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Directional Heterogeneity in Distance Profiles
in Hedonic Property Value Models

ABSTRACT

Failure to allow for directional heterogeneity can obscure otherwise statistically significant distance effects

in hedonic property value models. If ambient pollution data are unavailable, researchers often rely upon

distance from a point source of pollution as a proxy for ambient environmental quality. However, damages

from all types of point-source disamenities may exhibit directional heterogeneity. We generalize conventional

distance models to allow for directional effects and show that commonly used linear and quadratic spatial

trend variables capture directional heterogeneity in a manner that has not previously been recognized.

Appropriate spatial models can also inform the social planner’s problem of optimal allocation of source

reduction across polluters. When independently calibrated tranport functions are not available, individual

properties can be viewed as ambient receptor sites. Hedonic models can yield estimates of the product of

marginal social damages from ambient concentrations and the change in ambient concentration per unit of

emissions from each source. Optimal emissions depend upon the spatial distribution of all affected properties

relative to each source, the parameters of the hedonic model, and marginal abatement costs.
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1 Introduction

In some hedonic property value (HPV) models, researchers are able to quantify and use objective measures

of localized environmental quality as specific attributes of each property in their sample. In other cases,

however, it is more difficult to obtain objective measures of the level of an environmental attribute. When

objective measures are unavailable or incomplete, researchers often resort to using distance from the source of

pollution as a measurable characteristic. In this paper, the importance of testing for directional heterogeneity

in distance effects is explored. We identify a number of different modeling strategies that can accommodate

this heterogeneity, should it be present.

There have been a number of very competent general reviews of hedonic property value (HPV) models

(for example, see Bartik and Smith (1987), Palmquist (1991), Freeman (1993), and most recently, Palmquist

(2003)). Farber (1998) provides a useful inventory of empirical studies, including many that estimate distance

gradients in housing prices. In particular, Michaels and Smith (1990) and Kohlhase (1991) find that distances

from Superfund sites in Boston and Houston have a positive effect on house prices. The suite of papers by

Kiel and her coauthors all control for distance to Superfund sites or hazardous waste incinerators and focus

on a number different sites in Massachusetts (Kiel (1995), Kiel and McClain (1995), Kiel and Zabel (2001)).

Dale, et al. (1999) emphasize housing prices over time as a function of distance from a lead smelter in Dallas,

and McMillen and Thorsnes (2003) study the property value effects of the cleanup of a copper smelter site

in Tacoma.

Hedonic models that do not allow for directional heterogeneity in distance effects assume that a two-

dimensional price-distance profile in a single quadrant is adequate to capture distance effects on property

values. We can extend this distance profile to three dimensions by rotating it around the vertial axis. This

leads to a price-distance surface that has circular level curves defining the depression in property values

nearest the source of pollution. But distance effects may not be the same in all directions. These level curves

may be asymmetric around the pollution source. For example, many point sources of pollution produce
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either noticeable odors or airborne "fallout" so that prevailing winds can create directional asymmetries

in distance effects. Industrial hog farming is an important regional example that has been addressed in

the HPV literature by Palmquist, et al. (1997). However, the level curves for distance effects may also

be asymmetric for other types of pollutants. The movement of surface or groundwater can propagate the

damages from water pollution farther in some directions than others, and visual and noise pollution can be

affected by topography.

We demonstrate in this paper that if substantial directional effects are present, but are ignored, one would

expect a model with simple homogeneous distance effects to exhibit larger than necessary standard errors

and apparent heteroscedasticity. Parameters defining the shape of the distance profile can also be biased if

the directional distribution of distances for observed property transactions is non-uniform. We explore a

number of models that can be used to test for the presence of directional heterogeneity in distance effects

and can accommodate a wide variety of systematic directional effects when they are present.

A second important theme in this paper concerns an insight for the social planner’s problem of optimal

allocation of abatement responsibility across multiple point sources of non-uniformly mixing pollutants.

Emissions transport and spatial heterogeneity in ambient environmental quality have long been recognized

as important issues in the theory of pollution control policy. However, the systems of dedicated ambient

monitors needed to calibrate the required "transport" functions are often incomplete so that the information

embodied in these these key transport functions is unavailable to policy makers. We show how hedonic

property value models with rich enough spatial differentiation in distance effects can yield estimates of the

product of marginal damages and marginal transport effects. If marginal abatement costs at each source can

be quantified, the estimated hedonic property value function and the spatial distribution of all properties

affected by each source of emissions can be combined to suggest socially optimal emissions reductions for

each source.

Published hedonic property value models that employ distance measures pay no attention to direction.
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Some authors use general spatial trend variables, either linear or quadratic. These researchers have implicitly

allowed for directional effects but have generally failed to recognize that these trend variables contain key

information about directional distance effects that cannot be ignored. There appear to be only two explicit

considerations of direction in any form in the published hedonic literature. Gillen, et al. (2001) relegate

directional considerations to the nature of spatial autocorrelation in the error terms in their model of isotropic

versus anisotropic error autocorrelation in house prices.1 In their study of the effects of industrial hog-farming

operations on house prices, Palmquist, et al. (1997) mention the problem of prevailing winds as an area for

future research. However, confidentiality of specific locational data concerning hog farms prevented them

from pursuing these issues. While prevailing winds would seem to be an important consideration in work

concerning the “aroma of Tacoma” by McMillen and Thorsnes (2003), they do not consider direction either.

Section 2 of this paper explains why direction, as well as distance, may be an important feature of

many HPV models. Section 3 outlines how commonly used spatial trend variables implicitly contribute to

directional heterogeneity in distance profiles. Prevailing winds or other physical processes are likely to be

a common denominator in cases where there is directional heterogeneity in distance profiles. Thus, section

4 reviews how external information about the annual average or seasonal directions of prevailing winds or

other physical processes can be incorporated into the model. Section 5 outlines how the level curves for

a directionally differentiated distance profile can be mapped. Section 6 pulls together the intuition from

directionally heterogeneous distance profiles for housing prices and the social planner’s problem of optimal

allocation of pollution abatement responsibility among multiple sources of non-uniformly mixing pollutants.

Section 7 provides some caveats before Section 8 concludes.

1There is no point-source environmental disamenity in their data from which distances are being measured; the only distances
in the model are the distances between individual houses in the sample.
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2 Distance Profiles as a Function of Direction

Ignoring heterogeneity in distance effects with respect to direction from a localized pollution externality can

potentially obscure what might otherwise be a clear price-distance relationship. Figure 1 illustrates just two

different directions, East and West, rather than the full 360o of the compass. In this case, the observations

for the dependent variable, Yi, are shown lying very close to the directionally-specific E [Yi]. Each of these

two directional distance profiles is depicted as a linear function of distance, d, with a common intercept, α,

but different slopes.2

Figure 1 is drawn under the assumption that prevailing winds are from the west. If the researcher

controlled for direction before estimating the parameters of the distance gradient, the data in the example

would yield very precise estimates of the common intercept, α, and two separate slopes, βE and βW . The

steeper profile to the west indicates that the prevailing winds limit the westward diffusion of the pollutant. In

contrast, the flatter profile to the east captures the fact that prevailing winds carry the pollutant considerably

farther in that direction. Ignoring direction is equivalent to superimposing the two different distance profiles

in the right-hand quadrant of the diagram and fitting one common distance profile to the pooled data. We

illustrate the effect of ignoring direction by showing the western distance profile rotated around the vertical

axis. The more heterogeneous the directional distance profiles, the greater will be the dispersion around

the common “average” distance profile when direction is ignored. A second artifact of failure to control for

direction will be apparent heteroscedasticity, with error variances increasing with distance.

In hedonic property value studies, researchers typically consider the “extent of the market” for proximity

effects to consist of all housing transactions within a particular radius of an environmental hazard. Alterna-

tively, the relevant market may consist of all census tracts or zip codes within a particular absolute distance

from the site. In these cases, it may be approximately true that the distribution of distances at which prop-

erty transactions are observed is independent of direction. When distance and direction are uncorrelated

2Contrast this form of heterogeneity with the type commonly assumed in fixed effects models for panel data. There, we
typically assume a common slope, but different intercepts across groups.
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in the data, omitted variables bias from failure to control for direction will be minimized. However, there

are a number of ways in which hedonic property value data may exhibit correlations between direction and

distance. We will review these in turn.

In Figure 2, we expand the right-hand quadrant of Figure 1 to include an additional set of points

(represented by open dots) for the intermediate north and south distance profiles. These north and south

profiles are assumed to be identical since the prevailing winds are coming from due west. Suppose the

researcher recognizes the potentially greater influence of pollution downwind, to the east, and therefore

collects data to a greater distance in that direction. Figure 2 shows that if she fails to control for direction in

the estimation process, it is possible that she may find no statistically significant relationship at all between

Y and distance, despite precise relationships in each direction considered separately. The empirical estimates

could suggest a negligible or statistically insignificant distance effect—a "false negative"—when in fact distance

effects are substantial and would be easy to discern when controlling for direction. The omitted variables

bias in this case stems from the presence in the data of observation at greater distances only for a subset of

all possible directions.

Figure 3 shows another potential source of omitted variables bias when direction is omitted. Even if

the researcher collects data on Y within a constant radius, regardless of prevailing winds, it is possible

that observations are not naturally identically distributed with respect to distance in all directions from the

Superfund site. This is a particular concern with data such as housing transaction price information. In

the downwind direction, in the presence of a localized environmental externality, there may simply be fewer

nearby houses. Alternately, there may be fewer nearby transactions if more-affected properties are more

difficult to sell. If the nearest distance at which observations occur is greater in the downwind direction,

slope distortions may result when direction is omitted from the model.

A third way in which correlations between distance and direction may naturally be present in hedonic

property value data is when features of the landscape surrounding a pollution source preclude housing at
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those locations. Examples will include coastal areas, areas where there are large parks, or urban areas with

expanses of industrially or commercially zoned properties.

In sum, if both distance and direction matter to housing prices, the two variables are correlated, and

direction is omitted, the coefficient on the distance variable can be expected to be biased. Ignoring direction

while estimating a distance gradient can significantly compromise both the accuracy and the precision with

which distance gradients are measured. This bias and loss in precision is amplified when directional effects

are more prominent.

When direction is not part of the model, we have already noted that the spatial level curves of the E [Yi]

are implicitly assumed to be circular. With directional diffusion of airborne pollutants, one would expect the

contours of the dispersal pattern to be non-circular. Relaxing the implicit assumption of circular contour

lines in the three-dimensional distance profile allows the researcher to estimate the direction of the main axis

of a more general set of elliptical level curves. In the simple multiple-direction case illustrated in Figures 2

and 3 with data for four directions (North, South, East and West profiles), the implied three-dimensional

distance profile will have the main axis of its elliptical level curves running from due West to due East. This

is because of the assumption that the prevailing winds from due west. However, any appropriate empirical

model needs sufficient flexibility to allow the orientation of the main axis of the elliptical contour lines to

vary freely, based on spatial patterns in the dependent variable. Alternatively, one might constrain the main

axis to correspond to the actual historical average wind direction. We now turn to viable specifications for

such models.
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3 Spatial trend models

3.1 Implications of a simple “planar spatial trend” model

First, we show that the simplest linear-in-distance model with directional effects is equivalent to a model

that includes just a simple linear distance effect plus a pair of incidental linear spatial trend variables. With

GIS software, one can readily identify point locations of housing units or census tract centroids in decimal

degrees (conventionally, to six decimal places). The simplest specification for a generic dependent variable

Yi involves overlaying a conical direction-independent distance profile with some tilted plane defined over

longitude and latitude.3 The combination of the lat/long effects on the dependent variable and symmetric

distance effects can readily mimic distance effects that are non-constant around the points of the compass:

Yi = α+ βdi + (γ1longi + γ2lati) + εi (1)

Keep in mind that one degree of latitude is not the same distance as one degree of longitude. The

length of one degree of longitude depends upon the latitude at which that distance is being calculated. In

general one degree of longitude = cos(latitude)* 111.325 kilometers. In contrast, one degree of latitude is

well approximated by 110.6 kilometers. This complicates the task of determining the direction of steepest

descent when longitude and latitude are used directly as explanatory variables. It is preferable to compute

location in (x,y)-space in common units in each direction.

Fortunately, it is not necessary to use the Greenwich Meridian and the equator as the origins of mea-

surement for the absolute spatial location of each property in the sample. We recommend expressing both

longitude and latitude in kilometers and shifting the origin of measurement to coincide with the site of the

environmental disamenity. Denote the longitude and latitude of the site as (xs, ys). Using the source of

pollution as the origin of measurement, let xi be the east-west coordinate of the property, and let yi be the

3Any real specification will of course also control for a host of structural and neighborhood variables characteristics.
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north-south coordinate. Then

Yi = α+ βdi + (γ1xi + γ2yi) + εi (2)

Here we assume that the longitude-to-kilometers conversion factor can be approximated for both the specific

property and the pollution source by the latitude correction corresponding to their average latitude, so that

xi = (111.325)(longi − longs) cos [(lati + lats) /2] (3)

yi = (110.6)(lati − lats)

In equation (2), both the xi and yi distances are measured in kilometers, as is the distance di.4 The

parameters γ1 and γ2 in equation (2) will be different from their counterparts in equation (1) due to the

change of location and scale.

It is convenient to convert equation (2) so that it is expressed entirely in terms of polar coordinates.

Recall that xi = di cos θi and yi = di sin θi where θi is the direction from the site to housing unit i (measured

in radians counter-clockwise from due east). Making this substitution, equation (2) becomes:

Yi = α+ βdi + (γ1di cos θi + γ2di sin θi) + εi (4)

Collecting the terms in distance, we get:

Yi = α+ (β + γ1 cos θi + γ2 sin θi) di + εi (5)

Instead of having a constant distance effect, the distance effect depends upon the direction in which it is

being calculated.

4 In implementing these transformations, it is crucial to remember that cartographers measure latitude in degrees from the
equator, rather than in radians. The map measures of latitude must first be converted into the equivalent number of radians
before using econometric software to calculate the cosine of the term in square brackets in the formulas in (3).
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One implication of this result is that researchers who have specified models with a linear spatial trend

but no linear distance effect (i.e. β = 0) are still estimating models with implicit direction and distance

effects. However, the origin of measurement of these distances may be the intersection of the equator and the

Greenwich Meridian, unless some other arbitrary point of origin is selected. More insidiously, any researcher

who adds a set of linear spatial trend variables to a model that includes a specific distance measure may

overlook the fact that the full distance effect is β + γ1 cos θi + γ2 sin θi, rather than simply β.

In describing fitted models involving heterogeneous parameters, it is customary to simplify the results

by reporting key varying derivatives calculated at the “means of the data.” While the average angle θ in

any sample will depend upon the spatial distribution of observations in that sample, it will usually be more

convenient to use the fact that the average values of both cos θ and sin θ would be zero if this angle was

uniformly distributed around the compass from 0 to 2π. The distance effect in this theoretical “average”

direction corresponds to just the β coefficient. If the researcher desires to know the predicted distance effect

in each of the four main compass directions (N,W,S,E), these distance effects can be calculated as (β + γ2,

β − γ1, β − γ2, β + γ1). The magnitudes of the directional distance effects thus clearly depend upon the

signs and sizes of the two directional coefficients, γ1 and γ2.

3.2 Implications of “quadratic spatial trend” specifications

Some researchers control for systematic spatial trends by including quadratic and interaction terms in x and

y. (Consider the empirical example in Dubin (1998).) We show now that the combination of a fully quadratic

spatial trend with a linear-in-distance specification leads to an implicitly quadratic-in-distance specification.

Let the model in conventional form be

Yi = α+ βdi +
¡
γ1xi + γ2yi + γ3x

2
i + γ4xiyi + γ5y

2
i

¢
+ εi (6)

Converting this mixed Cartesian coordinate and distance specification into exclusively polar coordinates
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yields the following equivalent specification:

Yi = α+ βdi + (γ1di cos θi + γ2di sin θi) (7)

+
¡
γ3d

2
i cos

2 θi + γ4d
2
i cos θi sin θi + γ5d

2
i sin

2 θi
¢
+ εi

Simplify by collecting terms in di and d2i to reveal the equivalent form:

Yi = α+ (β + γ1 cos θi + γ2 sin θi) di (8)

+
¡
γ3 cos

2 θi + γ4 cos θi sin θi + γ5 sin
2 θi
¢
d2i + εi

However, even if the observed directions θi were distributed uniformly around the compass, the expected

distance effect will not, in this model, collapse to just β, as was the case for equation (5). The expected

values of cos θi, sin θi and cos θi sin θi will all be zero in this case, but the expected values of cos2 θi and

sin2 θi will not. We are considering the expected value over a uniform distribution for θ over the interval

from 0 to 2π. This distribution has a constant density of 1/2π that can be factored out of the integral in

the expectation formulas:

E
£
cos2 θ

¤
=

1

2π

Z ¡
cos2 θ

¢
∂θ =

·
1

2
θ − 1

4
sin 2θ

¸2π
0

=
1

2
(9)

E
£
sin2 θ

¤
=

1

2π

Z ¡
sin2 θ

¢
∂θ =

·
1

2
θ − 1

4
sin 2θ

¸2π
0

=
1

2

The expectations of these two terms will be strictly positive and both equal to 0.5. Thus, for uniformly

distributed directions, the specification in equation (8) corresponds to an average distance effect as follows:

Yi = α+ βdi +

µ
γ3 + γ5
2

¶
d2i + εi (10)
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Clearly, even if we are considering the average distance effect over all possible directions, a model with

both a simple linear distance effect and a full set of quadratic spatial trend terms actually implies a model

with a quadratic distance effect. The average distance effect will be linear only if the average of the estimated

coefficients on the squared x and y coordinates is not different from zero.

3.3 Nonlinear-in-distance specifications

Except for (i) changes of location and scale, (ii) the slight local approximation involving cos [(lati + lats) /2],

and (iii) conversion exclusively polar coordinates, the model in equation (5) is identical to that involving the

simple planar spatial trend in terms of the longitude and latitude variables in equation (1). However, there

is nothing to mandate using only the functional form employed in equations (1) or (2). In fact, this form

has the unappealing characteristic that in any particular direction, the marginal effect of distance remains

constant as distance increases. We generally expect the effect of localized externalities to diminish with

distance until any incremental effect of distance essentially disappears.

To approximate a pattern of marginal distance effects that decrease with distance, researchers often

use models that are nonlinear but monotonic transformations of the distance variable, f(di). Candidate

functional forms include a logarithmic transformation f(di) = ln(di), or a reciprocal function, f(di) = 1/di.

However, both of these specifications can produce extreme values for the transformed distance variable as

distance goes to zero. An easy fix for this problem is to shift the origin of measurement for the distance

variable by adding one unit for all observations. Distance measurements are always non-negative, so this

change-of-origin by one unit can guarantee that the smallest observed value of f(di) = ln(di+1) is zero and

the largest observed value of f(di) = 1/(di+1) is 1. To keep the notation simple in what follows, we will refer

to the distance variable generically, as f(di). We adapt the model in equation (2) to allow for diminishing

marginal effects of distance, but still allow the marginal effect at any given distance to vary systematically
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and smoothly with direction by substituting a suitable version of f(di) for di in our earlier model:

Yi = α+ (β + γ1 cos θi + γ2 sin θi) f(di) + εi (11)

To test statistically for the presence of directional heterogeneity in the distance effect, one would again test

the joint hypothesis that γ1 = γ2 = 0.

Over all possible directions either for the model in (1) and (2) or for the alternative model in equa-

tion (11), the two extrema of the distance effect occur where the derivative with respect to θi of the

systematically varying coefficient, β + γ1 cos θi + γ2 sin θi, goes to zero. Making use of the facts that

∂ sin θ/∂θ = cos θ, ∂ cos θ/∂θ = − sin θ, and cos θ/ sin θ = tan θ, the maximum predicted distance effect

occurs at θ∗ = arctan (γ2/γ1), while the minimum distance effect lies at θ
∗∗ = θ∗+π. If we are considering a

hedonic property value model using equation (11), housing prices would be predicted to increase most slowly

as one moves away from the site in the direction

θ∗∗ = arctan (γ2/γ1) + π (12)

This direction depends upon the estimated parameters γ1 and γ2. This direction (measured in radians

counterclockwise from due east) can be converted to compass degrees (measured clockwise from due north)

by computing φ∗∗ = −180 (θ∗∗/π)+90. If the level curves of the property value distribution are non-circular

only because of localized air pollution levels, this direction would be interpreted as the apparent downwind

direction.

3.4 Other patterns of directional heterogeneity

Models with the slope coefficient on f(di) generalized to simply β + γ1 cos θi + γ2 sin θi do not capture the

universe of all possible directional or spatial patterns in distance effects, although we will concentrate on
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these forms below. As section 3.2 suggests, a set of quadratic spatial trend variables can capture more general

spatial patterns in the same family. These models may be appropriate in some empirical applications. Other

functions of direction can also be explored, including variants that allow for systematic shifts in distance

effects for subsets of directions according to the topography surrounding the source of pollution. Dummy

variables for certain directions can be interacted with cos θi and sin θi to permit shifts in the directional

effects away from the simple pattern captured by just β + γ1 cos θi + γ2 sin θi. Whenever physical features

of the context may be important, their potential distinct effects should be explored.

Sometimes directional heterogeneity in distance effects will not vary around the compass relative to the

source of the pollution as in the case of prevailing winds. There will be other cases when relative elevation,

rather than simply compass direction, is the physically relevant determinant of distance effects. It may not

be the angle relative to due east, but rather the angle relative to the downhill direction that matters most.

If steepness in the downhill direction also matters, the trigonometric terms involving this angle will need to

be interacted with the degree of slope in that downhill direction.

4 Estimated versus actual “downwind” direction

In this paper, we will use the term "downwind" to imply that prevailing winds constitute the physical process

that leads to more-distant effects of pollution in one direction. However, we emphasize that the downwind

terminology can also be generalized to imply all physical processes that contribute to spatially asymmetric

transport of pollutants from a source, including the movement of surface or groundwater, and topographical

effects on visual and noise polluation.

One potential problem with the unrestricted specification in equation (11) is that the estimated downwind

direction, θ∗∗ = arctan (γ2/γ1) + π, may not correspond to the known downwind direction. The estimated

downwind direction may be biased by other factors unrecognized by the researcher. To avoid such omitted

variables bias, it will be important to control for other factors that can be expected to contribute to a general
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spatial price gradient.

Once the model in equation (11) has been estimated, therefore, it will be important to test whether the

estimated “downwind” direction, φ∗∗ measured in compass degrees, coincides with the meteorological facts.5

This statistical test of the estimated wind direction would involve constructing a point estimate and standard

error for the estimated direction θ∗∗ from the point estimates of parameters γ1 and γ2 and testing whether

this direction could be equal to the actual downwind direction, θ0. Historical prevailing wind directions for

major cities in the US are provided by NOAA (1998).

4.1 Imposing the annual average prevailing wind direction

In some cases, the downwind direction should not be estimated, but should be determined frommeteorological

data and imposed upon the model. Assume initially that the direction of prevailing winds is constant over

the seasons. Let the actual downwind direction from the environmental disamenity be θ0 radians. If we wish

to impose this downwind direction as a constraint on our estimation, it will translate into a restriction on

the admissible values of γ1 and γ2. Solve equation (12) for the admissible relationship between γ1 and γ2

when θ∗∗ = θ0:

γ2 = γ1 tan(θ
0 + π) (13)

Substitute this restriction into equation (11) to yield

Yi = α+
¡
β + γ1 cos θi +

£
γ1 tan(θ

0 + π)
¤
sin θi

¢
f(di) + εi (14)

= α+ βf(di) + γ1
£
cos θi + tan(θ

0 + π) sin θi
¤
f(di) + εi

This model can be estimated using conventional linear-in-parameters specifications since all terms inside the

square brackets are observed data or known constants. This specification allows for directional asymmetry

5Recall that meteorologists report wind direction based on the direction from which the wind is coming, rather than the
vector describing the direction in which it is blowing. Thus, a NW wind would be blowing "out of the NW, in a SE direction."
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in the distance effect, but admits for distortions only in a direction known to be consistent with prevailing

winds. To test whether there is evidence of a directional effect in the dependent variable that coincides with

wind direction (or other natural flows that may affect waterborne contaminants, for example), one would

simply test whether γ1 = 0 can be rejected.

We might desire this directional restriction on the downwind effect because without it, there is no re-

quirement that the direction in which housing prices increase most slowly with distance actually coincides

with the direction in which pollution travels the farthest. Allowing the distance profile implied by the model

to “tilt” in any arbitrary direction will court omitted variables bias. There may be other underlying factors,

unknown to the researcher, which account for an overarching spatial trend in housing prices. These factors

could include a temperature gradient, distance from a nearby city center or coastline, or any other amenity

or disamenity that is not controlled for by its explicit inclusion in the specification.

In some applications, however, we may wish to isolate the extent of the downwind effect separately from

any additional nonspecific directional effect that may be superimposed upon the downwind effect. We can

introduce parameters γ∗1 and γ∗2 and allow for two distinct types of directional effects:

Yi = α+ βf(di) + γ1
£
cos θi + tan(θ

0 + π) sin θi
¤
f(di) (15)

+ (γ∗1 cos θi + γ∗2 sin θi) f(di) + εi

The constructed variable
£
cos θi + tan(θ

0 + π) sin θi
¤
f(di) will vary independently from cos θif(di) and

sin θif(di), so that distinct estimates can be obtained for the downwind effect parameter, γ1, and the generic

directional effect parameters, γ∗1 and γ
∗
2. The researcher will need to speculate upon logical explanations for

statistical significance in these two additional parameters.6

6 Joe Stone suggested this potentially useful generalization.
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4.2 Imposing seasonally varying prevailing winds

A more intricate model may be appropriate when there are regular seasonal differences in the direction of

prevailing winds. The term in equation (14) that carries the γ1 coefficient captures the direction, θi, from

the localized environmental disamenity which will be constant over time but will vary across observations.

This term also includes the direction of prevailing winds, θ0. This is consistent with the assumption that the

direction of the prevailing winds is fixed across observations. However, this assumption may be unrealistic.

For example, selling prices of houses are understood to vary seasonally for a variety of reasons. If they

also vary seasonally as a result of some seasonal pattern of dispersion of some point source pollutant, this

information can also be employed to enhance estimation if time-subscripted data are available. The model

could be generalized to apply to Yit and θ0t :

Yit = α+ βf(di) + γ1
£
cos θi + tan(θ

0
t + π) sin θi

¤
f(di) + εit (16)

As before, θ0t is not a parameter to be estimated, but additional data on seasonal wind directions to be

employed in the estimation process.

5 Level curves of distance profiles

For any of these directional models, it may be also be useful to derive the implied level curves for the overall

distance profile. Once the unknown parameters of the model have been estimated, one can solve for the

latitude and longitude coordinates of locations that lie along level curves for fitted Yi. The geo-coded level

curves can then be displayed using mapping software. For the basic model in equation (11), implementation

proceeds as follows. Assume εi = 0 and solve the fitted model for the values of d∗i that correspond to each

of the observed directions (θi) represented in the sample if Yi is held constant at Y∗. The set of polar
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coordinates satisfying this condition will be:

[d∗i , θi] =
·
f−1

µ
Y ∗ − α

β + γ1 cos θi + γ2 sin θi

¶
, θi

¸
(17)

Now convert these points expressed in terms of polar coordinates back into Cartesian coordinates using

xi = d∗i cos θi (18)

yi = d∗i sin θi

Then convert these simple Cartesian coordinate back into latitude and longitude by reversing the transfor-

mations in (3):

lat∗i = lats + (y
∗
i /110.6) (19)

long∗i = longs + x∗i / [111.325 cos [(lat
∗
i + lats) /2]]

If the observations are first sorted in order of θi, the graphing routines in conventional estimation software

can be used to connect the points and draw a smooth curve. Saving the latitudes and longitudes and mapping

these pairs of points will produce an elliptical pattern of points. Alternatively, to produce an ellipse consisting

of an arbitrarily dense pattern of points, one could discard the observed directions, θi, simulate as many

evenly spaced values as desired between 0 and 2π and perform the transformations in equations (17) through

(19) using these simulated values instead.

6 Hedonic models and optimal source reduction

In this section, we outline how hedonic property value models, with or without directional heterogeneity

in distance effects, can be integrated into models for optimal pollution abatement when there is spatial
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heterogeneity in non-uniformly-mixing pollutants emitted by a number of point sources.

The usual model for non-uniformly mixing pollutants assumes that the ambient concentration at receptor

i depends upon emissions from source j, where ambient environmental quality at i is given by the transport

function Tji(ei) (see Helfand, Berck and Maull (2003), p. 264). If we assume that damages at location

i are due to the simple aggregate of emissions reaching that place, then damages at that location are

Di(
PK

j=1 Tji(ei)). A simpler assumption is that the transport function is linear and additively separable in

emissions from each source (Kolstad, 2000, p. 156). Then the relationship between emissions and ambient

concentrations can be summarized by the appropriate element aij of the “transfer matrix,” A. Assume that

the ambient concentration in parts per million of the pollutant in question at receptor i, ppmi, depends on

emissions levels ei from each source j = 1, ...,K according to this approximately linear relationship:

ppmi = a0 + ai1e1 + ...+ aiKeK + ui, i = 1, ...,N (20)

where ui is an error term and the transfer coefficients aij are measured in parts-per-million of ambient

concentration at receptor i per ton of pollution emitted at source j. Efficient abatement at each of the

j = 1, ...,K different sources requires that the decision-maker adjust emission levels from all sources to

maximize net social benefits (the difference between overall social benefits of reduced emissions and the

overall costs to firms of abatement).

The economic theory of optimal abatement under these circumstances is relatively mature, but policy

implementation is hampered in many cases by a paucity of data on the relevant transport functions. We will

now outline how hedonic property value models can be used to quantify the product of marginal ambient

damages and transport function derivatives. In certain cases, this product of terms is all the transport

information that is needed, so separate quantification of the transport function may not be necessary. Socially

optimal allocations of abatement responsibility can be informed by hedonic property value models.
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6.1 Housing units as implicit “ambient receptor sites”

Suppose that the type of environmental disamenity being considered is an example of a “localized external-

ity” according to the distinctions drawn in Palmquist (1992) and Palmquist (2003). This means that the

environmental disamenity affects only a small number of properties relative to the size of the market. We will

also assume that there are no significant transactions or moving costs. Under these conditions, first-stage

hedonic property value estimates are appropriate for welfare calculations. Hedonic rental rate differentials

for localized externalities can be integrated into our conventional models that articulate the equimarginal

principle for optimal abatement or emissions at a finite number of different pollution sources.

6.1.1 Marginal social costs of pollution (marginal benefits of abatement)

Suppose the sum across properties of the individual decrements in implicit housing rental rates are a rea-

sonable approximation to the social benefits of eliminating pollution. For each of the housing units in the

estimating sample, the individual social benefit of reducing pollution by ∆ej at each source is given by:

∆ rental ratei =
MSCi

∆ppmi

XK

j=1

µ
∆ppmi

∆ej

¶
∆ej (21)

=
MSCi

∆ppmi

XK

j=1
aij∆ej

This assumes that the rental rate differential for a property is the sum of the differentials due to the portion

of ambient pollution at receptor i attributable to each of the K different sources.

Assume that the dependent variable in a typical hedonic property value model is the annualized rental

rate, Zi, that corresponds to the selling price of the property, Yi. Adapting our simple model of equation (11)

to the case of multiple sources of pollution, we can specify this rental rate as a function of the distances and

directions of the property relative to several point sources of pollution. Assume for now that all properties are

otherwise identical, in terms of size as well as structural and neighborhood characteristics, so that there is no

need to control for other sources of heterogeneity besides distance and direction from the various pollution
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sources. A specification for the annualized rental rate function with multiple localized pollution sources,

j = 1, ...,K could be:

Zi = α+
XK

j=1

¡
βj + γj1 cos θji + γj2 sin θji

¢
fj(dji) + εi (22)

The compound coefficients
¡
βj + γj1 cos θji + γj2 sin θji

¢
in equation (22) are measured in dollars per unit

of distance and the specification assumes implicitly that the quantity and type of pollutant emitted from

each source is identical. To allow for different transformations of distance to apply for each pollution source,

we now index f(dji) by j to create fj(dji), although for similar pollutants, the identical transformation may

apply to distances from all sources. Suppose now that the distance effects are estimated per unit of pollutant

emitted, so that the overall impact of the total emissions from source j will be this marginal effect times the

level of emissions from that source, ej . The model in (22) can be generalized to the case of varying levels of

emissions from each source:

Zi = α+
XK

j=1

¡
βj + γj1 cos θji + γj2 sin θji

¢
fj(dji)ej + εi (23)

With this modification, the change in the implicit rental rate of the ith property with respect to a change

in the emissions from the jth pollution source is a function of the distance between that source and the

property in question. Viewing this specification from the perspective of equation (21), we can identify the

correspondence

∆ rental ratei
∆ej

=
MSCi

∆ppmi
aij =

¡
βj + γj1 cos θji + γj2 sin θji

¢
fj(dji) (24)

Thus, the effect of a unit of emissions from the jth pollution source on the implicit rental rate of the ith

property subsumes both the marginal social cost to that property of the jth source’s contribution to ambient
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concentrations and the relevant transfer coefficient.

The overall social benefit of a vector of pollution reductions at the set of K sources will be the sum

of these individual effects across all N housing units in the affected area (not just the N∗ units in the

estimating sample from which the hedonic distance coefficients are derived). The overall marginal social

benefits of emissions reductions (∆e1, ...,∆eK) will be equal to the overall marginal social costs (MSC) that

this pattern of pollution created:

MSC =
XN

i=1

µXK

j=1

¡
βj + γj1 cos θji + γj2 sin θji

¢
fj(dji)∆ej

¶
(25)

6.1.2 Marginal social benefits of pollution (marginal costs of abatement)

The marginal costs of pollution abatement to the industry are the same as the marginal savings to the

industry from continuing to pollute. The aggregate marginal benefits to the K firms of the incremental

changes in emissions summarized as (∆e1, ...,∆eK) will be:

MS =
XK

j=1
macj∆ej (26)

where macj is the marginal abatement cost (marginal cost of emissions reduction) for source j. Suppose

abatement costs are a simple quadratic function of abatement level bj with no intercept or linear term:

acj = δjb
2
j . Then marginal abatement costs will be proportional to abatement levels: macj = 2δjbj = cjbj .

6.1.3 Efficient abatement

Equalizing overall marginal social costs and overall marginal social benefits can be accomplished by equalizing

the marginal social costs and marginal social benefits associated with emissions from each source:

·XN

i=1

¡
βj + γj1 cos θji + γj2 sin θji

¢
fj(dji)

¸
∆ej = [cjbj ]∆ej j = 1, ...,K (27)
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The term ∆ej cancels from each side of this equimarginal condition and we are left with the result that the

optimal level of abatement bj for each firm will be determined by:

bj = (1/cj)
XN

i=1

¡
βj + γj1 cos θji + γj2 sin θji

¢
fj(dji) (28)

There is still more information that can be brought to bear on the estimation process and the deter-

mination of the socially optimal level of emissions reduction for each source. If the pollutant is dispersed

by prevailing winds, we can impose a dispersal pattern consistent with those prevailing winds. If we adapt

equation (23) to the case with constant prevailing winds, as in equation (14), we get

Zi = α+
XK

j=1

£
βj + γj1

¡
cos θi + tan(θ

0
t + π) sin θi

¢¤
fj(dji)ej + εi (29)

If the effect of distance and direction on the per-unit effects of emissions is the same across all sources, so

that βj = β and γj1 = γ1 for all j, a resulting special case of this hedonic model would be:

Zi = α+ β
XK

j=1
fj(dji)ej + γ1

XK

j=1

¡
cos θi + tan(θ

0
t + π) sin θi

¢
fj(dji)ej + εi (30)

If the hypotheses that βj = β and γj1 = γ1 for all j cannot be rejected, then each unit of pollutant from

any localized source has the same effect on the rental rates for any housing unit at the same distance and in

the same direction.

With quadratic abatement costs and the estimated downwind direction constrained to match the empirical

downwind direction based on typical weather patterns, the socially optimal level of abatement for each source
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can be determined as follows:

bj = (1/cj)
XN

i=1

£
βj + γj1

¡
cos θi + tan(θ

0
t + π) sin θi

¢¤
fj(dji) (31)

=
¡
βj/cj

¢XN

i=1
fj(dji) +

¡
γj1/cj

¢XN

i=1

£
cos θi + tan(θ

0
t + π) sin θi

¤
fj(dji)

If we constrain the per-unit effects of pollutants from each source to be identical at the same distance and in

the same direction as in equation (30), the equation in (31) can be simplified. If all firms also face identical

cost structures, so that the slopes of their marginal cost curves are identical and cj = c for all sources j,

then the socially optimal level of abatement for each source will be:

bj = (β/c)
XN

i=1
fj(dji) + (γ1/c)

XN

i=1

£
cos θi + tan(θ

0
t + π) sin θi

¤
fj(dji) (32)

In words, even if abatement technology is identical for all firms, the spatial distribution of housing units

relative to each site will imply different optimal levels of emissions bj for each firm. As expected, these

optimal abatement levels will depend on the location of houses relative to each firm and on the direction of

the prevailing winds.

If there is no directional heterogeneity in any of the distance effects for any of the individual pollution

sources, then γ1 = 0 and equation (33) reduces to just

bj =
β

c

XN

i=1
fj(dji) =

Nβ

c
fj(dji) (33)

This form implies that only the number of affected housing units and the average of the relevant function

of distance matters, along with the common distance effect (β) and the common marginal abatement cost

parameter, c. If fj(dji) = dji for all sources j, then simply the average distance will enter the formula.

If abatement costs are approximately quadratic and the (constant) slope of the marginal abatement
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cost function for each source is known, then equation (31), in conjunction with locational polar-coordinate

data for all affected housing units, (dji,θji) relative to each source j, combined with information about the

downwind direction for prevailing winds, θ0, allows a tedious but straightforward calculation of the socially

optimal level of abatement for each source.

7 Caveats and Directions for Future Research

Researchers who explore directional heterogeneity in distance effects will still need to be vigilant about the

possibility of omitted variables biases in their estimated distance effects. Collinearity among distances to

different pollution sources, and to other amenities and disamenities that can also influence housing prices,

will need to be assessed. One important class of sensitivity tests might include the demonstration that

similar functional forms for distance and direction, computed relative to some randomly selected point (or

points), exhibits no such directional distance effects on housing prices.7

Appropriate specifications for the form of directional heterogeneity in distance effects should typically

refer to the physical features of the application (including prevailing winds, direction of groundwater move-

ment or surface-water flow, and/or topography). It will be unwise to pursue any serious model without

acquiring some knowledge of these processes or spatial features.

It is worth noting that nothing about the specification in equation (11) requires that the fitted distance

effect be positive in all directions. If the housing price differentials captured by the distance effect are entirely

due to the localized environmental disamenity, one would expect that the distance effect should be strictly

positive in all directions. This hypothesis can be tested. If the distance effect is negative in some directions,

this will call into question the assumption that distance is exclusively a proxy for ambient environmental

quality. Negative distance effects in some directions may be a consequence of other omitted spatial variables.

Of course, even when the estimated distance effect is positive in all directions, omitted spatial variables can

7Richard Ready contributed this suggestion.
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still cause mischief, but the presence of some negative distance effects should certainly raise suspicion about

the completeness of the specification.

If the researcher is willing to resort to non-linear-in parameters specifications, the sign of the distance

effect could be constrained to be positive in all directions by estimating the logarithm of the distance effect,

rather than its level. This corresponds to using the specification:

Yi = α+ [exp (β + γ1 cos θi + γ2 sin θi)] f(di) + εi (34)

Here, the logarithm of the distance effect varies systematically with direction.

If the environmental externality in question is not a localized externality, so that the hedonic price

schedule is shifted for the entire market, then the first-stage hedonic equation is insufficient as a measure of

the loss in social welfare due to pollution. Richer welfare models will be necessary and the simple analysis

in Section 6 pertaining to optimal levels of emissions for different firms will be inappropriate. For localized

externalities, however, the method proposed here may be entirely suitable.

The data requirements for assessing the optimal levels of emissions for different point sources of localized

pollution will be substantial, since it is necessary to approximate the locations of all affected properties, as

well as to estimate the effect of the localized externality on each property in a sample of housing transactions

prices. It will also be necessary to convert transactions prices into equivalent annualized rental rates, and to

quantify the annual emissions from each plant and the marginal abatement costs for each plant. However,

any formal benefit-cost analysis will typically require a lot of data.

All of the models developed in this paper pertain to just the systematic portion of a first-stage hedonic

property value model, rather than the error terms. All of these generalizations will be amenable to being

combined with state-of-the-art spatial error models, such as correlogram- or semivariogram-based models or

lattice models (see the summary of methods provided by Pace et al. (1998)).
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8 Conclusions

The significant contribution in this paper is the development of a new empirical specification for spatial data

concerning variables that may be affected by proximity to environmental hazards. We introduce direction

as a potentially important determinant of distance (proximity) effects. We include a special case of this

empirical model that can accommodate additional data about the direction of prevailing winds or other

systematic physical features or processes. This special case involves a restriction on the parameter estimates

that can still be accommodated within a conventional linear-in-parameters estimation framework. If there

are seasonal patterns in prevailing winds or other processes that may lead to seasonal differences in the spatial

pattern of the level of the disamenity from the environmental hazard, these data can also be exploited.

We have developed these new specifications as generally as possible. In the context of hedonic property

value models, the dependent variable will typically be data on individual house selling prices. If environmental

justice is the issue in question, however, the dependent variable could be the proportion of the population in

different sociodemographic groups at different distances (and directions) from the localized environmental

externality or externalities.

If direction matters but is ignored, the best-case result is that the researcher is limited to measuring the

average distance effect, around the compass, with lesser precision than would be possible in a directionally

heterogeneous model. A worst-case result is that the geographic distribution of observations is systematically

correlated with direction (an omitted variable) so that the estimated distance effects are both biased and

less precise. The implication and insight of this analysis is that prior research that has ignored substantial

directional effects may have failed to identify statistically significant distance effects or may have presented

biased results.

Finally, we have explored the possibility of interpreting the housing units in a hedonic property value

study as individual ambient receptor sites. This allows hedonic property value models to be integrated with

notions of socially optimal pollution abatement among multiple sources of localized pollution externalities.
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The insight drawn from this model is that optimal pollution levels for locally polluting firms emitting non-

uniformly mixing pollutants can depend on more than just the marginal abatement costs of each firm. The

distribution of housing units relative to each pollution source will also figure prominently in the calcula-

tions. If independently calibrated transport functions are not available for calculations of optimal abatement

patterns, there is scope for using hedonic property value models to fill this gap.
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Figure 1: Bi-directional distance effects and imprecision in estimates
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Figure 2: Four-directional distance effects and one possible source of bias

Figure 3: Four-directional distance effects and a second possible source of bias
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