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Abstract

This paper advocates a theory of expectation formation that incorporates
many of the central motivations of behavioral finance theory while retaining
much of the discipline of the rational expectations approach. We provide a
framework in which agents, in an asset pricing model, underparameterize their
forecasting model in a spirit similar to Hong, Stein, and Yu (2005) and Bar-
beris, Shleifer, and Vishny (1998), except that the parameters of the forecasting
model, and the choice of predictor, are determined jointly in equilibrium. We
show that multiple equilibria can exist even if agents choose only models that
maximize (risk-adjusted) expected profits. A real-time learning formulation
yields endogenous switching between equilibria. We demonstrate that a real-
time learning version of the model, calibrated to U.S. stock data, is capable of
reproducing many of the salient empirical regularities in excess return dynam-
ics such as under/overreaction, persistence, and volatility clustering.

JEL Classifications: G12; G14; D82; D83
Key Words: Asset pricing, misspecification, behavioral finance, predictabil-

ity, adaptive learning.

1 Introduction

There is, by now, an established literature that studies financial market anomalies
such as excess volatility and predictability of long-run excess returns. (See Lettau
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and Ludvigson (2005) for a recent discussion.) Additionally, a more recent strand of
literature has developed that studies the relationship between the collapse of internet
stock prices and the increase in publicly tradeable asset shares. (See Cochrane (2005),
Ofek and Richardson (2003), and Hong, Scheinkman, and Xiong (2005)). Despite the
extensive scope of this research, an important open issue is the implications of asset
share supply dynamics for the properties of long-run excess returns. This paper
develops a model of bounded rationality that is able to capture many of the salient
empirical regularities.

One popular viewpoint is that empirically observed long-run excess returns can-
not be explained by a standard Rational Expectations (RE) model. An explosion of
research proposes alternative theoretical foundations for the empirical findings.1 An
offshoot of this literature looks beyond RE and formulates behavioral or boundedly
rational channels through which these anomalies might arise (e.g., Barberis, Shleifer,
and Vishny (1998), Hong and Stein (1999), Hong, Stein, and Yu (2005), and Lansing
(2006)). Bounded rationality, of course, is not only of interest to financial econo-
mists. In macroeconomics there is a broad literature that replaces full rationality
with agents who behave as econometricians; that is, by agents who estimate and se-
lect their models in real-time. (See, for example, Marcet and Sargent (1989), Evans
and Honkapohja (2001), and Sargent (1999).)

While similar in spirit, these two approaches differ in the degree to which agents’
expectations differ from rational expectations. For example, in Marcet and Sargent
(1989) and Evans and Honkapohja (2001) agents typically have correctly specified
reduced-form models but update their parameter estimates in real-time. In many
models, these expectations converge to rational expectations. In Sargent (1999) and
Williams (2004), agents may have misspecified econometric models but within the
context of their subjective model they are unable to detect their misspecification.
In Branch and Evans (2006a), computational and cognitive limitations force agents
to underparameterize their forecasting models. These self-referential models restrict
beliefs and the nature of misspecification to be determined in equilibrium.

In this paper, we apply the econometric misspecification approach, employed fre-
quently in macroeconomics, to asset pricing questions. We develop our results in the
context of an asset pricing model, with downward sloping demand for the risky asset,
in which the stock price depends on expected future returns and on an exogenous
process for share supply. Our modeling of share supply is meant to proxy for asset
float, as discussed in Cochrane (2005) and Hong, Scheinkman, and Xiong (2005).
We are motivated, in part, by Hong, et al. who demonstrate strong empirical im-
plications from a model of heterogeneous expectations, increasing supply of shares,
and short-sales constraints. Following the approach of Branch and Evans (2006a),
we assume that agents underparameterize their forecasting model for price: agents

1An important counter viewpoint is provided by Fama and French (1996).
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perceive price as depending on dividends or share supply, but not both.2 This simple
framework is meant to stand in for a more complex environment in which traders face
computational limitations that force them to choose parsimonious trading strategies.
We assume that agents only choose those models, or trading strategies, which yield
the highest (risk-adjusted) trading profits. Within the class of underparameterized
models, the key condition restricting beliefs is that expectations must satisfy a least-
squares orthogonality condition. Agents’ forecasting models are statistically optimal
in the sense that their forecast errors are orthogonal to their predictor. We further
restrict the set of admissible models by assuming agents only choose those models
that maximize risk-adjusted trading profits.

While our approach to bounded rationality retains many of the more disciplined
features of the rational expectations hypothesis, there are important deviations. Most
importantly, exploitable trading profits exist that are not arbitraged away. We do not
directly model why arbitrage fails in this model other than to point to recent work on
the effect of short sales constraints by Cochrane (2005), Lamont and Thaler (2003),
and Ofek and Richardson (2003). The short sales constraints studied in these papers
matter for why expected increases in future supplies of a stock are not arbitraged
away through short sales. The motivation for these studies was the large increase in
the supply of shares at the beginning of 2000 as a number of dot-com IPO’s lock-ups
expired. This increase in supply was not priced into the market at the time of the IPO.
We view our model as providing an equilibrium foundation to the empirical findings
of Ofek and Richardson, among others, in the presence of short sales constraints.

Previous models taking a behavioralist perspective often address empirical puzzles:
overreaction to ‘news’ about dividends, excess trading, long-run predictability, and
volatile long-run excess returns. For example, Cutler, Poterba, and Summers (1991)
find that stock returns in many countries are positively autocorrelated at short hori-
zons and negatively autocorrelated over longer horizons. Cutler, et al. interpret this
as evidence that there is initially underreaction to news and then overreaction over
time.3 Debondt and Thaler (1985) found that stocks receiving five years of good
earnings news will underperform those with a five year period of relatively bad earn-
ings. Similar cross-sectional evidence of underreaction is provided in Bernard (1992).
Fama and French (1996) argue that these findings can be explained in part by prop-
erly defining risk, so that those stocks that are underreacting to news are actually
less risky.

Many financial economists, however, embrace bounded rationality as a way of
explaining the existence of multiple trading strategies, heterogeneity in expectations

2One could generalize the model further by assuming dividends and asset float follow multivariate
stochastic processes with high order lags, and agents are restricted to underparameterize in at least
one dimension. The main qualitative findings of this paper would extend to this more general
formulation.

3This issue is discussed extensively in Cochrane (2001).
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and preferences, volatility and under/over reaction to economic news. A gap exists in
the literature that we seek to fill by studying the existence of these multiple trading
strategies, and evolution over time, as an equilibrium phenomenon. To these ends, this
paper makes a number of contributions. We demonstrate that underparameterization
and misspecification equilibria can arise in a simple asset pricing model with linear
demand. Moreover, depending on the deep parameters of the model, there may exist
multiple misspecification equilibria in asset prices. Prices are partially revealing in
these equilibria if the forecasting model variables are correlated with the omitted
information. This follows from the least squares orthogonality condition, and is a
feature that does not depend on the number and nature of misspecification equilibria
in the model.

Our approach is closely related to a number of finance papers that also assume
financial market participants underparameterize their forecasting models. For exam-
ple, Hong, Stein, and Yu (2005) assume that dividends are driven by two exogenous
processes and agents can only condition their expectations on one part of the process.
In Barberis, Shleifer, and Vishny (1998) dividends follow a multi-layered Markov
chain. It is multi-layered in the following sense: dividends can be either high or low,
with transition probabilities associated with switching between states; there is also
a Markov process switching between high and low probabilities of switching between
states. The Barberis, et al. approach is meant to proxy for a simple model in which
there are two different Markov processes governing dividends, one with high persis-
tence and one with low persistence. Agents, though, only believe in one of the two
models; hence the underparameterization.

These models, however, do not fully exploit the self-referential nature of asset pric-
ing models. Instead, they appeal to behavioral and psychological explanations. While
behavioral approaches are interesting and important there is still an open question
of whether one can address these financial market anomalies and still assert the kind
of discipline imposed by rational expectations. In a rational expectations model, the
self-referential feature of the model requires that both the forecasts generated from
the model and the market outcomes be jointly determined. In the approach presented
in this paper we assume that agents underparameterize their forecasting model. How-
ever, we require that their beliefs, the form of their underparameterization, and the
asset prices all be equilibrium outcomes. In a sense, our approach generalizes Hong,
Stein, and Yu (2005) and Barberis, Shleifer and Vishny (1998) by interacting agents’
deviations from full rationality with the economic environment.

The equilibrium in the model described so far implies that trading strategies and
expectations are time-invariant. We also consider a real-time learning and dynamic
predictor selection version in order to study the model’s ability to capture empirical
regularities in excess return dynamics. In this extension of the basic model, agents
update in real-time their parameter estimates and a geometric average of past trading
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profits. They then decide on their predictor and holdings of the risky asset conditional
on these real-time estimates. We demonstrate that, with the model calibrated to U.S.
stock data, the model implies a similar autocorrelation pattern as Cutler, Poterba,
and Summers (1991). Moreover, the approach presented here is able to match the
pattern of persistence and volatility clustering found in Guidolin and Timmermann
(2005a).

In addition to the theoretical implications, we argue that the model’s ability to
capture many of the salient features of excess returns dynamics presents a strong ar-
gument in favor of the approach developed in this paper. Despite the richness of the
theoretical results, the empirical implications are intuitive. Excess returns underre-
act to news because agents underparameterize their forecast model, and information
slowly diffuses through the property that prices partially reveal information. However,
excess returns overreact in the sense that large or successive shocks to, say, dividends
will cause the economy to switch from the neighborhood of one underparameterized
equilibrium to another. This switching between models generates regime switching
means and volatilities similar to the Markov chains in Guidolin and Timmermann.

Our paper fits into a broader literature on misspecification and asset pricing. We
employ the same simple asset pricing model presented in Brock and Hommes (1998).
They also consider agents’ real-time choice of trading strategy, though their approach
is more in line with the trading strategies of Hong and Stein (1999). In Guidolin and
Timmermann (2005b), traders form high order expectations using a Bayesian learning
mechanism. Timmermann (1994, 1996) also assumes that agents form expectations
via a statistical forecasting model. Cagetti, Hansen, Sargent, and Williams (2002)
study robust decision making where agents are concerned with (potential) model mis-
specification. Anderson, Ghysels, and Juergens (2005) derive a Consumption CAPM
where agents are structurally heterogeneous in their expectations.

This paper proceeds as follows. Section 2 presents the model. Section 3 presents
theoretical results. Section 4 discusses the empirical implications while Section 5
presents the calibrated version of the model. Section 6 concludes.

2 Asset Pricing Model with Restricted Perceptions

We follow Grossman and Stiglitz (1980), Brock and Hommes (1998), Hong, Scheinkman,
and Xiong (2005), among many others, in assuming that agents optimize with respect
to the mean-variance efficient frontier. We make this assumption for two analytical
reasons: first, so that demands remain bounded; second, so that demand is linear.
One can justify the assumption based on a log approximation to exponential utility
with Gaussian returns (Cochrane (2001)). The assumption (at least of linear demand)
is standard in the literature and is made in, for example, Hong, Stein, and Yu (2005).
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The objective of this paper is to provide a framework in which limited cognitive abil-
ities and restricted perceptions impinge on equilibrium asset prices. Our approach to
bounded rationality is to impose that when agents deviate from full rationality, they
do so in a statistically optimal manner. We make our points in a simple model in
which asset prices are driven by expected capital gains and by exogenous processes
for dividends and asset share supply. We argue that our main results would extend
to a model with more explicit microfoundations.4

We introduce share supply into the model to capture float. Recent papers by
Cochrane (2005), Lamont and Thaler (2003), Hong, Scheinkman, and Xiong (2005)
show that float can have an effect on price in the presence of short sales constraints.
The idea is that with incomplete markets the demand curve for a risky asset might be
downward sloping. We interpret our highly stylized model as a proxy for a more com-
plicated setting where there exist many investors, all constrained by computational
and cognitive limitations as well as facing short sale constraints. Because the full
information rational expectations outcome is precluded by both of these constraints,
the issue facing investors is what “technical trading” strategy to follow. The novelty
of our approach is that we can pin down the boundedly rational trading strategy
in an equilibrium. One important implication of this equilibrium is that prices are
partially revealing. We then show via simulations that our approach has important
implications for the time-series of asset prices and excess returns.

The household’s problem at time t is:

max
z

EWt+1 −
a

2
EV arWt+1

subject to
Wt+1 = RWt + (pt+1 + yt+1 − Rpt)zt

where zt is the holdings of the risky asset, p is its price, y are dividends, and R > 1
is the nominal risk-free rate of return. We assume that dividends follow a stationary
AR(1) process, which has a deviations from mean-form

yt = ρyt−1 + εt

where εt is mean-zero with variance σ2
ε . In equilibrium, the demand of shares must

equal supply. The usual assumption is that the supply of shares is constant and
normalized to one. We, however, assume a stationary AR(1) process representing the
supply of shares:

zst = φzst−1 + νt

The stochastic disturbance νt is mean-zero, with variance σ2
ν , and is possibly corre-

lated with εt, i.e. we allow for σνε 6= 0. We assume, without loss of generality, that

4As Cochrane (2001) points out one can derive the reduced-form of this model from one in which
the household consumes only in the last-period. Successive generations would give the dynamics
implied below.
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the exogenous processes are mean-zero. Ideally, the risky asset would be a composite
index of stocks and yt, zst would be high dimensional VARs. We abstract from such a
specification for analytical convenience. We also interpret the share process zst as a
proxy for asset float. Asset float is the change in the supply of shares usually after a
lock-up period following an initial public offering. We view asset float and the supply
of shares more generally so that it also includes stock repurchases. Assuming that
the supply of shares follows an AR(1) is an obvious analytic device. Implicitly we are
assuming short sales constraints and that future increases or decreases in supply are
known only to the extent that they are forecastable from the AR(1) law of motion.
This paper is a first step at incorporating equilibrium underparameterization and
learning into an asset pricing model and leaves more realistic strategic and hedging
considerations for future research. In the calibrated version of the model, below, we
estimate an AR(1) for share supply using U.S. data.

There are two types of agents, each omitting some relevant information from their
forecasting model when they solve the above problem. One type omits the role of
supply in affecting price while the other omits the dividends process. We make this
assumption to bring some realism to the asset pricing model. Because of computing
constraints agents are forced to underparameterize their model. This is the same
motivation of Hong, Stein, and Yu (2005) in the case where agents omit a portion of
the dividend process from their forecasting model. Heterogeneous expectations also
arise in Hong, Scheinkman, and Xiong (2005). A novelty to our approach is that we
endogenize the distribution of agents across these underparameterized models. Our
approach can be viewed as an extension of these other papers in the direction of
parameter and trading strategy uncertainty. Although we assume that dividends are
a univariate stochastic process, one could easily extend dividends and share supply
to bivariate VAR processes along the lines of Branch and Evans (2006a). The main
innovation to our approach is that we pin down both the forecasting model parameters
and the distribution of agents across models as an equilibrium object. We then can
use real-time learning to study the dynamics and to speculate on the model’s ability
to address some of these financial market puzzles.

Each agent type j solves

max
zj

RWt + Ej
t (pt+1 + yt+1 − Rpt) zjt −

a

2
σ2Ej

t z
2

jt

where σ2 = V art(pt+1+yt+1−Rpt) is the subjective conditional variance of the rate of
return, which for simplicity is assumed constant over time and uniform across agent
types.5 The first-order condition leads to the demand for type j of,

zjt =
1

aσ2
Ej

t (pt+1 + yt+1 − Rpt)

5This assumption follows Brock and Hommes (1998). The case of heterogeneous and time-varying
σ

2 was considered in Gaunersdorfer (2001). Allowing for heterogeneous and time-varying σ
2 is a

topic of our current research.
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The responsiveness of demands zjt to expected rates of return depends on aσ2, which
it will be convenient for us to call “perceived risk.” Note that perceived risk is a
product of the subjective conditional variance and the degree of risk aversion.

Financial market equilibrium requires that price adjusts to ensure market clearing.
Let n denote the fraction of agents with expectations E1

t . In equilibrium,

nz1t + (1 − n)z2t = zst

which leads to the equilibrium process for stock prices,

pt = βnE1

t pt+1 + β(1 − n)E2

t pt+1 + βρyt − βaσ2zst (1)

where for convenience we write β = R−1. To derive (1) we have assumed that
E1

t yt+1 = E2
t yt+1 = ρyt. This is a natural assumption. We envision underparameter-

ization because computing and degrees of freedom constraints prevent agents from
regressing price on all available information. Agents know the univariate processes
for dividends and supply, but we assume that it is prohibitively costly to incorporate
both elements into their forecasting model for price.

It might appear contradictory that agents know the processes for dividends and
supply, yet they do not use all known information when forecasting stock price. In
this simple setting this is, of course, unrealistic. But, if one thinks of all of the factors
that might be influencing dividends, share supply, and price the total number of
factors with non-trivial predictive power would exceed computational and degree of
freedom constraints. If dividends and share supply were actually high order vector
autoregressive processes, possibly correlated, then forecasting future dividends and
supplies are curtailed by the number of parameters of the model. For example, an
n-variable VAR(p) has n2 × p coefficients to estimate, plus the parameters of the
autocovariance matrix. At the monthly frequency, the degrees of freedom would
quickly evaporate.

Hong, Stein, and Yu (2005) and Barberis, Shleifer, and Vishny (1998) also as-
sume underparameterized forecast models. These authors, however, motivate the
assumption by appealing to psychology research that suggests people forecast using
simple paradigms or reference models. One could also extend their motivations to our
approach. Our primary motivation for underparameterization, though, is to model
agents as econometricians. Given computational and degree of freedom limitations,
VAR practitioners specify parsimonious forecasting models. In complex environments
such as the stock market, we would expect similar behavior on the part of traders. Our
theoretical interest, though, is to impose some modeling discipline on these deviations
from full information: in our framework, within the context of their forecasting mod-
els, agents are unable to detect their misspecification. Remarkably, the theoretical
and empirical implications of this approach are rich.
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Agents forecast by projecting a perceived law of motion (PLM) for price. The set
of PLM’s, given the underparameterization restriction, are:

PLM1 : pt = b1yt + ηt

PLM2 : pt = b2zst + ηt

where ηt is a perceived exogenous white noise shock. This implies expectations of the
form,

E1

t pt+1 = b1ρyt

E2

t pt+1 = b2φzst

Plugging these expectations into (1) leads to the following actual law of motion (ALM)
for price,

pt = βnb1ρyt + β(1 − n)b2φzst + βρyt − aβσ2zst, or

pt = ξ1(n)yt + ξ2(n)zst (2)

where

ξ1(n) = β
(

nb1 + 1
)

ρ

ξ2(n) = β
(

(1 − n)b2φ − aσ2
)

In the sequel, we will suppress the dependence of ξj on n. In a rational expectations
equilibrium (REE),

ξ1 =
βρ

1 − βρ

ξ2 = − βaσ2

1 − βφ

Although agents in the model are assumed to have underparameterized forecasting
models (restricted perceptions), we require that they forecast in a statistically optimal
manner. We require that the forecast model parameters are optimal linear projec-
tions. That is, the belief parameters bj, j = 1, 2 satisfy the following least-squares
orthogonality conditions,

Eyt

(

ξ1yt + ξ2zst − b1yt

)

= 0 (3)

Ezst

(

ξ1yt + ξ2zst − b2zst

)

= 0 (4)

or,

b1 = ξ1 + ξ2r

b2 = ξ2 + ξ1r̃

9



where r = Eytzst/Ey2
t , r̃ = Eytzst/Ez2

st. Orthogonality conditions like (3) appear
frequently in the macroeconomics literature. For example, Sargent (1999), Cho,
Williams, and Sargent (2003) define a self-confirming equilibrium with respect to
a very similar condition. Evans and Honkapohja (2001) show that under adaptive
learning an underparameterized forecasting model may converge to a set of parame-
ters that satisfy an orthogonality condition like (3). Many other applications that
employ (3) are discussed in Branch (2006). The key feature of orthogonality condi-
tions like (3),(4), are that within the context of their forecasting model, agents are
unable to detect their misspecification.6

Given exogenous processes yt, zst, and ξj, j = 1, 2, and given the proportion n
of agents using forecast model j = 1, a Restricted Perceptions Equilibrium (RPE) is
then defined as a stochastic process {pt} of the form (2), where the coefficients satisfy

[

ξ1

ξ2

]

=

[

1 − βρn −βρnr
−βφ(1 − n)r̃ 1 − β(1 − n)φ

]

−1 [

βρ
−aσ2β

]

We have our first result.7

Proposition 1 There exists a unique RPE for every 0 ≤ n ≤ 1.

Although agents in the model are underparameterizing their forecasting models,
each agent’s forecast does reflect the influence of that part of the omitted variable that
is correlated with the variables used in their forecast. This property arises because
of the orthogonality condition, which is satisfied in equilibrium: bj depends on the
two reduced-form parameters ξ1, ξ2 and also on the regression coefficient (r, r̃). In
addition, asset prices aggregate and reflect all available information – in this sense
asset prices are partially revealing.

It is important to note that the model is self-referential: bj, hence ξj are not
free parameters but are equilibrium objects. For similar reasons, we do not want to
treat n as a free parameter and now proceed to make it endogenous. In consequence,
although agents use misspecified forecast models, there are still important cross-
equation restrictions imposed on the dynamics that are analogous to the restrictions
obtained under fully rational expectations.

In order to pin down n, we need a metric for evaluating forecast success. In
Brock and Hommes (1998) this metric is trading profit from the most recent period.
However, they mention that one might expect distinct results if a risk-adjusted fitness
measure is adopted instead. In order to stay in line with the assumption that agents

6Of course, if they step out of their model and run specification tests they could detect the
misspecification.

7All proofs are in the Appendix.
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are mean-variance maximizers, we also assume that agents adjust their trading profits
for variance when deciding on forecast success. Thus, we assume that each agent ranks
the two forecasting models according to,

U j = Eπj
t −

a

2
σ2Ez2

jt

where πj
t = (pt+1 + yt+1 − Rpt) zjt and E is the (unconditional) expectations operator.

The Appendix computes πj
t and Ez2

jt for j = 1, 2. Predictor selection depends on
the difference in fitness measures. Define F (n) : [0, 1] → R as F (n) = U1 − U2 =
(Eπ1

t − Eπ2
t ) + (aσ2/2)(Ez2

2t − Ez2
1t). Then we can write this expression as

F (n) =
1

aσ2

(

ByEy2

t − ByzEytzst + BzEz2

st

)

where By, Bz and Byz are given by

By =
ρ2

2

(

ξ2

1 − r2ξ2

2

)

Bz =
φ2

2

(

r̃ξ2

1 − ξ2

2

)

Byz = φρ
(

rξ2

2 − r̃ξ2

1

)

.

Note that By, Bz and Byz are functions of n because ξ1 and ξ2 depend on n.

As in our earlier papers, we follow Brock and Hommes (1997) in assuming a
multinomial logit (MNL) approach to predictor selection. The MNL approach has
a venerable history in discrete decision making. In this setting, agents are selecting
their forecasting models from a discrete choice set and so the MNL map is natural in
this setting:

n =
exp(αU1)

exp(αU1) + exp(αU2)

which can be written,

n =
1

2
[tanh {αF (n)} + 1] ≡ Tα(n) (5)

In particular, T : [0, 1] → [0, 1] is a continuous and well-defined function provided
that an RPE exists.

Definition. A Misspecification Equilibrium n∗ is a fixed point of the map T : n∗ =
T (n∗).

By Brouwer’s theorem, a Misspecification Equilibrium (ME) exists in this model. The
T-mapping is indexed by the parameter α which is typically called the ‘intensity of
choice’ parameter. Since the MNL map derives from a random utility setting, finite
values of α parameterize deviations from full utility maximization. The ‘neoclassical’
case is α → ∞. Our interest is mainly in equilibria where all agents choose only the
best performing statistical model and so we will focus on the α → ∞ case.

11



3 Analytic Results

It is useful to re-write the function F (n) as,

F (n)

Ey2
t

=
1

aσ2
(By − Byzr + BzQ)

where Q = Ez2
st/Ey2

t . The number and nature of Misspecification Equilibria depend
on the properties of F (n). Furthermore, one can calculate

F (0) = β2

[

ρ2C2 +
(aσ2 − r̃βρφ)

2

(1 − βφ)2
C1

]

F (1) =
β2

(1 − βρ)2

[

ρ2(1 − aσ2βr)2C2 + (aσ2)2(1 − βρ)2C1

]

where C1 = −(1/2)Qφ2 + r2ρ(−(1/2)ρ + φ), C2 = (1/2)ρ2 − rr̃ρφ + (1/2)r̃2φ2Q.

These are complicated expressions and general results are not available. However,
using the argument in Branch and Evans (2006b), the following result can be used to
characterize possible equilibria:8

Proposition 2 Let N∗

α = {n∗|n∗ = Tα(n∗)} denote the set of Misspecification Equi-
libria. In the case of large α, N∗ has one of the following properties:

1. If F (0) < 0 and F (1) < 0 (Condition P0) then n∗ = 0 ∈ N∗.

2. If F (0) > 0 and F (1) > 0 (Condition P1) then n∗ = 1 ∈ N∗.

3. If F (0) < 0 and F (1) > 0 (Condition PM) then n∗ ∈ {0, n̂, 1} ⊆ N∗, where
n̂ ∈ (0, 1) is such that F (n̂) = 0.

4. If F (0) > 0 and F (1) < 0 (Condition P) then n∗ = n̂ ∈ N∗, where n̂ ∈ (0, 1) is
such that F (n̂) = 0.

Because we do not know whether F is monotonic, we cannot rule out the existence
of additional equilibria besides those listed. When Condition P0 or Condition P1
holds then either n∗ = 0 or n∗ = 1 is a Misspecification Equilibrium. If Condition
PM holds then both n∗ = 0 and n∗ = 1 are Misspecification Equilibria. This is
the case of multiple equilibria that will receive further attention below. Condition P
implies that there exists an interior Misspecification Equilibrium with heterogeneous

8We remark that for perfectly correlated disturbances the system is degenerate in the sense that
any 0 ≤ n ≤ 1 is an equilibrium. This follows since F (n) → 0 as rr̃ → 1.
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expectations. In Branch and Evans (2006a) we said that when Condition P holds
the model exhibits Intrinsic Heterogeneity. As indicated below, this case does not
appear to arise in the current paper for empirically realistic cases with two exogenous
shocks. Notice that under Condition PM there must also be an interior equilibrium
n̂ for large α. However, because F (n) is a continuous function, Condition PM implies
that this equilibrium satisfies T ′(F (n̂)) > 1 and hence is unstable. Conversely, under
Condition P, for large α there is an n̂ at which F (n) crosses through zero from above
and, as we showed in our earlier paper, this equilibrium is locally stable.

Proposition 2 does not state under which circumstances these conditions will arise.
In fact, it does not even state whether all of the cases are possible. The signs of
F (0), F (1) depend in a complicated way on φ, ρ, aσ2, σ2

ε , σ
2
ν , Eεν. The conditions in

Proposition 2 essentially place bounds on the relative variances Q. Analytic results are
available for special limiting cases given below. Section 3.2 then presents numerical
examples.

Corollary 3 Conditions P0, P1, PM and P can each be satisfied for appropriate
choices of structural parameters.

We remark, however, that Condition P only appears to arise if either ρ < 0 or φ < 0,
or both, which seems unrealistic empirically. The other cases do not require negative
serial correlation of the exogenous variables. Numerical examples are given below.

Additional analytical results are available for certain limiting cases of interest. In
particular, we have:

Corollary 4 Assume ρ, φ > 0. For |r|, |r̃| sufficiently small we have:

(i) Condition P0 holds if aσ2
√

Q < ρ2(1 − βφ)/φ;

(ii) Condition P1 holds if aσ2
√

Q > ρ2/(φ(1 − βρ));

(iii) Condition PM holds if ρ2(1 − βφ)/φ < aσ2
√

Q < ρ2/(φ(1 − βρ)).

This corollary shows the importance of risk aversion and the relative variance of supply
shocks. For a given Q, values of perceived risk aσ2 that are neither too high nor too
low lead to multiple equilibria even in the case of low contemporaneous correlation
between the exogenous shocks.
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3.1 Some intuition

There are two exogenous processes driving asset prices: dividends and the supply of
shares. Both stochastic processes though have two effects in (1): the direct effect and
an indirect effect acting through expectations.9 The number and nature of equilibria
depend on the balancing of these two effects. Notice that pt depends positively on
expectations. Thus, whether these direct effects are positively or negatively projected
onto the asset price depends on the equilibrium belief parameters, which in turn
depend on the equilibrium proportion of agents adopting the dividend forecasting
model.

The feedback effects are:

E1

t pt+1 = (ξ1 + ξ2r)ρyt

E2

t pt+1 = (ξ2 + ξ1r̃)φzst

Notice in the expressions for ξ1, ξ2 in the special case above of r, r̃ → 0 that aσ2

directly influences the size of ξ2 and that ξ2 is negative (because zst has a negative
direct effect):

ξ1 =
βρ

1 − βρn

ξ2 =
−aσ2β

1 − β(1 − n)φ

In this case where the shocks are uncorrelated, r = r̃ = 0, beliefs reinforce the direct
effect of dividends and supply of shares. Multiple equilibria arise naturally in this case
for a range of perceived risk. The condition on aσ2 required for multiple equilibria
puts bounds on the importance of the direct effect of zst relative to dividends. If
aσ2

√
Q is large then the share supply forecast model always dominates, while when

aσ2
√

Q is sufficiently low the dividend model is necessarily superior. For intermediate
values of perceived risk, either model can emerge as an equilibrium.

3.2 Numerical Examples

In this subsection we turn to numerical examples to illustrate our theoretical results.
In each case we plot the T -map, F (n), ξ1(n), and ξ2(n). We are interested in large
α, so we set α = 10000. Above we presented analytic results, for the special case of
weakly correlated exogenous processes, and provided some more general intuition. We
here choose particular parameter values to illustrate the rich theoretical properties of
the model.

9Strictly speaking, the timing of the model is that dividends are paid at time t + 1, so that it
is expected dividends that matter for price. Since agents have common beliefs on dividends, these
have a common effect effect on stock prices, as specified in (1).
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3.2.1 Multiple Equilibria

We adopt the parameter values ρ = .6, φ = .4, β = .95, σν = 1.7, σε = 1, σνε =
.25, aσ2 = 1. Figure 1 plots (clockwise starting from the northwest frontier): the T-
map, the reduced-form RPE parameters ξ1 and ξ2 respectively and the risk-adjusted
profit difference function F (n). Each frontier plots these values against n. A Mis-
specification Equilibrium occurs when the T -map crosses the 45-degree line.

Notice first that F (n) is monotonically increasing with F (0) < 0, F (1) > 0. As a
result, the northwest panel demonstrates that there are multiple equilibria, in partic-
ular at n = 0, n = 1. This result is in line with our earlier intuition of the effect of
positive feedback in self-referential models. In this case, there exist three equilibria.
Notice, though, that the interior equilibrium occurs at n̂ where F (n̂) = 0. This equi-
librium is unstable in the sense that T ′(n̂) > 1 and so under a real-time learning and
predictor selection dynamic, as considered below, we would not observe the interior
equilibrium as an outcome.

INSERT FIGURE 1 HERE

In the right-most panels of the figures ξ1(n), ξ2(n) are plotted. These panels illus-
trate the intuition that it is the trade-off between the positive and negative feedback
of the two exogenous processes that makes multiple equilibria possible. It is worth
noting that although ξ1(n) is increasing in the figure it is not always so even in the
case of multiple ME. This makes it harder to draw general conclusions.

The propositions and these numerical examples suggest that aσ2 plays a signifi-
cant role in the nature of the equilibria.10 To study this further Figure 2 plots the
comparative static of aσ2 on the value of n∗ for the parameterization used to generate
Figure 1. In particular, Figure 2 is a bifurcation diagram with aσ2 as the bifurcating
parameter. To generate the figure we consider all values of aσ2 in the interval [0.5, 1.5]
and plot all corresponding fixed points to T .11

INSERT FIGURE 2 HERE

Figure 2 plots the bifurcation diagram. For low values of aσ2 there is a unique
equilibrium at n = 1, for medium aσ2 there are multiple equilibria, and for large

10We remind the reader σ
2 is the perceived one-step ahead variance of the excess rate of return.

The actual average value of this quantity can be made to match this perception by tuning up or
down the variance of the intrinsic shocks. Since there is no consensus for the value of a, we look at
various values of aσ

2 assuming agents estimate σ
2 correctly.

11In Brock and Hommes (1997) the ‘intensity of choice’ parameter α was treated as a bifurcation
parameter. In this paper, we are primarily interested in α → ∞ to concentrate on equilibria where
all agents only choose the best performing models. Thus, in this stochastic setting the degree of
risk-aversion is a more interesting and relevant bifurcation parameter.
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enough aσ2 there is a unique equilibrium at n = 0 thereafter. These results are in
line with Corollary 4. A similar diagram, of course, exists for Q, the relative variance
of dividends.

3.2.2 Comparison to Rational Expectations

Above, it was shown that a restricted perceptions equilibrium is distinct from a ratio-
nal expectations equilibrium. One obvious question is how badly the underparame-
terized agents are faring relative to if they had full information. To address this issue
this subsection conducts the following experiment: suppose there exists a zero-mass
hyper-rational agent who knows the actual law of motion for price, including the
distribution of agents across models, and this agent could trade on that information.
How much better would the hyper-agent fare compared to the underparameterized
forecasting models? If the additional (risk-adjusted) profits for the hyper-rational
agent are relatively small, then we would not expect trading profits to be so high
as to justify overcoming the higher computational costs associated with using all
information.

Figure 3 reports the results of this experiment. In Figure 3, the risk-adjusted
profits U1, U2 and Ur (the risk-adjusted profits of the hyper-rational agent), are plotted
for various values of aσ2 using the same parameterization used to generate Figure 1.
Each panel corresponds to a different value of aσ2. The top panel is for a value of
aσ2 = 0.3 that corresponds to n = 1 as the unique equilibrium. The middle panel
fixes aσ2 = 0.83 so that there exists multiple equilibria, as in Figure 1. Finally,
the bottom panel (aσ2 = 1.40) reports risk-adjusted profits in the event n = 0 is
the unique equilibrium. As mentioned above Ur are the risk-adjusted profits for a
trader who formulates their asset holdings using the actual law of motion (2) as their
forecasting model for next period’s price.

INSERT FIGURE 3 HERE

Figure 3 demonstrates that a hyper-rational agent will always do better than
underparameterized agents. This is expected since such an agent makes use of all
information and there are no feedback effects from their trading since they have zero
mass. However, the difference between the hyper-rational and the two underpara-
meterized models is small, and negligible for some values of aσ2. The top panel is
for the case of a small aσ2, so that there is a unique equilibrium at n = 1. At the
equilibrium, the n = 1 model and hyper-rational return almost identical returns. In
the middle panel, for moderate values of aσ2 implying the existence of multiple equi-
libria, the difference is slightly more pronounced. Notice also that the difference is
greatest at the unstable interior equilibrium. The bottom panel (the case when n = 0
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is the unique equilibrium) the difference is negligible between the supply model and
rational profits.

From this graph one can conclude that the profit difference between hyper-rational
and underparameterized agents is relatively small. Provided complex forecasting
models are costly, it is plausible to assume agents would use the best fitting univariate
model. We return briefly to this issue later in the context of real-time dynamics.

4 Empirical Implications

As a means of highlighting the model’s empirical implications we focus on two dy-
namic properties of asset markets that have received significant attention in the fi-
nance literature: (i) under and overreaction to fundamentals, and (ii) regime switching
of means and volatilities in long-term excess returns. In the next Section, we cali-
brate the model and demonstrate its ability to match these empirical features. The
current Section aims to illustrate the channels through which the model is capable of
matching the empirical regularities.

4.1 Over/underreaction

The under/overreaction puzzle has been stated in many ways, e.g. as deriving from
momentum traders as in Hong and Stein (1999) or from multi-factor models as in
Fama and French (1996). These effects have been demonstrated both for price and
excess returns. In this section, we illustrate over/underreaction to economic news via
excess returns impulse response functions. We compare the impulse responses of two
distinct Misspecification Equilibria: n = 0, 1. The n = 0 equilibrium corresponds to
traders underparameterizing by omitting dividends from their price regression, while
in the n = 1 equilibrium agents instead omit supply shares. We present two scenarios:
a dividend shock and a supply shock scenario. We then compare each equilibrium’s
dynamic response to the REE in which an unanticipated shock has an initial effect
on excess returns but then returns quickly converge to their steady-state values. Our
notion of under or overreaction is relative to the rational expectations benchmark.
In particular, under/overreaction will be reflected in impulse responses as a more
gradual response to news innovations.

Intuitively, one would expect that in a n = 0 ME, the market would initially
underreact to dividends innovations relative to supply shocks in short horizons as
agents do not fully incorporate dividend news into their price forecasts, and vice-
versa for the n = 1 ME. At longer horizons, though, as the information diffuses into
their expectations via the orthogonality condition, they overreact vis a vis rational
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expectations.

Figure 4 confirms this intuition. To make the intuition sharp, Figure 4 uses the
same parameterization as was used to generate Figure 1 except that it sets σνε = 0.
We then draw from the exogenous processes for dividends and supply shares and plot
out the dynamic response of excess returns for ME and the REE. The top panel plots
the impulse response for a (positive) dividend shock and the bottom for a (negative)
supply shock.12 Both shocks produce a positive innovation to price. In the top panel,
the solid line corresponds to n = 0 and in the bottom panel it corresponds to n = 1.
In response to a dividend shock, the n = 0 initially underreacts. Over subsequent
periods, however, it overreacts as it slowly mean-reverts. Similar results appear for
the supply shock.

INSERT FIGURE 4 HERE

4.2 Persistence and Volatility Clustering

In addition to the specific issue of under/overreaction we also address persistence
and excess volatility in net returns. There is a large and recent literature that shows
excess volatility and conditional heteroskedasticity in stock returns. Additionally, a
recent study by Guidolin and Timmermann (2005a) demonstrates that there is regime
switching means in excess returns. To illustrate the type of dynamics our model
exhibits we turn to a real-time learning and dynamic predictor selection version of
the model. We assume that agents update their risk-adjusted fitness and forecasting
model parameters using a recursive updating algorithm with constant gain.

In the real-time learning and dynamic predictor selection version of the model
agents do not have fixed beliefs. Beliefs are generated using least-squares in real-
time. Time varying parameter estimates make it possible that a sequence of shocks
could move the economy from one equilibrium to another (in the case of multiple
ME). For this reason, agents will want to remain guarded against the possibility of a
regime change and choose their forecasting strategy in real time as well.

Price is now given by the law of motion,

pt = ξ1(b
1

t−1, nt−1)yt + ξ2(b
2

t−1, nt−1)zst

The timing of the model is that at the end of each period agents update their beliefs
of b1, b2, their risk-adjusted expected profits, and their model choice n. At time t then
price depends on the real-time learning and dynamic predictor selection from the end

12We omit the n = 1 case for the dividend shock and the n = 0 case for the supply shock because
with uncorrelated disturbances these ME will coincide with the REE impulse response.
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of period t − 1. We make this timing assumption to avoid the simultaneity between
prices and beliefs.13 Using recursive least-squares (RLS), the belief parameters are
calculated as

bj
t = bj

t−1 + λtR
−1

j,t xj,t−1

(

pt − bj
t−1xj,t−1

)

, j = 1, 2.

where
Rj,t = Rj,t−1 + λt

(

x2

j,t−1 − Rj,t−1

)

, j = 1, 2,

is the estimated state covariance matrix, and xjt ∈ {yt, zst}.
The term λt is typically referred to as the gain sequence. Two cases are assumed

in the literature: a decreasing gain, λt = t−1 so that λt → 0; and a constant gain,
λt = λ ∈ (0, 1). With a decreasing gain, convergence to the restricted perceptions
values of b1, b2 is possible. Our interest, though, is in demonstrating the model’s
implications for its asymptotic dynamics, which will be the central interest in the
calibrated version of the model. Thus, we focus on the constant gain case where
agents respond to past forecast errors with a time-invariant weight λ.

In order to choose their predictors, agents also estimate in real-time the (risk
adjusted) expected profits:

ÊU j
t = Êπj

t −
a

2
σ2Êz2

jt

where

Êπj
t = Êπj

t−1 + κ((1/aσ) (pt + yt − (1/β)pt−1)
(

(Ej
t−1pt + ρyt−1 − (1/β)pt−1) − Êπj

t−1

)

Êz2

jt = Êz2

jt−1 + κ
(

(

(1/aσ)2(Ej
t−1pt + ρyt−1 − (1/β)pt−1

)2 − Êz2

jt−1

)

We will also assume a constant value for κ. Using this recursive estimate of expected
trading profits, the law of motion for predictor proportions now follows,

nt =
1

2

(

tanh
[α

2

(

ÊU1

t − ÊU2

t

)]

+ 1
)

We turn to simulations of the real-time version of the model to illustrate the sense
in which the model generates persistence and volatility clustering in excess returns.
We assume the same parameter values as used to generate Figure 1. We choose
λ = .05, κ = .12. A larger value for κ than λ implies that agents are more concerned
with the possibility of regime change in equilibrium trading strategies than belief
parameters. We draw initial values for n, bj, Rj, j = 1, 2 randomly and then simulate
the model for a transient period of length 10,000 assuming a decreasing gain for λ, κ.
The assumption of a decreasing gain during the transient period ensures that at the

13See Evans and Honkapohja (2001) and Brock and Hommes (1997) for further discussion of these
issues.

19



beginning of the simulation period the model will be near their equilibrium values.
We then simulate the model for 1000 periods. Figure 5 plots the results from a typical
simulation.

In Figure 5 the solid heavy line represents the simulated values for excess returns.
The figure also superimposes the value for nt, which alternates between the n = 0
and n = 1 equilibrium values. Two interesting features arise. First, the n = 1
equilibrium has a higher mean excess return than the n = 0 equilibrium. Second, the
dividend only model has higher volatility than the share supply model. This leads
to, in real-time, the economy switching between high return/high volatility periods
and low return/low volatility periods. The switches between these two regimes occur
frequently and persistently. The intuition for why the economy may switch from one
equilibrium to another revolves around the interaction between the exogenous shocks
and the gain parameters λ, κ. A particularly large shock, mediated through beliefs
via λ, κ, may induce agents to switch forecasting models – thus, jumping the economy
from one basin of attraction to another. Because λ, κ are at constant values there
are repeated realizations of shocks sufficiently large to switch the economy between
equilibria. The persistence in a particular shock, and the frequency with which these
regime switches occur, are governed by a complicated interaction between the gain
parameters λ, κ, the intensity of choice parameter α, and the stochastic shocks yt, zst.

Notice also that the nature of the over/underreaction will vary over time as well.
For example, if one were only looking at underreaction to dividend news, then in the
n = 1 periods you would not identify underreaction effects. This insight of real-time
learning and dynamic predictor selection leading to interesting and complicated long-
run dynamics in excess returns is the motivation for the next Section which turns to
a calibrated version of the real-time model.

INSERT FIGURE 5 HERE

One might wonder whether the switching between equilibria evident in Figure
5 might present an exploitable trading opportunity for agents who incorporate into
their forecasting model both dividends and share supply. In Section 3.2.2 we showed
that a hyper-rational agent would receive (somewhat) higher (risk-adjusted) trading
profits. But that result only applies in a misspecification equilibrium. It is no longer
obvious how an agent with a bivariate model will fare in the real-time learning and
dynamic predictor selection framework. Indeed, an agent with a bivariate forecasting
model, and constant parameters, would not earn higher (risk-adjusted) profits than
an agent who switched between univariate forecasting models. To demonstrate this
point we conducted the following experiment: after a 10,000 period simulation, along
the lines of Figure 5, we regressed price on dividends and share supply; using these
constant parameter values, we calculated the demand function for a zero-mass agent
who generates forecasts from this bivariate model; we then simulated the model for
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10,000 periods and computed the realized excess returns for the bivariate model and
the univariate model with switching. We found that the univariate model with
switching outperformed the bivariate model. This result was also found for a real-
time version in which the parameters of the bivariate model were updated using a
constant gain.

The reason for this last finding is clear: with a constant parameter bivariate
model and a true process generated by learning and predictor selection (e.g. Figure
5), the agent would not take advantage of those periods with high excess returns.
Whether, and under what conditions, a bivariate model will fare better than the
univariate models is a delicate point: for an agent to generate higher profits than the
univariate models in an environment subject to switching between multiple equilibria
would require a complicated econometric model able to capture the drift and volatility
induced by the switching. If there is a cost to complexity, it would be reasonable
for agents to stick with the univariate models, remaining alert to potential regime
change.

5 Asset Return Dynamics in a Calibrated Model

Long-run Excess Return properties hold a special interest for financial economists.
It has long been known that long-run excess returns exhibit higher volatility than
implied by standard asset pricing models with rational expectations. Moreover, re-
cent research into the dot-com burst, for instance Ofek and Richardson (2003) and
Cochrane (2005), study the role of short-sale constraints, sudden supply bursts, liq-
uidity and volume effects, for excessive long-run returns and then a collapse of the
same average returns for internet stocks. What motivates these papers is that there
was a large increase in the supply of shares at the beginning of 2000 (as IPO lock-ups
expired) that were not previously priced into the market via short-sales. This increase
in supply then looked like an unexpected increase in supply that led to a precipitous
market crash as the market became aware of this supply effect. The story that Ofek
and Richardson tell is that the market is populated by optimistic and pessimistic
traders: optimistic agents trade on the spot market and pessimistic traders sell short.
Short sale constraints (these are not legal constraints but economic ones, as claimed
by the authors) then limit the proportion of pessimistic traders. Hence, the dynamics.

The dot-com burst was an example of how not accounting for the way in which
share supply variation impacts prices can lead to a collapse in average stock returns.
This example may open up the door for further modeling of supply share dynamics.
The examples presented in Section 4 demonstrate that modeling supply shares and
bounded rationality may have implications that address important empirical issues.
The regime switching in Figure 5 raises the possibility that, in simulations, we could
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see under/overreaction to both dividend and supply innovations. In particular, the
interaction of real-time learning and dynamic predictor selection, underparameteri-
zation, and dividend-share dynamics can lead to over and underreaction, persistence,
and volatility clustering in excess returns. This section seeks to demonstrate that a
calibrated version of our model can reproduce many of the empirical findings.

5.1 Calibration

In this Section we assess to what degree the simple model presented here can account
for some empirical regularities in excess return dynamics. In order to make a mean-
ingful comparison we need to choose parameter values for the model. This subsection
discusses our choice of parameter values.

For the purposes of the model at hand, the most crucial parameters for calibration
are the autoregressive parameters and covariances for the dividend and share supply
processes. Data on U.S. dividends are widely available. Data on share supply are
more limited. For share supply we adopt the series constructed by Baker and Wurgler
(2000).14 Baker and Wurgler (2000) calculate total new annual (nominal) equity issues
in the U.S.. Ideally, one would have a data series on all new issues, repurchases,
bankruptcies, etc. Such data is not readily available and so the Baker-Wurgler data
is the most comprehensive accounting of the U.S. time series of share supply. We
calibrate the dividend process from data on corporate profits (after tax) and net
dividends from the Economic Report of the President.15 The data are reported in
nominal terms and we adjust them to 1995 dollars using the consumer price index
obtained from the Economic Report of the President.

Both dividends (or corporate profits) and share supply exhibit a trend. We de-
trend the data and estimate an AR(1) for the resulting series. We then calculate
the associated AR(1) parameter and standard deviation implied by this regression’s
residuals. These are then used as the calibrated values for ρ, φ, σε, σν , σνε. Table 1
reports the results.

INSERT TABLE 1 HERE

The remaining parameters are β, α, λ, κ, aσ2. Following a large literature, we
set β = .9957, based on the one-month risk free rate. λ is calibrated at .01, the
value reported in a VAR forecasting exercise in Branch and Evans (2006c). We
choose a value of κ = .5, in accordance with Branch (2004), in estimating a discrete

14Data obtained from Wurgler’s website: http://pages.stern.nyu.edu/˜ jwurgler.
15Specifically, we look at corporate profits with inventory evaluation and capital adjustments. The

data are obtained from Table B90.
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choice forecasting model of the Michigan survey of consumers. We fixed σ2 = 15 in
accordance with the variance of excess returns observed in monthly data (Campbell
and Ammer (1993)). Picking the value for a is difficult. We choose a value that is
empirically not implausible and that leads to the kind of dynamics described above.
The parameter a can be thought of as the coefficient of absolute risk aversion. Most
experimental studies tend to favor CRRA over CARA, though Holt and Laury (2002)
report values in the range of 0.1−0.2.16 In our model, given all of the other parameters,
a controls the basin of attraction between equilibria and so will have implications for
the frequency of switching and the size of shocks that will induce switching. We
set a = .05, which implies that aσ2 = 0.75. Smaller values of aσ2 tend to increase
the proportion of time spent near the n = 0 equilibrium and larger values of aσ2

to increase the proportion of time spent near the n = 0 equilibrium. Finally, we
fix α = 2, in line with the value considered large but finite in Brock and Hommes
(1997). Figure 6 plots the T-map for the calibrated values, and it is clear that α = 2
mimics the large α case considered in the theoretical results above. In fact, for
the calibrated parameter values all values of α produce a similar T-map and so our
numerical results are robust to the calibrated ‘intensity of choice’. Notice that there
exist multiple implying dynamics similar to Figure 5.

INSERT FIGURE 6 HERE

5.2 Results

There is a large empirical literature on under/overreaction. Many of the earliest pa-
pers framed the issue according to its time series properties: a positive autocorrelation
over short horizons implies a slow diffusion of information and a negative autocorre-
lation over longer horizons suggests mean reversion. Thus, underreaction would arise
as a positive autocorrelation and overreaction as negative autocorrelation. Cutler,
Poterba, and Summers (1991) show under and overreaction in time-series data for
various countries. DeBondt and Thaler (1985) provide evidence of overreaction in
the sense that stocks that receive good news for many periods will have lower aver-
age excess returns than stocks that receive successive rounds of bad news. Barberis,
Shleifer, and Vishny (1998) and Hong and Stein (1999) summarize many other stud-
ies that find under/overreaction. Barberis, Shleifer, and Vishny argue that the most
persuasive evidence is cross-sectional. Hong and Stein (1999) in their simulations
construct broad cross-sections of excess returns data.

In this Section we generate time-series data on excess returns in the calibrated

16Holt and Laury (2002) emphasize that results are not in favor of CARA. We have employed
a CARA specification anyway, because this leads to a convenient and illuminatiung closed form
solution.
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version of the model in order to illustrate the time-series properties for the U.S. econ-
omy documented by Cutler, Poterba, and Summers (1991). Our methodology is to
take the real-time learning and dynamic predictor selection version of the model, as
developed in Section 4, parameterize the model according to Table 1, and generate
estimates of the autocorrelation function. We then compare our simulated auto-
correlation function with the estimated autocorrelation function reported in Cutler,
Poterba, and Summers (1991). To generate these estimates we simulate the model
for a transient period of length 5000, we then store as data the next 5000 periods.
For this model run, we then estimate the autocorrelation function. We repeat this
5000 times and report the mean estimates of the autocorrelation function.17

Table 2 presents the results for three different treatments: the real-time learning
and dynamic predictor selection model (RTL), the n = 0 Misspecification Equilib-
rium model, the n = 1 Misspecification Equilibrium model.18 The table reports the
first-order autocorrelation and then average autocorrelations across periods. Two re-
sults standout. First, the RTL version produces positive autocorrelations at short
horizons and negative autocorrelations at long horizons. The n = 1 version pro-
duces negative autocorrelations at all time-horizons. The n = 0 formulation leads to
negative autocorrelations at short and long horizons and positive autocorrelations in
between. Second, for the RTL model, the short-horizon autocorrelations are closer in
magnitude to Cutler, Poterba, and Summers (1991). Cutler, et al. find in the U.S.
data a first order autocorrelation of .106 and .021 in subsequent periods. At longer
horizons they report negative autocorrelations ranging from -.017 to -.006. The RTL
version captures these broad qualitative properties. Quantitatively, the RTL model
underestimates the degree of over-reaction. There is one caveat to the interpretation
of these findings. We have calibrated our model based on annual data and the Cutler,
et al. data is based on monthly data. Thus, we would not expect our model to ex-
actly conform to the data unless the calibrated values are identical for monthly rates
and for the monthly rates converted from annual frequencies. Thus, this exercise is
limited by the availability of only-annual data on share supply.

INSERT TABLE 2 HERE

Nonetheless it is striking how well the RTL model fits the data. The intuition
for these findings is clear. As Figure 4 demonstrates, the underparameterization
of a particular shock induces an underreaction at first and then an overreaction as
the information about the shock diffuses through the economy. Fixing all agents at
a particular trading strategy will miss some of this underreaction as there are two

17Numerical explorations suggest that 5000 simulations of 10000 periods each produced stable
results, suggesting that the model has converged to a unique invariant distribution.

18We found that allowing for parameter learning with fixed predictor proportions did not change
the qualitative findings.
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kinds of shocks in this economy. The RTL model fits the autocorrelation pattern
better because it includes underreaction to both supply and share shocks. Moreover,
because switching between equilibria has a bearing on the size of the underreaction,
the RTL model is better able to capture the magnitudes of underreaction in the data.

There is also a large literature on excess volatility and volatility clustering in re-
turns. For example, Turner, Startz, and Nelson (1989) find evidence for regime switch-
ing conditional heteroskedasticity in stock market returns. Bollerslev, Chou, and Kro-
ner (1992) find ARCH effects in stock returns. The discussion of under/overreaction
above is a subset of a much broader literature on long-run predictability of stock
returns. Recently, one way this predictability has arisen is through Markov-switching
in mean returns for financial variables (Ang and Bekaert (2002)). There is also a
literature that makes the link, at the individual stock level, between idiosyncratic
volatility and average returns (Merton (1987)). Guidolin and Timmermann (2005a)
provide evidence for aggregate U.K. stock data that suggests that average returns
and volatility follow a three-state Markov switching process.

Section 4 showed that our model implies that excess returns may follow a regime
switching ARCH model, thereby exhibiting both persistence and volatility cluster-
ing. We now study this issue with the calibrated model. As above, we repeatedly
run simulations consisting of transient periods and periods for which we record the
time-series. We then identify the data in each simulation according to its “regime,”
i.e. whether n = 0 or n = 1. Then within each regime we calculate the average excess
return R̄j, j = 0, 1 and the variance σ2

j , j = 0, 1. To get a sense of the relative mag-

nitudes we then calculate R̄1−R̄0

R̄1

and
σ2

1
−σ2

0

σ2

1

. Table 3 reports the mean value of these

calculations across all simulations, and compares them to Guidolin and Timmermann.

Table 3 shows that the model yields volatility clustering and persistence in returns.
The n = 1 state has higher average excess returns than the n = 0 state and higher
volatility. Because the model switches between states these patterns are persistent
across time. However, unlike in Guidolin and Timmermann, the switches are not
governed by a Markov chain but occur as unanticipated shocks push the stock price
from one basin of attraction to another.

INSERT TABLE 3 HERE

Table 3 also shows that the calibrated model delivers estimates that are similar
to the data of Guidolin and Timmermann (2005a). The table reports the relative
average returns and variances across the “bull” and “normal” states, calculated from
the data in Guidolin and Timmermann (2005a). The bull state has a higher return
and lower variance than in the simulated data, but the magnitudes are close. As with
the under/overreaction results there are reasons to be cautious in interpreting these
findings as evidence. First, Guidolin and Timmermann estimate their econometric
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model for U.K. data, while we have calibrated our model to monthly (converted from
annual) U.S. data. Second, Guidolin and Timmermann estimate a 3-state Markov
chain. Our model predicts two states. In the U.K. data the third state (“bear”) is
associated with negative excess returns. Our model does not deliver negative average
excess returns and so we compare our two-state model with their bull and normal
states. We should, therefore, not expect exact accordance of results, but once again
the match is striking.

6 Conclusion

This paper has developed a theory of underparameterization and learning in a simple
asset pricing model. Asset price is driven by expectations of future price and exoge-
nous processes for dividends and the supply of asset shares, where the latter is viewed
as a proxy for asset float. Agents forecast price by projecting it onto either dividends
or share supply. Although agents are forced to underparameterize, we assume that
they attempt to do so in an optimal way, through our twin assumptions that the fore-
cast models impose the relevant orthogonality conditions and that agents choose only
models that maximize, or almost maximize, risk-adjusted expected trading profits.
In our framework, model parameters and the distribution of agents across forecasting
models are jointly determined in equilibrium. The approach advocated in this paper
can be seen as a generalization of Hong, Stein, and Yu (2005) and Barberis, Shleifer,
and Vishny (1998) to a framework in which parameters and models are determined
endogenously in equilibrium.

We demonstrate that underparameterization and misspecification equilibria can
arise in this simple asset pricing model. Depending on the complicated interaction
between the exogenous processes and the degree of risk-aversion of agents, multiple
Misspecification Equilibria can arise as an equilibrium outcome. Adding real-time
learning and dynamic predictor selection generates regime-switching dynamics in ex-
cess returns.

When the model is calibrated to U.S. stock data we find that the model is capable
of capturing many of the salient empirical features of excess returns dynamics such
as under/overreaction, persistence, and volatility clustering. Because of the richness
of the theoretical results, and the broad empirical implications for excess returns,
the approach in this paper seems to provide a suitable balance between rational
expectations and fully behavioral approaches.
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A Appendix

Detailed Computations for Section 2: It is straightforward to compute that

Eπ1

t =
1

aσ2

[

{(1 + ξ1)ρ − β−1ξ1}{(1 + ξ1 + ξ2r)ρ − β−1ξ1}Ey2

t

+ β−2ξ2{ξ1(φβ − 2)(ρβ − 1) + ρβ(−2 + φβ + rξ2(φβ − 1))}Eytzst

− β−1ξ2

2(φ − β−1)Ez2

st

]

Eπ2

t =
1

aσ2

[

{(ρ − β−1ξ1)
2 + ξ1ρ(ρ − β−1ξ1)}Ey2

t

+ β−2
[

2ρξ2β(−1 + φβ) + φr̃ξ2

1β(−1 + ρβ) + ξ1(φρr̃β2 + ξ2(−1 + φβ)(−2 + ρβ)
]

Eytzst

+ {ξ2

2(φ − β−1)2 + ξ2(φ − β−1)ξ1r̃φ}Ez2

st

]

Ez2

1t =

(

1

aσ2

)2
{

[

(1 + ξ1 + ξ2r)ρ − β−1ξ1

]2
Ey2

t

− 2β−1ξ2

[

(1 + ξ1 + ξ2r)ρ − β−1ξ1

]

Eytzst + β−2ξ2

2Ez2

st

}

Ez2

2t =

(

1

aσ2

)2
{

(ρ − β−1ξ1)
2Ey2

t + 2(ρ − β−1ξ1)
[

(ξ2 + ξ1r̃)φ − β−1ξ2

]

Eytzst

+
[

(ξ2 + ξ1r̃)φ − β−1ξ2

]2
Ez2

st

}

Proof of Proposition 1. A unique RPE exists if and only if

[

1 − βρn −βρnr
−βφ(1 − n)r̃ 1 − β(1 − n)φ

]

−1

exists. This will be true provided that the characteristic equation

(1 − βρn) (1 − β(1 − n)φ) − β2ρφrr̃n(1 − n) 6= 0

This is equivalent to,

1 − β(1 − n)φ − βρn + β2ρφn(1 − n)(1 − rr̃) 6= 0

The second term on the l.h.s. is positive, so it suffices to show that 1 − β(1 − n)φ −
βρn 6= 0. Because β < 1 and it is assumed that |ρ|, |φ| < 1, the result follows.

Proof of Corollary 4. As r, r̃ → 0 we have

F (0) → β2

(

(1/2)ρ4 − (1/2)
(aσ2)2

(1 − βφ)2
φ2Q

)

F (1) → β2

(1 − βρ)2

(

(1/2)ρ4 − (1/2)φ2Q(aσ2)2(1 − βρ)2
)

Then straightforward algebra leads to the conditions in Corollary 4.

27



References

[1] Ang, A., and G. Bekaert, 2002, “International Asset Allocation with Regime
Switches,” Review of Financial Studies, 15, 1137-1187.

[2] Anderson, Evan, Eric Ghysels, and Jennifer L. Juergens, 2005, “Do Heteroge-
neous Beliefs Matter for Asset Pricing?” Review of Financial Studies, 18, 3,
875-924.

[3] Baker, Malcolm, and Jeffrey Wurgler, 2000, “The Equity Share in New Issues
and Aggregate Stock Returns,” Journal of Finance, October.

[4] Barberis, Nicholas, Andrei Shleifer, and Robert Vishny, 1998, “A Model of In-
vestor Sentiment,” Journal of Financial Economics.

[5] Bekaert, Geert, and Robert J. Hodrick, 1992, “Characterizing Predictable Com-
ponents in Excess Returns on Equity and Foreign Exchange Markets,” Journal
of Finance, 47, 2, 467-509.

[6] Bernard, Victor L., 1992, “Stock price reactions to earnings announcements,” in
R. Thaler, ed.: Advances in Behavioral Finance, Russell Sage Foundation, New
York.

[7] Bollerslev, T., Chou, R., and K. Kroner, 1992, “ARCH Modeling in Finance: a
Review of the Theory and Empirical Evidence,” Journal of Econometrics, 52,
5-59.

[8] Branch, William A., 2004, “The Theory of Rationally Heterogeneous Expecta-
tions: Evidence from Survey Data on Inflation Expectations,” Economic Journal,
114, 592-621.

[9] Branch, William A., 2006, “Restricted Perceptions Equilibria and Learning in
Macroeconomics,” in D. Colander, ed.: Post Walrasian Macroeconomics: Beyond
the Dynamic Stochastic General Equilibrium Model, Cambridge University Press,
New York.

[10] Branch, William A., and George W. Evans, 2006a, “Intrinsic Heterogeneity in
Expectation Formation,” Journal of Economic Theory, 127, 264-295..

[11] Branch, William A., and George W. Evans, 2006b, “Model Uncertainty and
Endogenous Volatility,” mimeo.

[12] Branch, William A., and George W. Evans, 2006c, “A Simple Recursive Fore-
casting Model,” Economics Letters, 91, 158-166.

28



[13] Brock, W.A., and Cars H. Hommes, 1997, “A Rational Route to Randomness,”
Econometrica, 65, 1059-1160.

[14] Brock, W.A., and Cars H. Hommes, 1998, “Heterogeneous Beliefs and Routes
to Chaos in a Simple Asset Pricing Model”, Journal of Economic Dynamics and
Control, 22, 1235-74.

[15] Brock, W.A. and Cars H. Hommes, “Heterogeneous Beliefs and Routes to
Complex Dynamics in Asset Pricing Models with Price Contingent Contracts,”
mimeo.

[16] Cagetti, Marco, Lars Peter Hansen, Thomas J. Sargent, and Noah Williams,
2002, “Robustness and Pricing with Uncertain Growth,” Review of Financial
Studies, 15, 363-404.

[17] Campbell, John Y., and John Ammer, 1993, “What Moves the Stock and Bond
Markets? A Variance Decomposition for Long-Term Asset Returns,” Journal of
Finance, 48, 1, 3-37.

[18] Cho, In Koo, Noah Williams, and Thomas J. Sargent, 2003, “Escaping Nash
Inflation,” Review of Economic Studies, 69, 1, 1-40.

[19] Cochrane, John H., 2001, Asset Pricing, Princeton University Press, Princeton,
NJ.

[20] Cochrane, John H., 2005, “Asset Pricing Program Review: Liquidity, Trading
and Asset Prices,” mimeo.

[21] Cutler, David M., James M. Poterba, and Lawrence H. Summers, 1991, “Spec-
ulative Dynamics,” Review of Economic Studies, 58, 529-546.

[22] Debondt, W., and R. Thaler, 1985, “Does the Stock Market Overreact?” Journal
of Finance, 40, 793-808.

[23] Evans, George W., and Seppo Honkapohja, 2001, Learning and Expectations in
Macroeconomics, Princeton University Press, Princeton, NJ.

[24] Fama, Eugene F., and Kenneth R. French, 1996, “Multifactor Explanations of
Asset-Pricing Anomalies,” Journal of Finance, 47, 426-465.

[25] Gaunersdorfer, Andrea, 2001, “Endogenous Fluctuations in a Simple Asset Pric-
ing Model with Heterogeneous Agents,” Journal of Economic Dynamics and
Control, 24, 799-831.

[26] Grossman, Sanford J., and Joseph E. Stiglitz, 1980, “On the Impossibility of
Informationally Efficient Markets,” American Economic Review, 70, 383-408.

29



[27] Guidolin, Massimo, and Allan Timmermann, 2005a, “Economic Implications of
Bull and Bear Regimes in UK Stock and Bond Returns,” Economic Journal, 115,
111-143.

[28] Guidolin, Massimo, and Allan Timmermann, 2005b, “Properties of Equilibrium
Asset Prices under Alternative Learning Schemes,” forthcoming Journal of Eco-
nomic Dynamics and Control.

[29] Holt, Charles, and Susan Laury, 2002, “Risk Aversion and Incentive Effects,”
American Economic Review, 92, 5, 1644-1655.

[30] Hong, Harrison, and Jeremy C. Stein, 1999, “A Unified Theory of Underreaction,
Momentum Trading, and Overreaction in Asset Markets,” Journal of Finance,
54,6, 2143-2184.

[31] Hong, Harrison, Jeremy C. Stein. and Jialin Yu, 2005, “Simple Forecasts and
Paradigm Shifts,” forthcoming Journal of Finance.

[32] Hong, Harrison, Jose Scheinkman, and Wei Xiong, 2005, “Asset Float and Spec-
ulative Bubbles,” forthcoming Journal of Finance.

[33] Lamont, Owen, and Richard Thaler, 2003, “Can the Market Add and Subtract?
Mispricing in Tech Stock Carve-outs,” Journal of Political Economy, 111, 227-
268.

[34] Lansing, Kevin J., 2006, “Lock-in of Extrapolative Expectations in an Asset
Pricing Model,” Macroeconomic Dynamics, 10, 317-348.

[35] Lettau, Martin, and Sydney C. Ludvigson, 2005, “Expected Returns and Ex-
pected Dividend Growth,” Journal of Financial Economics, 76, 583-626.

[36] Manski, C.F., and D. McFadden, 1981, Structural Analysis of Discrete Data with
Econometric Applications, MIT Press, Cambridge, MA.

[37] Marcet, Albert, and Thomas J. Sargent, 1989, “Convergence of Least-Squares
Learning Mechanisms in Self-Referential Linear Stochastic Models,” Journal of
Economic Theory, 48, 337-368.

[38] Merton, Robert C., 1987, “A Simple Model of Capital Market Equilibrium with
Incomplete Information,” Journal of Finance, 42.

[39] Ofek, Eli, and Matthew Richardson, 2003, “Dotcom Mania: The Rise and Fall
of Internet Stock Prices,” Journal of Finance, 58, 1113-1137.

[40] Sargent, Thomas J., 1999, The Conquest of American Inflation, Princeton Uni-
versity Press.

30



[41] Timmermann, Allan, 1994, “Can Agents Learn to Form Rational Expectations?
Some Results on Convergence and Stability of Learning in the UK Stock Market,”
Economic Journal, 104, 777-798.

[42] Timmermann, Allan, 1996, “Excess Volatility and Predictability of Stock Re-
turns in Autoregressive Dividend Models with Learning,” Review of Economic
Studies, 523-557.

[43] Turner, C., Startz, C., and C. Nelson, 1989, “A Markov Model of Heteroskedas-
ticity, Risk, and Learning in the Stock Market,” Journal of Financial Economics,
25, 3-22.

[44] Williams, Noah, 2004, “Escape Dynamics in Learning Models,” mimeo., Prince-
ton University.

31



  Figure 1.  Multiple equilibria. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  Figure 2.  Bifurcation diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  Figure 3.  Comparison of (risk-adjusted) trading profits between underparameterized models and  
        hyper-rational model for various degrees of risk-aversion.  The top panel is for the case 
        a=0.3, corresponding to n=1 as the unique equilibrium.  The middle panel sets a=0.83  
        which leads to multiple equilibria.  The bottom panel is the case of a=1.4 and n=0 as the  
        unique equilibrium. 
 
 
 
 
 
 



 

Figure 4.  Impulse responses for excess returns.  Top panel plots the impulse responses, for the   
underparameterized Misspecification Equilibrium and the REE, in the event of a positive dividend  
shock.  The bottom panel plots the same in response to a negative share supply shock.  The n=0 
model exhibits under reaction at short horizons and over reaction at longer horizons in response to 
a dividend shock.  The n=1 model exhibits under reaction and over reaction in response to a supply 
shock.   
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  Figure 5.  Simulated Excess returns with predictor proportions superimposed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Parameter Calibration

φ 0.8061
ρ 0.9766
σε 0.2163
σν 1.3178
σνε 0
β .9957
σ2 15
a .05
λ .01
κ .50
α 2

Table 1. Calibrated parameter values. Share data comes from Baker and Wurgler
(2000). Dividend and C.P.I. data are from the 2005 Economic Report of the President,
Table B90.



  Figure 6.  Multiple equilibria in the calibrated model 
 



Autocorrelations for excess returns

Autocorrelations – excess returns relative to risk-free rate –
periods averaged in autocorrelations

Model 1 1-12 13-24 25-36 37-48 48-60 61-72 73-84 85-96 97-5000

RTL .0985 .0894 .0699 .0457 .0276 .0127 .0026 -.0042 -.0078 -.0083
n = 1 M.E. -.0045 -.0026 -.0017 -.0017 -.00023 -.0019 -.0016 -.0019 -.0011 -.0008
n = 0 M.E. -.0713 -.0168 .0114 .0090 .0052 .0033 .0004 -.0002 -.0016 -.0016

Table 2. Autocorrelations generated from simulated data. RTL refers to the model
specification with real-time learning and dynamic predictor selection. n = j, j = 0, 1
refers to the Misspecification Equilibrium with n and the belief parameters held fixed
at their equilibrium values. Autocorrelations were calculated by simulating the model
for 5000 time periods (after a transient period of length 5000) and computing the
sample autocovariance function. The reported values are the mean autocorrelations
across 5000 simulations.



Persistence in Returns and Volatility Clustering

R̄1−R̄0

R̄1

σ
2

1
−σ

2

0

σ2

1

simulated data .6043 .2762

bull-normal U.K. data .4768 .4252

Table 3. Regime switching returns and volatility. The model is simulated and
the mean and variance for each regime, i.e. n = 0 or n = 1, are calculated. The
table reports the mean values across 1000 simulations. The bull-normal U.K. data are
calculated from Table 3 of Guidolin and Timmermann (2005a), who estimate a 3-state
model with ARCH effects. For comparison purposes, Table 2 only includes the relative
means and variances for the “normal” and ”bull’ states.


