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DISSERTATION ABSTRACT

Diego Fernando Manco Berrío

Doctor of Philosophy in Mathematics

Title: Pseudo Symmetric Multifunctors: Coherence and Examples

Donald Yau introduced pseudo symmetric Cat-multifunctors and proved that
Mandell’s inverse K-theory multifunctor is stably equivalent to a pseudo symmet-
ric one. We prove a coherence result for pseudo symmetric Cat-multifunctors in
the form of a 2-adjunction. As a consequence, we obtain that pseudo symmetric
Cat-multifunctors preserve En-algebras parameterized by Σ-free Cat-operads at
the cost of changing the parameterizing Cat-operad O by O × EΣ∗, where EΣ∗ is
the categorical Barrat-Eccles operad. Since Mandell’s inverse K-theory is pseudo
symmetric we derive that En-algebras parameterized by free En Cat-operads in the
symmetric monoidal category of Γ-categories can be realized, up to stable equiv-
alence, as the K-theory of some En-algebra in the multicategory of permutative
categories. This result can be regarded as a multiplicative version of a theorem by
Thomason that says that any connective spectrum can be realized as the K-theory
of a suitable symmetric monoidal category up to stable equivalence. Our coherence
theorem also allows for a simple description of a 2-category defined by Yau which
has Cat-multicategories as 0-cells and pseudo symmetric Cat-multifunctors as 1-
cells. We also provide new examples of pseudo symmetric Cat-multifunctors by
proving that the free algebra functor of a symmetric, pseudo commutative, strong
2-monad, as defined by Hyland and Power, can be seen as a pseudo symmetric
Cat-multifunctor. This result can be interpreted as a coherence result for sym-
metric, pseudo commutative, strong 2-monads and it implies a coherence result for
pseudo commutative, strong 2-monads conjectured by Hyland and Power.
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CHAPTER 1

INTRODUCTION

Algebraic K-theory can be seen as a technique to build spectra from algebraic
data. Segal’s infinite loop space machine [Seg74] constructs spectra from symmet-
ric monoidal categories. Permutative categories, i.e., symmetric monoidal categories
that are strictly associative and unital, provide another input for K-theory, which a
construction of May [May74] turns into spectra. These two K-theory constructions
are equivalent [MT78]. We are interested in multiplicative structures in spectra,
so it is natural to ask what kind of conditions are necessary to impose on a per-
mutative category so that its K-theory is, for example, an E∞-ring spectrum. Al-
though this question was first tackled by May [May77] who defined bipermutative
categories, it wasn’t until later that an answer was provided independently by May
[May09], and Elmendorf and Mandell [EM06]. They proved that the K-theory of
a bipermutative category is an E∞-ring. Elmendorf and Mandell also describe the
categorical input that gives rise to a range of rings, modules and algebras in spectra
after applying May’s K-theory construction.

In their apporach, Elmendorf and Mandell use two main tools. On the one
hand, the homotopy theory of spectra was made more transparent with the in-
troduction of the modern symmetric monoidal model categories of spectra. These
model categories allow for the treatment of various multiplicative structures in
spectra and thus, are a natural target for Elmendorf and Mandell’s K-theory con-
struction. On the other hand, the domain of their construction, Perm, is not a
symmetric monoidal category, although it is in a 2-categorical sense [GJO22]. The
usual definitions of ring, algebra and module that use monoidal structures are thus
not available. To overcome this obstruction, Elmendorf and Mandell introduced
multicategories in homotopy theory. Multicategories are a generalization of cate-
gories that allow for maps with multiple inputs, even in the absence of a symmet-
ric monoidal structure. In a sense, they allow the handling of multilinear maps in
the absence of tensor products. They are a generalization of symmetric monoidal
categories and operads at the same time, with operads being multicategories with
one object. One can define multiplicative structures in a given multicategory, with
multifunctors between multicategories preserving these structures. Elmendorf and
Mandell define K-theory as a multifunctor from the multicategory Perm to sym-
metric spectra. Multifunctoriality implies that K-theory preserves multiplicative
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structures.
Thomason proved that every connective spectrum can be realized as the K-

theory of some permutative category [Tho95]. Mandell [Man10] made Thomason’s
construction functorial by providing a stable homotopy inverse functor P to K-
theory. The functor P takes as input Γ-categories (modelling connective spectra
[Tho80; Cis99; BF78]) and its target is Perm. Elmendorf [Elm21], and indepen-
dently Johnson and Yau [JY22] extended P to a Cat-enriched multifunctor, but
one that is not symmetric: it is not compatible with the permutation of elements
in the domains of multicategory mapping spaces. To account for this Yau [Yau24b]
introduced pseudo symmetric multifunctors, where there is compatibility only up
to coherent natural isomorphisms, and he proved that Mandell’s inverse K-theory
multifunctor P is pseudo symmetric in this sense.

A natural question to ask about pseudo symmetric multifunctors is whether
they preserve multiplicative structure and if so, in what sense. We answer this
question by proving a coherence result for pseudo symmetric multifunctors. If F :

M → N is a pseudo symmetric multifunctor between multicategories enriched in
Cat, we prove that the natural isomorphisms attesting the pseudo symmetry of F
assemble together to give a symmetric multifunctor ϕ(F ) : M×EΣ∗ → N satisfying
a universal property, where EΣ∗ is the categorical Barratt-Eccles operad defined in
Example 2.1.5. We can also think about our result as a rigidification result. We can
rigidify F and turn it into a symmetric multifunctor ϕ(F ), at the cost of changing
its domain. This is the main result of Chapter 2.

Theorem 1.0.1. (Theorem 2.2.3) Let M be a Cat-enriched multicategory. There
is a pseudo symmetric multifunctor ηM : M → M× EΣ∗ such that for every Cat-
enriched multicategory N and every pseudo symmetric multifunctor F : M → N ,

there exists a unique symmetric Cat-enriched multifunctor ϕ(F ) : M × EΣ∗ → N
such that the following diagram commutes:

M× EΣ∗

M N .

ϕ(F )

F

ηM

That is, F = ϕ(F ) ◦ ηM as pseudo symmetric multifunctors.
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Thus, if O is an operad in Cat, pseudo symmetric algebras in a Cat-enriched
multicategory M over O (i.e., pseudo symmetric multifunctors O → M) can be
rigidified to get symmetric algebras in M over O×EΣ∗. The following result, which
appears as Corollary 2.3.7, holds since multiplying by EΣ∗ sends the commutative
operad {∗} to the E∞ operad EΣ∗ and sends Σ-free En-operads in Cat, like the
ones defined in [Ber96] and [BFSV03], to En-operads.

Corollary 1.0.2. (Corollary 2.3.7) Let F : M → N be a Cat-enriched pseudo
symmetric multifunctor. Then,

1. F sends commutative monoids to E∞-algebras.

2. F sends En-algebras over Σ-free En Cat-operads to En-algebras for n =

1, 2, . . . , ∞.

In this sense, F preserves symmetric En-algebras parameterized by Σ-free En-
operads at the cost of changing the parameterizing operad. This corollary extends
our understanding of the behavior of inverse K-theory since it implies that the in-
verse K-theory pseudo symmetric multifunctor P from [Yau24b] sends commutative
monoids to E∞-algebras and sends En-algebras (n = 1, 2, . . . ) parameterized by Σ-
free operads to En-algebras. Since P provides a stable inverse to K-theory, and K-
theory is a symmetric multifunctor, this implies that every symmetric En-algebra
parameterized by a Σ-free Cat-operad in Γ-categories is stably equivalent to the K-
theory of a symmetric En-algebra in permutative categories for n = 1, 2, . . . ,∞.
Our result can thus be seen as a multiplicative version of Thomason’s theorem
[Tho95]. This also shows how Theorem 1.0.1 can be used to grasp the behavior of
pseudo symmetric multifunctors on structures parameterized by symmetric operads
in general.

This rigidification structure can be extended in a 2-categorical sense. In [Yau24b]
Yau defines the 2-category Cat-Multicat having Cat-enriched multicategories as
0-cells, symmetric multifunctors as 1-cells and multinatural transformations as 2-
cells. He also defines the 2-category Cat-Multicatps with 0-cells Cat-enriched
multicategories, 1-cells pseudo symmetric multifunctors, and 2-cells pseudo sym-
metric Cat-multinatural transformations. Every symmetric Cat-enriched multi-
functor (respectively, multinatural transformation) is canonically a pseudo sym-
metric multifunctor (respectively multinatural transformation), so there is a 2-
functorial inclusion j : Cat-Multicat → Cat-Multicatps. Taking into account
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these 2-categorical structures, we can extend our previous result by providing a left
2-adjoint ψ to j, which, at the 0-cell level, sends a multicategory M to ψ(M) =

M× EΣ∗.

Theorem 1.0.3. (Corollary 2.2.5 and Theorem 2.2.7) The 2-categorical inclusion
j : Cat -Multicat → Cat-Multicatps admits a left 2-adjoint

ψ : Cat−Multicatps → Cat−Multicat

with ψ(M) = M × EΣ∗ for M a Cat-multicategory. In particular, for Cat-
multicategories M and N we have an isomorphism of categories

Cat-Multicatps(M,N ) ∼= Cat-Multicat(M× EΣ∗,N ).

An important consequence of this theorem is that we can give a very simple
and compact description of the 2-category Cat-Multicatps solely in terms of sym-
metric Cat-multifunctors and Cat-mutinatural transformations, which we do in
Definition 2.2.8.

The question about the existence of a multiplicative equivariant K-theory ma-
chine taking some algebraic input to G-spectra and preserving multiplicative struc-
tures has received some attention in recent years. On the one hand Barwick, Glas-
man and Shah [BGS20] and Kong, May, and Zou [KMZ24] among others provide
examples of multiplicative structures in G-spectra built from various kinds of in-
puts, but don’t provide a systematic approach. On the other hand the works of
Guillou, May, Merling and Osorno [GMMO23], and Yau [Yau24a] introduce equiv-
ariant multiplicative K-theory machines using multicategories. The K-theory ma-
chine of [GMMO23] is a non-symmetric multifunctor from the multicategory of al-
gebras and pseudo morphisms over a pseudo commutative operad enriched in G-
Cat to orthogonal G-spectra. It is conjectured to be a pseudo symmetric functor.
Yau’s G-equivariant K-theory machine is a symmetric multifunctor with domain
the multicategory of pseudo algebras over a pseudo commutative operad in G-Cat

and produces orthogonal spectra. In both constructions pseudo commutative oper-
ads play an important role.

Pseudo commutative operads were defined by Corner and Gurski [CG23]. These
are operads whose associated monads are pseudo commutative. Now, commutative
monads were introduced by Anders Kock in [Koc70] and are designed to capture
the concept of a monoidal 2-monad. Let’s make this a little more precise. Suppose
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that K is a 2-category with finite products, and consider K endowed with the sym-
metric monoidal structure induced by products. Monoidal 2-monads T : K → K
are strong in the sense that there is a 2-natural transfomation with components
t2 : A × TB → T (A × B) for A,B objects of K. Of course, since K is symmetric
monoidal, there is also a 2-natural transformation with components t1 : TA × B →
T (A × B). Strong 2-monads can be regarded as monoidal 2-functors in two differ-
ent ways, with the binary components being given by the two 1-cells that form the
boundary of the following diagram:

TA× TB T (A× TB) T 2(A×B)

T (TA×B) T 2(A×B) T (A×B).

t2

t1 Tt2

µ

Tt1 µ

A commutative 2-monad is one where the previous diagram commutes for any
A,B objects of K. It is a theorem of Kock [Koc70] that a strong 2-monad T is
commutative if and only if T is a monoidal 2-monad. There are a lot of examples
of 2-monads T : Cat → Cat, e.g., the 2-monad for symmetric strict monoidal cat-
egories, that fail to be commutative but that are so up to coherent isomorphisms.
Such monads are called pseudo commutative and they were introduce by Hyland
and Power [HP02].

From the point of view of multiplicative equivariant algebraic K-theory, the
most important feature of pseudo commutative 2-monads (and hence pseudo com-
mutative operads) is that they allow for the definition of a multicategory of alge-
bras. Blackwell, Kelly and Power define and study a 2-category of algebras T -Alg
for T : K → K a 2-monad [BKP02]. Hyland and Power [HP02] extend T -Alg to a
non symmetric Cat-multicategory when T is pseudo commutative. If T satisfies an-
other technical condition of being symmetric, then the Cat-multicategory T -Alg is
symmetric. When K = Cat and T is accesible, the Cat-multicategory structure in
T -Alg arises from a monoidal bicategorical structure on T -Alg [Bou02]. The main
theorem in Chapter 3 is the following.

Theorem 1.0.4. (Theorem 3.3.18) Let T : K → K be a strong, pseudo commu-
tative, symmetric 2-monad. Then, the free algebra multifunctor T : K → T -Alg is
pseudo symmetric.

This implies that the free algebra functor for pseudo commutative operads,
like those used in [GMMO23] and [Yau24a] is pseudo symmetric. In Remark 3.3.14,
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we explain how this result implies a coherence result for non symmetric, strong
pseudo commutative 2-monads as was conjectured, but not stated clearly or proved
in [HP02].

The results in this thesis, together with the author’s current work on the def-
inition and coherence of pseudo symmetric Cat-multicategories could be used to
prove that the multiplicative equivariant K-theory machine of [GMMO23] preserves
multiplicative structures. This can also be useful in proving that this machine is
equivalent to the one constructed by Yau [Yau24a].
In Chapter 2, we prove the coherence theorem for pseudo symmetric Cat-multifunctors
and extract some 2-categorical consequences as well as some applications to K-
theory. In Chapter 3 we prove a coherence for symmetric pseudo commutative 2-
monads, and we show how this coherence can be interpreted as the pseudo symme-
try of the free algebra multifunctor associated with the 2-monad.
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CHAPTER 2

COHERENCE FOR PSEUDO SYMMETRIC MULTIFUNCTORS

In this chapter we prove a coherence theorem for pseudo symmetric multi-
functors as defined by Yau [Yau24a]. In Section 2.1 we introduce multicategories,
multifunctors and their enriched versions in Cat as well as pseudo symmetric Cat-
enriched multifunctors [Yau24b]. In Section 2.2 we prove the coherence theorem
and extract some 2-categorical consequences. By work of Donald Yau [Yau24b]
Mandell’s inverse K-theory is stably equivalent to a pseudo symmetric Cat-enriched
multifunctor. We use Section 2.3 to develop the K-theoretical consequences of ap-
plying our coherence theorem to Mandell’s inverse K-theory multifunctor.

2.1 Symmetric and pseudo symmetric Multifunctors

We begin by reviewing the definition of multicategory enriched in a symmet-
ric monoidal category. In the following definition (C, 1,⊕, λ, ρ, ξ) is a symmetric
monoidal category with ⊕ : C × C → C the monoidal product, 1 the monoidal
unit, λ the left unit isomorphism, ρ the right unit isomorphism and ξ the sym-
metry. In this paper we will consider only categories enriched over Cat with the
monoidal structure given by products, but we use a general monoidal category in
the definition to make explicit the fact that this definition doesn’t make use of the
2-categorical structure of Cat.

Remark 2.1.1. We will also use the following notation: if σ ∈ Σn and τi ∈ Σki for
1 ≤ i ≤ n, σ⟨τ1, . . . , τn⟩ ∈ Σk1+···+kn is the permutation that permutes n blocks of
lengths k1, . . . , kn according to σ and each block of length ki according to τi.

Definition 2.1.2. If C is a symmetric monoidal category, a C-multicategory (M, γ, 1)

consists of the following data.

• A class of objects Ob(M).

• For every n ≥ 0, ⟨a⟩ = ⟨ai⟩ni=1 ∈ Ob(M)n and b ∈ Ob(M), an object in C
denoted by

M(⟨a⟩; b) = M(a1, . . . , an; b).

We will write ⟨a⟩ instead of ⟨ai⟩ni=1 when n is clear from the context or irrele-
vant. [In the case C = Cat, an object f of M(⟨a⟩; b) will be called an n-ary
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1-cell with input ⟨a⟩ and output b and will be denoted as f : ⟨a⟩ → b. Simi-
larly, we will call α : f → g in M(⟨a⟩; b)(f, g) an n-ary 2-cell.]

• For each n ≥ 0, ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), and σ ∈ Σn, a C-isomorphism

M(⟨a⟩; b) M(⟨a⟩σ; b)σ
∼=

called the right σ action or the symmetric group action. Here

⟨a⟩σ = ⟨a1, . . . , an⟩σ = ⟨aσ(1), . . . , aσ(n)⟩.

[In the case C = Cat we write fσ for the image of an n-ary 1-cell f : ⟨a⟩ → b

in M and similarly for 2-cells.]

• For each object a ∈ Ob(M), a morphism

1 M(a; a)
1a

called the a-unit. In the case C = Cat we notice that if a ∈ Ob(M), 1a : a →
a is a 1-ary 1-cell while if f : ⟨a⟩ → b is an n-ary 1-cell, then 1f : f → f is an
n-ary 2-cell in M(⟨a⟩; b)(f, f) so our notation is unambiguous.

• For every c ∈ Ob(M), n ≥ 0, ⟨b⟩ = ⟨bj⟩nj=1 ∈ Ob(M)n, kj ≥ 0 for 1 ≤ j ≤ n,

and ⟨aj⟩ = ⟨aj,i⟩
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n, a morphism in C,

M(⟨b⟩; c)⊗
n⊗
j=1

M(⟨aj⟩; bj) M(⟨a⟩; c),γ

where we adopt the convention that ⟨a⟩ ∈ Ob(M)k, where k =
∑n

i=1 kj,

denotes the concatenation of the varying aj’s for j = 1, . . . , n. We write this
as

⟨a⟩ = ⟨a1, . . . , an⟩ = ⟨⟨aj⟩⟩nj=1 = ⟨a1,1, . . . , a1,k1 , a2,1, . . . , an−1,kn−1an,1, . . . , an,kn⟩.

The previous data are required to satisfy the following axioms.

• Symmetric group action: For every n ≥ 0, ⟨a⟩ ∈ Ob(M), b ∈ Ob(M), and
σ, τ in Σn the following diagram commutes in C :

15



M(⟨a⟩; b) M(⟨a⟩σ; b)

M(⟨a⟩στ ; b).

σ

στ
τ

We also require the identity permutation idn ∈ Σn to act as the identity mor-
phism on M(⟨a⟩; b).

• Associativity: For every d ∈ Ob(M), n ≥ 1, ⟨c⟩ = ⟨cj⟩nj=1 ∈ Ob(M)n,

kj ≥ 0 for 1 ≤ j ≤ n with kj ≥ 1 for at least one j, ⟨bj⟩ = ⟨bj,i⟩
kj
i=1 ∈ Ob(M)kj

for 1 ≤ j ≤ n, li,j ≥ 0 for 1 ≤ j ≤ n and 1 ≤ i ≤ kj, and ⟨aj,i⟩ = ⟨aj,i,p⟩
li,j
p=1 ∈

Ob(M)li,j for 1 ≤ j ≤ n and 1 ≤ i ≤ kj, the following associativity diagram
commutes in C:

M(⟨c⟩; d)⊗

(
n⊗
j=1

M(⟨bj⟩; cj)

)
⊗

n⊗
j=1

(
kj⊗
i=1

M(⟨aj,i⟩; bj,i)

)

M(⟨b⟩; c)⊗
n⊗
j=1

(
kj⊗
i=1

M(⟨aj,i⟩); bj,i

)

M(⟨c⟩; d)⊗
n⊗
j=1

(
M(⟨bj⟩; cj)⊗

kj⊗
i=1

M(⟨aj,i⟩; bj,i)

)

M(⟨c⟩; d)⊗
n⊗
j=1

M(⟨aj⟩; cj) M(⟨a⟩; b).

γ⊗1

∼=

γ

1⊗
⊗n

j=1 γ

γ

(2.1.1)

• Unity: Suppose b ∈ Ob(M) and ⟨a⟩ = ⟨aj⟩nj=1 ∈ Ob(M), then the following
right unity diagram commutes in C :

M(⟨a⟩; b)⊗
n⊗
j=1

1

M(⟨a⟩; b)⊗
n⊗
j=1

M(aj; aj) M(⟨a⟩; b).

id⊗
n⊗

j=1
1aj

∼=

γ
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With b, ⟨a⟩ as before, we also demand that the following left unity diagram
commutes in C.

1⊗M(⟨a⟩; b)

M(b; b)⊗M(⟨a⟩; b) M(⟨a⟩; b).

λ
1b⊗id

γ

• Top equivariance: For every c ∈ Ob(M), n ≥ 1, ⟨b⟩ = ⟨bj⟩nj=1 ∈ Ob(M)n,

kj ≥ 0 for 1 ≤ j ≤ n, ⟨aj⟩ = ⟨aj,i⟩
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n, and σ ∈ Σn,

the following diagram commutes:

M(⟨b⟩; c)⊗
n⊗
j=1

M(⟨aj⟩; bj) M(⟨b⟩σ; c)⊗
n⊗
j=1

M(⟨aσ(j)⟩; bσ(j))

M(⟨a1⟩, . . . , ⟨an⟩; c) M(⟨aσ(1)⟩, . . . , ⟨aσ(n)⟩; c).

σ⊗σ−1

γ γ

σ
〈
idkσ(1)

,...,idkσ(n)

〉
(2.1.2)

Here σ−1 is the unique isomorphism in C, given by the coherence theorem for
symmetric monoidal categories, that permutes the factors M(⟨aj⟩, bj) accord-
ing to σ−1.

• Bottom equivariance: For ⟨aj⟩, ⟨b⟩ and c as in Top equivariance (2.1.2), the
following diagram commutes:

M(⟨b⟩; c)⊗
n⊗
j=1

M(⟨aj⟩; bj) M(⟨b⟩, c)⊗
n⊗
j=1

M(⟨aj⟩τj; bj)

M(⟨a1⟩, . . . , ⟨an⟩; c) M(⟨a1⟩τ1, . . . , ⟨an⟩τn; c).

id⊗
n⊗

j=1
τj

γ γ

idn

〈
τ1,...,τn

〉
(2.1.3)

This concludes the definition of a C-multicategory.

Remark 2.1.3. A C-operad is a C-multicategory with one object. If O is a C-
operad, its n-ary operations will be denoted by On ∈ Ob(C). A non symmetric
C-multicategory (C-operad) is defined in the same way as a C-multicategory (C-
operad) excluding the data of the symmetric group action as well as the symmetric
group, top and bottom equivariance coherence axioms. We will only be concerned
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with symmetric multicategories and operads. C-multicategories are often referred
to as colored operads, with the objects of the C-multicategory being referred to as
colors and C-operads having just one color.

Example 2.1.4. As examples of Set-operads, where Set has the monoidal struc-
ture induced by products in Set, we have the commutative operad Comm = {∗}
with Commn = {∗}. Another example is the associative operad Ass = Σ∗ with
Assn = Σn, with the right action of the symmetric product given by right multi-
plication and γ defined in the following way. If n ≥ 1 and k1, . . . , kn natural num-
bers with k = Σn

i=1ki, we define γ : Σn × (
∏n

i=1 Σki) → Σk given for σ ∈ Σn and
⟨τ1, . . . , τn⟩ ∈

∏n
i=1Σki by

γ(σ, ⟨ρi⟩ni=1) = σ⟨ρi⟩ni=1 = σ⟨ρ1, . . . , ρn⟩,

as in Remark 2.1.1. When n is clear from the context we will write σ⟨ρi⟩ = σ⟨ρi⟩ni=1.

Example 2.1.5. We will consider Cat-multicategories where the monoidal struc-
ture in Cat is given by products. One source of examples is the forgetful functor
Ob : Cat → Set which forgets the morphism structure and remembers only the
object set. Its right adjoint E : Set → Cat is the functor that takes a set A to
EA, the category with objects Ob(EA) = A, and with a unique isomorphism be-
tween each pair of objects. E sends a morphism f : A → B of sets to the func-
tor Ef : EA → EB, the only functor such that f = Ob(Ef). E preserves prod-
ucts, and thus, if O is a Set-operad, EO is a Cat-operad. Similarly, if M is a Set-
multicategory, EM is a Cat-multicategory with the same collection of objects as
M.
We will call EComm = {∗} the commutative Cat-operad. The Barratt-Eccles op-
erad is the Cat-operad EΣ∗ = EAss.

Example 2.1.6. Another source of examples for multicategories are symmetric
monoidal categories, and thus also permutative categories. Each symmetric monoidal
category C has an associated Set-multicategory End(C), whose objects agree with
the objects of C and such that for ⟨a⟩ ∈ Ob(C)n and b ∈ Ob(C),

End(C)(⟨a⟩; b) = C(a1 ⊗ · · · ⊗ an, b).

Here we take a1 ⊗ · · · ⊗ an with the leftmost parenthesization. Any fixed parenthe-
sization would work. An empty string of objects is interpreted as the monoidal unit
1 ∈ Ob(C).
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Next, we define 1-cells between C-multicategories that preserve the action of
the symmetric group. These are called symmetric C-multifunctors.

Definition 2.1.7. A symmetric C-multifunctor F : M → N between C-multicategories
M and N consists of the following data.

• An object assignment F : Ob(M) → Ob(N ).

• For each n ≥ 0, ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M) a C morphism

M(⟨a⟩; b) N (⟨Fa⟩;Fb).F

These data are required to preserve units, composition, and the action of the sym-
metric group.

• Units: For each object a ∈ Ob(M), F (1a) = 1Fa, i.e., the following diagram
commutes in C :

M(a, a)

1 N (Fa, Fa).

F1a

1Fa

• Composition: For every c ∈ Ob(M), n ≥ 0, ⟨b⟩ = ⟨bj⟩nj=1 ∈ Ob(M)n, kj ≥ 0

for 1 ≤ j ≤ n, and ⟨aj⟩ = ⟨aj,i⟩
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n and 1 ≤ i ≤ n,

the following diagram commutes in C :

M(⟨b⟩; c)⊗
n⊗
j=1

M(⟨aj⟩; bj) N (⟨Fb⟩;Fc)⊗
n⊗
j=1

N (⟨Faj⟩;Fbj)

M(⟨a⟩; c) N (⟨Fa⟩;Fc).

F⊗
n⊗

j=1
F

γ γ

F

(2.1.4)

• Symmetric Group Action: For each ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M) the
following diagram commutes in C :
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M(⟨a⟩; b) N (⟨Fa⟩;Fb)

M(⟨a⟩σ; b) N (⟨Fa⟩σ;Fb).

F

σ∼= σ∼=

F

Definition 2.1.8. Let O be a C-operad and a M be a C-multicategory. A sym-
metric algebra in M over O is a symmetric multifunctor O → M.

Symmetric algebras are usually called algebras, but we add the adjective sym-
metric to distinguish them from pseudo symmetric algebras, which will be defined
later.

Example 2.1.9. Since their introduction by May [May72], operads have been used
to characterize certain categories as the categories of symmetric algebras over a cer-
tain operad. For example, symmetric algebras over Comm in Set are commutative
monoids. Symmetric algebras over Σ∗ in Set are associative monoids. Symmetric
algebras over the Barrat-Eccles operad EΣ∗ in Cat are precisely permutative cate-
gories [May74].

Next we define composition of C-multifunctors.

Definition 2.1.10. We define the horizontal composition of C-multifunctors in the
following way.

• Let F : M → N , and G : N → Q be C-multifunctors, we define the C-
multifunctor GF : M → Q on objects as the composition

Ob(M) Ob(N ) Ob(Q),F G

and its component functors for ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M) as the composite

M(⟨a⟩; b) N (⟨Fa⟩;Fb) Q(⟨GFa⟩;GFb).F G

• The identity C-multifunctor 1M : M → M is defined as the identity assign-
ment on objects with the identity functors as component functors.

Next we define 2-cells between C-multifunctors. These will be the 2-cells of a
2-category with 0-cells C-multicategories and 1-cells C-multifunctors.
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Definition 2.1.11. [Yau24b, Def. 3.2.5] For (symmetric) C-multifunctors F,G : M →
N , we define a C-multinatural transformation θ : F ⇒ G as the data of a compo-
nent morphism θa : 1 → N (Fa,Ga) in C for each a ∈ Ob(M) subject to the com-
mutativity of the following diagram in C for each ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M),

1⊗M(⟨a⟩; b) N (Fb;Gb)⊗N (⟨Fa⟩;Fb)

M(⟨a⟩, b) N (⟨Fa⟩;Gb).

M(⟨a⟩; b)⊗
⊗n

j=1 1 N (⟨Ga⟩;Gb)⊗
⊗n

j=1 N (Faj;Gaj)

θb⊗F

γ∼=

∼=
G⊗

⊗
θaj

γ

We define the identity multinatural transformation 1F : F → F as having com-
ponent (1F )a = 1Fa for a an object of M.

Remark 2.1.12. When C = Cat, and given F,G : M → N Cat-multifunctors and
the data of a 1-ary 1-cell θa : Fa → Ga for each a ∈ Ob(M), the commutativity of
the diagram in the previous definition means that for every n ≥ 0, ⟨a⟩ ∈ Ob(M)n,

b ∈ Ob(M) and each 1-cell f : ⟨a⟩ → b,

γ(Gf ; ⟨θaj⟩) = γ(θb;Ff) (2.1.5)

holds in N (⟨Fa⟩;Gb) and that, for every 2-cell α : f → g in M(⟨a⟩; b)(f, g),

γ(Gα; ⟨1θaj ⟩) = γ(1θb ;Fα) (2.1.6)

in N (⟨Fa⟩;Gb). We can express (2.1.5) diagrammatically as the commutativity of
the square

⟨Fa⟩ ⟨Ga⟩

Fb Gb,

⟨θaj ⟩

Ff Gf

θb

where the composition of adjacent 1-cells is done through γ and a square represents
an equality between composite 1-cells. In the same fashion, and using (2.1.5), we
can express (2.1.6) as the equality of multicategorical pasting diagrams

⟨Fa⟩ ⟨Ga⟩ ⟨Fa⟩ ⟨Ga⟩

=

Fb Gb Fb Gb.

FgFf

⟨θaj ⟩

Gg

⟨θaj ⟩

Ff GgGf

θb

θb

Fα Gα
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Here the concatenation of adjacent 2-cells is done through γ, and an arrow labeled
with the 1-cell h is interpreted as the 2-cell 1h : h → h. For example, the left hand
side diagram represents γ(1θb , Fα) while the right hand side represents γ(Gα, ⟨θαj

⟩).
The empty squares represent equalities between composite 1-cells.

Next, we define horizontal and vertical compositions of C-multinatural trans-
formations.

Definition 2.1.13. [Yau24b, Def. 3.2.7]

Suppose given θ : F ⇒ G, ζ : G⇒ H C-multinatural transformations with
F,G,H : M → N C-multifunctors. The vertical composition ζθ : F ⇒ H is defined

as having as component at each a ∈ Ob(M) (ζθ)a, the composite

1 1⊗ 1 N (Ga;Ha)⊗N (Fa;Ga) N (Fa;Ha).
∼= ζa⊗θa γ

Suppose that θ : F ⇒ G and ζ : F ′ ⇒ G′ are C-multinatural transformations with
F,G : M → N and F ′, G′ : N → Q C-multifunctors. The horizontal composition
ζ ∗ θ : F ′F ⇒ G′G is defined as the C-multinatural transformation with component
at each a ∈ Ob(M), given by the composite

1 Q(F ′Fa;G′Ga)

1⊗ 1 Q(F ′Ga;G′Ga)⊗N (Fa;Ga) Q(F ′Ga;G′Ga)⊗Q(F ′Fa;F ′Ga).

∼=

(ζ∗θ)a

ζGa⊗θa 1⊗F ′

γ

Remark 2.1.14. When C = Cat and given θ : F ⇒ G, ζ : G⇒ H Cat-multinatural
transformations with F,G,H : M → N C-multifunctors and a ∈ Ob(M),

(ζθ)a = γ(ζa, θa.) (2.1.7)

On the other hand, if θ : F ⇒ G and ζ : F ′ ⇒ G′ are Cat-multinatural transforma-
tions with F,G : M → N and F ′, G′ : N → Q Cat-multifunctors,

(ζ ∗ θ)a = γ(ζGa;F
′θa). (2.1.8)

Yau proves in [Yau24b] that Definitions 2.1.2, 2.1.7, 2.1.10 and 2.1.13 assemble
together to give the 2-category C-Multicat, with 0-cells consisting of C-multicategories,
1-cells symmetric C-multifunctors, and 2-cells C-multinatural transformations.
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There is a non symmetric variant where we drop the requirement that the C-multifunctors
preserve the symmetric group action, as well as dropping the coherence axioms re-
lated to the symmetric group action, but we won’t refer to this 2-category again.
For the rest of the article we fix our symmetric monoidal category C to be Cat,

with the symmetric monoidal structure induced by products. In this context we
can define a pseudo symmetric variant of this 2-category, namely Cat-Multicatps

using the 2-categorical structure of Cat. The objects of Cat-Multicatps are still
Cat-multicategories, but the 1-cells are pseudo symmetric Cat-multifunctors: Cat-
multifunctors where we only require that they preserve the symmetric group action
up to coherent isomorphisms.

Definition 2.1.15. [Yau24b, Def. 4.1.1] Suppose that M,N are Cat-multicategories.
A pseudo symmetric Cat-multifunctor F : M → N consists of the following data:

• A function on object sets F : Ob(M) → Ob(N ).

• For each ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M), a component functor

M(⟨a⟩; b) F // N (⟨Fa⟩;Fb).

• For each σ ∈ Σn, ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), a natural isomorphism Fσ,⟨a⟩,b

M(⟨a⟩; b) N (⟨Fa⟩;Fb)

M(⟨a⟩σ; b) N (⟨Fa⟩σ;Fb).

F

σ σ

F

Fσ,⟨a⟩,b

∼=

When ⟨a⟩ and b are clear from the context we write simply Fσ, and if f ∈
Ob(M(⟨a⟩, b)) we will denote by Fσ,⟨a⟩,b;f = Fσ;f : F (fσ) → F (f)σ the 2-
cell in N (⟨Fa⟩σ;Fb) corresponding to the component of Fσ at f. Naturality
for Fσ means that given α : f → g a 2-cell in M(⟨a⟩; b)(f, g), the following
diagram commutes in N (⟨Fa⟩σ; b) :

F (fσ) F (f)σ

F (gσ) F (g)σ.

Fσ;f

F (ασ) (Fα)σ

Fσ;g

(2.1.9)
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These data are subject to the same axioms of unit and composition preservation
(2.1.4) as a symmetric Cat-multifunctor, but we replace the symmetric group ac-
tion preservation axiom by the following four axioms.

• Unit permutation: Let n ≥ 0, ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M), then

Fidn,⟨a⟩,b = 1F . (2.1.10)

• Product permutation: This axiom expresses the coherence of the natural
isomorphisms Fσ, for varying σ, with respect to the symmetric group action.
Let n ≥ 0, ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M) and σ, τ ∈ Σn. Then, the following
equality of pasting diagrams holds.

M(⟨a⟩; b) N (⟨Fa⟩;Fb) M(⟨a⟩; b) N (⟨Fa⟩;Fb)

M(⟨a⟩σ; b) N (⟨Fa⟩σ;Fb) =

M(⟨a⟩στ ; b) N (⟨Fa⟩στ ;Fb) M(⟨a⟩στ ; b) N (⟨Fa⟩στ ;Fb).

F

σ σ

F

στ στ
F

τ τ

F F

Fσ

Fτ

Fστ

Thus, for every 1-cell f ∈ Ob(M(⟨a⟩; b)), the following diagram of 2-cells
commutes in N (⟨Fa⟩;Fb):

F (fσ)τ

F (fστ) F (f)στ.

(Fσ;f )τFτ ;fσ

Fστ ;f

(2.1.11)

• Top equivariance: For every c ∈ Ob(M), n ≥ 0, ⟨b⟩ = ⟨bj⟩nj=1 ∈ Ob(M)n,

kj ≥ 0 for 1 ≤ j ≤ n, and ⟨aj⟩ = ⟨aj,i⟩
kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n, and

σ ∈ Σn, the following two pasting diagrams are equal.
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M(⟨b⟩; c)×
∏n

j=1 M(⟨aj⟩; bj) N (⟨Fb⟩;Fc)×
∏n

j=1 N (⟨Faj⟩;Fbj)

M(⟨⟨aj⟩⟩nj=1; c) N (⟨⟨Faj⟩⟩nj=1;Fc)

M(⟨⟨aσ(j)⟩⟩nj=1; c) N (⟨⟨Faσ(j)⟩⟩nj=1;Fc)

∥

M(⟨b⟩; c)×
∏n

j=1 M(⟨aj⟩; bj) N (⟨Fb⟩;Fc)×
∏n

j=1 N (⟨Faj⟩;Fbj)

M(⟨b⟩σ; c)×
∏n

j=1 M(⟨aσ(j)⟩; bσ(j)) N (⟨Fb⟩σ;Fc)×
∏n

j=1 N (⟨Faσ(j)⟩;Fbσ(j))

M(⟨⟨aσ(j)⟩⟩nj=1; c) N (⟨⟨Faσ(j)⟩⟩nj=1;Fc)

F×
∏

j F

γ γ

σ⟨idkσ(j)
⟩

F

σ⟨idkσ(j)
⟩

F

σ×σ−1

F×
∏

j F

σ×σ−1

F×
∏

j F

γ γ

F

Fσ×1

Fσ⟨idkσ(j)
⟩

Here σ⟨idkσ(j)
⟩ = σ⟨idkσ(1)

, . . . , idkσ(n)⟩. This means that for 1-cells f ∈ Ob(M(⟨b⟩; c))
and gj ∈ Ob(M(⟨aj⟩; bj)) for 1 ≤ j ≤ n,

Fσ⟨idkσ(j)
⟩;γ(f ;⟨gj⟩) = γ

(
Fσ;f ; ⟨1Fgσ(j)

⟩nj=1

)
. (2.1.12)

The domains and codomains of these pasting diagrams are equal by top equiv-
ariance in M and N , and the fact that F preserves γ implies the commuta-
tivity of the empty rectangles, see [Yau24b].

• Bottom Equivariance: For every c ∈ Ob(M), n ≥ 0, ⟨b⟩ = ⟨bj⟩nj=1 ∈
Ob(M)n, kj ≥ 0 for 1 ≤ j ≤ n, and ⟨aj⟩ = ⟨aj,i⟩

kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n

and 1 ≤ i ≤ kj, and τj ∈ Σkj , the following two pasting diagrams are equal.
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M(⟨b⟩; c)×
∏n
j=1M(⟨aj⟩; bj) N (⟨Fb⟩;Fc)×

∏n
j=1(⟨Faj⟩;Fbj)

M(⟨⟨aj⟩⟩nj=1; c) N (⟨⟨Faj⟩⟩nj=1;Fc)

M(⟨⟨aj⟩τj⟩nj=1; c) N (⟨⟨Faj⟩τj⟩nj=1;Fc)

∥

M(⟨b⟩; c)×
∏n
j=1M(⟨aj⟩; bj) N (⟨Fb⟩;Fc)×

∏n
j=1N (⟨Faj⟩;Fbj)

M(⟨b⟩; c)×
∏n
j=1M(⟨aj⟩τj ; bj) N (⟨Fb⟩;Fc)×

∏n
j=1N (⟨⟨Faj⟩τj⟩;Fbj)

M(⟨⟨aj⟩τj⟩nj=1; c) N (⟨⟨Faj⟩τj⟩nj=1;Fc)

F×
∏

j F

γ γ

idn⟨τj⟩

F

idn⟨τj⟩

F

id×
∏

j τj

F×
∏

j F

id×
∏

j τj

F×
∏

j F

γ γ

F

Fidn⟨τi⟩

1×
∏

j Fτj

This means that for 1-cells f : ⟨b⟩ → c and gj : ⟨aj⟩ → bj for 1 ≤ j ≤ n,

Fidn⟨τj⟩;γ(f ;⟨gj⟩) = γ(1Ff ; ⟨Fτj ;gj⟩) (2.1.13)

as 2-cells in N (⟨⟨Faj⟩τj⟩;Fc). The domain and codomain of these pasting di-
agrams are equal by bottom equivariance for M and N , and the preservation
of γ by F guarantees that the empty squares commute, see [Yau24b].

Next we describe the horizontal composition of 1-cells in the 2-category Cat-
Multicatps.

Definition 2.1.16. [Yau24b, Def. 4.1.1] Let F : M → N , and G : N → Q be
pseudo symmetric Cat-multifunctors. We define the pseudo symmetric functor
GF : M → Q. On objects GF is the composite function GF : Ob(M) → Ob(Q).

The composite component functor is given for ⟨a⟩ ∈ Ob(M)n, and b ∈ Ob(M) by
the pasting

M(⟨a⟩; b) N (⟨Fa⟩; b) Q(⟨GFa⟩;GFb).F G

The symmetry isomorphisms are given for each σ ∈ Σn, ⟨a⟩ ∈ Ob(M), and b ∈
Ob(M) by
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M(⟨a⟩; b) N (⟨Fa⟩;Fb) Q(⟨GFa⟩;GFb)

M(⟨a⟩σ; b) N (⟨Fa⟩σ; fb) Q(⟨GFa⟩σ;GFb).

σ

F

σ

G

σ

F G
Fσ,⟨a⟩,b Gσ,⟨Fa⟩,Fb

That is, for each 1-cell f : ⟨a⟩ → b, the f component of GFσ is given by the com-
posite

G((Ff)σ)

GF (fσ) (GFf)σ.

Gσ;Ff

(GF )σ;f

G(Fσ;f ) (2.1.14)

Next we define the 2-cells of the category Cat-Multicatps.

Definition 2.1.17. [Yau24b, Def. 4.2.1] Suppose that F,G : M → N are pseudo
symmetric Cat-multifunctors. A pseudo symmetric Cat-multinatural transforma-
tion θ : F ⇒ G is the data of a component 1-cell θa : Fa → Ga for each a ∈ Ob(M)

subject to axioms (2.1.5), (2.1.6) and the following extra axiom. For each n ≥ 0,

⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), object f ∈ Ob(M(⟨a⟩; b)), and permutation σ ∈ Σn,

the following arrow equality holds in the category N (⟨Fa⟩σ; b),

γ (1θb ;Fσ;f ) = γ
(
Gσ;f ; ⟨1θaσ(j)

⟩
)
. (2.1.15)

This can also be expressed diagrammatically as the equality of multicategorical
pasting diagrams

⟨Fa⟩σ G⟨a⟩σ ⟨Fa⟩σ ⟨Ga⟩σ

=

Fb Gb Fb Gb,

(Ff)σF (fσ)

⟨θaσ(j)
⟩

(Gf)σ

⟨θaσ(j)
⟩

F (fσ) (Gf)σG(fσ)

θb

θb

Fσ;f Gσ;f

where the diagrams are interpreted as in Remark 2.1.12, the squares commuting by
(2.1.5) and top and bottom equivariance for N , see [Yau24b].
We define the vertical and horizontal composition of pseudo symmetric Cat-multinatural
transformations in the same way that we did for symmetric ones, through diagrams
(2.1.7) and (2.1.8).
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It is a theorem of Yau [Yau24b] that the data we have just defined gives the
structure of a 2-category, namely Cat-Multicatps. Definition 2.2.8 says that we
can describe this 2-category solely in terms of symmetric Cat-multifunctors and
symmetric Cat-multinatural transformations.

2.2 Equivalent definition of Pseudo Symmetry

To prove our first result we use finite products in the category Cat-Multicat.
Having just the 1-categorical structure in mind, the products in Cat-Multicat are
given in the following way. If M and N are two Cat-multicategories, then M×N
has objects Ob(M × N ) = Ob(M) × Ob(N ). Now, for n ≥ 0, ⟨a⟩ ∈ Ob(M)n,

⟨c⟩ ∈ Ob(N )n, b ∈ Ob(M), and d ∈ Ob(N ), we define

M×N (⟨(a, c)⟩; (b, d)) = M(⟨a⟩; b)×N (⟨c⟩; d).

The composition γ of M×N , as well as the Σ∗ action and the multicategorical
units, are defined componentwise. Next we define the pseudo symmetric multifunc-
tor ηM appearing in the statement of 1.0.1.

Definition 2.2.1. Let M be a Cat-multicategory. We define the pseudo symmet-
ric Cat-multifunctor ηM : M → M × EΣ∗ which, when there is no room for con-
fusion, we will denote η. For an object a ∈ Ob(M) as η(a) = (a, ∗). We will abuse
notation and denote the object (a, ∗) of M× EΣ∗ as a.
For n ≥ 0, ⟨a⟩ ∈ Ob(M)n and b ∈ Ob(M) we need to define a functor η : M(⟨a⟩; b) →
M(⟨a⟩; b)× EΣn. For a 1-cell f : ⟨a⟩ → b, we define

η(f) = (f, idn) ∈ Ob(M(a; b)× EΣn).

Similarly, for a 2-cell α : f → g in M(⟨a⟩; b),

η(α) = (α, 1idn) ∈ M(⟨a⟩; b)× EΣn((f, idn)), (g, idn).

Next, we define the components of the pseudo symmetry isomorphisms. For
σ, τ ∈ Σn we will denote from here on by Eτ

σ the unique arrow σ → τ in EΣn. For
σ ∈ Σn, ⟨a⟩ ∈ Ob(M)n, and b ∈ Ob(M) we need to define a natural isomorphism
ησ,⟨a⟩,b : (η ◦ σ) → (σ ◦ η) that fits in the following diagram

M(⟨a⟩; b) M(⟨a⟩; b)× EΣn

M(⟨a⟩σ, b) M(⟨a⟩σ; b)× EΣn.

η

σ σ×σ

η

ησ,⟨a⟩,b

∼=
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The isomorphism ησ,⟨a⟩,b is defined for every 1-cell f : ⟨a⟩ → b as the 2-cell

ησ;f = (1fσ, E
σ
id) : (fσ, idn) → (fσ, σ).

Lemma 2.2.2. Let M be a Cat-multicategory, then ηM : M → M×EΣ∗ is pseudo
symmetric.

Proof. We start from a non symmetric multifunctor η : M → M × EΣ∗ that is
the identity on the first coordinate and the multicategorical unit in the second co-
ordinate. As a non symmetric multifunctor, η preserves units and γ composition.
We need to show that η is a pseudo symmetric Cat-multifunctor. The natural-
ity of ησ;f follows from the commutativity of the following diagram for any 2-cell
α : f → g:

(fσ, idn) (fσ, σ)

(gσ, idn) (gσ, σ).

(1fσ ,E
σ
idn )

(ασ,1idn ) (ασ,1σ)

(1gσ ,Eσ
idn )

Next we focus on the coherence axioms. The unit permutation axiom (2.1.10) holds
since, for all ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), and f : ⟨a⟩ → b,

ηidn;f = (1f idn , E
idn
idn

) = (1f , 1idn) = 1(f,idn) = 1η(f).

Let ⟨a⟩, b and f be as before, the product permutation axiom (2.1.11) holds
again by definition. Indeed, for τ, σ ∈ Σn, we have

ηστ ;f = (1fστ , E
στ
id ) = (1fστ , E

στ
τ ) ◦ (1fστ , Eτ

idn
) = (ησ;fτ) ◦ ητ ;fσ.

For Top Equivariance (2.1.12), suppose that c ∈ Ob(M), n ≥ 1, ⟨b⟩ = ⟨bj⟩nj=1 ∈
Ob(M)n, kj ≥ 0 for 1 ≤ j ≤ n, ⟨aj⟩ = ⟨aj,i⟩

kj
i=1 ∈ Ob(M)kj for 1 ≤ j ≤ n, σ ∈ Σn,

f ∈ Ob(M(⟨b⟩; c)), and gj ∈ Ob(M(⟨aj⟩; bj)). We have that

γ(ησ;f ; ⟨1i(gσ(j))⟩) = γ((1fσ, E
σ
id); ⟨(1gσ(j)

, 1idkσ(j)
)⟩)

=
(
(γ(1fσ; 1gσ(j)

), γ
(
Eσ

id;E
idkσ(j)

idkσ(j)

))
=

(
1γ(f ;⟨gσ(j)⟩), E

σ⟨idkσ(j)
⟩

id⟨idkσ(j)
⟩

)
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=

(
1γ(f ;⟨gj⟩)σ⟨idkσ(j)

⟩, E
σ⟨idkσ(j)

⟩
idk

)
= ησ⟨idkσ(j)

⟩;γ(f ;⟨gj⟩).

For Bottom Equivariance, let c, n, ⟨b⟩, kj for 1 ≤ j ≤ n, ⟨aj⟩ for 1 ≤ j ≤ n, f and
gj be as above and let τj ∈ Σkj for 1 ≤ j ≤ n. We also let k =

∑n
j=1 kj. Bottom

Equivariance (2.1.13) for i is

γ
(
1if ; ⟨ητj ;gj⟩

)
= γ

(
(1f , 1idn); ⟨(1gjτj , E

τj
idkj

)⟩
)

=
(
γ(1f ; 1gjτj), 1idn⟨E

τj
idkj

⟩
)

=
(
1γ(f ;⟨gjτj⟩), E

idn⟨τj⟩
idk

)
=
(
1γ(f ;⟨gj⟩)idn⟨τj⟩, E

idn⟨τj⟩
idk

)
= ηid⟨τj⟩,γ(f ;⟨gj⟩).

Thus, we conclude that η : M → M×EΣ∗ is a pseudo symmetric Cat-multifunctor.
■

Recall that j : Cat-Multicat → Cat-Multicatps denotes the inclusion func-
tor. We are ready to present a proof of 1.0.1.

Theorem 2.2.3. Let M and N be a Cat-multicategories and F : M → N a
pseudo symmetric Cat-multifunctor. There exists a unique symmetric Cat-multifunctor
ϕ(F ) : M× EΣ∗ → N such that the following diagram commutes:

M× EΣ∗

M N .

jϕ(F )

F

ηM

That is, F = jϕ(F ) ◦ ηM in Cat-Multicatps.

Proof of Theorem 1.0.1. For uniqueness, suppose that ϕ(F ) : M × EΣ∗ → N is a
symmetric Cat-multifunctor satisfying F = (jϕ(F ))◦η. We will abuse notation and
write jϕ(F ) = ϕ(F ). We will prove there is a unique way of defining ϕ(F ). At the
level of the objects of the multicategory we must have ϕ(F )(a, ∗) = ϕ(F ) ◦ η(a) =

F (a) for each a ∈ Ob(M). Next, we show that there is a unique way of defining
each component functor of ϕ(F ). For this let ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), and
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consider the functor ϕ(F ) : M(⟨a⟩; b) × EΣn → N (⟨Fa⟩;Fb). If f : ⟨a⟩ → b is a
1-cell and σ ∈ Σn, we must have that

ϕ(F )(f, σ) = ϕ(F )((fσ−1, idn)σ)

= ϕ(F )((fσ−1, idn))σ

= ϕ(F ) ◦ η(fσ−1)σ

= F (fσ−1)σ, (2.2.1)

where in the second equality we used that ϕ(F ) is symmetric. So the values of the
component functors of ϕ(F ) on n-ary 1-cells are uniquely determined by F . In ex-
actly the same fashion, for ⟨a⟩, b and σ as before, f, g : ⟨a⟩ → b, and α : f → g a
2-cell,

ϕ(F )(α, 1σ) = F (ασ−1)σ. (2.2.2)

Finally, if f, σ are as before and τ ∈ Σn, we get that

ϕ(F )(1f , E
τ
σ) = ϕ(F )(1fσ−1σ,Eτσ−1

id σ)

= ϕ(F )((1fσ−1 , Eτσ−1

id ))σ

= ϕ(F )(ητσ−1;fτ−1)σ

= (ϕ(F ) ◦ ητσ−1;fτ−1)σ

= (Fτσ−1;fτ−1)σ. (2.2.3)

We have used the definition of composition of pseudo symmetric Cat-multifunctors
(2.1.14) where we see ϕ(F ) trivially as a pseudo symmetric functor. For ⟨a⟩, b, f, g,
α, σ, and τ as before, we can write the morphism (α : f → g, Eτ

σ) in M(⟨a⟩; b) × Σn

as (1y, E
τ
σ) ◦ (f, 1σ). Since both ϕ(F )(1y, Eτ

σ) and ϕ(F )(f, 1σ) are uniquely deter-
mined by F , we conclude that the component functors of ϕ(F ) are uniquely deter-
mined. We have proven the uniqueness of ϕ(F ).
Next we prove the existence of ϕ(F ). By uniqueness, we have no choice but to de-
fine ϕ(F )(b, ∗) = Fb for any b ∈ Ob(M). Likewise, for ⟨a⟩ ∈ Ob(M)n and b ∈
Ob(M), uniqueness forces the definition of the component functor ϕ(F ) : M(⟨a⟩; b)×
Σn → N (⟨Fa⟩; b). For f : ⟨a⟩ → b, a 1-cell in M(⟨a⟩; b) and σ ∈ Σn we define

ϕ(F )(f, σ) = F (fσ−1)σ (2.2.4)

as in (2.2.1). For a 2-cell α : f → g in M(⟨a⟩; b)(f, g), we define

ϕ(F )(α, 1σ) = F (ασ−1)σ (2.2.5)
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as in (2.2.2). For τ ∈ Σn we define

ϕ(F )(1f , E
τ
σ) = (Fτσ−1;fτ−1)σ (2.2.6)

as in (2.2.3).
We still have to prove that ϕ(F ) : M(⟨a⟩; b)×Σn is well defined and extend our def-
inition to all 2-cells. Notice that for a 1-cell f : ⟨a⟩ → b our definition is ambiguous
for the identity arrow (1f , 1σ) since both (2.2.5) and (2.2.6) apply. However, ϕ(F )
is well defined in this case since F is a functor componentwise and so, it preserves
identities. Explicitly,

F (1fσ
−1)σ = F (1fσ−1)σ = 1F (fσ−1)σ = 1F (fσ−1)σ,

and

(Fσσ−1,fσ−1)σ = Fidn,fσ−1σ = 1F (fσ−1)σ = 1F (fσ−1)σ.

So, our definition is so far unambiguous and ϕ(F ) preserves identities. We go
on to extend the definition of ϕ(F ) to the rest of the arrows. For α : f → g 2-cell in
M(⟨a⟩, b) and σ, τ in Σn, we define ϕ(F )(α,Eτ

σ) : F (fσ
−1)σ → F (gτ−1)τ by

ϕ(F )(α,Eτ
σ) =ϕ(F )(1g, E

τ
σ) ◦ ϕ(F )(α, 1σ)

=ϕ(F )(α, 1τ ) ◦ ϕ(F )(1f , Eτ
σ). (2.2.7)

The last equality together with the preservation of identities already proven implies
that our definition is unambiguous. This equality holds since,

ϕ(F )(1g, E
τ
σ) ◦ ϕ(F )(α, 1σ) = (Fτσ−1;gτ−1)σ ◦ F (ασ−1)σ

=
(
Fτσ−1;gτ−1 ◦ F (ασ−1)

)
σ

=
(
F (ατ−1)τσ−1 ◦ Fτσ−1;fτ−1

)
σ

= F (ατ−1)τ ◦ (Fτσ−1;fτ−1)σ

= ϕ(F )(α, 1τ ) ◦ ϕ(F )(1f , Eτ
σ).

The third equality holds since it is precisely the commutativity of the following dia-
gram:

F (fτ−1τσ−1) F (fτ−1)τσ−1

F (gτ−1τσ−1) F (gτ−1)τσ−1.

Fτσ−1;fτ−1

F (ατ−1τσ−1) (Fατ−1)τσ−1

Fτσ−1;gτ−1

(2.2.8)
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This diagram commutes since it is an instance of the pseudo symmetry naturality
coherence axiom for F, (2.1.9). Next, we check that the defined assignments give
a functor ϕ(F ) : M(⟨a⟩; b) × EΣn → N (⟨Fa⟩; b). The fact that ϕ(F ) preserves
identities was already proven. We prove functoriality in the second variable first.
For f : ⟨a⟩ → b 1-cell, σ, τ, and ρ in Σn,

ϕ(F )(1f , E
ρ
τ ) ◦ ϕ(F )(1f , Eτ

σ) = (Fρτ−1;fρ−1τ) ◦ (Fτσ−1;fτ−1σ)

=
(
(Fρτ−1;fρ−1) τσ−1 ◦ Fτσ−1;fτ−1

)
σ

= (Fρσ−1;fρ−1)σ

= ϕ(F )(1f , E
ρ
σ). (2.2.9)

Here the third equality holds by (2.1.11), which implies the commutativity of the
following diagram:

F (fρ−1ρτ−1)τσ−1

F (fρ−1ρτ−1τσ−1) F (fρ−1)ρτ−1τσ−1.

(Fρτ−1;fρ−1 )τσ−1Fτσ−1;fρ−1ρτ−1

Fρτ−1τσ−1;fρ−1

(2.2.10)

On the other hand, if α : f → g and β : g → h are 2-cells in M(⟨a⟩; b), and σ ∈ Σn

we have that

ϕ(F )(β, 1σ) ◦ ϕ(F )(α, 1σ) = ϕ(F )(βα, 1σ). (2.2.11)

The functoriality of ϕ(F ) follows from a straightforward argument by eqs. (2.2.9)
and (2.2.11) together with the exchange property (2.2.7).
The next step is to prove that the component functors give rise to a symmetric
Cat-multifunctor ϕ(F ) : M × EΣ∗ → N . First, notice that ϕ(F ) preserves units
since, for a ∈ Ob(M) ϕ(F )(1a, id1) = F (1aid−1

1 )id1 = F (1a) = 1Fa, since F it-
self preserves units. Next we prove that ϕ(F ) preserves the Σn-action. For n ≥ 0,

⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), and σ ∈ Σn, we show that the following diagram
commutes in Cat :

M(⟨a⟩; b)× EΣn
ϕ(F ) //

σ

��

N (⟨Fa⟩;Fb)
σ

��
M(⟨aj⟩σ; b)× EΣn

ϕ(F )
// N (⟨Fa⟩σ;Fb).
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For this we don’t need any of the pseudo symmetry axioms for F. For 1-cells (f : ⟨a⟩ →
b, τ) of M(⟨a⟩; b)× EΣn,

ϕ(F )(f, τ)σ = (F (fτ−1)τ)σ

= F (fτ−1)τσ

= F (fσ(τσ)−1)τσ

= ϕ(F )((fσ, τσ)))

= ϕ(F )((f, τ)σ).

A similar calculation works for 2-cells of the form (α : f → g, 1τ ) in M(⟨a⟩; b) ×
EΣn. For morphisms of the form (1f , E

ρ
τ ) in M(⟨a⟩; b)× EΣn,

(ϕ(F )(1f , E
ρ
τ ))σ = (Fρτ−1;fρ−1τ)σ

= Fρτ−1;fρ−1(τσ)

= Fρσ(τσ)−1;fσ(ρσ)−1(τσ)

= ϕ(F )(1fσ, E
ρσ
τσ)

= ϕ(F )((1f , E
ρ
τ )σ).

By functoriality of ϕ(F ) and σ we conclude that ϕ(F ) preserves the action of the
symmetric group.
The only step we are missing to finish proving that ϕ(F ) defines a Cat-multifunctor
is the preservation of γ. Let c ∈ Ob(M), n ≥ 0, ⟨b⟩ ∈ Ob(M)n, kj ≥ 0 for
1 ≤ j ≤ n, ⟨aj⟩ = ⟨aj,i⟩

kj
i=1 for 1 ≤ j ≤ n. Set k =

∑n
j=1 kj. As usual ⟨a⟩ =

⟨aj⟩ = ⟨⟨aj,i⟩
kj
i=1⟩nj=1 denotes the concatenation of the aj’s. We will prove that the

following square is commutative:

M(⟨b⟩; c)× EΣn ×
∏n

j=1 M(⟨aj⟩; bj)× EΣkj
N (⟨Fb⟩;Fc)×

∏n
j=1 N (⟨Faj⟩;Fbj)

M(⟨a⟩; c)× E(Σk) N (⟨Fa⟩;Fc).

ϕ(F )×
∏
ϕ(F )

γ γ

ϕ(F )

(2.2.12)

The commutativity of this diagram at the level of 1-cells will follow from top
and bottom equivariance for M and Σ∗, as well as the fact that F preserves γ. Let
f : ⟨b⟩ → c, σ ∈ Σn, and gj : ⟨aj⟩ → bj and τj ∈ Σkj for 1 ≤ j ≤ n. We have that

γ(ϕ(F )(f, σ), ⟨ϕ(F )(gj, τj)⟩) = γ(F (fσ−1)σ, ⟨F (gjτ−1
j )τj⟩)
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= γ
(
(F (fσ−1),

〈
F
(
gσ−1(j)τ

−1
σ−1(j)

)〉)
σ⟨τj⟩

= F
(
γ
(
fσ−1,

〈
gσ−1(j)τ

−1
σ−1(j)

〉))
σ⟨τj⟩

= F
(
γ(f, ⟨gj⟩)(σ⟨τj⟩)−1

)
σ⟨τj⟩

= ϕ(F )(γ(f, ⟨gj⟩), σ⟨τj⟩)

= ϕ(F )(γ((f, σ), ⟨gj, τj⟩)).

We have proven that our diagram is commutative at the level of 1-cells. For the
morphisms we will consider again morphisms that change the first variable only
and morphisms that change the second variable only separately.
For 2-cells that change the first variable only, the commutativity of our diagram
follows in the same way as it did for 1-cells. We consider two cases for 2-cells that
change the second variable. For 2-cells of the form ((1f , E

τ
σ), ⟨1gj , 1ρj⟩) where f : ⟨b⟩ →

c, σ, τ ∈ Σn, and gj ∈ Ob(M(⟨aj⟩; bj)) and ρj ∈ Σkj for 1 ≤ j ≤ n, we have that

γ
(
ϕ(F )(1f , E

τ
σ)
〈
ϕ(F )(1gj , 1ρj)

〉)
=γ
(
(Fτσ−1;fτ−1)σ,

〈
1F (gjρ

−1
j )ρj

〉)
=γ

(
Fτσ−1;fτ−1 ,

〈
1
F
(
gσ−1(j)ρ

−1

σ−1(j)

)〉)σ⟨ρj⟩
=F

τσ−1
〈

idk
σ−1(j)

〉
;γ

(
fτ−1

〈
gτ−1(j)ρ

−1

τ−1(j)

〉)σ⟨ρj⟩
=Fτ⟨ρj⟩(σ⟨ρj⟩)−1;γ(f,⟨gj⟩)(τ⟨ρj⟩)−1σ⟨ρj⟩

=ϕ(F )(1γ(f,⟨gj⟩), E
τ⟨ρj⟩
σ⟨ρj⟩)

=ϕ(F )(γ(1f , ⟨1gj⟩), γ(Eτ
σ , ⟨1ρj⟩)).

The above equalities follow from our definitions, top and bottom equivariance in
M,N , and EΣ∗ except the third equality which follows from top equivariance for
F (2.1.12). Next, let’s consider two cells of the form ((1f , 1σ), ⟨1gj , E

νj
ρj ⟩) where

f : ⟨b⟩ → c, σ ∈ Σn, and gj ∈ Ob(M(⟨aj⟩; bj)) and ρj, νj ∈ Σkj for 1 ≤ j ≤ n.
We get that

γ
(
ϕ(F )(1f , 1σ), ϕ(F )

〈
(1gj , E

νj
ρj
)
〉)

=γ
(
1F (fσ−1)σ,

(
Fνjρ−1

j ;gjν
−1
j

)
ρj

)
=γ

(
1F (fσ−1),

〈
Fνσ−1(j)ρ

−1

σ−1(j)
;gσ−1(j)ν

−1

σ−1(j)

〉)
σ⟨ρj⟩
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=F
idn

〈
νσ−1(j)ρ

−1

σ−1(j)

〉
;γ

(
fσ−1,

〈
gσ−1(j)ν

−1

σ−1(j)

〉)σ⟨ρj⟩
=Fσ⟨νj⟩(σ⟨ρj⟩)−1;γ(f,⟨gj⟩)(ρ⟨νj⟩)−1σ⟨ρj⟩

=ϕ(F )
(
1γ(f,⟨gj⟩),

〈
E
σ⟨νj⟩
σ⟨ρj⟩

〉)
=ϕ(F )

(
γ
(
(1f , 1σ),

〈(
1gj , E

νj
ρj

)〉))
.

The third equality above follows from the bottom equivariance axiom for F (2.1.13)
and the rest by our definitions as well as top and bottom equivariance for M,N ,

and EΣ∗.

By functoriality of γ and ϕ(F ), and since every morphism in the source category
can be written as a composite of arrows for which we already proved the commuta-
tivity of (2.2.12), we can conclude that the square (2.2.12) is commutative.
We are almost done, we just have to prove that our definition of ϕ(F ) gives us F =

ϕ(F ) ◦ η in Cat-Multicatps. This is clear for objects of the multicategory M. For
each n ≥ 0, ⟨a⟩ ∈ Ob(M)n, b ∈ Ob(M), and f : ⟨a⟩ → b,

ϕ(F ) ◦ η(f) = ϕ(F )(f, idn) = F (f id−1
n )idn = F (f).

Similarly for α : f → g a 2-cell in M(⟨a⟩; b). Finally, we just need to prove that
(ϕ(F ) ◦ η)σ,⟨ai⟩,b = Fσ,⟨ai⟩,b for any σ ∈ Σn. Let f : ⟨a⟩ → b be a 1-cell. Since ϕ(F ) is
symmetric,

(ϕ(F )η)σ;f = ϕ(F )(ησ;f ) = ϕ(F )(1fσ, Eidσ) = Fσ(id)−1;fσσ−1 = Fσ;f ,

where we have used the notation introduced just before (2.1.9). We have proven
that jϕ(F ) ◦ η = F . This finishes our proof. ■

Similarly, pseudo symmetric Cat-multinatural transformations between F and
G correspond to symmetric Cat-multinatural transformations between ϕ(F ) and
ϕ(G).

Lemma 2.2.4. Let M,N be Cat-multicategories with F,G : M → N pseudo sym-
metric Cat-multifunctors and θ : F → G a pseudo symmetric Cat-multinatural
transformation. There exists a unique symmetric Cat-multinatural transformation
ϕ(θ) : ϕ(F ) → ϕ(G) such that ϕ(θ) ∗ 1ηM = θ in Cat-Multicatps. That is, the
following pasting diagram equality holds in Cat-Multicatps :
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M N M N
=

M× EΣ∗ M× EΣ∗.

F

G
ηM

F

ηMϕ(G)

ϕ(F )

ϕ(G)

θ

ϕ(θ)

Proof. We prove uniqueness first. Suppose ϕ(θ) is a symmetric Cat-multinatural
transformation ϕ(θ) : ϕ(F ) → ϕ(G) such that ϕ(θ) ∗ 1η = θ. Any object of M×EΣ∗

takes the form (a, ∗) for some object a of M, with i(a) = (a, ∗). By definition,

θa = γ(ϕ(θ)ηa, ϕ(F )((1η)a)) = γ(ϕ(θ)ηa, 1Fa)) = ϕ(θ)ηa.

Since all objects of the Cat-multifunctor M× EΣ∗ are of the form ηa for some ob-
ject a of M, this is the only possible way of defining such Cat-multinatural trans-
formation ϕ(θ). Next, we check that by defining ϕ(θ)(a,∗) = θa for a ∈ Ob(M), we
in fact get a symmetric Cat-multinatural transformation ϕ(θ) : ϕ(F ) → ϕ(G). Let
n ≥ 0, ⟨a⟩ ∈ Ob(M)n, b ∈ (Ob(M)n), f : ⟨a⟩ → b, and σ ∈ Σn, then

γ(ϕ(G)(f, σ); ⟨ϕ(θ)(aj ,∗)⟩) = γ
(
G(fσ−1)σ;

〈
θaj
〉)

= γ
(
G(fσ−1);

〈
θaσ−1(j)

〉)
σ

= γ(θb;F (fσ
−1))σ

= γ(θb;F (fσ
−1)σ)

= γ
(
ϕ(θ)(b,∗), ϕ(F )(f, σ)

)
Where we have used top and bottom equivariance, as well as the Cat-multinaturality
of θ. Now we need to prove Cat-multinaturality of ϕ(θ) for 2-cells. As before, the
case where the 2-cell changes just the first variable is similar to what was done for
1-cells. Now, if ⟨a⟩, b, f are as before and Eτ

σ is a morphism in EΣn, (1f , E
τ
σ) is a

morphism in M(⟨a⟩; b)× EΣn, and

γ
(
ϕ(G)(1f , E

τ
σ);
〈
1ϕ(θ)(aj,∗)

〉)
= γ

(
(Gτσ−1;fτ−1)σ; ⟨1θaj ⟩

)
= γ

(
Gτσ−1;fτ−1 ;

〈
1θa

σ−1(j)

〉)
σ

= γ (1θb ;Fτσ−1;fτ−1)σ

= γ
(
1ϕ(θ)(b,∗) ;ϕ(F )(1f , E

τ
σ)
)
.

In the third equality we have used pseudo symmetric Cat-multinaturality for θ.
In conclusion, by componentwise functoriality of γ, ϕ(F ) and ϕ(G) we conclude
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that Cat-multinaturality holds for ϕ(θ) at the 2-cell level finishing the proof of the
lemma. ■

Furthermore, Theorem 2.2.3 and Lemma 2.2.4 together give the following iso-
morphism.

Corollary 2.2.5. If M,N are Cat multicategories, then there is an isomorphism
of small categories

Cat-Multicatps(M,N ) ∼= Cat-Multicat(M× EΣ∗,N ).

Proof. Recalling the definitions from the two previous results, we define

ϕ : Cat-Multicatps(M,N ) → Cat-Multicat(M× EΣ∗,M) (2.2.13)

for pseudo symmetric Cat-multifunctors as in Theorem 2.2.3 and for pseudo sym-
metric Cat-multinatural transformations as in Lemma 2.2.4.
It is immediate from the definitions that ϕ is a functor. Indeed, if α : F → G

and β : G → H are pseudo symmetric Cat-multinatural transformations with
F,G,H : M → N

ϕ(β ∗ α)(c,∗) = (β ∗ α)c = γ(βc, αc) = γ(ϕ(β)(c,∗), ϕ(α)(c,∗)) = (ϕ(β) ∗ ϕ(α))(c,∗)

We can define the inverse of ϕ, η∗, as the composite

Cat-Multicat(M× EΣ∗,N ) Cat-Multicatps(M× EΣ∗,N )

Cat-Multicatps(M,N ).

η∗

j

η∗M
(2.2.14)

Finally, the existence part of Theorem 2.2.3 and Lemma 2.2.4, implies that η∗ ◦ ϕ
is the identity of Cat-Multicatps(M,N ), while the uniqueness part of both results
implies that ϕ ◦ η∗ is the identity of Cat-Multicat(M× EΣ∗,N ). ■

The two previous results hint at the existence of a 2-adjunction between the
2-inclusion j : Cat-Multicat → Cat-Multicatps and the 2-functor which we define
next.

Definition 2.2.6. We define the 2-functor ψ : Cat-Multicatps → Cat-Multicat

as follows. For a Cat-multicategory M, ψM = M×EΣ∗. For M,N Cat-multicategories,
we define the component functor ψ as the composite
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Cat-Multicatps(M,N ) Cat-Multicatps(M,N × EΣ∗)

Cat-Multicat(M× EΣ∗,N × EΣ∗).

ηN∗

ψ
ϕ

Thus, by Theorem 2.2.3 if F : M → N is a pseudo symmetric Cat-multifunctor,
then ψF : M× EΣ∗ → N × EΣ∗ is the unique symmetric Cat-multifunctor which
makes the diagram

M M× EΣ∗

N N × EΣ∗

ηM

F jψF

ηN

(2.2.15)

commute in Cat-Multicatps. Similarly, by Lemma 2.2.4, for θ : F → G a pseudo
symmetric Cat-multinatural transformation between F,G : M → N pseudo sym-
metric Cat-multifunctors, ψθ : ψF → ψG is the unique symmetric Cat-multinatural
transformation such that the equality of pasting diagrams

M M× EΣ∗ M M× EΣ∗

=

N N × EΣ∗ N N × EΣ∗

GF

ηM

jψF

ηM

F jψGjψF

ηN ηN

θ jψθ (2.2.16)

holds in Cat-Multicatps.

Theorem 2.2.7. There is a 2-adjunction

Cat-Multicatps ⊥ Cat-Multicat

ψ

j

where j is the inclusion 2-functor.

Proof. Following Corollary 2.2.5, we define the unit of the adjunction as the strict
2-natural transformation η : 1Cat-Multicatps → jψ having component ηM at a Cat-
multicategory M. We also define the counit of the adjunction π : ψj → 1Cat-Multicat

as having component at a Cat-multicategory M the projection πM : M × EΣ∗ →
M.

The fact that η defines a strict 2-natural transformation follows directly from (2.2.15)
and (2.2.16). To prove that the data of π defines a strict 2-natural transformation
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we need to prove that given F : M → N symmetric Cat-multifunctor, the following
diagram commutes:

M× EΣ∗ M

N × EΣ∗ N .

πM

ψjF F

πN

Indeed, we prove that ψjF = F × 1EΣ∗ . By (2.2.15), it suffices to show that the
following diagram commutes in Cat-Multicatps:

M M× EΣ∗

N N × EΣ∗.

ηM

jF j(F×1)

ηN

(2.2.17)

It is clear that this diagram commutes at the level of objects, 1-cells, and 2-cells
of the multicategory. The pseudo symmetry isomorphisms of both composites also
agree. Indeed, for f : ⟨a⟩ → b a 1-cell of M and σ ∈ Σn, by (2.1.14), we get that

(j(F × 1)ηM)σ;f =j(F × 1)σ;ηM(f) ◦ j(F × 1)(ηMσ;f )

= (1(Ff)σ, 1σ) ◦ (1(Ff)σ, Eσ
id)

= (1(Ff)σ, E
σ
id) ◦ (1(Ff)σ, 1σ)

= ηN σ;Ff ◦ ηN (jFσ;f )

= (ηN ◦ jF )σ;f .

To finish proving the 2-naturality of πM, we need to prove that given M,N Cat-
multicategories, F,G : M → N Cat-multifunctors and a Cat-multinatural transfor-
mation θ : F → G, the following equality of pasting diagrams holds in Cat-Multicat:

M× EΣ∗ M M× EΣ∗ M

=

N × EΣ∗ N N × EΣ∗ N .

j(G×1)j(F×1)

πM

G

πM

j(F×1) GF

πN πN

ψjθ θ

In turn, the last equality of pasting diagrams holds since ψjθ = j(θ × 1). To
see this, by (2.2.16), we must show the following equality of pasting diagrams in
Cat-Multicatps :

M M× EΣ∗ M M× EΣ∗

=

N N × EΣ∗ N N × EΣ∗.

jGjF

ηM

j(G×1)

ηM

jF j(G×1)j(F×1)

ηN

ηN

jθ j(θ×1) (2.2.18)
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To check that this equality holds let a ∈ Ob(M). We get, by (2.1.8), that

(1ηN ∗ jθ)a = γ
(
1ηN (jGa); ηN (θa)

)
= γ ((1Ga, 1id); (θa, 1id))

= γ ((θa, 1id); (1Fa, 1id))

= γ
(
j(θ × 1)ηN (a); j(F × 1)(1ηM(a))

)
= (j(θ × 1) ∗ ηM)a.

Thus, η and π are strict 2-natural transformations and we just need to prove that
they satisfy the triangle identities. To prove that the identity (1j ∗ π)(η ∗ 1j) = 1j

holds we need to prove that for M a Cat-multicategory the diagram

M× EΣ∗

M M

jπMηM

1M

commutes in Cat-Multicatps. This is clear at the level of objects, n-ary 1-cells
and n-ary 2-cells. The pseudo symmetry isomorphisms of both pseudo symmetric
Cat-multifunctors also agree since, for f : ⟨a⟩ → b an n-ary 1-cell of M and σ ∈
Σn, we obtain, by (2.1.14),

((jπM) ◦ ηM)σ;f = (jπM)σ;ηM(f) ◦ jπM(ηMσ;f ) = 1fσ = 1Mσ;f .

The other triangle identity is (π ∗ 1ψ)(1ψ ∗ η) = 1ψ. To check it, we must prove that,
given a Cat-multicategory M, the composite

M× EΣ∗ M× EΣ∗ × EΣ∗ M× EΣ∗
ψηM πM×EΣ∗

agrees with 1M×EΣ∗ . This holds since, if ∆: EΣ∗ → EΣ∗ × EΣ∗ denotes the diago-
nal map, then ψ(ηM) = 1M × ∆. To see this, notice that by (2.2.15) all we need is
to prove that the following diagram is commutative:

M M× EΣ∗

M× EΣ∗ M× EΣ∗ × EΣ∗.

ηM

ηM j(1×∆)

ηM×EΣ∗

(2.2.19)

Now, the previous diagram is evidently commutative at the level of objects, 1-cells,
and 2-cells. The diagram also commutes at the level of pseudo symmetry isomor-
phisms since, for f : ⟨a⟩ → b an n-ary 1-cell in M and σ ∈ Σn,

(ηM×EΣ∗ ◦ ηM)σ;f = ηM×EΣ∗σ;ηM(f) ◦ ηM×EΣ∗(ηMσ;f )
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= (1fσ, 1σ, E
σ
id) ◦ (1fσ, Eσ

id, 1id)

= (1fσ, 1σ, 1σ) ◦ (1fσ, Eσ
id, E

σ
id)

= j(1×∆)σ;ηM(f) ◦ j(1×∆)(ηMσ;f )

= (j(1×∆) ◦ ηM)σ;f .

We conclude that the triangle identities are satisfied and thus we get the desired
2-adjunction. ■

We can use this 2-adjunction to describe the 2-category Cat-Multicatps in
terms of symmetric Cat-multifunctors and symmetric Cat-multinatural transfor-
mations alone, thus upgrading the functors ϕ from Corollary 2.2.5 to an isomor-
phism of 2-categories.

Definition 2.2.8. The 2-category D has Cat-multicategories as objects. For M,N
Cat-multicategories, the category of morphisms between M and N is

D(M,N ) = Cat-Multicat(M× EΣ∗,N ).

In particular, vertical composition of 2-cells is defined as in Cat-Multicat. For
F : M × EΣ∗ → N and G : N × EΣ∗ → Q symmetric Cat-multifunctors, the
composition G ◦ F is defined as the composite

M× EΣ∗ M× EΣ∗ × EΣ∗ N × EΣ∗ Q1×∆ F×1 G

in Cat-Multicat. Similarly, for F, J : M × EΣ∗ → N , G,K : N × EΣ∗ → Q
symmetric Cat-multifunctors and θ : F → J, ζ : G → K Cat-multinatural transfor-
mations, ζ ∗ θ is defined as the pasting

M× EΣ∗ M× EΣ∗ × EΣ∗ N × EΣ∗ Q1×∆

F×1

J×1

G

K

θ×1 ζ

in Cat-Multicat.

The previous definition makes D into a 2-category and the functors ϕ, and η∗

from Corollary 2.2.5 into the components of isomorphisms of 2-categories.

Theorem 2.2.9. The data of the previous definition defines a 2-category D iso-
morphic to Cat-Multicatps.
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Proof. The (horizontal) composition functors are defined so that ϕ and η∗ become
the componentwise functors of a 2-category isomorphism between D and Cat-
Multicatps. More precisely, for M,N and Q Cat-multicategories, we will prove
that the D composition functor defined, ◦′ : D(N ,Q) × D(M,N ) → D(M,Q),

makes the following diagram commute, where ◦ denotes the horizontal composition
functor of Cat-Multicatps :

D(N ,Q)×D(M,N ) D(M,Q)

Cat-Multicatps(N ,Q)×Cat-Multicatps(M,N ) Cat-Multicatps(M,Q).

◦′

η∗×η∗

◦

ϕ

(2.2.20)
Let G : N × Q and F : M × EΣ∗ → N be symmetric Cat-multifunctors. The
commutativity of (2.2.20) for (G,F ) reduces to the commutativity of the following
diagram by Theorem 2.2.3:

M M× EΣ∗

M× EΣ∗ M× EΣ∗ × EΣ∗

N N × EΣ∗ Q.

ηM

ηM j(1×∆)

ηM×EΣ∗

jF j(F×1)

ηN jG

This diagram in turn is commutative by (2.2.17) and (2.2.19). Now, if F,G are as
before, J : M× EΣ∗ and K : N × EΣ∗ → Q are symmetric Cat-multifunctors, and
θ : F → J, ζ : G → K are Cat-multinatural transformations, by Lemma 2.2.4, the
commutativity of (2.2.20) for (ζ, θ) reduces to the equality of pasting diagrams:

M M× EΣ∗ M M× EΣ∗

M× EΣ∗ M× EΣ∗ × EΣ∗ = M× EΣ∗ M× EΣ∗ × EΣ∗

N N × EΣ∗ N N × EΣ∗

Q Q.

ηM

ηM j(1×∆) ηM

ηM

j(1×∆)

ηM×EΣ∗

jF j(F×1) j(J×1)

ηM×EΣ∗

jF jJ j(J×1)

ηN

jG jK

ηN

jG jK

j(θ×1) jθ

jζ jζ
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This equality holds by (2.2.18) and makes implicit use of (2.2.17) and (2.2.19). We
can thus define ϕ : Cat-Multicatps → D in objects as the identity map, and do
the same for η∗ : D → Cat-Multicatps, with the component functors given for
M and N multicategories by (2.2.13) and (2.2.14) respectively. By (2.2.20) and
the fact that ϕ and η∗ are componentwise isomorphisms, ϕ and η preserve vertical
composition of 2-cells and horizontal composition of 1-cells and 2-cells. The fact
that Cat-Multicatps is a 2-category implies that D is a 2-category. This further
turns ϕ and η∗ into isomorphisms of 2-categories. ■

2.3 Applications to inverse K-heory

We use our understanding of pseudo symmetric Cat-multifunctors to show
that they preserve certain En-algebras for n = 1, 2, 3, ...,∞. First we define En
Cat-operads.

Definition 2.3.1. For n = 1, ...,∞, an En Cat-operad is a Cat-operad that be-
comes a topological En-operad (in the sense of [May72]) after applying the classify-
ing space functor. A topological En-operad is one that has the same Σ-equivariant
homotopy type as the little n-cubes operad.

Example 2.3.2. An example of an E∞ Cat-operad is EΣ∗. There are also ex-
amples of En Cat-operads for each n = 1, 2, . . . in [Ber96] and [BFSV03], which
furthermore have a free action of the symmetric group. Importantly, symmetric
algebras over topological En-operads are grouplike n-fold loop spaces. Symmetric
algebras over the En Cat-operads in [BFSV03] are n-fold monoidal categories, with
the group completion of the classifying space of an n-monoidal category being an
example of an n-fold loop space.

Definition 2.3.3. Let M be a Cat-multicategory and O a Cat-operad. A pseudo
symmetric algebra in M over O is a pseudo symmetric Cat-multifunctor O → M.

For n ∈ {1, 2, . . . ,∞}, a symmetric En-algebra (respectively a pseudo symmetric
En-algebra) in M is a symmetric algebra (respectively a pseudo symmetric algebra)
over an En-operad.

Lemma 2.3.4. .

1. Let O be a Σ-free En Cat-operad. Then O × EΣ∗ is an En Cat-operad.
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2. Pseudo symmetric En-algebras over Σ-free En Cat-operads are symmetric
En-algebras for n = 1, 2, . . . ,∞.

Proof. Let O be a Σ-free Cat-operad. We will show that O × EΣ∗ is componen-
twise Σ-equivariantly homotopy equivalent to O (after taking nerves), that is, for
each n ≥ 0, we will show that the projection O(n) × EΣn → O(n) induces a Σn

equivariant homotopy equivalence on classifying spaces. Since B(O(n) × EΣn) and
B(O(n)) are Σn-CW complexes we must show that for subgroups H ≤ Σn, the pro-
jection induces homotopy equivalences B (O(n)× Σn)

H → B (O(n)× Σn)
H . Since

the action of Σn on both O(n)×EΣn and O(n) is free, the fixed point map is either
empty when H is non-trivial or the projection B (O(n)) × B (EΣn) → B (O(n)) ,

which is a homotopy equivalence since B (EΣn) is contractible. ■

Example 2.3.5. If O is Cat-operad and M is a Cat-multicategory, the pseudo
symmetric algebras over O agree with symmetric algebras over the operad O×EΣ∗.

For example, while algebras over the commutative operad {∗} in M are the com-
mutative monoids in M, pseudo symmetric algebras over {∗} in M are precisely
algebras over the Barratt-Eccles operad and thus, E∞-algebras. Similarly, pseudo
symmetric algebras over the E∞ Cat-operad EΣ∗, which are defined in [Yau24b] as
pseudo symmetric E∞-algebras in M, are algebras over EΣ∗ × EΣ∗ = E(Σ∗ × Σ∗)

which is still an E∞ Cat-operad, and thus, they are still E∞-algebras in the sense
defined above. Thus, we have the following result.

Remark 2.3.6. We remind the reader that Σ-freedom is not a serious restriction
since there are En-operads in Cat, like those in [Ber96] and [BFSV03] which are
free. As a corollary, we conclude that pseudo symmetric Cat-multifunctors preserve
certain En-algebras.

Corollary 2.3.7. Let M and N be Cat-multicategories and F : M → N be a
pseudo symmetric Cat-multifunctor, then:

1. F sends commutative monoids in M to E∞-algebras in N .

2. F preserves En-algebras parameterized by free Cat-operads.

We conclude our paper by applying our understanding of pseudo symmetric
Cat-multifunctors to multifunctorial inverse K-theory. In [JY22], Johnson and Yau
define Mandell’s inverse K-theory multifunctor P as well as the Cat-multicategories
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that are its domain (Γ-categories) and target (permutative categories). Yau proves
in [Yau24b] that P is pseudo symmetric. We refer the interested reader [Yau24b] of
which the following theorem is one of the main results.

Theorem 2.3.8. [Yau24b] Mandell’s inverse K-theory functor is a pseudo symmet-
ric Cat-multifunctor P : Γ-Cat → PermCatsg.

As a consequence, P sends commutative monoids to E∞-algebras and preserves
En-algebras parameterized by free En-operads, as was stated in Corollary 1.0.2.
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CHAPTER 3

COHERENCE FOR SYMMETRIC PSEUDO COMMUTATIVE MONADS

We will prove a coherence result for symmetric, pseudo commutative, strong
2-monads. In this Chapter, we assume that K is a 2-category with finite products
which we will denote by ×, with 1 denoting the empty product in K. We will by
ρ : 1 × − → 1K and λ : − × 1 → 1K the natural isomorphisms comming from the
monoidal structure in K induced by products. As Hyland and Power, we believe
what we do to work as well in a symmetric monoidal 2-category in general.

In Section 3.1, we define pseudo commutative, strong 2-monads T : → K fol-
lowing [HP02]. We also define the multicategory T -Alg when T is symmetric. This
allows us to extend the free T -algebra 2-functor T : K → K to a non-symmetric
multifunctor T : K → T -Alg in Section 3.2. We finish by proving that this mul-
tifunctor is pseudo symmetric in Section 3.3. This implies that the free functor for
each of the pseudo commutative operads defined in [GMMO23] and also considered
in [Yau24a] is pseudo symmetric.

3.1 Symmetric pseudo commutative 2-monads

Definition 3.1.1. [Koc70] Suppose that T : K → K is a 2-functor. A strength t on
T is the data of a (strict) 2-natural transformation (see [YJ21]) with source

K ×K K ×K K,1K×T ×

and target

K ×K K K.× T

The component of t at (A,B) ∈ Ob(K × K), will be denoted by tA,B : A × TB →
T (A× B) or just t when there is no room for confusion. These data are required to
satisfy the following axioms:

• Unity: the triangle

1× TA T (1× A)

TA.
λ

t1,A

Tλ
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commutes for all A ∈ Ob(K).

• Associativity: the triangle

A×B × TC A× T (B × C)

T (A×B × C)

tA×B,C

1A×tB,C

tA,B×C

commutes for every A,B ∈ Ob(K).

In this case we say that T : K → K is strong with strength t.

Remark 3.1.2. Suppose that T : K → K is a strong 2-functor. The following no-
tation is introduced in [HP02]. For n ≥ 2, tni will denote the natural isomorphism
having as component at (A1, . . . , An) ∈ Ob(Kn), the 1-cell

A1 × · · · × Ai−1 × TAi × Ai+1 × · · · × An T (A1 · · · × An)

A1 × · · · × Ai−1 × Ai+1 × · · · × An × TAi T (A1 × · · · × An × Ai).

∼=

tni A1,...,An

t

T∼=

We will denote tni A1,...,An
= ti when there is no room for confusion. Notice that

t = t22. In [HP02], t21 is also called t∗. We will write our arrows in terms of t21 and t22
when possible. We notice that the associativity axiom implies that tni can be writ-
ten in many different ways using the tki for k < n. For example, one can prove by
induction that the triangle

A1 × · · · ×Ai−1 × TAi ×Ai+1 × · · · ×An A1 × · · · ×Ai−1 × T (Ai × · · · ×An)

T (A1 × · · · ×An)

1A1×···×Ai−1
×t1

tni A1,...,An

t2

commutes, as well as the triangle

A1 × · · · ×Ai−1 × TAi ×Ai+1 × · · · ×An T (A1 × · · · ×Ai)×Ai+1 · · · ×An

T (A1 × · · · ×An).

t2×1Ai+1×···×An

tni A1,...,An

t1
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Definition 3.1.3. Let (T : K → K, η : 1K → T, µ : T 2 → T ) be a 2-monad. That
is, T is a strict 2-functor and η, µ are strict 2-natural transformations satisfying the
usual triangle identities (see [YJ21]). We say that (T, η, µ, t) is a strong 2-monad
with strength t, if T : K → K is strong with strength t as a 2-functor and η, µ and t
are compatible in the sense that, for every A,B ∈ Ob(K), the diagram

A×B A× TB

T (A×B)

1×η

η t

commutes, as well as the diagram

A× T 2B A× TB

T (A× TB) T 2(A×B) T (A×B).

t

1×µ

t

T t µ

Definition 3.1.4. [Koc70] A strong 2-monad (T, η, µ) is called commutative when
the diagram

TA× TB T (A× TB) T 2(A×B)

T (TA×B) T 2(A×B) T (A×B)

t2

t1 Tt2

µ

Tt1 µ

commutes for every A,B ∈ Ob(K).

Remark 3.1.5. Suppose that (T, η, µ, t) is a strong 2-monad. Then, T can be re-
garded as a monoidal 2-functor in two different ways. In each case, the unitary
component is given by η1 : 1 → T1. The binary components are given by the two
1-cells that form the boundary of the previous diagram. For each of these ways of
seeing T as a monoidal 2-functor, η is a monoidal 2-natural transformation. It is
proven in [Koc70] that T is commutative if and only if T is a monoidal 2-monad
(i.e., µ is a monoidal 2-natural transformation).
There are a lot of examples of strong 2-monads which are non-commutative, but
that are commutative up to coherent natural isomorphism, these are called pseudo
commutative monads and we will defined them next. The examples include the 2-
monads T : Cat → Cat given by the free construction for symmetric stric monoidal
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categories, symmetric monoidal categories, categories with finite products, cate-
gories with finite coproducts, etc. A longer list is included in [HP02]. More ex-
amples come from pseudo commutative operads as defined by Corner and Gurski
[CG23]. These are operads whose associated monads are pseudo commutative.
Guillou, Merling, May and Osorno [GMMO23] prove that chaotic operads are pseudo
commutative.

Definition 3.1.6. [HP02, Def. 5] A strong 2-monad (T, η, µ) is called pseudo-
commutative with pseudocommutativity Γ if there exists an invertible modification
with components

TA× TB T (A× TB) T 2(A×B)

T (TA×B) T 2(A×B) T (A×B)

t2

t1 Tt2

µ

Tt1 µ
ΓA,B

such that the following axioms are satisfied. We will write Γ instead of ΓA,B when
A and B are clear from the context.

1. ΓA×B,C ◦ (t2A,B × 1TC) = t2A,B×C ◦ (1A × ΓB,C), i.e., the following pasting
diagram equality holds:

A× TB × TC T (A×B)× TC T (A×B × C)

∥

A× TB × TC A× T (B × C) T (A×B × C).

t2×1

ω

A

A

A

t2

Γ

1×Γ

(3.1.1)

2. ΓA,B×C ◦ (1TA × t2B,C) = ΓA×B,C ◦ (t1A,B × 1TC), i.e., the following equality
holds:

TA×B × TC TA× T (B × C) T (A×B × C)

∥

TA×B × TC T (A×B)× TC T (A×B × C).

1×t2

ω

A

t1×1

ω

A

Γ

Γ

(3.1.2)
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3. ΓA,B×C ◦ (1TA × t1B,C) = t1A×B,C ◦ (ΓA,B × 1C), i.e., the following whiskering
equality holds:

TA× TB × C TA× T (B × C) T (A×B × C)

∥

TA× TB × C T (A×B)× C T (A×B × C).

1×t1

ω

A

A

A

t1

Γ

Γ×1

(3.1.3)

4. ΓA,B ◦ (ηA × 1TB) is an identity 2-cell. That is, the following whiskering is an
identity:

A× TB TA× TB T (A×B).
η×1

ω

A

Γ

(3.1.4)

5. ΓA,B ◦ (1TA × ηB) is an identity 2-cell, that is, the following whiskering is an
identity:

TA×B TA× TB T (A×B).
1×η

ω

A

Γ

(3.1.5)

6. The whiskering

T 2A× TB TA× TB T (A×B)
µ×1

ω

A

Γ

is equal to the pasting
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T 2A× TB T (TA× TB) T 2(A× TB) T 3(A×B)

T (T 2A×B) T 2(TA×B) T 3(A×B) T 2(A×B)

T 2(TA×B) T (TA×B) T 2(A×B) T (A×B).

t2

t1

Tt2

Tt1 T 2t2

Tµ

Tt1 µ

T 2t1

µ

Tµ

µ

µ Tt1 µ

TΓ

Γ

(3.1.6)

7. The whiskering

TA× T 2B TA× TB T (A×B)
1×µ

ω

A

Γ

is equal to the pasting

TA× T 2B T (A× T 2B) T 2(A× TB)

T (TA× TB) T 2(A× TB) T (A× TB)

T 2(TA×B) T 3(A×B) T 2(A×B)

T 3(A×B) T 2(A×B) T (A×B)

t2

t1 Tt2

µ

Tt2

Tt1

T 2t2

µ

Tt2

T 2t1 Tµ

µ

µ

Tµ µ

Γ

TΓ

(3.1.7)

Remark 3.1.7. The fact that the source and target of the equal whiskering and
pasting diagrams in the previous list of axioms are the same follows from the defi-
nition of 2-strong monad. In other words, the pseudo commutativity axioms don’t
introduce new relations among 1-cells.
A modification is more than a mere collection of 2-cells (see [JY22]). For Γ to be
a modification we need that given f : A → A′ and g : B → B′ in K, the following
equality of pasting diagrams holds:
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TA× TB TA′ × TB′ TA× TB TA′ × TB′

T (A× TB) T (A′ × TB′) T (TA′ ×B′) T (A× TB) T (TA×B) T (TA′ ×B′)

=

T 2(A×B) T 2(A′ ×B′) T 2(A′ ×B′) T 2(A×B) T 2(A×B) T 2(A′ ×B′)

T (A×B) T (A′ ×B′) T (A×B) T (A′ ×B′)

t1

Tf×Tg

t2t1 t1 t2

Tf×Tg

t2

Tt2

T (f×Tg)

Tt2 Tt1 Tt2

T (Tf×g)

Tt1 Tt1

µ

T 2(f×g)

µ µ

µ

T 2(f×g)

µ µ

T (f×g) T (f×g)

Γ Γ

Following Blackwell, Kelly and Power [BKP02], we now define ,for any 2-monad
T : K → K, the 2-category T -Alg of T -algebras and pseudo morphisms.

Definition 3.1.8. [BKP02, Def. 1.2] Let T : K → K be a 2-monad. The 2-category
T -Alg has strict T -algebras as 0-cells. A 1-cell f between T -algebras (A, a : TA →
A) and (B, b : TB → B), also called a strong morphism of T -algebras in [JY22],
consists of a 1-cell f : A→ B in K, together with an invertible 2-cell

TA TB

A B,

Tf

a b

f

f

subject to the following axioms.

1. The equality of pasting diagrams

T 2A T 2B T 2A T 2B

TA TB = TA TB

A B A B

µ

T 2f

µ Ta

T 2f

Tb

a

Tf

b a

Tf

b

f f

f

Tf

f

holds.

2. The following pasting diagram equals the identity of f : A→ B :
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A B

TA Tb

A B.

η

f

η

Tf

a b

f

f

A 2-cell in T -Alg between 1-cells (f, f̄), (g, ḡ) : A → B is a 2-cell α : f → g in K
such that the following diagram commmutes:

TA TB TA TB

=

A B A B.

a

Tf

Tg

b a

Tf

b

g

f

g

Tα

g

f

α

Hyland and Power [HP02] extend Blackwell, Kelly and Power’s 2-categorical
construction to provide a non symmetric Cat-multicategory whose underlying 2-
category is T -Alg. If T is a pseudo commutative 2-monad, the Cat-multicategory
T -Alg is symmetric. When K = Cat and T is accesible, Bourke proves [Bou02]
that the Cat-multicategory structure can be seen to arise from a monoidal bicate-
gory structure on T -Alg. Guillou, May, Merling and Osorno [GMMO23] specialize
this definition to define a multicategory O-Alg for O a pseudo commutative op-
erad. To be able to define the multicategory T -Alg, we need to prove a coherence
result.

Definition 3.1.9. Suppose T : K → K is a pseudo-commutative 2-monad, n ≥ 2

and 1 ≤ i < j ≤ n. We define a modification from µ ◦ Ttj ◦ ti to µ ◦ Tti ◦ tj
as follows. Suppose A1, . . . , An objects of K, we define the component 2-cell of our
modificiation in

K (A1 × · · · ×Ai−1 × TAi ×Ai+1 × · · · ×Aj−1 × TAj ×Aj+1 × · · · ×An, T (A1 × · · · ×An))

in the following way. In principle there are various ways of doing this. Consider a
partition K of the symbols A1, . . . , TAi, . . . , TAj, . . . , An into 4 subsets K1, K2, K3, K4

obtained by placing 3 bars in between symbols such that:

• K2 contains TAi, and
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• K3 contains TAj.

We will represent K in the following way:

· · · × · · ·︸ ︷︷ ︸
K1

| · · · × TAi × · · ·︸ ︷︷ ︸
K2

| · · · × TAj × · · ·︸ ︷︷ ︸
K3

| · · · × · · ·︸ ︷︷ ︸
K4

.

For such a partition K, we can define the 2-cell ΓKi,j as the whiskering

A1 × · · · × TAi × · · · × TAj × · · · × An

· · · × · · ·︸ ︷︷ ︸
K1

| · · · × TAi × · · ·︸ ︷︷ ︸
K2

| · · · × TAj × · · ·︸ ︷︷ ︸
K3

| · · · × · · ·︸ ︷︷ ︸
K4

· · · × · · · × T (· · · × Ai × · · · )× T (· · · × Aj × · · · )× · · · × · · ·

· · · × · · ·︸ ︷︷ ︸
K1

×T (· · · × Ai × · · · × Aj × · · · )× · · · × · · ·︸ ︷︷ ︸
K4

T (A1 × · · · × An).

=

1×t|K2|
i−|K1|

×t|K3|
j−|K1|−|K2|

×1

a a

tn|K1|+1

1×Γ×1

Example 3.1.10. For n = 3, i = 2, and j = 3, we have 2 possible partitions:

K = A1 | TA2 | TA3 |, and K ′ =| A1TA2 | TA3 | .

By (3.1.1), we get that ΓK2,3 = ΓK
′

2,3. For n = 3, i = 1 and j = 3, there are again two
partitions:

H =| TA1A2 | TA3 |, and H ′ =| TA1 | A2TA3 |,

and they induce the same 2-cell ΓH1,3 = ΓH
′

1,2 by (3.1.2). Similarly for n = 3, i = 1

and j = 2, we have the two partitions

J =| TA1 | TA2A3 |, and J ′ =| TA1 | TA2 | A3,

with ΓJ1,2 = ΓJ
′

1,2 by (3.1.3). In general, we have the following.

Theorem 3.1.11. [HP02, Thm. 5] Suppose (T, η, µ, t,Γ) is a pseudo commutative
strong 2-monad. The three strength axioms imply that given n ≥ 2, and 1 ≤ i < j ≤
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n, any two partitions K and K ′ as in Definition 3.1.9 induce the same 2-cell. That
is,

ΓKi,j = ΓK
′

i,j .

Proof. The previous example generalizes and will allow us to change our partition
without changing the induced 2-cell using three moves. Let K be a partition of
A1, . . . , TAi, . . . , TAj, . . . , An as in Definition 3.1.9. The following hold:

(i) If K1 ends by Ap, i.e.

K = · · · × · · · × Ap︸ ︷︷ ︸
K1

| × · · · × TAi × · · ·︸ ︷︷ ︸
K2

| · · · × TAj × · · ·︸ ︷︷ ︸
K3

| · · · × · · ·︸ ︷︷ ︸
K4

,

and K ′ is obtained from K by moving the first bar one spot to the left, i.e.

K ′ = · · · × · · · ×︸ ︷︷ ︸
K1

| Ap × · · · × TAi × · · ·︸ ︷︷ ︸
K′

2

| · · · × TAj × · · ·︸ ︷︷ ︸
K′

3

| · · · × · · ·︸ ︷︷ ︸
K4

,

then ΓKi,j = ΓK
′

i,j by (3.1.1).

(ii) If K2 ends by Ap, that is

K = · · · × · · ·︸ ︷︷ ︸
K1

| · · · × TAi × · · · × Ap︸ ︷︷ ︸
K2

| × · · · × TAj × · · ·︸ ︷︷ ︸
K3

| · · · × · · ·︸ ︷︷ ︸
K4

.

and K ′ is obtained from K by moving the second bar one spot to the left, i.e.,

K ′ = · · · × · · ·︸ ︷︷ ︸
K1

| · · · × TAi × · · ·×︸ ︷︷ ︸
K′

2

| Ap × · · · × TAj × · · ·︸ ︷︷ ︸
K′

3

| · · · × · · ·︸ ︷︷ ︸
K4

,

then ΓKi,j = ΓK
′

i,j by (3.1.2).

(iii) If K3 ends by Ap, i.e.,

K = · · · × · · ·︸ ︷︷ ︸
K1

| · · · × TAi × · · ·︸ ︷︷ ︸
K2

| · · · × TAj × · · · × Ap︸ ︷︷ ︸
K3

| × · · · × · · ·︸ ︷︷ ︸
K4

.

and K ′ is obtained from K by moving the third bar one spot to the left, i.e.

K ′ = · · · × · · ·︸ ︷︷ ︸
K1

| · · · × TAi × · · ·︸ ︷︷ ︸
K2

| · · · × TAj × · · ·×︸ ︷︷ ︸
K′

3

| Ap × · · ·︸ ︷︷ ︸
K′

4

,

then ΓKi,j = ΓK
′

i,j by (3.1.3).
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Finally, we notice that any partition K ′ can be obtained from the partition

K = A1 × · · · × Ai−1 | ×TAi × · · ·× | TAj × · · · × An |

by making some number of moves (i), (ii) and (iii), and so ΓKi,j = ΓK
′

i,j . ■

Definition 3.1.12. Let (T, η, µ, t,Γ) be a pseudo commutative, strong 2-monad,
n ≥ 2, 1 ≤ i < j ≤ n and A1, . . . , An objects of K we define the unique 2-cell in
the previous theorem as Γi,j. That is, if K is a partition as in Definition 3.1.9, then
Γi,j = ΓKi,j

Remark 3.1.13. To save some space in the following definitions we will denote the
product A1 × · · · × Ai−1 as A<i. When considering a product A1 × · · · × An we will
also write A>i = Ai+1 × · · · × An.

The 2-cell Γi,j defined in the previous theorem fits in the following diagram by the
µ axiom for strong monads in Definition 3.1.3:

T (A<j × TAj ×A>j) T 2(A1 × · · · ×An)

A<i × TAi × · · · × TAj ×A>j T (A1 × · · · ×An).

T (A<i × TAi ×A>i) T 2(A1 × · · · ×An)

Ttj

µ

tj

ti

Tti

µ

Γi,j

Next, we define the Cat-multicategory T -Alg, whose underlying 2-category is
T -Alg from Definition 3.1.8. In Definition 3.1.14 we define the 2-cells of T -Alg, in
Definition 3.1.15 we define the 2-cells in T -Alg, and in Definition 3.1.16 we define
the composition in T -Alg.

Definition 3.1.14. [HP02, Def. 10] Let (T, η, µ, t,Γ) be a pseudo commutative,
strong 2-monad. The n-ary 1-cells of the Cat-multicategory T -Alg are defined as
follows. When n = 0, and B is a T -algebra, we define the category T -Alg(−;B) as
K(1, B).
Suppose that (Ai, ai : TAi → Ai) for 1 ≤ i ≤ n and (B, b : TB → B) are T -
algebras. An n-ary 1-cell of T -Alg, ⟨A1 × · · · × An⟩ → B is the data of a 1-cell
h : A1 × · · · × An → B in K, together with 2-cells hi for 1 ≤ i ≤ n fitting in the
square:

57



A<i × TAi × A>i T (A1 × · · · × An) TB

A1 × · · · × An B.

1×ai×1

ti Th

b

h

hi

These data have to satisfy the following axioms.
• η axiom: The following pasting diagram is the identity of h : A1 × · · · × An → B.

A<i × Ai × A>i B

A<i × TAi × A>i T (A1 × · · · × An) TB

A1 × · · · × An B.

1×η×1
η

h

η

ti

1×ai×1

Th

b

h

hi

(3.1.8)

• µ axiom: The pasting diagrams

A<i × T 2Ai ×A>i T (A<i × TAi ×A>i) T 2(A1 × · · · ×An) T 2B

A<i × TAi ×A<i T (A1 × · · · ×An) TB

A1 × · · · ×An B

1×µ×1

ti Tti

µ

T 2h

µ

ti

1×ai×1

Th

b

h

hi

(3.1.9)

and,

A<i × T 2Ai ×A>i T (A<i × TAi ×A>i) T 2(A1 × · · · ×An) T 2B

A<i × TAi ×A>i T (A1 × · · · ×An) TB

A1 × · · · ×An B

1×Tai×1

ti

T (1×ai×1)

Tti T 2h

Tb

ti

1×ai×1

Th

b

h

Thi

hi

(3.1.10)

are equal.
• Coherence: For i < j, the pasting diagrams
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A<i × TAi × · · · × TAj ×A>j T (A<j × TAj ×A>j) T 2(A1 × · · · ×An) T (A1 × · · · ×An)

A<i × TAi ×A>i T (A1 × · · · ×An) T 2B TB

TB

A1 × · · · ×An B

ti

1×aj×1 T (1×aj×1)

Ttj µ

T 2h Th

ti

1×ai×1
Th

Tb

µ

b
b

h

Thj

hi

(3.1.11)

and,

T (A<j × TAj ×A>j) T 2(A1 × · · · ×An)

A<i × TAi × · · · × TAj ×A>j T (A<i × TAi ×A>i) T 2(A1 × · · · ×An) T (A1 × · · · ×An)

A<j × TAj ×A>j T (A1 × · · · ×An) T 2B TB

TB

A1 × · · · ×An B

Ttj

µ

tj

ti

1×ai×1 T (1×ai×1)

Tti

T 2h

µ

Th

tj

1×aj×1
Th

Tb

µ

b
b

h

Γi,j

Thi

hj

(3.1.12)

are equal.

Definition 3.1.15. [HP02, Def. 10] Let (T, η, µ, t,Γ) be a pseudo commutative,
strong 2-monad. We define the 2-cells of T -Alg as follows. Suppose that (Ai, ai : TAi →
Ai) and (B, b : TB → B) are T -algebras for 1 ≤ i ≤ n, and that (f, ⟨fi⟩) and
(g, ⟨gi⟩) are 1-cells in T -Alg(⟨A1, . . . , An⟩, B) . A 2-cell α : f → g in T -Alg is the
datum of a 2-cell in K

A1 × · · · × An B,

f

g

α

subject to the equality, for i < n, of the pasting diagrams
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A<i × TAi × A>i T (A1 × · · · × An) TB

A1 × · · · × An B.

1×ai×1

ti

Tf

b

g

f

fi

α

(3.1.13)

and,

A<i × TAi × A>i T (A1 × · · · × An) TB

A1 × · · · × An B

1×ai×1

ti

Tg

Tf

b

h

gi

Tα

(3.1.14)

are equal. Vertical composition of 2-cells in T -Alg is given by vertical composition
in K.

Next we define the γ composition in T -Alg.

Definition 3.1.16. Let (T, η, µ, t,Γ) be a pseudo commutative, strong 2-monad.
For C ∈ Ob(T -Alg), n ≥ 0, ⟨B⟩ = ⟨Bj⟩nj=1 ∈ Ob(T -Alg)n, kj ≥ 0 for 1 ≤ j ≤ n, and
⟨Aj⟩ = ⟨Aj,i⟩

kj
i=1 ∈ Ob(T -Alg)kj for 1 ≤ j ≤ n, we define

T -Alg(⟨B⟩;C)×
n∏
j=1

T -Alg(⟨Aj⟩;Bj) T -Alg(⟨A⟩;C)γ

as follows. Let (f, fj) : B1 × · · · × Bn → C and (gj, gji) : Aj,1 × · · · × Aj,kj → Bj

1-cells of T -algebras. We define their γ composition as the K 1-cell

A1 × · · · × An B1 × · · · ×Bn C
∏
gi f

where Aj denotes
∏kj

i=1Aj,i. Any number between s with 1 ≤ s ≤
∑n

j=1 kj can be
uniquely written as s = d +

∑
t<j kt where d < kj. We define γ(⟨gj⟩, f)s as the

pasting
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A1 × · · · ×Aj−1 ×Aj,1 × · · · × TAj,d × · · · ×Aj,kj
×Aj+1 × · · · ×An A1 × · · · ×An

A1 × · · · × T (Aj)× · · · ×An

A1 × · · · × TBj × · · · ×An A1 × · · · ×Bj × · · · ×An

T (A1 × · · · ×An) B1 × · · · × TBj × · · · ×Bn B1 × · · · ×Bn

T (B1 × · · · ×Bn)

TC C.

1×td×1

1×aj,d×1

ts

1×gj×1

tj

1×Tgj×1

g1×···×1×···×gn

1×bj×1

g1×···×1×···×gn

T (g1×···×gn)

1×bj×1

tj

f

Tf

c

1×gj,d×1

1×fj

The multilinear composition for 2-cells is defined in the following way. Suppose
that (f, fj), (f

′, fj) : ⟨B1, . . . , Bn⟩ → C and (gj, gji), (g
′
j, g

′
ji) : ⟨Aj,1, . . . , Aj,kj⟩ → Bj

are 1-cells in T -Alg and α : f → f ′, βj : gj → g′j 2-cells in T -Alg. Then, the compo-
nent 2-cell of γ(α; β1, . . . , βn) is the pasting

A1 × · · · × An B1 × · · · ×Bn C.

∏
gj

∏
g′j

f

f ′

∏
βj

α

One can easily check that this composition is well defined.

By imposing an extra condition we on T we can turn T -Alg into symmetric
Cat-multicategory.

Definition 3.1.17. A pseudo commutative, strong 2-monad (T, η, µ,Γ) is called
symmetric if for all A,B objects of K, the following pasting diagram equals the
identity of the 1-cell TA× TB T (A× TB) T 2(A×B) T (A×B) :

t1 Tt2 µ

TA× TB T (A× TB) T 2(A×B) T (A×B)

TB × TA T (B × TA) T 2(B × A) T (B × A)

TA× TB T (A× TB) T 2(A×B) T (A×B).

∼=

t1 Tt2 µ

∼=

t1 Tt2 µ

T∼=

t1 Tt2 µ

T∼=

ΓA,B

ΓB,A
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In general, for 1 ≤ i < j ≤ n we can define 2-cells Γj,i that are inverses to the
Γi,j from Theorem 3.1.11.

Definition 3.1.18. Let T : K → K be a pseudo commutative 2-monad and A1, . . . , An

objects of K. Let K be a partition as in Definition 3.1.9. We define Γj,i as the whisker-
ing

A1 × · · · × TAi × · · · × TAj × · · · × An

· · · × · · ·︸ ︷︷ ︸
K1

| · · · × TAi × · · ·︸ ︷︷ ︸
K2

| · · · × TAj × · · ·︸ ︷︷ ︸
K3

| · · · × · · ·︸ ︷︷ ︸
K4

· · · × · · ·︸ ︷︷ ︸
K1

| · · · × TAj × · · ·︸ ︷︷ ︸
K3

| · · · × TAi × · · ·︸ ︷︷ ︸
K2

| · · · × · · ·︸ ︷︷ ︸
K4

· · · × · · ·︸ ︷︷ ︸
K1

×T (· · · × Aj × · · · )× T (· · · × Ai × · · · )× · · ·× · · ·︸ ︷︷ ︸
K4

· · · × · · ·︸ ︷︷ ︸
K1

×T (· · · × Aj × · · · × Ai × · · · )× · · · × · · ·︸ ︷︷ ︸
K4

T (· · · × Aj × · · · × Ai × · · · )

T (A1 × · · · × An).

=

∼=

1×tj−|K1|×ti−|K1|−|K3|×1

a a

t|K1|+1

T∼=

1×Γ×1

Remark 3.1.19. Notice that Γj,i is independent of the partition by Theorem 3.1.11.
The symmetry axiom can thus be written as Γ1,2 = Γ−1

2,1. If we write Γ1,2 : ω → ω′,

then the symmetry axiom takes the form

TA× TB T (A×B) = TA× TB T (A×B).

ω

ω

ω′

ω

ω

Γ1,2

Γ2,1

1ω
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Lemma 3.1.20. Let T be a symmetric, strong, pseudo commutative 2-monad. Let
0 ≤ i < j ≤ n. Then Γj,i = Γ−1

i,j .

By the invertibility of Γ, the inverse pseudo commutativity 2-cells Γ−1 satisfy
analogous properties to the axioms in Definition 3.1.6. When using this properties
we will refer the reader to Definition 3.1.6.

Next we define the symmetric Cat-multicategorical structure on T -Alg for T
symmetric. This is the definition of Hyland and Power [HP02], which agrees with
the one given in [GMMO23] for pseudo commutative operads.

Definition 3.1.21. [HP02, Prop. 18] Let (T, η, µ, t,Γ) be a symmetric, pseudo
commutative, strong 2-monad. We give T -Alg the structrue of a symmetric Cat-
multicategory by defining the action of the symmetric group. For A1, . . . , An, B ob-
jects of K, and σ ∈ Σn, define

T -Alg(A1, . . . , An;B) T -Alg(Aσ(1), . . . , Aσ(n);B),σ

in the following way. If (h, hi) : ⟨A1, . . . , An⟩ → B is a 1-cell in T -Alg, we define the
1-cell component of hσ in K as

Aσ(1) × · · · × Aσ(n) A1 × · · · × An B.σ h

We define hσi as the pasting

Aσ(1) × · · · × TAσ(i) × · · · ×Aσ(n) A1 × · · · × TAσ(i) × · · · ×An T (A1 × · · · ×An) TB

Aσ(1) × · · · ×Aσ(n) A1 × · · · ×An B.

σ

1×aσ(i)×1

tσ(i)

1×aσ(i)×1

h

b

σ h

hn
σ(i)

Similarly, for α : f → g 2-cell in T -Alg(A1, . . . , An;B)(f, g), ασ is defined as having
component 2-cell

Aσ(1) × · · · × Aσ(n) A1 × · · · × An B.σ

f

g

α

Remark 3.1.22. To prove that given a 1-cell h : ⟨A1, . . . , An⟩ → B in T -Alg,
hσ : ⟨Aσ(1), . . . , Aσn⟩ → B is indeed a 1-cell in T -Alg we need the symmetry axiom.
The η and µ axioms for hσ follow from the same axioms for h. To prove coherence
one can prove that given 0 ≤ i < j ≤ n, if h satisfies coherence, then so does
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hσi,j. Here, σi,j ∈ Σn is the transposition that permutes i and j. Coherence for hσi,j
follows from coherence for h together with Lemma 3.1.20.

3.2 The free T -algebra functor as a multifunctor

We embark now on the proof of the main theorem of this section. Recall that
for (T, η, µ, t,Γ) a pseudo commutative, strong 2-monad and A ∈ K, (TA, µ :

T 2A → TA) is a T -algebra and can be thought of as the free T algebra generated
by A. This defines a 2-functor T : K → T -Alg [BKP02] that, as we show, can be
extended to a pseudo symmetric multifunctor when T is symmetric.

Remark 3.2.1. Notice that for (T, η, µ, t,Γ) a pseudo commutative, strong 2-
monad, and A1, A2 ∈ K, Γ fits in the following diagram:

TA1 × TA2 T (A1 × A2)

TA2 × TA1 T (A2 × A1).

∼=

ωA1,A2

ωA2,A1

T∼=
ΓA1,A2

Definition 3.2.2. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong 2-
monad. Given A1, A2 ∈ Ob(K) we define the 2-ary 1-cell in T -Alg, ω = ωA1,A2 : ⟨TA1, TA2⟩ →
T (A1 × A2) as follows. The component 1-cell ωA1,A2 is the composite

TA1 × TA2 T (A1 × TA2) T 2(A1 × A2) T (A1 × A2).
t1 Tt2 µ

We can take the 2-cell ω1 to be the identity since the following diagram commutes
by definition of t1 and naturality of µ:

TTA1 × TA2 T (TA1 × TA2) T 2(A1 × TA2)

TA1 × A2 T (A1 × A2).

t1

µ×1

Tω

µ

ω

We define ω2 as being the following pasting diagram:
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TA1 × T 2A2 T (TA1 × TA2) T 2(A1 ×A2)

T 2A2 × TA1 T (TA2 × TA1) T 2(A2 ×A1).

TA1 × TA2 TA2 × TA1 T (A2 ×A1) T (A1 ×A2)

TA1 × TA2 T (A1 ×A2)

1×µ

t2

∼=
T∼=

Tω

µ

µ×1

t1

Tω

T 2∼=

µ

∼=

∼=

ω T∼=

ω

T∼=

TΓA1,A2

ΓA2,A1

Remark 3.2.3. The previous definition generalizes the definitions of [GMMO23]
for the case of pseudo commutative operads.

Lemma 3.2.4. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong 2-
monad. For A1, A2 be objects of K, ω2 equals the whiskering

TA1 × T 2A2 T (A1 × TA2) T 2(A1 × A2) T (A1 × A2).

t(2,1)

t(2,1)

Tt2 µ
Γ−1

Proof. By applying the strength µ-axiom (7) in Definition 3.1.6, we get that ω2

equals the pasting

TA1 × T 2A2 T (TA1 × TA2) T 2(A1 ×A2)

T 2A2 × TA1 T (TA2 × TA1) T 2(A1 × TA1) T 3(A2 ×A1)

T (T 2A2 ×A1) T 2(TA2 ×A1) T 2(A2 ×A1) T 2(A2 ×A1)

T 2(TA2 ×A1) T (TA2 ×A1) T 2(A2 ×A1) T (A2 ×A1) T (A1 ×A2).

t2

∼=
∼=

Tω

µt2

t1

Tt2

Tt1 T 2t2

Tµ

Tt1 µ

Tt1 Tµ

µ µ

T 2∼=

µ Tt1 µ T∼=

TΓA1,A2

TΓA2,A1

Γ

By symmetry ω2 agrees with the whiskering

TA1 × T 2A2 T 2A2 × TA1 T (TA2 ×A1) T 2(A2 ×A1) T (A2 ×A1)

T (A1 × TA2) T 2(A1 ×A2) T (A1 ×A2)

∼=

t

t

T t1

T∼=

µ

T 2∼= T∼=

Tt2 µ

Γ

By symmetry, the last whiskering equals the one in the lemma. ■
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Lemma 3.2.5. Let A1, A2 be objects of K. Then

ω : ⟨TA1, TA2⟩ → T (A1 × A2)

is a 2-ary 1-cell in T -Alg.

Proof. First we tackle coherence. By Lemma 3.2.4, we can write the diagram (3.1.12)
for ω as

T (TA1 × TA2) T 2(TA1 × TA2)

T 2A1 × T 2A2 T (T 2A1 × TA2) T 2(TA1 × TA2) T (TA1 × TA2)

TA1 × T 2A2 T (TA1 × TA2) T 3(A1 ×A2) T 2(A1 ×A2)

T (A1 × T 2A2) T 2(A1 × TA2) T 2(A1 ×A2)

T 3(A1 ×A2)

T 2(A1 × TA2) T (A1 × TA2) T 2(A1 ×A2) T (A1 ×A2).

T t2

µ

µ×1

t1

t2

T (µ×1)

Tt1 µ

T 2ω Ttω

t1

t2

Tt1 Tµ

µ

µ

Tt2

T 2t2

µ
µ

µ

Tµ

µ Tt2

µ

ΓTA1,TA2

Γ−1

By (6) in Definition 3.1.6, this equals the pasting

T (TA1 × TA2) T 2(TA1 × TA2)

T 2A1 × T 2A2 T (T 2A1 × TA2) T 2(TA1 × TA2)

T (TA1 × T 2A2) T 2(TA1 × TA2) T (TA1 × TA2)

T 2(A1 × T 2A2) T 3(A1 × TA2) T 2(A1 × TA2)

T 3(A1 ×A2)

T 3(A1 × TA2) T 2(A1 × TA2) T (A1 × TA2) T 2(A1 ×A2)

T 3(A1 ×A2) T 2(A1 ×A2) T (A1 ×A2)

Tt2

µ

t1

t1

t2 Tt1
µ

Tt1

Tt2

T 2t1

µ

Tt1

T 2t2 Tµ

µ

T 2t2
µ

Tµ

µ
Tµ µ

T 2t2 Tt2 µ

µ µ

ΓTA1,TA2

Γ−1
TA1,TA2

TΓ−1

The 2-cells ΓTA1,TA2 and its inverse cancel out, so the previous pasting diagram
equals the whiskering
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T 2A1 × T 2A2 T (TA1 × TA2) T 2(A1 × TA2) T 3(A1 ×A2) T 2(A1 ×A2)

T 2(A1 ×A2) T (A1 ×A2)

t1

t(2,1)

t(2,1)

T 2t2 µ

Tµ µ
µ

TΓ−1

which, by Lemma 3.2.4 equals the whiskering

T 2A1 × T 2A2 T (TA1 × TA2) T 2(A1 ×A2) T (A1 ×A2).
t1

t(2,1)

t(2,1)

µTω2

This is precisely (3.1.11).
Now we tackle the η and µ axioms. For i = 1 there is nothing to prove since ω1 is
the identity. For the η axiom for i = 2, by Lemma 3.2.4, we need to prove that the
whiskering

TA1 × TA2 TA1 × T 2A2 T (A1 ×A2) T 2(A1 ×A2) T (A1 ×A2)
1×η

t

t

T t2 µΓ−1

is an identity, but this follows at once from 5 in Definition 3.1.6.
Let’s prove that ω satisfies the µ axiom for i = 2. We start from pasting (3.1.9),
which by Lemma 3.2.4 we can express as the whiskering

TA1 × T 3A2 TA1 × T 2A2 T (A1 ×A2) T 2(A1 ×A2) T (A1 ×A2).
1×µ

t

t

T t2 µΓ−1

By (7) in Definition 3.1.6, this pasting equals

TA1 × T 3A2 T (TA1 × T 2A2) T 2(TA1 × TA2) T 3(A1 × TA2)

TA1 × T 2A2 T (A1 × T 3A2) T 2(A1 × T 2A2) T 3(A1 × TA2) T 2(A1 × TA2)

T (A1 × T 2A2) T 2(A1T 2A2) T (A1 × T 2A2) T 2(A1 × TA2) T (A1 × TA2)

T 3(A1 ×A2) T 2(A1 ×A2)

T 2(A1 × TA2) T (A2 × TA2) T 2(A1 ×A2) T (A1 ×A2).

1×Tµ
t1

t2

Tt1

Tt2 T 2t1

Tµ

t1
T (1×Tµ)

Tt2 µ

T 2t2 Tµ

µ µ

Tt2
T 2(1×µ)

µ Tt2

T (1×µ)

µ

T 2t2 Tt2

µ
Tµ µ

µ Tt2 µ

TΓ−1

Γ−1
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Here we decorated the diagram coming from (3.1.7) with some extra commutative
squares that do not change the pasting. By using that Γ−1 is a modification, we get
that the previous pasting equals

TA1 × T 3A2 T (TA1 × T 2A2) T 2(TA1 × TA2) T 3(A1 × TA2)

TA1 × T 2A2 T (TA1 × TA2) T 2(A1 × T 2A2) T 3(A1 × TA2) T 2(A1 × TA2)

T (A1 × T 2A2) T 2(A1 × TA2) T (A1 × T 2A2) T 2(A1 × TA2) T (A1 × TA2)

T 3(A1 ×A2) T 2(A1 ×A2)

T 2(A1 × TA2) T (A1 × TA2) T 2(A1 ×A2) T (A1 ×A2),

1×Tµ

t2

T (1×µ)
Tt1

Tt2 T 2t1

Tµ

t2

t1 Tt1 µ
T 2(1×µ)

T 2t2 Tµ

µ µ

Tt2 µ
T (1×µ)

Tt2

µ

T 2t2 Tt2

µ
Tµ µ

µ Tt2 µ

TΓ−1

Γ−1

The last pasting equals (3.1.10) for ω by two applications of Lemma 3.2.4 and a
change in 1-cells. The previous diagram has the correct source 1-cell since the 1-
cells µ(Tµ)(T 2t2) and µ(Tt2)µ : T 2(A1 × TA2) → T (A1 × A2) are equal.

■

Lemma 3.2.6. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong 2-
monad. Let A,B,C be objects of K, then

γ(ωA,B×C ; 1A, ωB,C) = γ(ωA×B,C ;ωA,B, 1C),

that is, the following multicategorical diagram commutes

⟨TA, TB, TC⟩ ⟨T (A×B), TC⟩

⟨TA, T (B × C)⟩ T (A×B × C).

⟨1A,ωB,C⟩

⟨ωA,B ,1C⟩

ωA×B,C

ωA,B×C

Proof. First of all by associativity of t, the strength axioms, the monad axioms and
naturality of various 2-natural transformations, the corresponding 1-cells TA ×
TB × TC → T (A × B × C) are equal. We must show that the 2-cell constrains are
equal, i.e., γ(ω;ω, 1)i = γ(ω; 1, ω)i for i = 1, 2, 3. For i = 1 this follows since both
γ(ω;ω, 1)1 and γ(ω; 1, ω)1 are identities. For i = 2, we have from Definition 3.1.16
and by Lemma 3.2.4 that γ(ω;ω, 1)2 is the 2-cell
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TA× T 2B × TC

T (A× TB)× TC T 2(A×B)× TC T (A×B)× TC T (A×B × TC)

T (A×B × C).

1 2

Tt2×1 µ×1 t1

ω
µ◦Tt3

Γ−1×1

We can decorate this pasting with some extra commutative squares

TA× T 2B × TC

T (A× TB)× TC T 2(A×B)× TC T (A×B)× TC T (A×B × TC)

T (A× TB × TC) T (T (A×B)× TC) T 2(A×B × TC) T (A×B × C),

1 2

Tt2×1

t1 t1

µ×1 t1

µ◦Tt3

T (t2×1) Tt1

µ

Γ−1×1

so that we can apply (3) in Definition 3.1.6, to get

TA× T 2B × TC TA× T (TB × TC) T (TA× TB × TC) T 2(A× TB × TC)

T (A× T (TB × TC)) T 2(A× TB × TC) T (A× TB × TC)

T (A×B × C).

1×t1 t2

t1

Tt1

µ

Tt2

µ

µ◦Tt3◦µ◦Tt1◦T (t2×1)

Γ−1

Since µ ◦ Tt3 ◦ µ ◦ Tt1 ◦ T (t2 × 1) equals µ ◦ Tt2 ◦ T (1× µ) ◦ T (1× Tt2) ◦ T (1× t1)

as 1-cells T (A× TB × TC) → T (A× B × C) by associativity of t, strength axioms
for µ and monad axioms for µ, we can write the previous pasting as
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TA× T 2B × TC TA× T (TB × TC) T (TA× TB × TC) T 2(A× TB × TC)

T (A× T (TB × TC)) T 2(A× TB × TC) T (A× TB × TC)

TA× T 2(B × TC) T (A× T 2(B × TC)) T 2(A× T (B × TC)) T (A× T (B × TC))

TA× T 3(B × C) T (A× T 3(B × C)) T 2(A× T 2(B × C)) T (A× T 2(B × C))

TA× T 2(B × C) T (A× T 2(B × C)) T 2(A× T (B × C)) T (A× T (B × C))

T (A×B × C).

1×t1

1×Tt1

t2

t1

Tt1

µ

Tt2

T (1×Tt1)

µ

T 2(1×t1) T (1×t1)

1×T 2t2

t1 Tt2

T (1×T 2t2)

µ

T 2(1×Tt2) T (1×Tt2)

1×Tµ

t1 Tt2

T (1×Tµ)

µ

T 2(1×µ) T (1×µ)

t1 Tt2 µ

µ◦Tt2

Γ−1

Since Γ−1 is a modification, our diagram equals

TA× T 2B × TC TA× T (TB × TC) TA× T 2(B × TC) TA× T 3(B × C)

TA× T 2(B × C) T (TA× T (B × C)) T 2(A× T (B × C))

T (A× T 2(B × C)) T 2(A× T (B × C)) T (A× T (B × C)) T (A×B × C).

1×t1 1×Tt1 1×T 2t2

1×Tµ

t1

t2 Tt1

µ

Tt2 µ µ◦Tt2

Γ−1

By an application of Lemma 3.2.4, the previous whiskering is precisely γ(ω; 1, ω)2.
Let’s now prove that γ(ω;ω, 1)3 = γ(ω; 1, ω)3. Definition 3.1.16 and an application
of Lemma 3.2.4 give us that γ(ω;ω, 1)3 is the whiskering

TA× TB × T 2C T 2(A×B)× T 2C T (A×B)× T 2C

T (A×B × TC) T (A×B × C).

(Tt2×1)(t1×1) µ×1

tt

µ◦Tt3

Γ−1

By an application of (6) in Definition 3.1.6, we then have that γ(ω;ω, 1)3 equals
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TA× TB × T 2C T 2(A×B)× T 2C T (T 2(A×B)× TC) T 2(T (A×B)× TC)

T (T (A×B)× T 2C) T 2(T (AB)× TC) T (T (A×B)× TC)

T 2(A×B × T 2C) T 3(A×B × TC) T 2(A×B × TC)

T 3(A×B × TC) T 2(A×B × TC) T (A×B × TC)

T (A×B × C).

(Tt2×1)(t1×1) t2

t1

Tt1

µ

t1

Tt2 µ

T 2t1 Tt1

Tt2

µ

Tµ µ

Tµ

µ

µTt3

Γ−1

TΓ−1

(3.2.1)

Now, by Definition 3.1.16 and two applications of Lemma 3.2.4, γ(ω; 1, ω)3 is the
vertical composition of the whiskering

TA× TB × T 2C TA× T (B × TC) T (A×B × C)

t

t

µ◦Tt2◦t1◦(1×µ)◦(1×Tt2)1×Γ−1

(3.2.2)

with the whiskering

TA× TB × TC

TA× T (TB × TC) TA× T 2(B × TC) TA× T 3(B × C)

TA× T 2(B × C) T (TA× T (B × C)) T 2(A× T (B × C))

T (A× T 2(B × C)) T 2(A× T (B × C)) T (A× T (B × C)).

T (A×B × C)

1×t2
1×Tt1 1×T 2t2

1×Tµ

t1

t2

Tt1

µ

Tt2 µ

µ◦Tt2

Γ−1

(3.2.3)

We will show that diagram (3.2.3) equals the whiskering
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TA× TB × T 2C T 2(A×B)× T 2C T (T 2(A×B)× TC) T 2(T (A×B)× TC)

T (T (A×B)× T 2C) T 2(T (AB)× TC) T (T (A×B)× TC)

T (A×B × C)

(Tt2×1)(t1×1) t2

t1

Tt1

µ

Tt2 µ

µ◦Tt3◦µ◦Tt1

Γ−1

(3.2.4)

which comes from diagram (3.2.1), as well as an analogous statement for (3.2.2).
We can decorate the pasting diagram (3.2.4) with some extra commutative squares

TA× TB × T 2C

T (A× TB)× T 2C T (T (A× TB)× TC) T 2(A× TB × TC)

T 2(A×B)× T 2C T (T 2(A×B)× TC) T 2(T (A×B)× TC) T (A× TB × TC)

T (T (A×B)× T 2C) T 2(T (AB)× TC) T (T (A×B)× TC)

T (A×B × TC)

t1×1

t2

Tt2×1

Tt1

T (Tt2×1) T 2(t2×1)
µ

t2

t1

Tt1

µ
T (t2×1)

Tt2 µ

µ◦Tt3◦µ◦Tt1

Γ−1

so that we can apply the fact that Γ−1 is a modification to get

TA× TB × T 2C

T (A× TB)× T 2C T (T (A× TB)× TC) T 2(A× TB × TC)

T (A× TB × T 2C) T 2(A× TB × TC) T (A× TB × TC)

T (A×B × C).

t1×1
t2

t1×1

Tt1

µ

Tt3 µ

µ◦Tt3◦µ◦Tt1◦T (t2×1)

Γ−1

By (2) in Definition 3.1.6 this pasting becomes

TA× TB × T 2C TA× T (TB × TC) T (A× TB × TC)

T (A×B × C).

1×t2

t

t
µ◦Tt3◦µ◦Tt1◦T (t2×1)

Γ−1

(3.2.5)
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Next, we decorate diagram (3.2.5) with some commutative squares without altering
the pasting. We are using that µ ◦Tt3 ◦µ ◦Tt1 ◦T (t2 × 1) is equal to µ ◦Tt2 ◦T (1×
µ) ◦ T (1× Tt2) ◦ T (1× t1) as 1-cells from T (A× TB × TC) to T (A×B × C).

TA× TB × T 2C TA× T (TB × TC) T (TA× TB × TC) T 2(A× TB × TC)

T (A× T (TB × TC)) T 2(A× TB × TC) T (A× TB × TC)

TA× T 2(B × TC) T (A× T 2(B × TC)) T 2(A× T (B × TC)) T (A× T (B × TC)

TA× T 3(B × C) T (A× T 2(B × C)) T 2(A× T 2(B × C)) T (A× T 2(B × C))

TA× T 2(B × C) T (A× T (B × C)) T 2(A× T (B × C)) T (A× T (B × C))

T (A×B × C).

1×t2

1×Tt1

t2

t1

Tt1

µ

T (1×Tt1)

Tt2

T 2(1×t1)

µ

T (1×t1)

1×T 2t2

t1

T (1×T 2t2)

Tt2 µ

T 2(1×Tt2) T (1×Tt2)

1×Tµ

t1 Tt2

T (1×Tµ)

µ

T 2(1×µ) T (1×µ)

t1 Tt2 µ

µTt2

Γ−1

We then get (3.2.3) since Γ−1 is a modification. To finish the proof we just have to
show that diagram (3.2.2) equals the following whiskering coming from (3.2.1)

TA× TB × T 2C T (A× TB)× T 2C T 2(A×B)× T 2C

T (A× TB × T 2C) T (T (A×B)× T 2C) T 2(T (A×B)× TC)

T 2(A×B × T 2C) T 3(A×B × TC)

T 3(A×B × TC) T 2(A×B × TC)

T (A×B × C).

t1×1

t1

Tt2×1

t1

T (t2×1)

Tt1

Tt2

T 2t1

T 2t3 Tµ

Tµ

µ◦Tt3◦µ

TΓ−1

We can apply (1) in Definition 3.1.6 to get
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TA× TB × T 2C T (A× TB)× T 2C

T (A× TB × T 2C) T (A× T (TB × TC)) T (A× T 2(B × TC))

T (A× T (B × T 2C)) T (A× T 2(B × TC)) T (A× T (B × TC))

T (A×B × C).

t1A,TB×T2C

t1×1

t1

T (1×t1)

T (1×t2) T (1×Tt1)

T (1×µ)

T (1×Tt2) T (1×µ)
µ◦Tt3◦µ◦Tt2

T (1×Γ−1)

Since t1 is a 2-natural transformation, we get that the last pasting equals the whisker-
ing

TA× TB × T 2C TA× T (B × TC) T (A× T (B × TC)) T (A×B × C).

t

t

t1 µ◦Tt3◦µ◦Tt21×Γ−1

This equals (3.2.2) since µ ◦ Tt3 ◦ µ ◦ Tt2 ◦ t1 = µ ◦ Tt2 ◦ t1 ◦ (1 × µ) ◦ (1 × Tt2) as
1-cells from TA× T (B × TC) to T (A×B × C). ■

Lemma 3.2.7. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong 2-
monad, then ω is 2-natural in the following sense:

1. For f1 : A1 → B1 and f2 : A2 → B2 in K,

γ(T (f1 × f2);ωA1,A2) = γ(ωB1,B2 ;Tf1, T f2).

That is, the following multicategorical diagram commutes:

⟨TA1, TA2⟩ T (A1 × A2)

⟨TB1, TB2⟩ T (B1 ×B2).

⟨Tf1,T f2⟩

ω

T (f1×f2)

ω

2. For 2-cells α1 : f1 → g1 in K(A1, B1) and α2 : f2 → g2 in K(A2, B2)

γ(T (α1 × α2); 1ωA1,A2
) = γ(1ωB1,B2

;Tα1, Tα2).

That is, the multicategorical pasting
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⟨TA1, TA2⟩ T (A1 × A2)

⟨TB1, TB2⟩ T (B1 ×B2).

⟨Tg1,T g2⟩

ω

⟨Tf1,T f2⟩

ω

T (g1×g2)

ω

⟨Tα1,Tα2⟩

equals

⟨TA1, TA2⟩ T (A1 × A2)

⟨TB1, TB2⟩ T (B1 ×B2).

ω

⟨Tf1,T f2⟩ T (f1×f2) T (g1×g2)

ω

T (α1×α2)

Proof. For part (1), the corresponding 1-cells of γ(T (f1 × f2);ω) and γ(ω;Tf1, T f2)
are equal since ω : TA1 × TA2 → T (A1 ×A2) equals µ ◦ Tt2 ◦ t1, a composition of 2-
natural transformations. The 1-cells γ(T (f1 × f2);ω)1 and γ(ω;Tf1, T f2)1 are equal
since both are identity 1-cells, with Tf1 and Tf2 being strict maps of T -algebras.
Let’s show that γ(T (f1 × f2);ω)2 = γ(ω;Tf1, T f2)2. By a double application of
Definition 3.1.6, γ(ω;Tf1, T f2)2 equals

TA1 × T 2A2 TB1 × T 2B2 T (B1 × TB2) T (B1 ×B2).
Tf1×T 2f2

t

t

µ◦Tt2Γ−1

Since Γ−1 is a modification this whiskering can be writen as

TA1 × T 2A2 T (A1 × TB2) T (B1 × TB2) T (B1 ×B2),

t

t

T (f1×Tf2) µ◦Tt2Γ−1

and since µ and Tt2 are 2-natural, this equals

TA1 × T 2A2 T (A1 × TB2) T (A1 × A2) T (B1 ×B2).

t

t

µ◦Tt2 T (f1×f2)Γ−1

An application of Lemma 3.2.4 gives us that this is exactly γ(T (f1 × f2), ω)2.

Part (2) follows from the 2-naturality of t1, T t2 and µ. ■
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Definition 3.2.8. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong
2-monad. For A1, . . . , An ∈ Ob(K), we define

ωn = ωA1,...,An : ⟨TA1, . . . , TAn⟩ → T (A1 × · · · × An)

in T -Alg by recursion in the following way.

• For n = 0, ω0 : 1 → T1 is η1 : 1 → T1.

• For n = 1 ω1 : TA1 → TA1 is the identity 1TA1 .

• For n = 2, ω2 is ωA1,A2 : ⟨TA1, TA2⟩ → T (A1 × TA2) from Lemma 3.2.5.

• For n ≥ 3 ωn = γ(ω2;ωn−1, ω1)

Corollary 3.2.9. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong
2-monad, and A1, . . . , An objects of K. For n ≥ 3,

ωn = γ(ω2;ωn−1, ω1) = γ(ω2;ω1, ωn−1)

It follows by a straightforward induction that ωn is natural in the following
sense. We will denote ωn as ω when there is no room for confusion.

Lemma 3.2.10. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong 2-
monad. For any n, ωn is natural in the following sense:

(1) Suppose fi : Ai → Bi are 1-cells in K for 1 ≤ i ≤ n, then

γ(T (f1 × · · · × fn);ωA1,...,An) = γ(ωB1,...,Bn ;Tf1, . . . , T fn).

That is, the following multicategorical diagram commutes:

⟨TA1, . . . , TAn⟩ T (A1 × · · · × An)

⟨TB1, . . . , TBn⟩ T (B1 × · · · ×Bn).

⟨Tf1,...,T fn⟩

ω

T (f1×···×fn)

ω

(2) Suppose αi : fi → gi are 2-cells in K(Ai, Bi). Then

γ(T (α1 × · · · × αn); 1ωA1,...,An
) = γ(1ωB1,...,Bn

;Tα1, . . . , Tαn).

That is, the multicategorical pasting
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⟨TA1, . . . , TA2⟩ T (A1 × · · · × An)

⟨TB1, . . . , TBn⟩ T (B1 × · · · ×Bn).

⟨Tg1,...,T gn⟩

ω

⟨Tf1,...,T fn⟩

ω

T (g1×···×gn)

ω

⟨Tα1,...,Tαn⟩

equals the pasting

⟨TA1, . . . , TAn⟩ T (A1 × · · · × An)

⟨TB1, . . . , TBn⟩ T (B1 × · · · ×Bn).

ω

⟨Tf1,...,T fn⟩ T (f1×···×fn) T (g1×···×gn)

ω

T (α1×···×αn)

Next, we define the free algebra Cat-multifunctor T : K → T -Alg.

Definition 3.2.11. Let T be a symmetric, pseudo commutative, strong 2-monad.
We define the multifunctor T : K → T -Alg as follows:

• T is already defined on objects and since (TA, µ : T 2A → TA) is a T algebra
for A ∈ Ob(K).

• For n = 0, T : K(1, A) → T -Alg(1, TA) is defined as the composition

K(T1, TA)

K(1, A) T -Alg(1, TA) = K(1, TA)

η∗1T

T

where η1 : 1 → T1.

• For n = 1, we define T : K(A,B) → T -Alg(TA, TB) as sending f : A → B to
TF : TA → TB with (Tf)1 being an identity. Similarly a 2-cell α : f → g in
K(A,B) is sent to Tα.

• For n ≥ 2, we define T : K(A1 × · · · × An, B) → T -Alg(TA1, · · · , TAn;TB) as
the composition

T -Alg(T (A1 × · · · × TAn), TB)

K(A1 × · · · ×An, B) T -Alg(TA1, . . . , TAn;TB)

ω∗
nT

T
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Theorem 3.2.12. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong
2-monad. Then T : K → T -Alg is a non-symmetric Cat-multifunctor.

Proof. It is clear from the definition that T preserves identities. Preservation of γ
by T follows at once from Lemma 3.2.10 and Lemma 3.2.6. ■

3.3 Pseudo symmetry of the free T -algebra multifunctor

Next, we define the pseudo symmetry isomorphisms. We do this in a recursive
way, starting with the non trivial element of Σ2. From here on σi will denote the
transposition in Σn that permutes i and i+ 1.

Definition 3.3.1. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong
2-monad. For A,B ∈ K we define ω′ : ⟨TA, TB⟩ → T (A × B) as the image of ω
trhough the composition

T -Alg(TB, TA;T (B ×A)) T -Alg(TA, TB;T (B ×A)) T -Alg(TA, TB;T (A×B)).
σ1 T∼=∗

Lemma 3.3.2. For ω′ in the previous definition, its component is

TA× TB T (TA× TB) T 2(A×B) T (A×B).
t2 Tt1 µ

The 2-cell ω′
1 equals

T 2A× TB T (TA×B) T 2(A×B) T (A×B),

t

t

T t1 µΓ

and ω′
2 is an identity 1-cell.

Proof. Since ω1 is an identity 2-cell we get that ω′
2 is as well. On the other hand,

by Lemma 3.2.4, ω′
1 can be written as

T 2A×B TB × T 2A T (B × TA) T (A×B).
∼=

t

t

T∼=◦µ◦Tt2Γ−1

By naturality of µ and definition of t1 we can write this whiskering as
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T 2A×B TB × T 2A T (B × TA) T (TA×B) T (A×B).
∼=

t

t

T∼= µ◦Tt1
Γ−1

By Definition 3.1.17 we have that ω′
1 agrees with the whiskering in the statment of

the lemma. ■

Lemma 3.3.3. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong 2-
monad. For A,B objects of K, there is a 2-cell

⟨TA, TB⟩ T (A×B)

ω

ω′

ΓA,B

in the multicategory T -Alg with component 2-cell ΓA,B.

Proof. We need to prove that diagrams (3.1.13) and (3.1.14) for ΓA,B are equal for
i = 1, 2.. For i = 1 this diagram (3.1.13) takes the form

T 2A× TB TA× TB T (A×B).
µ×1

t

t

Γ

Now, by Lemma 3.3.2, the diagram (3.1.14) for i = 1 agrees exactly with diagram
(3.1.6) and we are done by (6) in Definition 3.1.6. For i = 2 the diagram (3.1.13) is,
by an application of (3.1.7) and Lemma 3.2.4,

TA× T 2B

T (TA× TB) T 2(A× TB) T (A× TB)

T 2(TA×B) T 3(A×B) T 2(A×B)

T 3(A×B) T 2(A×B) T (A×B).

t2

ω′
A,B

ωA,B

Tt2

Tt1

T 2t2

µ

Tt2

T 2t1 Tµ

µ

µ

Tµ µ

Γ−1
A,TB

TΓA,B

ΓA,TB

This diagram is equal to the diagram (3.1.14) for i = 2 which is the whiskering
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TA× T 2B T (TA× TB) T 2(A×B) T (A×B).
t2

t

t

µ
TΓ

■

Next, we define recursively the pseudo symmetry isomorphisms for T.

Definition 3.3.4. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong
2-monad. Let A,B and C be objects of K. We define the natural transformation

K(A×B,C) T -Alg(TA, TB;TC)

K(B × A,C) T -Alg(TB, TA;C),

T

σ1 σ1

T

Tσ1

as having component Tσ;f for f : A × B → C, the whiskering in the multicategory
T -Alg

⟨TB, TA⟩ T (B × A) T (A×B) TC.

ω

ω′

T∼= TfΓB,A

The fact that Tσ1 is in fact a natural transformation follows from the exchange
property in the 2-category K.

Definition 3.3.5. Let σi the transposition that interchanges i and i + 1 in Σn for
n ≥ 3. We define the natural transformation Tσi

K(A1 × · · · ×An, C) T -Alg(TA1, . . . , TAn;TC)

K(A1 × · · · ×Ai+1 ×Ai × · · · ×An, C) T -Alg(TA1, . . . , TAi+1, TAi, . . . , TAn;C)

T

σi σi

T

Tσi

as follows. For f : A1 × · · · × An → C the 2-cell Tσi;f is
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TA1 × · · · × TAi+1 × TAi × · · · × TAn T (A1 × · · · ×Ai−2)× T (Ai+1 ×Ai)× T (Ai+2 ×An)

T (A1 × · · · ×Ai+1 ×Ai × · · · ×An)

T (A1 ×Ai ×Ai+1 × · · · ×An)

TC.

(ω,ω,ω)

(ω,ω′,ω)

ω

T∼=

Tf

1×ΓAi+1,Ai
×1

The fact that this is well defined comes from the associativity of ω (Lemma 3.2.6),
and the fact that Tσi is in fact a natural transformation follows from the exchange
rule in K.

Next, we prove that this defines Tσ for every σ ∈ Σn and every n by using that
the symmetric group Σn is generated by the consecutive transpositions σ1, . . . , σn−1

subject to the relations:

(a) σ2
i = id

(b) σiσj = σjσi for |i− j| > 1.

(c) σiσi+1σi = σi+1σiσi+1.

The relations between the different Tσi will follow from relations between 2-cells in
T -Alg which can be proven in K. The relations in K can be proven even when T is
not symmetric, except for the relation induced by σiσi = id. The following follows
(in fact, it is equivalent to) symmetry for T.

Lemma 3.3.6. Suppose that T is a symmetric, pseudo commutative, strong 2-
monad. Then the following pasting diagram is the identity:

K(A1 × · · · × ×An, C) T -Alg(TA1, . . . , TAn;TC)

K(A1 × · · · ×Ai+1 ×Ai × · · · ×An, C) T -Alg(TA1, . . . , TAi+1, TAi, . . . , TAn;C)

K(A1 × · · · ×An, C) T -Alg(TA1, . . . , TAn;TC).

T

σi σi

T

σi σi

T

Tσi

Tσi
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The following holds even in the absence of symmetry.

Lemma 3.3.7. Suppose that (T, η, µ, t,Γ) is a pseudo commutative, strong 2-monad.
Then the pasting diagram

TA1 × TA2 × TA3 × TA4 TA1 × TA2 × T (A3 ×A4) T (A1 ×A2 ×A3 ×A4)

TA1 × TA2 × TA4 × TA3 TA1 × TA2 × T (A4 ×A3) T (A1 ×A2 ×A4 ×A3)

T (A1 ×A2)× TA4 × TA3

TA2 × TA1 × TA4 × TA3 T (A2 ×A1)× TA4 × TA3 T (A2 ×A1 ×A4 ×A3),

1×∼=

1×ω ω

∼=×1

ω×1

1×ω ω

1×T∼= T∼=

ω

ω×1

ω

T∼=×1

T∼=

1×Γ

Γ×1

equals the pasting

TA1 × TA2 × TA3 × TA4 T (A1 × TA2)× TA3 × TA4 T (A1 ×A2 ×A3 ×A4)

TA2 × TA1 × TA3 × TA4 T (A2 ×A1)× TA3 × TA4 T (A2 ×A1 ×A3 ×A4)

TA2 × TA1 × T (A3 ×A4)

TA2 × TA1 × TA4 × TA3 TA2 × TA1 × T (A4 ×A3) T (A2 ×A1 ×A4 ×A3).

ω×1

∼=×1

ω

1×ω

ω×1

1×∼=

ω

T∼=×1 T∼=

ω

1×ω ω

1×T∼=

T∼=

Γ×1

1×Γ

Proof. Both pastings are equal to the pasting

TA1 × TA2 × TA3 × TA4 T (A1 ×A2)× T (A3 ×A4) T (A1 ×A2 ×A3 ×A4)

TA2 × TA1 × TA4 × TA3 T (A2 ×A1)× T (A4 ×A3) T (A1 ×A2 ×A3 ×A4).

∼=×∼=

ω×ω ω

ω×ω ω

T∼=×T∼= T∼=
ΓA1,A2

×ΓA3,A4

■

When T is symmetric, a slight generalization of the previous lemma can be
interpreted as follows. To save space we will write TA = TA1 × · · · × TAn and
TAσ = TAσ(1) × · · · × TAσ(n) when σ ∈ Σn and A1, . . . , An are objects of K
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Lemma 3.3.8. Supposet T is a symmetric, pseudo commutative, strong 2-monad,
n ≥ 3 and 1 ≤ i < i + 2 ≤ j ≤ n − 1. Let A1, . . . , An, C be objects of K. Then, the
pasting

K(TA,C) T -Alg(⟨TA⟩;C)

K(TAσi, C) T -Alg(⟨TA⟩σi;C)

K(TAσiσj, C) T -Alg(⟨TA⟩σiσj;C),

T

σi σi

σj

T

σj

T

Tσi

Tσj

equals the pasting

K(TA,C) T -Alg(⟨TA⟩;C)

K(TAσj, C) T -Alg(⟨TA⟩σj;C)

K(TAσjσi, C) T -Alg(⟨TA⟩σjσi;C),

T

σj σj

σi

T

σi

T

Tσj

Tσi

Next, we focus on the Yang-Banxter equation. First we prove the following
lemma that we will also need later. It doesn’t require symmetry.

Lemma 3.3.9. Let (T, η, µ, t,Γ) be a pseudo comutative, strong 2-monad, and
A1, A2, A3 objects of K. Then,

1. The pasting diagram

TA1 × TA2 × TA3 T (A1 ×A2)× TA3 T (A1 ×A2 ×A3)

TA2 × TA1 × TA3 T (A2 ×A1)× TA3 T (A2 ×A1 ×A3)

TA2 × T (A1 ×A3)

TA2 × TA3 × TA1 TA2 × T (A3 ×A1) T (A2 ×A3 ×A1)

∼=×1

ω×1 ω

1×ω

ω×1

1×∼=

ω

T (∼=×1) T∼=×1

ω

1×ω ω

1×T∼=

T (1×∼=)

Γ×1

1×Γ

(3.3.1)

equals the whiskering
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TA1 × TA2 × TA3 TA1 × T (A2 × A3) T (A1 × A2 × A3).
1×ω

ω

ω′

Γ

2. The pasting diagram

TA1 × TA2 × TA3 TA1 × T (A2 ×A3) T (A1 ×A2 ×A3)

TA1 × TA3 × TA2 TA1 × T (A3 ×A2) T (A1 ×A3 ×A2)

T (A1 ×A3)× TA2

TA3 × TA1 × TA2 T (A3 ×A1)× TA2 T (A3 ×A1 ×A2)

1×ω

1×∼=

ω

ω×1

∼=×1

1×ω ω

1×T∼= T∼=

ω

ω×1

T∼=×1

ω

T∼=

1×Γ

Γ×1

(3.3.2)

equals the whiskering

TA1 × TA2 × TA3 T (A1 × A2)× TA3 T (A1 × A2 × A3).
ω×1

ω

ω′

Γ

Proof. For part (1) we start from

TA1 × TA2 × TA3 TA1 × T (A2 × TA3)

TA1 × T 2(A2 × A3) TA1 × T (A2 × A3) T (A1 × A2 × A3).

1×t1

1×Tt2

1×µ

ω

ω′

Γ

By (7) in Definition 3.1.6, the previous whiskering equals the pasting diagram
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TA1 × TA2 × TA3 TA1 × T (A2 × TA3)

TA1 × T 2(A2 ×A3) T (A1 × T 2(A2 ×A3)) T 2(A1 × T (A2 ×A3))

T (TA1 × T (A2 × TA3)) T 2(A1 × T (A2 ×A3)) T (A1 × T (A2 ×A3))

T 2(TA1 ×A2 ×A3) T 3(A1 ×A2 ×A3) T 2(A1 ×A2 ×A3)

T 3(A1 ×A2 ×A3) T 2(A1 ×A2 ×A3) T (A1 ×A2 ×A3).

1×t1

1×Tt2

t2

t1 Tt2

µ

Tt2

Tt1

T 2t2

µ

Tt2

T 2t1

µ

Tµ µ

Tµ µ

Γ

TΓ

(3.3.3)

First we will prove that the whiskering

TA1 × TA2 × TA3 TA1 × T (A2 × TA3)

TA1 × T 2(A2 × A3) T (A1 × T (A2 × A3))

T 2(A1 × A2 × A3)

T (A1 × A2 × A3)

1×t1

1×Tt2
ω

ω′

Tt2

µ

Γ

(3.3.4)

coming from the previous diagram equals the whiskering

TA1 × TA2 × TA3 T (A1 ×A2)× TA3 T (A1 ×A2 × TA3) T 2(A1 ×A2 ×A3)

T (A1 ×A2 ×A3)

ω×1

ω′×1

t1 Tt3

µ

Γ×1

coming from diagram (3.3.1). By (3) in Definition 3.1.6, the previous whiskering
equals
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TA1 × TA2 × TA3 TA1 × T (A2 × TA3) T (A1 ×A2 × TA3)

TA1 × T 2(A2 ×A3) T (A1 × T (A2 ×A3)) T 2(A1 ×A2 ×A3)

T (A1 ×A2 ×A3).

1×t1

ω

ω′1×Tt2 T (1×t2)
Tt3

ω′ Tt2
µ

Γ

Since Γ is a modification, the previous diagram equals (3.3.4). To finish part (1),
we will prove that the whiskering

TA1 × TA2 × TA3 TA1 × T (A2 × TA3) TA1 × T 2(A2 ×A3)

T (TA1 × T (A2 ×A3)) T 2(A1 ×A2 ×A3)

T (A1 ×A2 ×A3)

1×t1 1×Tt2

t2

Tω

Tω′
µ

TΓ

(3.3.5)

coming from (3.3.3) equals the whiskering

TA1 × TA2 × TA3

TA2 × TA1 × TA3 TA2 × T (A1 ×A3)

T (A2 × TA1 × TA3) T (A2 × T (A1 ×A3))

T 2(A2 ×A1 ×A3) T (A2 ×A1 ×A3)

T (A1 ×A2 ×A3)

∼=×1 1×ω

1×ω′t1 t1

T (1×ω′)
Tt2

µ

T (∼=×1)

1×Γ

coming from (3.3.1). By 2-naturality of t1, the previous diagram equals

TA1 × TA2 × TA3

TA2 × TA1 × TA3 T (A2 × TA1 × TA3) T (A2 × T (A1 ×A3))

T 2(A2 ×A1 ×A3)

T (A1 ×A2 ×A3).

∼=×1

t1

T (1×ω)

T (1×ω′)

Tt2

T (∼=×1)◦µ

T (1×Γ)
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By (1) in Definition 3.1.6, this whiskering equals

TA1 × TA2 × TA3 T (A1 ×A2 × TA3) T (T (A1 ×A2)× TA3) T 2(A1 ×A2 ×A3)

TA2 × TA1 × TA3 T (A2 × TA1 × TA3) T (T (A2 ×A1)× TA3) T 2(A2 ×A1 ×A3)

T (A2 ×A1 ×A3)

T (A1 ×A2 ×A3).

t2

∼=×1 T (∼=×1)

T (t1×1) Tω

T (T∼=×1) T 2(∼=×1)

t1 T (t2×1)

Tω

Tω′

µ

T (∼=×1)

TΓ

Since Γ is a modificiation we can write the previous whiskering as

TA1 × TA2 × TA3 T (TA1 ×A2 × TA3) T (T (A1 ×A2)× TA3) T 2(A1 ×A2 ×A3)

TA1 × T (A2 × TA3) T (A1 ×A2 ×A3).

1×t1

t2 T (t1×1)

Tω

Tω′
µ

t2

TΓ

By (2) in Definition 3.1.6, we get

TA1 × TA2 × TA3 TA1 × T (A2 × TA3) T (TA1 ×A2 × TA3)

TA1 × T 2(A2 ×A3) T (TA1 × T (A2 ×A3)) T 2(A1 ×A2 ×A3)

T (A1 ×A2 ×A3),

1×t1 t2

1×Tt2 T (1×t2)

t2

Tω

Tω′

µ

TΓ

which is precisely (3.3.5). We have proven part (1). Part (2) is proven in a similar
fashion. ■

The next Lemma is the Yang-Baxter equation for non-symmetryc pseudo com-
mutative, strong 2-monads. Part (3) is called the Associativity Equation in [HP02].

Lemma 3.3.10. Let T be a pseudo commutative, strong, 2-monad. Then:

1. The pasting
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TA1 × TA2 × TA3 TA1 × T (A2 ×A3) T (A1 ×A2 ×A3)

TA1 × TA3 × TA2 TA1 × T (A3 ×A2) T (A1 ×A3 ×A2)

T (A1 ×A3)× TA2

TA3 × TA1 × TA2 T (A3 ×A1)× TA2 T (A3 ×A1 ×A2)

TA3 × T (A1 ×A2)

TA3 × TA2 × TA1 TA3 × T (A2 ×A1) T (A3 ×A2 ×A1)

1×ω

1×∼=

ω

ω×1

∼=×1

1×ω ω

1×T∼= T (1×∼=)

ω

1×ω

ω×1

1×∼=

T∼=×1

ω

T (∼=×1)

ω

1×ω
ω

1×T∼=

T (1×∼=)

1×Γ

Γ×1

1×Γ

(3.3.6)

equals the horizontal composite

TA1 × TA2 × TA3 TA1 × T (A2 × A3) T (A1 × A2 × A3).

1×ω

1×ω′

ω

ω′

1×Γ Γ

2. The pasting

TA1 × TA2 × TA3 T (A1 ×A3)× TA2 T (A1 ×A2 ×A3)

TA2 × TA1 × TA3 T (A2 ×A1)× TA3 T (A2 ×A1 ×A3)

TA2 × T (A1 ×A3)

TA2 × TA3 × TA1 TA2 × T (A3 ×A1) T (A2 ×A3 ×A1)

T (A2 ×A3)

TA3 × TA2 × TA1 T (A3 ×A2)× TA1 T (A3 ×A2 ×A1)

∼=×1

ω×1
ω

1×ω

ω×1

1×∼=

ω

T∼=×1 T (∼=×1)

ω

1×ω

∼=×1

ω×1

ω

1×T∼=

T (1×∼=)

ω

ω×1

T∼=×1

ω

T (∼=×1)

Γ×1

1×Γ

Γ×1

(3.3.7)

88



equals the whiskering

TA1 × TA2 × TA3 T (A1 × A2)× TA3 T (A1 × A2 × A3).

ω×1

ω′×1

ω

ω′

Γ×1 Γ

(3.3.8)

3. The pastings and horizontal composites in (1) and (2) are equal.

Proof. For (1), notice that by the Lemma 3.3.9, the pasting diagram

TA1 × TA2 × TA3 T (A1 ×A2 ×A3)

TA1 × TA3 × TA2 T (A1 ×A3)× TA2 T (A1 ×A3 ×A2)

TA3 × TA1 × TA2 T (A3 ×A1)× TA2 T (A3 ×A1 ×A2)

TA3 × T (A1 ×A2)

TA3 × TA2 × TA1 TA3 × T (A2 ×A1) T (A3 ×A2 ×A1)

1×∼=

∼=×1

ω×1 ω

T (1×∼=)

1×∼=

1×ω

ω×1 ω

T∼=×1 T (∼=×1)

ω

1×ω

1×T∼=

ω

T (1×∼=)

Γ×1

1×Γ

equals the whiskering

TA1 × TA2 × TA3 TA1 × T (A2 × A3) T (A1 × A2 × A3)

TA1 × TA3 × TA2 TA1 × T (A3 × A2) T (A3 × A2 × A1).

1×∼=

1×ω′ ω

1×ω

1×T∼=
ω

ω′

T (1×∼=)
Γ

Since Γ is a modification the last whiskering equals

TA1 × TA2 × TA3 TA1 × T (A2 × A3) T (A1 × A2 × A3).
1×ω′

ω

ω′

Γ

Part (1) follows from this and part (2) is proven similarly. To prove part (3) we will
prove that diagrams (3.3.6), and (3.3.8) are equal. By (2) in Lemma 3.3.9, we are
reduced to proving that the whiskerings
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TA1 × TA2 × TA3 T (A1 × A2 × A3)

TA1 × TA3 × TA2 T (A1 × A3 × A2)

TA3 × TA1 × TA2 TA3 × T (A1 × A2) T (A3 × A1 × A2)

1×∼=

∼=×1

T (1×∼=)

1×ω

1×ω′

ω

T (∼=×1)
1×Γ

and,

TA1 × TA2 × TA3 T (A1 × A2)× TA3 T (A1 × A2 × A3)

ω×1

ω′×1

ω′
Γ×1

are equal. This holds since both whiskerings are equal to

TA1 × TA2 × TA3 T (A1 × A2)× TA3 T (A1 × A2 × A3)

TA3 × TA1 × TA2 TA3 × T (A1 × A2) T (A3 × A1 × A2).

∼=

ω×1 ω′

1×ω

1×ω′

ω

∼= T∼=
1×Γ

■

In the presence of symmetry, we can give (a slight generalization of) the previ-
ous lemma the following interpretation.

Lemma 3.3.11. Suppose that (T, η, µ, t,Γ) is a symmetric, pseudo commutative,
strong 2-monad. Then the pasting diagram

K(A1 × · · · ×An, C) T -Alg(TA1, . . . , TAn;TC)

K(A1 × · · · ×Ai+1 ×Ai × · · · ×An, C) T -Alg(TA1, . . . , TAi+1, TAi, . . . , TAn;TC)

K(A1 × · · · ×Ai+1 ×Ai+2 ×Ai × · · · ×An, C) T -Alg(TA1, . . . , TAi+1, TAi+2, TAi, . . . , TAn;TC)

K(A1 × · · · ×Ai+2 ×Ai+1 ×Ai × · · · ×An, C) T -Alg(TA1, . . . , TAi+2, TAi+1, TAi, . . . , TAn;TC),

T

σi σi

T

σi+1 σi+1

T

σi σi

T

Tσi

Tσi+1

Tσi

equals the pasting diagram
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K(A1 × · · · ×An, C) T -Alg(TA1, . . . , TAn;TC)

K(A1 × · · · ×Ai+2 ×Ai+1 × · · · ×An, C) T -Alg(TA1, . . . , TAi+2, TAi+1, . . . , TAn;TC)

K(A1 × · · · ×Ai+2 ×Ai ×Ai+1 × · · · ×An, C) T -Alg(TA1, . . . , TAi+2, TAi, TAi+1, . . . , TAn;TC)

K(A1 × · · · ×Ai+2 ×Ai+1 ×Ai × · · · ×An, C) T -Alg(TA1, . . . , TAi+2, TAi+1, TAi, . . . , TAn;TC),

T

σi+1 σi+1

T

σi σi

T

σi+1 σi+1

T

Tσi+1

Tσi

Tσi+1

The three previous lemmas give us the following.

Theorem 3.3.12. Suppose that (T, η, µ, t,Γ) is a symmetric, pseudo commutative
strong to monad and let A1, . . . , An, C be objects of K. The transformations Tσi for
1 ≤ i ≤ n− 1 assemble together to give, for σ ∈ Σn, a unique transformation

K(A1 × · · · × An, C) T -Alg(TA1, . . . , TAn;TC)

K(Aσ(1) × · · · × Aσ(n)) T -Alg(TAσ(1), . . . , TAσ(n);TC).

σ

T

σ

T

Tσ

These satisfy the unit and the product permutation axiom in Definition 2.1.15.

We are just missing the top and bottom equivariance axioms to prove that our
functor T : K → T -Alg is pseudo symmetric. When T is a pseudo commutative,
strong 2-monad that fails to be symmetric, we can still give Lemma 3.3.10 an in-
terpretation using the Bruhat order of the symmetric group Σn on generators σi for
1 ≤ i ≤ n− 1.

Definition 3.3.13. Let Σn be the symmetric group with generators {σi}1≤i<n and
presentation:

• σiσi = 1,

• σiσj = σjσi if |i− j| ≥ 2

• σiσi+1σi = σi+1σiσi+1.

The length of a permutation σ ∈ Σn, ℓ(σ), is the number of inversions of σ, i.e., the
number of couples (i, j) such that 1 ≤ i < j ≤ n and σ(i) < σ(j). This agrees
with the length of a minimal word for σ in the previous presentation [BB05, Prop.
1.5.2.]. The weak right order on Σn [BB05, Def. 3.1.1.]is the partial order on Σn
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generated by declaring that σ < σσi when ℓ(σ) < ℓ(σσi) [BB05, p. 66]. This only
happens when none of the reduced words for σ end in σi. The bottom of this order
is the identity and the top is the reverse order permutation.

Remark 3.3.14. Let (T, η, µ, t,Γ) be a pseudo commutative, strong 2-monad and
A1, . . . , An objects of K. We have the 1-cell

ω : A1 × · · · × An T (A1 × · · · × An).

Although we don’t have a symmetric Cat-multicategory, we still have a 1-cell ωσ
(it is called tσ on [HP02]):

TA1 × · · · × TAn T (A1 × · · · × An)

TAσ(1) × · · · × TAσ(n) T (Aσ(1) × · · · × Aσ(n)).

ωσ

σ−1

ω

Tσ

When ℓ(σ) < ℓ(σσi), we can define a 2-cell ωσ → ωσσi as

TA1 × · · · × TAn TAσ(1) × · · · × TAσ(n) TAσ(1) × · · · × TAσ(i+1) × TAσ(i) × · · · × TAσ(n)

TAσ(1) × · · · × T (Aσ(i) ×Aσ(i+1))× · · · × TAσ(n)

TAσ(1) × · · · × T (Aσ(i+1) ×Aσ(i))× · · · × TAσ(n)

T (A1 × · · · ×An) T (Aσ(1) × · · · ×Aσ(n))

T (Aσ(1)×···×Aσ(i+1)
×Aσ(i) × · · · ×Aσ(n)).

ωσ

σ−1 σ−1
i

1×ω×1

1×ω×1

ω

1×T∼=×1

ω
Tσ

Tσi

1×Γ×1

(3.3.9)

Thus we have a 2-cell ωσ → ωσ′ when σ < σ′ in the weak right order.
Notice that our definition gives a 2-cell ωσ → ωσσi even when σ < σσi is false in
the weak right order, but we avoid considering these cells since, in the absence of
symmetry, ωσ → ωσσi → ωσσiσi may not be the identity.
By Lemmas 3.3.7 and 3.3.10, there is functor

Ω : Bn → K(TA1 × · · · × TAn, T (A1 × · · · × An)),
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with Ω(1) = ω, Ω(σ) = ωσ, and such that when σ < σσi in Bn, Ω(σ < σσi) is the 2-
cell (3.3.9). We believe this to be the coherence statement that Hyland and Power
refer to in [HP02].

To finish proving our coherence theorem, that is, that T : K → T -Alg is pseudo
symmetric we need to prove top and bottom invariance axioms for T in Defini-
tion 2.1.15. First we will prove top equivariance for σi, for which we will need the
following.

Lemma 3.3.15. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong 2-
monad. Suppose Ai,1, . . . , Ai,ki for 1 ≤ i ≤ n and C be objects of K. The component
of the natural transformation

K(A1 × · · · ×An, C) T -Alg(⟨TA1⟩, . . . , ⟨TAn⟩, TC)

K(A1 × · · · ×Ai+1 ×Ai × · · · ×An, C) T -Alg(⟨TA<i⟩, ⟨TAi+1⟩, ⟨TAi⟩, . . . , ⟨TAn⟩;C)

σi⟨idkσi(j)
⟩nj=1

T

σi⟨idkσi(j)
⟩nj=1

T

Tσi⟨idkσi(j)
⟩n
j=1

at h : A1 × · · · × An → C in K is

TA1 × · · · × · · · × TAi+1 × TAi × · · · × TAn TA1 × · · · × TAi × TAi+1 × · · · × TAn

TA1 × · · · × T (Ai+1)× T (Ai)× · · · × TAn TA1 × · · · × T (Ai)× T (Ai+1)× · · · × TAn

TA1 × · · · × T (Ai+1 ×Ai)× · · · × TAn TA1 × · · · × T (Ai ×Ai+1)× · · · × TAn

T (A1 ×Ai+1 ×Ai × · · · ×An)

T (A1 × · · · ×An)

TC.

1×∼=×1

1×ω×ω×1 1×ω×ω×1

1×∼=×1

1×ω×1 1×ω×1

ω
1×T (∼=)×1

T (1×∼=×1)

Th

1×Γ×1

Here, we wrote Ai instead of
∏ki

j=1Ai,j and TAi instead of
∏ki

j=1 TAi,j.

Proof. We prove this by induction on ki and ki+1. For ki = ki+1 = 1 this is just
Definition 3.3.5. Next we induct on ki+1 assuming ki = 1. In this case we can write
σi⟨idkσi(j)⟩ as the composition
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A1 × · · · × Ai−1 × Ai+1,1 × Ai+1,2 × · · · × Ai+1,ki+1
× Ai × Ai+2 × · · · × An

A1 × · · · × Ai−1 × Ai+1,1 × Ai × Ai+1,2 × · · · × Ai+1,ki+1
× Ai+2 × · · · × An

A1 × · · · × Ai−1 × Ai × Ai+1 × Ai+2 × · · · × An.

σi+1⟨idk1
,...,idki−1

,id1,idki+1−1,id1,idki+2
,...,idkn ⟩

σ
1+

∑i−1
t=1 kt

After applying the inductive hypothesis to the permutation

σi+1⟨idk1 , . . . ,idki−1
,id1,idki+1−1,id1,idki−2

, . . . ,idkn⟩,

Definition 3.3.5 to σ1+∑i−1
t=1 kt

and the product axiom, we get the result for σi⟨idkσi(j)⟩
by an application of (1) in Lemma 3.3.9. By induction, the result holds for any ki+1

and ki = 1.

We finish by induction on ki, proving that the result holds for all ki+1. We have
proven that this is true for ki = 1. For the inductive step we can write σi⟨idkσi(j)⟩ as

A1 × · · · × Ai−1 × Ai+1 × Ai,1 × · · · × Ai,ki−1 × Ai,ki × Ai+2 × · · · × An

A1 × · · · × Ai−1 × Ai,1 × · · · × Ai,ki−1 × Ai+1 × Ai,ki × Ai+2 × · · · × An

A1 × · · · × Ai × Ai+1 × · · · × Ai.

σi⟨idk1
,...,idki−1

,idki+1
,idki−1,id1,idki+2

,...,idkn ⟩

σi+1⟨idk1
,...,idki−1

,idki−1,idki+1
,id1,idki+2

,...,idkn ⟩

After applying the inductive hypothesis to the permutation

σi⟨idk1 , . . . ,idki−1
,idki+1

,idki−1,id1,idki+2
, . . . ,idkn⟩,

the already proven to the permutation

σi+1⟨idk1 , . . . ,idki−1
,idki−1,idki+1

,id1,idki+2
, . . . ,idkn⟩,

and the product axiom, we get our result by an application of (2) in Lemma 3.3.9.
■

Lemma 3.3.16. Suppose (T, η, µ, t,Γ) is a symmetric, pseudo commutative, strong
2-monad. Let n ≥ 2 and 1 ≤ i ≤ n − 1, and consider the Cat-multifunctor
T : K → T -Alg. Then, the top equivariance axiom in Definition 2.1.15 holds for
σi⟨idkσi(j)⟩

n
j=1, that is, For every C ∈ Ob(K), ⟨B⟩ = ⟨Bj⟩nj=1 ∈ Ob(K)n, kj ≥ 0 for

1 ≤ j ≤ n, and ⟨Aj⟩ = ⟨Aj,i⟩
kj
i=1 ∈ Ob(K)kj for 1 ≤ j ≤ n, the pasting diagram

94



K
(∏

B;C
)
×

∏
j K

(∏
Aj , Bj

)
T -Alg(⟨FB⟩;FC)×

∏
j T -Alg (⟨FAj⟩;FBj)

K
(∏

j Aj , C
)

T -Alg
(
⟨⟨FAj,l⟩⟩nj=1;Fc

)

K
(
A<i ×Ai+1 ×Ai ×A>i+1;C

)
T -Alg (⟨TAj<i⟩, ⟨TAi+1⟩, ⟨TAi⟩, ⟨TAj>i+1⟩;TC)

T×
∏
T

γ γ

σi⟨idkσi(j)
⟩

T

σi⟨idkσi(j)
⟩

T

Tσi⟨idkσi(j)
⟩

equals the pasting diagram

K
(
B;C

)
×

∏
j K

(
Aj ;Bj

)
T -Alg(⟨FB⟩;FC)×

∏
j T -Alg (⟨FAj⟩;FBj)

K (B<i ×Bi+1 ×Bi ×B>i+1;C)×
∏

j K
(
Aσi(j)

;Bσi(j)

)

T -Alg(⟨TB⟩σi;TC)×
∏

j T -Alg(⟨TAσi(j)
⟩;TBσi(j)

)

K
(
A<i ×Ai+1 ×Ai ×A>i+1;C

)
T -Alg (⟨TAj<i⟩, ⟨TAi+1⟩, ⟨TAi⟩, ⟨TAj>i+1⟩;TC) .

σi×σ−1
i

T×
∏
T

σi×σ−1
i

T×
∏
T

γ

γ

T

Tσi×1

Proof. The lemma follows at once from Lemma 3.3.15 Definition 3.3.5, and (1) in
Lemma 3.3.9. ■

Lemma 3.3.17. Suppose (T, η, µ, t,Γ) is a symmetric, pseudo commutative, strong
2-monad. Let n ≥ 1 and 1 ≤ i ≤ n − 1, and consider the Cat-multifunctor T :

K → T -Alg. Then, the bottom equivariance axiom in Definition 2.1.15 holds for
idn⟨idk1 , . . . , σi, . . . , idkn⟩ that is, For every C ∈ Ob(K), ⟨B⟩ = ⟨Bj⟩nj=1 ∈ Ob(K)n,

kj ≥ 0 for 1 ≤ j ≤ n, and ⟨Aj⟩ = ⟨Aj,l⟩
kj
l=1 ∈ Ob(K)kj for 1 ≤ j ≤ n, the pasting

diagram

K
(
B,C

)
×

∏
K
(
Aj , Bj

)
T -Alg (⟨FB⟩;FC)×

∏
j T -Alg (⟨TAj⟩;TBj)

K
(∏

j Aj , C
)

T -Alg (⟨⟨TAj⟩⟩j ;TC)

K
(
A<i ×

∏
j Ai,σi(j)

×A>i, C
)

T -Alg
(
⟨TA<i, ⟨TAi,σi(j)

⟩j , ⟨TA>i⟩;TC
)

γ

∏
T

γ

T

idn⟨idk1 ,...,σi,...,idkn ⟩ idn⟨idk1 ,...,σi,...,idkn ⟩

T

Tidn⟨idk1 ,...,σi,...,idkn ⟩

is equal to the pasting
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K
(
B,C

)
×

∏
K
(
Aj , Bj

)
T -Alg (⟨FB⟩;FC)×

∏
j T -Alg (⟨TAj⟩;TBj)

K
(
B,C

)
×K

(
A1

)
× · · · × K

(∏
j Aj,σi(j)

)
× · · · × K

(
An, Bn

)

T -Alg (⟨TB⟩;TC)×
∏

j<i T -Alg (⟨TAj⟩;TBj)× T -Alg
(
⟨TAi,σi(j)

⟩j ;TBi

)
×

∏
j>i T -Alg (⟨TAj⟩;TBj)

K
(
A<i ×

∏
j Ai,σi(j)

×A>i, C
)

T -Alg
(
⟨TA<i, ⟨TAi,σi(j)

⟩j , ⟨TA>i⟩;TC
)

id×idk1×···×σi×···×idkn

∏
T

id×idk1×···×σi×···×idkn∏
T

γ

γ

T

1×Tσi×1

Proof. The lemma follows at once from Definition 3.3.5, and (2) in Lemma 3.3.9.
■

Finally we arrive at the proof of our main theorem.

Theorem 3.3.18. Let (T, η, µ, t,Γ) be a symmetric, pseudo commutative, strong
2-monad. The free algebra Cat-multifunctor T : K → T -Alg is pseudo symmetric.

Proof. We just need to prove that the bottom and top equivariance axioms hold for
T. For the top equivariance axiom we notice that given σ, τ ∈ Σn, and k1, . . . , kn,
we can write στ⟨idkστ(1)

, . . . , idkστ(n)
⟩ as the composition

Aστ(1) × · · · × Aστ(n)

Aσ(1) × · · · × Aσ(n)

A1 × · · · × An.

τ⟨idkστ(i)
⟩

σ⟨idkσ(i)⟩

By an application of the product axiom, if σ⟨idkσ(i)
⟩ and τ⟨idkστ(i)

⟩ satisfy the top
invariance axiom, then so does στ⟨idkστ(1)

, . . . , idkστ(n)
⟩. We are done by Lemma

Lemma 3.3.16.
Similarly, for the bottom equivariance axiom. Given n, k1, . . . kn and σ, τ ∈ Σki . If
the bottom equivariance axiom holds for the permutations idn⟨idk1 , . . . , τ, . . . idkn⟩
and idn⟨idk1 , . . . , σ, . . . , idkn⟩, then it also holds for idn⟨idk1 , . . . , στ, . . . , idkn⟩ by an
application of the product axiom. By Lemma 3.3.17, we get the bottom equivari-
ance axiom for idn⟨idk1 , . . . , σ, . . . , idkn⟩ for any σ ∈ Σki . On the other hand, if
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the bottom equivariance axiom holds for idn⟨σ1, . . . , σn⟩ and idn⟨τ1, . . . , τn⟩, where
σi, τi ∈ Σki , then it also holds for idn⟨σ1τ1, . . . , σnτn⟩ by another application of the
product axiom. We conclude that T satisfies bottom equivariance and this con-
cludes the proof that T is pseudo symmetric. ■

Since the free functor associated to a pseudo commutative operad is a symmet-
ric, pseudo commutative strong 2-monad, the free functor of the pseudo commu-
tative operads defined in [GMMO23] and considered as well in [Yau24a] is pseudo
symmetric.
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