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Preface 
The saddest aspect of life right now is that science 
gathers knowledge faster than society gathers 
wisdom. (Isaac Asimov, 1988) 

An educated mind is, as it were, composed of all the 
minds of preceding ages. (Bernard Le Bovier 
Fontenelle, mathematical historian, 1657-1757) 

This book is motivated by the problem that our K-8 school math education system is not as 
successful as many people would like it to be, and it is not as successful as it could be. It is 
designed as supplementary material for use in a Math Methods course for preservice K-8 
teachers. However, it can also be used by inservice K-8 teachers and for students enrolled in 
Math for Elementary and Middle School teachers’ courses. 

Many people and organizations have put forth ideas on how to improve our math education 
system. However, in spite of decades of well-meaning reform effort, national assessments in 
mathematics at the precollege level in the United States do not indicate significant progress. 
Rather, scores on these national assessments have essentially flat lined during the past 40 years. 

The results of the past 40 years of attempts to improve math education suggest that doing 
more of the same is not likely to improve the situation. We can continue to argue about whether 
back to basics or a stronger focus on new math is the better approach. From time to time, both 
such approaches have produced small pockets of excellence. In general, however, our overall 
math education system is struggling to achieve even modest gains. 

This book draws upon and explores four Big Ideas that, taken together, have the potential to 
significantly improve out math education. The Big Ideas are: 

1. Thinking of learning math as a process of both learning math content and 
a process of gaining in math maturity. Our current math education system 
is does a poor job of building math maturity. 

2. Thinking of a student’s math cognitive development in terms of the roles 
of both nature and nurture. Research in cognitive acceleration in 
mathematics and other disciplines indicates we can do much better in 
fostering math cognitive development. 

3. Understanding the power of computer systems and computational thinking 
as an aid to representing and solving math problems and as an aid to 
effectively using math in all other disciplines. 

4. Placing increased emphasis on learning to learn math, making effective 
use of use computer-based aids to learning, and information retrieval. 

Math Maturity 
Math maturity is a relatively commonly used term, especially in higher education. In higher 

education, the dominant components of math maturity are “proof” and the logical, critical, 
creative reasoning and thinking involved in understanding and doing proofs. The focus is on 
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mathematical thinking, on being able to read and write math, and on being able to learn math 
using a wide range of resources such as print materials, courses, colloquium talks, and so on. 

Many of the same ideas are applicable to defining math maturity at the precollege level. 
However, the cognitive development work of Piaget and others provides another quite useful 
approach. Piaget’s four-stage cognitive development scale is useful in tracking and facilitating 
cognitive development through the levels: sensory motor, preoperational, concrete operations, 
and formal operations. Piaget and many more recent researcher have recognized that one can 
look at the formal operation end of this scale both in general, and also in specific disciplines. 
Thus, we can explore the math education curriculum in terms of how well it helps students gain 
in math cognitive development.  

The past 20 years have brought quite rapid progress in cognitive neural science and other 
aspects of brain science. Researchers have gained considerable insight into how the brain 
functions in math learning and math problem solving. This research is beginning to contribute to 
the design of more effective aids to learning math and to increasing math maturity. 

Nature and Nurture 
People are born with a certain “amount” of innate mathematical ability. In dealing with 

quantity, for example, this innate ability roughly corresponds to dealing with 1, 2, 3, and many. 
Howard Gardner has identified logical/mathematical as one of the eight multiple intelligences 
that in his theory of intelligence. 

However, most of what we call mathematics has been invented by people. It is part of the 
accumulated knowledge of the human race, and it is passed on from generation to generation by 
informal and formal education. Children who grow up in a hunter-gather society do not learn the 
types of math that we expect children to learn in our information age society. 

In recent years, use of brain imaging equipment and brain modeling using computers have 
been added to earlier tools used to study cognitive development. Research in cognitive 
development and cognitive acceleration suggests that our informal and formal educational 
system could be doing much better. 

Computational Thinking 
Many people now divide the discipline of mathematics into three major sub disciplines: pure 

math, applied math, and computational math. The term computational denotes the study and use 
of computer modeling and simulation. The table in figure P.1 contains data from Google 
searches on the three sub disciplines.  

Search Expression Google Hits 5/10/06 
"applied math” OR “applied mathematics" 50,200,000 
"pure math” OR “pure mathematics" 5,450,000 
"computational math” OR “computational mathematics" 3,090,000 

Figure P.1 Google searches on some math sub disciplines 
Of the three sub disciplines listed, the most recent to emerge is computational. The addition 

of computational as a subdivision of math and various other disciplines has occurred because of 
the steadily increasing role of computers as an integral component of the content of many 
different disciplines. For example, in 1998 one of the two winners of the Nobel Prize in 
Chemistry received the prize for his previous 15 years of work in computational chemistry. He 
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had developed computer models of chemical processes that significantly advanced the discipline 
of chemistry. 

Similarly, physics is now divided into the three components: theoretical, experimental, and 
computational. Here is a brief quote from page 2 of the April 22, 2006 issue of Science News: 

When black holes collide, they cause surrounding space-time to wiggle, generating a torrent of 
radiation known as gravitational waves. That’s what Einstein’s general theory of relativity 
predicts, but computer models [modelers] have struggled for more than 30 years to reproduce 
those waves. Because of the relativity theory’s mathematical complexity and the extreme gravity 
of black holes, modelers haven’t succeeded in getting black holes to crash. 

Now, two teams independently reported that they have successfully simulated the merger of two 
black holes and the event’s production of gradational waves. [Bold added for emphasis.] 

As you can see, computational means far more than just doing arithmetic calculations. 
Indeed, it has emerged as a way of thinking.  

An excellent, brief introduction to computational thinking is provided in Jeannette Wing 
(2006). She is the Head of the Computer Science Department at Carnegie Mellon University. 
Quoting from her article: 

Computational thinking builds on the power and limits of computing processes, whether they are 
executed by a human or by a machine. Computational methods and models give us the courage to 
solve problems and design systems that no one of us would be capable of tackling alone. 
Computational thinking confronts the riddle of machine intelligence: What can humans do better 
than computers, and What can computers do better than humans? Most fundamentally it addresses 
the question: What is computable? Today, we know only parts of the answer to such questions. 

Computational thinking is a fundamental skill for everybody, not just for computer scientists. To 
reading, writing, and arithmetic, we should add computational thinking to every child’s analytical 
ability. 

Learning to Learn Math 
All teachers recognize that to be effective, they need to know the content they are teaching 

and they need to know how to teach the content. Much teaching knowledge and skill cuts across 
the school disciplines. However, there is considerable discipline-specific pedagogical knowledge 
and skill for each discipline. To be an effective teacher of math, one needs to know math and one 
needs to have significant math pedagogical knowledge and skill. 

A somewhat similar idea holds for learning math. The human brain is naturally curious and 
has an innate ability to learn. A child is born with a modest amount of math capability, such as 
being able to distinguish among quantities such as one, two, and three. As a person’s brain grows 
and matures, one’s innate mathematical ability grows. 

However, mathematical development depends heavily upon the informal and formal math 
learning environments that are available to the learner. In addition, math development is highly 
dependent on learning to learn math—in making progress toward being a more effective and 
efficient learner of math. 

A good example of what is entailed by this is inherent to the idea of reading across the 
curriculum. We know that there is a difference between general reading skills and discipline-
specific reading skills. We also know that students first learn to read and eventually can read to 
learn. From a math education point of view, students need to learn to read math. Progress in this 
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endeavor is important to learning math by reading. Our current math education system is weak in 
helping students learn to read math and they learn math through reading.  

Nowadays, most students have relatively easy access to the world’s largest library—the Web. 
Thus, as they learn to read math and to learn math by reading, they can take advantage of the 
math components of this huge and steadily growing library. Because math is an important 
component of many disciplines, learning to read math is an important part of learning to read 
across the curriculum 

Computers have also brought us computer-assisted learning (CAL). In recent years, some of 
the best CAL falls into the category highly interactive intelligent computer-assisted learning 
(HIICAL). Such materials are a powerful aid to learning. Research on HIICAL in math suggest 
that some of the available materials are considerably more effective aids to student learning than 
are the traditional aids. 

Contents of this Book 
The 10 chapters of this book weave together various approaches to the four Big Ideas 

discussed above. Each chapter includes a set of activities for preservice and inservice teachers 
who are studying this book, and a set of activities useful in working with K-8 students. The latter 
activities are quite general, and they certainly do not constitute a curriculum that can be picked 
up and implemented at the K-8 level. Rather, they suggest some ideas to explore with young 
students and to try out in the K-8 curriculum.  

Final Comment 
As with most of my current writing efforts, this book is a “work in progress.” It is regularly 

being added to and revised. Your input and suggestions are welcome. 

The change in title from the previous edition represents my growing insights into the 
problems faced by our math education system. 

Dave Moursund 
June 2006 
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Chapter 1 

Introduction 
...we discovered that education is not something 
which the teacher does, but that it is a natural process 
which develops spontaneously in the human being. It 
is not acquired by listening to words, but in virtue of 
experiences in which the child acts on his 
environment. The teacher's task is not to talk, but to 
prepare and arrange a series of motives for cultural 
activity in a special environment made for the child. 
(Dr. Maria Montessori) 

Technology is a gift of God. After the gift of life it is 
perhaps the greatest of God's gifts. It is the mother of 
civilizations, of arts and of sciences. (Freeman 
Dyson) 

This book is about the craft and science of teaching and learning math at the elementary and 
middle school levels. The goal of this book is to help improve math education. This chapter 
introduces the whole book and covers some needed background materials. 

The Preface contains four unifying Big Ideas. If you skipped over the Preface, I recommend 
that you read it now. Think about your current level of expertise as a learner and as a teacher in 
each of the Big Idea areas. Do this again as you finish reading each chapter of this book.  

Reading and Math 
At the current time, reading and math are the two most emphasized components of the K-8 

curriculum. Although reading and math are taught as two separate and distinct subjects, it is clear 
that they are related. Numbers and many “math” words and expressions are part of our everyday 
speaking and reading vocabulary. Indeed, many people think of math as a language and talk 
about gaining fluency in the use of this language, or gaining fluency in mathematics. 

Robert Logan (2004) provides an excellent discussion of the development of six languages. 
Quoting from Chapter 1 of his book: 

In this book we will develop the hypothesis that speech, writing, mathematics, science, computing 
and the Internet form an evolutionary chain of languages. Two of the languages mathematics 
and writing we shall see emerged at exactly the same point in time around 3100 BC followed 
approximately 1000 years later by science. Within my life time two languages have appeared in 
rapid succession, computing and the Internet, the fifth and sixth language. I hope to demonstrate 
that computing and the Internet (which includes the World Wide Web) will play a role as 
important as that of any of the four languages that preceded them many years ago. [Bold added for 
emphasis.] 

Throughout our country, there is a top down movement to establish high standards for 
student achievement in reading and math, and to improve our educational system so that these 
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high standards are met. In recent years, education has become a political issue, and many 
politicians want to be considered as leaders of educational reform. 

In educational circles, both reading instruction and math instruction tend to evoke 
considerable controversy. In essence, the issues are what the standards should be—what students 
should learn—along with how students should be taught, and how this learning should be 
assessed. In reading, there is considerable agreement about the goal of having students achieve 
an adequate level of reading fluency (speed, accuracy, comprehension) by the end of the third 
grade so that they can begin to make effective use of reading as an aid to learning throughout the 
curriculum. The controversy tends to lie in teaching methods, such as phonics versus whole 
language, and in the content of the materials that students read. Controversy also lies in who or 
what to blame because a large number of students do not achieve the reading level fluency goals. 

In math, both the content and the pedagogy issues remain unresolved. However, there is 
considerable agreement that the results being produced by our current math education system, 
whether the approach is “back to basics” or “new-new math,” are not nearly as successful as 
many people would like. Michael Battista provides an excellent summary of the situation in a 
1999 article. 

For most students, school mathematics is an endless sequence of memorizing and forgetting facts 
and procedures that make little sense to them. Though the same topics are taught and retaught year 
after year, the students do not learn them. Numerous scientific studies have shown that traditional 
methods of teaching mathematics not only are ineffective but also seriously stunt the growth of 
students' mathematical reasoning and problem-solving skills. Traditional methods ignore 
recommendations by professional organizations in mathematics education, and they ignore 
modern scientific research on how children learn mathematics (Battista, 1999). 

Think about the quote from Michael Battista. Is it a good description of your personal math 
learning experiences? Does the description fit some of the children and adults that you know? 
Many math education leaders agree that Battista is correct. There is much less agreement about 
how to make progress in solving this educational problem. 

Computer Science and Mathematics 
The disciplines of mathematics and computer science are closely related. Many of the current 

college and university Departments of Computer Science were formed by groups of faculty who 
split off from Mathematics Departments. Even now, it is not uncommon to find mathematics and 
computer science combined in a single department. 

At the current time, research and instruction in mathematics can be divided into three main 
categories: Pure Mathematics, Applied Mathematics, and Computational Mathematics. The term 
Computational has come to be an important descriptor in many other disciplines. For example, it 
is now common for a person to be a Computational Biologist, Computational Chemists, or 
Computational Physicist. A excellent, brief introduction to computational thinking is provided in 
Jeannette Wing (2006), who is chair of the Computer Science Department at Carnegie Mellon 
University. Quoting from her article: 

Computational thinking builds on the power and limits of computing processes, whether they are 
executed by a human or by a machine. Computational methods and models give us the courage to 
solve problems and design systems that no one of us would be capable of tackling alone. 
Computational thinking confronts the riddle of machine intelligence: What can humans do better 
than computers, and What can computers do better than humans? Most fundamentally it addresses 
the question: What is computable? Today, we know only parts of the answer to such questions. 
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Computational thinking is a fundamental skill for everybody, not just for computer scientists. To 
reading, writing, and arithmetic, we should add computational thinking to every child’s analytical 
ability. Just as the printing press facilitated the spread of the three Rs, what is appropriately 
incestuous about the vision is that computing and computers facilitate the spread of computational 
thinking.   

Computational thinking has always been a part of math and math education. However, 
computers add a new dimension to computational thinking. This broadened view of 
computational thinking adds a new challenge to math teachers at all grade levels. 

From time to time throughout this book, there are brief comments about possible roles of 
computers in math education. Computers are both an aid to instruction and part of the content in 
mathematics. Chapter 9 takes a deeper look at roles of computers in K-8 math education. 

Math Expertise: Content and Maturity 
You have a level of math expertise that you have developed over years of informal and 

formal study and use of math. Likely, you know some people who have greater math expertise 
than you, and you know some people who have less math expertise than you. You may have an 
opinion about yourself, such as “I am good at math.” or “I am not very good at math.” As a 
preservice or inservice K-8 teacher, you need to be concerned about whether your level of math 
expertise is sufficient to help your future students make satisfactory progress in building their 
own math expertise. 

Math expertise can be divided into two major components: math content and math maturity. 
Much of the math coursework you have taken focused on math content—for example, learning 
many different arithmetic, algebraic, and geometric procedures and how to use these procedures 
to solve a wide range of math problems. 

Math maturity focuses on areas such as understanding, solving math problems you have not 
previously encountered, theorem proving, precise mathematical communication, mathematical 
logic and reasoning, knowing how to learn math, problem posing, transfer of learning (being able 
to use one’s math knowledge and make math connections over a wide range of disciplines and in 
novel settings), and interest—including intrinsic motivation—in math. 

The idea that a math problem may have no solutions, one solution, or more than one solution 
is part of math maturity. The idea that a solution or a solution process may be more or less 
clever, beautiful, or elegant is also part of math maturity. Math maturity is an idea that is not 
specific to any particular content area in math. To a large extent, math maturity does not depend 
on knowing some specific part of the content of math. A person may have a high level of math 
content knowledge and a low level of math maturity, or vice versa. Figure 1.1 provides an 
example of two hypothetical students: Student A (S-A) and Student B (S-B)  

MediumS-A S-B

S-AS-B
 

Figure 1.1 Separate expertise scales for math content and math maturity. 
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A Good Math Teacher 
A good teacher of math has an appropriate level of expertise both in the discipline of math 

and in the discipline of teaching. Lee Shulman coined the phrase content pedagogical knowledge 
in order to emphasize the importance of a teachers having specific pedagogical knowledge and 
skills within the disciplines that they teach (Shulman, 1987). Lee Shulman is President of the 
Carnegie Foundation for the Improvement of Education (Carnegie, n.d.) Figure 1.2 expands on 
Shulman’s work to emphasize discipline pedagogical knowledge as one of the keys to good 
teaching in any discipline. 

Pedagogical 

Expertise

Discipline Pedagogical Expertise

DPE
Discipline 

Expertise

 
Figure 1.2 Discipline Pedagogical Expertise. 

In summary, to be an effective teacher of math, you need both math content knowledge and 
math maturity. In addition, you need to know how to teach math—that is, you need math 
pedagogical knowledge designed to help your students learn math content and gain in their math 
maturity. Research by Liping Ma (1999) and others suggests that the majority of K-8 teachers in 
the United States are relatively weak in math pedagogical knowledge. My research into math 
maturity suggests that this is also an area of relative weakness for many K-8 math teachers. 

It is evident that not all people agree with the statements in the previous paragraph. Many 
states have alternative routes to teacher certification that are based mainly on content knowledge. 
Many people seem to feel that content knowledge is the “be all, end all” to the qualifications 
needed to be a good teacher. A summary of current research on this issue is available in Emerick 
et al. (2004). In brief summary, this research summary argues that content knowledge does not 
suffice—that a focus just on content knowledge of teachers is doing students a great disservice. 

K-8 teachers tend to teach math in the way that they were taught. That is, much of what you 
know about being a teacher of K-8 mathematics you learned while you were in K-8 school. This 
creates a cycle in which the next generation of students is taught in much the same manner as the 
previous generation. This cycle can and must be broken if the quality of math education that our 
students receive is to be significantly improved. You, personally, can make a significant 
difference for your students. The ideas presented in this book will help you. 

Read & Write Across the Curriculum 
The Sumerians—who lived in the area that is now Iraq—developed writing about 5,200 years 

ago (Acosta, n.d.). This soon led to the development of schools and formal schooling to teach 
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reading, writing, and arithmetic. While schools have made considerable progress over the years, 
there is still a considerable similarity between schools 5,000 years ago and schools today. 

You are undoubtedly familiar with the curriculum ideas of “reading across the curriculum” 
and “writing across the curriculum.” Reading and writing are important components of each 
discipline, and we want students to learn to read and write within each discipline they study. 
Marilyn Burns is well known for her many math education books (Burns, 1995). The following 
quotation is from Burns (2004), an article that contains a number of examples of having children 
write during their K-8 math instruction. 

… and for my first 20 years as a middle school and elementary school teacher, writing played no 
role in my math teaching. 

Today, my view has changed completely. I can no longer imagine teaching math without making 
writing an integral aspect of student learning. 

Later in the article, Marilyn Burns explains some of the roles of writing in math instruction: 
Writing in math class supports learning because it requires students to organize, clarify, and reflect 
on their ideas—all useful processes for making sense of mathematics. In addition, when students 
write, their papers provide a window into their understandings, their misconceptions, and their 
feelings about the content there’re learning.  

Marilyn Burns then goes on to describe general categories of writing in math, including 
keeping journals, solving math problems, explaining math ideas, and writing about learning 
processes. She argues that such writing is an important component of a modern math education. 
In essence, she is providing her insights into math maturity. 

Learning to read and then reading to learn is a widely accepted idea in education. Some 
people argue that these two topics should be more thoroughly integrated, so that from the very 
beginnings of learning to read, there is a focus on using one’s reading skills to learn. Others point 
to how great a challenge it to learn to read, and support the somewhat traditional two-phase 
process whereby students concentrate on learning to read during K-2 or K-3 education, and then 
begin making a transition into a reading to learn mode. 

Students who are beginning to learn to read in kindergarten or the first grade already have a 
large speaking and listening vocabulary. To a large extent, learning to read is a process of 
learning to decode in a manner that ties in to one’s oral knowledge and skills. It takes a 
substantial effort for most students to learn to decode and then attach meaning and understanding 
to what they are reading. 

Learning to Read Math 
Contrast this general effort of learning to read with learning to read in a specific discipline 

such as math. A typical kindergartner or first grader knows very little math. Suppose that as a 
child is learning to read, we also want the child to learn to read across the various disciplines 
emphasized in school. From the very beginning, we then run into the issues of a child’s content 
knowledge within a discipline and the child’s oral fluency in the discipline.  

In essence, if we want students to be learning to read math while in the first grade, then they 
will need to be learning to read the math that they are learning in the first grade. This is sharply 
different than the child learning reading in general, with the reading mainly focusing on areas 
where the child already has oral fluency and knowledge. 
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Our math education system has adopted a compromise position. From kindergarten on, 
students are exposed to math symbols. As they learn the alphabet and punctuation marks, they 
learn the digits and some math symbols such as + and -. As they learn to recognize and spell 
certain words, they learn to recognize and write some two digit and three digit numbers.  

Almost immediately, however, the parallel between learning to read in their oral language 
and learning to read math breaks down. In learning to read one’s oral language, the meaning and 
understanding have already been learned. The learning to read is a process of learning to decode. 
In learning to read math, the meaning and understanding have not been already learned. Learning 
to decode math symbols, when one does not know the meaning of the math the symbols 
represent, is fraught with difficulty. 

Perhaps for this reason, math in the early grades tends to be taught using oral methods. 
Students learn math symbols and some math vocabulary, but they do not learn to read math for 
understanding. This gap between a student’s math reading skills and reading to learn math skills 
tends to persist throughout K-12 education and perhaps through a couple of years of college 
math. 

The Blog discussion (Reading and Math, 2006) captures the essence of the situation. The 
discussion focuses on difficulties that students have in reading the math questions on state tests. 
Some states allow the teacher to read a question to the students, and others strictly forbid this. 
Many teachers view state and national math tests as mainly being reading tests, and thus not 
being a fair test of students who have reading difficulties and/or come from a different cultural 
and socioeconomic background than what is assumed in the test questions. Research indicates 
that students who are in the bottom third of readers tend to do poorly in math. 

There is quite a bit of literature on reading across the curriculum. A 5/19/06 Google search of 
the quoted phrase "reading across the curriculum" produced 75,900 hits. Many of these 
documents mention a variety of subject areas that need special emphasis, such as reading in math 
and in science. 

However, surprisingly few of these document move beyond the level of saying this should 
occur, to the level of providing appropriate reading material, talking about teacher education, and 
providing research evidence on the effectiveness of teaching students to read math and science. 

Moreover, in math education, quite a bit of the focus on students learning to read math is on 
students learning to read “word problems.” This focus differs considerably from a focus on 
learning to read math well enough so that one can read math texts and other math materials in 
order to learn math. For many students, learning to read math tends to mean learning to browse 
the part of a math book that comes just before a set of assigned exercises, in order to find 
examples that seem to be the same as the assigned exercises. From the student point of view, the 
goal is not reading math in order to learn math. Rather, the goal is to complete the required 
exercises. 

Math, a Human Endeavor 
From a historical point of view, writing has facilitated a steady accumulation of human 

knowledge, including math. Here is a statement that mathematicians often quote: 
God created the integers; all the rest is the work of man. (Leopold Kronecker, 1923-1891) 
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The quotation from Kronecker captures the idea that math is a steadily growing discipline. 
The invention of writing has made possible more than 5,000 years of the development and 
accumulation of mathematical knowledge that can be shared with others. You know lots of 
things about math that people did not know 5,000 years ago. For example, you know about 
fractions, the number zero, the decimal point, and decimal notation. You also make routine use 
of applications that are strongly based on math. For example, you tell time using a digital or 
analog watch. You use money. You understand the concept of distance and you know how to 
make use of instruments such as a ruler to measure distance.  

Math has become so important and routinely used in our that children begin to learn math 
well before they enter kindergarten, and math is a required part of the school curriculum well 
into high school. Most colleges require students to take some math.  

Mathematics is one of humanity's great achievements. By enhancing the capabilities of the human 
mind, mathematics has facilitated the development of science, technology, engineering, business, 
and government. (Kilpatrick, Swafford, and Findell, 2002) 

The idea that people created math and that math is a human endeavor are thoroughly 
embedded in many books about math. Indeed, Harold Jacobs wrote a secondary school math 
book titled Mathematics, a Human Endeavor that has been widely used (Jacobs, 1994). There is 
a tremendous amount of materials about the history of math available on the Web (History 
Topics Index, n.d.). 

Piaget and Vygotsky 
Jean Piaget (1896-1980) and Lev Vygotsky (1896-1934) both made major contributions to 

developmental psychology. At an initial glance, one might say that Piaget focused more strongly 
on the nature aspects of human development, why Vygotsky focused more on the nurture 
aspects. However, they both understood nature and nurture, and a careful reading of their works 
suggests that their thinking was not too far apart (Cole and Wertsch, n.d.).  

Preservice and inservice teachers have all studied cognitive development. Most likely, you 
have studied Piaget’s 4-stage cognitive development model; sensory motor, preoperational, 
concrete operations, and formal operations (abstract thinking). The general theory posits that 
people move through these stages at different rates that depend on interaction of hereditary and 
environmental factor—that is, nature and nurture. 

Vygotsky is well known for his work on social constructivism and for what he calls the Zone 
of Proximal Development. Quoting Vygotsky, this is “the distance between the actual 
development level as determined by independent problem solving and the level of potential 
development as determined through problem solving under adult guidance or in collaboration 
with more capable peers.” Vygotsky argues that instruction is most effective when it at the level 
of the Zone of Proximal Development. 

In Piaget’s four-state model of cognitive development, the formal operations stage is open 
ended. Moreover, there is no fine dividing line between people who function at a formal 
operations level from those who do not. In addition, a person may be further along in their 
development of formal operations in one discipline than in another. Thus, it is useful to study a 
student’s movement along a Piagetian-type developmental scale in a specific discipline such as 
mathematics. Piaget, himself, had a considerable interest in mathematical development. 
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A person’s brain/mind stores patterns. It is helpful to think of such patterns as models or 
representations of data, information, knowledge, and procedures. Learning is a process of 
revising models (perhaps even to the extent of discontinuing use of a model), and building new 
models. 

Piaget describes this learning process in terms assimilation and accommodation. Assimilation 
involves the incorporation of new events into one’s current brain/mind models. Accommodation 
involves changing one’s existing brain/mind models, building new, better models. 

For example, a young child’s mental model of the number line might consist only of a 
representation of a small set of counting numbers such as 1, 2, 3, and 4. This mental model 
changes to assimilate larger sets of objects that can be counted. 

However, eventually the child encounters number line concepts that require a significant 
change in the model. Zero and negative integers require an accommodation. A more major 
change in the model is needed to accommodate fractions. A still more major change may be 
necessary to accommodate rational numbers that are neither counting numbers nor fractions, and 
then to accommodate irrational numbers. 

The number line is very complex and abstract relative to a young child’s innate ability to deal 
with one, two, three and many. Informal and formal education make possible a child’s growing 
understanding of (mental model of) the number line. As recently as the past century, 
anthropologists have discovered small tribes of hunter-gatherer people whose language and 
mental models incorporate provisions for dealing with just a small number of integers, and 
“many.” Children growing up in such societies learn the number line model of their parents and 
others in the tribe.  

Contrast the “1, 2, 3, many” model with the math models we now expect children to learn. 
Recently I read about a runner setting a new world record in the 100-meter dash. His time was 
1/100 of a second faster than the old record. Such high precision measurements of length and 
time are not relevant in a hunter-gatherer society. How about paper and pencil algorithms to do 
long division of multi digit decimal numbers? How about solving quadratic equations and 
systems of linear equations? How about figuring miles per gallon, or costs per mile for car 
transportation? How about doing a state and federal income tax return, budgeting, dealing with 
credit cards and interest rates, and saving for one’s retirement? How about calculators, 
computers, GPS systems, text messaging on a cell phone, the speed, capacity, and  reliability of 
multimedia storage devices, and so on? Wow! Overwhelming! 

The point is, we live in a society that is mathematically very complex. It takes many years of 
good quality informal and formal math education for an average person to gain the math 
knowledge and skills to learn to deal effectively with this complexity. 

Assimilation or Accommodation to a Calculator 
I want to give one more example to conclude this section. Much of your initial informal and 

formal math education focused on learning to count, gain an initial understanding of the number 
line, and learning to do simple calculations. Over time, your understanding of the number line 
grew and you learned more about calculations that could be performed on numbers. Your mental 
models of number line and of calculation changed through assimilation and accommodation. 
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At some stage, calculators entered the scene. Perhaps you were told that calculators could be 
used to check the answers obtained from doing paper and pencil calculation or mental 
calculations. Probably your mental models for the number line and for calculation easily 
assimilated the simple, 4-function calculator. 

Unfortunately, the 8-digit calculator’s number line is not the same as the number line that 
you had been learning about in school. Divide 1 by 3, multiply the result by 3, and the result is 
not 1. 

Aha, you say. That is just an example of a rounding error, and is certainly easy to spot and to 
explain. (Note that one can memorize the term rounding error without really understanding what 
it means.) The fraction 1/3 corresponds to an infinite repeating decimal, and the calculator only 
handles a limited number of decimal places.  

However, here is a more challenging example. Do you think that the average of two positive 
numbers can be smaller than either of the numbers? Well, here is an example from the number 
line of an 8-digit calculator: 

(5.000006 + 5.0000008)/2 = 5.000005 
The point is, a calculator’s number line is not the same as the number line that you take for 
granted. Right now, how is your mental model of the number line dealing with the idea that the 
model does not fit with a calculator’s number line? I wonder what you are now thinking about a 
computer’s number line? 

The chances are that the calculator you were learning to use had a square root key. The 
square root key, along with the rapid growth in availability of computers, led to an 
accommodation by second year high school algebra courses. Calculating square roots by hand 
(using an algorithm that is vaguely like long division) was dropped from the curriculum. Indeed, 
scientific calculators and graphing calculators have led to significant changes in the secondary 
school math curriculum. In some sense, the math education system assimilated and 
accommodated the electronic digital calculator.  

Quite likely, the inexpensive calculator that you routinely use memory keys with labels such 
as M+, M-, MR, and MC. The memory features of a calculator are much like those of a 
computer. Do you know how to make effective use of the memory keys? Can you teach their use 
to students? Can you explain computer memory in terms of calculator memory? If your answers 
to some or all of these questions is no, then you have encountered a situation in which the math 
education you have received failed to fully accommodate to calculators. 

One of My Pet Peeves 
This book explores a variety of ways of making progress on the problem of improving math 

education. Improving math education is a very difficult task. There are many possible 
approaches, and certainly there is not uniform agreement as to what constitutes an improvement 
in math education. That is, the problems of math education are very complex, real-world 
problems. 

An earlier part of this chapter mentioned, “The idea that a math problem may have no 
solutions, one solution, or more than one solution is part of math maturity.” Did you “blip” over 
the idea that a math problem may have no solution, one solution, or more than one solution? Can 
you give examples of each of these situations?  
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Problem solving is one of the key elements of mathematics, and all teachers of math teach 
problem solving. K-8 teachers often stress that a major goal in math is for students to get “the” 
right answer to a problem. Students grow up with the idea that each math problem has exactly 
one and only one right answer. Students often carry this incorrect idea over to other disciplines, 
so that the term problem tends to mean to them a situation in which there is exactly one right 
answer. 

I am always peeved and become agitated when I hear a math teacher talking about getting 
“the” right answer. That is because the teachers are teaching an incorrect (a false) idea. Before 
reading the examples given below, see if you can explain why this is a wrong idea. 

Read the math problem examples given below. In the future, I hope you will no longer talk 
about getting “the” right answer in math. 

1. Find two integers that are greater than 1 and less than 10. [There are lots 
of correct answers.] 

2. Find two odd integers that add up to an even integer. [There are lots of 
correct answers.] 

3. Find two even integers that add up to an odd integer. [There are no such 
integers.] 

4. Find an integer that lies between 0 and 1. [There is no such integer.] 

5. Find a fraction that lies between 0 and 1. [There are lots of correct 
answers.]  

This book explores a number of educational problems related to math education. Such 
problems tend to have the characteristic that “one size does not fit all.” It is quite likely that some 
of these problems have no solution and that some have many quite acceptable solutions. 

Final Remarks 
Math education is a complex and challenging field. It takes a considerable period of informal 

and formal education for a math teacher to gain needed levels of expertise in math content, math 
maturity, general pedagogy, math pedagogy, and the many other things that go into being a good 
teacher. A commitment to becoming a good teacher of math is a commitment to a lifetime of 
learning. It is a rewarding career! 

K-8 School Applications 
Each chapter contains a few ideas for classroom applications at the K-8 level. These are 

meant to be suggestive, and are by no means comprehensive. Each teacher will need to build 
their own pieces of curriculum, instruction, and assessment to appropriately implement the ideas. 
An underlying goal in the use of such classroom applications is for you, the preservice or 
inservice teacher, to learn more about how the minds of your students work. 
1.1 Ask your students, “What is math?” Younger students can provide oral answers, 

while older students can both talk about and write on this topic. Look for 
responses that seem to focus on math content and other responses that seem to 
focus on math maturity. Use responses to carry on class discussion designed to 
broaden student insights into the discipline of math. If your students mention the 
idea of getting “the” right answer, use that as a teachable moment to increase 
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their mathematical maturity. If all of your student responses focus on doing 
arithmetic calculations, you may begin to suspect that there previous education 
has been weak in areas leading to increased math maturity. 

1.2 Ask your students, “How do you learn math?” Use responses to help students 
gain insights into the fact that there are a variety of ways to learn math, and that 
different students may learn math in different ways. As a variation on this 
question, explore student insights into how one knows that they have learned a 
math topic (or, indeed, a topic in any discipline) well enough. You might get an 
answer such as, “When I get a good grade on the test.” If that answer comes up, 
you have a teachable moment. I am assuming that you agree that there is much 
more to learning and understanding than getting high scores on tests.  

Activities for Self-Assessment, Assignments, and Group Discussions  
The last section of each chapter contains activities that can be used in teaching from and/or 

learning from this book. 

1.1 The four Big Ideas given in the Preface—that serve to unify the components of 
this book—are: A) Math content versus math maturity; B) Math developmental 
theory; C) Computational math and computational thinking; and D) Learning to 
learn math. Explain what each of these ideas means to you, and what (if 
anything) this chapter has contributed to your current level of understanding of 
the topics. For example, what does computational thinking mean to you right 
now? What, if any, accommodation (in the sense of Piaget) did you need to 
make to your mental model of calculation to accommodate or assimilate the 
ideas of a calculator number line? This is a good chance to practice 
metacognition.  

1.2 Think about your own K-8 math education experiences and what you have 
observed in visits to K-8 schools since then. What seems to be working well and 
what does not seem to be working well? Be as specific as possible. Add your 
insights into why the things that are working well are working well, and why the 
things that are not working well are not working well. That is, practice your 
causality thinking.  

1.3 Think about your knowledge and experience in the areas of reading math 
(reading in the content areas) and writing math (writing in the content areas). 
How is such reading and writing the same as and different from just plain 
reading and writing? From this thinking, develop some ideas you can implement 
as you help your students gain increased expertise in reading and writing math. 

1.4 This book is specifically designed for preservice teachers who are currently 
taking a math pedagogy course. Prior to this, such students have had years and 
years of instruction in mathematics. When I think about this, I conclude that 
most of what they know about math pedagogy will have come from what they 
happened to pick up through their years and years of math coursework. Share 
your thinking about this situation. What might you be learning in your teacher 
education program of study that will help to break the model of teachers 
teaching math in the way that they were taught? 
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Chapter 2 

Academic Disciplines 
An individual understands a concept, skill, theory, or 
domain of knowledge to the extent that he or she can 
apply it appropriately in a new situation. (Howard 
Gardner, The Disciplined Mind: What All Students 
Should Understand, Simon & Schuster, 1999.) 

... pedagogy is what our species does best. We are 
teachers, and we want to teach while sitting around 
the campfire rather than being continually present 
during our offspring's trial-and-error experiences. 
(Michael S. Gazzaniga, 1998, p 8) 

Elementary school teachers are responsible for teaching a wide range of disciplines such as 
art, language arts, math, music, science, and social science. Some middle school teachers 
specialize in just one or two disciplines, while others cover a broader range of disciplines. 

The disciplines that K-8 students study in school are both broad and deep. The initial 
instruction that students receive is designed to provide an initial level of knowledge and skill, 
and to lay foundations for future learning. It is important that careful thought be given to laying 
appropriate foundations. 

What is a Discipline? 
Although the focus of this book is on the discipline called mathematics, let’s begin this 

chapter by taking a more general approach. What is a discipline, and how does one distinguish 
between disciplines?  

Each discipline can be defined by its unique combination of: 
• The types of problems, tasks, and activities it addresses. 

• Its tools, methodologies, and types of evidence and arguments used in solving 
problems, accomplishing tasks, and recording and sharing accumulated results. 

• Its accumulated accomplishments such as results, achievements, products, 
performances, scope, power, uses, impact on the societies of the world, and so on. 

• Its history, culture, unifying principles and standards of rigor, language (including 
notation and special vocabulary), and methods of teaching, learning, and assessment. 

• Its particular sense of beauty and wonder. A mathematician’s idea of a “beautiful 
proof” is quite a bit different than an artist’s idea of a beautiful painting or a 
musician’s idea of a beautiful piece of music. 

When you read this What is a Discipline list, did you just “bleep” over the details, or did you 
pause at each bulleted item and reflect on its meaning to you and to our educational system? Did 



Dave Moursund: Improving Math Education in K-8 Schools 

Page 20 

you select a discipline that you know well and check on your insights into how each of the listed 
items fits or fails to fit your knowledge of the discipline? Did you think about what items you 
think should be added to the list, and what might be deleted? 

Reading the What is a Discipline list may give you some insight into reading across the 
curriculum. Each discipline has its own vocabulary and special symbols. The accumulated 
knowledge and results in a discipline make it difficult for a novice to read with understanding 
within the discipline. Some disciplines are more challenging than others, and math is one of the 
more challenging disciplines when it comes to reading. 

I constructed this five-item What is a Discipline list over a period of several years, tried it in 
various presentations and courses, and revised it several times. It is “dense,” in the sense that it 
contains a lot of ideas packed into a small number of words. To me, it has the meaning that I 
want to convey. However, it is up to you to read it carefully, think about what it means to you, 
and eventually to construct your own meaning and understanding. 

This is similar to what one does when reading math. Reading math for understanding and for 
construction of personal meaning is usually a slow and arduous process. 

Here are a few examples of questions that you might ask yourself about some of the idea in 
the What is a Discipline list. What is the same and what is different between a math problem and 
a problem in art, language arts, health, music, science, or social science? What is the same and 
what is different when using math to solve a math problem versus using math to help solve a 
problem in art, language arts, etc.? You can think of these questions as a small part of an 
assessment of your current level of math maturity. If you answer these questions with ease, this 
is an indication that you have made good progress in developing your math maturity. 

Research in brain science is beginning to give us important insights about one of the things 
that are the same across various disciplines. The brain learns by storing patterns. Mathematics is 
often described as the study of patterns. However, that statement is applicable to every 
discipline. Of course, one can define math to be the discipline in which one studies math 
patterns. However, that isn’t a very useful definition. (Compare that definition to defining music 
as the discipline in which one studies musical patterns of sound.)  

Learning can be thought of as a process of storing patterns in one’s brain, and developing 
skill in retrieving and making use of these stored patterns. When a person encounters a problem 
situation, his or her brain attempts to match the perceived pattern of the problem situation with 
one or more stored patterns. If an appropriately similar stored pattern is recognized, this becomes 
a starting point for dealing with the problem situation. Thus, learning and problem solving in all 
disciplines have to do with developing and storing patterns in one’s brain, in pattern matching or 
pattern recognition, and in making use of stored patterns (Goldberg, 2005). 

Many of the patterns that you have stored in your brain are quite specific to a specific domain 
or a specific situation. For example, in your formal study of algebra you have undoubtedly 
encountered quadratic functions and equations. You probably memorized the quadratic formula 
and developed skill in its use. You have a “chunk” of quadratic functions and equations 
information stored as patterns in your brain. (Chapter 8 contains a section on chunking.) This 
chunk, or collection of patterns, is your brains model or representation for what you know about 
the topic. Such chunks are interconnected with many other different chunks or models. Thus, the 
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term “quadraphonic sound” might well lead you to think briefly about quadratic equations or 
perhaps quadruplet births.  

Now, can you give me examples of use of quadratic functions and equations in your 
everyday life and in disciplines outside of math? Can you explain why these topics are so 
important that they are a standard part of second year high school algebra courses? What are 
some examples of equations that are not quadratic equations? Does learning how to solve 
quadratic equations help one to learn to solve other kids of equations? What do you think about 
the idea of high school students learning to make use of graphing and equation-solving 
calculators that can automatically graph quadratic and many other functions and can 
automatically solve a wide range of equations?  

These are math content, math content-pedagogy, and math maturity types of questions. As a 
teacher of math, you should be interested in posing and answering similar types questions for all 
of the math content that you teach. Your answers should help shape the curriculum, instruction, 
and assessment you use with your students. 

The Web—A Steadily Growing, Global Library 
You know how to read, and you have had experience in reading in many different 

disciplines. That does not automatically mean that you are skilled in reading in each discipline, 
or that you are skilled in reading to learn within a specific discipline. The What is a Discipline 
list is full of relatively complex words and ideas. It is easy to read such a list and gain almost no 
understanding of the information it is attempting to convey. Reading for deep understanding and 
learning is a lot different than reading for entertainment. Students need to learn to read in a 
reflective manner that leads to learning and understanding. They need specific help and practice 
in learning to read in different disciplines. 

Reflect on your learning experiences in learning to read math. When you were taking math 
courses in high school or college, how did you learn math? Did you learn mainly by listening to 
the lecture/demonstrations from the teacher? Did you learn a substantial amount by reading the 
math book? At the current time, are you confident in your ability to learn math by reading math 
books and articles?  

 Chapter 3 of this book discusses problem solving. One of the most important ideas in 
problem solving is building on the previous work of others. To do this, one must learn to access 
the previous work of others, and understand it at a level useful to aid in solving problems and 
accomplishing tasks. 

Once reading and writing had been invented, information began to be accumulated in 
libraries. For thousands of years, only a very small percentage of the population learned to read, 
and few people could afford to own a book. It is only in the past couple of hundred years that 
literacy and public libraries have become widespread. 

Electronic digital computers have made possible the Internet and the interactive electronic 
global library that is called the World Wide Web. The Web is now larger than any physical 
library and is continuing to grow quite rapidly.  

The size and availability of the Web provides considerable added importance to students 
learning to read across the curriculum. Education has many goals. One of the goals is for 
students to develop the knowledge and skills to effectively deal with a broad range of problems 
that they will face as adults, at home, at work, and at play. Thus, we want students to learn to 
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read well enough in each discipline that they study so they can make effective use of this reading 
to learn the discipline and help solve problems they encounter within the discipline. Part of a 
modern education is learning to make effective use of the Web (global library). 

It is helpful to think of the Web (global library) in terms of a physical library that contains 
books, journals, magazines, maps, and other physical documents. Certainly, the Web “contains” 
huge numbers of such documents. However, the Web is far more than a static library. Many of 
the Web pages that one can access are not merely passive storage sites. They are interactive aids 
to learning and to solving problems. Think of it this way. A handheld calculator is an interactive, 
active aid to solving certain calculation problems. Give it a calculation to perform, and it can 
automatically carry out the calculation. Similarly, many Web sites can automatically solve quite 
complex problems, drawing upon the power of sophisticated computers to do the computations. 

The Web is many other things. For example, the Web includes a very large number of 
business sites that sell goods and services. The Web provides ways for people to communicate, 
collaborate, and to share their pictures, writings, and music. The Internet and the Web are 
contributing significantly to the development of what Marshall McLuhan called the global 
village (McLuhan, n.d.). 

To conclude this section, think about math aspects of the Internet and the Web. How do they 
affect what constitutes a good math education for life in today’s and tomorrow’s societies? What 
can you be doing as a teacher of math to better prepare your students to deal with the math 
aspects of their lives as they become adults? 

Assimilation and Accommodation in a Discipline 
What happens to a discipline when something new such as computers and then the Internet 

and then the Web come along? I find it helpful to think in terms of Piaget’s ideas of assimilation 
and accommodation in human development. 

Because ICT provides such a wide range of tools, essentially every academic discipline has 
been faced by issues of assimilation and accommodation. When computers began to come into 
widespread use, one of the first things to happen in higher education was the decision to create  
or not to create a new department focusing on computer and information science. During the 
1960s and 1970s, such departments were created in Business, Engineering, and Liberal Arts. 
These new departments can be thought of as accommodations on the part of the colleges and 
universities.  

Eventually many non-computer departments began to offer computer-related coursework. 
Initially a very few courses were offered, and ICT was integrated into some existing courses. 
This can be thought of as an assimilation approach. Thus, for example, an English Department 
might offer sections of Freshman English Composition in computer labs. Students would learn to 
compose using a computer, and their inclass composition quizzes would require use of the 
computer. A Library School might offer a course on information retrieval from both hard copy 
and electronic sources. 

Other parts of higher education found that assimilation did not suffice. The Art Department 
at the University of Oregon provides a good example. In addition to the traditional art programs 
of study they offered, they eventually established a very large program in Digital Art. The Music 
School at the University of Oregon has a large Digital Music program of study. 
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What happened in Mathematics Departments is quite interesting. Many such departments 
began to offer courses in computer programming and then courses in computer science. Often 
this led to the establishment of a Department of Computer Science through a transfer of courses 
and faculty to the new department. In other cases, computer science remained in the Mathematics 
Department. In either case, graphing calculators have been assimilated into the math curriculum. 
However, most coursework in math departments has been little changed by computers. 

The same statements hold true for precollege math. The National Council of Teachers of 
Mathematics has been recommending use of calculators through the precollege curriculum since 
1980, and calculators are part of the NCTM Principles and Standards. Math assessment at state 
and national levels typically now allow use of calculators. At the elementary school level, 
however, many teachers do not routinely integrate use of calculators into the curriculum. They 
maintain a traditional curriculum, while them make some modest efforts to assimilate 
calculators. They do not make significant changes in the curriculum that are required for 
effective use of calculators and computers. For the most part, computers have had little impact 
on the precollege math curriculum. 

Your Knowledge of Medicine vs. Your Knowledge of Math 
The What is a Discipline list given earlier in this chapter includes the idea of accumulated 

accomplishments within a discipline. Just for the fun of it, think about your knowledge of the 
accumulated accomplishments in medicine. You know quite a bit about a wide range of diseases, 
germs, bacteria, viruses, a wide range of drugs and vaccines, various types of surgery, and so on. 
You know some things about DNA, cloning, and genetic engineering. Perhaps you know your 
blood type, and that there are different blood types. Your accumulated knowledge in medicine is 
well beyond that of the world’s best physicians and medical researchers of a few hundred years 
ago. 

Now, contrast that with your knowledge of the accumulated accomplishments in math. Can 
you name some of the accumulated accomplishments of math? How does your list compare to 
your knowledge of medicine? (Remember, Isaac Newton and others developed calculus about 
350 years ago, and its mathematical foundations go back a long time before then.) 

What might you conclude from this activity? You have learned a lot about the discipline of 
medicine through your informal efforts and the efforts of our schools. Your informally learned 
knowledge of medicine may well exceed your school learning in this area. This is because 
medicine is relevant to your everyday life. Think about what aspects of math are relevant to your 
everyday life. Think about what aspects of the K-8 school math curriculum are relevant to the 
everyday lives of K-8 students. What might you and other K-8 teachers do to make math more 
relevant across the entire curriculum and in the lives of your students? 

Reflexive Reading for Constructivist Learning 
This book contains a relatively high density of Big Ideas. If you read this book in the same 

manner and at the same rate as you read a short story or a novel, you will gain very little from it. 
To gain appreciable benefit from reading this book, you will need to read in a reflective manner, 
pausing frequently to think about what you already know and how it fits in with what you are 
reading. You will need to construct meaning that integrates into and adds to your current 
knowledge and understanding. That is, you will need to practice constructivist learning (Ryder , 
n.d.) and reflexivity. 
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In essence, that is what the learning theory called constructivism is all about. Constructivism 
is a learning theory applicable to learning in each discipline. It is a theory about developing 
patterns in one’s brain, and then building on these patterns. It is important in the teaching and 
learning of math, as well as all other disciplines. Thus, you might want to spend a little time 
thinking about your preparation to help your future students learn math (and other disciplines) in 
a constructivist manner (Math Forum, n.d.). 

The activities in this document are intended to encourage you to think, and to think about 
your thinking. Thinking about your thinking is called metacognition. It is an important 
component of formal and informal education at all grade levels and in all disciplines. 
Metacognition about a discipline you are studying is an important aid to increasing your level of 
maturity in the discipline. 

Learning About Learning 
One of the goals of this book is to encourage you to think about what you, personally, can do 

to improve our educational system. Teaching is a very challenging and demanding profession. 
Good teachers are always learning and growing professionally. You may find it useful to make a 
copy of the discipline-defining bulleted list so you can refer back to it as you develop lesson 
plans and as you engage in your everyday activities as a (constructivist) teacher. 

Moreover, you should structure your professional career as a teacher to allow significant time 
for learning. There is a huge amount of research and practitioner knowledge on the craft and 
science of teaching and learning. Bransford (1999) provides an excellent overview of this field, 
and the book can be read free from the Website listed in the reference. 

On September 30, 2004 the National Science Foundation announced it had committed $36.5 
million to fund three major research centers in the area of Learning About Learning (NSF, 2004). 
Quoting from this announcement: 

How do we learn? This most fundamental ability comes about through the complex interplay of 
genes, brain-based neural mechanisms, developmental trajectories, and social and physical 
environments. These processes of learning are just beginning to be understood. A deeper 
understanding of learning will allow scientists and educators to devise methods for improving how 
humans learn and develop machines that can perform tasks intelligently and independently. 

NSF has launched the new Science of Learning Centers to meet the challenge of learning about 
learning. Their goal is to make new discoveries about the foundations of learning across a wide 
range of learning situations—from processes at the cellular level to complex processes engaging 
different brain areas, to behaviors of individuals, to interactions in the classroom, to learning in 
informal settings, to learning performed by computer algorithms. 

See http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0354400 for 
information about an April 1, 2005 award of more than $4 million made under this grant 
program. Here is a quote from the abstract of the proposal. 

Education changes the brain, and understanding this complex process will be fundamental to 
creating a science of learning. Based on our understanding of how the brain encodes, stores, and 
activates knowledge, what are the barriers to learning, and how can ways around those barriers be 
implemented? What is the brain-basis of core content areas of learning, including language, 
math, science, and literacy? [Bold added for emphasis.]  

See http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0350277 for 
information about a September 1, 2004 award of about $180,000 made under this grant program. 
Here is a quote from the abstract of the proposal: 

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0354400
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0350277
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This catalyst project lays the foundation for a future NSF Science of Learning Center that will 
focus on the interrelationships among mathematics, language, and cognition in the learning 
process. It will examine how deaf and hard-of-hearing students (K-12 through post-secondary 
education) learn mathematics as compared to hearing peers. The operational definition of 
mathematics for this project is the target learners' abilities for conceptual understanding, 
procedural knowledge, and problem solving, as well as their powers to reason, make 
connections, and communicate mathematical knowledge. [Bold added for emphasis. Notice the 
math and language connection. The last sentence in the quoted material seems closely aligned with 
helping students develop mathematical maturity.] 

Learning about learning is an important research topic. However, it is also a core component 
of learning throughout all formal and informal education. One of your jobs as a teacher of 
mathematics is to help your students gain increasing knowledge and skills about how to learn 
math—that is, help them to increase this aspect of their math maturity. 

Final Remarks 
There are literally thousands of disciplines sub disciplines, sub sub disciplines,…, in which 

various people work to develop a useful or higher level of expertise. It can take many thousands 
of hours of study and practice to achieve a high level of expertise in a narrow sub discipline or a 
sub sub discipline. For example, think of the discipline of medicine, the sub discipline of 
surgery, and the sub sub disciplines of eye surgery or brain surgery. 

Our educational system is designed to lay the foundations for students to eventually move 
into disciplines and sub disciplines of their choice. Learning to read and then reading to learn is 
stressed in school because reading to learn is very important in learning other disciplines. 

Similarly, math is stressed because math plays an important role in many other disciplines. In 
parallel with reading to learn, students studying math need to learn to learn math. An important 
component of this is learning to read math both as an aid to reading and understanding problems 
that contain math, and also as an aid to learning math. 

K-8 School Applications 
2.1 Carry on a discussion with your students about two or three of the subjects 

(disciplines, with math being one of the disciplines) they are learning about. 
Students are to talk about how the subjects are the same and how they are 
different. They are to talk about how one shows knowledge and skill in each of 
the subjects. They are to talk about which subject is the most fun and which is 
the least fun, and why. As you listen to and participate in this conversation, 
listen for comments about problems and problem solving. If a student talks 
about problem solving in a non-math discipline, or if no student mentions this 
idea, use this as a teachable moment to expand on the fact that problem solving 
is part of every discipline. 

2.2 Carry on a discussion with your class about uses they have made of things 
learned in school. Help them to explore what it means to make use of things 
they are learning. A use might be just bringing a topic up in a conversation with 
parents, siblings, or others. Or, it might be to answer a question, help solve a 
problem, or help accomplish a task. Make sure the discussion includes a focus 
on uses the students have made of math learned in school. As you listen to their 
comments about use of math, pay particular attention to whether the 
applications are based on what they are learning in school, or whether they can 
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be learned and used without going to school. Children throughout the world 
who grow up in environments that do not include formal schooling still manage 
to learn a lot of math that they use in an everyday basis.  

Activities for Self-Assessment, Assignments, and Group Discussions 
2.1 Spend some time thinking about the What is a Discipline list from the point of 

view of your preparation to teach the various subjects you currently teach or are 
preparing to teach. Select two disciplines—one being math—and do a 
compare/contrast between the two disciplines. Share some of your insights and 
feelings from doing this activity. 

2.2 Think about the K-8 school math curriculum that was in place when you were in 
school and/or that you have observed in more recent visits to schools. Discuss 
some of the aspects of the discipline of mathematics that are in the curriculum, 
some aspects that you feel should be added to the curriculum, and some aspects 
that you feel should be deleted from the curriculum. Make sure you give careful 
thought to how calculators and computers are affecting or could be affecting the 
curriculum. 

2.3 Reexamine the four Big Ideas given in the Preface: A) Math content versus 
math maturity; B) Math developmental theory; C) Computational math and 
computational thinking; and D) Learning to learn math. Explain what each of 
these ideas means to you, and what (if anything) this chapter has contributed to 
your current level of understanding of the topics. 



Dave Moursund: Improving Math Education in K-8 Schools 

Page 27 

Chapter 3 

Problem Solving 
If I had eight hours to chop down a tree, I'd spend six 
sharpening my axe. (Abraham Lincoln) 

The reason most kids don’t like school is not that the 
work is too hard, but that it is utterly boring. 
(Seymour Papert) 

Judge a man by his questions rather than his answers. 
(Voltaire) 

Problem solving lies at the heart of each discipline. However, the nature of the problems 
being addressed and the methodologies being used varies considerably from discipline to 
discipline. This chapter provides a brief introduction to problem and problem solving. 

As you read this chapter, keep in mind that math is both a discipline in its own right and is 
also a powerful aid to representing and solving problems in many other disciplines. Every 
discipline deals with problems, and math is often a useful aid to dealing with the problems in 
disciplines outside of mathematics. 

Problem Solving 
I use the term problem solving in a very broad sense. For me, problem solving includes 

dealing with: 
• Question situations: recognizing, posing, clarifying, and answering questions. 

• Problem situations: recognizing, posing, clarifying, and solving problems. 
• Task situations: recognizing, posing, clarifying, and accomplishing tasks. 

• Decision situation: recognizing, posing, clarifying, and making decisions. 
• Using higher-order, critical, creative, and wise thinking to do all of the above. Often 

the “result” is shared or demonstrated as a product, performance, or presentation. 
Here is a definition of the word problem that I have found useful in my teaching of 

preservice and inservice teachers at all grade levels and in a variety of subject areas: 
You (personally) have a problem if the following four conditions are satisfied: 

1. You have a clearly defined given initial situation. 

2. You have a clearly defined goal (a desired end situation). Some writers talk about having 
multiple goals in a problem. However, such a multiple goal situation can be broken down into 
a number of single goal problems. 

3. You have a clearly defined set of resources that may be applicable in helping you move from 
the given initial situation to the desired goal situation. These typically include some of your 
time, knowledge, and skills. Resources might include money, the Web, and the telephone 
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system. There may be specified limitations on resources, such as rules, regulations, guidelines, 
and timelines for what you are allowed to do in attempting to solve a particular problem.  

4. You have some ownership—you are committed to using some of your own resources, such as 
your knowledge, skills, time, and energy, to achieve the desired final goal. 

 The fourth component of this definition is particularly important. Unless a student has 
ownership—an appropriate combination of intrinsic and extrinsic motivation—the student does 
not have a problem. Motivation, especially intrinsic motivation, is a huge topic in its own right, 
and I will not attempt to explore it in detail in this book. A book chapter on motivation is 
available at (Retrieved 5/25/06) 
http://education.calumet.purdue.edu/vockell/EdPsyBook/Edpsy5/Edpsy5_intro.htm.) You 
certainly know that many teachers are not very successful in helping their students to develop 
intrinsic motivation in their math studies. As students progress through elementary school and 
into secondary school, the math they study seems to have less and less meaning and intrinsic 
motivation for many students.  

As noted at the start of this chapter, problem solving lies at the core of each discipline. 
Perhaps you have heard people ask questions such as “Why do I need to study math?” or “Why 
do I need to study xyz (where xyz is some other discipline that is a required part of the 
curriculum)?” 

While there are many possible answers to such questions, a unifying answer is that by doing 
so you will be able to solve a variety of problems that you cannot currently solve. You will learn 
about some of the important accomplishments within the discipline, some of its history, and 
some of its language. As you learn the language and notation, you will get better in making use 
of and building on the accumulated knowledge of the discipline. You will learn to precisely 
represent problems to be solved and tasks to be accomplished so that you can communicate your 
needs and interests to other people and to Information and Communication Technology (ICT) 
systems. 

ICT provides powerful information retrieval systems (an aid to building on the previous work 
of others) as well as tools that can solve or greatly aid in solving a wide range of problems. A 
later chapter of this book is devoted to ICT and math education. 

George Polya 
George Polya was one of the leading mathematicians of the 20th century, and he wrote 

extensively about problem solving. His 1945 book, How to Solve It: A New Aspect of 
Mathematical Method, is well known in math education circles (Polya, 1957). 

The Goals of Mathematical Education (Polya, 1969) is a talk that he gave to a group of 
elementary school teachers.  

To understand mathematics means to be able to do mathematics. And what does it mean doing 
mathematics? In the first place it means to be able to solve mathematical problems. For the higher 
aims about which I am now talking are some general tactics of problems—to have the right 
attitude for problems and to be able to attack all kinds of problems, not only very simple problems, 
which can be solved with the skills of the primary school, but more complicated problems of 
engineering, physics and so on, which will be further developed in the high school. But the 
foundations should be started in the primary school. And so I think an essential point in the 
primary school is to introduce the children to the tactics of problem solving. Not to solve this 
or that kind of problem, not to make just long divisions or some such thing, but to develop a 
general attitude for the solution of problems. [Bold added for emphasis.] 

http://education.calumet.purdue.edu/vockell/EdPsyBook/Edpsy5/Edpsy5_intro.htm
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In this statement, Polya is talking both about problem solving throughout the field of math, 
and also about use of math in solving problems in other disciplines. He is also talking about “the 
right attitude and to be able to attack all kinds of problems.” This statement is about math 
maturity, rather than about knowledge of any specific math content. 

As the following quotation from the same talk indicates, Polya was particularly concerned 
with helping students learn to think mathematically when working on problems. 

We wish to develop all the resources of the growing child. And the part that mathematics plays is 
mostly about thinking. Mathematics is a good school of thinking. But what is thinking? The 
thinking that you can learn in mathematics is, for instance, to handle abstractions. Mathematics is 
about numbers. Numbers are an abstraction. When we solve a practical problem, then from this 
practical problem we must first make an abstract problem. Mathematics applies directly to 
abstractions. Some mathematics should enable a child at least to handle abstractions, to handle 
abstract structures. 

Notice the emphasis on representing problems in the abstract words and symbols of math. 
Later in this book I will present some ideas from Piaget and others on cognitive developmental 
theory. Problem solving and abstraction lie at the Formal Operations end of the Piagetian scale 
for cognitive development. As we teach math, we are attempting to help students move up this 
cognitive development scale. 

Building on Previous Work 
One of the most important ideas in problem solving is to build on the previous work of 

yourself and others. That is, one way to solve a problem is to retrieve from your own memory 
either a solution to the problem or a method for solving the problem. Another way is to retrieve 
this information from another person, from a book, from a machine such as a cash register, or 
from a calculator or a computer. If you are repeatedly faced by a particular problem or type of 
problem, it is very useful to memorize one or more solutions to the problem, or a general method 
for solving the problem in a timely fashion. 

Mathematics is a very large discipline because a large number of people have been working 
throughout recorded history to build and accumulate knowledge in this field. A research 
mathematician may spend years working on a single problem or a small group of related 
problems. If the mathematician is successful, then information about solving the problem or 
group of problems is published and becomes part of the accumulated knowledge of the field. 

The human race’s accumulated knowledge in mathematics is stored in hundreds of thousands 
of books, monographs, journals, Web publications, and other forms of publication. Much of this 
accumulated knowledge is only accessible to those who have studied math at a graduate school 
level. While it is easy to talk about the importance of building on the accumulated knowledge of 
oneself and others, it can take many years of hard work to develop the knowledge needed to read 
and understand the accumulated research knowledge in a discipline. 

Moreover, currently most of the accumulated knowledge in a field such as math is not readily 
available. It is scattered throughout the libraries of the world, and it is written in many different 
languages. Over time, such difficulties of accessing materials will decrease as the materials are 
digitized and become accessible through the Web. Progress in the computer translation of 
languages will also help. 

To summarize, one goal in math education needs to be that students learn to access the 
accumulated math knowledge that is appropriate to their educational level and needs, and to 
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learn to make use of this accumulated knowledge to solve problems and accomplish tasks. That 
is, students need to learn to read math with understanding. One aspect of this is having students 
learn to read math well enough so that they can “look up” and read the math that they have 
studied in their previous years of studying math in school. A somewhat different way to think 
about this is that when a student is learning a math topic, the student should be learning enough 
to “relearn” the topic in the future, after a substantial amount of forgetting has occurred. 

To Memorize or not to Memorize: That is the Question 
Rote memory is useful in problem solving. However, a focus on rote memory tends to be a 

poor approach to getting better at math problem solving. Indeed, rote memorization without 
understanding is a very poor approach to getting better at solving novel, challenging problems in 
math or in any other discipline. 

Our math education system has trouble in creating an appropriate balance between 
memorization and learning with understanding. There are various reasons for this. One is that 
initial learning of math tends to be rote memorization with relatively little understanding. It is 
easy to memorize a sequence of sounds such as one, two, three, four, … and repeat them when 
prompted. For many, it is a significant step to move from this to creating a one to one 
correspondence that results in naming the number of items in a small set. 

As children enter school, they and their math teachers are faced by memorization versus 
understanding. The line of least resistance and seemingly quickest results tends to be 
memorization, often accompanied by very little understanding. It is impressive to hear a young 
child parrot addition and multiplication facts. Often, however, if you delve into such a child’s 
understanding of the numbers, operations, and memorized facts, you find that the learning is 
quite shallow. 

This realization provides one of the major underpinnings of new new math. The NCTM 
strongly recommends that starting at the earliest grade levels in school, the math curriculum 
should strive for student understanding rather than for students being able to quickly parrot 
memorized answers. 

At the early grade levels, computers enter into this discussion because drill and practice, 
along with speed and accuracy drills, are easily administered by computers. Moreover, the 
software can keep task of errors and provide extra practice on items that the student has missed. 
Thus, the rote memorization process can be speeded up for many students. 

Calculators and computers also enter this discussion. One way to think about a calculator is 
that it is an information retrieval device. It can do calculations so fast it in almost as though the 
calculator has memorized the answers and is merely recalling from its rote memory. Extending 
this idea to computers and the Web, we can think of a computer both as having the ability to 
quickly “figure out” answers to certain types of problems, and also to quickly “look up” answers 
from the huge amount of stored information it has available. In that sense, a computer can be 
thought of as an auxiliary brain, able to do certain types of brain-like tasks and able to store a 
huge amount of information.  

In terms of education, the computer’s computational and storage capabilities compete with a 
human’s computational and information storage and retrieval capabilities. A good education 
provides a balance between the learner and the computer that is appropriate to the needs and 
capabilities of the learner.  
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Polya’s 6-Step (Heuristic) Strategy  
The research literature on problem solving is quite large, and math education includes a 

number of heuristic strategies for attaching math problems. Examples of heuristic strategies 
include: draw a picture; break a big problem into smaller pieces; trial and error; develop a 
somewhat similar but simpler problem; and do library research. Each of these examples is a 
heuristic—a plan of action that may help, but is not guaranteed to help. This is in contrast with 
an algorithm, which is guaranteed to solve a particular category of problem or accomplish a 
particular task in a finite number of steps. 

Thinking mathematically and solving math problems are large topics and are important 
components of any math or math education course. While these two topics are beyond the scope 
of this short book, all readers should be interested in Polya’s (1957) general heuristic strategy for 
attempting to solve any math problem. I have reworded his strategy so that it is applicable to a 
wide range of problems in a wide range of disciplines—not just in math. This six-step strategy 
can be called the Polya Strategy or the Six Step strategy. Note that there is no guarantee that use 
of the Six Step strategy will lead to success in solving a particular problem. You may lack the 
knowledge, skills, time, and other resources needed to solve a particular problem, or the problem 
might not be solvable. 

1. Understand the problem. Among other things, this includes working 
toward having a well-defined (clearly defined) problem. You need an 
initial understanding of the Givens, Resources, and Goal. This requires 
knowledge of the domain(s) of the problem, which could well be 
interdisciplinary. You need to make a personal commitment (Ownership) 
to solving the problem. 

2. Determine a plan of action. This is a thinking activity. What strategies will 
you apply? What resources will you use, how will you use them, in what 
order will you use them? Are the resources adequate to the task? On hard 
problems, it is often difficult to develop a plan of action. Research into 
this situation suggests that many good problem solvers “sleep on the 
problem.” That is, after working on a problem for quite awhile with little 
or no success, they put the problem out of mind and do something else for 
days or even weeks. What may well happen is that a subconscious level 
the mind continues to work on the problem. Eventually, an “ah-ha” 
sometimes occurs. 

3. Think carefully about possible consequences of carrying out your plan of 
action. Focus major emphasis on trying to anticipate undesirable 
outcomes. What new problems will be created? You may decide to stop 
working on the problem or return to step 1 as a consequence of this 
thinking. 

4. Carry out your plan of action. Do so in a thoughtful manner. This thinking 
may lead you to the conclusion that you need to return to one of the earlier 
steps. Note that this reflective thinking leads to increased expertise. 

5. Check to see if the desired goal has been achieved by carrying out your 
plan of action. Then do one of the following:  
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A. If the problem has been solved, go to step 6. 
B. If the problem has not been solved and you are willing to devote more 

time and energy to it, make use of the knowledge and experience you 
have gained as you return to step 1 or step 2. 

C. Make a decision to stop working on the problem. This might be a 
temporary or a permanent decision. Keep in mind that the problem you 
are working on may not be solvable, or it may be beyond your current 
capabilities and resources. 

6. Do a careful analysis of the steps you have carried out and the results you 
have achieved to see if you have created new, additional problems that 
need to be addressed. Reflect on what you have learned by solving the 
problem. Think about how your increased knowledge and skills can be 
used in other problem-solving situations. (Work to increase your reflective 
intelligence!) 

Many of the steps in this six-step strategy require careful thinking. However, there are a 
steadily growing number of situations in which much of the work of step 4 can be carried out by 
a computer. The person who is skilled at using a computer for this purpose may gain a significant 
advantage in problem solving, as compared to a person who lacks computer knowledge and skill. 

Computers and Math Problem Solving 
I find the diagram given in figure 3.1 to be particularly useful when I talk about computers 

and math problem solving at the precollege level. With some effort, this diagram can be 
modified to fit problem solving in other disciplines. 

Clearly-defined 

Problem to be 

Solved

Math 

(Computational or 

Algorithmic)  

Problem

Solved 

Math 

Problem

2

3

4

Math-oriented Problem Situation 

(Not Clearly Defined)

1

Statement About 

the Problem to be 

Solved

5

6

 
Figure 3.1 Math problem solving.  

The six steps illustrated are 1) Problem posing and problem recognition; 2) mathematical 
modeling; 3) Using a computational or algorithmic procedure to solve a computational or 
algorithmic math problem; 4) Mathematical "unmodeling"; 5) Thinking about the results to see if 
the Clearly-defined Problem has been solved; and 6) Thinking about whether the original 
Problem Situation has been resolved. Steps 5 and 6 also involve thinking about related problems 
and problem situations that one might want to address or that are created by the process or 
attempting to solve the original Clearly-defined Problem or resolve the original Problem 
Situation. 
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In some sense, all of the steps except (3) involve higher-order knowledge and skills. They 
require a significant level of math maturity and cognitive activity. Step (3) lends itself to a rote 
memory approach. It is highly desirable that students develop speed and accuracy in certain 
types of mathematical operations. However, the human mind is not good at memorizing math 
procedures and then carrying them out rapidly and accurately with the assistance of pencil and 
paper. On the other hand, calculators and computers are really good at carrying out math 
procedures.   

Precollege teachers who teach math tend to estimate that about 75% of the math education 
curriculum focuses on (3). [Note:  This is an estimate I have made based upon working with a 
very large number of teachers. I don’t know of any published research that backs up my 
assertion.] This leaves about 25% of the learning time and effort focusing on the remaining five 
steps. Appropriate use of calculators and computers as tools, and Computer-Assisted Learning, 
could easily decrease the time spent on (3) to 50% or less of the total math education time. This 
would allow a doubling of the time (from 25% to 50%) devoted to instruction and practice on the 
higher-order knowledge and skill areas. 

Correctness of a Solution 
Suppose that you were given the task of writing a persuasive paper about some aspect of our 

national election system. You ask the teacher, “How long does it need to be?” The teacher says 
that it needs to be sufficiently long to accomplish the task, and that grading will be based on the 
quality of the paper. The question for you is, how can you tell when you have accomplished the 
task? 

Remember, problem solving is part of every discipline. With the broad definition of problem 
that we are using, your writing task is a writing problem to be solved. It is certainly different than 
a math problem! Think about doing a compare and contrast with a math assignment. Here are 
some of my thoughts as I pretend to be a student: 

1. If the teacher had just said how long the paper was to be, I would know I 
was close to done when I had achieved the required length. That is a little 
bit like an assignment in math where I am supposed to do all of the odd 
numbered problems at the end of a chapter. I know I am done when I have 
completed all of the odd numbered problems. But, I may have made 
mistakes in solving some of the problems. I guess that is a little like 
having errors in the writing and in the logic of the persuasive arguments. 

2. The teacher didn’t tell me if I needed to have a bibliography. I suppose I 
do, because this seems like the type of writing problem that requires 
research. When I am doing a math assignment, I sometimes need to look 
back in the book to see how to solve a particular type of problem. 
Occasionally I can’t find an example in the book, perhaps because it is a 
problem from last year or several years ago. I guess it is easier to do 
library research in non-math areas. 

3. In my writing, I will have a goal of convincing the reader of “something,” 
through my careful logic and using information from the literature. First, I 
need to get a clear idea of my goal—what I want to convince my reader 
about. I suppose this is a little bit like solving a math problem. In solving a 
math problem, I usually have a clear goal, and I carry out a sequence of 
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steps. Each step is sort of like a piece of an argument, moving me in a 
logical fashion towards my goal. 

4. I know that writing is a process, and that I will be doing “revise, revise, 
revise” to produce as good a product as possible in the time that I am 
willing to devote to the writing task. I know that my paper will not be 
perfect—that with more time, I could make it better. This seems different 
than solving a math problem. When I solve a math problem and get an 
answer, I am done. That assumes, of course, that I have some way of 
telling that I have gotten a correct answer. Of course, my math problem 
(task) might be to make a proof. That is sort of like making a persuasive 
argument. But, in math it is possible to make a persuasive argument that is 
really convincing. I guess that is what a math theorem is all about. 

5. Etcetera, etcetera, etcetera.  
All of the items in the list can be considered as aspects of math maturity. The 4th point in the 

list is especially important in math. In some math problem-solving situations, it is possible to 
check an answer. For example, addition can be checked by subtraction, division by 
multiplication, and so on. In some math problems, one can check an answer by testing to see if it 
meets the conditions specified in the problem. For example, suppose I am supposed to find three 
consecutive positive integers whose sum is a perfect square of an integer. If I find an answer, I 
can easily check to see if it is correct. If I can’t find an answer, I can always try to prove that 
there is no answer. However, that requires me to develop a carefully constructed chain of logical 
argument that will be convincing to my readers. 

Final Remarks 
Remember, problem solving lies at the core of every discipline. When solving school 

problems, students often come to believe that the goal is to get a correct answer. Actually, the 
main goal is to get better at solving problems. Once one starts to face real world problems, the 
there is no answer book or teacher to provide immediate feedback on correctness or usefulness of 
one’s answer or answers. 

In math and in all other disciplines, students need to learn to depend upon themselves and the 
quality of their own work as an aid to checking the quality and usefulness of the results.  

K-8 School Applications 
3.1 Having a person “think out loud” as they attempt to solve a problem is a 

standard research tool. (To learn more about facilitating this type of activity, see 
http://www.stcsig.org/usability/topics/articles/tt-think_outloud_proc.html.) It 
can also be useful both as an aid to learning and as a vehicle through which a 
teacher can gain insight into a student’s learning and problem-solving 
difficulties. Select some math problems (as distinguished from math exercises) 
of a difficulty level appropriate to your students. Train your students in carrying 
out this thinking out loud activity through use of volunteers who role model it. 
In this training process, you are role modeling how to interact with the out loud-
thinker, and how to provide appropriate feedback. Gradually work toward the 
situation in which students can work in pairs or small teams, with a student 
thinking out loud in the team, explaining his or her thinking processes when 

http://www.stcsig.org/usability/topics/articles/tt-think_outloud_proc.html
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attempting to solve a problem. The listeners or listeners practice interaction with 
the talker, gaining skill in listening and providing appropriate feedback. 

3.2 This chapter contains a 4-part definition of the term “problem.” Since problem 
and problem solving are key components of each discipline you teach, it seems 
reasonable that your students should be learning definitions of these terms that 
are appropriate to their developmental level and the disciplines they are 
studying. Set yourself a teaching goal of having your students understand 
meanings for math problem and math problem solving that are appropriate to 
the level at which you teach. You might begin such a lesson by first asking 
students to say what they think a math problem is, and what they think math 
problem solving is. You might then continue by looking at some examples of 
problems and problem situations that may or may not be math problems, and 
carrying on a discussion with your students about these examples and non-
examples. You might continue by asking your students what it means to solve a 
math problem. For example, in this discussion you might hear a student say, 
“Do things to get the right answer.” You might use that response to explore 
situations in which a math problem has no solution, only one solution, or more 
than one solution. You might raise the question, how can one tell if a proposed 
answer is right? This is a big and important topic in its own right. 

Activities for Self-Assessment, Assignments, and Group Discussions 
3.1 People teaching math often try to distinguish between an exercise and a 

problem. An exercise is practice in applying and carrying out a procedure that 
the students have recently encountered. A problem is more challenging, 
requiring higher-order cognition. The diagram in figure 5.1 shows that a number 
of steps are required in working from a typical math-related problem situation to 
a solved problem. What are your personal insights into the amount of math 
education time in K-8 school spent on exercises versus time spent on problems?  

3.2 You know that there are 50 states in the United States, that each has a 
geographical location, Governor, state capital, two Senators, a number of 
Representatives, and so on. Think about what data for each state is worthwhile 
for most students to memorize. As you do this, think about the concepts such as 
geographical location, state capital, government and governmental officials, and 
so on. If a person learns the concepts, then information about specific details 
can be retrieved relatively quickly from the Web or other resources. What are 
your current thoughts on what to memorize and what to “understand” and be 
able to look up? What would it take to change your current position? 

3.2 Think about some “real world” math problems that you have encountered 
recently. How did you go about solving these problems? For example, which 
did you solve by quick recall of memorized information, on which did you seek 
help on, on which did you make use of calculators or computers, and what other 
approaches did you use? 
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Chapter 4 

What is Mathematics?  
Woodrow Wilson, like most Americans of his time, 
despised mathematics, complaining that "the natural 
man inevitably rebels against mathematics, a mild 
form of torture that could only be learned by painful 
processes of drill." (Page 52, A Beautiful Mind, 
Sylvia Nasar)  

The tools of mathematics are abstraction, symbolic 
representation, and symbolic manipulation. However, 
being trained in the use of these tools no more means 
that one thinks mathematically than knowing how to 
use shop tools makes one a craftsman. (Alan 
Schoenfeld, 1992). 

It is not easy to give a useful and simple answer to the question: What is mathematics? Many 
mathematicians and math educators have attempted to answer this question. This chapter 
provides some answers from a math content point of view, while the next chapter provides an 
answer from a math maturity point of view. In both chapters, the goal is to help increase your 
math pedagogical knowledge in a manner that will help you be a better teacher of mathematics. 

What is Math? 
Many people have addressed the question, “What is mathematics?” See, for example, (Lewis, 

n.d.) and the many publications of the National Council of Teachers of Mathematics. Here are 
two good examples of answers to the question, “What is mathematics?” 

Mathematics is an inherently social activity, in which a community of trained practitioners 
(mathematical scientists) engages in the science of patterns—systematic attempts, based on 
observation, study, and experimentation, to determine the nature or principles of regularities in 
systems … The tools of mathematics are abstraction, symbolic representation, and symbolic 
manipulation. However, being trained in the use of these tools no more means that one thinks 
mathematically than knowing how to use shop tools makes one a craftsman. Learning to think 
mathematically means (a) developing a mathematical point of view—valuing the processes of 
mathematization and abstraction and having the predilection to apply them, and (b) developing 
competence with the tools of the trade, and using those tools in the service of the goal of 
understanding structure—mathematical sense-making (Schoenfeld, 1992). 

Notice the emphasis on thinking mathematically. One gains increased expertise in math by 
both learning more math and by getting better at thinking and problem solving using one’s 
knowledge of math. 

Mathematics is built on a foundation which includes axiomatics, intuitionism, formalism, logic, 
application, and principles. Proof is pivotal to mathematics as reasoning whether it be applied, 
computational, statistical, or theoretical mathematics. The many branches of mathematics are not 
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mutually exclusive. Oft times applied projects raise questions that form the basis for theory and 
result in a need for proof. Other times theory develops and later applications are formed or 
discovered for the theory. Hence, mathematical education should be centered on encouraging 
students to think for themselves: to conjecture, to analyze, to argue, to critique, to prove or 
disprove, and to know when an argument is valid or invalid. Perhaps the unique component of 
mathematics which sets it apart from other disciplines in the academy is proof—the demand 
for succinct argument that from a logical foundation for the veracity of a claim (Padraig & 
McLoughlin, 2002). [Bold added for emphasis.] 

Notice the emphasis on proof or disproof.  

Proof 
The word proof comes up in most attempts to define mathematics. Of course, the idea of 

proof or proving something is not restricted just to mathematics. A trial lawyer attempts to prove 
his or her case. A person attempts to prove that another person is wrong in a particular situation. 
Researchers in science attempt to prove scientific theories. 

Each discipline has its own ideas and standards about what constitutes a proof. Math proofs 
are designed to answer, once and for all, the correctness or incorrectness of a “mathematical” 
assertion. Suppose, for example, that I am exploring the sum of three consecutive integers. I see 
that 6 + 7 + 8 = 21, and 11 + 12 + 13 = 26. After looking at a lot of examples, I conjecture that if 
the first of the three consecutive integers is odd, then the sum is an even integer; if the first 
integer is even, then the sum is an odd integer. Looking at lots of example, and not finding any 
counter examples, may increase my confidence that my conjectures are correct. However, my 
failure to find a counter example does not constitute a proof. Think about definitions of odd and 
even integers. See if you can construct a convincing proof that my conjectures are correct.  

Then think about whether K-8 students, once they have encountered definitions of odd and 
even integers, might be able to develop convincing proofs. If the conjecture given above is too 
difficult for students at a particular age, how about considering the simpler conjecture that the 
sum of two consecutive integers is odd. A young child attacking this task might make use of 
small cubes, physically lining up rows of cubes to represent integers, and then arguing from the 
patterns that result. 

Finally, be aware that there are lots of simple proof-type situations that can be constructed for 
use in the K-8 school setting. To give one more example, suppose that students have learned the 
mathematical word mean. You might then have them compute the mean of various sets of three 
consecutive integers, looking for a pattern. Quite likely some of the students will note that the 
answers they obtain are always the middle one of the three consecutive integers. Can they 
construct a convincing argument that this is always the case? What if one wants to find the mean 
of five consecutive integers? 

When you present young students with such problems, you want to think carefully about 
what they may be learning. The examples given above might lead some students to think that the 
mean of a set of consecutive integers is an integer. With a little encouragement, some of your 
students might conjecture and then attempt to prove that “The mean of an odd number of 
consecutive integers is an integer, and the mean of an even number of consecutive integers is not 
an integer.”  
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Fluency and Proficiency  
The terms fluency and proficiency are often used in talking about goals and expertise in 

mathematics. The following definition of math proficiency is quoted from Kilpatrick et al. 
(2001), a report written for the National Academy of Sciences. 

Mathematical proficiency, as we see it, has five components, or strands: 
• conceptual understanding—comprehension of mathematical concepts, operations, and 

relations 

• procedural fluency—skill in carrying out procedures flexibly, accurately, efficiently, and 
appropriately 

• strategic competence—ability to formulate, represent, and solve mathematical problems 

• adaptive reasoning—capacity for logical thought, reflection, explanation, and justification 

• productive disposition—habitual inclination to see mathematics as sensible, useful, and 
worthwhile, coupled with a belief in diligence and one’s own efficacy. 

Warning! The mathematical proficiency bulleted list reflects many hundreds of hours of 
thinking by some of the world’s leading math educators. Did you read it in a reflective manner? 
Did you work to construct your own meaning? What aspects of the presented ideas will you 
remember five minutes from now, a day from now, or a year from now? 

For the most part, answers to the “what is math” question do not depend on specific areas of 
math content. The question and answers are part of math maturity. As you think about the 
mathematical proficiency bulleted list, you are working to increase an aspect of your math 
maturity that is very important to being a good teacher of math. 

As you construct and/or make use of a math lesson plan, you can think about how it fits in 
with and contributes to increasing your students’ mathematical proficiency. For example, 
compare having students work on a drill and practice page of arithmetic computations, versus 
students solving word problems, versus students creating word problems, versus students reading 
a science book and identifying math usage in science.  

Weaknesses in Our Math Education System  
Mathematics is a huge discipline. It has both great breadth and great depth. Depth, in this 

case, refers to a vertical structuring, in which “higher” levels of math build on “lower” levels of 
math. The scope and sequence of the precollege math curriculum is designed to help students 
gain both breadth and depth of knowledge and understanding. 

Out math education system faces a number of challenges. One is the issue of breadth versus 
depth. Out current system is sometimes criticized as being “A mile wide and an inch deep.” This 
is a criticism that students are not making enough progress to the “higher” levels (sometimes 
called “deeper” levels) of math. 

Another challenge is to decide specifically what to teach and the level of proficiency that is 
required to move on to the next unit or course.  

Many people argue that our math education system is not as good as it could be. They argue 
that students are not acquiring a sufficient level of math proficiency. Deborah Ball was the chair 
of a group of people studying the development of proficiency in math. Their report noted:  
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Developing proficiency in mathematics is important for all students. However, when considered in 
light of current standards, or compared with performance in other countries, evidence on student 
achievement in mathematics makes clear the need for substantial improvement. U.S. students do 
not, as a group, achieve high levels of mathematical proficiency. The nation must seek to narrow 
the achievement gaps between white students and students of color, between middle-class students 
and students living in poverty; gaps that have persisted over the past decade (Ball, 2002). 

Over the years, there have been several important international studies that help us 
understand math education in the United States versus math education in other countries. 

If you look at state and national assessments of math and science competence among our country's 
elementary and secondary schools today, you'll discover small pockets of excellence amid a broad 
swath of mediocrity. In fact, only a minority of U.S. students are meeting math and science 
proficiency benchmarks. 

International assessments from the Trends in International Mathematics and Science Study 
(TIMSS ) show U.S. students are at or below the international average and significantly behind 
their peers in Japan and Canada. TIMSS compared our most advanced students with those from 15 
other nations, and the brightest U.S. students scored dead last against international competitors in 
advanced math and physics assessments (Ruetters, 2002). 

Math Education Reform 
There are two obvious ways to go in considering math education reform. One can propose 

changes in the content scope and sequence, and one can propose changes in teaching 
methodologies. Of course, these two major issues can be merged, and that is what has tended to 
happen. Thus, at the current time there is a back to basics group and a new-new math group. The 
first group tends to emphasize both a back to basics”  content and also a back to basics teaching 
methodology. The second group tends to emphasis “new” content and teaching methodology . 

The Mathematically Correct (n.d.) Website presents arguments supporting back to basics and 
against the ideas of the new-new math education reformers. Quoting from their Website: 

Mathematics achievement in America is far below what we would like it to be. Recent "reform" 
efforts only aggravate the problem. As a result, our children have less and less exposure to 
rigorous, content-rich mathematics. 

The advocates of the new, fuzzy math have practiced their rhetoric well. They speak of higher-
order thinking, conceptual understanding and solving problems, but they neglect the systematic 
mastery of the fundamental building blocks necessary for success in any of these areas. Their 
focus is on things like calculators, blocks, guesswork, and group activities and they shun things 
like algorithms and repeated practice. The new programs are shy on fundamentals and they also 
lack the mathematical depth and rigor that promotes greater achievement. 

The Mathematically Sane (n.d.) Website presents arguments against the Mathematical 
Correct group and arguments supporting the new-new math.  

The Standards produced by the National Council of Teachers of Mathematics (NCTM, n.d.) 
represent the sense of direction of new-new math reform. The NCTM Standards are divided into 
five content standards and five process standards. None of the ten standards say anything about 
computation in their titles. The ten NCTM Standards contain 33 goals. Exactly one of the 33 
goals talks about computation—the traditional focus of much of the elementary school math 
curriculum! This particular goal statement is the Numbers and Operations standard, and it says, 
“compute fluently and make reasonable estimates.” 
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However, the NCTM emphasizes the importance of procedures and procedural thinking. For 
example, is a quote from (NCTM, n.d.):  

Learning the "basics" is important; however, students who memorize facts or procedures 
without understanding often are not sure when or how to use what they know. In contrast, 
conceptual understanding enables students to deal with novel problems and settings. They can 
solve problems that they have not encountered before. [Bold added for emphasis.]  

Like all educators, the math education community is struggling with computers. Here is 
material quoted from the NCTM Principles and Standards (NCTM, n.d.): 

Technology is essential in teaching and learning mathematics; it influences the mathematics that is 
taught and enhances students' learning. 

Calculators and computers are reshaping the mathematical landscape, and school mathematics 
should reflect those changes. Students can learn more mathematics more deeply with the 
appropriate and responsible use of technology. They can make and test conjectures. They can 
work at higher levels of generalization or abstraction. In the mathematics classrooms envisioned in 
Principles and Standards, every student has access to technology to facilitate his or her 
mathematics learning. [Bold added for emphasis.] 

Notice how this statement seems to separate computer technology from the content of 
mathematics. It seems to miss the point that computer science and mathematics strongly overlap. 
It does not reflect the importance of computational thinking or procedural thinking from a 
combined computer science and mathematics point of view. 

Research-based Reform 
There seem to be no end to suggestions on how to improve our math education system. There 

is a huge amount of literature containing suggestions. However, the research supporting these 
suggestions is not as strong as one might like (Gersten, 2002).  Moreover, many of these 
suggestions involve significant changes, and our math education system seems to have 
considerable resistance to such changes. 

Suggestions for improvement and/or approaches to improvement can be divided into major 
categories such as: 

1. Develop and implement a better curriculum. The National Science 
Foundation and other funding agencies have funded a number of such 
endeavors, and these have led to new research-based curriculum and 
supportive materials that have come into widespread use. This approach 
has the advantage that once the curriculum and materials have been 
developed, they can be mass produced and widely distributed. 

2. Require students to take more math courses. Require students to pass state 
tests in math in order to graduate from high school. Right now, the latter 
approach is gaining in popularity. If students do not meet high standards in 
math, don’t award them a high school diploma. This is a top down 
approach, with a major threat overhanging students that fail to achieve the 
standards that are being set.   

3. Require math teachers to be better prepared. Every child should have 
“good” math teachers. While such an approach has general appeal, it fails 
to take into consideration the difficulties of substantially improving the 



Dave Moursund: Improving Math Education in K-8 Schools 

Page 41 

math education preparedness of the huge number of teachers who teach 
math.  

4. Require that math instruction be given more minutes of school time per 
day and per school year. One approach to doing this is by requiring that 
the school day be longer and/or that the school year be longer. 

5. Related to (1), develop Computer-Assisted Learning or HIICAL math 
materials and make them widely available. Such materials can incorporate 
a number of important research-based aspects of the theory and practice of 
teaching and learning math. For example, instruction can be individualized 
so that it is appropriate to the math developmental level and the 
content/maturity levels of the learner. Moreover, if students are learning 
math in a HIICAL environment, then they have computers available to do 
and use the math they are learning. They also have computers available for 
information retrieval and for review of and further instruction  in topics 
that they have studied in the past. Thus, this approach can facilitate the 
thorough integration of ICT into the content and assessment of math 
education. 

6. Educate students to gradually take an increasing level of responsibility for 
their own learning. As students mature, the personal responsibility level is 
increased. This approach requires providing students with good 
opportunities to learn and suitable feedback mechanism. Some of the ideas 
of this approach are built into the computer games that so many students 
like to play. Such games are often very challenging. They provide a 
combination of intrinsic and extrinsic motivation that leads to learners 
focusing a tremendous amount of learning effort.  

Since new approaches are always in the process of being developed and implemented, it is 
difficult to predict what the future results will be. However, the past 40 years of such activities 
have not brought us significant improvement. 

Researchers talk about the fidelity of implementation of research-based changes in education. 
It turns out that it is very difficult to achieve a high level of fidelity—implementation of a quality 
equal to what was achieved during the research. In most situations, high quality implementation 
requires high quality teachers, school administrators, and others who are committed to making 
significant changes. The needed lengthy and ongoing staff development and support is seldom 
available. 

The items (5) and (6) on the list are gradually receiving more attention from researchers and 
funding agencies.  As noted in Gersten (2002), math education research points to the value of 
providing good feedback to students as to how well they are doing. It also supports providing 
positive reinforcement for good performance. My personal opinion is that the approaches 
described in (5) and (6) are most likely to lead to significant improvements in math education. 

Final Remarks 
Perhaps the most important thing to understand about math education reform is that it is 

complex and controversial. Progress in brain science and in the field of computers and information 
science contribute to this complexity. Lots of people feel that our math education system needs 
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to be changed. Different stakeholder groups have widely varying opinions on the types of 
changes that will produce an increased level of mathematical proficiency in our students. 

The complexity of needed changes, along with the difficulties of achieving widespread high 
fidelity implementation, suggest to me that ICT will play a major role.   

K-8 School Applications 
4.1 Pick a simple math exercise that is appropriate to the math level of your 

students. For example, the exercise might we, “What is two plus three?” at a 
first grade level. After you students agree on an answer, carry on a discussion 
using questions such as: A) How do you know that this is a correct answer? B) 
Is there more than one correct answer? and C) How would you go about 
changing the mind of someone who thinks that this is a wrong answer? 

4.2 Take a careful look at a math unit that you have taught or are preparing to teach. 
Think about what you want your students to gain in conceptual understanding, 
procedural fluency, strategic competence, adaptive reasoning, and productive 
disposition. Analyze the math unit from the point of view of how it contributes 
in these five different areas. 

4.3 Ask your students if they can think of a math problem that has more than one 
right answer. The goal is to lead the class to find examples that are appropriate 
to their current level of understanding of math. You may need to provide a first 
or second example before the class is able to generate additional example. First 
graders can deal with, “Find two counting numbers that add up to six. 
Somewhat older students can deal with, “Find two counting numbers that 
multiply together to give 12.” and “Using the unit squares, make a rectangular 
pattern whose area is 24.” 

Activities for Self-Assessment, Assignments, and Group Discussions  
4.1 As a K-8 teacher, you will likely encounter both the back to basics approach to 

math education and the new-new math approach to math education. Think about 
how easy it is to fall back into the mode of teaching the way you were taught 
(thus, revert to a focus on computation and the other basics), versus learning and 
teaching a new-new math curriculum. Spend some time making a list of topics 
and ideas that you feel are new-new math, and a list of topics and ideas that you 
feel are stressed by the back to basics movement.  

4.2 Review the “what is math” quotations given in this chapter. Think about which 
(if any) of the ideas in these quotations can be integrated into K-8 school math. 
Think about this from the point of view of, “The way the twig is bent is the way 
the tree will grow.” Argue for and against the idea that K-8 school math should 
place much less emphasis on paper and pencil computation and much more 
emphasis on topics that lay a different type of foundation for students as they 
continue to study math in middle school, high school, and beyond. 

4.3 Name one big and important idea from this chapter that you are apt to remember 
and make use of as a teacher of math. What is it about this idea that resonates 
with you and is likely to stay with you? 
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Chapter 5 

Mathematical Maturity 
Be the change you want to see in the world. 
(Mahatma. Gandhi) 

The future depends on what we do in the present. 
(Mahatma Gandhi) 

One of your goals as a teacher is to help your students increase their levels of expertise 
within the various disciplines you teach. To be an effective math teacher, for example, you need 
an appropriate balance of math content knowledge and math maturity as you help your students 
to gain both increasing math content knowledge and skills, and increasing math maturity. You 
also need both general pedagogical expertise and math-specific pedagogical expertise. 

Cognitive Maturity 
Piaget’s research and cognitive development scale gives us a “broad strokes” picture of how 

nature and nurture combine as a child grows older in an environment containing informal and 
formal education. Over the years, many people have added to Piaget’s work and have helped to 
develop instruments that are more finely calibrated than Piaget’s 4-level scale. 

An example is provided by the Columbia Mental Maturity Scale (CMMS, n.d.) published by 
The Psychological Corporation. Quoting from their Website: 

Description: The Columbia Mental Maturity Scale (CMMS) is an individually administered 
instrument designed to assess the general reasoning ability of children between the ages of 3 years, 
6 months to 9 years, 11 months. The CMMS consists of 92 pictorial and figural, classification 
items arranged in a series of eight overlapping levels. Each of the eight levels contains between 51 
and 65 items that are appropriate for a specific chronological age. 

Cognitive maturity includes components such as judgment, associating cause and effect, 
rational behavior and decision making, and abstract thinking. Quoting from Healthy Futures 
(2005):  

The adolescent years are the period of time during which a person grows from puberty to cognitive 
maturity. This period extends well past the teen years. In fact, most college students are still 
adolescents. The purpose of this paper is to discuss the data proving that—of physical, mental, and 
cognitive maturity—it is cognitive maturity that develops last, usually not reaching 
completion until the mid-twenties. [Bold added for emphasis.] 

It is appropriate to consider both a person’s overall level of cognitive maturity, and also the 
person’s cognitive developmental level in various disciplines or in various Multiple Intelligence 
areas. Thus, a student might have a relatively low or a relatively high level of mathematical; 
maturity compared with other students of approximately the same age. Piaget was particularly 
interested in math cognitive development. 
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Figure 5.1 provides results for Google searches on different types of maturity. Notice music, 
math, and art hold down positions 3-5 in this list. Compare these results with the bottom five on 
the list. While it is reasonably common to talk about science maturity or business maturity, it is 
uncommon to write about maturity is specific disciplines in science such as biology, chemistry, 
or physics.  

Google Search Expression Hits on 5/8/06 
“literary maturity” 2,790000 
"cognitive maturity” OR “mental maturity" 86,000 
“music maturity” OR “musical maturity” 71,000 
"math maturity" OR "mathematical maturity" OR 
"mathematics maturity" 

61,000 

“art maturity” OR “artistic maturity” 52,000 
“business maturity” 26,000 
“cognitive maturity” 24,000 
"science maturity" OR "scientific maturity" 12,000 
"writing maturity" 431 
"reading maturity" 282 
“chemistry maturity” 33 
“accounting maturity” 31 
“biology maturity” 27 
“physics maturity” 24 
“economics maturity” 19 

Figure 5.1 Google searches on various types of maturity. 

Figure 5.2 combines figure P1 with the math row of the above table. 

Google Search Expression Hits 5/10/06 
"applied math” OR “applied mathematics" 50,200,000 
"pure math” OR “pure mathematics" 5,450,000 
"computational math” OR “computational 
mathematics" 

3,090,000 

"math maturity" OR "mathematical maturity" OR 
"mathematics maturity" 

61,000 

"math maturity" OR "mathematical maturity" OR 
"mathematics maturity" AND "elementary school" 
OR "middle school" OR "secondary school" OR "high 
school" 

14,100 

"math maturity" OR "mathematical maturity" OR 
"mathematics maturity" AND "applied math” OR 
“applied mathematics" 

901 

"math maturity" OR "mathematical maturity" OR 
"mathematics maturity" AND "pure math” OR “pure 
mathematics" 

575 

"math maturity" OR "mathematical maturity" OR 
"mathematics maturity" AND "computational math” 
OR “computational mathematics" 

101 

Figure 5.2 Google searches of math maturity within various math sub disciplines. 



Dave Moursund: Improving Math Education in K-8 Schools 

Page 46 

Notice that about a quarter of the math maturity hits are at the precollege level. Often the 
term math maturity is used in these documents without being defined. Occasionally, the use 
gives some hint of a definition. For example, here is a quote from a Website describing the 
Courant Institute's festival of math and science for high school students Saturday 25 March 2006 
at New York University. 

We have developed a color grading system in an attempt to indicate the pace and mathematical 
maturity required of each class. Green means that everybody in the class should be able to 
follow. No mathematical maturity is required beyond that acquired in high school. Black 
means the class will move at a fast pace, and students should have a high level of mathematical 
maturity. Experience with abstract mathematics beyond the high school level (eg math camps, 
college courses, competition preparation, etc) is highly recommended. Blue and purple are 
somewhere in between. Note that this system is just an approximation, and the actual level of each 
class depends on the teacher. [Bold added for emphasis.] 

Expertise in Math Content and Math Maturity 
The main focus in this chapter is on math maturity. However, there is no fine dividing line 

between math content and math maturity. This is illustrated using a Venn diagram in figure 5.3. 

Math 

Content

Math 

Maturity

 
Figure 5.3. Math content and maturity overlap. 

A student’s level of expertise may well differ in math content and math maturity. This is 
illustrated for Student A and Student B (S-A and S-B) in figure 5.4. 

MediumS-A S-B

S-AS-B
 

Figure 5.4 Two students (S-A and S-B) on Content and Maturity scales.  

A person may be at substantially different levels on these two scales. An appropriate balance 
between the two scales for one person may not be appropriate for another person, since it 
depends on interests, abilities, goals, and so on. My personal opinion is that our math education 
system places much more emphasis on math content than on math maturity. Likely, this is 
because it is easier to teach content and assess learning of content than it is to teach and assess 
for increasing maturity. This is a challenging area of math education research. 

You may wonder what research-oriented math educators do. One answer is that they 
formulate hard math education research questions that have not been previously answered, and 
they attempt to answer them. Consider the challenge of doing research in the area of balance 
between a student’s math content knowledge and math maturity. Do we have a good definition of 
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math content knowledge and good measures of a student’s math content knowledge? Do we have 
a good definition of math maturity and good measures of a student’s math maturity? What might 
we mean by saying that for a particular student, the student’s math content knowledge is 
appropriately in balance with the student’s math maturity? What types of instructional 
interventions do we have available that lead to relatively precisely measurable increases in math 
content knowledge or in math maturity? As you can see, this is a complex and challenging area 
of research. 

What I find particularly interesting is that ordinary, everyday math teachers are expected to 
take appropriate classroom action in this content vs. maturity area, even though the needed 
research has not been done. In that sense, each teacher is doing action research to determine 
what works best for them and their students (Action Research. n.d.). 

The same type of analysis can be applied to students learning arithmetic procedurals and 
students learning other math procedures. What is procedural thinking and what is computational 
thinking? How do we make useful measurements of a student’s progress in procedural or 
computation thinking from a math education or computer education point of view? How does the 
continued rapid improvement in computer systems affect our math education goals? 

Math Content 
There is considerable agreement about the scope and sequence of PK-12 math education 

content in the US. At the elementary school level, for example, a modest number of textbook 
series capture most of the market. This also holds true at the secondary school level and on into 
higher education. Clearly, one measure of a person’s progress toward increasing math content 
expertise is the level of coursework that has been completed, the grades received in these 
courses, and the quality and rigor of the coursework. 

Math can be learned through other ways than just taking courses. Moreover, there is a large 
amount of math that is not included in the commonly available coursework. Although a modest 
number of textbook producers tend to dominate the market, there are many other materials 
available. Moreover, many teachers do not rigorously follow the textbooks adopted by their 
school districts. However: 

Shadow studies that track teachers' activities have shown that between 80 and 90 percent of 
classroom and homework assignments are textbook-driven. Which suggests that the Big Four 
textbook publishers—McGraw-Hill, Harcourt, Houghton Mifflin, and Pearson have swallowed 
other publishing companies and made them imprints—have established a de facto national 
curriculum. (Jones, 2000) 

Finally, (long pause, drum roll), we need to remember that many students forget most of the 
math content they have “covered” in their math courses. Through introspection, you can decide 
to what extent you have forgotten much of what was covered in some of your high school math 
courses, such as the geometry course that you likely had. 

Teachers of math tend to be driven by the need to “cover” the curriculum, to “get through” 
the book and the planned lessons. They do this even though they know that students will forget 
most of what is covered. As I reflect about this situation, I tend to feel embarrassed about much 
of the teaching that I have done over the years. 
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Components of Math Maturity 
The term math maturity is widely used by mathematicians and math educators. For example, a 

middle school teacher may say, “I don’t think Pat has the necessary math maturity to take an 
algebra course right now.” It is clear that the teacher is not talking about Pat’s math content 
knowledge. Probably Pat has completed the prerequisite coursework. Perhaps Pat is weak in math 
reasoning and thinking, tends to learn math by rote memorization, has little interest in math, and 
shows little persistence in working on challenging math problems. 

Perhaps the dominant component in the literature of math maturity is “proof” and the logical, 
critical, creative reasoning and thinking involved in understanding and doing proofs. The 
following list contains this and some additional components of math maturity. An increasing level 
of math maturity is demonstrated by: 

1. An increasing capacity in the logical, critical, creative reasoning and 
thinking involved in understanding and doing proofs. 

2. An increasing capacity to move beyond rote memorization in recognizing, 
posing, representing, and solving math problems. This includes transfer of 
learning of one’s math knowledge and skills to problems in many different 
disciplines. 

3. An increasing capability to communicate effectively in the language and 
ideas of mathematics. This includes: 
A. Mathematical speaking and listening fluency.  

B. Mathematical reading and writing fluency. 
C. Thinking and reasoning in the language and images of mathematics.  

4. An increasing capacity to learn mathematics—to build upon one’s current 
mathematical knowledge and to take increasing personal responsibility for 
this learning. 

5. Improvements in other factors affecting math maturity such as attitude, 
interest, intrinsic motivation, focused attention, perseverance, having 
math-oriented habits of mind, and acceptance of and fitting into the 
“culture” of the discipline of mathematics. 

Discussion of Some Math Maturity Ideas 
This section contains brief discussions of a variety of ideas related to math maturity. Notice 

that the list in the previous section did not name any specific math content. The focus was on 
things that things that people do in the discipline of mathematics, such as solve problems, make 
proofs, communicate, and learn. In essence, these ideas about maturity apply to any discipline.  

Logical/mathematical Proof 
One of the most fundamental ideas in math is that of proof. The very precise language of 

mathematics makes it possible to make very precise (mathematical) statements and then to give 
arguments as to whether the statements are true, false, or undecidable. Such arguments (proofs) 
can be communicated to other people who can attempt to verify their correctness. 
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Many students first encounter the idea of a formal proof when they take a high school 
geometry course. Math department faculty in higher education argue about how proof-oriented a 
freshman calculus course should be. Part of the argument is whether the course has enough focus 
on this aspect of math maturity so that students will have the needed math maturity for the next 
high level of math courses. 

Less formal proofs are often built into the math curriculum starting at the lowest grade levels. 
For example, perhaps a student provides a very quick response to the question, what is 15 + 17? 
When asked to explain, the student says: “I know that 16 + 16 is 32. I can see that 15 + 17 is just 
the same as 16 + 16. You just add one on to the 15 and take one off the 17. This argument may 
well be convincing to the teacher and other students. As a follow-up to this, perhaps a student 
will ask, “How do you know that 16 + 16 = 32? The student might respond with a singsong 
response of 2 + 2 = 4, 4 + 4 = 8, 8 + 8 = 16, 16 + 16 = 32. The student “knows” that 16 + 16 = 32 
because this is a memorized fact with memory recall aided by music. 

Another student might respond with a correct answer and note that,” I know that 15 and 15 
are 30. The answer must be 2 more than this, because 17 is 2 more than 15.” Again, this builds 
on a memorized or easily reconstructed fact, and some understanding of the number line.  

Think about the understanding of the number line that the student displayed in modifying the 
problem in to an equivalent, but easier problem. Was this an explicitly taught part of the 
curriculum, was it merely illustrated a few times in different situations, or did the student 
discover this on his or her own? Increasing math maturity is shown by generalizing from 
example or by making up one’s own methods. 

In new-new math, informal proofs, explaining how one knows an answer is correct, solving a 
problem in more than one way, and so on have become an important part of the curriculum. That 
is, the “proof” component of math maturity is gradually being embedded into the math 
curriculum at the lowest levels and tested at the state and national levels. 

Problem Solving and Proof 
There is no easy dividing line between making a proof and solving a problem. If the problem 

solving includes “show your work and reasoning, and check your answer,” then in essence the 
student is being asked to prove that the sequence of steps used to solve the problem is a correct 
sequence, and that each step was done correctly. 

Much the same type of analysis holds for computer programming. A computer program is 
like a proof. Testing a computer program is a process of giving arguments (often based on test 
cases) that the program is correct. Computer scientists have also made progress in developing 
ways to prove that a program is correct, somewhat in the same manner that one proves a 
theorem. 

Chapter 3 this book gave a formal definition of problem. At an informal, intuitive level, a 
problem is a challenge, a situation in which a solution or a solution process is not immediately 
evident. This type of definition means that something may be a problem for one person and not a 
problem for another person. It also means that through study and practice, something that began 
as a problem is can be reduced to being an exercise and is no longer a problem. 

Word problems (story problems) are used throughout the K-8 math curriculum. There are a 
variety of reasons for this. One is to have students increase their capabilities to read and 
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understand mathematical problem situations, formulate a well-defined math problem, solve the 
math problem, and then see if this work resolves the original problem situation. One sign of 
increasing math maturity is increasing capability to carry out such math activity. Notice how 
success in this endeavor requires being able to read with understanding in both the math content 
area and in the content area of the problem. 

Many teachers and students often work to defeat the purpose of word problems. They think 
of the goal in a word problem as being to get an answer (or, “the” answer), rather than to learn. 
Thus, the students memorize things such as, “in a word problem, of means times.”  

Thought and Language 
A 5/8/06 Google search of the term “mathematical thinking” produced more than 600,000 

hits. As with any discipline, mathematics has its own particular ways of thinking and 
communicating. Formal math education is designed to help students get better at thinking 
mathematically. An excellent introduction to this topic is given in Math Forum (n.d.; The 
teachers role.). Quoting from the article: 

Within the mathematics education community there is strong interest in the use of discourse for 
teaching and learning mathematics (NCTM, 1991; Atkins, 1999; Schifter, 1996). The teacher's 
role is described in broad terms as facilitative, to include listening carefully to students, framing 
appropriate questions, and mediating competing perspectives. Students are expected to develop 
problem-solving skills: defining problems, formulating conjectures, and discussing the validity of 
solutions. Stigler and Hiebert (1998) report similar roles for teachers and students in mathematics 
classrooms in Japan, where mathematical discourse is an integral part of instruction. 

Gary Marcus (2004, p. 124) indicates that thought and language are only loosely connected. 
Many mathematicians and other people clearly develop and make use of mental representations 
(mental images, mental pictures) that are not words. For example, Albert Einstein, when 
describing his discovery of special relativity said:  

Words and sentences, whether written or spoken, do not seem to play any part in my thought 
processes. The psychological entities that serve as building blocks for my thoughts are certain 
signs or images, more or less clear, that I can reproduce and recombine at will. (Marcus, 2004, 
p219.) 

However, precise mathematical communication with oneself and with others is an important 
component of increasing math maturity. The process of communicating with oneself (thinking) is 
not necessarily the same as the process of communicating with another person. Examples of this 
are easily found as one works with students who are Talented and Gifted in math. They will 
often arrive at correct solutions to problems without being able to explain in words how they 
solved the problem. 

One of the teaching techniques that math teachers employ is to have their students keep math 
journals and write in them on a regular basis. The goal is to get students to think about the math 
they are studying and to practice written communication about this thinking and math. 

An earlier part of this book introduced the idea of computational thinking. This idea is 
important in the discipline of computer science, and it is also important in the overlap between 
computer science and each other discipline. Since math and computer science have a large 
overlap, computational thinking is an important part of math. Computational mathematics is 
already established as an important component of mathematics. Computational thinking is not 
only an important aspect of computational mathematics, it is also important in both pure and 
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applied mathematics. Thus, from a math education point of view, computational thinking needs 
to be integrated into mathematical thinking, and it is an important component of math maturity.  

Understanding Understanding 
The subsections given above include ideas such as understanding a proof, reading with 

understanding, communicating with understanding, understanding the meaning of an answer 
produced by a problem-solving process, and so on. Perhaps the term understanding is being 
overused? 

At a faculty meeting a few years ago, I listened to faculty in my College of Education 
arguing about whether the term understanding was an appropriate one to use in specifying goals 
and objectives in a lesson plan. The faculty were somewhat split on this issue, but the majority 
felt that it was not appropriate to write objectives such as, “Students will understand …” Those 
against using the term understand argued that objectives need to be measurable, and that it was 
difficult or impossible to say what is meant by and to measure understanding. They argued that 
objectives need to be much more specific. 

It is clear that one can learn some things with little or no conscious understanding. For 
example, when I was a child, I had trouble learning to tie my shoes. I received instruction (over 
and over again) on how to tie my shoes. Eventually, after much trial and error, I learned to tie the 
type of bowknot that is usually used in shoe tying. 

I did not learn why a bowknot is used, rather than some other type of knot. I did not learn that 
there are many different kinds of knots and that they have a variety of uses and characteristics. I 
did not learn anything about friction. I did not learn that a bowknot is useful in tying bow ties 
and in decorating packages. I learned little about symmetry, although I am sure that I was told 
that the loops should be about the same size.  

Now, consider a simple math example. Suppose I ask you, “What is three plus five?” 
Probably you say “eight” in a stimulus-response manner, with little or no conscious thought. 
Suppose I then ask you to explain why three plus five is eight. Aha! Now I am probing your 
understanding of the number system you are using and the meaning of the word plus. I am 
looking for understanding that can be applied to doing computations where you have not 
memorized an answer. I am looking for understanding that allows you to detect errors in your 
memory as well as errors in using memorized processes.  

Learning to Math, and Mathing to Learn 
Reading math obviously requires having some knowledge of the math content being read. 

However, there are some aspects of reading math that are independent of any particular math 
knowledge and that endure even as one forgets much of the math one has learned.  They are a 
blend of math content and math maturity. An analogy might help. When you are doing a paper 
and pencil calculation, the smallest error can lead to an incorrect result. When reading math, the 
smallest misunderstanding can lead to an overall lack of understanding of what one is reading. 
Math writing tends to be very precise and concise. Terms such as line, line segment, variable, 
function, equation, and quadrilateral all have precise meanings. 

I am a relatively slow reader. When I am reading a novel, I read 30 to 40 pages an hour. I 
tend to read newspaper and magazine articles at approximately this same speed. However, when 
reading a math textbook or research article, I may end up reading only 1/10 to 1/5 as fast. Indeed, 
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I may puzzle over a single paragraph for an hour or more. Much depends on how familiar the 
material is. 

It is easy to think about the ideas of learning to read and reading to learn. It is much harder to 
understand what might be meant by learning to math and then mathing to learn. 

Learning to math includes learning to read, write, speak, and listen (in math) with 
understanding. However, there is much more than just such math communication skills. Learning 
to math includes learning problem posing, problem representation, problem solving, theorem 
posing, and theorem proving. Learning math includes learning to do math. 

Mathing to learn includes mathing to learn math. However, math is part of the content of 
many other disciplines. Mathing to learn includes mathing to learn and do the math inherent to 
non-math disciplines. The area of probability and statistics provides an excellent example. Many 
disciplines make use of probability and statistics. Without an appropriate level of probability and 
statistics, much of the literature in many non-math disciplines cannot be read with understanding. 
Similar statements hold for graphing and graphical representations of data. 

Problem Posing and Question Asking 
Posing math problems and asking math questions constitute one of the most important topics 

in the math maturity list, and this topic is often overlooked in the math curriculum. In January 
2004 the NCTM issued the following call for papers for an October 2005 Focus issue of 
Teaching Children Mathematics: 

The Editorial Panel of Teaching Children Mathematics (TCM) is seeking manuscripts that discuss 
or exemplify the role of problem posing and problem solving in the pre-K–6 mathematics 
classroom. The importance of this focus topic is reflected in NCTM's Principles and Standards for 
School Mathematics, which calls for teachers to regularly ask students to pose and solve 
interesting problems based on a wide variety of situations. By highlighting problem posing and 
problem solving, the Editorial Panel aims to provide teachers and teacher educators with resources 
to assist in their efforts to integrate problem posing and problem solving in the pre-K–6 
mathematics classroom. Although problem posing and problem solving go hand in hand, 
manuscripts that specifically address problem posing are welcome. Accessed 4/26/06: 
http://my.nctm.org/eresources/article_summary.asp?URI=TCM2004-01-253a&from=B.  

Of course, posing problems and asking questions are an essential component of every 
discipline. 

In any discipline, it is essential to help students understand our ignorance. They should come to 
appreciate the range of questions that remain open and, most importantly, the fact that countless 
interesting questions have yet to be thought of. Such an understanding is an invitation to join in 
the discussion. When teachers present mathematics as a predetermined set of facts to be 
transmitted, the implicit message is that students are separate from those who created the 
mathematic (Problem Posing, n.d.). [Bold added for emphasis.] 

Problem posing is a key component of becoming an independent learner. One poses 
problems and questions of personal interest, and then one seeks answers, driven by intrinsic 
motivation. 

Once you have learned how to ask relevant and appropriate questions, you have learned how to 
learn and no one can keep you from learning whatever you want or need to know. Neil Postman 
and Charles Weingartner. Teaching as a Subversive Activity 

http://my.nctm.org/eresources/article_summary.asp?URI=TCM2004-01-253a&from=B


Dave Moursund: Improving Math Education in K-8 Schools 

Page 53 

Learning to pose and/or recognize math problems and math questions in “real world” and 
school settings contributes to understanding of math and transfer of learning of one’s math 
knowledge. There is a substantial amount of literature on math problem posing that can be 
accessed from the Web. Using the search engine Google to search mathematical OR math  
“problem posing” produced over 40,000 hits on 5/27/06. The literature indicates that math 
problem posing has been extensively studied, can be used at all grade levels and in college, can 
be an important component in a Math Methods course, and is a challenge to teachers. 

As an example of this challenge, many discussions about what is mathematics include a 
statement about finding patterns. To expand on this a bit, think about the mathematics involved 
in finding a possible pattern, describing the pattern, testing if the description seems to be 
accurate, conjecturing that the description is accurate, and proving that the description is correct. 
Perhaps I am a student at an early level in grade school. I have just learned about odd and even 
integers. In playing around, I add some pairs of odd integers and see a pattern that each time the 
sum is an even integer. I conjecture that the sum of two odd integers is always an even integer. 
But, I may lack the wherewithal to create a convincing proof of this. 

Now, think about my teacher. Does my teacher have an appropriate math pedagogical 
knowledge, math content knowledge, and math maturity to facilitate my exploration of this topic, 
to provide feedback on the correctness or incorrectness of steps I am taking to “prove” my 
conjecture, or to actually construct a proof that will be convincing to students in my classroom? 

Much of the literature on math problem posing focuses on students developing word 
problems that are suggested by a particular environment or by a particular math calculation. 
Liping Ma (1999), for example, based part of her doctoral research on asking elementary school 
teachers in the US and China to create a word problem that is solved by the calculation (1 ¾) ÷ 
(1/2). See if you can do this calculation and if you think of a “real world” problem in which it is 
desirable to carry out this calculation. This type of problem-posing activity can be used with any 
computational procedure students are studying. 

Final Remarks 
Think about uses that you make of math in a typical day. Your list might include telling time, 

estimating or measuring distances, counting a variety of things (such as calories or 
carbohydrates), doing exact or approximate arithmetic calculations, spending and keeping track 
of money, using your mental map of a town in order to drive from one locations to another, 
telling a friend how to drive to where you live, and so on. Here are a couple of interesting ways 
to think about your list: 

1. Which of the uses on your list were learned in school, and how did you 
become skilled at transferring this school learning to settings in your 
everyday life?  

2. Which of these uses did you learn outside of school (perhaps from other 
people, by discovery, by reading), and what does this tell you about your 
ability to learn math-types of things outside of formal schooling? 

3. How is your list similar to and different from the lists your colleagues 
would likely create, and how do such differences get taken into 
consideration in the math curriculum, instruction, and assessment in the K-
8 school?  
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The heart of math maturity and math content is being able to use your math knowledge and 
skills to deal with the types of math-related problems and tasks that you encounter. If your life 
and career depend heavily on “school math,” you will build a working knowledge of this school 
math and it will become a part of your everyday life. You will develop the math-related 
knowledge, skills, and habits of mind that are important to you in this type of everyday life. 

On the other hand, if much of the math that you studied in school has little use in your 
everyday life, then you will likely forget most of that content. Your math-type knowledge, skills, 
and habits of mind will grow in the areas and types of uses that are useful to you in your 
everyday life. 

K-8 School Applications 
5.1 Once a week, at the beginning of the math instruction period, ask your students 

to give examples of any use they have made (outside of math periods) of the 
math studied in the past week. Younger students can do this orally, in a whole 
class discussion. Older students might write about this in their math journals. 

5.2 This is for students near the end of the first grade, and older. Ask your students, 
“Which are you better at—reading, or math? Explain why you gave the answer 
you did.” After this discussion has gone on for a period of time, ask your 
students to talk about their thoughts and feelings concerning word problems in 
math. Look for insights that you feel represent increasing understanding and 
maturity. 

Activities for Self-Assessment, Assignments, and Group Discussions  
5.1 Think about the mathematics instruction you received before you started college 

and while in college. Focus specifically on those aspects of your math education 
that seemed to be designed to increase your math maturity. Name some of these 
activities and analyze their effectiveness. For example, have you received 
specific instruction on how to read math, how to learn math, and how to retrieve 
math information from reference books and the Web? 

5.2 Two of the Big Ideas in math are variable and function. What do these two 
words (concepts) mean to you? What sort of mental model, picture, or idea pops 
into your conscious working memory when you think about the term variable or 
the term function? In what sense is each a part of your math content knowledge 
and in what sense is each a part of your math maturity? It might help you in 
your thinking if you make a list of times or situations in your everyday life 
where you make use of these two concepts in a math-related manner. For 
example, you might say, “I’ve got so many balls in the air, I don’t know what is 
most apt to happen.” Roughly speaking, this is a statement about dealing with a 
lot of variables and how they relate to each other. 

5.3 Make up some questions that you feel are appropriate to use with students at a 
particular grade level, and that are designed to help assess the math maturity of 
such students. Try your instrument with some students (probably in a one-on-
one setting) and report on the results. 
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 Chapter 6 

Intelligence 
Intelligence is quickness in seeing things as they are. 
(George Santayana) 

The real problem is not whether machines think but 
whether people do. (B.F. Skinner, Contingencies of 
Reinforcement, 1969) 

Historically, the study of the human brain (one of a person’s organs) and the study of the 
human mind (think of the mind as a product of the brain) have been distinct disciplines. 
Computer-oriented people tend to think of the brain as hardware (they call it wetware) and the 
mind as software. 

The study of the mind is currently part of the field of psychology, while the study of the brain 
is part of the discipline of neuroscience. However, in recent years, the mind and brain disciplines 
have begun to merge, in a discipline called cognitive neuroscience. 

The Cognitive Neuroscience Society (CNS) is committed to the development of mind and brain 
research aimed at investigating the psychological, computational, and neuroscientific bases of 
cognition. The term cognitive neuroscience has now been with us for almost three decades, and 
identifies an interdisciplinary approach to understanding the nature of thought. Retrieved 5/27/06: 
http://www.cogneurosociety.org/content/welcome.  

Jacques Hadamard  (1865-1963) was a prolific and well-respected research mathematician 
and teacher. In one of his books, he explored the working of the mathematical mind (Hadamard, 
1945). In the first chapter, while talking about the difficulty of this task, he notes: 

That difficulty is not only an intrinsic one, but one which, in an increasing number of instances, 
hampers the progress of our knowledge: I mean the fact that the subjects involves two disciplines, 
psychology and mathematics, and would require, in order to be treated adequately, that one be 
both a psychologist and a mathematician.  

If Hadamard were alive today, he would likely be impressed by the progress that is occurring in 
brain and mind science, and in applications of computers to the teaching, learning, and doing 
math. However, he would likely argue that we still have a long way to go before we have a 
thorough understanding of the psychology of invention in the mathematical field. This is, indeed, 
a challenging area of research and development. 

What is Intelligence? 
Intelligence is the ability to learn and to take actions that make use of one’s learning. Clearly, 

intelligence is not limited just to humans (NSF Press Release, 10/27/04). However, the ability of 
an ordinary person to learn a natural language such as English demonstrates a very high level of 
intelligence on the intelligence scale of all life on earth. Indeed, although students in our regular 
K-8 classrooms vary in intelligence, all are highly intelligent on the scale of all intelligent 
creatures on earth. 

http://www.cogneurosociety.org/content/welcome
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For many years, psychologists studying the human brain/mind have tried to measure its 
capabilities. Quite a bit of this work has focused on defining intelligence and measuring a 
person’s intelligence.  

The concept that intelligence could be or should be tested began with a nineteenth-century British 
scientist, Sir Francis Galton. Galton was known as a dabbler in many different fields, including 
biology and early forms of psychology. After the shake-up from the 1859 publishing of Charles 
Darwin's "The Origin of Species,” Galton spent the majority of his time trying to discover the 
relationship between heredity and human ability (History of I.Q., n.d.). 

Howard Gardner (1993), David Perkins (1995), and Robert Sternberg (1988) are researchers 
who have written widely sold books about intelligence. Of these three, Howard Gardner is 
probably the best known by PK-12 educators, because his theory of Multiple Intelligences has 
proven quite popular in PK-12 education (Mckenzie). However, there are many researchers who 
have contributed to the extensive and continually growing collection of research papers on the 
intelligence (Yekovich 1994). The following definition of human intelligence is a composite 
from various authors, especially Gardner, Perkins, and Sternberg. Intelligence is a combination 
of the abilities to: 

1. Learn. This includes all kinds of informal and formal learning via any 
combination of experience, education, and training. 

2. Pose problems. This includes recognizing problem situations and 
transforming them into more clearly defined problems. 

3. Solve problems. This includes solving problems, accomplishing tasks, and 
fashioning products. 

Ways to measure intelligence were first developed more than 120 years ago, and this 
continues to be an active field of research and development. A very simplified summary of the 
current situation consists of: 

1. There are a variety of IQ tests that produce one number or a small 
collection of numbers as measures of a person’s intelligence. Most of 
these tests place a high emphasis on the linguistic and 
mathematical/logical aspects of intelligence. Increases in math content 
knowledge and in math maturity tend to contribute to scoring higher on IQ 
tests.  

2. The “one number” approach (the general intelligence, or “g” factor) was 
developed by Charles Spearman in 1904, and it still has considerable 
prominence. 

3. Many people have proposed and discussed the idea of multiple 
intelligences. In the past two decades, the work of Howard Gardner has 
helped to publicize this idea. Logical/mathematical, spatial, and linguistic 
are three of the eight Multiple Intelligences identified by Gardner, and 
they all relate to learning and using mathematics 

4. Significant decreases in the intelligence of children result from starvation, 
lack of needed vitamins and minerals, and exposure to various poisons 
such as lead and mercury (Nutrition, n.d.). Significant differences also 
result from other aspects of a child’s home environment, such as education 
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level of the adults in the environment and socioeconomic status (ASCD, 
2004). 

Fluid and Crystallized Intelligence 
While Howard Gardner and Robert Sternberg have garnered a lot of publicity during the past 

couple of decades for their work on intelligence, many really important ideas have been 
developed by other people. One of these is the idea that “g” can be divided into two major 
components: fluid intelligence (biologically-based) (gF) and crystallized intelligence (acquired 
knowledge base)  (gC).  

The theory of fluid and crystallized intelligence … proposes that primary abilities are structured 
into two principal dimensions, namely, fluid (Gf ) and crystallized (Gc) intelligence. The first 
common factor, Gf, represents a measurable outcome of the influence of biological factors on 
intellectual development (i.e., heredity, injury to the central nervous system), whereas the second 
common factor, Gc, is considered the main manifestation of influence from education, experience, 
and acculturation. Gf-Gc theory disputes the notion of a unitary structure, or general intelligence, 
as well as, especially in the origins of the theory, the idea of a structure comprising many 
restricted, slightly different abilities (McArdle , et al., 2002). 

In casual conversations about intelligence and IQ, people tend to forget about the meaning of 
the “Q” in IQ. The human brain grows considerably during a person’s childhood, with full 
maturity being reached in the early to mid 20s for most people. Both gF and gC increase during 
this time. Recent research suggests that gF then begins a slow decline. However, with 
appropriate education and cognitive experiences, gC continues to grow well into a person’s 50s 
(McArdle et al.; 2002). 

Rate of Learning Math 
Research in multiple intelligences indicates that a person may have varying levels of 

intelligence in different areas. Moreover, a person may learn faster and better in one area than in 
another. As a personal example, my logical/mathematical intelligence is far above my linguistic 
intelligence and my spatial intelligence. I learn math much faster and better than I learn 
languages. My current level of performance on spatial tasks might best be described as in the 
feeble to modest range. 

IQ tends to be a good measure of how fast and how well a person can learn. The following 
quoted material provide information about the rate of learning of slow versus fast learners 
(Gottfredson, 1998): 

High-ability students also master material at many times the rate of their low-ability peers. Many 
investigations have helped quantify this discrepancy. For example, a 1969 study done for the U.S. 
Army by the Human Resources Research Office found that enlistees in the bottom fifth of the 
ability distribution required two to six times as many teaching trials and prompts as did their 
higher-ability peers to attain minimal proficiency in rifle assembly, monitoring signals, combat 
plotting and other basic military tasks. Similarly, in school settings the ratio of learning rates 
between "fast" and "slow" students is typically five to one. [Bold added for emphasis.] 

… 

Half a century of military and civilian research has converged to draw a portrait of occupational 
opportunity along the IQ continuum. Individuals in the top 5 percent of the adult IQ 
distribution (above IQ 125) can essentially train themselves, and few occupations are beyond 
their reach mentally. … Serious problems in training low-IQ military recruits during World War 
II led Congress to ban enlistment from the lowest 10 percent (below 80) of the population, and no 
civilian occupation in modern economies routinely recruits its workers from that range. Current 
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military enlistment standards exclude any individual whose IQ is below about 85. [Bold added for 
emphasis.] 

Notice the bold parts of the above quote. The literature seems to suggest that students with 
IQs below 75 will learn two to three times or more slowly than average students, while students 
with IQs above 125 will learn two to three times as fast as average students. The higher IQ 
students are able to train themselves—to learn on their own. Obviously, there are exceptions to 
these general findings.  

There has been some research on math learning. For example, here is a research-based 
statement about the rate and quality of math learning for students with mild disabilities (Cawley 
et al., 2001): 

The background literature of special education has long shown that students with mild disabilities 
(a) demonstrate levels of achievement approximating 1 year of academic growth for every 2 or 3 
years they are in school (Cawley & Miller, 1989); (b) exit school achieving approximately 5th- to 
6th-grade levels (Warner, Alley, Schumaker, Deshler, & Clark, 1980); and (c) demonstrate that on 
tests of minimum competency at the secondary level, their performance is lower for mathematics 
than it is for other areas (Grise, 1980). Warner et al. showed that students with learning disabilities 
attained only one-grade equivalent level in mathematics from Grade 7 through Grade 12. 

The data presented by Grise show that on a test of minimum competency for students in the 11th 
grade, 48% of students with learning disabilities passed the language/reading component, but only 
16% of the students passed the mathematics component. Data from the State of New York (Mills, 
2000) show that on performance on state administered mathematics assessments, 61% of 3rd-
grade students with disabilities and 58% of Grade 6 students with disabilities in low 
socioeconomic districts met criterion whereas 90% of Grade 3 students with disabilities and 83% 
of Grade 6 students with disabilities in upper socioeconomic districts met criterion.  

This information about math education provides strong evidence of the importance of social 
economic status (and its related aspects of home environment) in math education. It indicates 
that the rate and quality of math learning is substantially less for students with learning 
disabilities. 

I have not found good data on upper limits on rate of learning. Here are quotes from two 
world-class mathematicians, talking about their high school days:  

I was involved with the math team. There was a fairly substantial amount of activity. In the 
beginning of high school I spent a lot of time going through old English algebra texts, and that was 
fantastic training for the math team. … I remember learning all of what is now considered to 
be freshman [college] calculus in about two weeks or so, just sitting down and doing it 
(Bloom, 1985, page 309). [Bold added for emphasis.] 

 

Then I started auditing math courses at the university, and suddenly, my life changed. I mean, here 
I was, sixteen years old, and I was taking graduate courses in mathematics and doing well, if not 
better, than anyone in the class (Bloom, 1985, page 313).  

The vertical structure of a mathematics curriculum tends to highlight the ranges of math 
learning described above. At the bottom end of the scale are students who learn math relatively 
slowly and who are severely limited in how far they can progress in math. At the top end of the 
scale are students who learn math very rapidly and can progress to very high levels of 
mathematical knowledge and understanding. 
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Street Smarts and Folk Math 
Robert Sternberg is well known for his triarchic model of intelligence. Very roughly 

speaking, he divides intelligence into the three parts: creativity, street smarts, and school smarts. 
Here is a somewhat different way of explaining his theory. Think of creativity as being gF, while 
street smarts and school smarts are two broad categories in which one develops gC. If a person is 
raised in a preliterate hunter-gather community living in a jungle, the person will develop a high 
level of “hunter-gather living in a jungle” street smarts. Since the person will not be exposed to 
reading, writing, and books, the person will not develop an appreciable level of school smarts. 

The following is quoted from Cianciolo and Sternberg (2004, p20).  
School’s eye views of intelligence 

Shirley Brice Heath (Heath, 1983), an ethnographer, studied mismatches between notions of 
intelligence held in the home and those held in the school environment, and observed the effects of 
these mismatches on the development of language in children. In three communities, Heath 
discovered that as home socialization practices diverged from those valued by school 
environments, performance in school suffered. For example, in one community, verbal interaction 
typically involved highly fanciful storytelling and clever put-downs. Students from this 
community experienced difficulty in school, where fanciful stories were perceived as lies, and 
putdowns were not a valued part of the school’s social environment. In another community, 
parents modeled their verbal exchanges after modes of knowledge transmission in the church, 
which discouraged dialogue and fantasy. Students from this community excelled in verbatim 
recall, but experienced great difficulty when novel storytelling was required.  

Research suggests similar findings in math. Quoting from Sternberg (2002) in which he 
argues that there is more to intelligence than just IQ: 

For example, Carraher, Carraher, and Schliemann (1985) studied a group of children that is 
especially relevant for assessing intelligence as adaptation to the environment. The group was of 
Brazilian street children. Brazilian street children are under great contextual pressure to form a 
successful street business. If they do not, they risk death at the hands of so-called "death squads," 
which may murder children who, unable to earn money, resort to robbing stores (or who are 
suspected of resorting to robbing stores). The researchers found that the same children who are 
able to do the mathematics needed to run their street business are often little able or unable to do 
school mathematics. In fact, the more abstract and removed from real-world contexts the problems 
are in their form of presentation, the worse the children do on the problems. These results suggest 
that differences in context can have a powerful effect on performance. 

Such differences are not limited to Brazilian street children. Lave (1988) showed that Berkeley 
housewives who successfully could do the mathematics needed for comparison shopping in the 
supermarket were unable to do the same mathematics when they were placed in a classroom and 
given isomorphic problems presented in an abstract form. In other words, their problem was not at 
the level of mental processes but at the level of applying the processes in specific environmental 
contexts. 

Gene Maier (n.d.) was one of the founders of the Math Learning Center, and he served as its 
President for many years. One of his areas of interest is “folk math” versus school math. He 
notes that many people (including cabinet makers, carpenters, mill wrights, street urchins 
throughout the world, and lots of other people with little or no formal education) make routine 
use of math to help solve the types of problems they encounter on the job and in their day-to-day 
lives. By and large, they make use of folk math (their math-oriented street smarts) rather than 
school math. 
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Of course, many other people have thought about the ideas underlying street smarts and 
school smarts. For example, Jerome Bruner has had a significant impact on our educational 
system. Quoting from Bruner (n.d.): 

It is surely the case that schooling is only one small part of how a culture inducts the young into its 
canonical ways. Indeed, schooling may even be at odds with a culture's other ways of inducting 
the young into the requirements of communal living.... What has become increasingly clear... is 
that education is not just about conventional school matters like curriculum or standards or testing. 
What we resolve to do in school only makes sense when considered in the broader context of what 
the society intends to accomplish through its educational investment in the young. How one 
conceives of education, we have finally come to recognize, is a function of how one conceives of 
culture and its aims, professed and otherwise. (Jerome S. Bruner 1996: ix-x) 

The street smarts versus school smarts analysis helps to explain why children raised in 
poverty (low socioeconomic environments) tend to be a year behind average in school smarts by 
the time they begin school. Their early childhood learning focuses on gaining street smarts 
knowledge and skills that help them survive and prosper in a poverty environment. Here is a 
brief summary of recent research in this area (ASCD, 2004):  

In general, as socioeconomic status increased, the degree of environmental influence on measured 
IQ scores decreased. For the most impoverished families, almost 60 percent of the variability in 
scores was explained by environmental differences, whereas the percentage of variation in scores 
attributable to genetic difference was essentially zero. For the high-SES grouping, almost 90 
percent of the variance in scores was explained by genetic differences. 

The effect of environment on the IQ of young children can be significant, particularly for children 
living in poverty. As the influence of poverty decreases, the importance of environmental 
conditions as a limiting factor on intelligence also decreases. By addressing the environmental 
issues created by poverty, it may be possible to weaken the link between low socioeconomic status 
and poor student performance on IQ (and other) tests. 

It is interesting to carry this line of thought a little further. Some children grow up in an 
environment that is school smarts mathematically “rich.” I am an example of such a person, 
since both my father and mother were on the faculty in the Department of Mathematics at the 
University of Oregon. I grew up in a culture that placed high value on knowing and using math. 
This environment helped to “grow” my math oriented gF and gC. 

Final Remarks 
My conclusion is that one of the reasons for the relatively poor success of our formal math 

education system is that the math environment many of our children grow up in before they start 
school and the math environment they encounter both at home and in school during the early 
years of their formal education is not particularly “rich” in its support of school mathematical 
development. This idea illustrated in the following quote from an American Association for the 
Advancement of Science report (New, 1998). The article by Rebecca New is one of many related 
articles available at AAAS (1998). 

Teacher attitudes and knowledge may also account for much of the inequitable treatment of 
preschool mathematics, science, and technology. The field of early childhood education has 
struggled for much of the second half of this century to establish a reputation of professionalism. 
However, the knowledge base deemed essential for teachers’ scientific and professional status 
derives almost exclusively from the child study movement and the field of developmental 
psychology. Few states require early childhood educators to have formal professional knowledge 
in the content areas as a condition of certification. Consequently, the experiences in science, 
mathematics, and technology that many early childhood educators bring with them to the 
classroom are limited by their personal histories as learners in those domains. 
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I also conclude that many people grow up rather weak in their folk math development, 
because they are not raised and taught in environments that are explicitly designed to foster 
cognitive growth of street smarts mathematics (folk math). Many students find that much of the 
school math they learn is not particularly to their outside-of-school interests and needs. 

K-8 School Applications 
6.1 Quite a bit of a young student’s attitude toward math comes from math-related 

attitudes in the home environment. As you work with individual students in K-8 
schools, it is helpful to have insights into the home math environment and 
attitudes that your students have grown up in. You can garner some of this 
information by engaging your students in whole class discussions about the 
interests in and attitudes towards math that they encounter at home. You might 
ask, for example, if there is someone in their home situation who particularly 
likes math, or someone who thinks that math is really hard, or that boys are 
better at math than girls (or, vice versa). 

6.2 Many people find that math is fun. Indeed, most children find that math is fun 
while they are at the primary level, but many then find it to be less fun is they 
move into the upper K-8 grades. As a teacher, you need to learn what aspects of 
math are fun (hence, perhaps intrinsically motivating) to your students. You can 
do this by observing and talking to your students as you try out a wide range of 
different math activities that other teachers have found to be fun. Many fine 
examples, along with videos of teachers using the ideas and materials, can be 
found at the PBS Teacher Source (n.d.). There are a large number of other 
Websites that contain free math materials for use in the K-8 school, and many of 
these are “fun” oriented. For example, see Elementary School Math Center 
(n.d.). 

Activities for Self-Assessment, Assignments, and Group Discussions 
6.1 What are your personal thoughts on nature versus nurture as determiners of 

intelligence? What personal knowledge and experience do you have that 
supports your position? How does your position fit into the way you plan to 
work with young students? 

6.2 Think about the math that you routinely use in your day-to-day life. Give 
examples of the folk math aspects that you see in this use of math. Give some 
ideas about what schools might do to increase the folk math knowledge and 
skills of students. 

6.3 What are your personal attitudes towards math and the learning of math, and 
what seems to have led to these attitudes?  
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Chapter 7 

Math Cognitive Development 
The most dangerous experiment we can conduct with 
our children is to keep schooling the same at a time 
when every other aspect of our society is 
dramatically changing. (Chris Dede, written 
statement to the PCAST panel, 1997) 

It is not the strongest of the species that survive, nor 
the most intelligent, but the one most responsive to 
change. (Charles Darwin) 

This chapter is about cognitive development of the mind. Many of the ideas discussed in this 
chapter are based on the work of Jean Piaget and people who have built on his work. This 
chapter focuses specifically on math cognitive development. 

Mind 
The word mind has a number of different definitions. Quoting from Encarta® World English 

Dictionary © 1999 Microsoft Corporation: 
1. the center of consciousness that generates thoughts, feelings, ideas, 

and perceptions and stores knowledge and memories 
2. the capacity to think, understand, and reason (often used in 

combination) 
Most definitions of mind include the term consciousness, which is a very complex idea. 

Many people consider the neurobiology of consciousness to be the last major unsolved problem 
in biology. 

Since school activities focus principally on conscious learning and behavior, the biology of 
consciousness will thus help to formulate credible 21st century theories of teaching and learning. 
But since consciousness is also integral to religious belief and cultural behavior, its relationship to 
educational theory will certainly be controversial. Educational leaders will obviously have to 
understand consciousness in order to deal intelligently with the complex issues it will raise. 
(Sylwester, 2004). 

Piaget’s Cognitive Developmental Scale 
You are probably familiar with the four-stage Piagetian Developmental Scale shown in figure 

7.1 (Huitt and Hummel, 1998). 

Approximate Age Stage Major Developments 
Level 1. 
Birth to 2 years 

Sensorimotor Infants use sensory and motor capabilities to explore and gain 
understanding of their environments. 

Level 2. 
2 to 7 years 

Preoperational Children begin to use symbols. They respond to objects and events 
according to how they appear to be. 



Dave Moursund: Improving Math Education in K-8 Schools 

Page 63 

Level 3. 
7 to 11 years 

Concrete 
operations 

Children begin to think logically. This stage is characterized by 7 types of 
conservation: number, length, liquid, mass, weight, area, volume. 
Increasing intelligence is demonstrated through logical and systematic 
manipulation of symbols related to concrete objects. Operational 
thinking—mental actions that are reversible—develops.  

Level 4. 
11 years and beyond 

formal 
operations 

Thought begins to be systematic and abstract. In this stage, intelligence is 
demonstrated through the logical use of symbols related to abstract 
concepts, problem solving, thinking logically about abstract propositions, 
testing hypotheses, and gaining and using higher-order knowledge and 
skills.  

Figure 7.1 Piaget's Stages of Cognitive Development 
Piaget’s stages of cognitive development are not specific to any particular discipline. 

However, a math-oriented reader of figure 7.1 might decide that Concrete Operations and Formal 
Operations seem to be somewhat math oriented. Piaget was particularly interested in math 
aspects of cognitive development. You may want to reread the material quoted from George 
Polya given in Chapter 3. Even at its most elementary levels, school math tends to be rather 
abstract. 

Cognitive development is dependent on both nature and nurture. Roughly speaking, a child’s 
progress though the first two Piagetian Developmental stages is more strongly dependent on 
nature, while progress in the latter two stages is more strongly dependent on nurture. However, 
nature versus nurture is not that simple. Marcus (2004) argues that nature and nurture are so 
thoroughly intertwined that is hopeless to attempt to separate them. Moreover, his arguments 
provide strong support for the value of high quality informal and formal education. 

Although the Piagetian scale has only four labeled levels, it is a continuous scale. It is a 
common mistake to think of a person either being at Formal Operations or not being at Formal 
Operations. It is much more accurate to think of a person making progress in moving through a 
stage and gradually moving into the early part of the next stage. The rate of movement strongly 
depends on formal and informal education and the environment in which one operates. 
Moreover, a person may be well into Formal Operations in a one discipline such as history, and 
not yet have reached the beginnings of Formal Operations in another discipline such as math. 

There are a variety of instruments used to measure cognitive development, and with such an 
instrument one can define a specific score as being the minimum score to be labeled “Formal 
Operations.” When that is done, researchers find that only about 35% of children in 
industrialized societies have achieved Formal Operations by the time they finish high school 
(Chiappe and MacDonald , n.d.). 

The following quoted materials provide additional information about the attainment of 
formal operations. 

However, data from similar cross-sectional studies of adolescents do not support the assertion that 
all individuals will automatically move to the next cognitive stage as they biologically mature. 
Data from adult populations provides essentially the same result: Between 30 to 35% of adults 
attain the cognitive development stage of formal operations (Kuhn, Langer, Kohlberg & Haan, 
1977). For formal operations, it appears that maturation establishes the basis, but a special 
environment is required for most adolescents and adults to attain this stage (Huitt & Hummel, 
2003).  

Many studies suggest our [college] students’ ability to reason with abstractions is strikingly 
limited, that a majority are not yet “formal operational” (Gardiner, 1998). 
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These findings suggest that we need to take a careful look at the cognitive expectations in 
courses in all disciplines and at all grade levels. For example, the study of causality and the 
generating and testing of hypotheses are key ideas in the discipline of history and in the sciences. 
A ninth grade history or science course is apt to have a significant emphasis on these ideas and 
reasoning. However, these ideas and reasoning are part of Formal Operations. Unless they are 
presented and explored in a careful and appropriate Concrete Operations manner, they will be 
well over the heads of most of the ninth graders. This difficulty grows as one attempts to teach 
such ideas to still less cognitively developmentally mature students. 

Geometry Cognitive Development Scale 
The same sort of analysis is applicable to our math curriculum. About 50 years ago, the 

Dutch educators Dina and Pierre van Hiele focused some of their research efforts on defining a 
Piagetian-type developmental scale for Geometry (van Hiele, n.d.). Their five-level scale is 
shown in figure 7.2. (Notice that the van Hieles, being mathematicians, labeled their first stage 
Level 0. This is a common practice that mathematicians use when labeling the terms of a 
sequence.) 

Stage  Description 
Level 0 (Visualization)  
 

Students recognize figures as total entities (triangles, squares), but do not 
recognize properties of these figures (right angles in a square). 

Level 1 (Analysis) 
 

Students analyze component parts of the figures (opposite angles of 
parallelograms are congruent), but interrelationships between figures and 
properties cannot be explained. 

Level 2 (Informal Deduction)  
 

Students can establish interrelationships of properties within figures (in a 
quadrilateral, opposite sides being parallel necessitates opposite angles being 
congruent) and among figures (a square is a rectangle because it has all the 
properties of a rectangle). Informal proofs can be followed but students do not 
see how the logical order could be altered nor do they see how to construct a 
proof starting from different or unfamiliar premises. 

Level 3 (Deduction)  
Roughly speaking, this 
corresponds to Formal 
Operations on the Piagetian 
Scale. 

At this level the significance of deduction as a way of establishing geometric 
theory within an axiom system is understood. The interrelationship and role of 
undefined terms, axioms, definitions, theorems, and formal proof is seen. The 
possibility of developing a proof in more than one way is seen. 

Level 4 (Rigor)  
 

Students at this level can compare different axiom systems (non-Euclidean 
geometry can be studied). Geometry is seen in the abstract with a high degree of 
rigor, even without concrete examples. 

Figure 7.2 Van Hiele five-level developmental scale for geometry.  
The van Hieles’ scale is mainly a school math (as distinguished from folk math) scale. The 

van Hieles’ work suggested that the typical high school geometry course was being taught at a 
developmental level considerably above that of the typical students taking such courses. Think 
carefully about your math experiences as you took algebra and geometry courses in high school. 
Did some of this coursework seem over your head (“I just don’t get it.”), forcing you into 
memorize, regurgitate, and forget mode? The same general question applies to students studying 
math at all grade levels. When students “just don’t seem to get it,” the chances are good that the 
content and the way it is being presented are at an inappropriate cognitive developmental level 
for the students. 
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It is evident that moving up the van Hiele geometry cognitive developmental scale requires 
learning quite a bit of school-math geometry. For most students, this means that progress in 
moving up this scale is highly dependent on their teachers and the math curriculum. The NCTM 
Standards list geometry as one of the major content strands, and indicate that geometry is an 
important part of the elementary school math curriculum (NCTM, n.d.). Thus, elementary school 
teachers have the opportunity to make a major contribution to helping their students increase 
their geometry-oriented cognitive development. 

Math Cognitive Development Scale  
Figure 7.3 represents my current thinking on a six-level Piagetian-type scale for school 

mathematics (as distinguished from folk math). It is an amalgamation and extension of ideas of 
Piaget and the van Hieles. The first three levels are particularly relevant to K-8 students. 

Stage Name Math Developments 
Level 1. 
Piagetian and 
Math 
sensorimotor. 
 

Infants use sensory and motor capabilities to explore and gain increasing understanding of their 
environments. Research on very young infants suggests some innate ability to deal with small 
quantities such as 1, 2, and 3. As infants gain crawling or walking mobility, they can display 
innate spatial sense. For example, they can move to a target along a path requiring moving around 
obstacles, and can find their way back to a parent after having taken a turn into a room where they 
can no longer see the parent.  

Level 2. 
Piagetian and 
Math 
preoperational. 
 

During the preoperational stage, children begin to use symbols, such as speech. They respond to 
objects and events according to how they appear to be. The children are making rapid progress in 
receptive and generative oral language. They accommodate to the language environments 
(including math as a language) they spend a lot of time in, so can easily become bilingual or 
trilingual in such environments. 
During the preoperational stage, children learn some folk math and begin to develop an 
understanding of number line. They learn number words and to name the number of objects in a 
collection and how to count them, with the answer being the last number used in this counting 
process. 
A majority of children discover or learn “counting on” and counting on from the larger quantity 
as a way to speed up counting of two or more sets of objects. Children gain increasing proficiency 
(speed, correctness, and understanding) in such counting activities. 
In terms of nature and nurture in mathematical development, both are of considerable importance 
during the preoperational stage.  

Level 3. 
Piagetian and 
Math concrete 
operations. 
 

During the concrete operations stage, children begin to think logically. In this stage, which is 
characterized by 7 types of conservation: number, length, liquid, mass, weight, area, volume, 
intelligence is demonstrated through logical and systematic manipulation of symbols related to 
concrete objects. Operational thinking develops (mental actions that are reversible). 
While concrete objects are an important aspect of learning during this stage, children also begin 
to learn from words, language, and pictures/video, learning about objects that are not concretely 
available to them. 
For the average child, the time span of concrete operations is approximately the time span of 
elementary school (grades 1-5 or 1-6). During this time, learning math is somewhat linked to 
having previously developed some knowledge of math words (such as counting numbers) and 
concepts. 
However, the level of abstraction in the written and oral math language quickly surpasses a 
student’s previous math experience. That is, math learning tends to proceed in an environment in 
which the new content materials and ideas are not strongly rooted in verbal, concrete, mental 
images and understanding of somewhat similar ideas that have already been acquired. 
There is a substantial difference between developing general ideas and understanding of 
conservation of number, length, liquid, mass, weight, area, and volume, and learning the 
mathematics that corresponds to this. These tend to be relatively deep and abstract topics, 
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although they can be taught in very concrete manners. 
Level 4. 
Piagetian and 
Math formal 
operations. 
Van Hiele 
level 2: 
informal 
deduction. 

Thought begins to be systematic and abstract. In this stage, intelligence is demonstrated through 
the logical use of symbols related to abstract concepts, problem solving, and gaining and using 
higher-order knowledge and skills.  
Math maturity supports the understanding of and proficiency in math at the level of a high school 
math curriculum. Beginnings of understanding of math-type arguments and proof. 
Piagetian and Math formal operations includes being able to recognize math aspects of problem 
situations in both math and non-math disciplines, convert these aspects into math problems (math 
modeling), and solve the resulting math problems if they are within the range of the math that one 
has studied. Such transfer of learning and broad application of learning is a core aspect of Level 
4. 

Level 5. 
Abstract 
mathematical 
operations. 
Van Hiele 
level 3: 
deduction. 

Mathematical content proficiency and maturity at the level of contemporary math texts used at the 
junior and senior undergraduate level in strong math degree programs. Good ability to learn math 
through some combination of reading required texts and other math literature, listening to 
lectures, participating in class discussions, studying on your own, studying in groups, and so on. 
Solve relatively high level math problems posed by others (such as in the text books and course 
assignments). Pose and solve problems at the level of one’s math reading skills and knowledge. 
Follow the logic and arguments in mathematical proofs. Fill in details of proofs when steps are 
left out in textbooks and other representations of such proofs. 

Level 6. 
Mathematician. 
Van Hiele 
level 4: rigor. 

A very high level of mathematical proficiency and maturity. This includes speed, accuracy, and 
understanding in reading the research literature, writing research literature, and in oral 
communication (speak, listen) of research-level mathematics. Pose and solve original math 
problems at the level of contemporary research frontiers. Function as an independent learner in 
math. 

Figure 7.3. Six-stage mathematical cognitive developmental scale. 

You, and each of the students you teach, are at some place on this six-level continuous scale. 
As you teach math, think carefully about what you are doing that will help your students move 
up this scale. As you study math, think carefully about how this helps you move up the scale. 

Of course, this is easier said than done. Suppose a young child is presented with the addition 
task 3 + 5. As an adult, you have probably memorized that 3 + 5 = 8, and so can respond quickly 
to this computational problem. However, think about the following list of ways that this task 
might be completed mentally.  

1. Count-all: count 3 objects, “1, 2, 3,” then 5 objects, “1, 2, 3, 4, 5” then 
count all the objects, “1, 2, 3, 4, 5, 6, 7, 8” to get 8 objects. This approach 
might be based on visualizing 3 objects (such as small cubes) and 5 
objects, and then mentally counting from this visualization. 

2. Count-on from first number: count-on 5 after 3; “4, 5, 6, 7, 8.” This 
seems to require more understanding of how numbers work than does the 
first approach. It seems to require some sort of mental visualization of the 
5 as 5 objects, so that one can start counting after the counting number 3, 
moving up one in the counting sequence for each of the 5 objects. 

3. Count-on from larger: turn the problem round and count-on 3 after 4 as 
“5, 6, 7. 8.” This requires an understanding that 3 + 5 is the same as 5 + 3. 

4. Derived fact: “3+5 is 2 more than 3 + 3, so it is 8.” “3 + 5 is the same as 4 
+ 4, so it is 8.” “3 + 5 is 2 less than 5 + 5, so it is 8.” These are relatively 
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sophisticated approaches, using both a reformulation of the problem and 
memorized facts.  

5. Known (memorized) fact: “3+5 is 8.” 
Many children will discover or be taught the first approach by the time they enter 

kindergarten. Some will discover or be taught the next two approaches during kindergarten. 
Some will eventually discover the strategy in the fourth approach, but many will not discover 
this on their own. If the formal school instruction focuses strongly on memorization, students 
may well not learn the strategy and become proficient in its use.  

This example illustrates a major issue in math education. Suppose there is a clearly defined 
problem or closely related category of problems that we really want students to be able to solve. 
We can have them memorize (learn by rote) answers or quickly applied algorithms for arriving at 
answers. Or, we can take a longer route of teaching and learning for understanding. In some 
cases, rote memorization is “the” right approach. However, learning without understanding is 
quite fragile and provides a very weak framework for further learning. Each math teacher and 
each math learner is faced by the difficulty of achieving an appropriate balance between the two 
approached.  

Probability and Math Cognitive Development 
The van Hieles examined the secondary school geometry course from the point of view of 

student cognitive development in geometry. They concluded that there is a significant mismatch 
between student cognitive development and the typical proof-oriented course being taught at the 
time they developed their scale. 

Other researchers have examined other parts of the math curriculum from a cognitive 
development point of view. A number of math education researchers have explored the issue of 
cognitive development and learning probability. A good example of such work is provided in 
Soen  (1997). Quoting from that article: 

Piaget and Inhelder (1975) were the first researchers to study the development of the idea of 
chance in children. According to them, the concept of probability as a formal set of ideas develops 
only during the formal operational stage, which occurs about twelve years of age. By that age, 
children can reason probabilistically about a variety of randomizing devices. 

… 

Garfield and Ahlgren (1988) contend that before the teaching of probability, students must have an 
understanding of ratio and proportion. Students must be able to function at the formal operational 
level. They must have the necessary skills in dealing with abstractions. 

The research relating the learning of probability and a student’s level of cognitive 
development suggests that learning for understanding requires students to be at a formal 
operations level. Remember, even though age 11 or 12 is a biological time for beginning to move 
into formal operations, only about a third of students have achieved formal operations by the 
time they finish high school. Thus, research in this area tells us that K-8 students are not ready to 
develop a formal understanding of probability. 

At the current time, the K-8 school math curriculum includes a focus on “intuitive” 
probability. From the point of view of math educators familiar with ideas such as those quoted 
above, the goal is to have students gain an intuitive (not a formal math-oriented) understanding 
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of some “simple” probability concepts. The realization is that students are simply not 
developmentally ready for a formal treatment of the topic. 

Unfortunately, many K-8 teachers do not have a good intuitive understanding of probability 
and have themselves not achieved formal operations in math. Thus, the teaching situation is often 
best described as “the blind leading the blind” and the results are not very good. The following 
quoted example falls into the category of intuitive probability (Brainchild, n.d.) and helps to 
illustrate my point. 

Math, 3rd Grade 
Jackie's dad baked 36 chocolate chip cookies and 24 peanut butter cookies on Monday. On 
Tuesday, he baked 12 cherry chip, and 15 mixed nut cookies. Jackie reaches into the cookie jar 
and pulls out a cookie. Which kind of cookie is she least likely to pull out? 

A. mixed nuts 

B. cherry chip 

C. peanut butter 

D. chocolate chip 

I believe that this problem was made up by a person with a poor intuitive understanding of 
probability and the real world. Consider, for example, what you know about cookie jars. One 
typically puts cookies into the jar through an opening in the top, and draws them out in the same 
manner. Thus, the situation tends to be one of “last in, first out.” 

The problem statement does not indicate that the cookies were placed in a cookie jar, nor 
whether this was done at the end of each day of baking. Cookies placed in a cookie jar do not 
(magically) arrange themselves in a random order. Thus, a correct answer to this problem 
depends on whether the Monday’s cookies were put into the cookie jar before the Tuesday’s 
cookies. It also depends on whether Tuesday’s cookies were put into the jar in the order that they 
are mentioned in the word problem—thus, the cherry chip cookies going in first and the mixed 
nut cookies going in last. If the mixed nut cookies go in last, I think that the probability of 
reaching into the jar and drawing out a mixed nut cookie is 100%. 

The problem was written to be somewhat politically correct—the father baking the cookies. 
But, I am concerned about the small number of cookies baked on Tuesday. That does not fit with 
my understanding and experience in baking cookies. All in all, I find that this example problem 
is poorly conceived. 

It is easy to talk about an “intuitive understanding,” but it is more difficult to state clearly 
what this might mean. Herbert A. Simon (1916-2001) was a Nobel Prize (in Economics) winning 
researcher and scholar who made many significant contributions in the areas of problem solving, 
computers, cognitive psychology, and economics. Many years ago he gave a talk at the 
University of Oregon, during the celebration of the addition of a new, major building in the 
Business School complex. In this talk he said, “Intuition is frozen analysis.” 

Mathematicians often talk about mathematical intuition. 
The meanings I wish, rather, to emphasize here, are those falling under the heading of geometrical 
and physical intuition. I would question whether there is such a thing as innate, “raw”, untutored 
intuition of these or indeed of any kind. In any case, it is clear that our intuitions can be cultivated 
through training and practice. These may accord with tacit knowledge gained through experience, 
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but, equally, one may gain intuitions that help one maneuver through subject matter that is initially 
highly nonintuitive. Moreover, intuitive knowledge or understanding is not simply separated from 
that obtained by more or less systematic reasoningthe two frequently go hand in hand, and 
neither is dispensable in practice (Feferman, 1998).  

Notice that both Simon and Feferman make it clear that the intuition arises from (is based on) 
careful analysis of lots of examples or cases of the situation in which one eventually has a good 
intuition. There is quite a bit of literature on math intuition. . For example a Google search 
5/29/06 of the term "math intuition" OR "mathematical intuition" produced over 32,000 hits. 

The literature on mathematical intuition makes me suspicious of the idea that K-8 students 
can develop a good intuitive understanding of a topic such as probability on their own or through 
the teachings of a teacher who lacks such intuition. Part of my conclusion is rooted in the fact 
that people had been gambling for thousands of years (presumably some of the people 
developing a good intuition of the odds in various situations), but that the development of a solid 
mathematical footing for probability was a major mathematical achievement beginning about 
400 years ago. Quoting Apostol (1969): 

A gambler's dispute in 1654 led to the creation of a mathematical theory of probability by two 
famous French mathematicians, Blaise Pascal and Pierre de Fermat. Antoine Gombaud, Chevalier 
de Méré, a French nobleman with an interest in gaming and gambling questions, called Pascal's 
attention to an apparent contradiction concerning a popular dice game. The game consisted in 
throwing a pair of dice 24 times; the problem was to decide whether or not to bet even money on 
the occurrence of at least one "double six" during the 24 throws. A seemingly well-established 
gambling rule led de Méré to believe that betting on a double six in 24 throws would be profitable, 
but his own calculations indicated just the opposite. 

The second of the two quoted paragraphs at the beginning of this section on probability (the 
statement by Garfield and Ahlgren) points out another problem in elementary school math. Even 
at the middle school level, ratio and proportion tend to confound students. They can memorize 
procedures, but most gain relatively little understanding of what they are doing. Attempts to 
provide an “intuitive understanding” type of treatment of these topics at still lower grade levels 
tend to be relatively unsuccessful. 

In summary, research on math and cognitive development suggest that attempts to teach 
these topics at the elementary school and middle school will be fraught with significant 
difficulties. My conversations with a very large number of teachers suggest that this research 
result is correct. 

Math Manipulatives 
My analysis of Piagetian cognitive development and mathematical cognitive development is 

that much of the math curriculum students encounter at the precollege level is not being taught in 
a manner consistent with our understanding of cognitive development. It is being taught at a 
level of abstraction that is too far above the developmental levels of students. 

As previously mentioned, this situation tends to force the majority of students into memorize 
and regurgitate mode, where they develop only a modest understanding of what they are doing. 
Such mathematical knowledge is fragile and tends to disappear over time. It provides a very 
weak foundation for a student’s future studying of math. 

There is general agreement in the math education leadership that math should be taught in a 
manner that builds understanding, and that a successful math education program can and does 
help students to achieve understanding. Much of the current reform movement in math focuses 



Dave Moursund: Improving Math Education in K-8 Schools 

Page 70 

on students gaining a higher level of understanding of the content being covered. One approach 
that is showing good signs of success is to make extensive use of math manipulatives. Math 
manipulatives fit in well with—help to bridge the gap—of students being at a concrete 
operations level, and gradually moving toward formal operations.  

The ready availability of computers in schools has facilitated the development of computer-
based manipulatives (virtual manipulatives), and these are now commonly used in school. 
Douglas Clements (1999) has written an excellent analysis of physical manipulatives versus 
virtual manipulatives. Many useful virtual manipulative materials are available free at the 
Website Virtual Manipulatives (n.d.). 

I believe that our math education system is thinking way too small as it considers the use of 
physical and virtual manipulatives. Yes, indeed, such manipulative are useful in developing an 
understanding of important mathematical concepts. Yes, indeed, such manipulatives are quite 
useful in moving students from the preoperational level to the concrete operations level. But in 
addition, physical and virtual manipulative lie at the very core of problem solving in many 
different disciplines, and are key to computational mathematics. 

For example, consider a businessperson developing a spreadsheet model of a certain aspect 
of a business. The development of such a model is an example of doing computational 
mathematics. The resulting spreadsheet model can be thought of as a virtual manipulative. Using 
this spreadsheet in posing and answering “What if?” types of questions is doing a type of 
computational thinking. 

Consider researchers developing an appropriate shape for an airplane or a car. They develop 
physical models that they test in wind tunnels. Nowadays, they develop computer models that 
they use as they pose and answer “What if?” types of questions. Physical and virtual 
manipulative are routine tools of these researchers. They are aids to computational thinking. 

Think about architects. In the past, they developed physical models as well as blueprints and 
other drawings. Now, they develop computer models. They have long recognized the value of 
various types of physical and virtual models (physical and virtual manipulatives) in representing 
and solving the problems they face. 

In 1998, one of the Chemists who received a Nobel Prize did so on the basis of his work on 
developing computer models of molecules in chemical reactions. Over the previous 15-20 years 
he had developed virtual manipulatives that proved to be powerful aids to understanding and 
attacking certain types of problems in chemistry. 

I could continue to extend the list, but perhaps the message is becoming clear. Computer 
models—virtual manipulatives developed through the use of computers and computational 
math—are now commonly used to help represent and solve problems in many different 
disciplines. Math educators should take this into consideration as they make use of manipulative 
to help students learn math. At the same time their students are learning to use manipulative as 
an aid to learning math, they could be learning about use of manipulative to help represent and 
solve problems in many other disciplines. 

FOSS, Example from Science Education 
Educators in each discipline are aware of the work of Piaget and other research in cognitive 

development. Thus, curriculum developers in each discipline pay attention to how their materials 
align with the cognitive development of the students who will use the materials. 
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The Full Option Science System (FOSS) is based on the teaching and learning philosophy of 
the Lawrence Hall of Science, University of California, Berkley (n.d.). The Lawrence Hall of 
Science is one of the world’s more successful and well-known hands-on museums of science. 
Quoting from Foss (n.d.): 

The FOSS program is correlated to human cognitive development. The activities are matched to 
the way students think at different times in their lives. The research that guides the FOSS 
developers indicates that humans proceed systematically through predictable, describable years, 
and that students learn science best from direct experiences in which they describe, sort, and 
organize observations about objects and organisms. Upper elementary students construct more 
advanced concepts by classifying, testing, experimenting, and determining cause and effect 
relationships among objects, organisms, and systems. 

FOSS investigations are carefully crafted to guarantee that the cognitive demands placed on 
students are appropriate for their cognitive abilities.  

The FOSS curriculum is based upon a combination of research in science education and 
years of practical experience in working with young learners. Here are a few of the key ideas 
quoted from the FOSS Website: 

•  learning moves from experience to abstractions. FOSS modules begin with hands-on 
investigations, then move students toward abstract ideas related to those investigations using 
simulations, models and readings.  

•  a child's ability to reason changes over time. FOSS designs investigations to enhance their 
reasoning abilities.  

•  fewer topics experienced in depth enhance learning better than many topics briefly visited. 
FOSS provides long-term (8-10 weeks) topical modules for each grade level, and the modules 
build upon each other within and across each strand, progressively moving students toward the 
grand ideas of science. The grand ideas of science are never learned in one lesson or in one 
class year. 

It is interesting to compare and contrast these ideas and the FOSS approach to education with 
the various math curricula that are widely used in this country. The first bulleted item notes the 
challenge of abstraction, and emphasizes the need to move from the concrete to the abstract. The 
second bulleted item emphasizes working over time to enhance the growing reasoning ability of 
learners. The third bulleted item addresses the issue of breadth versus depth, indicating that the 
developers of FOSS favor depth over breadth. Math educators would do well to carefully 
investigate the FOSS work 

Final Remarks 
Five thousand years of cumulative progress in the discipline of mathematics have led to a 

broad and deep discipline. While math has many uses in many different disciplines, math tends 
to have a high level of abstraction. Thus, our math education system is caught between the need 
to help K-8 students develop practical, down to earth understanding and use of math, and the 
abstractions that underlie “higher” math such as the algebra and geometry that students will face 
in secondary school. 

This has led to the teaching of a number of rather abstract and difficult math topics at lower 
and lower grade levels. My personal opinion is that a significant fraction of students regularly 
encounter math instruction and learning requirements that are quite a bit above their 
mathematical cognitive developmental levels. For such students, their main recourses are 
memorization without much understanding, or just giving up.  
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K-8 School Applications 
7.1 You have an understanding of the number line. Probably your understanding is 

quite a bit different than that of most K-8 students. For example, you have 
insight into the existence of irrational numbers such as the positive square root 
of 2, and you can probably make a mark on a number line close to where this 
number lies. Your broader and deeper understanding developed over the years 
as you studied math and as your brain continued to develop. Think about the 
understanding of the number line you expect your average student to have at the 
beginning of the school year and then at the end of the school year for a specific 
grade level that interests you. Carry on a whole class discussion with your 
students to gain insight into their current understanding of the number line. 
Examine the math content you are teaching and how it relates to increasing 
student understanding of the number line. When appropriate, engage your 
students in a discussion about how the math content topic fits in with and 
expands their understanding of the number line. 

7.2 Watch your students as they do paper and pencil arithmetic and as they make 
use of math manipulative to explore various math topics. Likely, you will see 
some students who are better at (more comfortable with) one of these activities 
as compared to the other. There can be transfer of learning in either direction—
from manipulative to abstract symbols, or vice versa. If you see an example of 
this happening, point it out to the whole class and use the situation to help your 
students to learn to find and make use of such connections. 

7.3 Talk with your students about models, such as toy cars, model airplanes, toy 
figurines of people and animals, and so on. Move the focus toward the 
similarities and differences between models and the “real thing.” Then focus the 
conversation on mathematical models. Math modeling lies at the very heart of 
use of math to help represent and solve problems. Work to learn the current 
level of your students’ understanding of this idea, and then to help them expand 
their understanding. 

Activities for Self-Assessment, Assignments, and Group Discussions 
7.1 The chances are good that you are at the Formal Operations level on the 

four-level Piagetian Cognitive Developmental Scale. What evidence can 
you provide that you are at this level? Think about where you fall on the 
six-stage mathematical cognitive developmental scale. What evidence can 
you provide that supports your conclusion? Share your insights into your 
mathematical self that result from this activity. 

7.1 Can a teacher be an effective teacher of K-8 school mathematics if the 
teacher is not at Level 4 (Piagetian and Math formal operations) on the 
six-stage mathematical cognitive developmental scale? Present arguments 
on each side of this issue, as well as suggestions for a K-8 math teacher 
who is not at this math cognitive developmental level. 

7.3 Explore and share your insights into how math manipulative fit into 
helping students learn math while at various states in their mathematical 
development. What do you know about uses of and the effects of using 
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physical manipulatives versus virtual manipulatives (that is, computerized 
manipulatives)? 

7.4 Develop a lesson plan in which students use math manipulatives to help 
learn some math ideas and, at the same time, increase their understanding 
of math modeling. 
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Chapter 8 

Cognitive Neuroscience 
The illiterate of the 21st century will not be the one 
who can not read and write, but the one who can not 
learn, unlearn, and relearn. (Alvin Toffler) 

Civilization advances by extending the number of 
important operations which we can perform without 
thinking of them. (Alfred North Whitehead) 

Cognitive neuroscience is a relatively new discipline, combining aspects of brain science and 
mind science that specifically focus on cognition. Research in cognitive neuroscience is helping 
to advance the field of education. Quite a bit of the research that is being done focuses on topics 
such as attention, math, and reading. Since reading is an important aspect of math, it is not 
surprising that students with reading difficulties often have difficulties in math. A number of 
articles about math disabilities are available at (Retrieved 5/28/06) 
http://www.ldonline.org/indepth/math. See in particular Geary (1999).  

 

Cognitive Neuroscience in Education 
Cognitive neuroscience research using brain imaging is beginning to make significant 

contributions to our understanding of learning and using math, although this type of research is 
still in its infancy. For example, by 1999 brain imaging showed different parts of the brain being 
used in exact calculations than being used in estimations or approximate calculations (Dehaene 
et al. 1999). This provides scientific evidence to support the idea that teaching students to do 
exact calculations and teaching students to estimate are distinct topics, and that transfer of 
learning between these two topics may be a challenge to students and their teachers. 

Cognitive neuroscience has emerged in the last decade as an intensely active and influential 
discipline, forged from interactions among the cognitive sciences, neurology, neuroimaging 
(including physics and statistics), physiology, neuroscience, psychiatry, and other fields. 

… 

The cross-disciplinary integration and exploitation of new techniques in cognitive neuroscience 
has generated a rapid growth in significant scientific advances (NSF, 2002). 

As an example of cognitive neuroscience progress, chapter 6 mentioned that research on gF 
suggests that this component of g increases into early adulthood. A recently published 
longitudinal brain imaging study reports results that seem to be consistent with this gF result 
(Gogtay et al., 2004). 

Robert Sylwester is a well-known educator and authority on how better understanding of the 
brain can shed light on education practices that directly impact the classroom. He writes a 

http://www.ldonline.org/indepth/math
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monthly column that is available on the Web (Sylwester, 2004). Quoting from his October 2004 
article: 

John Dewey, Jean Piaget, and B. F. Skinner helped shape 20th century educational policy and 
practice by connecting teaching and learning to emerging cultural and scientific developments. 
Recent dramatic advances in the cognitive neurosciences and computer technology suggest that a 
similar set of creative educational theorists will soon emerge to help schools connect teaching and 
learning to 21st century biology and technology. 

In brief summary, the discipline of brain and mind science has progressed to a level in which 
it can and is making significant contributions to teaching and learning. 

Dyscalculia 
Brain imaging has identified regions of the brain associated with different types of 

dyscalculia, a difficulty in learning certain aspects of math (Stanescu-Cosson et al., 2000; 
Pearson, 2003).  

Over the past several decades important advances have been made in the understanding of the 
genetic, neural, and cognitive deficits that underlie reading disability (RD), and in the ability to 
identify and remediate this form of learning disability (LD). Research on learning disabilities in 
mathematics (MD) has also progressed over the past ten years, but more slowly than the study of 
RD. One of the difficulties in studying children with MD is the complexity of the field of 
mathematics. In theory, MD could result from difficulties in the skills that comprise one or many 
of the domains of mathematics, such as arithmetic, algebra, or geometry. Moreover, each of these 
domains is very complex, in that each has many subdomains and a learning disability can result 
from difficulties in understanding or learning basic skills in one or several of these subdomains . 

As an example, to master arithmetic, children must understand numbers (e.g., the quantity that 
each number represents), counting (there are many basic principles of counting that children must 
come to understand), and the conceptual (e.g., understanding the Base-10 number system) and 
procedural (e.g., borrowing from one column to the next, as in 43-9) features involved in solving 
simple and complex arithmetic problems. A learning disability in math can result from difficulties 
in learning any one, or any combination, of these more basic skills. To complicate matters further, 
it is possible, and in fact it appears to be the case, that different children with MD have different 
patterns of strengths and weakness when it comes to understanding and learning these basic skills 
(Geary,1999). 

Perhaps 5-7 percent of students have some form of dyscalculia. Early identification of 
dyscalculia can make a significant contribution to helping students deal with this learning 
disability. Symptoms of dyscalculia include (Dyscalculia, n.d.): 

• Difficulty with numbers; 

• Poor understanding of the signs +, -, / and x, or may confuse these mathematical symbols; 

• Difficulty with addition, subtraction, multiplication and division or may find it difficult to 
understand the words “plus,” “add,” “add-together”; 

• May reverse or transpose numbers for example 63 for 36, or 785 for 875; 

•  Difficulty with times tables; 

•  Poor mental arithmetic skills; 

•  Difficulty telling the time and following directions. 

Our current educational system is not good at early identification of students with 
dyscalculia. That is unfortunate, because early identification and a strong intervention can help a 
student overcome or more effectively real with this disability. The possible parallel with dyslexia 
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(a serious reading disability) is interesting. Research in this area now strongly suggests that a 
strong, early intervention can lead to “rewiring” of the brain in a manner that contributes 
significantly to a person being able to become a fluent reader. 

To do a precise diagnosis that a student has dyscalculia requires considerable knowledge and 
skill. However, an K-8 teacher or a parent can easily study the bulleted list given above and do a 
preliminary screening of students who seem to be having considerable difficulty in learning 
math. In addition, students identified as dyslexic should also be carefully screened for 
dyscalculia. (Remember the emphasis earlier in this book that math is a language.) 

Dyslexia 
Dyslexia is a type of reading disability. Quoting from Dyslexia (n.d.): 

Dr. Sally Shaywitz, a researcher at the Yale University of Medicine showed in 1998 that areas in 
the back of the brain that are usually activated when readers sounded out words are significantly 
less activated in dyslexics' brains. Moreover, areas in the front of the brain displayed more activity 
in dyslexics' brains than in the brains of normal readers. More recently, researchers at the 
University of Washington have shown that dyslexics' brains work up to five times harder than 
non-dyslexic brains. Girard Sagmiller, in his website called What is Dyslexia?, describes dyslexia 
"like running a 100-meter race. In your lane you have hurdles, but no one else does. You feel that 
it's unfair but you try running like the other competitors anyway." 

Dyslexia has been studied much more than dyscalculia, and it may be about three times as 
prevalent as dyscalculia.  

It appears that many … children with RD [reading disability] also have difficulties learning basic 
arithmetic. In particular, children and adults with RD often have difficulties retrieving basic 
arithmetic facts from long-term memory. The issue is whether the co-occurrence of RD and 
difficulties in remembering arithmetic facts are due to a common underlying memory problem. 
The answer to this question is by no means resolved. Nonetheless, some evidence suggests that the 
same basic memory deficit that results in common features of RD, such as difficulties making 
letter-sound correspondences and retrieving words from memory, is also responsible for the fact-
retrieval problems of many children with MD [mathematics disability]. If future research confirms 
this relationship, then a core memory problem that is independent of IQ, motivation and other 
factors, may underlie RD and at least one form of MD. (Cleary, 1999) 

Attention 
Attention is a large and important component of the discipline of cognitive neuroscience. A 

human’s five senses bring in an overwhelming amount of data. The brain, at a conscious and 
subconscious level, pays attention to some of this data; however, it filters out and ignores most of 
this data. 

This presents a challenge both to teachers and to students. In a schoolroom class, a student’s 
brain is processing input from five senses, and it is thinking about lots of other things. For 
example, it may be sensing that he or she is hungry, bored, will have a lot of fun later in the day, 
would rather be listening to some good music, is worried about a recent interaction with a friend, 
and so on. A teacher needs to teach in a manner that catches and holds student attention, and the 
student needs to learn to focus his or her attention on a learning task.  

Michael Posner is a world-class expert in attention. The following is from Posner & Fan 
(2004). 

“Everyone knows what attention is. It is the taking possession of the mind in clear and vivid form 
of one out of what seem several simultaneous objects or trains of thought.” (James, 1890). 
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However, this subjective definition does not provide hints that might lead to an understanding of 
attentional development or pathologies. The theme of our paper is that it is now possible to view 
attention much more concretely as an organ system. 

… 

We believe that viewing attention as an organ system aids in answering many perplexing issues 
raised in cognitive psychology, psychiatry and neurology. … We can view attention as involving 
specialized networks to carry out functions such as achieving and maintaining the alert state, 
orienting to sensory events and controlling thoughts and feelings. [Bold added for emphasis.] 

The study of attention as an organ is now being facilitated by brain imaging technology. 
Researchers are beginning to understand which parts of the brain are active when a person is 
paying attention, or focusing attention in a particular manner. This is contributing to increased 
understanding of Attention Deficit Disorder (ADD) and other attention pathologies. 

As a potential or current teacher at the K-8 level, you know that there are many different 
things that attract student attention away from the topics being addressed in class. One of the 
reasons that this happens is that some of the school topics are, from a student’s point of view, 
“just plain boring.” In math education, for example, this helps to explain why (very roughly 
speaking) most children find math class time reasonably interesting up through about the 3rd or 
4th grade. During those first few years of formal schooling, math tends to contain many new, 
interesting, empowering, and attention grabbing ideas. After about the 3rd to 4th grade, an 
increasing number of students find that math class is not particularly interesting and does not 
hold their attention. 

Chapter 9 of this book focuses specifically on computers in education. It includes a brief 
introduction to games in education. For more on games in education, see Moursund (2006, 
Games Website). One aspect of computer games is that they are attention grabbing and attention 
holding. At the current time, research indicates that K-8 children are spending more time playing 
computer games than they are watching television (Science of Mental Health, 2004). Both 
television and computer games can be viewed as major competitors for a student’s attention! 
Repetitious paper and pencil drill and practice of computational algorithms does not compete 
well with such media.  

Genetics  
The past decade has seen a very high rate of progress in genetics and in decoding the human 

genome. We now have theory and instrumentation that helps us gain increased understanding of 
the human brain. We have steadily increasing knowledge of the human genome, noninvasive 
tools for brain imaging, and tools and skills for manipulation of individual genes. This progress 
has raised the nature versus nurture discussion to an entirely new level. We are gaining increased 
understanding of nature, and we now have the ability to change nature.  

In the coming decades, we will all collectively as a society need to decide what we think about 
biotechnology and what applications we are and are not willing to allow. The debates we have 
now, about cloning and stem cell research, pale in comparison to debates we are likely to 
encounter as the technology for manipulating genes advances. We are already at the point where it 
is possible to screen embryos for the predisposition to certain life-threatening illnesses; as we 
unravel more and more of the genome, we will be able to detect more and more disorders (or 
predispositions to disorders) well in advance of birth. Ultimately, if we so choose, we may be able 
to directly manipulate embryonic genomes—add a gene here, delete a gene there. The genes of a 
child might eventually be more a matter of choice than of chance (Marcus, 2004, p174).  
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We are all aware of the issue of athletes taking drugs to enhance the development and 
performance of their physical bodies. Perhaps you drink beverages that contain caffeine, and you 
know that caffeine enhances brain alertness and performance. In the coming years, there will be 
a steadily increasing number of drugs that can enhance brain development and performance. 
Thus, as a teacher, you can look forward to having to deal with issues of students who have been 
genetically enhanced and/or enhanced by a variety of drugs.  

Chunks and Chunking 
Here are three different types of human memory: 

• Sensory memory stores data from one’s senses, and for only a short time. For 
example, visual sensory memory stores an image for less than a second, and auditory 
sensory memory stores aural information for less than four seconds. 

• Working memory (short term memory) can store and actively process a small number 
of chunks. It retains these chunks for less than 20 seconds. 

• Long-term memory has large capacity and stores information for a long time.  

Research on working memory indicates that for most people the size of this memory is about 
7 ± 2 chunks (Miller, 1956). This means, for example, that a typical person can read or hear a 
seven-digit telephone number and remember it long enough to key into a telephone keypad. The 
word chunk is very important. When I was a child, my home phone number was the first two 
letters of the word diamond, followed by five digits. Thus, to remember the number (which I still 
do, to this day) I needed to remember only six chunks. But, I had to be able to decipher the first 
chunk, the word “diamond.” That is, it was a combination of rote memorization and some level 
of understanding that allowed me to make use of this memory aid. 

Long-term memory has a very large capacity, but this does not work like computer memory. 
Input to computer memory can be very rapid (for example, the equivalent of an entire book in a 
second), and a computer can store such data letter perfect for a long period. The human brain can 
memorize large amount of music, poetry, or other text. However, for most people this is a long 
and slow process for most people. By dint of hard and sustained effort, an ordinary person can 
memorize nearly letter perfect the equivalent of one or two books. At the current time, the Web 
contains the equivalent of tens of millions of books. 

On the other hand, the human brain is very good at learning meaningful chunks of 
information. Think about some of your personal chunks such as constructivism, multiplication, 
democracy, transfer of learning, and Mozart. Undoubtedly these chunks have different meanings 
to me than they do for you. As an example, for me, the chunk “multiplication” covers 
multiplication of positive and negative integers, fractions, decimal fractions, irrational numbers, 
complex numbers, functions (such as trigonometric and polynomial), matrices, and so on. My 
breadth and depth of meaning and understanding were developed through years of undergraduate 
and graduate work in mathematics. 

It is useful to think of a chunk as a label or representation (perhaps a word, phrase, visual 
image, sound, smell, taste, or touch) and a collection of pointers. A chunk has two important 
characteristics: 

1. It can be used by short-term memory in a conscious, thinking, problem-
solving process. 
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2. It can be used to retrieve more detailed information from long-term 
memory. 

Our education system can be substantially improved by taking advantage of our steadily 
increasing understanding of how the mind/brain learns and then uses its learning in problem 
solving. Chunking information to be learned and used is a powerful aid to learning and problem 
solving. However, even if two people receive the same education about a topic, and use the same 
label for a chunk that they form on that topic, their chunks will be quite different. This is a key 
idea in constructivism.  

Brain Versus Computer 
In the early days of computers, people often referred to such machines as electronic brains. 

Even now, more than 50 years later, many people still use this term. Certainly a human brain and 
a computer have some characteristics in common. However: 

• Computers are very good at carrying out tasks in a mechanical, “non-thinking” 
manner. They are millions of times as fast as humans in tasks such as doing 
arithmetic calculations or searching through millions of pages of text to find 
occurrences of a certain set of words. Moreover, they can do such tasks without 
making any errors. 

• Human brains are very good at doing the thinking and orchestrating the processes 
required in many different very complex tasks such as carrying on a conversation 
with a person, reading for understanding, posing problems, and solving complex 
problems. Humans have minds and consciousness. A human’s brain/mind capability 
for “meaningful understanding” is far beyond the capabilities of the most advanced 
computers we currently have. 

There are many things that computers can do much better than human brains, and vice versa. 
Our educational system can be significantly improved by building on the relative strengths of 
brains and computers, and decreasing the emphasis on attempting to “train” students to compete 
with computers. We need to increase the focus on students learning to solve problems using the 
strengths of their brains and the strengths of Information and Communication Technology. 

One of the key issues in studying human brains and computer-as-brains is the human brain-
computer brain interface. If we go back to the time of the first computers, the interface was 
mainly via an electric typewriter device, punch paper tape, and punch cards. Later came display 
screens, touch screens, and the mouse. Now we also have voice input and output. We also have 
wireless connectivity and cell phones. 

At the current time, some research projects are working on implanting ICT systems into 
people’s brains. Cochlear implants and retinal implants can be considered as part of this overall 
endeavor, and cochlear implants are now relatively common. Brain implants have been used to 
help deal with epilepsy. Research is being done on creating a direct connection between a 
person’s brain and a computer located outside the brain. For example, a volunteer in this research 
program is able to play a simple computer game involving movements of the curser by 
“thinking” up, down, right, and left. 

The point I am making here is that in the past, and continuing into the future, there has been 
substantial research on improving human-computer interfaces. As a computer user, you likely 
make routine use of a mouse, video display screen, and a keyboard. In the future, we will see 
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significant progress in building still more direct brain-computer interfaces. Improvements in the 
interface will have a significant impact on education. In essence, such improvements contribute 
to the idea of the computer as an auxiliary brain, or as a brain enhancement. The way I view it is 
that I and my human brain/mind, along with my computer system, can accomplish a wide range 
of tasks and solve a wide range of problems that I, all by myself, cannot do. 

Augmentation to Brain/Mind 
Reading and writing provide an augmentation to short (working) term and long-term memory 

for personal use and that can be shared with others. Data and information can be stored and 
retrieved with great fidelity. As Confucius noted about 2,500 years ago, “The strongest memory 
is not as strong as the weakest ink.”  

Writing onto paper provides a passive storage of data and information. The “using” of such 
data and information is done by a human’s brain/mind.  

Computers add a new dimension to the storage and retrieval of data and information. 
Computers can process (carry out operations on) data and information. Thus, one can think of a 
computer as a more powerful augmentation to brain/mind than is provided by static storage on 
paper or other hardcopy medium. The power, capability, and value of this type of augmentation 
continue to grow rapidly. Certainly, this is one of the most important challenges in education at 
the current time. For the most part, our formal educational system has yet to understand the idea 
of ICT as an augmentation to the mind/brain. 

In thinking about chunks and learning, I see two approaches. In the first approach, a clear 
framework is provided. Think of the framework as scaffolding for a chunk along with a label for 
the chunk. One learns the framework and then fits new knowledge and experiences into the 
framework. In the second approach, one creates their own framework. This is less efficient 
initially, but perhaps more productive over the long run in the task of helping students learn to 
learn and to take increasing responsibility for their own learning. 

To illustrate, suppose I want to know a modest amount about something that others have 
carefully studied. Since part of a discipline is how to teach and learn it, I decide to take 
advantage of this accumulated knowledge. I have the discipline taught to me by an expert 
teacher. 

Next, suppose that I want to extend my new knowledge to my personal world and to 
situations not covered in the standard curriculum. In this situation, I hope that I have learned to 
learn on my own. I hope that I have the creativity and skill to discover, invent, find, and so on, 
and fit my new learning into the old framework. I hope that I can restructure the old framework 
so that it better fits the new and my needs. 

There is one more important piece to this. Suppose that the area that I want to study is one in 
which computers provides powerful aids to solving its problems. Then I want my chunk to 
include a link to the capabilities and limitations of computers as an aid to solving the problems. I 
want to have the knowledge and skills to make use of this computer augmentation to my brain. 
The next chapter focuses on computers in education. 

Final Remarks 
Chapters 6-8 are interrelated. Taken together, they provide some insight into 

logical/mathematical intelligence and into difficulties in learning math. Research into children 
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with learning disabilities provides clear evidence of the rate of learning math and upper limits 
faced by certain students. For me, this raises the question of: What about students who are not 
classified as learning disabled, but have similar learning difficulties, but as a somewhat lesser 
level?  

Math educators have some insights into such difficulties. For example, some secondary 
schools offer a two-year sequence that covers first-year high school algebra. It has long been 
recognized that the theorem proof aspects of high school geometry are beyond the math maturity 
of many students who attempt such a course.  

In summary, research into cognitive development is helping to make clear that math is often 
taught assuming a math cognitive developmental level that is well above what many of the 
students have achieved. It appears to me that this difficulty starts quite early in the math 
curriculum. Because of the vertical structure of the math curriculum, for many students the 
problem grows from year to year. In some sense, the math curriculum and math requirements in 
school seem designed to lead the majority of students down a path in which they do poorly and 
eventually develop an attitude of “I can’t do math.” 

K-8 School Applications 
8.1 Brainstorming is a very useful strategy in thinking about a problem situation. In 

some sense, one’s brainstorming around a particular idea is like putting together 
some of the topics that are chunked (in one’s brain) with the idea. Present your 
class with a problem or task related to the math they are studying. Do a whole 
class brainstorm to illustrate the process of brainstorming. When done, facilitate 
discussion about how the results relate to the problem or task at hand, and see if 
the class collectively can solve the problem or accomplish the task. This activity 
can be used a number of times over a school year. Among other things, it helps 
to expand an existing chunk that some or perhaps all of the students have.  

8.2 Play a short-term memory game with your students. For example, hold up a 
picture of a geometric figure for the class to view for a few seconds. Then, each 
class member is to draw the figure from memory. Alternatively, invite a student 
to come to your desk and view a geometric figure. The student must then go to 
another student and tell the student how to draw the geometric figure. These 
activities can be more challenging by adding letters to designate various vertices 
or edges of the figure, so that these also must be held in short term memory. The 
activity tends to be easy for students if the figure is one that they know a word 
for, such as square, rectangle, or triangle. Then the figure is just one chunk. 
Chunking helps in dealing with the burden of labeled vertices and edges if they 
are labeled systematically, such as a rectangle with vertices A, B, C, D working 
counterclockwise. 

Activities for Self-Assessment, Assignments, and Group Discussions 
8.1 Select a math topic that you feel it is important for a K-8 student to learn. Think 

about this from the point of view of being a “chunk” that the student will 
construct in his or her brain/mind. What is a good name for this chunk? What is 
a good mental image or picture for this chunk? How do you expect this chunk to 
grow in breadth and depth over time? What are some aspects of this chunk that 
you expect will serve the student over a lifetime? 
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8.2 Think carefully about your rate and ease of learning math versus your rate and 
ease of learning some other discipline that is in the K-8 curriculum. How have 
you and the school curriculum accommodated these rates of learning during 
your many years of being a student?  
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Chapter 9 

Computer Science Education and Math Education 
Chapter 1 contained a short section noting the strong historical and actual overlap between 

the two disciplines Mathematics and Computer Science. Chapter 9 explores this topic in more 
detail. 

Our K-8 math education system is reasonably consistent throughout the country. The 
Standards developed by the National Council of Teachers of Mathematics help to guide 
individual states, school districts, and schools as they develop and implement their math 
curriculum content, instructional processes, and assessment. In additional, there is a reasonable 
level of uniformity in the standards that teacher education programs require in the math 
preparation of elementary school teachers and middle school math teachers. 

 The International Society for Technology in Education has developed National Educational 
Technology Standards for PK-12 students, and has made significant contributions to improving 
the computer technology education of preservice and inservice teachers. At the current time, 
however, the computer technology preparation of most PK-12 teachers is relatively weak. On 
average, there is substantial room for improvement in the computer technology education of 
precollege students. 

Computer Science 
The Venn diagram of figure 9.1 is designed to illustrate that there is a substantial overlap 

between the two disciplines Computer Science and Mathematics.  

Mathematics Computer 

Science

 
Figure 9.1. Computer Science and Mathematics have a considerable overlap. 

This history of mathematics details many efforts to develop aids to computation. The 
counting board dates back about 2,500 years. Various forms of the abacus (a counting board with 
the markers strung on rods) date back as much as 2,000 years and are still in use today. The first 
mechanical calculators were built more than 450 years ago. Since then, there has been steady 
progress in the development of aids to computation. 

Initially, the focus was on developing aids to quickly and accurately carry out math 
algorithms for addition, subtraction, multiplication, and division. The advent of the electronic 
digital computer substantially broadened this orientation. Computers can work with words and 
graphics as well as with numbers. Computers can carry out heuristic procedures as well as 
algorithmic procedures. 
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Computer science is the study of the theoretical foundations of information and computation and 
their implementation and application in computer systems. Many diverse fields exist within the 
broader discipline of computer science; some emphasize the computation of specific results (such 
as computer graphics), while others (such as computational complexity theory) relate to properties 
of computational problems. Still others focus on the challenges in implementing computations. 
For example, programming language theory studies approaches to describing a computation, while 
computer programming applies specific programming languages to craft a solution to some 
concrete computational problem. (Retrieved 4/30/06: 
http://en.wikipedia.org/wiki/Computer_science.) 

Chapter 1 contains a quotation Jeannette Wind, head of the Computer Science Department at 
Carnegie Mellon University. This department is one of the leading CS departments in the world, 
and is especially known for its work in Artificial Intelligence.  

Computational thinking builds on the power and limits of computing processes, whether they are 
executed by a human or by a machine. Computational methods and models give us the courage to 
solve problems and design systems that no one of us would be capable of tackling alone. 
Computational thinking confronts the riddle of machine intelligence: What can humans do better 
than computers, and What can computers do better than humans? Most fundamentally it addresses 
the question: What is computable? Today, we know only parts of the answer to such questions. 
(Wing, 2006) 

Computational thinking can be thought of as an extension or broadening of the idea of 
procedural thinking mentioned in the chapter 4. In summary, computational thinking deals with 
the representation and solving of problems using human, machine, and other forms of 
intelligence and aids to problem solving. Algorithmic thinking deals with the development and 
use of algorithms that can be proven to solve a specific type of problem or accomplish a specific 
type of task. Procedural thinking deals with the development and use of procedures that are 
designed to solve a specific type of problem or accomplish a specific type of task—but that are 
not proven to always be successful.  

Disciplines such as math and computer science are so large and complex that they are broken 
into components. Thus, a mathematics researcher might specialize in algebra, analysis, statistics, 
topology, and so on. The mathematician might specialize in the pure mathematics, applied 
mathematics, or computational mathematics aspects of his or her areas of specialization. 

Computer science is divided into sub disciplines such as analysis of algorithms, artificial 
intelligence, computer engineering, databases, networks, and so on. All can be studied from a 
theoretical or an applied point of view. 

Computer science differs significantly from mathematics in the visibility and ease of use of 
some of its results. Thus, even quite young children search the Web, use email, play computer 
games that involve very sophisticated computer graphics, and so on. Mathematics plays a key 
underlying role in all of these applications, but the computer and the people working in the 
computer field tend to get the credit. Many of the computer applications packages of software are 
relatively easy to learn to use at a “modest”—but useful—level.  

People working in applied mathematics focus developing the theory and practice of solving 
math problems that tend to be of immediate use people who make use of math to help solve their 
problems. Generally speaking, the people using the math tend to need a fairly strong background 
in mathematics in order to appropriately and successfully make use of the applied mathematics. 

Contrast this with applied computer science. Computer scientists and others working in 
applications of computer science are often able to develop the theory and practice to a level 

http://en.wikipedia.org/wiki/Computer_science
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where the solution of a particular category of problems becomes highly or fully automated. Thus, 
we see millions of people who have never had a computer science course making relatively 
sophisticated uses of computers.   

Many computer scientists make a distinction between Computer Science and ICT. They think 
of CS in much the same way that mathematicians think about Mathematics—as a deep, very 
rigorous, and demanding discipline of study. They tend to be quick to point out that learning to 
make use of the widely used computer tools tends to require little or no knowledge or 
understanding about the underlying computer science. 

In higher education, the distinction between CS and ICT—which, of course, has no fine 
dividing line—has led to the development of ICT courses both in the Computer Science 
Department and in many other departments. Each department develops their ICT courses to best 
fit the needs of their discipline. Thus, an ICT course offered by a Computer Science Department 
is apt to contain more of the underlying CS theory than a course on the same topic taught outside 
of CS. 

CS and ICT in K-8 Education  
The mathematic education of a child begins at a very young age. Children are exposed to 

counting, some arithmetic ideas, and some geometry ideas from very early on. Some of the 
games they play involve counting, dice, and spinners. They gradually learn about money and 
time. More formal instruction in arithmetic and other math begins at the Kindergarten level and 
usually continues through two or three years of required math in grades 9-12 of high school. 
Most college and universities require some math in bachelor’s degree programs. 

Contrast this with our current approach to computer education. Today’s children grow up 
with toys that contain computers and that are able to seemingly act on their own volition or in an 
interactive manner. Many children develop considerable skill in using a mouse and some initial 
skills in keyboarding well before them begin Kindergarten. Thus, in some sense the computer 
education of many children is more advanced than their math education before they begin 
school. 

Beginning with the beginning of formal schooling, however, math education and computer 
education take substantially different approaches. Math education is driven by detailed scope and 
sequence, state and national standards, books and other materials tied to the standards, and state 
and national assessment. Even at the first grade level, a child’s math teacher is apt to have had at 
least 11 years of formal math instruction in grades 1-12 and a half-year or year of formal math 
instruction in college, along with a Math Methods course. 

In contrast to this, the typical K-8 teacher’s preparation in computer science comes from 
some combination of formal and self-instruction in ICT. While it is hard to quantify this level of 
preparation, perhaps on average the formal instruction is equivalent to one or one and a half 
years of four credit courses in higher education. Typically, this includes instruction in computer 
methods in a Computer Methods course and/or integrated into other courses in the Teacher 
Education program. The informal and self-instruction may well include many years of using a 
word processor, email, the Web, computer games, text messaging on a cell phone, digital still 
and video cameras, digital music storage and playback devices, and so on. 

I find it interesting to compare the idea of folk math (street smarts math) and folk ICT (street 
smarts ICT). In both cases, people gain the knowledge and skills that fit their needs. Much of the 
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folk math and folk ICT learning occurs in a highly intrinsically motivated, situated learning 
environment. The learner tends to make immediate use of the learning in dealing with outside of 
school problems.  

ICT and CS Education of K-8 Students 
For the majority of K-8 students, formal instruction in computer technology comes from 

some combination of a computer technology specialist and from regular classroom teachers. The 
computer technology specialist may be a computer lab coordinator who has some teaching 
duties. A few students are enrolled in computer camps, after school computer programs, and 
other outside of school formal computer experiences. 

The informal computer technology education of a young person is often highly dependent on 
the computer knowledge and skills of parents, older siblings, grandparents, and other people in 
the immediate family. Thus, for example, my older daughter had a relatively high level of skill in 
computer programming by the time she finished the sixth grade, and well before she received 
any instruction in this area from her school teachers.  

In K-8 schools that do have a computer specialist, the student to computer specialist ratio is 
usually very large. Moreover, the computer specialist has many non-teaching responsibilities 
such as providing computer support and staff development for teachers, maintaining the 
computer systems, acquiring software and hardware, scheduling labs, and so on. Thus, the 
average K-8 student receives only a modest amount of formal instruction from a computer 
specialist, even in situations where the school has one or more such personnel. Moreover, this 
instruction tends to be skills oriented—how to use a computer system in an ICT environment. 
There tends to be little emphasis on representing and solving problems in a computer 
environment or on developing computational thinking.  

This means that much of the responsibility for computer education of K-8 students falls on 
the shoulders of regular classroom teachers. What they need to be doing can be divided into four 
categories: 

1. Providing students with the opportunity (or requiring) regular use of the 
ICT that they have learned. This is best accomplished by having 
computers in the teacher’s classroom. An alternative is to make use of 
laptops that are regularly made available to students in their classroom. 
Taking students to a computer lab occasionally is a relatively poor 
approach. 

2. Adding to the ICT tool knowledge of their students. Every teacher should 
have the computer knowledge and skills to teach their students how to use 
a new piece of software that is relevant to the curriculum 

3. Helping their students to learn uses of ICT to represent and help solve 
problems within the various disciplines the teacher teaches. Remember, 
problem solving is part of every discipline, and computers are a general-
purpose aid to problem solving that cuts across all disciplines. Procedural 
and computational thinking need to be integrated into the everyday 
curriculum. A school’s computer specialist (if the school is fortunate 
enough to have one) cannot be expected to teach details of roles of 
computers in art, music, reading, writing, science, math, social science, 
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health, and other disciplines that make up part of the everyday content in a 
student’s curriculum 

4. Helping students gain some underlying and/or introductory knowledge of 
computer science. Any calculator or computer use in the regular classroom 
provides an opportunity for the teacher to help students learn some 
computer science. For example, the number system on a calculator is 
limited by the number of digits of accuracy the calculator uses. This is 
different than the number system that students are learning in “traditional” 
math.  

Computer Science Cognitive Development Scale 
The original 4-level Piagetian Cognitive Developmental Scale is still a useful tool to 

educators. Piaget himself recognized some of its shortcomings, and the need to consider 
development in specific discipline areas. He was particularly interested in cognitive development 
in mathematics. 

Neo-Piagetians direct a strong focus on students increasing their level of Piagetian 
Development in various disciplines. All teachers have a responsibility for helping their students 
increase their general levels of cognitive development. A math teacher has a responsibility of 
helping students move up a Math Cognitive Developmental Scale, such as was illustrated in 
chapter 7. All teachers have a responsibility of helping students move up a Computer Science 
Cognitive Developmental Scale. This section presents some initial ideas about such a scale. The 
model is based on the diagram given in figure 9.2. 

Computer Science

“Pure” 

Comptuer 

Science 

“Applied” 

Computer 

Science

ICT applications requiring 

very little knowledge & 

understanding of underling 

CS theory. 

Computer applications 

requiring a significant level 

of knowledge & 

understanding of underlying 

CS theory.

 
Figure 9.2 A simplified model of Pure and Applied CS. 

This diagram is of somewhat limited value in dealing with the complexities of CS. For 
example, there is a strong overlap between pure and applied CS. Both draw heavily upon 
mathematics and the underlying theories of CS. Figure 9.3 considers the situation from a 
computers in education point of view. 
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Figure 9.3. Computers in education.  

Computer Science is a large, vibrant, and rapidly growing field. The International Society for 
Technology in Education (ISTE) has developed national educational technology standards for 
students, teachers, and school administrators. These are ICT applications-oriented (see bottom 
left corner of figure 9.2 and right side of figure 9.3) and have been widely adopted and serve to 
provide a good sense of direction for the ICT preparation of teachers and their students (ISTE 
NETS, n.d.). 

Each discipline and sub discipline can be divided into content and maturity. This book 
contains a heavy emphasis on helping students increase their math maturity. Similar ideas apply 
to computer science.  

The discipline of ICT can be divided into ICT Content and ICT Maturity, much like I have 
done for math earlier in this document. ISTE NETS for Students (ISTE NETS-S) provides 
recommendations for ICT content in the PreK-12 curriculum. ISTE NETS for Teachers provides 
the recommendation that precollege teachers should meet the ISTE NETS-S and should have a 
substantial amount of knowledge and skill in educational uses of computers.  

Following the same line of reasoning that led to the math cognitive development scale given 
earlier in this document, I have been working on an computer science cognitive development 
scale. My current version (very rough draft) is in figure 9.4. I have not done the needed empirical 
research to help support ideas in this scale. Rather, the scale is my current attempt to make use of 
Piagetian-related research and to apply it to my explorations of CS.  

Stage  in CS 
Cognitive 

Development 

Age and/or 
Education Levels 

Brief Discussion 

Stage 1. 
Piagetian 

Age birth to 2 years. 
Informal education 

Infants use sensory and motor capabilities to explore and gain increasing 
understanding of their environments.  
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Sensorimotor. 
 

provided by parents, 
and other caregivers. 

ICT has brought us a wide range of sound and music-producing, talking, 
moving, walking, interactive, and developmentally appropriate toys for 
children in Stage 1. These contribute both to general progress in sensory 
motor development and to becoming acquainted with an ICT environment. 

Stage 2. 
ICT 
Preoperational. 
 

Age 2 to 7 years. 
Includes both informal 
education and 
increasingly formal 
ICT education in 
preschool, 
kindergarten, and first 
grade. 
 

During the Piagetian Preoperational stage, children begin to use symbols, 
such as speech. They respond to objects and events according to how they 
appear to be. They accommodate to the language environments they spend a 
lot of time in. 
ICT provides a type of symbols and symbol sets that are different from the 
speech, gestures, and other symbol sets that have traditionally been available. 
TV and interactive ICT-based games and edutainment are a significant 
environmental component of many children during Stage 2. During this stage, 
children can develop considerable speed and accuracy in using a mouse, touch 
pad, and touch screen to interact and problem solve in a 3-dimensional 
multimedia environment displayed on a 2-dimensional screen. The work of 
Seymour Papert and others demonstrates that children at the upper end of this 
developmental level can learn rudiments of programming in Logo and other 
graphic-oriented programming languages.  

Stage 3. 
ICT Concrete 
Operations. 

Age 7 to 11 years. 
Includes informal 
education and steadily 
increasing importance 
of formal education in 
grades 2-5. 

During the Piagetian Concrete Operations stage, children begin to think 
logically. In this stage intelligence is demonstrated through logical and 
systematic manipulation of symbols related to concrete objects. Operational 
thinking (mental actions that are reversible) develops. 
ISTE has established NETS-Student that includes a statement of what 
students should be able to do by the end of the fifth grade. During the ICT 
Concrete Operations stage children:  
• Learn to use a variety of software tools such as those listed in the 5th grade 

ISTE NETS-Student, and begin to understand some of the capabilities and 
limitations of these tools. (They do logical and systematic manipulation of 
symbols in a computer environment.) 

• Learn to apply these software tools at a Piagetian Concrete Operations 
level as an aid to solving a wide range of general curriculum-appropriate 
problems and tasks. 

• With appropriate instruction and opportunity, can gain considerable skill in 
programming in languages such as BASIC, Logo, and Squeak, as well in 
graphical manipulation environments, such as working with still and video 
digital photography.  

Stage 4. CS 
Formal 
Operations. 

Age 11 and beyond. 
This is an open ended 
developmental stage, 
continuing well into 
adulthood. 
Requires ICT 
knowledge, skills, 
speed, and 
understanding of 
topics in ISTE NETS 
for students finishing 
the 12th grade. 
Requires knowledge 
and understanding of 
CS equivalent to An 
Advanced Placement 
high school CS course 

During the Piagetian Formal Operations stage, thought begins to be 
systematic and abstract. In this stage, intelligence is demonstrated through the 
logical use of symbols related to abstract concepts.  
Formal Operations in ICT includes functioning at a Piagetian Formal 
Operations level in specific activities such as:  
1. Communicate accurately, fluently, and with good understanding using the 

vocabulary, notation, and content of ISTE NETS-S for the 12th grade.  
2. Given a piece of software and a computer, install and run the software, 

learn to use the software, explain and demonstrate some of the uses of the 
software, save a document you have created, and later return to make 
further use of your saved document.  

3. Problem solve at the level of detecting and debugging hardware and 
software problems that occur in routine use of ICT hardware and software. 

4. Convert (represent, model, pose) real world problems from non-ICT 
disciplines into ICT problems, and then solve these problems. 

5. Routinely and comfortably use ICT in the other disciplines you have 
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or a  college freshman 
CS year sequence for 
potential CS majors. 

studied, at a level consistent with and supportive of your cognitive 
developmental level in these disciplines. 

In addition, this developmental level requires proficiency in representing and 
solving problems in a computer programming environment comparable to 
what is achieved by students in a rigorous college freshman computer science 
course for potential majors in the field.   

Stage 5. 
Abstract CS 
operations.  

As with math, there 
are CS developmental 
levels well above what 
are typically achieved 
by well educated high 
school graduates. 
This stage corresponds 
to solid undergraduate 
work in CS 

CS content proficiency and maturity at the level of contemporary CS texts 
used at the senior undergraduate level in strong programs, or first year 
graduate level in less strong programs. Good ability to learn CS through some 
combination of reading required texts and other CS literature, listening to 
lectures, participating in class discussions, studying on your own, studying in 
groups, and so on. Solve relatively high level CS problems posed by others 
(such as in the text books and course assignments). Pose and solve problems 
at the level of one’s CS reading skills and knowledge. Follow the logic and 
arguments in CS theory. Fill in details of CS proofs and underlying theory 
when steps are left out in textbooks, lectures, and so on.  

State 6. 
Computer 
Scientist.  

This stage corresponds 
to success in high level 
graduate work, post 
doctoral work, and a 
continuing lifelong 
career in CS. People at 
this stage have a high 
level of CS expertise, 
and they may well 
have invested 10,000 
to 20,000 hours or 
more of effort to attain 
this level. 

A very high level breadth and depth of CS proficiency and maturity. Speed, 
accuracy, and understanding in reading the research literature, writing 
research literature, and in oral communication (speak, listen) of research-level 
CS. Pose and solve original CS problems at the level of contemporary 
research frontiers. Do research that advances the field. Design complex 
computer hardware and software systems, and participate in their 
implementation. 

Figure 9.4. Computer science cognitive development and expertise scale. 

A key aspect of this CS Cognitive Developmental Scale is Stage 4, the rigorous formal 
operations level of learning and performance required in a solid college-level CS course. Some 
student take an equivalent course given as a one year or two years sequence in high school, and a 
few students reach this level at a still younger age. Roughly speaking, CS Stage 4 requires a 
person to be at the formal operations level on the traditional Piagetian scale, and to have 
achieved a comparable developmental level in CS. 

Procedures and Procedural Thinking 
From a computer programmer point of view, a computer program is a procedure—a step-by-

step set of directions—that can be carried out by a computer. Programmers develop procedures 
to solve or help solve problems. In doing this, they make use of procedures (both algorithms and 
heuristics) written by others and by themselves. Such building on the previous work of oneself 
and others is a standard approach used by computer programmers. 

For an example, consider a team of programmers developing a word processor. It is a 
relatively simple task to write a program that accepts input from a keyboard, displays the text on 
a screen, stores it in computer memory, and outputs it when commanded to do so. The task gets a 
little more difficult when the text contains a variety of fonts and character sizes, bold and italic, 
and so on. Still, the challenge is not too big. 
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It is sure nice to have an outliner built into a word processor, as well as the ability to insert 
pictures and other graphics. The programmer’s challenge is growing. 

Next, consider the idea that a person using a word processor to write a paper may want the 
software to help in various ways, such as spell checking, grammar checking, formatting for final 
publication, perhaps generating a table of contents and/or an index, and so on. It is helpful to 
have provisions for creating tables and lists, alphabetizing a list, or sorting a list into numerical 
order. The challenge to the programmer continues to grow. 

However, a pattern is beginning to emerge. There is the basic word processor. Then, there are 
a lot of different features (in essence, separate procedures) that can be added to it. Thus, a 
number of programmers can work on the overall task because it can readily be broken down into 
a collection of smaller, more manageable tasks. 

Moreover, some of the tasks have been done lots of times by other programmers. Sorting a 
list alphabetically or numerically is a common programming task in a first term computer-
programming course. Thus, the team of professional programmers working to develop a word 
processor will make extensive use of these and other procedures that are stored in a library of 
computer procedures. 

Other components may be really challenging. Consider a grammar checker. This task is an 
area of research, and it is very challenging. The grammar checker in a word processor such as 
Microsoft Word in gradually getting better due to the efforts of researchers from a variety of 
different disciplines, including the work of people in artificial intelligence. 

In summary, writing a computer program is a particular type of problem solving task. It 
involves procedural thinking and developing procedures to solve or help solve a problem. The 
programmer is developing a tool that may be used by problem solvers in many different 
disciplines, or that may be quite narrow and scope and used only by a few narrow specialists in a 
particular narrow part of some discipline. Typically, the programming tasks faced by 
programmers are complex, and a program is typically a large and relatively complex set of 
instructions.  

Math-Related ICT Topics 
Listed below are some math-related ICT topics. The intent of this list is to provide you with a 

hint of the breadth and depth of this discipline. More detail on a number of these topics is 
available in my math Website (Moursund, n.d., Math website). If you are interested in still 
broader aspects of ICT in education, a number of appropriate and free materials are available at 
Moursund (n.d., Free Materials). 

1. The discipline of mathematics is now commonly divided into three major 
components: pure math, applied math, and computational math. 
Computational math includes developing and making effective use of 
math models and simulation. Some of the key ideas in math modeling are 
inherent to math manipulatives—both physical and virtual manipulatives. 
Graphic arts software provides useful tools in modeling and simulation, 
and thus is a valuable resource in teaching computational math. 
Spreadsheet software provides an excellent environment for teaching math 
modeling. 
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2. Computer algebra systems (CAS) provide very powerful tools to carry out 
a wide range of mathematical procedures.  

It is now common for students taking high school math courses to learn to use 
graphing, equation-solving calculators that have some built-in rudiments of CAS. 
Ideas such as function, equation, and graphing are very important ideas in math. As 
you work with K-8 students, you are laying the foundations for their future learning 
of these topics. Among other things, this means you are helping students to develop 
chunks in their mind/brain that can grow to include these topics. For more 
information see Moursund (n.d., Computational Math).  

3. Computer-assisted learning (CAL) is gradually improving. We now have 
Highly Interactive Intelligent Computer-Assisted Learning (HIICAL) 
systems that are quite good. The meaning of “quite good” can be debated. 
Research in this area tends to compare test scores of students taught by 
conventional instructional methods versus test scores of students taught by 
HIICAL. There is now a significant amount of such software that, on 
average, leads to better test scores than does conventional instruction 
(Moursund, 2002). 
HIICAL software can be developed that integrates the power of computer-assisted 
instruction with the power of CAS systems. That is, we are gradually seeing a merger 
of powerful computer tools and powerful aids to learning and using the tools. Such 
software has the potential to lead to major changes in math education. The goal might 
become to educate students so that they function well mathematically in a world in 
which such systems are readily available. 

4. The terms (concepts) of variable and function are essential in both math 
and computer science. In a calculator or in a computer (when doing 
computer programming) a variable is a memory location that has a name. 
Different values can be placed in this memory location. Why do you think 
some calculators are called four-function calculators?  It is because they 
can carry out the four functions that we call addition, subtraction, 
multiplication, and division. A scientific calculator may have a hundred or 
more built-in functions. The point is, calculators and computers provide a 
concrete way to think about variable and function.  

5. It is helpful to think about math training versus math education. Most of 
what an animal trainer does falls into the category of training, as 
contrasted with education. Education has a focus on understanding; 
training has a focus on rote performance. 

Our educational system consists of a mixture of training and education, and it is not 
easy to draw a clear distinction between the two. Research in computer-assisted 
learning suggests that this approach to teaching and learning is currently more 
effective in training than it is in education. Suppose, for example, that we want 
students to memorize the single digit multiplication facts and to be able to retrieve 
these facts with great speed and accuracy. This can be considered as a training task, 
and CAL is quite effective in this teaching/learning situation. Even the simplest of 
HIICAL designed for such training is able to individualize instruction, detect student 
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weaknesses and address these weaknesses, and assess student speed and accuracy. 
From those points of view, such a CAL system is definitely more effective than a 
teacher working with a whole class. As we look to the future of math education, we 
will see HIICAL becoming a common component. 

Math manipulatives can be used in both training and education modes. However, the 
current focus on using math manipulatives is in education for understanding and 
problem solving, rather than on training. For a list of resources on virtual (that is, 
computer-based) manipulatives for use in math education see Virtual Manipulatives 
(n.d.). 

6. Artificial intelligence (AI) is a branch of the discipline of Computer and 
Information Science. It focuses on developing hardware and software 
systems that solve problems and accomplish tasks that—if accomplished 
by humans—would be considered a display of intelligence. As I look 
toward the future, I see a steady increase in situations where people and AI 
systems work together to solve problems and accomplish tasks. 
What is artificial intelligence? It is often difficult to construct a definition of a 
discipline that is satisfying to all of its practitioners. AI research encompasses a 
spectrum of related topics. Broadly, AI is the computer-based exploration of methods 
for solving challenging tasks that have traditionally depended on people for solution. 
Such tasks include complex logical inference, diagnosis, visual recognition, 
comprehension of natural language, game playing, explanation, and planning 
(Horvitz, 1990). 

AI is of steadily growing importance in education (Moursund, 2005, 2006). K-8 
students already have a mind/brain chunk in this area, based on the robots and 
computers they see on television, their electronic toys, and so on. One of your jobs as 
a teacher is to shape this chunk so that it is more accurate and so that it can better 
accommodate future learning. For example, a handheld calculator has some 
intelligence. Think about how this intelligence is similar to and different from human 
intelligence in math. 

7. Distance education is a rapidly growing field. If we use a rather broad 
definition of distance education, then it is already in common use in K-8 
schools. When a student uses the Web to retrieve information, this is a 
form of distance education. When a student uses a help feature in a 
software package, this is a form of distance education. Much of the CAL 
that students use is accessed through a computer that is remotely located; 
thus, much of current CAL is a type of distance education. 

Imagine the situation in which HIICAL that covers the entire math curriculum is 
routinely available to students at home, at school, and wherever else they have access 
to the Internet. Such a system would also provide access to CAS, large numbers of 
math resource books, and other aids to learning and using math. While the progress in 
this direction seems relatively slow, I believe that this situation will be a standard part 
of many educational systems within the next two decades. 



Dave Moursund: Improving Math Education in K-8 Schools 

Page 94 

8. In light of goals for students learning math content and gaining in math 
maturity, how authentic is math assessment? Outside of school testing 
situations, people who need to make appreciable use of math tend to make 
use of calculators, computers, and many specialized devices (such as a 
global positioning system, computerized laser measuring and surveying 
systems) as aids to math problem solving. This suggests that authentic 
assessment in math should be moving in the direction of open book, open 
notes, open calculator, open computer, and similar forms of assessment. 
Some progress in this direction has occurred in the use of calculators, but 
little progress is occurring other aspects of authentic math assessment. See 
Moursund (n.d., Project-Based learning). 

Final Remarks 
Our math education system has done some assimilation and accommodation for computer 

science and ICT. However, to a large extent it has ignored computer science and ICT. There are 
many reasons for this. One of the most challenging is that it takes a large amount of time and 
effort for a preservice or inservice teacher to develop a level of expertise in math that meet 
contemporary standards. While CS (including ICT) is not nearly as broad and deep a discipline 
as math, it still takes a large amount of time and effort to learn this discipline at a level that meets 
reasonable standards. 

People who become K-8 math teachers gain much of their math content knowledge and math 
maturity through their PK-12 education, where they take math year after year. No such system 
exists in CS and ICT. Thus, the CS and ICT preparation of most preservice and inservice 
teachers is very weak relative to their math preparation. It is not adequate for them to do a good 
job of teaching the CS and ICT components of a modern math curriculum. Even after completing 
a good teacher education program of study, most beginning teachers of K-8 math need 
substantial inservice education in CS and ICT to adequately handle the computer aspects of a 
modern math education. 

K-8 School Applications 
9.1 Many math educators and others feel it is important for students to develop high 

accuracy and speed on number facts and simple arithmetic calculators. Thus, 
they make use of timed tests along with a lot of drill and practice. (Note that 
many other math educators think that this is not an appropriate way to teach 
math!). Locate a suitable piece of math education software that provides timed 
test and/or drill and practice. Have your students use it. Then hold a whole class 
discussion about what they like and what they don’t like about use of the 
software. Make sure the discussion includes a focus on what students are 
actually learning and how well their increased knowledge and skill transfers to 
other settings. 

9.2 Provide your students with calculators that have a M+ (that is, a memory that 
can be added to) key. Carry on a whole class discussion about what is the same 
and what is different between this calculator and a computer. Make sure that the 
discussion eventually includes calculator and/or computer memory. Both a 
calculator and a computer have memory and a central processing unit (CPU). A 
CPU on a simple calculator can carry out a very limited number of operations 
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such as add, subtract, multiply, and divide. The CPU on a computer may well be 
able to carry out a hundred or more different operations. Both a calculator and a 
computer can automatically follow a step-by-step set of instructions.  

Activities for Self-Assessment, Assignments, and Group Discussions 
9.1 Many leaders in the field of ICT in education argue that the development of 

writing, the mass printing and distribution of printed materials made possible by 
Gutenberg’s movable type printing press, and the development of computers are 
the three most important developments in the history of education. Compare and 
contrast current and potential roles of ICT in education relative to the 
contributions made by writing and the printing press. 

9.2 Make a list of things that you can do much better than ICT systems, things that 
ICT systems can do much better than you, and things that you and ICT systems 
working together can do much better than either can do alone. Analyze your list 
from the point of view of our current K-8 school and teacher education systems. 

9.3 Summarize and analyze your thoughts on having most math tests be open book, 
open calculator, and open computer. 
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Chapter 10 

Conclusions and Final Thoughts 
Give a man a fish and you feed him for a day. Teach 
a man to fish and you feed him for a lifetime. 
(Chinese proverb) 

I hear and I forget. I see and I remember. I do and I 
understand. (Confucius) 

Math education is a large, complex, and challenging discipline. The formal teaching of math 
began at the time of the first formal teaching of reading and writing, a little more than 5,000 
years ago. During the past 5,000 years, the collected mathematical knowledge of the human race 
has grown immensely. A number of ideas that challenged the mathematical geniuses of their 
time have trickled down into the precollege school math curriculum—indeed, even into K-8 
schools. 

As the agriculture age has given way to the industrial age and now the information age, the 
math-related demands placed on people have grown. In information age societies such as the 
United States, there are now much higher math education expectations than there were in the 
industrial age or the agricultural age. As our society continues to raise its math education 
expectations, it is not achieving the math learning gains that it would like. 

Because math knowledge and skills are so important in our information age society, you can 
expect to see continued efforts to “reform” our math education system. This book supports the 
idea that with appropriate informal and formal teaching and support, students (on average) can 
gain greater math content knowledge and greater math maturity than they are currently obtaining. 
However, such math education goals leave us with many challenging issues. Here are a few 
examples: 

1. A substantial fraction of parents and K-8 teachers have not achieved Math 
Formal Operations. Their levels of school-math maturity and school-math 
content knowledge are low. Thus, many children growing up in our 
society tend gain their first 13 to 14 years (birth through grade eight) of 
informal and formal math education in what I would call relatively poor 
math education environments. If we want to significantly improve our 
math education system, we will have to make significant progress toward 
addressing this problem. 
This means, of course, that significant progress will take decades. As we gradually 
improve the math education of preservice and inservice K-8 teachers, we will see 
progress in improving K-8 school math education. As we gradually improve K-12 
math education, this will eventually lead to parents who will provide a better math 
education environment for their children. It will also lead to preservice teachers 
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entering teacher education programs with a better preparation in math and in math 
pedagogy. 

2. Our current math education curriculum is often described as being “a mile 
wide and an inch deep” (Ruetters, 2002). I have some trouble 
understanding what this means, as I don’t use linear measure when I am 
taking about the breadth and depth of a curriculum. However, what I think 
it means is that many people are concerned about how our curriculum has 
expanded in breadth, covering more and more topics in a shallower and 
shallower manner. The curriculum lacks the depth needed for students to 
gain understanding and a number of other aspects of increasing math 
maturity. Our curriculum is not well designed in terms of helping students 
learn to make connections and to transfer their math knowledge and skills 
to areas outside of the formal math curriculum. 

3. ICT brings new dimensions to both school math and folk math. We have 
yet to appropriately understand and implement a math education system 
that adequately takes into consideration the capabilities of ICT as aids to 
teaching, learning, and using math. 
For example, consider computer tools that are routinely used by graphic artists. They 
are based on a very large amount of mathematics. However, very few graphic artists 
feel the need to have studied this underlying mathematics, and few people who teach 
graphic arts use of computers have appreciable insights into the underlying 
mathematics. The issue here is somewhat similar to the issue of children using 
calculators rather than paper and pencil algorithms, or researchers using statistical 
packages of computer programs without having mastered the underlying 
mathematics. 
However, the issue is also quite different. The goal of a graphic artist is to solve a 
graphic artist problem or complete a graphic artist task. The graphic artist has graphic 
arts knowledge and skills that can provide feedback on progress toward solving the 
problem or accomplishing the task. 
This example identifies a major hole in the overall math curriculum. We are not very 
successful in helping students understand math at a level where they can detect their 
own errors. People who routinely use math are able to detect their errors because they 
have knowledge (intuition, deep insights) into the problems that they are addressing. 
Even though our math curriculum makes considerable use of word problems that 
provide some context for the problem to be solved, it is rare that a student has a 
sufficient grasp of the problem setting and meaning to be able to detect errors in math 
thinking and in carrying out needed math procedures.  

4. There are a variety of math topics that require a student to be at or near 
math Formal Operations in order to gain a significant understanding of the 
topic. Examples include probability, ratio and proportion, and algebra. 
Roughly speaking, if many of the students you are teaching “just don’t 
seem to get it” for certain topics, then there is a good chance that they are 
not developmentally ready for the topic. 
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I think what has happened in the school math curriculum is that it has developed a 
severe imbalance between the immediate success and long-term success. For a 
specific category of problems, immediate success is achieved by memorizing 
(without understanding) how to solve the specific category of problems. Such 
learning is fragile and brittle, does not transfer well to new situations, and tends to be 
quickly forgotten.  

Long-term success requires learning for understanding and developing a significant 
level of math maturity. To do this, without increasing the amount of time devoted to 
math instruction, requires decreasing the breadth of the math content covered, and 
devoting much more time to learning for understanding and increased math maturity. 

5. At the current time, the order of many topics in the math curriculum is 
dependent on the math that curriculum developers expect students can 
learn at various grade levels. However, calculators and computers add a 
twist to this. For example, third graders can learn to read and make use of 
various types of graphs, including a pie chart. However, creating such 
graphs tends to require use of math that students do not learn until the 4th 
or 5th grade. Since a computer can create such graphs, this raised the 
possibility of students creating and using these graphs at an earlier grade 
level than they currently do. James Fey, a math education professor at the 
University of Maryland, developed a number of examples of inverted 
curriculum in math more than 20 years ago.   

6. One of the most important ideas in math education is learning to build 
upon and make effective use of the accumulated knowledge in the 
discipline of math. An important requirement in this endeavor is that 
students learn to read (with understanding) math at the levels they have 
studied. ICT is a powerful aid to learning, a powerful aid to information 
retrieval, and a powerful aid to carrying out many of the types of 
procedures that are important in solving math problems. Our current math 
education system is not doing well in helping students learn to read math 
and to make effective use of ICT. 

In brief summary, our math education system can be a lot better. However, this will require 
significant improvement in teachers, in appropriate use of ICT, and in our understanding of the 
human brain and learning processes. 

Final Remarks 
The Preface contains four Big Ideas that help to unify this book. They are: 

1. Math content and math maturity. Learning math is a process of both 
learning math content and a process of gaining in math maturity. 

2. Nature, nurture, and increasing math cognitive development. Think of 
a student’s math cognitive development in terms of the roles of both 
nature and nurture. Research in cognitive acceleration in mathematics and 
other disciplines indicates we can do much better in fostering math 
cognitive development. 



Dave Moursund: Improving Math Education in K-8 Schools 

Page 99 

3. Computers and computational thinking. Understanding the power of 
computer systems and computational thinking as an aid to modeling 
(representing) and solving math problems, and as an aid to effectively 
using math in all other disciplines. 

4. Learning to learn math. Placing increased emphasis on learning to learn 
math, learning to read math with understanding, and making effective use 
of use computer-based aids to learning, and information retrieval. 

Every student taking math courses at the K-8 level should gradually come to understand 
these Big Ideas and to take increased personal responsibility for achieving them. However, in K-
8 education, teachers must play a major role in helping their students make progress in these four 
areas. 

These four areas are not topics to be placed someplace in the math curriculum, taught as 
individual units, and then forgotten. Rather, they are topics to be thoroughly integrated 
throughout the math curriculum at all grade levels. As a teacher of math, before you start to teach 
a new unit, think carefully about what aspects of these four Big Ideas are included. If necessary, 
do some lesson plan revision, so that these ideas are a routine component of each of your math 
units. 

K-8 School Applications 
10.1 Present the following quotation to your students: 

Give a man a fish and you feed him for a day. Teach a man to fish and you feed him for a lifetime. 
(Chinese proverb) 

 Have your students talk about or write about what this means in terms of 
learning math. For older students, have them do this for math and another core 
discipline in the curriculum, and then do a compare and contrast between the 
two disciplines. 

10.2 If you teach math at a grade level where students first learn the word variable or 
where variable is an important part of the curriculum, facilitate a whole class 
discussion on what the term means. Look for ideas both in math and in other 
disciplines, and then for commonalities among these various examples and 
ideas.  

Activities for Self-Assessment, Assignments, and Group Discussions 
10.1 Make up a definition of math maturity that you feel is relevant to the students 

you teach. Based on your definition, determine a way of assessing your 
student’s growth in math maturity throughout a school year. 

10.2 Computer graphics software facilitates students accomplishing various tasks 
that they cannot do without the software. How does this relate to James Fey’s 
idea of inverted curriculum? Give some examples of possible uses of graphics 
software in a math education curriculum. 
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