figure 5 and 

encompass the entire eruptive history of Klyuchevskoy. 

Tephra layers range from a few millimeters to 1 m in thickness, which 

depends on the strength of the eruption, proximity of the vent, and the wind 

direction at the time of the eruption. Tephra layers are separated by clay-rich 

paleosols, and by lighter colored, more siliceous ash layers from distant 

Kamchatkan eruptions of known 14C age (Figure 6). A relative chronology for 

these tephra layers has been established through their relation to "marker beds" 

(Braitseva el. al. 1997) from major eruptions of volcanoes in the CKD, including: 
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Schiveluch and Bezymianny, as well as more distant volcanoes Ksudach, 

Kizimen, and Khangar. Figure 7 gives a detailed stratigraphy of the sections we 

sampled and the marker beds that were used for tephrachronology. 

N 

[lCIfAlJ 4 

o 5km 
! I I I ! ! 

Figure 5. A map of Klyuchevskoy identifying: 1-Klyuchevskoy summit crater; 2-lava flows; 
3-cinder cones; 4-contours; 5-dry river valleys; 6-Kamchatka River. Stars indicate our 
sampling sites, which include cinder cones and tephra layers spanning the exposed 
-8500 yr eruptive history of Klyuchevskoy Volcano. Site 1- 300-75; Site 2-KLV 5; Site 3­
KLV 15. Sampled lava flows include: I-Bulochka,II-Luchitsky, III-Tuyla,IV-Zavaritsky, V­
Bylinkina, VI-Piip, VII-Apakhonchich, VIII-Belyankin, IX-Ochki, X-Vernadsky. See 
Appendix for exact locations. Map adapted from Ozerov et al. 1997. 
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Given the correlation of tephra layers, and their relative thickness and 

location with respect to the cones, an inference can be made in many cases 

about the source of the tephra. Finer-

grained, thinner tephra layers typically 

come from summit eruptions, while thicker 

coarser deposits are characteristic of local 

parasitic scoria cones. In this work we 

sampled only tephra layers thicker than 

5cm, with lapilli of 1mm and larger which 

exhibit no sorting by water. Samples 

chosen for chemical analysis covered the 

chronological range of Klyuchevskoy. Sand 

sized and smaller particles were not 

Flgure 6. A field photograph of analyzed due to the possibility of aeolian 
Klyuchevskoy tephra and marker ash 
beds. See Appendix B for code and 
age of marker tephra layer. 

segregation and mixing of multiple deposits. 

2.2 Analytical Methods 

Oxygen isotope analyses were performed at the University of Oregon stable 

isotope lab using CO2-laser fluorination. Individual and bulk mineral grains 

ranging in weight between 0.6 and 2 mg were reacted in the presence of purified 

BrFs reagent to liberate oxygen. The gas generated in the laser chamber was 
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Figure 7. Generalized stratigraphic section and sampling of the tephra layers in 
four riverbank sections. Widespread, radiocarbon dated Holocene marker beds 
from explosive Kamchatkan eruptions are shown to the right. These beds were 
used to determine the age interval of studied eruptive products. Samples shown 
have major and trace element analyses given in Table 1. These samples fall in 
the range from the initiation of Klyuchevskoy activity of -8500 BP-present. The 
earliest tephra of Klyuchevskoy sampled (# 24) overlies 1-10 m thick layer of 
glacial moraine, which overlies compositionally-different, megaplagophyric lavas 
belonging to the subalkaline Lavovy Shish volcano, which predates modern 
Klyuchevskoy volcanism. 
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purified through a series of cryogenic traps held at liquid nitrogen temperature, 

and a mercury diffusion pump was used to remove traces of fluorine gas. Oxygen 

was converted to CO2 gas in a small platinum-graphite converter, the yield was 

measured, and then CO2 gas was analyzed on a MAT 253 mass spectrometer. 

Four to seven standards were analyzed together with the unknowns 

during each analytical session. San Carlos olivine (6180 = 5.35%0) and Gore Mt. 

Garnet (6180 =5.75%0) were used. Day-to-day 6180 variability of standards 

ranged from 0.1 to 0.25%0 lighter than their empirical values. Measurements of 

unknowns were appropriately adjusted to correct for this variability. The precision 

on standards and duplicates of individual olivine analyses is better than 0.1 %0. 

Melt inclusions (MI) in olivine were analyzed for H20 and CO2 using 

Fourier Transform Infrared Spectroscopy (FTIR) at the University of Oregon. 

Over 40 melt inclusions in 7 tephra samples were identified, doubly intersected, 

and polished down to wafers 12-80 microns thick, depending on the size of the 

inclusion and olivine host. The thickness of each MI was determined by visual 

measurement under a petrographic microscope and in some cases by 

measurement of interference fringe spacing in reflectance spectra (Nichols and 

Wysoczanski 2007). The output of the FTIR analysis was the absorbance (A) of 

a particular species. Total dissolved H20 was measured from the intensity of the 

asymmetric band at 3550 cm-1 and dissolved C03-
2 was measured using peaks 

at 1515 and 1430. The concentration (c) of a species was then calculated using 

Beer's Law: c = MA / ptE, where M is the molecular weight of the species, p is the 



19 

density of the glass inclusion, I is the thickness of the inclusion, and £ is the molar 

absorption coefficient. The density was estimated initially by assuming an 

anhydrous composition, which was revised through calculation of the H20 

content of the glass and hydrous glass density (Ochs and Lange 1999). The 

molar absorption coefficient for H20 used was 63 ± 3 Umol cm (Dixon et al. 

1995). Since the absorption coefficients for the carbonate doublet at 1515 and 

1430 cm-1 are compositionally dependant, they were calculated for each sample 

using the major element compositions of the melt inclusions and linear equations 

provided in Dixon and Pan (1995). Each melt inclusion was analyzed twice for 

accuracy. Corrections were made for post-entrapment crystallization of the melt 

inclusions (e.g. Sobolev and Shimizu 1993) with most inclusions receiving less 

than 4% olivine addition and with a maximum of 15%. Samples were also 

examined for iron loss (e.g. Danyushevsky et al. 2002), which was determined to 

be insubstantial for the melt inclusions studied. 

Electron microprobe analyses of olivines and melt inclusions were 

performed at the University of Oregon on a Cameca SX100 electron microprobe, 

using 15kV accelerating voltage, 10 nA beam current, and a 10 um spot size for 

olivines and a 15 um spot size for melt inclusions to minimize sodium losses. 

Corrections for sodium loss were done by fitting observed count values vs. time 

with a best fit function, which can be used to extrapolate to time zero to 

determine actual Na20 values. In order to obtain crystal free matrix glass for 

analysis, samples of matrix glass were heated briefly in the sample chamber 

under vacuum (-0 atm) using a high intensity laser to melt all of the phases. 
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These were then quenched by turning off power to the laser and analyzed on the 

electron microprobe. 

Major and trace element whole rock X-ray fluorescence (XRF) analyses 

were performed at the GeoAnalytical lab at Washington State University on their 

ThermoARL Advant'XP+ sequential X-ray fluorescence spectrometer, except for 

the analyses of lavas that were earlier analyzed by XRF at GEOMAR. 

Secondary Ion Mass Spectroscopy (SIMS) analyses of selected melt 

inclusions were done at the Leibniz Institute of Marine Sciences (IFM-GEOMAR) 

in Yaroslavl', Russia using a Cameca 4f ion microprobe using 0 2 
+ oxygen 

primary beam and energy filtering to resolve isobar interferences on oxides of 

heavy REE on light REE. 
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CHAPTER III
 

RESULTS
 

3.1 Lava and Tephra Record of Klyuchevskoy Volcano 

Whole rock MgO and AI203 data for Klyuchevskoy tephra show two distinct 

endmembers of basalt: High-Mg (8-11 wt% MgO), and high-AI (17-19 wt% A1203, 

3-6.5 wt% MgO), with intermediate basalt (6.5-8 wt% MgO, 15-17 wt% A120 3) in 

between (Figure 8, Appendix A). These data overlap with previously published 
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Figure 8. Compositional variations of MgO and AI20 3 within collected lava samples and 
tephra (this study) throughout the eruptive history of Klyuchevskoy. There is a clear 
negative correlation between MgO and AI20 3 and an overlap between analysis of 
samples presented here and published data (Portnyagin et al. 2007, GEOROC data is 
from http://georoc.mpch-mainz.gwdg.de/georoc/Entry.html). 
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analyses of lavas (Figure 8). To confirm the presence of these compositional 

groups we have plotted histograms (Figure 9) of all published analyses of 

Klyuchevskoy rocks from the GEOROC database in addition to recently 

published data from Portnyagin et al. (2007a,b) and data from this study. 

members erupted throughout the history of Klyuchevskoy (Figure 10). In the 

lava record it has been observed that high-AI and high-Mg lavas occurred 

together in the same eruption (e.g. 1951 Bylinkinoi lava; Khubunaya 2007). The 

majority of our tephra samples are, however, high-AI. In our extensive 
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Figure 9. Frequency of Klyuchevskoy whole rock 
compositions for (a) AI20 3 and (b) MgO (wt%). Data is 
from this study and compiled from the GEOROC 
database and Portnyagin et al. (2007). 
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2 

3 

We find three maxima on 

the MgO and Ab03 

histograms, two 

corresponding to the above-

defined high-Mg and high-AI 

compositional groups based 

on tephra, while the third 

maximum relates to the 

separate group of samples 

with the highest MgO and 

-FOBB olivine. This group 

has likely formed due to 

olivine accumulation. 

Our data demonstrates 

that high-Mg and high-AI end 
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tephrachronological record, we find no distinct geochemical trend relating age of 

the volcanic material to MgO, Ah03, or 818 0 (Appendix A, Figure 10, 11). 

Nearly all of the samples from these compositional groups are enriched in 8180 

with respect to mantle values, with high-AI to intermediate basalt being the most 

enriched at 7.7-8.1%0, which is >2%0 higher than mantle melts (Table 1, Figure 

11). 

Bulk and individual olivine analyses fail to exhibit trends with composition, 

although 8180 values are enriched from 5.1%0 to 7.3%0, up to 2.1%0 higher than 

normal mantle olivine (Figure 12). Basaltic glass shows a trend of increasing 

8180 with increasing Ah03 and decreasing with MgO (Figures 13 a, b), but there 

is considerable scattering and relatively low R2 values for plotted trendlines for 

olivine from tephra. However, the trend is better shown in olivine from lavas. 

Fractional crystallization has been proposed by Ariskin et a!. (1995) to 

account for this range in magma compositions. However, the potential for 8180 

enrichment of residual melts formed by fractional crystallization is -0.3%0 (e.g., 

Bindeman et a!. 2004) and is nowhere near the -1 to 1.5%08180 increase seen 

at Klyuchevskoy, ruling out the possibility of fractional crystallization of high-Mg 

basalt as a viable solution. Another hypothesis for the high 8180 magmas would 

be combined assimilation and fractional crystallization involving the incorporation 

of high-8180 amphibolite, which is further examined using mass balance 

calculations in section 4.2. 
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Figure 11. Isotopic variations against age. A) 8180 glass and ED 8180 olivine. This 
diagram plots tephra samples from this study vs. previously published lava 
samples (Portnyagin et al. 2007a,b). Olivine from both tephra and lava are 
enriched in 8180 by up to 2%0. No evolutionary trends of isotopic values with age 
are evident. These plots, along with Figure 10, suggest coeval eruption and 
mixing of high-AI, high-Mg, and hi9h-8 l80 and loW-8 l80 basalts, tephra or lavas in 
geologic record of Klyuchevskoy volcano. 
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Table 1. Oxygen isotope analyses on individual and bulk phenocrysts and 
groundmass glass from Klyuchevskoy Volcano. 
01 is bulk olivine analysis; 01-# indicates number of olivine per analysis 

See Appendices A & B and Figure 3 for sample locality and chemical composition 

Italicized values of extreme outliers were not used in Std Error calculations 

8180Sample Type 8180 Std Err (N) -Age FlowlTephra 

olivine Qlass Qlass years BP Section 

840-93/1-5 01 6.73 7.71 0.12 (2) 200 Site 1 

KLV4 01-1 6.21 2300 Cone D 

KLV4 01 5.88 2300 Cone D 

KLV4 01-1 6.00 2300 Cone D 

KLV4 01-1 5.13 6.51 0.15 (6) 2300 Cone D 

KLV 5/1 01 6.60 7.68 0.02 (2) 50 Site 2 

KLV 5/3 01 6.15 1100 Site 2 

KLV 5/3 01 6.04 7.40 0.11 (2) 1100 

KLV 5/4 01 7.62 7.38 0.11 (5) 1200 Site 2 

KLV 5/6 01-1 5.84 2500 Site 2 

KLV 5/6 01-1 5.86 2500 Site 2 

KLV 5/6 01-1 5.92 6.58 0.07 (2) 2500 Site 2 

KLV 5/7 01 5.76 2600 Site 2 

KLV 5/8 01-1 6.18 2650 Site 2 

KLV 5/8 01-1 6.40 2650 Site 2 

KLV 5/8 01-1 7.08 2650 Site 2 

KLV 5/8 01-1 5.70 6.44 0.11 (6) 2650 Site 2 

KLV 5/9 01 6.09 2700 Site 2 

KLV 5/9 01-1 5.52 2700 Site 2 

KLV 5/10 01-1 6.40 3000 Site 2 

KLV 5/10 01-7 5.26 7.21 0.05 (2) 3000 Site 2 

KLV 5/11 01-2 6.26 3100 Site 2 
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Sample Type 8180 8180 Std Err -Age Flow/Cone 

olivine Qlass Qlass Years BP 

KLV 5/11 01-2 6.19 7.06 0.04 (2) 3100 Site 2 

KLV 5/15 7.58 0.09 (2) 4750 Site 2 

KLV 5/18a 01-1 6.27 7.53 0.12 (5) 5700 Site 2 

KLV 5/18a 01-1 6.61 5700 Site 2 

KLV 5/18a 01-1 7.37 5700 Site 2 

KLV 5/20 nd 8.08 0.01 (2) 6400 Site 2 

KLV 5/22 nd 7.61 0.14 (2) 7250 Site 2 

KLV 5/24 nd 7.86 0.07 (2) 8550 Site 2 

840-93/5-18 01 6.47 6.60 0.08 (4) 1100 Site 1 

5.83,6.00 

300-48 01 7.16 7.60 0.13 (2) 3500 Site 1 

300-5/63 01 5.77 6.93 0.13 (3) 1600 Site 1 

AP 60-31 01 7.21 7.47 0.07 (3) 62 Apakhonchich 

AP 60-31 01-1 7.04 62 Apakhonchich 

AP 60-31 01 6.96 62 Apakhonchich 

AP 60-31 01 6.98 62 Apakhonchich 

Bel 70-46 01 7.17 7.62 0.01 (2) 54 Belyankinoi 

Bel 70-46 01 7.13 54 Belyankinoi 

By169-38 01 6.98 7.74 0.01 (2) 56 Bylinkinoi 

By169-38 01 6.98 56 Bylinkinoi 

KL 5-87 01 6.25 6.40 0.12(3) 2650 Bulochka 

KL 5-87 01 6.03 2650 Bulochka 

KLV 10 6.58 0.14 (2) 2650 Bulochka 

KL 12-87 01 5.65 6.66 0.06 (2) 2650 Luchitsky 
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Sample Type 8180 8180 Std Err -Age Flow/Cone 

olivine Qlass Qlass Years BP 
KL 32-87 01 6.13 6.36 0.03 (3) 2200 Ochki 

KL 32-87 01 6.36 2200 Ochki 

KL 45-87 01 6.13 7.28 0.01 (2) 75 Tuyla 

KL 45-87 01 6.94 75 Tuyla 

Piip 79-50 01 6.44 7.60 0.02 (2) 41 Piip 

KLV6 7.09 0.16 (3) 41 Piip 

V68-37 01 7.18 7.51 0.05 (3) 51 Vernadsky 

V68-37 01 7.07 51 Vernadsky 

Zav 50-49 01-1 7.04 7.49 0.00 (2) 62 Zavaritsky 
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3.2 8180 Evidence for Olivine Recycling 

The wide range of individual olivine 8180 values within a single sample in 

this study demonstrates potential disequilibrium relations between their host 

glasses (Figure 12). However, the extent of disequilibria and heterogeneity of 

olivine 8180 varies from sample to sample: whereas many olivine samples have a 

narrow 0180 range, some samples have olivine 0180 values that range up to 1%0. 
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Figure 12. 81800livine vs. MgO and A120 3. Individual olivine phenocrysts (vertical line in samples) 
exhibit a high 8180 range; bulk olivine analysis (symbols with no vertical line) reflect averaging of 
these diverse 8180 individual analyses. Trend lines represent olivine from lavas and show a) an 

18 18increase of 8 0 with AI20 3 and b) a decrease of 8 0 with MgO (R2 values of 0.6831 and 
0.7642 respectively). Tephra olivine show a similar, though weaker trend. This olivine 8180 
range is likely due to olivine recycling through magma mixing and cumulate addition. 
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-2%0 higher. Notice, a negative correlation is present for (a) 8180glass and MgO and (b) a 
positive correlation of Alz0 3 with 8180glaSS' with RZ values for lava of 0.6934 and 0.7876 
respectively. Slightly less of a correlation is present for tephra samples. The dashed line 

18represents possible 8 0 enrichment due to fractional crystallization of a single parental 
moderately high-8180, high-Mg basalt. Fractionation can only account for up to a 0.3%0 
increase, clearly not enough to account for the high_8180 basalts of Klyuchevskoy. 
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In order to examine isotopic equilibrium/disequilibrium between olivines 

and their host groundmass glass (Figure 14) we had to estimate olivine-melt 

oxygen fractionation factors. The first step in determining these factors was to 

separate the melt into mineral components (C.I.P.W. normative mineralogy) for 

which there are known forsterite-mineral fractionation factors. The C.I.P.W norm 

calculations were done using the whole-rock major element chemistry for each 

sample and following the method determined by Kelsey (1965). 

Using the C.I.P.W. normative mineral proportions (A) for each sample 

were determined. Corresponding experimental mineral-forsterite isotope 

fractionation coefficients (Chiba et al. 1989) were determined for each normative 

component. These coefficients were then used to calculate the isotope 

equilibrium between the melt (sum of all mineral components) and olivine in the 

following equation: 1000 In a= ~180 melt-olivine= L (A' W' 10A6r 2
); where Tis 

estimated temperature of crystallization, W is the weight fraction of each 

normative mineral, and the sum of all the W's are equal to 1. For example, if a 

sample is found to have 20% mineral X, 30% mineral Y, and 50% mineral Z, the 

resulting equation would be: ~ 180 melt-olivine= Amineral X-Fo . 0.2 '1 oA6r 2 + Amineral Y-Fo' 

0.3·10A6r 2+ Amineral Z-Fo . 0.5 ·10A6r 2
. 

Crystallization temperatures of 1100-1250°C estimated with the MELTS 

program (Ghiorso and Sack 1995) were used. Despite this range of temperature, 

a limited ~ 180 (melt-olivine) range was found. The melt-olivine isotope 

fractionation for high-Mg samples with a crystallization temperature around 

1140°C was around 0.7%0, whereas high-AI and intermediate composition 
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samples was around 0.8%0. Olivines ranged from being in isotopic equilibrium to 

being up to 1.2%0 lighter to 1.5%0 heavier than the groundmass. This range of 

isotopic disequilibrium is determined to be due to recycling (mixing) of variable­

8180olivines. 
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Figure 14. 81800livine vs. 8180grOUndmass diagram displaying that olivines in a single sample span 
significant 8180 ranges and many are out of equilibrium with the groundmass. Vertical lines on 
samples indicate individual olivine analyses. Black lines represent calculated groundmass 
glass-olivine oxygen isotope fractionation using CIPW norm of melt and fractionation factors 
from Chiba et al. (1989), see text for further discussion. 
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3.3 Fe-Mg Disequilibrium Between Olivines and Melt 

Electron microprobe analysis of olivines and their host groundmass glass, (re­

melted using the laser) were used to check for compositional Fe-Mg equilibrium 
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(Figure 15). The wide range of 

olivine Mg#'s within individual 

samples of intermediate 

composition clearly indicate the 

lack of equilibrium between olivine 

and its host glass. In addition, 

normal and reversed zoning from 

core to rim within individual 

olivines is present. Both high-Mg 

and high-AI samples contain 

olivines that are mostly in Mg-Fe 

equilibrium with their host 

glasses, and the olivines show 

little zoning. Many olivines in the 

intermediate samples are in Fe-

Mg disequilibrium with their 

groundmass glass. 

Figure 15. Olivine-groundmass Mg-Fe equilibrium analyzed by electron microprobe. Equilibrium 
olivine Mg# values are calculated from measured Mg# of melted groundmass using KD=0.3± 
0.03. Grey bars show olivine phenocrysts in equilibrium with the groundmass; black bars are 
outside the calculated equilibrium range. Olivines in high-AI and high-Mg samples are close to 
the expected equilibrium with their host glass while intermediate samples have a mixed 
population of olivines, which were likely brought together by magma mixing and/or cumulate 
entrainment. 
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Similar to the approach here, equilibrium Ko calculations were done 

previously by Kersting and Arculus (1994) with olivine and augite for high-Mg and 

high-AI basalts. They determined that high-Mg basalts were in equilibrium with 

FOgo olivine, and thus represent primitive mantle melts, whereas high-AI basalts 

were consistent with a more evolved liquid. Intermediate compositions were 

characterized by complex disequilibrium zoning patterns. Khubunaya et al. 

(2007) reported more complex olivine zoning patterns and wide Fo ranges within 

many historic lavas, including both high-AI and high-Mg types, and found 

maximum Fo content in olivine of 91.4, in equilibrium with mantle peridotite. 

Furthermore, most Mg-rich lavas, including Bulochka, the most Mg-rich basalt in 

Klyuchevskoy, exhibit bimodal or even trimodal distribution of Fo in cores of 

olivines with maxima at 91.5-87,85-83, and <80. The same observations were 

seen in tephra of this study. Khubunaya et al. (2007) discounted the possibility 

that most forsteritic olivine found in Klyuchevskoy high-Mg basalts represent 

xenocrysts from disintegrated mantle peridotitic nodules, but interpreted them as 

xenocrysts from cumulates of more primitive magmas. 

Results of previous studies agree with our new results with the exception that 

our high-AI samples have olivines that are closer to equilibrium with their host 

glasses. However, both our and published data support the idea of magma 

mixing and olivine recycling between endmember high-AI and high-Mg basalts. 
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3.4 Melt Inclusion Volatile Concentrations 

We analyzed olivine-hosted melt inclusions (MI) for their water and CO2 

contents by FTIR and found a wide range of volatile concentrations. Figure 16 is 

a graph of all measured water concentrations shown against melt inclusion Mg# 

and host olivine Fo content. 
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Figure 16. Water concentrations in melt inclusions (MI) vs. compositional parameters 
(a) forsterite content of host olivine; (b) MgO of melt inclusions (MI) -corrected for post 
entrapment crystallization and iron 1055; (c) Histograms of H20 measured in melt 
inclusions for all samples. Analyses of melt inclusions and olivine are given in Table 2. 
Water concentrations were measured using Fourier Transform Infrared Spectroscopy 
(FTIR). The highest water contents in olivine hosted melt inclusions are in high-AI 
sample 300-5/63, which has olivines in Fe-Mg equilibrium with the host glass, and has 
the least chemically diverse, zoned olivines of Foso. The lowest water concentrations in 
each sample are likely due to pre-entrapment degassing. 



Table 2: Composition of melt inclusions and their host olivines in tephra from Klyuchevskoy volcano 
Major elements and CI, S, F, were measured by the electron microprobe, trace elements were measured by the ion microprobe 
MI Corrected for Post-entrapment Crystallization (PEC) nd: no data 
Italicized values are analyses in which the probe beam accidently included both olivine and the melt inclusion glass 
EMPA 

Sample 840-93/5-18 KLV4 KLV4 KLV4 KLV4 840-93/1-5 84093/1-5 KLV 5/8 KLV 5/8 

inclusion 4a 5A 58 48 1 3 4 1 2 

wt% 

Si02 52.27 50.60 50.59 50.63 56.58 49.11 55.45 50.78 50.63 

AI20 3 17.57 16.07 15.87 15.65 14.58 10.42 16.42 17.46 15.65 

Fe203 1.49 1.33 1.32 1.40 1.60 2.45 1.47 1.36 1.40 

FeO 8.43 7.27 7.45 7.92 8.16 12.51 7.50 7.45 7.92 

MgO 5.10 7.61 7.80 8.35 4.71 17.09 5.23 7.39 8.35 

CaO 8.51 11.78 11.76 10.72 8.05 4.40 8.01 10.63 10.72 

Na20 4.06 3.08 3.04 3.23 3.28 2.20 3.45 2.98 3.23 

K20 0.77 0.63 0.63 0.67 1.16 0.74 0.90 0.57 0.67 

Ti02 1.06 0.91 0.95 0.87 1.56 0.86 1.10 0.85 0.87 

MnO 0.17 0.17 0.09 0.09 0.19 0.24 0.20 0.17 0.09 

P20 S 0.21 0.19 0.17 0.18 0.25 0.18 0.23 0.16 0.18 

S 0.15 0.21 0.20 0.20 0.01 0.01 0.05 0.12 0.20 

CI 0.06 0.07 0.06 0.07 0.05 0.03 0.04 0.05 0.07 

F 0.16 0.07 0.07 0.04 nd 0.01 0.08 0.03 0.04 

H20 FTIR wt% 3.76 2.24 2.21 2.75 0.84 2.79 3.87 2.49 1.85 

CO2 FTIR ppm 1067 <50ppm <50ppm <50ppm <50ppm <50ppm <50ppm 520 657 

Fo 01 host 78.2 86.2 86.2 86.2 76.9 76.2 77.6 85.5 85.1 

PEC% 0.0 3.3 5.1 5.4 0.0 0.0 0.0 3.4 5.4 

VJ 
0\ 



EMPA 

Sample 

inclusion 

wt% 

Si02 
AI20 3 
Fe203 
FeO 

MgO 

CaO 

Na20 
K20 

Ti02 
MnO 

P20 S 

S 

CI 

F 

H20 FTIR wt% 

CO2 FTIR ppm 

Fa 01 host 

PEC% 

KLV 5/8 

3 

50.45 

14.99 

1.31 

6.86 
9.13 

12.94 

2.59 

0.42 
0.82 

0.12 

0.12 

0.25 
0.06 

0.00 
1.09 

528 

88.0 

2.4 

KLV 5/8 

4A 

51.57 

14.99 

1.24 

8.20 

10.40 

8.86 

2.70 

0.67 
0.97 

0.18 

0.15 

0.02 

0.05 

nd 

0.40 

<50ppm 

88.3 

15.6 

KLV 5/8 
48 

52.34 

15.92 

1.15 

7.07 

9.08 

9.91 

2.59 

0.58 
0.95 

0.14 

0.18 

0.02 

0.05 
nd 

nd 

<50ppm 

88.4 

7.7 

KLV 5/8 

4C 

nd 

nd 

nd 

nd 

nd 

nd 

nd 

nd 
nd 

nd 

nd 

nd 

nd 
nd 

1.09 

<50ppm 

nd 

nd 

300-5/63 

1 

53.36 

17.29 

1.48 

7.61 

5.59 

9.04 

3.39 

0.66 
1.12 

0.14 

0.20 

0.16 

0.05 

0.02 
1.76 

<50ppm 

80.9 

0.8 

300-5/63 

2 

53.16 

17.65 

1.45 

7.46 

5.49 

8.81 

3.54 

0.69 
1.20 

0.18 

0.18 

0.16 

0.06 

0.07 

3.40 
<50ppm 

80.8 

0.4 

300-5/63 

5 

52.31 

17.94 

1.48 
7.55 

5.64 

9.22 

3.54 

0.69 
1.18 

0.13 

0.21 

0.16 

0.05 
0.07 

3.25 

887 

80.5 

0.0 

300-5/63 

58 

51.94 

17.99 

1.53 

7.82 

6.02 

8.89 

3.57 

0.75 
1.12 

0.11 

0.24 

0.17 

0.06 

-0.05 

3.25 

887 

80.5 

0.0 

300-5/63 

6 

51.24 

18.48 

1.61 

8.22 

5.67 

9.08 

3.36 

0.61 
1.15 

0.23 

0.20 

0.22 
0.07 
0.03 

7.09 

<50ppm 

79.9 

0.0 

W 
-..J 



EMPA 
KLV KLV KLV KLV KLV 

Sample 300-5/63 300-5/63 300-5/63 300-5/63 5/18a 5/18a 5/18a 5/18a 5/18a 

inclusion 7 8 10 11 1 3 4 5 6 
wt% 

Si02 52.88 52.69 53.12 53.51 52.26 53.09 52.41 53.49 50.79 
AI20 3 17.86 18.42 17.61 17.29 18.50 17.80 18.33 17.44 18.92 

Fe20 3 1.43 1.43 1.51 1.33 1.43 1.27 1.29 1.00 1.41 
FeO 7.32 7.42 7.68 7.44 7.56 8.19 6.84 5.16 7.70 
MgO 5.42 5.37 5.72 5.68 5.79 6.29 5.07 5.55 5.77 
CaO 9.00 9.01 8.48 9.00 8.88 8.85 10.25 12.38 9.64 

Na20 3.76 3.59 3.66 3.49 2.76 1.80 3.14 3.15 2.42 
K20 0.74 0.64 0.72 0.63 0.99 0.98 1.02 1.04 0.82 

Ti02 1.16 0.85 1.01 1.03 1.09 1.05 1.00 0.93 1.89 
MnO 0.12 0.21 0.17 0.17 0.15 0.14 0.14 0.11 0.16 
P20 S 0.21 0.22 0.21 0.19 0.23 0.21 0.21 0.25 0.17 

S 0.16 0.18 0.15 0.15 0.19 0.19 0.20 0.30 0.15 

CI 0.05 0.06 0.05 0.05 0.08 0.09 0.08 0.13 0.06 

F 0.04 -0.09 0.07 0.04 0.09 0.06 0.01 0.03 0.09 

H20 FTIR wt% 4.84 3.10 5.32 4.37 3.82 1.00 2.21 2.91 4.20 

CO2 FTIR ppm 1008 780 1269 <50ppm 1036 703 804 651 1884 

Fa 01 host 81.3 81.1 80.8 81.9 82.0 82.0 81.5 86.4 81.7 
PEC% 0.0 0.4 0.0 2.9 1.4 8.4 1.6 0.5 2.7 

w 
00 



SIMS 
Sample 
inclusion 

840-93/5-18 
4a 

KLV4 
5a 

KLV4 
5b 

KLV4 
4b 

KLV4 
1 

840-93/1-5 
3 

84093/1-5 
4 

KLV 5/8 
1 

KLV 5/8 
2 

ppm 
Ba 209 209 220 149 361 nd 377 217 215 
U 0.28 0.26 0.23 0.22 0.48 nd 0.43 0.21 0.30 
Th 0.34 0.34 0.33 0.30 0.78 nd 0.53 0.27 0.27 
K 5463 4806 5266 4377 9602 nd 8027 5616 4728 
CI nd nd nd nd nd nd 429 486 nd 
H2O 44454 20484 26711 34481 17950 nd 39365 24924 21187 
Nb 1.53 1.46 1.58 1.07 2.78 nd 1.97 1.66 1.32 
La 4.89 4.81 4.92 3.35 7.78 nd 6.18 4.09 3.92 
Be 0.67 0.34 0.42 0.45 0.84 nd 0.71 0.42 0.52 
Ce 12.95 12.46 12.45 9.01 20.41 nd 16.47 10.39 10.80 
Sr 255 293 311 217 246 nd 280 285 259 
Nd 9.17 9.60 10.28 7.02 15.33 nd 11.39 8.15 8.91 
Zr 
B 

75 
17.06 

61 
10.36 

65 
12.80 

49 
13.93 

118 
19.62 

nd 
nd 

85 
16.18 

61 
16.29 

62 
15.48 

Sm 2.61 3.13 3.04 2.09 4.13 nd 2.98 2.52 2.90 
Eu 0.76 0.96 1.24 0.68 1.40 nd 1.12 0.84 0.97 
Ti 6007 4115 5338 5344 8352 nd 6367 5473 6459 
Dy 
Y 

2.98 
18.92 

3.18 
17.91 

3.52 
20.02 

2.34 
14.19 

4.77 
28.86 

nd 
nd 

3.46 
20.70 

2.71 
18.14 

3.23 
20.52 

Li 8.14 6.14 6.42 6.98 12.83 nd 10.48 7.07 6.75 
Yb 1.85 2.12 2.31 1.52 3.02 nd 2.27 1.93 2.13 
F 350 228 295 0.03 0.02 nd 0.03 0.04 0.03 
V 247 268 288 226 355 nd 271 265 332 
Cr 59 231 215 248 116 nd 69 134 104 
Gd 3.13 2.82 3.54 2.76 5.02 nd 3.65 2.23 2.35 
Er 1.88 2.35 2.31 1.61 3.47 nd 2.32 1.98 2.51 
Hf 
Pb 

2.06 
1.83 

2.26 
1.54 

2.23 
2.28 

1.52 
1.45 

3.31 
4.04 

nd 
nd 

2.33 
2.86 

1.90 
3.65 

1.79 
1.89 

VJ 
\0 



SIMS 
Sample KLV 5/8 KLV 5/8 KLV 5/8 KLV 5/8 300-5/63 300-5/63 300-5/63 300-5/63 300-5/63 
inclusion 3 4A 48 4C 1 2 5 58 6 
ppm 

8a 195 260 215 135 nd 219 202 nd nd 
U 0.18 0.30 0.30 0.24 nd 0.29 0.22 nd nd 
Th 0.27 0.38 0.27 0.22 nd 0.34 0.39 nd nd 
K 4189 6120 5120 3070 nd 6108 5566 nd nd 
CI 602 nd nd nd nd 574 503 nd nd 
H2O 32370 nd nd nd nd 32875 37867 nd nd 
Nb 1.38 1.68 1.50 0.92 nd 1.93 1.83 nd nd 
La 3.81 4.87 4.12 2.84 nd 5.02 4.82 nd nd 
8e 0.39 nd nd nd nd 0.60 0.59 nd nd 
Ce 10.30 13.66 11.08 8.12 nd 12.90 12.67 nd nd 
Sr 249 271 248 212 nd 285 270 nd nd 
Nd 8.73 9.63 8.54 6.35 nd 9.82 9.03 nd nd 
Zr 60 70 63 43 nd 79 78 nd nd 
8 11.96 nd nd nd nd 18.69 15.07 nd nd 
Sm 2.83 2.61 2.78 1.73 nd 2.96 2.72 nd nd 
Eu 0.89 0.86 0.90 0.75 nd 0.87 0.88 nd nd 
Ti 5613 nd nd nd nd 5910 5905 nd nd 
Dy 3.14 3.29 2.92 2.35 nd 3.13 2.99 nd nd 
Y 20.14 20.05 17.46 14.32 nd 19.07 17.94 nd nd 
Li 5.38 nd nd nd nd 7.73 7.17 nd nd 
Yb 2.25 2.37 1.76 1.81 nd 1.99 2.06 nd nd 
F 0.03 nd nd nd nd 0.03 0.03 nd nd 
V 305 278 265 263 nd 255 239 nd nd 
Cr 204 100 136 255 nd 95 74 nd nd 
Gd 2.30 3.02 2.78 1.97 nd 3.19 2.74 nd nd 
Er 2.12 2.46 2.02 1.74 nd 2.06 1.94 nd nd 
Hf 1.91 2.01 1.81 1.50 nd 2.20 2.03 nd nd 

~ 
Pb 1.38 2.83 1.91 1.35 nd 2.17 2.02 nd nd o 



SIMS 
KLV KLV KLV KLV KLV 

Sample 
inclusion 

300-5/63 
7 

300-5/63 
8 

300-5/63 
10 

300-5/63 
11 

5/18a 
1 

5/18a 
3 

5/18a 
4 

5/18a 
5 

5/18a 
6 

ppm 
Ba 205 203 nd nd nd nd nd nd nd 
U 0.26 0.28 nd nd nd nd nd nd nd 
Th 0.37 0.38 nd nd nd nd nd nd nd 
K 5740 5559 nd nd nd nd nd nd nd 
CI 491 575 nd nd nd nd nd nd nd 
H2O 32355 34128 nd nd nd nd nd nd nd 
Nb 1.95 2.18 nd nd nd nd nd nd nd 
La 5.06 5.35 nd nd nd nd nd nd nd 
Be 0.62 0.65 nd nd nd nd nd nd nd 
Ce 13.09 12.96 nd nd nd nd nd nd nd 
Sr 276 277 nd nd nd nd nd nd nd 
Nd 9.59 9.74 nd nd nd nd nd nd nd 
Zr 80 84 nd nd nd nd nd nd nd 
B 15.79 16.76 nd nd nd nd nd nd nd 
Sm 2.73 2.41 nd nd nd nd nd nd nd 
Eu 0.90 0.87 nd nd nd nd nd nd nd 
Ti 6134 6339 nd nd nd nd nd nd nd 
Dy 2.95 3.01 nd nd nd nd nd nd nd 
Y 19.38 20.73 nd nd nd nd nd nd nd 
Li 7.09 7.97 nd nd nd nd nd nd nd 
Yb 1.85 2.06 nd nd nd nd nd nd nd 
F 0.02 0.03 nd nd nd nd nd nd nd 
V 243 259 nd nd nd nd nd nd nd 
Cr 87 59 nd nd nd nd nd nd nd 
Gd 2.65 2.81 nd nd nd nd nd nd nd 
Er 2.12 1.98 nd nd nd nd nd nd nd 
Hf 2.35 2.20 nd nd nd nd nd nd nd ~ 

Pb 1.71 2.01 nd nd nd nd nd nd nd 
....... 
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The highest H20 values of 7.1 and 5.3 wt% were found in FOeD olivine in the 

most AI-rich sample (300-5/63) (Table 2; Figure 16). The highest CO2 

concentration of 1933 ppm was found in sample KLV 5/18a, with a corresponding 

H20 value of 4.2 wt% (Figure 17). The lowest values were -1 wt% H20, and the 

majority of samples contained CO2 at levels below the detection limit of 50 ppm. 

This wide range of CO2 and H20 values is likely caused by degassing and olivine 

crystallization during magma ascent. The highest volatile concentrations 

therefore are our best estimate of original magmatic concentrations. Calculation 

of pressures associated with these volatile contents (using the VolatileCalc 

program; Newman and Lowenstern 2002) indicate a maximum depth of 

crystallization of -17 km (5 kbar) for melts with 1993 ppm CO2 and 4.2 wt% H20. 

H20 V5. CO2 
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Error 

0 2 4 6 8 10 

H20 (wt%) 

Figure 17. H20 vs. CO2 concentrations in melt inclusions. A wide range of volatile 
concentrations are present and correspond to partial pressures of 0-5 kbars, as indicated by 
the dark curved lines. The maximum CO2 concentration (1933 ppm with 4.2 wt% H20) 
corresponds to -5 kbars partial pressure or a maximum depth of crystallization of -17 km. 
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We have obtained what we believe to be the highest reported water 

concentrations known for Klyuchevskoy and one of the highest known for any arc 

basalt. Other arc basalts such as those from Cerro Negro (Nicaragua), the 

Marianas, and the Central Mexican Volcanic Belt range up to 6 wt% H20 

(Wallace 2005). The high-Mg andesites of Mt. Shasta are even more hydrous 

with 8-10 wt% H20 (Anderson, 1973). We attribute our discovery of such high 

H20 values to our emphasis on tephra samples that rapidly quenched and thus 

preserved the highest water concentrations. Previous researchers who studied 

natural or reheated melt inclusions from olivines in lavas from Klyuchevskoy (e.g. 

Mironov et al. 2001; Portnyagin et al. 2007a,b) obtained lower concentrations of 

water (0-4 wt%) and no detectable CO2. 

3.5 Trace Element Variations in Melt Inclusions 

Overall, trace element concentrations in melt inclusions from both high-Mg 

and high-AI basalts (Table 2), when normalized to depleted mantle values (e.g. 

Sun and McDonough 1989), exhibit a pattern typical of arc basalts (Figure 18) 

suggesting that to a first order they are similar to each other (Gill 1981). 

Major element crystallization modeling (using the MELTS program) involving 

fractionation of olivine and clinopyroxene from our endmember high-Mg basalt 

(Table 1), shows that 20% fractional crystallization is required to yield high-AI 

basalt. This 20% fractional crystallization would produce evolved melts in 

equilibrium with FOeD olivine if crystallization started from a high-Mg basalt parent 

with 9 wt% MgO that initially crystallized FOee olivine. This 20% fractionation can 
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be used to recalculate incompatible trace element concentrations in the high-AI 

basalts to compare primitive melt compositions for both basalt types. After 

performing this procedure, closer examination of trace element data for melt 

inclusions shows that there are still systematic (although subtle for some 
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Figure 18. Spider diagram of trace elements in olivine-hosted melt inclusions within tephra 
from Klyuchevskoy volcano (See Table 2 for analyses). (a) average composition of high-Mg 
(KLV 5/8) and high-AI (300-5/63) melt inclusions normalized to a depleted mantle that 
emphasizes the island-arc, zigzag pattern with peaks in fluid-mobile and depressions in fluid 
immobile elements. 

elements) differences in Ba, U, CI, H20, Be, Ce, Sr, Nd, B, Sm, Eu, Dy, Y, Li, and 

Yb between high-AI and high-Mg end members even when accounting for the 

effects of fractional crystallization. Figure 19 illustrates this, with markedly 

higher concentrations of H20, Be, B, and Li in high-AI samples compared to high­

Mg. The 87Sr/86Sr values of high-AI and high-Mg samples are also different, with 

0.70366 in high-AI and 0.70355 in high-Mg samples using data from Dorendorf et 

al. (2000). Even excluding the oxygen isotope evidence described above, the 

20% fractional crystallization cannot account for these discrepancies in elemental 
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concentrations and Sr isotopic ratios between high-AI and high-Mg compositions 

(Figure 19). 
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Figure 19. Trace element comparison of high-AI to high-Mg samples at Foss. Average 
composition of four high-AI melt inclusions in sample 300-5/63 are normalized to three high­
Mg melt inclusions in sample KLV 5/8, with the high-AI sample 300-5/63 calculated back to 
Foss, the same Fo as in KLV 5/8, see Tables 2 and Appendix B for analyses. Elements falling 
around 1 are found in similar concentrations for both high-AI and high-Mg samples. Elements 
falling below 1 or above 1 are depleted or enriched in the high-AI sample respectively 
compared to the high-Mg sample. 
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CHAPTER IV 

DISCUSSION 

We have examined Klyuchevskoy's magmatic history through a variety of 

techniques, and we attempt below to interpret this information to attain a better 

understanding of the sources and processes involved in magma evolution for this 

giant arc volcano. In particular we evaluate processes that may have caused the 

observed high 0180 values and high H20 contents in Klyuchevskoy magmas. We 

also comment on the complexities of crystal-melt relationships. 

4.1 Olivine Recycling Processes Under Klyuchevskoy 

Oxygen isotope disequilibrium of up to 1%0 from estimated olivine-host 

glass equilibrium values provides the first evidence for olivine recycling within 

Klyuchevskoy through mechanisms of magma mixing and/or cumulate addition. 

Fe-Mg disequilibria between olivines and their host glasses provides further 

support for olivine recycling in some samples (mainly intermediate compositions). 

The olivine-melt isotopic and chemical disequilibria in high-0180 

Klyuchevskoy magmas are similar in magnitude to the low-0180 disequilibria 

discovered in the Laki eruption of Iceland (Bindeman et al. 2006). By comparison 

with Laki, Fe-Mg and 0180 equilibration of olivine by diffusion happens on 

timescales of weeks and hundreds of years, respectively. 
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4.2 Peridotite vs. Pyroxenite Source and Crustal Assimilation Models 

Determination of the source of Klyuchevskoy's magma is a necessary 

component for understanding how this magma obtains high 8180 values. Three 

main components are considered: 1) a secondary pyroxenite derived from slab­

derived melt reacting with the mantle wedge to produce olivine-free pyroxenite; 

2) an amphibolite present in the lower crustal roots, emplaced by accretion of 

Cretaceous mafic to ultra-mafic material (e.g. Konstantinovskaia, 2001); and 3) 

older mantle wedge material that was extensively hydrated from -46-5 m.y.a. 

when the mantle beneath Klyuchevskoy was part of the forearc region (See 

Figure 2-tectonic summary). 

The 8180 values of mantle pyroxenites formed in the manner described 

above are likely to vary from place to place but could be high due to subduction 

of the upper portions of the oceanic crust altered at low temperature by sea water 

(Muehlenbachs, 1986; Staudigel et al. 1995). Lower to middle crustal 

amphibolite sources can potentially explain the high water contents and 

compositional range of Klyuchevskoy magmas through assimilation of the 

material. A peridotite source, on the other hand, is much more widespread as it 

is found throughout the mantle wedge. However, normal mantle peridotite is not 

enriched in 8180 and to produce a range of 8180-enriched signatures, would have 

to be somewhat altered by high-8180 fluid or melt fluxing, such as likely occurred 

when this region was part of the forearc. 
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Using Sobolev et al.'s (2007) compilation of trace element concentrations 

in olivines, we plot Klyuchevskoy olivines on their discriminant diagrams (Figure 

20), which demonstrate that pyroxenite partial melts are higher in Ni, but poorer 

in Mn than peridotite-derived melts. Different magmas from plume and MORS 

environments were shown to plot between these two end members. We observe 

that the Klyuchevskoy olivines plot solidly within the peridotite field, which 

precludes their derivation from an olivine-free pyroxenite mantle. 
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Figure 20. Trace element concentration ratios in olivines plotted on peridotite­
pyroxenite discrimination diagram (Sobolev et al. 2007). The solid oval 
indicates a pyroxenite source while the dashed oval indicates a peridotite 
source. Data from this study clearly falls in the peridotite source field. 

Furthermore, we notice that Klyuchevskoy basalts are characterized by low Nb 

concentrations (Figure 18), which suggests melting of a relatively depleted 

mantle wedge (Sun and McDonough 1989). 

Next, we examine the possibility that a melt generated primarily from 

mantle peridotite could assimilate enough amphibolite from the high-8180 lower 

crust to impart a high-8180 signature while still retaining a peridotite source. We 
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examine this through two models using a typical 2 wt% H20 basalt (e.g. 

Churikova et al. 2001) with 48 wt% Si02 and mixing it with variable amounts of 

amphibolite melt containing 55 or 68 wt% Si02; 10, 15, or 20%08180 values; and 

2, 3, or 4 wt% H20. Contamination of mantle-derived magma by crustal 

amphibolite could happen by two differing methods: 1) bulk digestion of 

amphibolite by this primary basaltic magma or 2) partial melting of the 

amphibolite and mixing of the partial melt with the primary basaltic magma. For 

partial melt, our calculations assume 33% partial melting of amphibolite, leading 

to the dacitic partial melt containing all of the water present in its source. We use 

three diagrams to explore these possibilities. The mass balance relationships 

were calculated using the following relationship: 8180amPhibolite *(1-f) + f*8180magma= 

8180final magma; where f is the fraction of the primary basalt component. First we 

start with a 8180-Si02diagram (Figure 21) and establish that only a 10-15%0, 68 

wt% Si02 amphibolite partial melt would satisfy observed Klyuchevskoy values, 

but would require the addition of 20-30% of such a component. Next, we 

examine a 8180-H20 diagram using our best fit of a 10-15%0 partial melt of 

amphibolite, with initial water concentrations of 2, 3, and 4 wt% (Figure 22). This 

amphibolite if partially melted by 33% would result in a product containing 

upwards of 8, 10, and 12 wt% H20 (e.g. 4% initial H20 in amphibolite translates 

into 12 wt% H20 in a 33% partial melt). No one model adequately fulfills 

observed 8180 and water concentrations seen at Klyuchevskoy. Finally, when 

we plot a Si02-H20 diagram (Figure 23) no single model can account for the 
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Mass Balance of Bulk Mixing vs. Partial Melting of high­

l)180 Amphibolite 
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Figure 21. 0180-SiOz diagram. This diagram examines models for assimilation of 
amphibolite through 1) bulk melting and 2) partial melting; and mixing with the mantle 
wedge. All models starts wI 0% assimilation and each point on the model lines represents a 
10% increment of assimilated material until the final point on the model lines represents 
100% assimilated material. To fit observed Klyuchevskoy trends, 20-30% assimilation of a 
10-15%0,68 wt% SiOz partial melt will be required. 

compositional and H20 range, Instead a partial melt with a wide range of H20 

concentrations and a maximum H20 value of >12 wt% H20 would be required to 

fit Klyuchevskoy data at a fraction of 20-30%. 

It is clear that no one amphibolite mixing model can account for the 0180_ 

Si02-H20 values observed at Klyuchevskoy. We also notice that the current 

mass balance calculations have no heat balance. Assimilation of colder crustal 

material results in a temperature decrease and magma crystallization of 
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cumulates of comparable magnitude (e.g. DePaolo 1981; Spera and Bohrson 

2002). This assimilation-fractional crystallization (AFC) process would result in 

Mass Balance of Hydrous Partial Melting of
 
Amphibolite
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Figure 22. 01BO-H20 diagram. This diagram examines models for H20 contribution 
assimilation of a partial melt of amphibolite could provide assuming assimilant water 
concentrations of 8,10, and 12 wt%. Using our best fit of 20-30% assimilation (polygon 
shaded in dark grey) of a 10-15%0 partial amphibole/pyroxenite melt, it is clear the wide 
range of melts with differing H20 concentrations and 01BO values would be need to explain 
the observed 01BO and H20 ranges found at Klyuchevskoy. 

compositional evolution of the melt to more siliceous compositions than predicted 

in the models, and even farther outside the compositional range of Klyuchevskoy 

Volcano. As no single amphibolite assimilation model can suitably account for 

obseNed Klyuchevskoy 8180-Si02-H20 values, we accept the likelihood of a 

strictly peridotite source. 
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Figure 23. Si02-H20 diagram. Three models of a basalt-amphibolite partial melt with 8,10, 
and 12 wt% H20 over a Si02 range of 48-68 wt% are presented. The only model that can 
account for the compositional and H20 range of Klyuchevskoy is a partial melt with 12wt% 
H20 at a fraction 0 20-30%. 

4.3 Evidence for High H20 Primary Melts Under Klyuchevskoy 

We have found evidence for a range of H20 contents of <1.0-7.1 wt%, 

with the majority of values between 2 and 5 wt%. We take our maximum water 

concentration of 7.1 wt% in a melt inclusion in FOSD olivine to estimate the 

maximum water concentration in the source of these magmas. MELTS modeling 

of fractional crystallization of an olivine-clinopyroxene assemblage requires 20% 

fractional crystallization from a parental melt in equilibrium with Foss and 25% 
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from a parental melt in equilibrium with FOgo olivine. Using these proportions, we 

obtain the maximum of 5.3 wt% H20 in the primary basaltic magma of 

Klyuchevskoy, over 2% higher than originally predicted by Portnyagin et al. 

(2007b). 

The high H20 contents at Klyuchevskoy may explain the high 8180 

values and high magma production rates. These characteristics may be related 

to subduction and fluxing of fluids from the upper portion of the Hawaii-Emperor 

Seamount Chain (high-8180 due to low temperature reaction with seawater) 

under Central Kamchatka Depression as was suggested by previous researchers 

(Kersting and Arculus 1994; Dorendorf et al. 2000). However, the presence of 

variably high-8180 values ranging across arc, rather then just in the Klyuchevskoy 

area suggests that the Hawaii-Emperor Seamount Chain alone is not responsible 

for the high-8180 values. Fluxing of high-8180 fluids from the subducting Hawaii­

Emperor Seamount Chain in the Klyuchevskoy area could be the reason that 

high-8180 values peak in the Klyuchevskoy Group area. However, another 

widespread high-8180 source, such as high-8180 serpentinized mantle in what 

was once the forearc, is likely a possible contributor to the across arc 8180 

enrichment and is discussed in section 4.5. 

4.4 Origin of High-8180 Peridotite Source Klyuchevskoy Magmas 

Oxygen is a major element in rocks and magmas and its isotopic values 

therefore provide robust constraints on mass balances required to achieve 
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significant (i.e. 1-2 %0) isotopic changes. We have shown that simple 

fractionation of a parental high-Mg basalt to form a high-AI basalt, a common 

scenario in many interpretations of arc petrogenesis at Klyuchevskoy and other 

volcanoes worldwide (e.g. Kersting and Arculus 1994), cannot account for the 

2%0 enrichment of 8180 values, contrasting Sr isotopic ratios, and details of trace 

element distribution. Likewise, assimilation processes are unlikely to be the 

cause of Klyuchevskoy's hydrous high-8180 magmas because assimilation of 

amphibolite cannot account for observed Klyuchevskoy 8180-Si02-H20 values. 

We computed a simple mass balance for the amount of slab-derived H20­

rich material added to the normal mantle wedge using various plausible 8180 

values of the slab-derived fluid or melt (Figure 24). The maximum 8180 in H20­

rich fluid or silicate melt that could be inherited from the upper portion of the 

subducted slab in front of Kamchatka is 8-10%0 for altered basalts (Bailey, 1996) 

and 10-20%0 for sediments (Bindeman et al. 2004). As can be seen from the 

diagram, because water has more oxygen on a molar basis than silicate melt, 

fluxing with solute-free water is more efficient than fluxing with melt. 

If the proportion of H20-rich fluid added to the mantle wedge to generate 

basaltic magma is 0.8-2.1 wt% (Churikova et al. 2001), then the 8180 value of the 

fluid would have to be exceedingly high. Only marine-precipitated carbonate with 

8180 values as high as +25%0 would be capable of explaining such high 8180 

values at Klyuchevskoy. However, no significant carbonate is found in sediments 

offshore from Kamchatka (e.g. Bailey 1996) suggesting that a hi9h-8180 marine­
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precipitated component is absent in front of the Kamchatka arc. Even if we take 

the highest water concentration of 7.1 wt% water and translate it into 5.7 wt% 

water in primary mantle-equilibrated magma, given our mass balance calculation 

(Figure 24) the high-8180 values of olivines of up to 7.2%0, would require a 20%0 

water-rich fluid. While these values are possible in subduction zones, we 

consider them extreme, and not appropriate for the majority of the subducted 

sediments beneath Kamchatka. 
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Figure 24. Mass balance calculation of high-8180 fluid or melt flux melting of 
normal 8180 peridotite. Differing proportions of water-rich and silicate-rich 
components are proposed to be added to the normal mantle wedge for differing 

18fluid or melt 8 0 values. Calculations for the fluid component use the same 
equation presented in section 4.2 for melt mass balance with the addition of the 
oxygen proportion for fluid to rock (0.89/0.5) resulting in the equation: 
(0. 89/0.5)*8180flUidt *(1-f) + f*8180magma= 8180final magma. Notice that in order to 
make Klyuchevskoy high-8180 olivines in a single stage flux melting very high 
8180 values of fluid are required. 
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Instead of excessively high 8180 H20-rich fluids as required above, 

Dorendorf et al. (2000) proposed a model of time-integrated fluid addition without 

melting, in which peridotite is progressively enriched in 180 by multiple episodes 

of fluid addition. While such a model is theoretically possible, it should yield 

unusually high fluid-mobile element signatures such as high Balla. Our ion 

microprobe analyses of melt inclusions within olivines do not show such features 

in Klyuchevskoy magmas (Table 2). Furthermore, for our measured H20 

contents, the Dorendorf model would require that H20 would have to be 

continuously lost from the wedge after each episode of fluid addition, but how this 

occurs or how so much H20 is fluxed through the wedge without causing melting 

is not specified. 

We noted above that fluxing with moderately high-8180 hydrous melt is 

somewhat less efficient in terms of mass balance (we would need more mass of 

melt than fluid), but it is more permissive with respect to major and trace 

elements provided that the final source material for Klyuchevskoy magmas 

retains a peridotite signature in terms of Mg/Fe, Ni, and Mn (Figure 20). For 

example, a slab-melt component, if variably added to the peridotitic wedge, could 

explain major and trace element differences between volcanoes (Portnyagin et 

al. 2007a,b). Because of the large proportion of peridotite in these mixing 

models, no clear adakitic signatures would be present except in the 

northernmost, slab edge volcanoes such as Shiveluch, Zarechny and 

Kharchinsky (Bindeman et al. 2005) whose source would be primarily slab melt. 

It is, however, expected from mass balance, that a slab-derived dacitic melt 



57 

component is moderately high in 8180 (6-9%0), as these are the values for the 

upper portions of the altered oceanic crust. Only in areas of active sediment 

melting such as in Setouchi, Japan, could melts significantly higher in 8180 

(Bindeman et al. 2005) be due to extremely enriched 8180 values of the original 

sediment. 

4.5. Inheritance of High-0180 Signature from Prior Enrichment 

A high-8180, water-rich subduction-derived component that reaches its 

extreme beneath Klyuchevskoy, is variably present in other volcanoes of the 

Central Kamchatka Depression (Portnyagin et al. 2007a) and throughout 

Kamchatka (Bindeman et al. 2004). It is particularly characteristic for back-arc 

volcanoes to the south such as Opala, Koryaksky, Kizimen, and overall 8180 

value of mafic volcanics increase across the arc. In order to explain this feature, 

we suggest that magmas in the CKD tap a higher-8180 mantle source and that 

mantle source may represent serpentinized peridotite fluxed for millions of years 

by high-8180 fluids. 

As discussed in chapter 1, the accretion of eastern peninsulas onto 

Kamchatka several million years ago (Konstantinovskaya et al. 2001) stalled 

subduction causing the subduction trench to roll back to its present position 

(Figure 2). This subduction jump exposed a previously fluxed forearc region in 

the mantle wedge to rising basaltic magmas in the present subduction 

configuration. The time-integrated fluid fluxing of the previously forearc region 
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has also led to higher concentrations of Li, Be and B, as well as water, while 

maintaining the peridotitic source. In this subduction jump model the high-8180 

signature is characteristic of the Kamchatkan back arc volcanoes, but the level of 

180 enrichment is expected to be variable along the arc. The stronger-fluxed and 

serpentinized areas, previously affected by additional high-8180 fluid fluxes from 

the subducting Hawaii Emperor Chain (e.g. Dorendorf et a!. 2000) has led to 180_ 

rich and hydrous mantle under the present Central Kamchatka depression, and 

Klyuchevskoy in particular. 

In the proposed model (Figure 25) a variably-high 180 signature is 

acquired in the upper mantle, just below the Moho where basaltic liquids may 

pond. Ascending hydrous mafic melts generated by flux melting of the underlying 

mantle wedge are capable of digesting significant volumes of very shallow, high­

8180 previously-hydrated peridotitic mantle. Unlike the classic MASH process 

under island arcs where basaltic magmas assimilate basaltic arc roots (e.g. 

Hildreth and Moorbath, 1988; Ducea and Barton 2007) to explain high-8180 

signature of more siliceous volcanics, we propose an analogous process that 

happened to peridotite. A complication to this hypothesis is that thermal models 

for the mantle wedge (Manea and Manea 2006) suggest temperatures in the 

uppermost mantle that are too high for serpentine and probably chlorite (Grove et 

a!. 2006). Therefore the previously hydrated forearc would have been heated 

after the slab jump, driving off H20 but retaining high 8180. 
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The isotopic and chemical differences that we observe between high-AI 

and high-Mg basalts fit sensibly into the proposed model. High-AI, higher-8180, 

higher 87Sr/86Sr basalts involve a larger component from the older previously 

hydrated peridotitic environment, whereas the high-Mg basalts contain less of 

this component. Both melts erupt coevally and mix to a variable degrees upon 

ascent. This model provides a mechanistic interpretation for the complex olivine 

recycling processes that we documented. Olivine recycling happens in upper 

crustal magma chambers and also upon ascent of different magmas. 

Furthermore, high magma production rates at Klyuchevskoy and the surrounding 

group volcanoes may be explained by fluid fluxing from the subducting Hawaii­

Emperor Seamount Chain. 

4.6. Comparison with Mt Shasta: A High-8180 H20-rich Volcano 

Comparison with Mt Shasta is warranted because in both places high 

magma production rates are coupled with high-8180 signatures and high H20 

contents (Grove et al. 2002; 2006). A key to understanding the cause of high­

8180 magmas at Klyuchevskoy can be found by examining anomalies present at 

both subduction zones. For Klyuchevskoy, the subduction of the Hawaii­

Emperor chain, in addition to previously serpentinized mantle, could provide the 

high-8180 values and high H20 contents. For Mt. Shasta, however, it is the 

presence of the subducting Blanco fracture zone that could contribute to 

enhanced permeability of sea water within the oceanic lithosphere before 
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Figure 25. Schematic diagram of the evolution of Kamchatka and the corresponding processes 
involved from active volcanism at the Srdinny Ridge (SR) to the formation of Central Kamchatka 
Depression (CKD) volcanoes and the Eastern Volcanic Front (EVF) from (a) 11-5 ma, (b)<5ma, 
(c) present. In these diagrams:I-Hawaii-Emperor Seamounts, II-fluid, III-continental crust, IV­
separated piece of subducted slab, V-melt, VI-serpentinized peridotite. In figure (c) four types of 
melt are present: 1-primary mantle melt source with 1a- normal mantle peridotite melt and 1b­

18high-0 0 de-serpentinized mantle peridotite melt; 2-moderately hi~h_o180, high-Mg basalt 
evolved primarily from 1a; 3-upper mantle high-AI, high-0180, high 7Sr/86Sr basalt evolved 
primarily from 1b; and 4-mixing of High-Mg and High-AI cumulates with basalt 2 and 3 upon rise. 
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subduction, and thus low temperature hydrothermal alteration of a larger fraction 

of the crust. This crust, on subduction, would therefore release a larger amount 

of high-8180 fluids, and thus possibly account for the high-8180 signature 

evidenced at Mt. Shasta (Martin et al. in prep). Therefore, for both cases we 

suggest that petrogenetic processes involve hydrous flux melting and larger than 

normal amounts of H20 derived from subducted crust. 
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CHAPTER V 

CONCLUSIONS 

The results of this study have served to explain Klyuchevskoy's 1) 

voluminous, high-rate volcanism, 2) the unusual high-8180 signature of 

Klyuchevskoy and other CKD rocks and 3) the H20-rich nature of the high-AI 

high-8180 component. The processes involved in magma generation below 

Klyuchevskoy volcano are more complicated then previously interpreted. Major 

element data show the presence of both a high-AI and a high-Mg end member as 

well as intermediate products at Klyuchevskoy. These products are also 

enriched in 8180, particularly the high-AI basalt. Olivine-hosted melt inclusions in 

high-AI samples are H20-rich, and contain up to 7.1 wt% water. Many samples 

have groundmass glass that is isotopically and chemically out of equilibrium with 

their olivines, indicating that olivine recycling is a likely process at Klyuchevskoy. 

We have shown that subduction of the Hawaii-Emperor Seamount Chain, 

while a possibility for some 8180 enrichment in the Klyuchevskoy Group area, 

cannot account for elevated 8180 values found throughout the backarc. Simple 

fractionation of a primitive high-Mg, normal-8180 basalt will only increase the 8180 

of high-AI basalt on the order of 0.1-0.3%0, and cannot account for the several 

permil enrichment evident at Klyuchevskoy. Involvement of a pyroxenite mantle 

source was ruled out because of Mg/Fe, Ni, and Mn values which indicated a 



63 

peridotite source. Amphibolite assimilation models likewise could not provide a 

consistent model to account for observed Klyuchevskoy 8180-Si02-H20 values. 

Extensive examination of published values for 10Se and 207PbPo4Pb 208PbPo4Pb 

ratios pertaining to sediment subduction shows no evidence of a significant 

contribution. Finally, fluid fluxing models require extremely high-8180 values for 

single-stage flux-melting and multi-stage flux melting, and would result in 

extremely high fluid mobile/immobile element signatures, which is not seen at 

Klyuchevskoy. Therefore, we present a hypothesis in which fluid flux melting of 

the mantle wedge creates primitive basaltic melts that rise and chemically 

interact with high-8180 peridotite in the uppermost mantle that was once hydrated 

and enriched as part of the forearc mantle prior to trench migration at -5 m.y.a. 

The formation of the high 8180, high-AI and moderately high 8180, high-Mg 

end members likely occur from the combination of varying degrees of two 

processes: (1) the release of fluid/melt (probably with moderately high 8180) from 

the subducting slab resulting in flux melting of the mantle wedge (Portnyagin et 

al. 2007b) and (2) assimilation of an upper mantle 8180 de-serpentinized mantle 

peridotite source, resulting in a high 8180, high-AI melt. The high-AI magma may 

reflect a mixing of a substantial degree of high-8180 shallow mantle de­

serpentinized peridotitic source, while the high-Mg source likely results primarily 

from the fluxing of water from the subducting slab material through the mantle 

peridotite, providing melt that is Mg-rich, more normal in 8180, but still hydrous 

with H20 concentrations up to 3.5 wt%. We consider that a subduction 
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rollback process is important in explaining the high-8180 hydrous basaltic 

magmas present in the CKD and worldwide. 
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APPENDIX A
 

MAJOR AND TRACE ELEMENT XRF ANALYSIS OF TEPHRA FROM
 

KLYUCHEVSKOY VOLCANO
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Sample KLV4 KLV 5/1 KLV 5/3 KLV 5/4 KLV 5/5 
Section Cone D KLV 05-05 KLV 05-05 KLV 05-05 KLV 05-05 
Latitude N5608.527 N5608.527 N5608.527 N5608.527 N5608.527 

E160 
Longitude E16048.054 E16048.054 E16048.054 E16048.054 48.054 

Oxide, wt% Un-normalized Major Elements (Weight %): 

SiOz 53.27 52.36 52.83 53.46 53.00 

TiOz 0.91 0.98 1.04 1.03 1.03 

Alz0 3 16.95 17.56 18.10 18.08 17.15 

FeO* 8.00 7.93 7.92 8.03 8.40 

MnO 0.16 0.16 0.16 0.16 0.16 

MgO 6.88 5.02 4.83 5.16 6.35 

CaO 9.22 8.04 8.11 8.31 8.74 

NazO 3.27 3.52 3.76 3.74 3.32 

KzO 0.76 0.93 0.77 0.85 0.71 

PZ0 5 0.17 0.19 0.20 0.22 0.19 

Sum 99.57 96.69 97.72 99.02 99.06 

element, ppm Un-normalized Trace Elements (ppm) 
Ni 65.3 35.5 25.5 27.3 51.2 
Cr 197.1 52.5 37.5 38.4 119.8 
Sc 30.6 24.3 26.6 26.1 29 
V 242.8 235.9 257.1 251.7 245 
Sa 264 380.2 274.2 297.3 240.7 
Rb 12.2 14.9 10.4 12.5 10.7 
Sr 328 338.2 319.9 359 318.9 
Zr 78.9 88.6 91.7 92.9 92 
y 18.2 20.1 21.8 20.2 20.6 
Nb 1.4 1.7 1.4 0.8 1.7 
Ga 19.6 18.8 19.2 19.5 17.5 
Cu 84.7 69.5 94.7 81.4 86.4 
Zn 78.5 83 80.1 79.6 79.7 
Pb 2.9 4 3.1 3.5 3 
La 5.3 5.1 5 6.9 5.6 
Ce 17.5 17.8 15.7 22.3 15.2 
Th 2.4 3.4 3.1 3 1.8 
Nd 12.8 11.7 11 14.4 11.6 

I K 0.632 0.773 0.638 0.702 0.593 
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Sample KLV 5/6 KLV 5/8 KLV 5/10 KLV 5/12 KLV 5/13 
Section KLV 05-05 KLV 05-05 KLV 05-05 KLV 05-05 KLV 05-05 
Latitude N5608.527 N5608.527 N5608.527 N5608.527 N5608.527 
Lonqitude E16048.054 E16048.054 E16048.054 E16048.054 E16048.054 

Oxide, wt% 

Si02 52.76 51.48 52.73 52.71 54.88 

Ti02 0.88 0.81 0.91 1.02 0.97 

AI20 3 16.55 13.87 16.86 17.34 18.12 

FeO· 8.20 8.55 8.39 8.91 7.72 

MnO 0.16 0.17 0.16 0.17 0.15 

MgO 7.67 11.30 6.70 5.83 4.92 

CaO 9.30 9.78 9.13 8.80 8.13 

Na20 3.04 2.36 2.87 2.94 3.47 

K20 0.68 0.56 0.70 0.77 1.00 

P20 S 0.16 0.14 0.15 0.17 0.18 

Sum 99.40 99.01 98.62 98.66 99.55 

element, ppm 
Ni 78.2 180.7 54.7 26.5 25.2 

Cr 242.4 807.2 185.3 77.7 37.1 

Sc 31.6 37.4 34.2 33.3 27.6 

V 238.4 242.5 250.6 271.2 241.3 

Sa 239.5 219.1 284.8 310.1 419.3 

Rb 10.3 8.5 11.6 12 16.6 

Sr 315.6 244.1 333.4 327.8 374.5 

Zr 73.7 63.4 74.4 80.7 86.1 

Y 18.1 16.7 17.1 22.2 20.1 

Nb 1.6 1 1.8 1.3 2 

Ga 16.4 15.3 18.7 17.4 18.9 

Cu 75.2 76.9 68.2 41.4 39.2 

Zn 75.1 73.1 78.2 83.6 81.2 

Pb 3.3 2.4 3.6 2.8 4.3 

La 2.6 3.8 5 5.3 5.3 

Ce 13.5 14.6 14.9 10.6 18.3 

Th 3.1 1.8 1.6 2.1 4.3 

Nd 9.9 10.1 10.5 10.7 9.7 

K 0.567 0.464 0.583 0.637 0.834 
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Sample KLV 5/15 KLV 5/18a KLV 5/19 KLV 5/20 KLV 5/22 
Section KLV 05-05 KLV 05-05 KLV 05-05 KLV 05-05 KLV 05-05 
Latitude N5608.527 N5608.527 N5608.527 N5608.527 N5608.527 
Longitude E16048.054 E16048.054 E16048.054 E16048.054 E16048.054 

Oxide, wt% 

Si02 51.23 53.44 54.50 53.78 54.34 

Ti02 0.99 0.87 0.84 0.98 0.86 

AI20 3 16.94 14.85 16.79 17.34 15.99 

FeO* 9.12 8.34 7.91 8.31 8.12 

MnO 0.18 0.16 0.16 0.16 0.16 

MgO 6.36 9.60 7.06 6.24 6.80 

CaO 9.03 8.84 8.55 8.86 8.85 

Na20 2.68 2.62 2.95 2.89 2.89 

K20 0.63 0.77 0.85 0.80 0.85 

P20 S 0.16 0.17 0.18 0.15 0.18 

Sum 97.30 99.67 99.79 99.51 99.05 

element, ppm 
Ni 38.3 125.3 67.2 17.4 44.3 
Cr 99.9 587.3 311.9 77.5 204.6 
Sc 36.9 32.8 28 32.2 31.1 
V 275.2 236 210 248 232.3 
Sa 250.2 308.1 361.9 335.9 329.2 
Rb 9.4 11.2 13.5 12.2 13 
Sr 311.9 308.9 341.6 307.2 364.8 
Zr 71.9 75 82.1 78.1 80.9 
y 20.1 19.3 20 20.2 17.8 
Nb 2.2 1.4 1.3 1.1 1.3 
Ga 18.6 16.3 18 17.8 18 
Cu 87.7 30.7 26.9 20 57.9 
Zn 80.3 79 91.7 84.2 78 
Pb 2.7 3.5 3.3 3.5 3.1 
La 4.3 3.3 5.8 5.5 4.5 
Ce 16.1 13.2 17.7 10.3 16.8 
Th 1.8 2.2 3 3.7 2.2 
Nd 11.8 8.3 12.3 8.2 12.6 
K 0.520 0.642 0.708 0.662 0.702 
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Sample KLV 5/24 KLV8 KLV9 KLV11/1 KLV 11/3 
Section KLV 05-05 Lepyoshka nd KLV 05-11 KLV 05-11 
Latitude N5608.527 N5608.992 N5609.167 N5609.167 N5609.167 
LonQitude E16048.054 E16047.710 E16047.621 E16047.621 E16047.621 

Oxide, wt% 

SiOz 57.01 52.67 52.77 52.14 53.48 

TiOz 1.31 1.00 1.03 1.00 1.03 

Alz0 3 17.39 15.97 16.63 17.29 17.35 

FeO* 7.27 8.78 8.86 8.74 8.90 

MnO 0.13 0.17 0.17 0.17 0.17 

MgO 2.64 7.28 6.86 6.62 5.90 

CaO 6.35 9.52 9.29 9.30 9.00 

NazO 3.61 2.76 2.83 3.03 3.05 

KzO 2.17 0.72 0.74 0.58 0.78 

PzOs 0.61 0.16 0.17 0.15 0.16 

Sum 98.49 99.02 99.34 99.03 99.84 

element, ppm 
Ni 16.8 43.1 37.4 47.4 25.5 
Cr 15.6 199 145.6 142.7 66.6 
Sc 21.5 37 35.1 33.8 33.9 
V 222.9 272.1 271.7 270.6 277.6 
Sa 725.9 292.1 313.4 219.6 306.2 
Rb 62.2 10.3 11.1 7.7 12.3 
Sr 320.7 302.9 316.1 320.6 333.6 
Zr 298.2 76.4 78.8 74 78.9 
Y 42.5 21.9 21.4 20.3 21 
Nb 6 1.8 1.6 1.5 1.4 
Ga 20.8 16 19 17.4 19.2 
Cu 203.2 42.8 40.1 73.8 42.4 
Zn 88.4 81.8 83.6 80.4 84.3 
Pb 9.5 3.6 2.8 1.2 3.4 
La 22.8 7 6.7 1.7 5.7 
Ce 62.3 17.2 13.1 12.2 19.1 
Th 8.2 3.4 2.4 1.8 3.4 
Nd 39.3 11.5 9.3 9.7 11.1 
K 1.805 0.595 0.611 0.484 0.650 



70 

Sample KLV 11/5 300-48 840-93/5-18 840-93/1-5 300-5/63 
Section KLV 05-11 300-75 840-93 840-93 300-75 
Latitude N5609.167 nd nd nd nd 
Lonqitude E16047.621 nd nd nd nd 

Oxide, wt% 

Si02 54.56 52.98 53.92 53.66 53.10 

Ti02 0.97 1.03 1.06 0.91 1.03 

AI20 3 17.90 17.04 18.17 16.97 17.23 

FeO" 7.67 8.85 8.25 8.34 8.35 

MnO 0.15 0.17 0.16 0.16 0.16 

MgO 4.98 5.96 5.09 6.77 6.28 

CaO 8.12 8.89 8.30 8.68 8.80 

Na20 3.42 2.94 3.78 3.24 3.32 

K20 1.00 0.77 0.77 0.81 0.71 

P20 S 0.18 0.17 0.20 0.17 0.19 

Sum 98.94 98.79 99.69 99.71 99.17 

element, ppm 
Ni 25.1 27.6 28.5 55.7 49.3 
Cr 40.9 73.3 34.1 133.7 128.3 
Sc 27.3 32.9 27.3 28.9 29.5 

V 238.3 275.4 263.3 237.7 250.6 
Sa 415.3 306.2 272.5 334.4 241 
Rb 16.3 12.1 12.6 12.8 10.2 
Sr 369.7 326.1 320 317.5 319.5 
Zr 85.5 79.2 92.4 79.4 92.5 
y 19.8 20.8 21.7 19.4 21 
Nb 1.4 1.2 1.8 0.6 1.3 
Ga 18.7 17.9 20.5 16.4 19.3 
Cu 35.9 39.6 84.8 58.3 84.4 
Zn 81.7 83.9 79.8 80.7 80 
Pb 3.7 3.2 3.5 2.9 3.8 
La 6.3 6.7 5.8 3.6 4.1 
Ce 16.9 15.1 17.4 14.9 14.7 
Th 2.8 3 2.5 3.1 1.5 
Nd 12.9 10.2 14 8.8 12 
K 0.833 0.640 0.635 0.674 0.592 
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APPENDIX B
 

FIELD NOTES FROM SAMPLE COLLECTING AROUND KLYUCHEVSKOY
 

VOLCANO JULY/AUGUST 2005
 



Visible
 
Sample of Location Latitude Longitude Type Ave Unit Phases -Age
 

KLV grain size thickness or Iithics Yrs BP
 
1 Near shack N5608.750 E16047.945 lava nr nr 01 200
 
2 Near shack N5608.726 E16048.087 lava nr nr pi 1500
 
3 Cone D? River D Sect. 1 N5608.562 E16048.228 lava nr nr 01; px 2450
 
4 Cone D River D Sect. 1 N5608.527 E16048.054 tephra nr -6m 01; px 2300
 
5 1 River D Sect. 1 N5608.527 E16048.054 scoria OAcm 2-3cm 50
 

2 River D Sect. 1 N5608.527 E16048.054 scoria nr 1cm pi 350
 
3 River D Sect. 1 N5608.527 E16048.054 scoria OAcm 2cm 1100
 
4 River D Sect. 1 N5608.527 E16048.054 scoria OAcm 3cm 1200
 
5 River D Sect. 1 N5608.527 E16048.054 scoria 1cm nr 1600
 
6 Cone D? River D Sect. 1 N5608.527 E16048.054 scoria 0.2cm 13cm 01 2500
 
7 River D Sect. 1 N5608.527 E16048.054 ash 0.1-0.2cm nr 2600
 
8 River D Sect. 1 N5608.527 E16048.054 scoria 0.2cm 5cm 01 2650
 
9 River D Sect. 1 N5608.527 E16048.054 scoria 0.1cm 4cm 2700
 

10 River D Sect. 1 N5608.527 E16048.054 scoria 0.8cm 4cm 3000
 
11 River D Sect. 1 N5608.527 E16048.054 scoria nr 13cm 01 3100
 
12 River D Sect. 1 N5608.527 ' E16048.054 scoria 0.5cm 18cm Ii 3400
 
13 River D Sect. 1 N5608.527 E16048.054 scoria 0.8cm 4cm Ii 3600
 
14 River D Sect. 1 N5608.527 E16048.054 scoria nr nr 4300
 
15 River D Sect. 1 N5608.527 E16048,054 scoria OA-0.5cm 1.5cm 4750
 
16 River D Sect. 1 N5608.527 E16048.054 scoria 0.1-0.2cm 4cm 5100
 
17 River D Sect. 1 N5608.527 E16048.054 ash 0.3cm 3-5cm 5550
 
18a River D Sect. 1 N5608.527 E16048.054 scoria 0.3cm 25cm 5800
 
18b River D Sect. 1 N5608.527 E16048.054 lithics nr 25cm 5800
 
19 River D Sect. 1 N5608.527 E16048.054 scoria 0.1-0.3cm 6cm 5900
 
20 River D Sect. 1 N5608.527 E16048.054 scoria 0.5cm 2cm 6400
 
21 River D Sect. 1 N5608.527 E16048.054 scoria 0.1-0.3cm 1cm pi 7100
 
22 River D Sect. 1 N5608.527 E16048.054 scoria nr 2-3cm 7250
 

......:J 
N 



KLV 
Sample of Location Latitude Longitude Type Average 

grain size 
Unit 

thickness 
Visible 
Phases 

-Age 
Yrs BP 

5 23 River 0 Sect. 1 N5608.527 E16048.054 sand nr 1cm mm 7700 
24 River 0 Sect. 1 N5608.527 E16048.054 scoria 2cm 55cm Ii 8550 
24b River 0 Sect. 1 N5608.527 E16048.054 lithics nr 55cm Ii 8550 

6 

25a 
25b 

PIIP 

River 0 Sect. 1 
River 0 Sect. 1 
PII P Lava Flow 

N5608.527 
N5608.527 
N5609.113 

E16048.054 
E16048.054 
E16047.746 

scoria 
pi 

nr 

nr 
nr 
nr 

1-2cm 
1-2cm 

nr 

pi 

01 

8650 
8650 

41 
7 
8 

nd 
nd 

N5608.992 
N5608.992 

E16047.710 
E16047.710 

lava 
scoria 

nr 
nr 

nr 
-6m 

01; px; pi 41-200 
3400 

9 Mud waterfall N5609.167 E16047.621 scoria 1cm -0.5m 3250 
10 Bulochka Mud waterfall N5609.167 E16047.621 lava nr nr 3200 
11 1 Riverbank #2 N5609.167 E16047.621 scoria O.4cm 2cm 1600 

2 Riverbank #2 N5609.167 E16047.621 scoria nr 2cm 2700 
3 Riverbank #2 N5609.167 E16047.621 scoria nr nr 3250 
4 Riverbank #2 N5609.167 E16047.621 scoria 0.1cm 4cm 3400 
5 Riverbank #2 N5609.167 E16047.621 scoria nr 3cm Ii 3600 

12 Ravine #1 N5609.064 E16046.903 lava nr nr nd 
13 Ravine #1 N5609.064 E16046.903 scoria nr nr 8550 
14 
15 1 

2 

Ravine #1 
Riverbank #3 
Riverbank #3 

N5609.167 
N5609.201 
N5609.201 

E16047.621 
E16048.009 
E16048.009 

lava 
sand 
scoria 

nr 
0.2cm 
0.8cm 

nr 
7cm 

3-6cm 

pi 
pi 

nd 
400 
750 

16 Bezymianny nd N5608.819 E16048.102 ash nr nr 51 
17 Klyuchevskoy nd N5608.819 E16048.102 ash nr nr 13 
18 SH2 Riverbank #1 N5608.527 E16048.054 ash nr nr 9950 
19 SH3 Riverbank #1 N5608.527 E16048.054 ash nr nr 1450 
20 Cone Ell Cone Ell N5607.104 E16045.040 scoria nr nr 01 1950 
21 Cone 0 Cone 0 N5607.221 E16045.268 lava nr nr 01 150 
22 Belyanankin nd N5607.853 E16045.405 lava nr nr 100 
23 Levashov Cone Levashov N5607.747 E16046.114 scoria nr nr 01 2300 

.....:l 
V-l 



Sample of Location Latitude Longitude Type Average Unit Visible -Age 
KLV grain size thickness Phases Yrs BP 
23b Levashov Cone Levashov N5607.747 E16046.114 01 nr nr 01 2300 

24 Cone J [I] Cone J [I] N5606.974 E16048.397 scoria 0.2cm nr 01 2650 
25 Bylinkina Cone Bylinkina N5606.618 E16049.357 bomb? nr nr 54 
26 Shmalev Cone Shmalev N5606.737 E16049.942 scoria nr nr 1700 
27 Bering Cone Bering Cone N5606.911 E16050.127 scoria nr nr 3400 
28 Cone M? Waterfall N5607.158 E16049.629 lava nr nr 01 2700 
29 Cone lIE? Riverbank #4 N5607.180 E16049.598 scoria nr 1.66m 2475 
30 Ploski Riverbank #4 N5611.258 E16052.257 lava nr nr pi >8600 
31 Klyuchevskoy Riverbank #4 N5611.531 E16052.970 lava nr nr 01 >8600 
32 Riverbank #4 N5611.522 E16053.102 lava nr nr pi 8450 
33 Riverbank #4 N5611.258 E16052.257 lava nr nr >8600 
34 SH3 Kliuchi N5618.634 E16053.459 scoria nr nr 1450 
35 Kliuchi N5619.622 E16050.529 lava nr nr pi nd 
36 Kozvrevsk N5602.776 E15951.148 lava nr nr nd 

......:l 

.J:;.. 



75 

BIBLIOGRAPHY 

Almeev RR, Geokhimia magmatizma vulkana Bezymyanny: Priznaki mantiinogo 
istochnika I uslovia fraktsionirovania iskhodnoi magmi [Geochemistry of 
magmatism of Bezymianny volcano: mantle source and conditions of 
fractionation of the primary magma] in Russian. Dissertation defended at 
Vernadsky Institute of Geochemistry 

Anderson, AT (1973) The before-eruption water content of some high-alumina 
magmas. Bulletin of Volcanology 37:530-552 

Ariskin AA, Barmina GS, Ozerov AY, Nielsen RL (1995) Genesis of High­
Alumina Basalts of Klyuchevskoy Volcano. Petrology 3/5:496-521 

Bailey JC, (1996) Role of subducted sediments in the genesis of Kurile­
Kamchatka island arc basalts: Sr isotopic and elemental evidence, Geochirnica 
Cosmochimica Acta 30:289-321 

Bindeman IN, Vinogradov VI, Valley JW, Wooden JL, Natal'in BA, (2002) 
Archean Protolith and Accretion of Crust in Kamchatka: SHRIMP Dating of 
Zircons from Sredinny and Ganal Massifs. The Journal of Geology 110:271-289 

Bindeman IN, Ponomareva W, Bailey JC, Valley JW, (2004) Volcanic arc of 
Kamchatka: a province with high-delta 0-18 magma sources and large-scale 0­
18/0-16 depletion of the upper crust. Geochimica Cosmochimica Acta 68/4:841­
865 

Bindeman IN, Eiler ,,1M, Yogodzinski G, Tatsumi Y, Stern C, Grove T, Portnyagin 
M, Hoernle K, Danyushevsky L (2005) Oxygen isotope evidence for slab melting 
in modern and ancient subduction zones. Earth and Planetary Science Letters 
235:480-496 

Bindeman IN, Sigmarsson 0, Eiler JM (2006) Time constraints on the origin of 
large volume basalts derived from O-isotope and trace element mineral zoning 
and U-series disequilibria in the Laki and Grimsvotn volcanic system. Earth and 
Planetary Science Letters 245:245-259 

Braitseva OA, Ponomareva W, Sulerzhitsky LD, Melekestsev IV, Bailey JC 
(1997) Holocene key-marker tephra layers in Kamchatka, Russia. Quaternary 
Research 47: 125-139 



76 

Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope 
fractionations involving diopside, forsterite, magnetite, and calcite: Application to 
geothermometry. Geochimica Cosmochimica Acta 53:2985-2995 

Churikova T, Dorendorf F, Worner G (2001) Sources and fluids in the mantle 
wedge below Kamchatka, evidence for across-arc geochemical variation. 
Journal of Petrology 42: 1567-1593 

Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and 
petrological studies of melt inclusions in phenocrysts from mantle-derived 
magmas: and overview of techniques, advantages and complications. Chemical 
Geology 183:5-24 

DePaulo OJ, (1981) Trace element and isotopic effects of combined wall rock 
assimilation and fractional crystallization. Earth and Planetary Science Letters 
53:189-202 

Dixon JE, Pan V (1995) Determination of the molar absorptivity of dissolved 
carbonate in basanitic glass. American Mineralogist 80:1339-1342 

Dixon JE, Stolper EM, Holloway "IR (1995) An experimental study of water and 
carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration 
and solubility models. Journal of Petrology 36/6:1607-1631 

Dorendorf F, Wiechert U, Worner G (2000) Hydrated sub-arc mantle: A source 
for the Klyuchevskoy volcano, Kamchatka/Russia. Earth and Planetary Science 
Letters 175: 69-86 

Duggen S, Portnyagin M, Baker J, Ulfbeck 0, Hoernle K, Garbe-Schonberg 0, 
Grassineau N (2007) Drastic shift in lava geochemistry in the volcanic-front to 
rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the 
transition from slab surface dehydration to sediment melting. Geochimica 
Cosmochimica Acta 71 :452-480 

Ducea MN, Barton MD (2007) Igniting flare-up events in Cordillieran arcs. 
Geology 35: 1047-1050 

Ghiorso MS, Sack Ro (1995) Chemical mass transfer in magmatic processes. 4. 
A revised and internally consistent thermodynamic model for the interpolation 
and extrapolation of liquid-solid equilibria in magmatic systems at elevated 
temperatures and pressures. Contributions to Mineralogy and Petrology 119(2­
3):197-212. 

Gill JB (1981) Orogenic Andesites and Plate Tectonics. Springer-Verlag. 



77 

Gorbatov A, Kostoglodov V, Suarez G, Gordeev E (1997) Seismicity and 
structure of the Kamchatka subduction zone. Journal of Geophysical Research 
102:17833-17898 

Gorbatov A, Dominguez J, Suarez G, Kostoglodov V, Zhao D, Gordeev E (1999) 
Tomographic imaging of the P-wave velocity structure beneath the Kamchatka 
peninsula. Geophysical Journal International 137(2):269-279 

Gorbatov A, Fukao Y, Widiyantoro S, Gordeev E (2001) Seismic evidence for a 
mantle plume oceanward of the Kamchatka-Aleutian trench junction. Geophysics 
Journal International 146:282-288 

Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an 
H20-rich fluid component in the generation of primitive basaltic andesites and 
andesites from the Mt. Shasta region, N. California. Contributions to 
Mineralology and Petrology 142:375-396 

Grove TL, Chatterjee N, Parman SW, Medard E (2006) The influence of H20 on 
mantle wedge melting. Earth and Planetary Science Letters 249(1-2):74-89 

Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the 
Andes of Central Chile. Contributions to Mineralogy and Petrology 98:455- 489 

Kelsey (1965) Calculation of the C.I.P.W. norm. Mineralogical magazine 34:276­
282 

Kersting AB, Arculus RJ, (1994) Klyuchevskoy Volcano, Kamchatka Russia- The 
role of High-flux recharged, tapped, and fractionated magma chamber(s) in the 
genesis of high-Al203 from high MgO basalt. Journal of Petrology 35/1 :1-41 

Kersting AB, Arculus RJ (1995) Pb isotope composition of Klyuchevskoy volcano, 
Kamchatka and North Pacific sediments: Implications for magma genesis and 
crustal recycling in the Kamchatkan arc. Earth and Planetary Science Letters 
136/3-4:133-148 

Khrenov AP, Dvigalo VN, Kirsanov IT, Fedotov SA, Gorel'chik VI, Zharinov, NA 
(1991) Klyuchevskoy volcano In: Fedotov SA, Masurenkov, YP (eds) Active 
volcanoes of Kamchatka, vol 1. Moscow, Nauka Publishers, 104-153 

Khubunaya SA, Gontovaya L1, Sobolev AV, Niskous I (2007) Magma chambers 
beneath Klyuchevskoy group volcanoes. Volcanology and Seismology 2:32-54 

Konstantinovskaia EA (2001) Geodynamics of an Early Eocene arc-continent 
collision reconstructed from the Kamchatka Orogenic Belt, NE Russia. 
Tectonophysics 325: 87-105 



78 

Lees JM, Symons N, Chubarova 0, Gorelchik V, Ozerov A (2007) Tomographic 
Images of Klyuchevskoy Volcano P-wave Velocity In: Eichelberger J, Izbekov P, 
Kasahara M, Lees J, Gordeev E (eds) Volcanism and tectonics of the 
Kamchatka Peninsula and adjacent arcs, American Geophysical Union 
Monograph Series, in press 

Levin V, Shapiro N, Park J, Ritzwoller M, (2002) Seismic evidence for 
catastrophic slab loss beneath Kamchatka. Nature 418:763-767 

Manea VC, Manea M, Clark S (2007) Thermal models beneath Kamchaka and 
the Pacific plate rejuvenation from a mantle plume impact. In: Eichelberger J, 
Izbekov P, Kasahara M, Lees J, Gordeev E (eds) Volcanism and tectonics of the 
Kamchatka Peninsula and adjacent arcs, American Geophysical Union 
Monograph Series, in press 

Melekestsev IV (1980) Volcanism and Relief Formation. Nauka, Moscow (in 
Russian). 

Mironov NL, Portnyagin MV, Pletchov PY, Khubunaya SA (2001) Final Stages of 
Mama Evolution in Klyuchevskoy Volcano, Kamchatka: Evidence form Melt 
Inclusions in Minerals of High-Alumina Basalts. Petrology (9/1):51-69. 

Muehlenbachs K (1986) Alteration of the oceanic crust and the 180 history of 
seawater, In: JW Valley, HP Taylor, JR O'Neil Jr (eds), Stable Isotopes in High 
Temperature Geological Processes. Reviews in Mineralogy, 16:425-444 . 

Newman S, Lowenstern "IB (2002) VolatileCalc: a silicate melt-H20-C02 solution 
model written in Visual Basic for excel. Computers & Geosciences 28:597-604 

Nichols ARL, Wysoczanski RJ (2007) Using micro-FTIR spectroscopy to 
measure volatile contents in small and unexposed inclusions hosted in olivine 
crystals. Chemical Geology 242(3-4):371-384 

Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 
283:13414-1317 

Osipenko AB, Sidorov EG, Shevchenko SS, Konilov AN, Rassulov VA, 
Rudashevskii NS (2007) Geochemistry and U-Pb Geochronology of Zircon in 
Garnet Amphibolites from Kamchatkskii Cape Peninsula, Eastern Kamchatka. 
Geochemistry International 45/3:226-234 

Ozerov AY, Ariskin AA, Kyle P, Bogoyavlenskaya GE, Karpenko SF (1997) 
Petrological-Geochemical Model for Genetic Relationships between Basaltic 
and Andesitic Magmatism of Klyuchevskoi and Bezymyannyi Volcanoes, 
Kamchatka. Petrology (5/6):614-635 



79 

Ozerov AY (2000) The evolution of high-alumina basalts of the Klyuchevskoy 
volcano, Kamchatka, Russia, based on microprobe analyses of mineral 
inclusions. Journal of Volcanology and Geothermal Research 95:65-79 

Pineau F, Semet MP, Grassineau N, Okrugin VM, Javoy M (1999) The genesis 
of the stable isotope (O,H) record in arc magmas: the Kamchatka's case. 
Chemical Geology 62: 157-176 

Piyp VB, Yefimova YA (1993) Seismic sections of the earth's crust under 
volcanoes of Kamchatka. International Geology Review 35:170-177 

Pokrovsky BG, Volynets ON (1999) Oxygen-isotope geochemistry in volcanic 
rocks of the Kurile-Kamchatka arc. Petrology 7:227-251 

Portnyagin M, Hoernle K, Avdeiko GP, Hauff F, Werner R, Bindeman IN, 
Uspensky VS, Garbe-Schonberg, CD (2005) Transition from arc to oceanic 
magmatism at the Kamchatka-Aleutian junction. Geology (33/1): 25-28 

Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007a) 
Constraints on mantle melting and composition and nature of slab components 
in volcanic arcs from volatiles (H20, S, CI, F) and trace elements in melt 
inclusions form the Kamchatka Arc. Earth and Planetary Science Letters 
255:53-69 

Portnyagin, M, Bindeman, IN, Hoernle K, Hauff F (2007b) Geochemistry of 
primitive lavas of the Central Kamchatka Depression: Magma Generation at the 
Edge of the Pacific Plate. In: Eichelberger J, Izbekov P, Kasahara M, Lees J, 
Gordeev E (eds) Volcanism and tectonics of the Kamchatka Peninsula and 
adjacent arcs, American Geophysical Union Monograph Series, in press 

Savin SM, Lee L (1988) Isotopic studies of hydrous phyllosilicates. In: Bailey SW 
(ed) Hydrous Phyllosilicates (exclusive of micas). Reviews in Mineralogy 19:189­
233 

Sisson TW, Bronto S (1998) Evidence for pressure-release melting beneath 
magmatic arcs from basalt at Galunggung, Indonesia. Nature 391 :883-886 
Sobolev AV, Shimizu N (1993) Ultra-depleted primary melt included in an olivine 
from the Mid-Atlantic Ridge. Nature 363:151-154. 

Sobolev AV (2007) The amount of recycled crust in sources of mantle-derived 
melts. Science 316:412-417 



80 

Spera FJ, Bohrson, WA (2002) Energy-Constrained Open-System Magmatic 
Processes III: Energy-Constrained Recharge, Assimilation and Fractional 
Crystallization (EC-RAFC). Geochemistry, Geophysics, Geosystems 
3(12):8001, doi:1 0.1 029/2002GC000315 

Staudigel H, Davies GR, Hart SR, Marchant KM, Smith BM (1995) Large-scale 
isotopic Sr, Nd and 0 isotopic anatomy of altered oceanic crust-DSP/ODP sites 
417/418. Earth and Planetary Science Letters 130:169-185 

Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic 
basalts: Implications for the mantle composition and processes. In: Magmatism 
in the Ocean Basin, vol 42 Geol Soc Sp Publi, 313-345 
Tera F, Brown L, Morris J, Sacks IS, Klein J, Middletown R (1986) Sediment 
incorporation in island-arc magmas: Inferences from 10Be. Geochimica 
Cosmochimica Acta 4:535-550 

Volynets ON (1994) Geochemical types, petrology and genesis of Late Cenozoic 
volcanic rocks from the Kurile-Kamchatka island-arc system. International 
Geology Review 36/4: 373-405 

Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and 
fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology 
and Geophysical Research 140:217-240 

Wenner DB, Taylor HP Jr (1971) Temperatures of serpentinization of ultramafic 
rocks based on 180/160 fractionation between coexisting serpentine and 
magnetite. Contributions to Mineralogy and Petrology 32:165-185 

Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Woerner G, Volynets ON 
(2001) Geochemical evidence for the melting of subducting oceanic lithosphere 
at plate edges. Nature 404:500-50 


