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1 Introduction.
There are many examples in economics where, in either a Paratian or welfare
sense, cooperative behavior by economic agents yields outcomes that are signi…-
cantly superior to those achieved under non-cooperation. However, the problem
that is frequently encountered is that cooperation cannot be straightforwardly
sustained in a non-cooperative environment. When others are behaving coop-
eratively non-cooperative behavior often yields an individual agent signi…cant
gains. Perhaps the most well-known example of this problem is the prisoners’
dilemma, although any economic activity that generates external e¤ects, or has
some degree of ”publicness” attached to it typically su¤ers from similar prob-
lems. There are of course many well known methods by which agents may be
induced to internalize an externality, or achieve an e¢cient allocation of goods
some of which are characterized by a degree of publicness. These solutions
include; (i) Pigouvian taxes or subsidies; (ii) quantity rationing; (iii) tradable
quotas; (iv) limiting the number of participants in an activity or market; (v)
creating appropriate private property rights; and (vi) promoting collusive wel-
fare maximization. Each of these solutions work in the right circumstances1 .
However, each has well-known problems.

The purpose of this paper is to propose a new market based mechanism that
induces rational self-interested agents in a non-cooperative environment to make
the same choices as characterize the cooperative outcome. The mechanism,
once introduced, does not promote overt cooperation, no explicit collusion or
joint decision making takes place, rather it provides the appropriate incentives
for non-cooperative agents to act exactly as if such activities had occurred.
The intuition behind the mechanism we propose is straightforward. Suppose
we view an economic activity as a game in which a number of players choose
actions which then generate payo¤s according to a given payo¤ matrix. If the
mechanism has the characteristic that each player’s …nal individual payo¤ is
strictly increasing in the sum of the payo¤s from the economic activity, then
each has an incentive to choose the action that is jointly maximizing. Thus
each behaves as if they are cooperating. To construct a mechanism that can
achieve this result is quite simple to do. Suppose we view the economic activity
as a two stage game2. In the …rst stage the players make choices that generate
payo¤s, these payo¤s are then redistributed in the second stage according to
some prespeci…ed mechanism. Clearly any mechanism with the property that
each player recieves a proportion of the total payo¤ will generate the incentives
necessary for total payo¤ maximization in the …rst stage. The purpose of this
paper is to propose one speci…c mechanism that has this requisite property.
The mechanism we propose is not operated by an outside party determining
a redistribution of the payo¤s. Rather, it is a game played by agents who

1See for example the discussion in Cornes and Sandler [2].
2Guttman and Schnytzer [6] propose that reciprocal externality problems may be solved

in a two stage strategic matching game. In the …rst stage the players precommit to matching
rates that linearly link their externality causing actions. In the second they choose the actions.
Both stages are played non-cooperatively. The resulting allocation is Pareto e¢cient.
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are trying to ’claim’ as much of the payo¤s as possible. We argue that non-
cooperative agents may be given the incentives to make the cooperative choices
by the creation of a new type of property right, termed a ”pooling property
right”. The key characteristic of a pooling property right is that it may be
used to claim a share of any payo¤ in a game. This might work as follows.
Consider a two stage game in which two players each hold pooling property
rights. In the …rst stage the players play a classic prisoners’ dilemma. In the
second stage the players play a non-cooperative game in which they allocate
their pooling property rights to the payo¤s generated in stage 1. Each payo¤
is then redistributed between the players in the same proportions as the share
of the property right they have allocated to that payo¤. We are able to show
that the Nash equilibrium in this second stage of the game has the property
of proportionality. It follows that in a subgame perfect equilibrium the players
have an incentive to maximize total payo¤s in the …rst stage. The outcome
described as cooperative in a one-shot prisoners dilemma game becomes a non-
cooperative equilibrium in this two stage game.

We concentrate on pooling property rights as the mechanism for achieving
the cooperative outcome both because of their theoretical appeal, and because
they may have a wide range of policy implications. Theoretically any problem
of externalities may be thought of as arising because there is no market for the
externality. Interestingly in our analysis the second stage of the game operates
by introducing an extra market, however this is not directly a market for the
externality. Further, we are able to show that even with a small number of
players our model works as if there is a market for the externality which is
perfectly arbitraged. This is the key theoretical contribution of our paper. It
is well known that if the players of a game recieve …xed shares of the total
payo¤ then cooperation and thus e¢ciency will result, our paper provides a
decentralized (market) mechanism for achieving this. From a policy perspective
our results may be applicable to real world externality problems. Suppose that
a pair of …rms that imposed external costs or bene…ts on each other swapped
standard equity for pooling equity, shares that represent claims on either (but
not both) …rms. This, which amounts to little more than a relabeling exercise,
would generate the same setup as in our theoretical model. Notice that this
mechainsm may be introduced without the need to create new property right or
to agree on any type of sharing scheme, thus it may avoid many of the pitfalls
of alternative solutions. We view this as the major advantage of our mechanism
over simpler ones such as those that involve specifying for each player a …xed
share of the …rst stage payo¤s.

The rest of our paper is organized as follows. In section 2 we present a
general model of an N player two stage non-cooperative game and demonstrate
formally the results discussed above. In section 3 we apply our mechanism to
two well known externality problems, the tragedy of the commons, and R&D
spillovers in duopoly. In each case we demonstrate how our mechanism in-
duces cooperation. We adopt these examples for speci…c reasons. Both are well
known, well understood, and have clear real world implications. However they
provide us with vehicles to demonstrate di¤erent aspects of the mechamism. In
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the commons problem there is only one source of distortion, the negative cost
externalities each …rm bestows on the others. For this problem the application
of our mechanism produces an e¢cient solution. In the R&D spillovers problem
there are distortions due both to the spillovers themselves and the market power
of the duopoly …rms. This is a second best world in which the application of
our mechanism cannot yield an e¢cient solution. However, we show how it can
be used to promote maximal R&D or maximal output dependent on when the
pooling property rights are used as claims on pro…ts. This example also allows
us to explore the implications of pooling property rights that are permanently
‡exible, i.e. can be reallocated each time the game is played, or are temporarily
‡exible i.e. must remain as allocated after the …rst time they are used. Finally
in section 4 we supply a conclusion.

2 The Model.
In this section we develop a formal model of our cooperation inducing mecha-
nism. This consists of a two-stage game in which each of the two stages consists
of a (non-cooperative) game in strategic form.

Stage 1: The players play a non-cooperative game ¡ =

M ; (Ak)k2M ; (pk)k2M

®

with player set M = f1; 2; :::; mg in which each player k 2 M has an
action set Ak and a positive payo¤ function pk. If the players choose an
action tuple a = (ak)k2M 2 (Ak)k2M in this game, then every player
k 2 M generates a payo¤ pk(a) > 0.

Stage 2: There is a player set of N = f1; 2; :::; ng, where n ¸ m and n ¸ 2. We
assume each player i 2 N holds positive property rights (shares) Si;which
may be used as claims on the m positive payo¤s p1(a); p2(a); :::; pm(a) that
result from the …rst stage of the game. Denote the shares contributed
by player i to payo¤ pk(a) by si

k. A strategy for player i in the second
stage is a set of contributions

¡
si
k

¢m
k=1 such that si

k ¸ 0 for each k andPm
k=1 si

k = Si. If the players all determine their contributions, then for
each payo¤ pk(a) player i gets the share si

kP
j2N sj

k
of pk(a) if

P
j2N sj

k > 0,

i.e. if a positive amount of property right is contributed to pk(a), and
if

P
j2N sj

k = 0 then payo¤ pk(a) is divided among the players in some
predetermined way (we will show that in equilibrium there will never be
a payo¤ to which no property rights are contributed, no matter what the
division). At the end of the game, every player i 2 N has a payo¤ ofPm

k=1
si

kP
j2N sj

k
pk(a).

Notice that M µ N; all players who play the …rst stage also play the second,
but some players play only the second stage. Those that play both stages may
be thought of as both owners and producers, those that play only the second
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stage are pure owners. 3 Having de…ned the game, we may now proceed to solve
it for its subgame perfect Nash equilibria4 . Consequently we apply backward
induction and analyze …rst the second stage of the game, and then use the
equilibria from the second-stage (sub)games to solve for optimal behavior in the
…rst stage of the game.

2.1 The Second Stage.
In this subsection, we solve for the equilibria of the second stage of the game.
We show that for every outcome of the …rst stage of the game, the second-stage
game has a unique Nash equilibrium.

Suppose that in the …rst stage the action tuple a was played. Then, there
would be the payo¤s p1(a); p2(a); :::; pm(a) to which property rights can be ap-
plied. To simplify notation and to try and avoid confusion, we will denote pk(a)
by Pk for every k 2 M . Lower indices correspond to the di¤erent payo¤s of the
…rst stage that can be (partially) claimed and upper indices correspond to play-
ers in the second stage. We will see later that in a Nash equilibrium there will
be no payo¤ Pk such that

P
i2N si

k = 0. Anticipating this, we will ignore the
possibility that

P
i2N si

k = 0 for some k in our formulation of the maximization
problem that each player faces.

A Nash equilibrium is obtained if all players i simultaneously solve the fol-
lowing maximization problem:

Maximize
mX

k=1

si
kP

j2N sj
k

Pk

s.t.
mX

k=1

si
k = Si

and si
k ¸ 0 for each k

If a strategy
¡
si
k
¢m
k=1 solves the maximization problem of player i 2 N , then

there exists a multiplier ¸i such that for every k = 1; 2; :::;m

P
j2N sj

k ¡ si
k³P

j2N sj
k

´2 Pk =

P
j2Nnfig sj

k³P
j2N sj

k

´2 Pk · ¸i, with equality if si
k > 0 (1)

3We assume all players that play the …rst stage also play the second. This seems to accord
well with the idea of managers representing the interests of their shareholders. In a companion
paper Ellis and Van den Nouweland [5] we allow some players to play only the …rst stage as
agents of those that play the second. The agents exclusively care about their own ”e¤ort”. We
…nd that the optimal agency contracts combined with the cooperation inducing mechanism
induce an e¢cient allocation.

4Actually, as will become clear in the analysis of the …rst stage of the game, we consider a
subset of the set of subgame perfect equilibria.
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We shall proceed in two stages, …rst we shall demonstrate what a Nash
equilibrium looks like, provided one exists, then we shall demonstrate that there
exists a unique Nash equilibrium.

Theorem 1. If
¡¡

si
k
¢m
k=1

¢
i2N

is a Nash equilibrium. Then it has the following
properties.

1. Each player makes a positive claim on each payo¤, i.e. si
k > 0 for every

i 2 N and k = 1; 2; ::::;m:

2. Each player divides their property rights between the payo¤s such that
their share in each payo¤ is in the same proportions as their share of
total property rights, i.e. si

kP
j2N sj

k
= SiP

j2N Sj for every i 2 N and k =
1; 2; ::::;m:

3. Each player divides their property rights between the payo¤s such that
the proportion of their shares allocated to each payo¤ is the same as the
proportion of that payo¤ to total payo¤s, i.e. si

k
Si = PkP m

l=1 Pl
for every i 2 N

and k = 1; 2; ::::;m:

The proof of this and all subsequent theorems, propositions and lemmas may
be found in the appendix.

Theorem 1 may be most easily understood by examining the players incen-
tives to allocate their property rights across the payo¤s. Consider …rst the third
part of the theorem and notice that this may be rewritten

Pm
l=1 Pl

Si =
Pk

si
k

:

Cross multiplying this expression, summing over the i 2 N and then cross
multiplying again we obtain

Pm
l=1 PlP
i2N Si =

PkP
i2N si

k
(2)

Expression (2) tells us that in the second stage the payo¤ per unit of property
right is equalized across all …rst stage payo¤s, and is essentially an arbitrage
condition. Given the number of property rights allocated to each payo¤ no
player may reallocate their shares and raise their total payo¤. This has the
further implication that more shares are placed on the larger payo¤s, and in
strict proportion to their size.

Next consider part 2, this tells us that each player holds the same percentage
of the shares allocated to each payo¤. This is an optimality condition that tells
us that the reallocation of a property right by a player between …rst stage payo¤s
cannot raise their total payo¤, this recognizes the e¤ect of the reallocation both
on the numerators and denominators of the relevant terms si

kP
j2N sj

k
. This is the
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proportionality property that we have already claimed will induce cooperative
behavior.

Now we know what a Nash equilibrium looks like if one exists. It remains
to be shown that there exists a unique Nash equilibrium.

Theorem 2. Let
¡¡

si
k

¢m
k=1

¢
i2N be the set of strategies de…ned by

si
k = Si

0
BB@

Pk
mP

l=1
Pl

1
CCA (3)

for every i 2 N and k = 1; 2; ::::;m: This set of strategies is the unique
Nash equilibrium of the second stage of the game. Moreover, for every
player i 2 N his payo¤ according to the Nash equilibrium is

Si
P

j2N Sj

Ã
mX

k=1

Pk

!
:

The unique Nash equilibrium to the second stage of the game is characterized
by each player receiving a share of the sum of the payo¤s from the …rst stage.
Further, this share is equal to the ratio of each players’ property rights to total
property rights.

2.2 The First Stage.
We now know that for every action tuple a played in the …rst stage the subgame
played in the second stage has a unique Nash equilibrium. We next analyze the
…rst stage and solve for the subgame perfect equilibria of the two stage game.
The payo¤s that were exogenous in the second stage, are determined in the …rst
stage. As we have seen in our analysis of the second stage, in equilibrium these
payo¤s will be re-distributed among the players in proportion to their share of
total property rights. Hence, after the second stage, player i 2 N will end up
with a payo¤ of

Si
P

j2N Sj

Ã X

k2M

pk(a)

!
.

Since every player in the …rst stage is also a player in the second, the expression
above gives us the payo¤ that every player in the …rst stage expects to get at
the end of the second stage. Hence, the players in the …rst stage are playing
a weighted potential game (cf. Monderer and Shapley [7]). Each gets a share
of the total payo¤ obtained in the …rst stage where their shares are determined
by their property rights, and are independent of the (relative) payo¤s in the
…rst stage. The incentive therefore is for each to maximize total payo¤s rather
than their own payo¤ in the …rst stage. Now, there may be Nash equilibria
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that do not result in the maximal total payo¤ obtainable (due to the fact that
it might take more than one player deviating to get to an action tuple with a
higher total payo¤), but it seems reasonable to restrict attention to the Nash
equilibria that do result in the maximal total payo¤ possible. In the terminology
of Monderer and Shapley (op. cit.): we consider Nash equilibria that are in the
argmax set of the weighted potential. As Monderer and Shapley show, every
action tuple that maximizes total payo¤s is a Nash equilibrium of the weighted
potential game and restricting the set of Nash equilibria to those maximizing
total payo¤s brings about a sensible re…nement of Nash equilibrium.5

2.3 Equilibria of the Two-Stage Game.
Combining the results we obtained so far, we conclude that the most interesting
subgame perfect equilibria of the two-stage game are those in which the players
in the …rst stage choose an action tuple that maximizes the total payo¤s from the
game played in the …rst stage and in which the players in the second stage then
play the strategies as described in theorem 2. Hence, in such a subgame perfect
equilibrium, the total payo¤s from the …rst-stage game will be maximized, and in
the second stage each player will receive a share of this amount as determined
by his proportion of the property rights. Using total payo¤ maximization as
our de…nition of cooperation, we have thus described a mechanism that, once
introduced, induces the cooperative outcome in a non-cooperative environment
without any communication, explicit collusion, agreement on or imposition of
payo¤ shares, or joint decision making. This mechanism is fully decentralized,
at each stage the players simply choose their own best replies, cooperation is not
imposed, but rather arises as a consequence of the private incentives generated.6

While we believe this mechanism is in itself theoretically interesting, we also
believe that it can be practically applied to a range of real world problems in
which there is some kind of external e¤ect or spillover that requires internaliza-
tion. We explore this issue in the next section by applying our theory to two
well-known economic models.

3 Applications.
Below we illustrate the usefulness of our mechanism by analyzing it’s applica-
tion to Cornes, Mason and Sandler’s [1] in‡uential analysis of the ”Common
Pool Resource Problem” and d’Aspremont and Jacquemin’s [3] seminal model
of R&D spillovers in duopoly. In the …rst example we demonstrate how in a

5Monderer and Shapley (op. cit.) point out that the argmax set of a weighted potential
does not depend on the particular weighted potential chosen to represent the game. This
shows that the argmax set of a weighted potential constitutes a well-de…ned unambiguous
Nash equilibrium re…nement.

6 In a related work Roemer [8] examines how the levels of provision of a public bad are
related to how egalitarian is public share ownership. Our work di¤ers from this line of inquiry
in that our ”solution” to externality problems has the Coasian property that the outcome is
independent of the initial distribution of property rights.
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problem where there is only one distortion preventing the achievement of an
e¢cient allocation, the application of our mechanism can achieve a …rst best
equilibrium. In the second example we show how in problem with multiple dis-
tortions, and where there are di¤erent potential objectives, the timing of the
application of the cooperation inducing mechanism may be exploited to achieve
di¤erent cooperative outcomes. In each of these examples cooperative outcomes
may be achieved by a simple modi…cation of the property rights system. If we
assume that the players in these games are shareholder owned …rms, then these
problems may be transformed into ones where our mechanism operates by the
simple expedient of an equity swap. Holders of standard equity are o¤ered the
opportunity to swap their existing holdings dollar-for-dollar for ”pooling equity”
which has the characteristic that it may be presented to any …rm for a share in
pro…ts. Notice that no equity holder has an incentive to unilaterally refuse this
swap as it allows them to exactly mimic their previous wealth holding position,
or, if they desire, costlessly switch their assets to another …rm. Notice also that
the simplicity of how the mechanism might be introduced is one of its primary
attractions, property rights are rede…ned not redistributed, and no shares need
be agreed upon. In this sense its introduction poses no distributional issues.

3.1 Cornes, Mason, and Sandler’s Model of The Com-
mons.

Cornes, Mason and Sandler’s (op. cit.) model of the ”Tragedy of the Commons”
provides a tractable transparent exposition of the problem of the over exploita-
tion of a common pool resource. In their analysis there are two sources of distor-
tions, the externality associated with the commons problem, and the distortion
associated with an imperfectly competitive output market. They demonstrate
that these two distortions can be o¤setting, such that if the ”correct” number
of …rms extract from the resource then the e¢cient rate of extraction may be
achieved7. We wish to focus on our mechanism rather than market structure
as a potential solution to the commons problem and so follow Weitzman [9]
in assuming that the output market is competitive. With this modi…cation we
are able to illustrate how our cooperation inducing mechanism can induce an
e¢cient rate of extraction from the resource. We shall follow Cornes, Mason
and Sandler’s example and discuss the problem of the exploitation of a common
access …shery, applications to similar problems such as extraction from an oil
pool should be fairly obvious to the reader.

3.1.1 The Model of a Common Access Fishery.

The industry consists of k = 1; :::;m …shing …rms who’s objective is to maximize
the pro…t received by their hk shareholders. The …rms are assumed to sell their
output on a perfectly competitive market at the price P . The total catch, or

7 It is not exactly clear how the correct number of …rms is achieved or how this number is
varied over time to achieve the e¢cient time path for extraction.
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output of the commons, is denoted C and is determined by the total size of the
‡eet, R, according to the production technology

C = F (R)

where F (R) is assumed to be strictly increasing and strictly concave while
the input R is assumed to be essential, i.e. F (0) = 0. Further the total
catch is bounded above by the …sh population. These assumptions ensure that
F (R)=R > F 0(R) and lim

R!1
F (R)=R = 0.

We examine the symmetric or ”pure” commons case in which the …sh popu-
lation is distributed evenly across the commons, so that the catch per vessel is
equal. It then follows that each …rm’s catch can be represented by

ck =
µ

rk

rk + eRk

¶
F (rk + eRk)

where rk is the number of vessels of any given …rm, k, and eRk = R ¡ rk is
the size of the rest of the ‡eet. Under the assumption of non-cooperative Nash
behavior each …rm chooses its ‡eet size to maximize pro…t per equity taking fRk
as given, that is

Max
rk

¼k

hk
=

Ã
PF (rk + eRk)

rk + eRk
¡ w

!
rk

hk

where w is the rental rate per vessel. With free access entry drives pro…t to zero

PF (R)
R

¡ w = 0

Denote the solution to this problem Rf .

3.1.2 Socially E¢cient Fishing.

Given that the …rms’ output sells on a competitive market at a given price P , and
if we assume social welfare to be given by the sum of consumer and producer
surplus then the e¢cient level of …shing simply involves the maximization of
industry pro…t, or

Max
R

W = PF (R) ¡ wR

with the …rst order condition

PF 0(R) ¡ w = 0

Denote the solution to this problem RW : This immediately reveals the classic
commons problem.

Proposition 1. With free access the commons is overexploited Rf > RW :
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3.1.3 Introduction of the Cooperation Inducing Mechanism.

Suppose now that instead of equity representing a …xed claim on a particular
…rm it may instead be used as a claim on any …rm in the industry. Adopting
the same notation for this pooling equity as before we write sk as the claims
made on the pro…ts of …rm k; and S =

P
k sk as total equity claims. The

optimization of an individual …rm k now involves

Max
rk

¼k

sk
=

Ã
PF (rk + eRk)

R
¡ w

!
rk

sk
:

Proposition 2. The introduction of pooling equities induce a socially e¢cient
level of …shing.

In this model the only deviation from the e¢cient rate of extraction from the
resource arises as a consequence of the crowding externality that …shing vessels
impose on each other8. Introducing the pooling equities causes pro…ts per share
to be equalized across …rms. When choosing the number of vessels in its ‡eet
each …rm knows that the negative external e¤ects it imposes on other …rms will
cause a decline in their total pro…ts and thus lead to a redistribution of equity
across …rms. The increase in equity claims on an expanding …rm’s pro…ts reduce
pro…t per share and thus cause it to fully internalize the external e¤ects it has
on the rest of the industry9.

While this example demonstrates the potential of our cooperation inducing
mechanism to achieve an e¢cient allocation for a set of well-known problems,
there are other circumstances in which there are di¤erent dimensions in which
cooperation may occur, and where cooperation and e¢ciency are not immedi-
ately synonymous. To explore some of these issues, and to demonstrate the
importance of timing of the application of the cooperation inducing mechanism
we next examine applications to d’Aspremont and Jacquemin’s Model of R&D
Spillovers in Duopoly.

3.2 D’Aspremont and Jacquemin’s Model of R&D Spillovers
in Duopoly.

In their paper D’Aspremont and Jacquemin (hereafter D&J) analyze the behav-
ior of a pair of duopolists that engage in R&D expenditures prior to production.
These R&D expenditures reduce the duopolists own cost and also spill over to
reduce their rival’s costs. For various combinations of cooperation and competi-
tion in the two stages of the game D&J obtain a ranking of R&D expenditures

8 It can be shown (see Ellis [4]) that in a dynamic model our mechanism induces the
internalization of both the dynamic and static externalities associated with the commons
problem.

9Our mechanism causes …rms to behave as if they have merged. However, this solution
may be superior to a merger. If individual …rms productions technologies were concave then
a merger may well increase marginal and average costs. ie. if f (x0) = f(x1) + f (x1) = A,
then f 0(x0) < f 0(x1).

11



and output levels relative to those at the social welfare optimum. Speci…cally
they examine; (i) Non-cooperative Nash behavior in both stages of the game; (ii)
Cooperation in the R&D stage combined with Nash behavior in the production
stage; (iii) Cooperation in both the R&D and production stages. Where, in their
terminology, non-cooperation is characterized by individual pro…t maximizing
behavior, and cooperation by joint pro…t maximizing behavior. D&J show that,
provided that spillovers are su¢ciently large, out of the three cases considered,
R&D expenditure is highest in the fully cooperative scenario, while production
is highest when there is cooperation in the R&D stage but competition in the
production stage10 .

Our purpose here is to demonstrate what our cooperation inducing mecha-
nism can bring to analyses such as D&J’s. In their model cooperation in the
di¤erent stages of the game occurs by assumption. We …rst show that neither
cooperation in the R&D stage nor in both stages of their game can be supported
as a subgame perfect equilibrium. We then introduce our mechanism and show
how it can be used to implement the cooperative outcomes in either the R&D
stage or both stages of the game dependent on when the mechanism is applied.
The mechanism can be used to implement as a non-cooperative equilibrium
both the maximal R&D or output results as in D&J, but further can be used
to implement a second best welfare optimum.

3.2.1 The Duopoly Model.

We …rst outline the D&J model which consists of a pair of duopolists indexed
k = 1; 2; who face the inverse demand function

D¡1 = a ¡ bQ a; b > 0

where Q =
P

k qk is the sum of the two …rms’ outputs. Each …rm’s costs consist
of two components (i) R&D costs incurred in the …rst stage, and (ii) production
costs incurred in the second. Summing over the two stages a …rm’s total costs
are given by the function

Ck(qk; xk; xj) = [A ¡ xk ¡ ¯xj ]qk +
°
2
x2

k j 6= k; k; j = 1; 2:

where qk is its production level, xk its expenditure on R&D and xj is the R&D
expenditure undertaken by its rival. Following D&J we assume 0 < A < a; 0 <
¯ < 1; xk + ¯xj · A;Q · a

b ; 0 < b:
The pro…t of …rm k may now be written

¼k = [a ¡ bQ] qk ¡ [A ¡ xk ¡ ¯xj ]qk ¡ °
2

x2
k:

We assume that each …rm is owned by hk shareholders and that the objective
of the …rm’s managers is to maximize dividend payments

Max
xk ;qk

¼k

hk
=

1
hk

h
(a ¡ bQ) qk ¡ (A ¡ xk ¡ ¯xj) qk ¡ °

2
x2

k

i
:

10A su¢cient condition for their main conclusions being that at least 50% of one …rm’s
expenditure spills over reducing the production costs of its rival.
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With …xed equity holdings this is identical to maximizing each …rm’s individual
pro…ts.

Social welfare can be characterized as the sum of consumer plus producer
surplus, or the area under the demand curve less …rms total costs. Integrating
under the demand curve and subtracting the …rms’ costs provides

W = aQ ¡ b
2
Q2 ¡ (A ¡ x1 ¡ ¯x2)q1 ¡ (A ¡ x2 ¡ ¯x1)q2 ¡ °

2
x2

1 ¡ °
2
x2

2:

Notice that this also includes the costs of R&D incurred prior to production.
In symmetric equilibria, (x1 = x2 = x; q1 = q2 = q),which following D&J we

focus on here, the social welfare function reduces to

W = 2aq ¡ 2bq2 ¡ 2 [A ¡ (1 + ¯)x] q ¡ °x2: (4)

3.2.2 Solutions to the Model.

D&J derive three symmetric solutions to this model involving (i) Non-Cooperative
behavior in both the R&D and production stages of the game, (ii) Cooperative
behavior in the R&D stage with non-cooperative behavior in the production
stage, (iii) Cooperative behavior in both stages. The solutions obtained are as
follows11 .

(i) Non-Cooperative behavior in both stages of the game.

x¤
k =

(a ¡ A)(2 ¡ ¯)
4:5b° ¡ (2 ¡ ¯)(1 + ¯)

k = 1; 2 (5)

q¤
k =

(a ¡ A)
3b

·
4:5b°

4:5b° ¡ (2 ¡ ¯)(1 + ¯)

¸
k = 1; 2 (6)

(ii) Cooperative behavior in the R&D stage with non-cooperative behavior in
the production stage.

bxk =
(a ¡ A)(1 + ¯)

4:5b° ¡ (1 + ¯)2
k = 1; 2 (7)

bqk =
(a ¡ A)

3b

·
4:5b°

4:5b° ¡ (1 + ¯)2

¸
k = 1; 2 (8)

(iii) Cooperative behavior in both stages.

exk =
(a ¡ A)(1 + ¯)
4b° ¡ (1 + ¯)2

k = 1; 2 (9)

11To obtain these solutions D&J …rst solve the second stage for the levels of output given
R&D expenditure. Then the …rst stage is solved for the subgame perfect equilibria to deter-
mine the level of R&D. Non-cooperation at a stage then involves individual pro…t maximiza-
tion, cooperation involves joint pro…t maximization.

13



eqk =
(a ¡ A)

4b

·
4b°

4b° ¡ (1 + ¯)2

¸
k = 1; 2 (10)

Immediately we have

Proposition 3. Cooperative behavior in either R&D or output cannot be sup-
ported as a subgame perfect equilibrium in the D&J model.

While this proposition is trivial it remains important. It tells us that even if
some degree of cooperation is socially desirable it cannot be achieved given the
incentives faced by the …rms in the game as currently constructed.

3.2.3 Introduction of the Cooperation Inducing Mechanism.

We now introduce our cooperation inducing mechanism. Our method will be
to utilize the fact that our cooperation inducing mechanism can be rewritten
as an arbitrage condition which in turn may be shown to induce joint pro…t
maximizing behavior. To facilitate this assume now that the property rights in
the two …rms are now ”Pooling Equities” with the characteristic that they may
be used as claims on either of the …rms’ pro…ts. Let S be the total stock of
pooling equities, and sk be the total equity assigned to claims on the pro…t of
…rm k. Rewriting (2) in terms of the notation of this section provides

¼1 + ¼2

s1 + s2
=

¼1

s1
=

¼2

S ¡ s1

which is a simple arbitrage condition that we may exploit to demonstrate how
our mechanism induces the cooperative allocations in D&J’s model.

The optimization problem of …rm k is now

Max
xk;qk

¼k

sk
=

1
sk

h
(a ¡ bQ) qk ¡ (A ¡ xk ¡ ¯xj) qk ¡ °

2
x2

k

i

We may now show that our mechanism induces cooperation.

Proposition 4. When the cooperation inducing mechanism is applied the two
duopolists make the same choices non-cooperatively as those that charac-
terize joint pro…t maximization.

The intuition should now be transparent. Our mechanism induces the arbi-
trage of pro…ts, the payment to each equity is equalized across …rms. The …rms
managers are aware of this, and know that it implies that the pro…t per share
that they pay can only be increased by actions that raise joint pro…t12 . They
do not explicitly cooperate, but rather are provided by the cooperation induc-
ing mechanism with individual incentives that cause them to sel…shly make the
cooperative choices.

To induce the outcomes examined by D&J now requires only that the timing
of the application of the mechanism be speci…ed. We have the following

12We assume that there is no con‡ict of interest between managers and shareholders, such
that the mangement of a …rm always acts as a perfect agent of the shareholders
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Proposition 5. If the pooling equity is presented to the …rms at the end of the
production stage of the game, then this induces the …rms to cooperate in
both the R&D and production stages of the game. This yields the maximal
equilibrium level of R&D.

Proposition 6. If the pooling equity is presented to the …rms at the end of the
R&D stage, then this induces the …rms to cooperate in the R&D stage.
However, non-cooperation will still characterize the production stage. This
yields the maximal equilibrium level of output.

These propositions, 5 and 6, indicate that either expected or actual pro…ts
may be arbitraged dependent on when, relative to the production stage, the
pooling equities may be used as claims on the …rms.

3.2.4 The Desirability of Cooperation.

In the preceding section we demonstrated how the cooperation inducing mecha-
nism implies a pro…t arbitrage condition that generates incentives for joint pro…t
maximization. Cooperation may be induced either in the R&D stage or in both
the R&D and production stages of the game. Here we investigate the welfare
properties of the di¤erent equilibria. Substituting the solutions (5)-(10) into the
social welfare function (4) allows us to obtain the following expressions for social
welfare13. We shall describe the equilibrium that generates the highest social
welfare as the second best welfare optimum. The …rst best welfare optimum
would be the outcome chosen by a social planner choosing R&D expenditures
and output so as to maximize social welfare (4).

(i) Non-Cooperative behavior in both stages of the game.

W ¤ =
°(a ¡ A)2

£
9¯2° ¡ b(¯ ¡ 2)2

¤

b
£
2 + ¯ ¡ ¯2 ¡ 4:5¯°

¤2 (11)

(ii) Cooperative behavior in the R&D stage with non-cooperative behavior in
the production stage.

cW =
°(a ¡ A)2

£
9¯2° ¡ b(1 + ¯)2

¤

b
£
1 + ¯2 + ¯(2 ¡ 4:5°)

¤2 (12)

(iii) Cooperative behavior in both stages.

fW =
°(a ¡ A)2

£
6¯2° ¡ b(1 + ¯)2

¤

b
£
1 + ¯2 + ¯(2 ¡ 4°)

¤2 (13)

13The following expressions are close approximations generated using Mathematica. The
programs are available from the authors on request.
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It is not possible to make simple algebraic statements about which of these
outcomes is socially superior14 . Hence we revert to numerical methods. For
di¤erent values of the parameters ¯; ° and b …gures 1 and 2 describe a ranking
of the various cooperative and non-cooperative outcomes according to the social
welfare function (4)15 .

[Figures 1, 2 and the legend about here.]

Inspection of the diagrams reveals that when the inverse demand curve is
steeply sloped 10 ¸ b ¸ 3; and if spillovers are large ¯ > 0:5 then the second
best welfare outcome arises under Nash behavior in both stages of the game.
Whereas if the inverse demand curve is relatively ‡at 1:0 ¸ b ¸ 0:3 and if
spillovers are large ¯ > 0:5 then the second best welfare outcome arises under
cooperative behavior in the R&D stage with Nash behavior in the production
stage. Also if the inverse demand function is relatively steep 10 ¸ b ¸ 0:9,
and spillovers are small 0:5 ¸ ¯ ¸ 0:2 then the second best welfare outcome
arrises under cooperative behavior in the R&D stage with Nash behavior in
the production stage. The second best welfare optimum involves cooperation in
both stages only for a small subset of the parameter space, where ° = 2 and the
inverse demand function very ‡at 0:2 ¸ b ¸ 0:116 :

4 Conclusion.
In this paper we have proposed a novel mechanism for inducing agents playing a
non-cooperative game to choose the cooperative outcome. Our mechanism adds
a second non-cooperative stage to the game. In the unique Nash equilibrium
of this second stage, the payo¤s generated in the …rst stage are reallocated
between the players according to the allocation of shares. We show that this
e¤ectively converts the …rst stage into a weighted potential game (cf. Monderer
and Shapley (op.cit.)), the players of which have incentives to maximize the
total payo¤. If we follow Monderer and Shapley (op. cit.) further, and restrict
attention to those Nash equilibria that lie in the argmax set of the weighted
potential then the mechanism implements the cooperative outcome17 .

This mechanism has applications to a wide range of economic problems, as
any situation in which external e¤ects or spillovers are present may be viewed

14 In the parameter space the boundaries between the regions in which the di¤erent regimes
are socially superior are higher order polynomials (6th order in ¯!).

15The remaining parameters of the model were set at a=2 and A=1, as an inspection of
(11)-(13) immediately reveals deviations from these values just serve to rescale all the results
. The calculations were performed using Mathematica. The programs used and raw numbers
are available from the authors on request.

16 In this case the demand function is very steep and thus the deadweight loss triangles
associated with monopoly are small.

17The reader can probably think of several stories that might justify this re…nement. How-
ever, these typically involve specifying the beliefs of the players prior to play. This issue is
not our focus in this paper.
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as one where cooperative behavior can potentially produce welfare improve-
ments. We believe the mechanism is both of theoretical interest and raises some
interesting possibilities for policy.

Theoretically, as the arbitrage conditions (2) indicate, it is as if a new market
has been created. Establishing property rights and a competitive market on
which an external e¤ect may be traded is a well known solution to an externality
problem. What is perhaps of interest is that the ”market” in the current paper
is not directly for the external e¤ect but for the returns generated by the activity
that produces it. In at least some examples the arbitrage of pro…ts perfectly
substitutes for a competitive market in the externality.

An alternative way to view our theoretical contribution is that it decentral-
izes a payo¤ sharing scheme. In the subgame perfect equilibrium each player
recieves a proportion of the total payo¤. It is as if …xed proportionate payo¤
shares have somehow been agreed in advance of play. However, such prior agree-
ments are unecessary precisely because proportionate payo¤s are a characteristic
of the non-cooperative equilibrium.

From a policy perspective our proposed mechanism has several advantages
over alternative solutions to externality problems. Once implemented it requires
no regulatory body to oversee it, there are no information requirements such as
those needed to implement tax or quota based solutions, and no new property
rights are established so there are no equity issues such as those that arise when,
for example, pollution permits are introduced. Further our solution requires no
monitoring. Despite these advantages there are of course some caveats and
issues that require further study. The value of our mechanism depends on the
possibility of its practical implementation. To introduce the second stage of the
game requires that it is possible to introduce the pooling property rights. In
the examples we have discussed this is achieved via the swap of standard equity
shares for pooling equity shares. This form of ownership structure seems the
best suited to our mechanism18 . The introduction of pooling property rights
clearly needs further study and may represent a key role for public policy19 .
In situations like those described in our common pool resource example there
may be issues similar to those encountered with the stability of cartels. One
individual …rm may have an incentive to refuse to accept the equity (if this is
legal) and thus free ride on the cooperative behavior of the others. It may be
necessary for the government to mandate the initial acceptance of the pooling
property right20 . This is an issue that we hope to return to in the future.

In other applications, such as our R&D spillovers example, cooperation may
bene…t the participants, in this case the duopolists, but harm a third party, here

18All claims are thus priced in dollars which satis…es the requirement that payo¤s be trans-
ferable. This does not seem to us to be unduly restrictive for many of the applications we
might consider.

19 It might however be noted that the swap of pooling equity for standard equity should
raise stock prices. If, as is common, managerial compensation is linked to stock prices then
this would provide an incentive for the scheme’s adoption.

20However, the continued acceptance of the pooling equility seems to us to be no greater
a problem than those involved with making a …rm honor its standard contractual obligations
to its shareholders.
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the consumers. Obviously this is not a direct caveat to our mechanism, but a
familiar type of warning that if there are potentially multiple distortions in an
economy then limited cooperation may be worse in a welfare sense than none.
This is a standard problem frequently encountered in a second best world where
if two adjustments are required to move the economy to the Pareto frontier, one
of the two may actually move the economy away from it. However, from a
policy perspective this is still a very interesting issue. As the R&D example
illustrates the timing of when the pooling property right may be used as claims
can make a di¤erence to the incentives they induce. Furthermore, we might
suspect that whether the pooling property rights are multiple or single use (and
thereafter commitment to a particular payo¤) will also be of signi…cance. This
suggests the idea of pooling property rights might further be re…ned to induce
cooperation when desirable and then allow for a return to competition.
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A Appendix.
Proof of Theorem 1. We prove our …rst theorem via a sequence of three parts

that correspond to the parts of the theorem.

Let
¡¡

si
k
¢m
k=1

¢
i2N be a Nash equilibrium, then the following hold.

Part 1. Each player makes a positive contribution to each payo¤, i.e. si
k > 0

for every i 2 N and k = 1; 2; ::::; m:

Proof. If there is only one payo¤ (m = 1), then the unique Nash equilib-
rium is for every player to contribute his entire endowment of property rights
to this payo¤ and the lemma is true. Hereafter, assume that m ¸ 2.

First we prove that for any payo¤ there is at least one player who contributes
a positive amount to that payo¤, and that this is true for each payo¤.

Suppose k 2 f1; 2; :::; mg is such that si
k = 0 for every i 2 N . Then payo¤

Pk is divided among the players in some predetermined way. Since there are
at least 2 players (n ¸ 2), there is at least one player i 2 N who gets a part
P i

k < Pk from this payo¤. Take such a player i. If player i would make an
arbitrarily small positive contribution ¹i to payo¤ Pk, then he would get the
entire payo¤ and increase his payo¤ by Pk ¡ P i

k. The contribution ¹i would
have to be taken away from some other payo¤. Since

Pm
l=1 si

l = Si > 0, there
exists an l 2 f1; 2; :::; mg, l 6= k, such that si

l > 0. Take such an l. Player i
gets a proportion si

lP
j2N sj

l
> 0 of payo¤ Pl. Notice that the proportion that i

gets from payo¤ Pl is a continuous function of i0s contribution to this payo¤ as
long as his contribution is positive. Hence, player i can reduce his contribution
to payo¤ Pl by an amount ¹i in such a way that he loses less than Pk ¡ P i

k

from payo¤ Pl, i.e. si
lP

j2N sj
l
Pl ¡ si

l¡¹i
P

j2Nnfig sj
l +(si

l¡¹i)
Pl < Pk ¡ P i

k. So, if player

i reduces his contribution to payo¤ Pl by such an amount ¹i and increases his
contribution to payo¤ Pk from 0 to ¹i, then he increases his total payo¤. Hence,
the initial contributions did not form a Nash equilibrium.

Next we show that for every payo¤ at least two players contribute a positive
property rights to that payo¤.

Suppose k 2 f1; 2; :::;mg and i 2 N are such that si
k > 0 and sj

k = 0 for
every j 2 Nnfig. Then player i gets the entire payo¤ Pk, because he is the only
player contributing to this payo¤. However, if he reduces his contribution to
payo¤ Pk by an amount ¹i < si

k, then he would still get the entire payo¤ Pk.
Then he can increase his contribution si

l to some other payo¤ Pl by the amount
¹i. If he chooses a payo¤ Pl for which it holds that there is some other player
j 2 Nnfig such that sj

l > 0 (note that such a payo¤ exists), then increasing si
l

will increase the proportion that i gets of payo¤ Pl (note that the share that i
gets from payo¤ Pl is a continuously increasing function of i0s contribution to
this payo¤). Hence, the initial contributions of the players did not form a Nash
equilibrium.

We now are ready to prove that si
k > 0 for every i 2 N and k = 1; 2; :::; m.
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Note that for each payo¤ at least two players make a positive contribution
and that this is true for every payo¤, this implies that

P
j2Nnfig sj

k > 0 for
every k = 1; 2; :::; m and i 2 N . Suppose that there exists a payo¤ to which not
every player contributes a positive amount. Let k 2 f1; 2; :::; mg and i 2 N such
that si

k = 0 and let l 2 f1; 2; :::;mg, l 6= k, such that si
l > 0. De…ne S ½ N by

S = fh 2 N j sh
k > 0g. Note that i =2 S. Then we …nd using condition (1) that

P
j2Nnfig sj

k³P
j2N sj

k

´2 Pk ·
P

j2Nnfig sj
l³P

j2N sj
l

´2 Pl

and
P

j2Nnfhg sj
k³P

j2N sj
k

´2 Pk ¸
P

j2Nnfhg sj
l³P

j2N sj
l

´2 Pl for every h 2 S.

From this we derive that

P
j2Nnfig sj

kP
j2Nnfig sj

l

·

³P
j2N sj

k

´2

³P
j2N sj

l

´2
Pl

Pk

and

P
j2Nnfhg sj

kP
j2Nnfhg sj

l

¸

³P
j2N sj

k

´2

³P
j2N sj

l

´2
Pl

Pk
for every h 2 S.

Notice that the right-hand sides of the last two inequalities are identical. Hence,
we …nd that

P
j2Nnfig sj

kP
j2Nnfig sj

l

·
P

j2Nnfhg sj
kP

j2Nnfhg sj
l

for every h 2 S,

which can be re-written as
P

j2Nnfhg sj
lP

j2Nnfig sj
l

·
P

j2Nnfhg sj
kP

j2Nnfig sj
k

for every h 2 S.
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We use this result to obtain21

(jSj ¡ 1) +

P
j2NnS sj

lP
j2Nnfig sj

l

<
(jSj ¡ 1)

P
j2Nnfig sj

l +
P

j2NnS sj
l + (jSj ¡ 1)si

lP
j2Nnfig sj

l

=

P
h2S

P
j2Nnfhg sj

lP
j2Nnfig sj

l

=
X

h2S

ÃP
j2Nnfhg sj

lP
j2Nnfig sj

l

!

·
X

h2S

ÃP
j2Nnfhg sj

kP
j2Nnfig sj

k

!
=

P
h2S

P
j2Nnfhg sj

kP
j2Nnfig sj

k

=
(jSj ¡ 1)

P
j2N sj

k +
P

j2NnS sj
kP

j2N sj
k

= (jSj ¡ 1).

This shows that
P

j2NnS sj
lP

j2Nnfig sj
l

< 0.

However, we know
P

j2Nnfig sj
l > 0, i 2 NnS, and si

l > 0. Hence, we have a
contradiction and conclude that every player contributes a positive amount to
each payo¤. This proves part 1.

Part 2. Each player divides their property rights between the payo¤s such that
their share in each payo¤ is in the same proportion as their share of to-
tal property rights, i.e. si

kP
j2N sj

k
= SiP

j2N Sj for every i 2 N and k =
1; 2; ::::;m:

Proof. From part 1 it follows that
P

j2Nnfig sj
k > 0 for every k =

1; 2; :::; m and i 2 N and, consequently, that condition (1) implies that 0 <P
j2Nnfig sj

k

(P
j2N sj

k)
2 Pk = ¸i for every i 2 N . Dividing condition (1) corresponding to

player i and payo¤ Pk by that corresponding to player h and payo¤ Pk gives
µP

j2Nnfig sj
k

(P
j2N sj

k)
2

¶

µP
j2Nnfhg sj

k

(P
j2N sj

k)
2

¶ Pk

Pk
=

P
j2Nnfig sj

kP
j2Nnfhg sj

k

=
¸i

¸h .

From this we derive
X

j2Nnfig
Sj =

X

j2Nnfig

mX

k=1

sj
k =

mX

k=1

X

j2Nnfig
sj

k

=
mX

k=1

2
4 ¸i

¸h

X

j2Nnfhg
sj
k

3
5 =

¸i

¸h

X

j2Nnfhg

mX

k=1

sj
k =

¸i

¸h

X

j2Nnfhg
Sj

21We remind the reader that i =2 S, sik = 0, sil > 0, and sjk = 0 for each j 2 NnS.
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and then
P

j2Nnfig sj
kP

j2Nnfig Sj =
¸i

¸h

P
j2Nnfhg sj

k
¸i

¸h

P
j2Nnfhg Sj

=

P
j2Nnfhg sj

kP
j2Nnfhg Sj .

It follows that for each k = 1; 2; :::;m we can de…ne a constant Ck such that
P

j2Nnfig sj
kP

j2Nnfig Sj = Ck for all i 2 N:

Now, for each i 2 N ,

(n ¡ 1)si
k =

X

j2Nnfig

0
@ X

h2Nnfjg
sh
k

1
A ¡ (n ¡ 2)

0
@ X

h2Nnfig
sh
k

1
A

=
X

j2Nnfig

0
@Ck

X

h2Nnfjg
Sh

1
A ¡ (n ¡ 2)

0
@Ck

X

h2Nnfig
Sh

1
A = (n ¡ 1)CkSi:

Hence,

si
k

Si = Ck for each i 2 N

and

si
k

sj
k

=
CkSi

CkSj =
Si

Sj for all pairs i; j 2 N:

Then, for each i 2 N and k = 1; 2; :::;m,

si
kP

j2N sj
k

=

³
si

k
si

k

´

P
j2N

³
sj

k
si

k

´ =

³
Si

Si

´

P
j2N

Sj

Si

=
Si

P
j2N Sj :

This proves part 2.

Part 3. Each player divides their property rights between the payo¤s in the
same proportions as each has to total payo¤s, i.e. si

k
Si = PkP m

l=1 Pl
for every

i 2 N and k = 1; 2; ::::;m:

Proof. From the proof of part 2 we know that for every k = 1; 2; :::;m there
exists a Ck such that si

k
Si = Ck for each i 2 N . Let i 2 N. The Nash-equilibrium

strategy
¡
si

k
¢m
k=1 satis…es condition (1) and, by part 1 we know that si

k > 0 for
each k = 1; 2; :::;m. This implies that

P
j2Nnfig sj

k³P
j2N sj

k

´2 Pk =

P
j2Nnfig sj

l³P
j2N sj

l

´2 Pl
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for each k; l = 1; 2; :::; m. We use this to …nd
P

j2Nnfig Sj

³P
j2N Sj

´2
Pk

Ck
=

P
j2Nnfig CkSj

³P
j2N CkSj

´2 Pk =

P
j2Nnfig sj

k³P
j2N sj

k

´2 Pk

=

P
j2Nnfig sj

l³P
j2N sj

l

´2 Pl =

P
j2Nnfig ClSj

³P
j2N ClSj

´2 Pl =

P
j2Nnfig Sj

³P
j2N Sj

´2
Pl

Cl

and, consequently, Pk
Ck

= Pl
Cl

for all k; l 2 f1; 2; :::;mg. Hence, Ck = PkC1
P1

for all
k = 1; 2; :::;m Now we derive

1 =
Pm

l=1 si
l

Si =
mX

l=1

si
l

Si =
mX

l=1

Cl =
mX

l=1

PlC1

P1
=

C1

P1

mX

l=1

Pl

and

C1 =
P1Pm
l=1 Pl

.

Hence, Ck is uniquely determined for each k 2 f1; 2; :::; mg by

Ck =
PkC1

P1
=

PkPm
l=1 Pl

.

This yields

si
k

Si = Ck =
PkPm
l=1 Pl

,

which concludes the proof

Theorem 2. Let
¡
(si

k)m
k=1

¢
i2N be the set of strategies de…ned by

si
k = Si

µ
PkPm
l=1 Pl

¶

for every i 2 N and k = 1; 2; ::::;m: This set of strategies is the unique
Nash equilibrium of the second stage of the game. Moreover, for every
player i 2 N his payo¤ according to the Nash equilibrium is

Si
P

j2N Sj

Ã
mX

k=1

Pk

!
:

Proof. Let
¡
(si

k)m
k=1

¢
i2N be the set of strategies de…ned by

si
k = Si

µ
PkPm
l=1 Pl

¶
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for every i 2 N and k = 1; 2; ::::;m: This set of strategies is the unique
Nash equilibrium of the second stage of the game. Moreover, for every
player i 2 N his payo¤ according to the Nash equilibrium is

Si
P

j2N Sj

Ã
mX

k=1

Pk

!
:

From part 3 of the proof of theorem 1 we derive that if the strategies de-
…ned in (3) form a Nash equilibrium, then this is the unique Nash equilib-
rium. To prove that the strategies de…ned in (3) form a Nash equilibrium,
let i 2 N . We will prove that

¡
si

k
¢m
k=1 maximizes player i’s payo¤ given

the strategies
³³

sj
k

´m

k=1

´
j2Nnfig

of the other players. First we prove that

the strategy
¡
si
k
¢m
k=1 satis…es condition (1). It is immediately clear that

si
k = Si

³
PkP m
l=1 Pl

´
> 0 for every k = 1; 2; :::; m. Therefore, it is su¢cient

to prove that
P

j2Nnfig sj
k³P

j2N sj
k

´2 Pk =

P
j2Nnfig sj

l³P
j2N sj

l

´2 Pl for all k; l 2 f1; 2; :::; mg.

So let k; l 2 f1; 2; :::;mg. Then

P
j2Nnfig sj

k³P
j2N sj

k

´2 Pk =

P
j2Nnfig Sj

³
PkP m

t=1 Pt

´

³P
j2N Sj

³
PkP m

t=1 Pt

´´2 Pk

=

P
j2Nnfig Sj

³P
j2N Sj

´2 ³
PkP m

t=1 Pt

´Pk =

P
j2Nnfig Sj

³P
j2N Sj

´2 ³
PlP m

t=1 Pt

´Pl

=

P
j2Nnfig Sj

³
PlP m

t=1 Pt

´

³P
j2N Sj

³
PlP m

t=1 Pt

´´2 Pl =

P
j2Nnfig sj

l³P
j2N sj

l

´2 Pl.

To simplify notation we de…ne i’s objective function as f , where we col-
lapse the contributions made by the other players to a payo¤ Pk to s¡i

k =P
j2Nnfig sj

k: for all of player i’s strategies (¹i
k)m

k=1 it holds that

f((¹i
k)m

k=1) :=
mX

k=1

¹i
k

s¡i
k + ¹i

k
Pk.

Notice that it follows from de…nition 3 that s¡i
k > 0 for every k =

1; 2; :::; m, so that the objective function f is well-de…ned and continu-
ous in all (¹i

k)m
k=1, even the strategies with some ¹i

k equal to 0. From the
fact that (si

k)m
k=1 satis…es condition (1), we know that (si

k)m
k=1 is either a
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local maximum or a local minimum location of f . If we prove that the
function f is strictly concave, then it follows that (si

k)m
k=1 is a unique global

maximum location. To show that f is strictly concave, we take two di¤er-
ent strategies (¹i

k)m
k=1 and (ºi

k)m
k=1 of player i and an ® 2 (0; 1) and show

that f(®(¹i
k)m

k=1 + (1 ¡ ®)(ºi
k)m

k=1) > ®f((¹i
k)m

k=1) + (1 ¡ ®)f((ºi
k)m

k=1).
To prove this, it is su¢cient to prove that ¹i

k

s¡i
k +¹i

k
Pk is a strictly concave

function of ¹i
k for every k 2 f1; 2; :::;mg. This is easily seen by taking

the second derivative of this function with respect to ¹i
k, which is clearly

negative. This proves that the strategies de…ned in (3) form the unique
Nash equilibrium.

Proof. To prove the second part of the theorem, let i 2 N . Player i’s
payo¤ according to the Nash equilibrium is

mX

k=1

si
kP

j2N sj
k

Pk =
mX

k=1

Si
³

PkP m
l=1 Pl

´

P
j2N Sj

³
PkP m
l=1 Pl

´Pk =
Si

P
j2N Sj

Ã
mX

k=1

Pk

!
.

Proof of Proposition 1. From the …rst order conditions F (Rf )
Rf = w

P =
F 0(RW ): Our earlier assumptions ensure that for any given R, F (R)=R > F 0(R),
so as F 00(R) < 0 it follows that F (Rf )

Rf = F 0(RW ) implies Rf > RW .

Proof of Proposition 2. We know from theorem 2 (and using the same
notation as in the text) that

sk =
¼kS
nP

`=1
¼`

so the individual …rm’s optimization problem may be rewritten

Max
rk

¼k

sk
=

¼k0
@ ¼kS

nP
`=1

¼`

1
A

=

nP
`=1

¼`

S

=
1
S

nX

`=1

0
BBBB@

PF

Ã
nP

j=1
rj

!

nP
j=1

rj

¡ w

1
CCCCA

r`:

26



The …rst order condition to this optimization problem is now

@
³

¼k
sk

´

@rk
=

1
S

8
>>>><
>>>>:

PF

Ã
nP

j=1
rj

!

nP
j=1

rj

¡ w

+
nX

`=1

2
666664

0
BBBBB@

PF 0
Ã

nP
j=1

rj

!Ã
nP

j=1
rj

!
¡ PF

Ã
nP

j=1
rj

!

Ã
nP

j=1
rj

!2

1
CCCCCA

r`

3
777775

9
>>>>>=
>>>>>;

= 0

=
1
S

·
PF (R)

R
¡ w + PF 0(R) ¡ PF (R)

R

¸
= 0:

This reduces to

PF 0(R) ¡ w = 0

which is precisely the …rst order condition for a social optimum.

Proof of Proposition 3. Follows immediately from noting that the
solutions fbxk; bqkg and fexk; eqkg do not correspond to the Nash solution fx¤

k; q¤
i g.

Proof of Proposition 4. Note …rst that as shown above the cooperation
inducing mechanism implies the pro…t arbitrage condition ¼1

s1
= ¼2

S¡s1
. This con-

dition may be rewritten as s1 =
³

¼1
¼1+¼2

´
S: Now this implies ¼1

s1
= ¼1³

¼1
¼1+¼2

´
S

=

¼1+¼2
S : Since S is a constant this implies maximizing ¼1

s1
yields the same outcome

as maximizing ¼1 + ¼2 (an identical argument holds for ¼2
s2

).

Proof of Proposition 5. The proof follows immediately from noting
that if pro…ts are arbitraged after the production stage then the …rms maximize
Max
xk;qk

¼k
sk

= Max
xk;qk

¼1+¼2
S hence both the levels of xk and qk chosen are equal

to their cooperative levels. That this involves the maximal level of R&D was
demonstrated by D&J.

Proof of Proposition 6. Follows immediately from noting that in the
second stage the equity has been committed to a speci…c …rm so the …rms objec-
tive is to Max

qk

¼k
sk

; and they choose non-cooperative production levels. However,

in the …rst stage the equity has not yet been committed so the arbitrage con-
dition implies that both …rms’ objectives are Max

xk

¼k
sk

= Max
xk

¼1+¼2
S , thus R&D

expenditures are chosen cooperatively.
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