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Particle collision theory is applied in experimental settings such as mass spectroscopy and other 

particle fragmentation techniques to gain insight into observed behaviors. The energetic 

interactions that occur between large macromolecules and ions during a collision are complex 

and require several analytical tools and techniques to fully understand. The research described in 

this thesis raises the question of whether it is possible to develop a numerical simulation that 

simplifies this collision model and allows us to form a general understanding of particle 

interactions during a collision. Several computational methods are implemented in the 

development of this program including Monte Carlo, a binning procedure, and a double rolling 

procedure. The numerical simulation will aim to calculate an appropriate background gas particle 

distribution and relevant trajectories such as the monomer’s center of mass velocity.  
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Introduction 

Numerical simulations in physical chemistry are essential tools for gaining a better 

understanding of experimental outcomes. The numerical simulation described in this thesis was 

developed in order to create a simple model of protein behavior in a gaseous environment. The 

original experiment was developed by the Prell Lab at the University of Oregon to determine 

mass fragmentation patterns of a protein structure.1 Electrospray ionization (ESI) is an analytical 

technique in chemistry that aims to transfer a folded protein into the gas phase through ion 

mobility. 1 Ion mobility is a research technique that aims to promote separation of ionized 

molecules, as well as their identification. This technique is particularly relevant because of its 

ability to preserve elements of the initial structure along with the global size measurement.  1 The 

global size measurement is a way to describe the size of a complex using the mass to charge 

ratio. The application of these two techniques in conjucture is referred to as native ion mobility-

mass spectrometry (IM-MS). 1 IM-MS is relevant to experiments in bioanalytical chemistry, as it 

can be used as a technique to determine structural biology through a perturbation of the complex 

using gas-phase activation along with IM-MS. 1 Gas-phase activation is a technique used to 

fragment gas molecules through collisions with molecular ions. In the experiment of interest, 

IM-MS was implemented alongside gas-phase activation methods to determine the quaternary 

and tertiary structures of a protein complex. 1 IM-MS begins by introducing ions into an 

isothermal and isobaric gas chamber that is influenced by an electrical field. 1 As collisions 

occur, the technique promotes the degeneration of the protein complex to measure overall 

fragmentation patterns of the protein. 1 The numerical simulation takes foundational elements 

from the processes that occur within the IM-MS experiment to develop features of the 
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simulation. Although we aren’t using the results from the simulation to make experimental 

insights, it is important to use realistic principles to develop a simple model.  

Collision-induced unfolding (CIU) as well as collision-induced dissociation (CID) are 

combined in tandem to induce collisions between gas phase particles and the protein complex.  1 

During the applications of CIU and CID, protein ions are accelerated to reach a high kinetic 

energy, and several thousand protein ions are forced to collide with the neutral gas atom. The 

collisions will eventually lead to the heating of the protein ions. 1 Once the protein ions surpass 

the maximum threshold for structure stability, the protein will begin dissociation or unfolding.  1 

When a protein complex undergoes CID, it can provide information about the complex 

stoichiometry, as well as the identity of subunits. 1 Application of CIU allows experimenters to 

determine other important features such as the overall structure, binding patterns, and 

specificities of the ligand binding site. 1  

 In 1989, an article titled ‘Theory of Collisional Activation of Macromolecules. Impulsive 

Collisions of Organic Ions’ was published by chemists at the University of Oslo describing 

computational methods for collisional activation. 2 The experiment that is initially described 

involves the guidance of ions towards a gaseous cell. 1 Energy transfers that occur between the 

ions and the gas cell result in ion fragmentation due to a technique referred to as collisional 

activation (CA). 2 Collisional activation is performed by positioning a collision cell directly 

between two mass analyzers. 2 The first mass analyzer (MS1) will transmit the selected ion, and 

the second mass analyzer (MS2) will scan and record the fragmented ions. 2 Collisional 

activation can be described using gas-phase kinetics, and the following model is used to show the 

time-dependent process of collisional activation and the resultant reaction that occurs because of 

the kinetic energy transfer. 2 This model denotes molecules A and B in various stages of 
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collisional activation. The ionic complex AB+ undergoes a collision with a gas atom, G, to form 

the energized complex (A-B+)*. 

 

𝐴𝐵ା + 𝐺 → (𝐴 − 𝐵ା)∗ + 𝐺∗ 

(𝐴 − 𝐵ା)∗  
𝑘(𝐸), 𝑃(𝐸)

→
 𝐴ା + 𝐵 

Once the collisions have occurred, the energy distribution of the ions are referred to as the 

function P(E). 2 The distribution of P(E) is dependent on the transfer of energy between the ion 

beam and the internal degrees of freedom of the gas cell. 2 It is concluded that the rate of 

fragmentation during the experiment is dependent upon the distribution of P(E) and the rate 

constants k(E). 2 The ion fragmentation rate is determined by the unimolecular rate constants 

k(E) as well as the internal energy distribution P(E). 2 The theory of impulsive collision transfer 

(ICT) is a mathematical model used to describe energy transfers due to particle collisions in the 

experiment. 2 ICT defines the macromolecular ion as a sum of atoms that have masses ma,j. 2 The 

summation of ma,j is defined as the total mass of the ion mion. 2 Prior to the collision and 

subsequent energy transfer, the macromolecular ion has a relative velocity in the lab frame of 

reference and is traveling on the defined x-axis within the mass spectrometer. 2 The lab frame of 

reference referes to the laboratory setting where the experiment of interest is performed. The 

kinetic energy and momentum of the ion are defined by equations 3 and 4. 2 

𝐸 =
1

2
෍ 𝑚௔,௝𝑣ଶ =

1

2
𝑚௜௢௡𝑣ଶ 

𝑝 = ෍ 𝑚௔,௜𝑣 = 𝑚௜௢௡𝑣 

In order to increase the quantity of fragmented ions, the amount of energy that is channeled into 

the system is increased by transferring a large amount of energy into the macromolecular ion.  2 

(1) 

(2) 

(3) 

(4) 
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The center of mass energy of the macromolecular ion can be expressed using the following 

equation. 2 This equation indicates the maximum energy that can be used for the transfer to the 

internal degrees of freedom of the system. 2  

𝐸௖௠ =
𝑚௚

𝑚௜௢௡ + 𝑚௚
𝐸 

The foundational theoretical concepts from the impulsive collision transfer (ICT) model 

are the basis for the development of the numerical simulation. The numerical simulation 

simplifies the treatment from a macromolecular ion to a unit referred to as the “spherical cow”. 

The spherical cow is a concept in theoretical physics that is used to describe highly simplified 

models. In the numerical simulation, the particle is modeled as a mono-unit spherical cow that 

participates in linear, one-dimensional motion through a gaseous environment. As described by 

the ICT model, the monomer will experience frequent collisions via gas atoms that result in 

changes of the total energy and center of mass velocity of the monomer. In my simulations, the 

focus is on the decrease over time of the monomer’s center of mass velocity. An important 

feature of the numerical simulation that is modeled after the gas-phase activation procedure in 

IM-MS, is a theoretical distribution of gas particles. The gas particle distribution is modeled after 

the infamous Boltzmann distribution which can be written in the following form where E is the 

energy of the system, kB is the Boltzmann constant, and T is the temperature of the system. 3  

𝑃 ∝  𝑒
ିா

௞ಳ்ൗ  

The Boltzmann distribution is applied in later calculations, along with factors accounting for the 

relative velocity of the monomer and a gas atom. Generally, this distribution is used to determine 

the behavior of the gas particles and how they interact with the monomer.  

We can define two types of collisions that may occur during the simulation. A backside 

collision occurs when a gas particle hits the monomer from behind, this results in energy transfer 

(6) 

(5) 
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that alters the center of mass velocity. Similarly, a frontside collision is when the gas particle hits 

the monomer from the front. This will also result in an alteration of the center of mass velocity. 

Since the monomer is moving in one dimension, a backside collision will visually occur on the 

left side of the monomer, and a frontside collision will occur on the right side of the monomer. 

This can be visualized using the diagram modeled in Figure 1.These principles are used to 

develop the computational methods described below that can perform calculations and obtain 

results for further analysis.  

 

Figure 1. Simulation setup 
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Computational Methods 

Monte Carlo Method 

 A prevalent concept in computational chemistry that is often applied to large statistical 

ensembles is a method referred to as Monte Carlo. 4 Monte Carlo procedures have a wide range 

of applications in research such as macromolecular structures and polymers. The method uses 

conditional probability to determine the appropriate statistical distributions for a system of study.  

4 In the case of this simulation, a Monte Carlo method was developed in order to create a 

Boltzmann distribution of background gas particles that exist within an appropriate range of 

velocities. The appropriate range of velocities will be defined as any velocity between -vmax and 

+vmax where the variable vmax can be computed as follows where Tg and mg are the temperatures 

of the background gas and the mass of the background gas particles, respectively.  

𝑣௠௔௫ = ඨ
2𝑇௚

𝑚௚
𝐿𝑜𝑔[1000] 

My application of the Monte Carlo method was developed using the Mathematica software, and 

follows a procedure that is programmed to test each velocity. Randomized velocities are 

generated through a While/If loop structure where the initial step implements a RandomReal 

function. RandomReal is a Mathematica function that will generate a pseudorandom number 

between 0 and 1. The RandomReal function can be combined alongside other functions to 

generate an appropriate randomized number for the situation at hand. In the case of the 

Boltzmann distribution, we can combine the RandomReal function with a function that generates 

both negative and positive numbers, and multiply it by vmax to create an output that exists within 

the specified range. The program will then take the velocity, and generate a corresponding 

(7) 
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probability using the Boltzmann distribution. The procedure will implement a condition for the 

calculated probability; if the probability is greater than a pseudorandom number generated by the 

RandomReal function, the condition is met and the gas particle velocity can be appended to a list 

of velocities. If the condition is not met, the program will restart the procedure until we reach the 

indicated number of gas particle velocities. The program is set to acquire one million gas particle 

velocities in order to have a complete understanding of the nature of this distribution.  

 

Bins Procedure 

 Once the Monte Carlo method has generated the correct amount of gas particle velocities, 

we then implemented a procedure to categorize each velocity into a corresponding bin. The 

program will generate 200 bins, each with specific criteria for binned velocities. The width of 

each bin is defined as twice the value of vmax divided by the number of bins. A Do loop structure 

is utilized to test each velocity and determine the correct bin placement using the Floor function. 

The Floor function takes a number as an input and outputs the greatest integer less than or equal 

to the input. In this procedure, the Floor function is used to take each gas particle velocity and 

output the number of the corresponding bin. The function is written as follows where vsb[[nn]] 

is the specified gas particle velocity, vmax is the maximum gas particle velocity, and dv is the 

width of each bin.  

𝑏𝑖𝑛𝑠 = 𝐹𝑙𝑜𝑜𝑟 ቈ
𝑣𝑠𝑏ൣ[𝑛𝑛]൧ + 𝑣௠௔௫

𝑑𝑣
቉ + 1 

The Do loop will test each velocity using this procedure. The output of this function is the 

number of the corresponding bin that will be populated. It is important to note that the bin does 

not contain the numerical value of the velocity itself, instead it contains an integer which 

(8) 
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represents the number of velocities that corresponds to that bin. Once every velocity is tested we 

obtain a rough representation of the Boltzmann distribution within the ranges of -vmax and +vmax. 

We can then take the rough distribution and create a modifed bin distribution by normalizing 

each value. This is accomplished by creating a new list of values that takes each bin and divides 

that value by the total number of elements in the original list of velocities. We can now 

implement a function that tests each modified bin for the middle value. We can define a function 

that calculates the middle of each bin using the following syntax where the variable n indicates 

the bin number.  

𝑚𝑛𝑏[𝑛ି] ≔  −𝑣௠௔௫ +
𝑑𝑣

2
+ 𝑑𝑣(𝑛 − 1) 

This function is used in tandem with a normalized Boltzmann distribution function which is 

written as follows in equation 10; 

𝑃(𝑚𝑛𝑏[𝑛]) = ඨ
𝑚

2𝜋 ∗ 𝑇𝑔
𝑒

ି௠(௠௡௕[௡])మ

ଶ்௚
൘

𝑑𝑣 

The value for the middle of each bin is inputted into the normalized Boltzmann distribution, and 

the value obtained from the normalized bin distribution is placed into a list that when plotted is a 

representation of the distribution of velocities in each bin. We can then perform an analytical 

comparison between the original Boltzmann distribution and the normalized bin distribution to 

show a convergence to the Boltzmann distribution as we increasingly populate the velocity bins. 

This analytical convergence to the Boltzmann distribution is shown as we go from a distribution 

as small as 1000 velocities to the ideal range of 1,000,000 velocities. The convergence is an 

important factor to keep track of because we want to ensure the simulation is behaving properly. 

By performing the procedure at a wide range of velocities, we ensure that the simulation is 

actually converging to the ideal model.  

(9) 

(10) 



 

14 
 

Double-Roll Procedure 

 Now that we have a functioning distribution of gas particle velocities, we need to 

determine how the gas particles will interact with the monomer. The double roll procedure will 

determine when and what kind of collisions occur. There are two types of collisions that are 

relevant to the numerical simulation; a backside collision and a forward collision. This 

distinction is important to note because we will use slightly different probabilities and 

probability densities to describe the behavior of each type of collision. In the case of a backside 

collision we can define a probability for a collision between the monomer and a gas particle as 

follows where  is the linear density of the background gas particles, dt is the change in time,  

is a variable defined as the mass of the gas particles divided by twice the temperature of the gas, 

and v1 is the monomer velocity.  

𝑝ଵ(𝑣ଵ, ∞) = 𝛿𝑡𝜌{
1

2√𝜋𝛼
𝑒ିఈ௩భ

మ
−

𝑣ଵ

2
𝑒𝑟𝑓𝑐[√𝛼𝑣ଵ]} 

At the beginning of the timestep, the simulation uses the RandomReal function to select a 

number between 0 and 1. In the case where the randomized number is greater than the 

probability function, there is no collision that occurs during that timestep, and the procedure 

restarts. In the case where a collision does occur, we need to determine what type of collision 

occurs and ensure that the gas particle exists within an appropriate range of velocities. This part 

of the procedure is performed through a guess-and-select procedure using the probability density 

for backside collisions. The probability density is defined as follows where vg is the gas particle 

velocity.   

𝑤ଵ൫𝑣ଵ, 𝑣௚൯ = 𝛿𝑡൫𝑣௚ − 𝑣ଵ൯𝑈𝑛𝑖𝑡𝑆𝑡𝑒𝑝[𝑣௚ − 𝑣ଵ]𝜌ට
𝛼

𝜋
𝑒ିఈ௩೒

మ
 

 

(11) 

(12) 
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The probability density will take its maximum value when vg is equal to vg,bar. vg,bar is defined as 
follows in equation 13;  

𝑣௚,௕௔௥ =
1

2
቎𝑣ଵ + ඨ𝑣ଵ

ଶ +
2

𝛼
 ቏ 

 

The following function will serve as a weighting function which accepts values between zero and 

unity. This can accept or reject values for vg within the range of -vg,max and vg,max.  

𝑤ଵ(𝑣ଵ, 𝑣௚)

𝑤ଵ(𝑣ଵ, 𝑣௚,௕௔௥)
= 𝑈𝑛𝑖𝑡𝑆𝑡𝑒𝑝(𝑣௚ − 𝑣ଵ)

𝑣௚ − 𝑣ଵ

𝑣௚,௕௔௥ − 𝑣ଵ
𝑒ఈ(௩೒,್ೌೝ

మ ି௩೒
మ) 

 
After the weighting function determines the type of collision that occurs, we calculate what is 

referred to as the bump in velocity. This refers to the velocity changes that the monomer 

experiences as a result of frequent collisions, and is used to track the monomer’s center of mass 

velocity. The velocity bump is calculated at the end of each successfully completed timestep, and 

can be expressed as follows where mg is the mass of one gas particle, m is the mass of the 

monomer, and vmf[[jj]] is the previous monomer velocity that is used for the updated 

calculation.   

𝑣௕௨௠௣ =
2𝑚௚

𝑚௚ + 𝑚
(𝑣௚ − 𝑣𝑚𝑓ൣ[𝑗𝑗]൧) 

The velocity bump is added to the previous velocity to calculate the overall change in center of 

mass velocity. The probability for head on collisions is defined as follows.  

𝑝ଷ(𝑣ଵ, −∞) = 𝛿𝑡𝜌{
1

2√𝜋𝛼
𝑒ିఈ௩భ

మ
+

𝑣ଵ

2
𝑒𝑟𝑓𝑐[−√𝛼𝑣ଵ]} 

Head on collisions will only occur if the rolled number between zero and unity is less than the 

probability for head on collisions to occur. The corresponding probability density is defined as 

follows.  

(13) 

(14) 

(15) 

(16) 
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𝑤ଷ൫𝑣ଵ, 𝑣௚൯ = 𝛿𝑡𝜌൫𝑣ଵ − 𝑣௚൯𝑈𝑛𝑖𝑡𝑆𝑡𝑒𝑝(𝑣ଵ − 𝑣௚)ට
𝛼

𝜋
𝑒ିఈ௩೒

మ
 

The probability density has a maximum value at the value vg,dbar which can be written using the 

following syntax.  

𝑣௚,ௗ௕௔௥ =
1

2
቎𝑣ଵ − ඨ𝑣ଵ

ଶ +
2

𝛼
቏ 

The weighting funcztion for head on collisions, is written as follows, and is used to select gas 

particle velocities within the appropriate range for head on collisions.  

𝑤ଷ(𝑣ଵ, 𝑣௚)

𝑤ଷ(𝑣ଷ, 𝑣௚,ௗ௕௔௥)
= 𝑈𝑛𝑖𝑡𝑆𝑡𝑒𝑝൫𝑣ଵ − 𝑣௚൯

𝑣ଵ − 𝑣௚

𝑣ଵ − 𝑣௚,ௗ௕௔௥
𝑒ఈ(௩೒,೏್ೌೝ

మ ି௩೒
మ) 

 
This part of the procedure will also calculate the bump of velocity after each successful timestep, 

and the updated velocity will be appended to the list of center of mass monomer velocities. Once 

the procedure has been performed the desired amount of times, we can plot the list of monomer 

velocities to view changes in the center of mass velocity throughout the simulation.  

(17) 

(18) 

(19) 
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Results and Discussion 

The Monte Carlo procedure allows us to generate a distribution of gas particle velocities, 

as shown below in Figure 2. The velocity list, where the gas particle velocities are stored, has 

1000 list elements appended to it, each with a varying distribution of velocities ranging 

anywhere from -3 vg,max  d/t to 3 vg,max  d/t .  

Figure 2. Distribution of particle velocities 

 
 
As described earlier, each velocity is binned according to its numerical value, and is represented 

in Figure 3 as the unmodified bin distribution. The bin distribution is later modified as is shown 

in Figure 4, in order to create a normalized representation of the bin distribution for later 

comparisons with the Boltzmann distribution.  
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Figure 3. Bin Distribution  

 
Figure 4. Modified Bin Distribution  
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The probability distribution described in Figure 5, shows the probability of a gas particle 

velocity exisiting in the nth bin. The distribution is modeled after the Boltzmann distribution, we 

can see that the greatest probability for a gas particle existing in a bin, is in the center bin of the 

overall distribution. As you go farther from the center bin, the probability decreases and 

approaches zero. 

 

Figure 5. Distribution of Velocities in the nth Bin 

 
 

In Figures 6-9, we plot the modified bin distribution together with the probability 

distribution described in Figure 5 at varying numbers of velocities in order to show analytical 

convergence. We begin at 1000 velocities in Figure 6 and eventually reaching 1,000,000 

velocities in Figure 9. As the number of velocities is increased, we see that the modified bin 

distribution eventually begins to converge to the probability distribution. This indicates that the 

binning distribution closely follows a Boltzmann probability distribution, which is the desired 
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result for this computation. The Boltzmann distribution is the ideal model for the simulation 

because the Boltzmann distribution describes the behavior of an infinite collection of gas particle 

velocities. If the simulation was performed to obtain an infinite collection of gas particles, the 

distribution would ideally perfectly match a Boltzmann distribution.   

 

Figure 6. Analytical Convergence to the Boltzmann Distribution at 1000 velocities 
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Figure 7. Analytical Convergence to the Boltzmann Distribution at 10,000 velocities 
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Figure 8. Analytical Convergence to the Boltzmann Distribution at 100,000 velocities 
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Figure 9. Analytical Convergence to the Boltzmann Distribution at 1,000,000 velocities.  

 
The double-roll procedure described earlier allows us to plot the monomer’s center of 

mass velocity which is graphed in Figure 10. The monomer has an initial velocity of 5.0 d/t, and 

within a duration of 200,000 timesteps we see the monomer’s velocity slow down to 

approximately 3.5 d/t in a stepwise way. Although it is expected that the monomer’s center of 

mass velocity slows down, the stepwise pattern is unexpected. Initial predictions for the center of 

mass velocity is that it will slow down in a smooth pattern, but the results show that the velocity 

oscillates between a specific range of values and then rapidly drops down. For the purposes of 

this simulation, the current results are valid, but are open to further testing and development to 

investigate this pattern. 
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Figure 10. Monomer center of mass velocity 
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Conclusions and Future Directions 

The results gained from this numerical simulation have allowed us to paint an initial 

picture of what occurs when a single-unit spherical cow interacts with a distribution of gas 

particle velocities. These initial results indicate that the Monte Carlo procedure and the binning 

procedure create a desired distribution of gas particle velocities that is modeled after a modified 

version of the Boltzmann distribution. We can also say that the monomer’s center of mass 

velocity slows down throughout the course of the simulation. The numerical simulation has 

several future goals that need to be achieved in order to gain a more conclusive picture of 

particle collisions in a mass spectroscopy experiment. The next step that needs to be taken is a 

simulation of two harmonically bound particles, and how they experience heating and cooling 

due to energy transfers from collisions with the gas particles. The end goal of this program is to 

simulate a spherical cow with many components, in order to get a more conclusive picture. 
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