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DISSERTATION ABSTRACT 

 

Kona Nikole Orlandi 

 

Doctor of Philosophy in Biology 

 

Title: Evolution of Innate Immune Protein Complexes, Toll-like Receptor 4 and Calprotectin, in 

Early Vertebrates and Zebrafish 

 

 

The innate immune system is our first line of defense against pathogens as well as our 

interface with our commensal microbiota. Toll-like receptor 4 (TLR4) and calprotectin are two 

innate immune proteins that are tightly associated with inflammatory disorders. Zebrafish (Danio 

rerio) has been successfully used to model the human innate immune system, but TLR4 and 

calprotectin models have not been developed because of their significant divergence in humans 

and zebrafish. Here, we set out to reveal the evolutionary and functional relationships between 

human and zebrafish TLR4 and calprotectin. We used phylogenetic analyses to define the 

evolutionary relationships between homologous proteins and characterized their immune 

functions in cell-based assays. We found that an antagonist of human TLR4 is a potent agonist 

for zebrafish TLR4, but when tested in live fish there was no difference in immune stimulation. 

We further investigated the evolutionary origin of this change in ligand specificity and determine 

that TLR4 in the cyprinid order of fish likely convergently evolved sensitivity to LPS. Our 

characterization of zebrafish proteins homologous to human calprotectin also suggest that the 

zebrafish proteins do not share functional similarities to calprotectin during the immune 

response. We conclude that although humans and zebrafish share many immune system 

characteristics, the TLR4 and calprotectin immune responses are not directly comparable. 

This dissertation includes previously published and unpublished co-authored material. 

Supplement includes multiple sequence alignments and phylogenetic trees for TLR4 and MD-2. 
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CHAPTER I 

INTRODUCTION 

In this dissertation, I will describe my contributions to three bodies of work concerning 

protein evolution, with emphasis on the divergence between innate immune proteins in humans 

and zebrafish. Understanding the process of protein evolution is imperative for interpreting 

discoveries in biology, especially those gained from model organisms. 

Chapter II is a published co-authored manuscript describing a bioinformatic 

phylogenetics tool for ancestral protein sequence reconstruction that I helped develop and make 

available to the public. Sophia Phillips and I were co-lead authors of this manuscript, Zachary 

Sailer and Joseph Harman are co-authors, and Michael Harms was the project and software 

development lead and major writing contributor.  

Chapter III describes unpublished findings, including material contributions from José 

Sánchez-Borbón, Cathy Robinson, and Corinthia Brown, and important insights from Michael 

Harms, Sophia Phillips and Karen Guillemin. This chapter covers my investigation of the 

evolutionary history and fluctuating ligand specificity of Toll-like receptor 4 complexes in 

zebrafish, other modern vertebrates, and their ancestors.  

Finally, Chapter IV is a manuscript soon to be submitted evaluating whether zebrafish 

have convergently evolved a functional homolog of calprotectin, an important biomarker of 

inflammation severity in human patients. Michael Harms contributed experimental guidance and 

oversaw the writing of this work. The following introductory sections will provide context and a 

through line for these studies, with more specific information about each topic in their respective 

chapters. 
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Human microbial communities impart complex influences on our health 

 All animals exist with populations of microbes. At birth, humans are colonized with 

microorganisms including bacteria, fungi, viruses, archaea, protozoa, and helminths on every 

surface exposed to the environment1–3 and even within tissues4,5. In the body, human cells are 

outnumbered by microorganisms, which are most abundant in the gut.6–8 The various interactions 

between host and microbe may be commensal (beneficial for microbe and no effect on host), 

mutualistic (both parties benefit), or pathogenic (microbe causes disease). The field describes 

most symbiotic microbes as ‘commensals’ though they generally provide host benefits, and some 

can even become opportunistic pathogens. 

Symbiotic microbes contribute positively to host health by supporting host physiology, 

immunological development, metabolism, resistance to infection by pathogenic microorganisms, 

as well as other essential functions.3,9–16 Mutualistic microbiota and their collective genomes 

(microbiome) provide us with genetic and metabolic capacities we have not been required to 

evolve on our own,17 and vice versa. However, pathogenic microbes have continuously provoked 

the evolution of both the human immune system and our commensal microbiota to keep harmful 

microbes at bay. 

 

The innate immune system identifies specific microbes via TLR4 

A major field of study is in the communication between us and our microbiome.18 How 

does the host influence microbial community structure? How do microbes influence our 

development, health, mood, and behaviors? How does our immune system distinguish 

commensals from pathogens? One of the primary points of contact between these microbial 

communities and animal physiology is the innate immune system. The innate immune system is 
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our first line of defense against infection and disease. It consists of barriers like the skin and 

mucosa, effector cells that destroy pathogens and mediate the immune response, secreted 

antimicrobial molecules that inhibit pathogen growth, release of proinflammatory or anti-

inflammatory signals, and cellular receptors that sense microbial and infectious signals both 

outside and inside of cells and subsequently activate the immune response.19 

The cellular receptors of the innate immune system are known as pattern recognition 

receptors (PRRs). They are transmembrane receptors expressed on innate immune cells like 

macrophages, neutrophils, dendritic cells, natural killer cells, mast cells, basophils, and 

eosinophil.20 A major function of PRRs is to sense highly conserved microbe-associated 

molecular patterns (MAMPs) and then transduce this signal across cell membranes to activate 

immune responses.21 One of the most well-studied MAMPs is lipopolysaccharide. 

Lipopolysaccharide (LPS) is a major structural feature of Gram-negative bacteria outer 

membranes and acts as a permeability barrier.22 LPS was first discovered by Richard Pfeiffer in 

1892 as the causative agent of sepsis and was coined ‘endotoxin’ because it was associated with 

the insoluble part of bacterial cells rather than secreted like other bacterial toxins known at the 

time.23 Sepsis is a life-threatening condition that arises when then body’s inflammatory response 

to a Gram-negative bacterial infection causes damage to its own tissues and organs.24 

A century after the discovery of endotoxin (LPS), it was determined that Toll-like 

receptor 4 (TLR4) is the binding partner that discriminates LPS from host lipids and transduces 

signals across the membrane.25–27 Ligand-induced activation of TLR4 triggers signaling cascades 

that upregulate the expression and secretion of cytokines and other proinflammatory proteins.28–

31 Because of this, TLR4’s ability to recognize LPS was identified to be the underpinning of 

sepsis.25  
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LPS molecules are present in almost all Gram-negative bacteria and are structurally 

diverse. The architecture of LPS consists of three domains. 1) The O-antigen is a repeating 

hydrophilic oligosaccharide that is structurally varied even within a single bacterium and fulfills 

a range of functions, depending on bacterial lifestyles. 2) The hydrophilic core oligosaccharide 

linking the other two domains. 3) A hydrophobic lipid A moiety containing a glucosamine 

disaccharide that can have one or two phosphates and supports 4-8 fatty acid acyl chains of 

varying lengths.29,32,33 The lipid A portion forms the outer leaflet of the outer membrane of 

Gram-negative bacteria and is therefore highly conserved across species. The lipid A moiety is 

recognized by TLR4 and thus confers to LPS its proinflammatory characteristics.32  

Structural and functional analyses show that the most proinflammatory form of lipid A 

has two phosphate groups and six fatty acyl groups with 12-14 carbon chains, which are 

generally purified from Escherichia coli and Salmonella strains.34 Lipid A with either more or 

less fatty acyl chains, longer chains, or a single phosphate group are typically less active and can 

act as antagonists of toxic LPS.34,35  

To recognize LPS, TLR4 forms a complex with accessory protein MD-2. It is well-

established that MD-2 forms the LPS-binding pocket in the TLR4/MD-2 complex and confers 

LPS specificity.31,36,37 These hypo-acylated and hypo-phosphorylated LPS variants tightly bind 

human TLR4/MD-2 in a non-productive fashion, inhibiting other LPS molecules from activating 

the complex.37–42 However, slight variations in the LPS-binding pocket of mouse MD-2 and 

TLR4 permits mouse TLR4 signaling with several of these LPS variants.43–46 The foundation for 

this is still being explored. 

One way that several commensal bacteria contribute to the flourishing microbiota in the 

human gut relies on their coevolution with human TLR4/MD-2. Many members of our 
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microbiota produce LPS, but not all of this LPS is immunogenic.47–50 For example, it has been 

shown that several members of the order Bacteroidales, which are the dominant Gram-negative 

bacteria in healthy human gut microbiomes, produce potently antagonistic tetra- and penta-

acylated forms of LPS that can silence TLR4 signaling for the entire microbial community.47 

These findings raise questions of how symbiotic relationships evolve. How does this symbiosis 

affect our health? Did these bacteria adapt to exploit a blind spot in their host’s immune 

surveillance?51–56 Did humans lose the ability to recognize these bacteria due to advantageous 

selective pressure? Does this symbiosis impact our ability to fight infections from other Gram-

negative bacteria? Could we use these LPS variants to suppress TLR4-induced sepsis in human 

patients?57,58 

 

Calprotectin mediates TLR4-induced inflammation and fights infections 

PRRs also recognize endogenously produced danger-associated molecular patterns 

(DAMPs) including molecules released from dying cells and damaged tissue such as 

extracellular DNA, RNA, and proteins.59 S100A8, S100A9, and their heterodimer state known as 

‘calprotectin’ are all DAMPs recognized by TLR4.60,61 S100A8 and S100A9 proteins are 

multifunctional regulators of the immune response. They exist as homodimers but predominantly 

form the more stable heterodimeric calprotectin complex.62–64 S100A8, S100A9, and calprotectin 

have been shown to play several intracellular roles in calcium-dependent signaling, microtubule 

reorganization, and arachidonic acid metabolism.65–68 During an immune response, these proteins 

are released to the extracellular space where they exert several proinflammatory and antibacterial 

roles.61,69–72  
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S100A8 and S100A9 homodimers and heterodimers released during the immune response 

locally activate TLR4 and amplify inflammatory responses.73,74 This is essential for successful 

pathogen-clearing but can be detrimental in excess. One regulatory mode imposed on this 

proinflammatory activity is the proteolytic sensitivity of homodimer and heterodimer states.75–80 

In the presence of calcium, which is expected at a site of inflammation, two heterodimers form a 

heterotetramer (S100A8/S100A9)2. This calcium-induced tetramerization inhibits 

proinflammatory activity, conferring the complex protease resistance.76,81,82 This regulatory 

method is essential for preventing excessive inflammatory amplification that can lead to sepsis, 

autoimmune disorders, and cancer.74 

Calprotectin is also antibacterial in both heterodimer and heterotetramer states. The 

hexahistidine site created at the heterodimer interface can chelate essential transition metal ions 

like zinc, manganese, and iron: this inhibits bacterial growth during an infection.83–90 As a stable 

complex, calprotectin is of particular interest in medicine because it can be used as a non-

invasive biomarker for inflammation severity in addition to its roles in immunity.91–94 

 

Zebrafish is a powerful model organism for studies of the host-microbe interface 

The host-microbe interface is complex and ever evolving. At any given time, each person 

has a unique population of microbes whose ecological architecture is influenced by interactions 

between microbes, our genetics, and everything we do like what we eat, who/what we encounter, 

our hygiene, sudden lifestyle changes, and even the buildings in which we live and work. 

Because these systems are so complicated, we need to leverage model organisms to facilitate our 

investigations of host-microbe relations. Indeed, almost everything we know about TLR4 and 

calprotectin comes from studies in mice. 
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Danio rerio, the zebrafish, is an outstanding model organism to study vertebrate innate 

immunity and host-microbe interactions. For the first few weeks of life the zebrafish has a fully 

functional innate immune system but has not yet developed its adaptive immunity, permitting 

investigations solely on the innate immune response without genetic modifications.95 Larval 

zebrafish are optically transparent at least up to 5-6 days old which facilitates live imaging of 

fluorescently tagged proteins and microbes. Also, in the first week of life zebrafish survive using 

the nutrients in their yolk, and do not need food. This makes it relatively simple to generate 

gnotobiotic fish (fish with a defined microbiome) by sterilizing the chorion and water the fish 

develop in, and then introducing only desired microbes.96 Moreover, genetically tractable tools, 

ease of rearing, mating, and maintenance, and large clutch sizes make zebrafish ideal for the 

research setting.97  

A major hurdle that all model organism research faces is the confounding variable of 

evolution. Not all genes, proteins, or physiology have direct matches with other species. This 

often obscures our ability to learn about human biology when performing studies in zebrafish 

and other model organisms. Zebrafish exhibit a great amount of homology to the mammalian 

immune system including a high degree of conservation in inflammatory proteins, effector cell 

types, and receptors like the Toll-like receptors.98 However, humans and zebrafish have 

experienced diverse pressures necessitating the evolution of modified immune defense 

techniques unique to each species, many of which are actively being explored. 

 

Evolutionary differences confound the use of model organisms to study human biology 

 The long and independent evolutionary divergence of humans and zebrafish complicates 

efforts to compare their biology. The most recent common ancestor of Homo sapiens and Danio 
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rerio was a bony fish that lived roughly 430 million years ago.99 For context, the species Homo 

sapiens and the mouse Mus musculus diverged roughly 87 million years ago from a placental 

mammal.99 Together with the knowledge that life underwater comes with a different set of 

evolutionary pressures, we can expect great divergence in zebrafish and human proteins, more so 

than between mouse and human.  

Overall, approximately 70% of human genes have at least one obvious zebrafish 

ortholog.100 There are three orthologs of human TLR4 in the zebrafish and a single MD-2 

gene.101 Zebrafish also share the S100 family with all other vertebrates, but do not possess the 

proinflammatory calgranulin genes.102 Zebrafish have a heightened tolerance to LPS challenge 

compared to mammalian species, requiring much higher doses to be lethal, but exhibit similar 

inflammatory responses, like immune cell migration and transcriptional changes.103–105 It was 

proposed that this LPS tolerance might be an evolutionary advantage for organisms in intimate 

contact with microbes, such as that experienced in aqueous environments.105 Previous work 

shows that although one of the zebrafish TLR4/MD-2 complexes can activate a low-level 

immune response to LPS in vitro, fish with an MD-2 loss-of-function mutation do not exhibit the 

classic drastic protection against LPS toxicity observed in mice.101 Their findings suggest that 

zebrafish have a low-sensitivity TLR4/MD-2 complex that confers LPS responsiveness to a 

specific set of immune cells, but that there are likely other pathways involved in the zebrafish 

immune response to LPS. In Chapter III of this dissertation, I revisit this hypothesis.  

 

Protein evolution is a framework for mapping between model organisms and humans 

My work has been done under the premise that an explicitly evolutionary lens can allow 

us to understand how to map studies of the innate immune system between zebrafish and 
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humans. For example, the low immune response of zebrafish to LPS challenge could reflect the 

behavior of TLR4/MD-2 in the last common ancestor of humans and zebrafish. If so, results in 

zebrafish provide a baseline from which to understand human innate immunity: a comparison of 

the human and zebrafish immune systems would reveal how humans gained high sensitivity.  

In contrast, if the last common ancestor of humans and zebrafish had a high response to 

LPS, it would indicate that the evolutionary change happened on the zebrafish lineage. In this 

scenario, the low response is not a baseline from which high human activity evolved; rather, low 

activity is an evolutionary innovation specific to the zebrafish. This would mean a comparison of 

human and zebrafish immunity reveals how zebrafish lost sensitivity, not how humans gained 

sensitivity.  

Resolving this scenario requires understanding the evolutionary history of the genes 

encoding innate immune proteins. Key questions include: Which human innate immune genes 

have orthologs in zebrafish? If not all of these genes are present, was this due to differential gain 

or loss? Do the genes themselves have the same basic functions?  

Answering these questions requires a phylogenetic approach, where we trace the 

evolutionary history of individual genes. Here, we use computational tools that test whether 

genes from different organisms are homologous, and whether they are orthologous (arose by 

speciation), paralogous (arose by gene duplication), or took some more complex path of 

speciation, duplication, and loss. This allows us to know whether we are comparing the same 

gene (orthologs) or different genes (paralogs, ohnologs, etc.) between humans and zebrafish. 

Another powerful evolutionary approach involves tracing how the sequences of proteins have 

changed over time.106 This can reveal what sequence changes correlate with what functional 
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changes, and thus allow us to isolate specific functional transitions and better resolve when and 

how functional transitions happened.  

 

Summary of contributions 

Phylogenetic approaches, while powerful, are also technically difficult. They require 

multiple software packages, working together in concert, as well as maintaining a database of 

sequences used for the study. In Chapter II, I describe work I did with members of the Harms lab 

to develop topiary, a software tool for ancestral sequence reconstruction. This tool automates a 

wide variety of tasks in evolutionary inference, and thus allowed me to study the evolution of 

TLR4 and MD-2 in bony vertebrates.  

In Chapter III, I show an example in which I use our ancestral reconstruction software 

pipeline, along with careful in vitro and in vivo characterization, to better understand the 

evolutionary history of the zebrafish TLR4/MD-2 complex. I found that the zebrafish TLR4/MD-

2 complex has a higher specificity for tetra-acylated LPS variants rather than the hexa-acylated 

variant typically used to assess TLR4 function. This suggested to me that previous zebrafish 

experiments done with LPS with 6- or 7-acyl chains may have missed important biological 

insight of TLR4 in the zebrafish immune response. I was also curious to know what structural 

differences between human and zebrafish TLR4/MD-2 impart this alteration in specificity. 

Identifying the molecular basis for these functional differences would be quite difficult, though, 

considering human and zebrafish TLR4 and MD-2 only share 39% and 26% identities, 

respectively.  

With this new information, I investigated the ligand specificity of previously 

uncharacterized modern species and ancestral TLR4/MD-2 complexes linking zebrafish and 
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human evolution. I used topiary to infer the sequences of ancestral TLR4 and MD-2 proteins and 

resurrected them in the lab for functional characterization. I also investigated the functional role 

of a C-terminal peptide unique to a subset of teleost fish MD-2s that appears to be positioned to 

influence LPS binding and TLR4 activation. Importantly, I tested the hypothesis that zebrafish 

would exhibit a stronger immune response when challenged with tetra-acylated LPS in vivo 

compared to hexa-acylated LPS. Overall, my results confirm that TLR4 complexes from 

zebrafish and organisms more closely related to them have low sensitivity for LPS in our in vitro 

system and that the zebrafish in vivo response to LPS is not directly comparable to human 

biology. 

In Chapter IV I describe a study that hinges on identifying specific innate immune 

proteins in zebrafish. I investigated the claim that zebrafish might have convergently evolved a 

calprotectin-like protein which was previously suggested in the literature.107,108 S100A9 and 

S100A8 do not have orthologs in zebrafish, so I used insights from phylogenetic studies and 

transcriptional response datasets to identify homologous candidates. I found that the zebrafish 

protein classified as “calprotectin”, and all other candidate proteins tested, do not exhibit 

canonical antibacterial or proinflammatory functions of calprotectin. I conclude from this study 

that when developing zebrafish models of innate immunity, it is necessary and prudent to 

account for evolutionary divergence and provide functional characterizations of the proteins 

considered.   

 

Conclusion 

 In conclusion, my work has revealed that the genes and mechanisms responsible for 

innate immune recognition and response to pathogenic bacteria have evolved independently 
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between vertebrate species and have significantly diverged between humans and zebrafish. These 

results challenge the assumption that innate immune recognition universally relies on specific 

germline-encoded receptors, but supports that the response to microbial products, like LPS, is an 

ancestral trait.109 Although the innate immune roles of TLR4 and calprotectin cannot be directly 

related between humans and zebrafish, there is much we can still learn about the evolution of 

protein complexes and innate immunity through further studies to determine how the zebrafish 

defends itself from infection and injury. 

  

Bridge to Chapter II 

 Many studies of protein evolution make use of ancestral sequence reconstruction to infer 

the sequences and structures of proteins from ancestral organisms and compare their function to 

present day proteins. This technique requires copious amounts of time and stitching together 

many complex bioinformatic tools, which necessitates expert knowledge of coding, 

phylogenetics, evolutionary models, and the tools available for your specific application. 

Previous graduate students in Harms lab, including Dr. Zach Sailer, Dr. Joseph Harman, and Dr. 

Andrea Loes, had worked with Dr. Harms to develop an ancestral sequence reconstruction 

pipeline to study the TLR4 complex. When Sophia Phillips and I began our own investigations 

into the evolution of S100A9 and TLR4, we set out to further develop this pipeline into a widely 

available and accessible tool. With Dr. Michael Harms as the software development and project 

administration lead, we created topiary: a publicly available ancestral sequence reconstruction 

pipeline integrating several well-established software packages with handy time-saving scripts to 

reduce the workload, accompanying explanations of what the software is doing at each step, and 

guidance on how to tailor and interpret your study.  
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CHAPTER II 

TOPIARY: PRUNING THE MANUAL LABOR FROM ANCESTRAL SEQUENCE 

RECONSTRUCTION  

 

*This chapter contains previously published co-authored material. See supplement for copyright 

terms and conditions. 
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ABSTRACT 

Ancestral sequence reconstruction (ASR) is a powerful tool to study the evolution of 

proteins and thus gain deep insight into the relationships among protein sequence, structure, and 

function. A major barrier to its broad use is the complexity of the task: it requires multiple 

software packages, complex file manipulations, and expert phylogenetic knowledge. Here we 

introduce topiary, a software pipeline that aims to overcome this barrier. To use topiary, users 

prepare a spreadsheet with a handful of sequences. Topiary then: (1) Infers the taxonomic scope 

for the ASR study and finds relevant sequences by BLAST; (2) Does taxonomically informed 

sequence quality control and redundancy reduction; (3) Constructs a multiple sequence 

alignment; (4) Generates a maximum-likelihood gene tree; (5) Reconciles the gene tree to the 

species tree; (6) Reconstructs ancestral amino acid sequences; and (7) Determines branch 

supports. The pipeline returns annotated evolutionary trees, spreadsheets with sequences, and 

graphical summaries of ancestor quality. This is achieved by integrating modern phylogenetics 

software (Muscle5, RAxML-NG, GeneRax, and PastML) with online databases (NCBI and the 

Open Tree of Life). In this paper, we introduce non-expert readers to the steps required for ASR, 

describe the specific design choices made in topiary, provide a detailed protocol for users, and 

then validate the pipeline using datasets from a broad collection of protein families. Topiary is 

freely available for download: https://github.com/harmslab/topiary. 
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INTRODUCTION 

Since it was first proposed in 1963, ancestral sequence reconstruction (ASR) has become 

a well-established method to study the evolutionary history of modern-day proteins.110,111 Studies 

of ancestral proteins uniquely reveal sequence features that are important for function and 

stability that cannot be readily identified from studies on modern-day proteins alone.106 For 

example, ASR has been used for crystallographic and kinetic studies on ancestral proteins when 

their modern-day descendants were not amenable to crystallization112, for bioengineering 

enzymes that are both thermally stable and catalytically active using ancestral enzymes as 

templates113, and in the discovery of an ancestral coagulation factor VIII protein that is now used 

as a therapeutic for people with hemophilia114. These, and many other studies76,111,114–118 have 

established this technique as an incredibly powerful tool in the protein scientist's toolkit.  

Despite its utility, ASR has largely remained a technique for phylogenetics experts. In 

part, this is due to the complexity of the task. The individual steps of an ASR study—dataset 

construction, multiple sequence alignment, inference of a phylogenetic tree, and ancestor 

reconstruction—are usually done using separate software. This means a would-be ASR user must 

learn and intelligently select the most useful combination of software from a large pool.111 The 

problem is made worse because some often-used software is no longer maintained: for example, 

PAML4 was last updated in 2007.119 It can also be extraordinarily difficult to organize and 

convert the outputs from one program into inputs for the next. At best, this is an unproductive 

use of time; at worst, this can lead to information loss or even errors in the final reconstructed 

sequences.  

Here we introduce topiary, an ASR software pipeline that addresses these problems. Our 

first goal was to simplify and streamline the tasks necessary for an ASR study, simplifying and 
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codifying existing best-practice ASR into one convenient package. We hope achieving this goal 

will make ASR accessible to non-experts. We further hope this will improve reconstruction 

quality generally by removing monotony and manual file manipulations that can lead to 

mistakes. Our second goal is to promote and enable high-quality reconstructions. To do so, we 

built our pipeline around modern software tools and incorporated important-but-sometimes-

difficult steps directly into the pipeline: validation of protein identity by reciprocal BLAST, 

gene-species tree reconciliation, and explicit ancestral character reconstruction of gaps.  

There are two design features that set topiary apart from many other methods. The first is 

the use of spreadsheets rather than arcane text formats for inputs and to store the sequence 

database/alignment through all steps. This makes it much simpler to prepare inputs and track 

changes over the course of the pipeline. The second design feature is that topiary is species-

aware through all steps. From the first step onward, it uses the Open Tree of Life synthetic 

species tree to inform every choice120: how to focus initial BLAST queries, how to lower 

sequence redundancy while preserving taxonomic diversity, and how to construct the best 

possible evolutionary tree consistent with both the protein and organismal evolutionary signals. 

This integration greatly simplifies the user experience and ultimately yields rooted, well-resolved 

phylogenetic trees for ancestral reconstruction.  

We have broken our description of the software package into four sections. In the first 

section, we go through the process of ASR in general, describing the state-of-the-art for such a 

calculation. Our goal is to familiarize non-specialist readers with the workflow so they can 

understand what topiary does (and why), as well as interpret the output from a topiary 

calculation. In the second section, we describe the specific pipeline and design decisions within 

the topiary package. This section focuses on the automated, software-driven steps in the pipeline. 
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In the third section, we briefly describe the protocol for running topiary in practical terms for the 

user, working through an example calculation. Finally, in the fourth section, we describe the 

work done to validate the pipeline.  

 

OVERVIEW OF ANCESTRAL SEQUENCE RECONSTRUCTION  

Define the problem  

The most important task in an ASR study is to define the problem. What ancestors do you 

want to reconstruct? What feature(s) of those proteins will you measure? For an evolutionary 

biochemist or protein engineer, ASR studies often involve tracing the evolution of functions 

observed in modern proteins. Figure 2.1 shows this schematically for a hypothetical protein 

family. Paralog A has some activity (denoted with a star); paralog B does not. (As a reminder, 

paralogs are homologs that arose by gene duplication; orthologs are homologs that arose by 

speciation.) If we are interested in the evolution of the star activity, we would likely be interested 

in reconstructing ancAB and ancA (arrows, Figure 1). Because all A paralogs have the activity, 

we predict ancA did as well. But because only A paralogs have the activity— and not paralog B 

or the fish proteins—we predict ancAB was not active. By reconstructing ancA and ancAB, we 

can isolate and study the key sequence differences between the ancestors that conferred the 

activity. 

The first step in an ASR study is to build up a picture of the functions of modern proteins 

in the family through pilot studies and literature searches. Specifically, one must know: (1) The 

biochemical/functional features of interest and, (2) What homologs exist in what organisms. In 

our example, identifying ancA and ancAB as the ancestors of interest required knowing the 

distribution of function across modern proteins. If we knew only the function of human paralog 
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A, but no other proteins in the family, we would be hard-pressed to choose the appropriate scope 

for the ASR study. Likewise, if we knew that paralog A but not paralog B existed, we would not 

predict the ancAB to ancA transition. The topiary package uses a list of modern proteins 

covering the relevant paralogs and species as the starting point for the ASR pipeline (later: the 

“seed dataset”).  

 

Figure 2.1. Define the ancestral reconstruction problem. The panel shows the evolutionary 

history of a hypothetical protein family with two paralogs, A and B. The tree is rooted: ancestors 

are arranged from ancient to recent, left to right. Black circles at the tips of the tree denote 

modern protein sequences from the indicated species. Colored internal nodes indicate gene 

duplications (purple) or speciations (green). An ASR study aims to reconstruct the sequences of 

these ancestral nodes. The node annotated with a blue “x” is not reconstructable (see text). A 

biological activity of interest is indicated on the tips: active (star), inactive (black dash). The 

simplest evolutionary scenario would have activity evolving between ancAB and ancA; these 

would be good candidates for reconstruction. 
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Note: it is important that the ancestral protein of interest cannot be the root of the 

phylogenetic tree. To reconstruct an ancestor, one needs input from three branches: the 

descendants and the previous ancestor. The ancFamily ancestor in Figure 2.1 at the root of the 

tree has no sequence information from the ancestral branch (dashed line) thus we cannot 

reconstruct ancFamily. This contrasts with ancAB, which can be reconstructed because it forms a 

node at the intersection of three branches: a descendant branch leading to ancA, a descendant 

branch leading to ancB, and an ancestral branch leading back to the fish proteins (known as the 

outgroup). This sets a limit on our deepest reconstructable ancestor: our dataset must include an 

outgroup that diverged one node earlier than our deepest ancestor of interest.  

 

Construct a sequence dataset  

Once we have identified the ancestors we would like to reconstruct (Figure 2.1), we 

begin the steps of the ASR pipeline (Figure 2.2). The first step is to create a dataset of high-

quality sequences spanning the relevant species and protein family members. Continuing our 

example, we start with a handful of sequences that cover bony vertebrates (humans through fish) 

and the two paralogs (A and B) (Figure 2.2a). We then collect as many sequences from as many 

species as possible, usually by BLASTing against online databases using our starting sequences 

as queries (Figure 2.2b).  

Our confidence in our reconstructed ancestral sequences depends on the quality and 

diversity of the sequences in the alignment.121 Because of this, we perform quality control on the 

resulting sequence dataset. We want to avoid low-quality or partial sequences, keep only one 

sequence per gene per species, and maintain an even representation of proteins across species. In 

our example in Figure 2.1, the branches leading from ancAB are amniotes 
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(mammals/birds/reptiles), amphibians, and ray-finned fishes. To maximize reconstruction 

quality, we should ensure a good representation of protein sequences from these species in our 

dataset.  

 

Sequence alignment  

The next step is to build a multiple sequence alignment (MSA) (Figure 2.2c). Alignment 

quality is critical for a successful reconstruction study.121 This is because an MSA makes 

homology statements, asserting that sites within each column arose by evolutionary descent. 

Incorrect homology statements will lead to poor reconstructions. We use alignment software to 

generate an MSA, followed by more quality control. Usually, alignment quality ends up being 

assessed by computational tools122,123 and/or by manual evaluation and editing124,125. Generally, 

we remove difficult-to-align termini, poorly aligned sequences, or whole regions of an alignment 

that may not be of interest for an ASR study (for example, a disordered and evolutionarily 

divergent linker region).  

 

Infer a maximum likelihood gene tree  

The next step is to construct a phylogenetic tree describing the evolutionary relationships 

between the sequences in our alignment (Figure 2.2d, tree on the right). Most ASR studies do 

this using probabilistic models of sequence evolution. These are built around substitution 

matrices that describe the probability of specific amino acid changes over evolutionary time. (For 

example, aspartic acid to glutamic acid will have a much higher probability than aspartic acid to 

phenylalanine.) Most models consist of parameters defined in the model as well as parameters 
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estimated from the input alignment. Selecting the correct substitution matrix is critical to high 

quality ancestral reconstruction.126 

 

Figure 2.2. Ancestral sequence reconstruction has six main steps. (a) Start with a handful of 

homologous protein sequences spanning the paralogs of interest and their taxonomic distribution. 

Throughout the figure, color indicates the identity of the protein (orange: paralog A, blue: 

paralog B, and green: outgroup); the icon indicates the species (human, chicken, frog, fish). (b) 

Use these sequences as BLAST queries to construct an initial sequence dataset. Some returned 

sequences are not homologs of interest (purple); others are low quality (i.e., a partial sequence 

indicated by ‘x’). (c) Select high quality sequences and generate a multiple sequence alignment 

from that dataset. (d) Infer a maximum likelihood gene tree ‘G' for the protein sequences in the 

alignment. This infers branching relationships but does not orient the tree with respect to time. 

Poorly reconstructed protein relationships may exist (clade in gray box). (e) Reconcile the gene 

tree with the species tree ‘S', yielding a reconciled gene tree ‘R'. This corrects weakly supported 

protein relationships and roots the tree in time. (f ) Reconstruct the sequences of ancestral 

proteins of interest using the reconciled tree. Sequences are selected by posterior probability 

(PP). Sequence logo depicts ancestor “ancA” with letter height proportional to amino acid PP. 

Position 5 is unambiguously “S”; position 6 is likely “L” but could be “M”; position 7 could be 

“E”, “R”, or “K”. Examples of maximum likelihood ancestral sequences are shown in brown for 

the specified nodes. (g) Assess confidence in tree topology. Branch supports for two different 

trees indicate strong support for the top tree (98) and weak support for the bottom tree (2). 
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Most ASR studies use a maximum likelihood (ML) modeling framework. The goal is to 

find the substitution model and evolutionary tree that give the highest probability of observing 

the sequences in the alignment. The maximization process involves selecting a substitution 

matrix, tuning quantitative model features, inferring the tree topology (i.e., the pattern of 

branching events that gave rise to the modern sequences), and optimizing the branch lengths 

(how much evolutionary change occurs between each branching event). This is a complex, 

many-parameter, optimization problem. For more details, and discussions of alternative 

approaches including Bayesian methods, see111,118,127.  

After this step, one has an ML gene tree with a branching pattern describing the 

evolutionary relationships between all sequences in the alignment (Figure 2.2d, tree G). The 

inferred tree reveals which sequences group together, but not the order in which these groupings 

evolved. In technical terms, the tree is unrooted. This is because most probabilistic evolutionary 

models are time reversible; the probability of the evolutionary branching relationship is 

independent of where one starts the evolutionary process. In practical terms, it means we cannot 

determine which ancestors were the most ancient without outside information. 

  

Reconcile the gene tree to the species tree  

We now reconcile the inferred gene tree with the species tree to obtain our gene-species 

reconciled tree (R in Figure 2.2e). In this process, we identify nodes in the gene tree that 

correspond to speciation versus gene duplication events (green and purple nodes on tree R, 

respectively). Note that reconciliation is not always possible or desirable; however, we will leave 

that consideration until the next section.  
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This reconciliation process has two important outcomes. First, it roots the gene tree, 

allowing us to order the occurrence of ancestors in time. This is because the species tree is 

rooted; we know which ancestors occurred at what times based on outside information, such as 

the fossil record. By identifying speciation events in the gene tree, we learn the temporal order of 

ancestors in the gene tree.  

Second, reconciliation resolves ambiguous relationships within the gene tree. This is 

shown in the gray boxes in Figure 2.2d,e. The initial gene tree placed human and frog proteins 

together to the exclusion of the chicken protein. This does not match known species 

relationships. One might explain this through a complicated set of gene duplications and losses: 

maybe, after an early duplication, humans and frogs independently lost one copy of the gene and 

chickens lost the other. A far simpler explanation is that the gene tree incorrectly placed humans 

and frogs together. Reconciliation software uses a variety of strategies to determine whether to 

add evolutionary events or rearrange the tree topology.128 

For an ASR study, the key takeaway is that gene-species tree reconciliation yields a 

rooted gene tree that incorporates additional species-level information. This leads to higher 

quality reconstructed ancestral sequences and allows us to order those ancestors in time.129 

 

Reconciliation: The special case of microbial genes  

Although reconciliation should, in principle, yield a more accurate picture of the 

evolutionary history of a protein, in practice, reconciliation is not always possible. Problems are 

particularly likely for microbial genes. This is because we have relatively low confidence in the 

microbial species tree. (Indeed, some question the existence of a single microbial species tree, or 

even the concept of a microbial species130) As a result, ASR studies of microbial proteins have 
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generally relied on unreconciled gene trees.131 Reflecting this reality, topiary does not reconcile 

the gene and species trees for datasets consisting of purely microbial genes. Instead, topiary roots 

the resulting tree using the midpoint approximation method.132 Because reconciliation is not 

performed, topiary does not label nodes with evolutionary events such as duplication or 

speciation. For the rest of this walk through, we will describe the approach assuming 

reconciliation is performed as this is a more complex version of the pipeline than the simplified 

microbial workflow.  

 

Reconstruct ancestors  

We can now reconstruct ancestral sequences (Figure 2.2f). We traverse the reconciled 

tree and estimate the sequences of every ancestor.133 For each ancestor, we consider sites 

individually. We calculate the likelihood of all 20 amino acids at that site given the ML 

parameters of the probabilistic model and the amino acids observed at that position in the 

alignment. From these, we determine the posterior probability (PP) for each amino acid. This is 

the likelihood of a given amino acid relative to the likelihoods of all amino acids. (In 

mathematical terms, PPi = Li/sum(Laa), where Li is the likelihood of amino acid i and sum(Laa) 

is the sum of the likelihoods of all amino acids.)  

We use these posterior probabilities to construct ML ancestors. For each site, we select 

the amino acid with the highest posterior probability. For example, at ancA site 5 in Figure 2.2e, 

we select “S” because it has a PP close to 1.0. This is an unambiguous reconstruction. Not all 

sites are this clear cut. At site 6, two amino acids are possible; we select the amino acid with the 

higher probability of the two (“L” over “M”). At site 7, there are multiple possibilities; however, 

we would still select the amino acid with the highest PP. For ancA, the sequence that maximizes 
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the posterior probability at these positions is “SLE”. (Note: gaps are usually treated separately 

and reconstructed using maximum parsimony; see Section 3 for details).  

 

Evaluate results  

Before synthesizing and characterizing ancestral proteins, we evaluate their quality. We 

look at two metrics. The first is the average posterior probability for the ML amino acid at all 

positions in the ancestor. A well reconstructed ancestor would have an average PP of 1.0, 

meaning the model has high confidence in the sequence at all sites. At the other extreme, a 

completely ambiguous ancestor would have an average PP of 1/20 (0.05), meaning each site 

could have any one of the amino acids. Generally, ancestors in published studies have PP > 0.85.  

To assess the effect of phylogenetic uncertainty on inferences about the functions of 

ancestors, we synthesize two versions of every ancestor. The first is the ML ancestor, as 

described above. The second is the so-called altAll ancestor.134 For the altAll ancestor, we 

replace all ambiguous ML amino acids with the next most-probable amino acid. If an ancestor 

has 10 ambiguous sites, the ML and altAll would differ at all 10 of these sites. By functionally 

characterizing both the ML and altAll versions of an ancestors, we can determine which features 

are robust to uncertainty in the reconstruction.76,115,135–138 

The second quality metric is the branch support for a given ancestral node. Posterior 

probabilities measure our confidence in the ancestral sequence given a particular phylogenetic 

tree, but they do not measure our confidence in the tree itself. (Put another way, we have the 

sequence of an ancestral node, but how confident are we that the node existed?) Branch supports 

measure this confidence. We discuss how these are estimated in Section 3; for now, we focus on 

interpretation.  
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A branch support measures our confidence that a given group of sequences cluster 

together, typically on a 0–100 scale. Figure 2.2g shows branch supports for two possible 

arrangements of the tree: placing paralog A with B (orange with blue) or paralog B with the fish 

outgroup (blue with green). In this example we have high support (98/100) for placing paralogs 

A and B together, with contrasting low support for separating them (2/100). For an ASR study, 

we need to have high confidence that an ancestral node existed (typically branch support >85) 

prior to characterizing the ancestral protein.  

 

THE TOPIARY PIPELINE  

The steps above are relatively complex, involving multiple different software packages 

for dataset construction, sequence quality control, alignment, model selection, gene tree 

inference, gene-species tree reconciliation, and ancestral reconstruction. Further, there are places 

where expert phylogenetic knowledge might be required. How does one obtain a species tree? 

How does one select which species to include when trying to reconstruct a specific ancestor? 

How does one evaluate whether a given ancestor is well reconstructed? The topiary package 

aims to streamline this process, simplifying the workflow and helping non-experts make 

evolutionarily informed decisions.  

Only a few steps in ASR require human input: defining the problem, checking the 

alignment, and characterizing the resulting ancestors. The rest of the steps are computational, 

with different software packages typically chained together via user manipulation. Given this 

process, we set out to build software that facilitates the few human-centric steps and then 

automates the rest of the pipeline (Figure 2.3). In this section we walk through the topiary 

pipeline, describing the design decisions and software used throughout. Here we emphasize the 
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automated steps; the following Section 4 focuses on the human steps. Both will closely parallel 

the steps described in general terms in Figure 2.2. 

 

Software design  

One of our design goals was to use software that is state-of-the-art, up-to-date, and 

currently maintained. Topiary uses Muscle5 for alignment139; RAxML-NG for maximum 

likelihood gene tree and ancestral sequence inference140; GeneRax for gene-species tree 

reconciliation128; and PastML for gap reconstruction141. Under the hood, it uses the ETE 3 library 

for tree manipulations142; Biopython to access NCBI BLAST and the NCBI database143,144; 

python-opentree to interact with the Open Tree of Life taxonomic database120,145; and toytree for 

drawing trees146. This is implemented within a standard Python 3 scientific computing 

environment built around numpy and pandas.  

The pipeline (Figure 2.3) is broken into two stages: (1) Construct an MSA from the seed 

sequences and (2) Construct phylogenetic tree ancestors given the MSA. The first computational 

stage of the pipeline can be run on a user's personal computer (Linux, macOS, Windows); the 

second stage is best run using a high-performance computing environment and requires Linux or 

macOS. Users can run the pipeline via a few command-line programs, or work through each step 

individually and interactively in a Jupyter notebook. For ease of installation, the software and all 

dependencies are readily installed using the “conda” software environment. The software is also 

available for direct download at https://github.com/ harmslab/topiary. A collection of example 

datasets and Jupyter notebooks are available at https://github.com/ harmslab/topiary-examples.  
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Figure 2.3. Summarized topiary ASR pipeline. The pipeline is a series of human and 

automatic steps (indicated on the left with brain and topiary icons, respectively). The 

approximate time, in hours, required for each step is indicated on the right. 

 

Our focus will be on topiary's algorithms and software settings; however, in passing, we 

want to note several aspects of the software. We refer users to the online documentation 

(https://topiary-asr.readthedocs.io/) for more details.  

1. Topiary has a fully documented Application Programming Interface (API), allowing 

users to run interactive analyses in a Jupyter notebook or write their own python scripts.  
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2. Topiary is multithreaded, improving the speed of local BLAST queries, redundancy 

reduction, and NCBI downloads. It also takes full advantage of the parallelization support 

implemented in Muscle5, RAxML-NG, and GeneRax.  

3. Topiary allows users to restart interrupted pipelines without having to start over. This is 

particularly useful for the second stage, which can take a fair amount of time to run on a 

computing cluster.  

 

Stage 1: Seed to alignment  

As described in the Overview, the starting point for an ASR calculation is defining the 

problem. Topiary does this in a straightforward way: the user constructs a seed dataset that 

defines the paralogs of interest and the desired taxonomic distribution for the ASR study. For the 

example worked through in Figures 2.1 and 2.2, the seed might include three sequences: 

paralogs A and B from humans and a single protein from zebrafish (Figure 2.2a). The user 

prepares the seed dataset as a spreadsheet with four columns: sequence, species, name (e.g., the 

paralog identity), and aliases (what names this protein has across the various online databases). 

The species in the seed are used as “key species” in all downstream analyses. We go into further 

details on how to construct this seed dataset in Section 4 . From this starting point, topiary 

downloads high-quality homologous protein sequences from public databases and then generates 

a draft multiple sequence alignment.  

 

Initial dataset construction  

Topiary uses the seed sequences to BLAST against the NCBI non-redundant protein 

sequence database. To maximize the number of productive results, topiary automatically sets the 
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taxonomic scope of the BLAST search. For non-microbial proteins, the scope is given by the 

taxonomic rank that encompasses the key species from the seed dataset, plus a user-defined 

expansion. For the example above—which included humans and zebrafish—the taxonomic rank 

is Vertebrata. With an expansion of one, the scope would be Craniata; with an expansion of two, 

the scope would be Chordata (Vertebrata → Craniata → Chordata). Using the default expansion 

of two, topiary would BLAST each of the seed sequences against the NCBI non-redundant 

protein database, limiting its results to Chordata. By default, topiary pulls down up to 5000 hits 

per seed with an intentionally generous e-value cutoff of 0.001. (Users have full control over the 

BLAST search parameters.) Note that a seed dataset containing only bacterial or archaeal 

sequences would be assigned a taxonomic scope of “All Bacteria” or “All Archaea.”  

In addition to this default method for building a sequence dataset, users can specify other 

sources of sequences including other NCBI BLAST databases, local BLAST databases, or 

previously saved BLAST XML files. Users can also manually add sequences by appending them 

to the initial spreadsheet.  

Once the initial dataset is constructed, topiary identifies each hit by reciprocal BLAST. It 

downloads proteomes for the key species in the seed dataset and constructs a combined local 

BLAST database. It then uses the hits above as queries against the key species BLAST database, 

searching the resulting reciprocal hits for text descriptions that match the aliases specified in the 

seed dataset. (See Section 4 for details about defining aliases.) It weights each hit by 2s/t where s 

is the BLAST bit score, and t is a user-defined parameter (default = 1). Finally, topiary calculates 

the posterior probability that the sequence is a given paralog by calculating the sum of the 

weights for all reciprocal hits that match a paralog alias and then dividing by the sum of the 

weights from all reciprocal hits (Frith, 2019).147 A sequence is assigned a paralog identity based 
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on a user-defined stringency cutoff (default = 0.95). Multiple paralogs may be assigned if the 

sum of their posterior probabilities is above the cutoff. 

 

Redundancy reduction, quality control, and alignment  

This BLAST approach typically finds many more sequences than are necessary or 

practical for a standard phylogenetic analysis. We must therefore select sequences that sample 

the diversity in the dataset without compromising our ability to infer ancestors (step from Figure 

2.2b,c). Topiary selects a subset of sequences using a combination of taxonomy, sequence 

identity, and sequence quality. By default, topiary aims to build an alignment with approximately 

one sequence per site in the average length of seed sequences. If our seed sequences were 100 

amino acids long, topiary would try to build an alignment with 100 sequences. This prevents 

over-fitting and makes later computational steps faster. (Users can change the target alignment 

size if desired.)  

Topiary uses four strategies to decrease the size of the dataset while maintaining dataset 

quality. First, sequences defined in the initial seed dataset (Figure 2.2a) are kept, regardless of 

their quality score or redundancy. This means users can pre-specify sequences they need in their 

final alignment.  

Second, for datasets containing non-microbial genes, topiary selects sequences based on 

their placement on the species tree rather than solely based on their identity. (For microbial 

datasets, topiary lowers redundancy based on sequence identity alone because microbial species 

trees are poorly resolved.) When lowering redundancy in a species-aware fashion, topiary takes 

the desired alignment size and then divides this “budget” across the species seen in the dataset. 

The algorithm is shown in Figure 2.4 for a hypothetical dataset with seven orthologous proteins 
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and a target alignment size of five. Topiary starts by downloading the species tree from the Open 

Tree of Life for all represented species. It then assigns the deepest ancestral node on the tree a 

budget of five sequences. Topiary traverses the tree, from ancestor to tips, splitting the sequence 

budget as evenly as possible among descendant lineages at each step. In the example, it assigns 

two sequences to the ancestor of bony fishes and three sequences to the ancestor of tetrapods. On 

the bony fish lineage, it assigns one sequence each to the zebrafish and salmon, meaning these 

sequences will be kept in the final dataset. On the tetrapod branch, the algorithm continues, 

assigning one sequence to the frog and two sequences to the ancestor of amniotes. It then gives 

one sequence to the bird/reptile ancestor (dark green clade) and the other sequence to the 

mammal ancestor (light green clade).  

Because of this explicitly taxonomic strategy, sequences that are taxonomically important 

are not removed from the dataset, even if their quality is lower than other, taxonomically 

redundant, sequences. The frog sequence in Figure 2.4, for example, has a long lineage-specific 

insertion. But because it is the only amphibian representative in this (toy) alignment, it is 

preserved. We leave the decision of whether or not to keep this sequence up to the user when 

they review the alignment. We also note that, in practice, there is enough sequence and 

taxonomic diversity in current databases that we rarely need to trade alignment quality for 

taxonomic diversity.  

Third, lowering sequence redundancy, topiary preferentially keeps sequences that align 

well to the seed sequences. We take this alignment-focused approach because ASR can only 

reconstruct ancestral states for columns seen in many modern proteins. Lineage-specific 

insertions and deletions do not contribute to the ancestral inference and, further, may interfere 

with MSA construction. To calculate alignment quality, topiary aligns clusters of sequences from 
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closely related organisms to the whole seed sequence dataset using Muscle5. It identifies “dense” 

columns in which most sequences have non-gap characters (the gray shaded boxes in Figure 

2.4). It then calculates two quality scores for each sequence. First, it calculates the proportion of 

dense columns with non-gap characters in the sequence. Lower proportions indicate truncated 

sequences. Second, it looks for long stretches of non-gap characters that are not in “dense” 

columns, indicating a lineage-specific insertion. In our example dataset, topiary would select the 

human and chicken sequences over mouse and lizard, as these have the best alignment scores 

(Figure2. 4). 

 

Figure 2.4: Topiary redundancy reduction and quality control. This analysis starts with seven 

sequences (taken from seven organisms) with the goal of retaining five for the downstream 

analysis. The numbers next to the ancestral nodes on the tree are the budget allocated for all 

descendants: five for all organisms, two for the fishes, three for tetrapods, etc. The “keep” 

column indicates which sequences are kept for further analysis after the redundancy reduction 

step. A schematic alignment is shown on the right, with poorly aligned and missing regions 

labeled. The alignment quality is used to select which sequences to keep within taxonomic 

blocks (human/mouse and lizard/chicken, in this example). 

 

Fourth and finally, there are a few steps where topiary lowers redundancy based on 

shared sequence identity. Whenever this is done, topiary chooses the sequence to keep based on 

its relative quality. It calculates an identity score by performing a pairwise alignment with the 
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Biopython pairwise2.align.localxx function and dividing the score by the length of the shorter 

sequence. If this number is above a specified identity cutoff, topiary selects which of the two 

sequences to discard based on a rank ordered vector of sequence features. These features are: 

“Sequence length deviates from median sequence length by more than 25%” > “Low quality” > 

“Partial” > “Predicted” > “Precursor” > “Hypothetical” > “Isoform” > “Structure” > “shorter 

sequence” > “random choice”. Some of these features are calculated by topiary (i.e., sequence 

length), others are extracted from NCBI sequence descriptions (i.e., Partial, Hypothetical). This 

process enriches the final dataset for higher-quality protein sequences.  

This protocol yields a relatively clean dataset with 5% more sequences than our target 

alignment number. We leave these extra sequences in place so we can manually delete the worst 

aligners upon visual inspection and still have our approximate target number of sequences.  

 

Alignment  

Topiary uses Muscle5 with its default parameters to generate the MSA (Figure 2.2c).139 

We selected this algorithm due to its demonstrated high performance, as well as the extremely 

fast “super5” algorithm that is useful for generating draft alignments for large datasets. Advanced 

users can set all Muscle5 options via the API.  

There are differing views about whether to manually edit alignments or not.124,125 The 

topiary pipeline leaves this decision in the hands of the user. The goal for topiary is to make the 

task of finalizing an alignment relatively painless by carefully filtering for well-aligned 

sequences and by using state-of-the-art alignment software: most of the sequences should already 

be well aligned. Over the years, we have settled on a 5% approach: automate up to the point 

where the alignment is 95% done, and then finalize the alignment with a human brain. This has 
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proven much more practical than designing a complicated (and thus fragile and unpredictable) 

heuristic to completely automate alignment construction.122 In practice, most of our manual work 

consists of deleting a handful of problematic sequences, followed by global realignment in 

Muscle5. (See Section 4 for details.)  

 

Stage 2: Alignment to ancestors  

In stage 2, we go from our alignment to ancestral sequences (Figures 2.2c–g and 2.3). 

We selected RAxML-NG140 as our primary phylogenetic package. One key reason for this choice 

was that RAxML-NG integrates well with GeneRax, a clear choice for reconciling gene and 

species trees. Both GeneRax and RAxMLNG use the same underlying computational 

phylogenetics library—libpll148—thus ensuring internally consistent implementations of 

evolutionary models. Further, GeneRax was explicitly tested with RAxML-NG, making this the 

most conservative choice of software combinations. Finally, we wanted to calculate branch 

supports for our species-reconciled gene tree (Figure 2.2g). Because GeneRax does not 

implement any fast-branch support methods, we estimate branch support by non-parametric 

bootstrap.149 RAxML-NG can return pseudoreplicate alignments matched to pseudoreplicate 

trees. This allows us to feed bootstrap pseudoreplicates into GeneRax as separate, parallel 

calculations and thus conveniently determine branch supports on our species-reconciled gene 

trees.  

  

Infer the evolutionary model  

The first step in a maximum likelihood phylogenetic analysis is determining the 

maximum likelihood model of sequence evolution. This includes the matrix for amino acid 
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substitution (i.e., LG, JTT, WAG, etc.), the stationary frequencies for that model, rate variation 

parameters (Γ distribution, rate categories, etc.), and the proportion of invariant sites. Topiary 

uses a conventional method to find the best model.150 It uses RAxMLNG to generate a maximum 

parsimony tree from the alignment. It then optimizes branch lengths and other parameters using 

all 360 combinations of these model parameters implemented in the computational library that 

underlies RAxML-NG and GeneRax. Finally, it ranks these models based on a corrected Akaike 

Information Criterion, which penalizes models with excess parameters to prevent overfitting.  

Although this protocol is done automatically, topiary returns a variety of statistics 

including AIC (Akaike Information Criterion), AICc (Corrected Akaike Information Criterion), 

and BIC (Bayesian Information Criterion) to help users who want more control over model 

selection. Via the API, users can also specify a custom input tree or a subset of the models to test. 

(Note: as of the current version, topiary excludes the LG4M and LG4X models, as these cause 

GeneRax to crash during gene-species tree reconciliation.)  

 

Build a maximum likelihood gene tree  

Topiary next infers an ML gene tree using the inferred phylogenetic model with the 

default RAxML-NG settings for the “—search” protocol. This starts the inference from 10 

random trees and 10 different parsimony trees. It then optimizes the tree topology using a subtree 

pruning and regrafting (SPR) subtree cutoff of 1, with an automatically selected fast versus slow 

SPR radius. Branch lengths are optimized using the NR-FAST algorithm. The tree with the 

highest likelihood is selected and used for downstream analyses (Figure 2.2d, tree G). Advanced 

users have full access to all RAxML-NG options via the topiary API.  
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Reconcile gene and species tree  

The next step in the pipeline is to reconcile the gene tree with the species tree (Figure 

2.2e). (Note, this reconciliation step is skipped for datasets containing only microbial genes.) 

Reconciliation automatically roots the tree and has been shown to improve the quality of 

reconstructed sequences.129 For this purpose, we use GeneRax, a new high-performance program 

for reconciling gene and species trees. Unlike other, heuristic, methods, GeneRax explicitly 

models evolutionary events (speciation, duplication, loss, and lateral gene transfer) as well as 

sequence evolution (e.g., the LG model).128 If the gene and species trees are discordant, GeneRax 

can either rearrange the gene tree to follow the species tree or incorporate an evolutionary event 

(such as duplication) to account for the discordance. GeneRax finds the maximum likelihood 

reconciled tree that balances the signal from the aligned sequences against the plausibility of the 

evolutionary events required to generate that signal.  

Topiary uses the ML evolutionary model and ML gene tree inferred previously as inputs 

to GeneRax. For the rooted species tree, topiary automatically downloads the most recent 

synthetic tree from the Open Tree of Life (OTL) database.120,145 (Previous steps in the pipeline 

ensure that all sequences that have made it to this step come from species that are present in the 

OTL database.) Any polytomies in this tree are resolved arbitrarily prior to the reconciliation 

inference. Topiary runs GeneRax with the default parameters128: topology optimization using 

rounds of SPR with increasing radius (from 1 to 5) using the UndatedDL reconciliation model. 

The UndatedDL model accounts for duplication and loss events. Topiary users can select the 

UndatedDTL model, which allows lateral transfer, if they expect lateral gene transfer for their 

genes of interest.  
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The resulting tree is a maximum likelihood species-reconciled gene tree with optimized 

branch lengths and nodes labeled with inferred evolutionary events (speciation, duplication, or 

transfer). GeneRax returns a variety of other outputs that are made accessible to topiary users, 

but only the reconciled tree is used further in the pipeline.  

  

Reconstruct ancestors  

The next step is to infer sequences of ancestral nodes on the species-reconciled gene tree 

(Figure 2.2f). For this, we use RAxML-NG, which implements a standard marginal ancestral 

reconstruction method.133 (This differs from previous versions of RAxML, which used a non-

standard reconstruction method that was not comparable to other approaches.) RAxML-NG finds 

the amino acid at each site in each ancestor that maximizes the likelihood of observing the 

sequence alignment given the tree, branch lengths, and phylogenetic model. This returns a matrix 

of posterior probabilities for each amino acid at each site in the alignment for each ancestral 

node. Topiary extracts the sequence of the maximum likelihood ancestor, as well as the so-called 

altAll version of the ancestor that incorporates alternate reconstructed amino acids at ambiguous 

positions. It uses a default cutoff of 0.25 to identify ambiguous sites134; this can be set by the 

user.  

The evolutionary models used by RAxML-NG do not explicitly treat gaps; therefore, the 

first draft of the reconstructed ancestor will be ungapped. Topiary assigns gaps by treating them 

as characters during ancestral character reconstruction. For this purpose, topiary uses the 

DOWNPASS151 algorithm as implemented by the PastML package141. The final output for this 

step consists of the gapped sequences of both maximum likelihood and altAll ancestors for each 

node. These have associated statistical supports: posterior probabilities for each reconstructed 
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amino acid and support for gaps. Topiary also puts out a variety of summary graphs to help select 

high quality sequences (see Section 4). 

  

Branch supports  

To determine branch supports (Figure 2.2g), topiary uses non-parametric 

bootstrapping.149 Briefly, RAxML-NG generates pseudoreplicate alignments by sampling 

columns, with replacement, from the input alignment. RAxML-NG then infers an evolutionary 

tree for each of these alignments. Topiary generates up to 1000 bootstrap pseudoreplicates, using 

RAxML-NG's automatic Extended Majority Rules (autoMRE) method with a cutoff of 0.03 to 

determine the exact number. The output from RAxML-NG is a collection of pseudoreplicate 

alignments and pseudoreplicate gene trees. Because we are reconstructing ancestors on the 

reconciled tree, we pass each pseudoreplicate alignment and gene tree into GeneRax for gene-

species tree reconciliation, yielding a final collection of pseudoreplicate reconciled trees. Topiary 

then uses RAxML-NG to map these pseudoreplicate reconciled trees onto the ML reconciled tree 

as branch supports. Topiary also assesses convergence for the branch support estimate using the 

“—bsconverge” option.  

 

Output  

Topiary generates a single directory containing all ancestors, all trees, and an html file 

that allows users to browse their results. This directory can be shared with others without 

requiring the recipient to have installed topiary. The html file can be opened in any web browser 

and includes information to help users assess the quality of each reconstructed ancestor. In 

addition to this html output, topiary also writes the output for each step into individual 
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directories, allowing users to access the intermediate steps and log files from each software 

package employed in the pipeline.  

 

PROTOCOL  

This section complements the previous section, which focused mostly on the 

computational steps in the pipeline (Figure 2.3). We will expand on the steps that require human 

intervention using the LY86/LY96 protein family to help demonstrate specific considerations and 

features. More detailed instructions are available in the topiary online documentation 

(https://topiary-asr.readthedocs.io).  

 

Construct a seed dataset  

The first step in a topiary ASR calculation is constructing a seed dataset (Figure 2a). This 

dataset defines protein family members of interest and the distribution of these proteins across 

species. Topiary uses this seed dataset to automatically find and download sequences to put into 

the alignment and, ultimately, evolutionary tree. As discussed in the previous sections as well as 

the documentation, thoughtful consideration goes into selecting proteins of interest for an ASR 

study and determining the taxonomic distribution of this protein family before key species are 

chosen for the seed dataset. An example for the LY86/LY96 protein family, a pair of closely 

related innate immune proteins, is shown in Table 2.1.  

 

Run the seed-to-alignment pipeline  

At this point the seed dataset is ready to be passed to the topiary-seed-to-alignment script. 

This script uses BLAST to build a dataset of thousands of protein sequences (Figure 2.2b), does 
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quality control, lowers redundancy, and then generates an alignment of sequences (Figure 2.2c). 

This generally takes less than an hour on a modern laptop. The final output consists of a single 

spreadsheet and a single FASTA file holding the alignment. 

 

Table 2.1: Example seed dataset. 

name species sequence aliases 

LY96 Homo sapiens MLPFLFF... ESOP1;Myeloid Differentiation Protein-2;MD-

2;lymphocyte antigen 96;LY-96     

LY96 Danio rerio MALWCPS..

. 

ESOP1;Myeloid Differentiation Protein-2;MD-

2;lymphocyte antigen 96;LY-96   

LY86 Homo sapiens MKGFTAT... Lymphocyte Antigen 86;LY86;Myeloid 

Differentiation Protein-1;MD-1;RP105-associated 

3;MMD-1  

LY86 Danio rerio MKTYFNM.

.. 

Lymphocyte Antigen 86;LY86;Myeloid 

Differentiation Protein-1;MD-1;RP105-associated 

3;MMD-1  

  

Inspect and edit alignment  

Before reconstructing a phylogenetic tree and ancestors, we strongly recommend 

inspecting and possibly editing the alignment (Figure 2.2c). There are a variety of pieces of 

software for visualizing alignments, including AliView152, JALView153, and MEGA154. We 

generally use AliView because of its balance of utility and simplicity.  

There are differing views on whether to manually edit an alignment124,125; the topiary 

package allows a user to manually edit their alignment but does not require it. We generally 

recommend making a few adjustments to alignments. We describe our approach to editing 

alignments in detail in the topiary documentation (https://topiary-asr.read 

thedocs.io/en/latest/protocol.html). Importantly, if we edit an alignment, we publish the 
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alignment as supplemental material in the resulting manuscript so others can reproduce our work. 

Once the alignment is finalized, it can be read back into the topiary spreadsheet with the 

command line script topiary-fasta-into-dataframe.  

 

Perform the ancestral inference  

We recommend performing the ancestral inference in a high-performance computing 

environment. Because of different parallelization requirements, the ancestral inference step uses 

two scripts run in sequence (alignment-to-ancestors and bootstrap-reconcile). The first script 

infers the evolutionary model, builds the ML gene tree, reconciles the gene and species trees, 

reconstructs ancestors, and generates bootstrap pseudoreplicate gene trees (Figure 2.2d–g). It 

writes out a summary tree at each step (Figure 2.5a–d). Alignment-to-ancestors should take 

about a day for a reasonable alignment (~1000 columns, ~500 sequences) running on a 

reasonable compute node (~30 cores). The second script reconciles each pseudoreplicate gene 

tree to the species tree and constructs the final branch supports (Figure 2.5e). Bootstrap 

sampling the gene-species reconciliation is computationally intensive but can be readily 

parallelized. It will likely take approximately a week spread across several cores. As discussed in 

the next section, if one is using a reconciled gene/species tree it is important to check the validity 

of the reconciliation before moving onto the bootstrap-reconcile step. If the analysis is being 

done without gene/species tree reconciliation—that is, for microbial genes—only the steps 

shown in Figure 2.5a,d are performed. 
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Checking gene/species-tree reconciliation  

Before selecting ancestors to characterize, it is important to make sure the phylogenetic 

tree is reasonable. The probabilistic models used in ASR are powerful, but do not capture all 

possible evolutionary events. One common problem is incomplete lineage sorting (ILS), where a 

gene duplicates but exists as several variants in a population when speciation occurs.155 Different 

duplicates are preserved along the descendant lineages, meaning this cannot be classified as a 

simple duplication or speciation event. ILS is a general problem with all ASR methods and is 

specifically noted as being outside the scope of GeneRax.128 Another problem is gene fusion, 

where different parts of a single gene have different evolutionary histories. The methods used by 

topiary all assume a single genetic history for each protein sequence. If we force such a model to 

fit a fused alignment, we will likely end up with a nonsensical evolutionary tree and meaningless 

ancestral sequences.  

In the worst case, ILS and gene fusion can lead to nonsensical ancestors that still have 

high branch supports and high posterior probabilities. Looking at the reconciled tree (Figure 

2.5b) can help you decide if this might apply to your family. A standard signal for both ILS and 

gene fusion is high discordance between the inferred gene and species trees. This will manifest 

as an unexpectedly high number of duplication and/or transfer events in the reconciled tree. If, 

for example, you are studying a protein family where you expect two paralogs, but you observe 

20 duplication events scattered throughout the tree, there is a good chance that the evolutionary 

models used for ASR are not appropriate for your protein family. Topiary warns users in its 

summary output if there are an anomalous number of duplication events, suggesting model-

violation.  
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Figure 2.5. Example trees at each step in the ASR calculation. Summary trees from an ASR 

inference using a toy alignment with seven LY96 sequences (orange) and seven LY86 sequences 

(blue). Black arrows indicate steps done by the first script (alignment-to-ancestors); gray arrows 

indicate steps done by the second script (bootstrap-reconcile). G, S, and R indicate gene, species, 

and species-reconciled gene trees throughout the pipeline, respectively. (a) The ML gene tree 

inferred by RAxML-NG. Branch lengths are proportional to substitutions/site. This tree has 

several inferred relationships that are discordant with the species tree (yellow exclamation 

points). (b) Topiary uses the gene tree from panel A and the Open Tree of Life species tree (S) as 

inputs to GeneRax, constructing the reconciled tree (R). The discordant species relationships are 

resolved (green check marks) and each node is now labeled as either a duplication or speciation 

event (purple and green, respectively). (c) Tree with posterior probabilities for ML ancestors 

mapped onto nodes as an orange color gradient. (d) Topiary generates 1000 pseudoreplicate gene 

trees and maps the resulting branch supports onto nodes as a black color gradient. (e) The final 

output of topiary is the reconciled tree with evolutionary events, ancestor posterior probabilities, 

and branch supports mapped onto all ancestral nodes. In this figure, the labeled speciation events 

have been dropped for clarity. 

 

If your protein has more than one domain, one option would be to try to reconstruct each 

domain independently. If the discordance disappears, it is good evidence for a gene fusion event. 

If the discordance remains, proceed with extreme caution.  

One way forward in the face of discordance is to compare the sequences—and functional 

characteristics—for any ancestors of interest reconstructed using either the gene tree alone or the 

reconciled gene tree. (Topiary returns ancestors inferred on both trees.) If the results for 
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ancestors reconstructed on the two trees differ dramatically, one cannot infer the ancestral 

sequence with confidence given standard ASR methods. ILS and gene fusion are longstanding 

problems in phylogenetics; treating them requires expert input. 

 

 

Figure 2.6. Graphs for evaluating ancestor quality. (a) The final bootstrap supported gene-

species reconciled tree built from an example set of 14 sequences. Reconstructed ancestral 

sequences at each node are labeled with a unique name. Duplication events are marked in purple. 

Each node is labeled with a circle whose inner color represents the sequence's average posterior 

probability (orange color gradient). The level of branch support from bootstrapping analysis is 

denoted by the ring around each node circle (black color gradient). Branch lengths represent the 

average number of amino acid substitutions per site and can be estimated using the scale bar. (b, 

c): Ancestor summary plots written out by topiary. The black points show the probability of the 

most likely amino acid at each position. The distribution of these probabilities is given by the 

histogram on the right. The average posterior probability is the mean of these values. The red 

points show the probability of the second most likely amino acid at each position, with its 

distribution on the right. The horizontal dashed line shows the minimum PP cutoff for the altAll 

reconstruction. Shaded gray regions indicate gaps; vertical purple dashed lines represent 

ambiguously gapped positions. (b) Summary for anc4 (tetrapod LY86 ancestor) for the 14-

sequence alignment (see arrow in a). (c) Summary for the equivalent ancestor from a 188-

sequence alignment and phylogenetic tree for LY86/LY96. 
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Table 2.2: Protein families used to validate the topiary pipeline. 

 

Protein 

Taxonomic 

distribution 

Average seed 

sequence length 

Number of seqs 

in alignment 

ML substitution 

model 

Islet Amyloid 

Polypeptide/ Calcitonin 

gene-related peptide 

Vertebrates 37 39 JTT+G8 

S100A5 & S100A6 Amniotes 94 104 JTT+G8 

Cytochrome C All life 109 121 WAG+G8 

Ribonuclease HI Bacterial 163 181 LG+G8 

LY86 & LY96 Vertebrates 164 188 VT 

Micrococcal nuclease Bacterial 200 182 LG+G8 

Chalcone Synthase Plants 390 107 DEN+G8 

tight junction protein 1 Vertebrates 1705 121 JTT+G8+FO+IO 

 

 

 
 

Figure 2.7. Validation of the topiary pipeline. Panels show topiary results generated for the 

eight protein families from Table 2. Colors indicate the family in question (see panel e for color 

legend). Panels a–c show topiary alignment quality as measured by three metrics: (a) Relative 

alignment length (number of columns in alignment divided by the average length of seed 
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Figure 2.7 (continued) sequences); (b) The fraction of seed sequences lost during redundancy 

reduction; (c) Species tree imbalance (measured by the Colless Index of the species tree for the 

sequences in the alignment). (d): Number of pseudoreplicates required for converged branch 

supports for the gene tree (G) versus the reconciled tree (R) for the LY86/LY96 family. (e) 

Average posterior probabilities for all ML ancestors plotted against the total branch length 

between that ancestor and the nearest modern sequence on the tree. More negative values on the 

x-axis are deeper in the tree. Posterior probability starts at 1.0 near the tips of the tree and decays 

for more ancient ancestors. The dashed line indicates a “rule of thumb” of 0.85 for usable 

ancestral sequences. 

  

Selecting ancestors  

After checking for a reasonable reconciled tree and running the bootstrap-reconcile 

script, one can identify ancestors that are amenable to reconstruction based on their average 

posterior probability (Figure 2.2f) and branch supports (Figure2. 2g). As shown in Figure 2.6a, 

topiary maps these values onto the final tree as color gradients. One typically wants ancestors 

with average posterior probabilities and branch supports above 0.85 and 85, respectively. Note 

that the posterior probabilities and branch supports are independent of one another. For example, 

ancestor 11 has high branch support (dark black circle exterior) but a low ancestral posterior 

probability (light orange circle interior); ancestor 4, on the other hand, has low branch support 

but high posterior probability. As noted in the overview section, it is important to select ancestors 

with both high branch support and high posterior probabilities. (Note that this tree has low 

supports overall because it was built from a demonstration alignment with only 14 sequences.)  

In addition to summary statistics on the tree, topiary provides more detailed information 

about each ancestor. Figure 2.6b,c show minimally modified versions of graphs that topiary 

automatically writes out for each ancestor. Figure 2.6b shows site-specific posterior probabilities 

for the reconstructed LY86 protein from the ancestor of tetrapods, anc4 (see arrow in Figure 

2.6a). The average posterior probability (0.825) is the mean of the black points. Some sites have 

unambiguous reconstructions (black points have PP = 1.0), but many other sites have plausible 
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alternate reconstructions with similar PP to the ML reconstruction (red). This ancestor has 31 

sites that topiary classifies as ambiguous, meaning that there are 31 positions where the alternate 

reconstruction has a posterior probability above 0.25 (graphically, the number of red points 

above the dashed horizontal line). Finally, topiary reports sites for which it is ambiguous whether 

the position should be reconstructed as an amino acid or as a gap (site 27, for example).  

We can compare the results in Figure 2.6b to the tetrapod LY86 ancestor returned by the 

pipeline for a 188-sequence alignment of LY86/LY96 sequences without manual MSA edits 

(Figure 2.6c). Upon increasing our number of sequences from 14 to 188 in the alignment, the 

average posterior probability for this ancestor increases significantly, from 0.825 to 0.952. We 

also see fewer ambiguous sites and no ambiguous gaps. Overall, this is a much higher-quality 

ancestor that is likely amenable to experimental characterization.  

We note, however, that there are still 21 ambiguous positions with alternate 

reconstructions whose posterior probabilities are above 0.25. This is real phylogenetic 

uncertainty that is unlikely to be resolved with the addition of more protein sequences. To 

account for this uncertainty, we recommend experimentally characterizing both the ML protein 

and the “altAll” version of the same protein.134 Topiary automatically generates both versions of 

every ancestor. The altAll ancestor reconstruction is made up of the ML sequence with every 

ambiguous ML amino acid replaced with its next most likely alternate. In other words, it selects 

the second-most-likely amino acid at every site where the red point is above the horizontal 

dashed line. For the ancestor shown in Figure 2.6c, the ML and altAll versions of the ancestor 

will differ at 21 positions.  

The altAll can be thought of as “worst case” for the reconstruction, allowing one to ask 

what the consequences would be if the reconstruction got every ambiguous site wrong. The true, 
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historical ancestral sequence is likely somewhere between the ML and altAll ancestors, but more 

like the ML than altAll sequence. If, upon synthesis and characterization, both the ML and altAll 

ancestors have the same measured property, that property is robust to uncertainty in the 

reconstruction and likely reflects the ancestral state of the protein. In previous experiments, the 

altAll ancestor has behaved similarly to the ML ancestor.76,115,135–138 

 

On black boxes  

Topiary automates much of the drudgery of an ASR study, going from a seed dataset to 

reconstructed ancestors with minimal input. One of our goals is to make the technique accessible 

for non-experts. It should not, however, be treated as a black box. To help users better understand 

what topiary does at each step, we have provided Jupyter notebooks that can either be run locally 

or via Google Colab that break the topiary pipelines into individual steps 

(https://github.com/harmslab/topiaryexamples). This also provides a framework for users to 

modify or extend the pipelines to fit their specific needs.  

One final note. Generating ancestors is relatively easy, but experimentally characterizing 

them can take years; it is worth some caution upfront. Specifically, if the species-reconciled gene 

tree has a huge excess of non-speciation events, pause. Do not trust results from ancestors with 

low branch supports or low posterior probabilities. And, finally, characterize the robustness of 

experimental results to phylogenetic uncertainty using altAll versions of ancestors. Following 

these rules will ensure the quality of your reconstructed ancestors and thus evolutionary 

conclusions.  
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PIPELINE VALIDATION  

In this final section, we describe how we validated the topiary pipeline itself. Our first 

level of validation is part of the software package. We developed topiary using a test-driven 

development framework, meaning we write test code in parallel with our functional code. As of 

this writing, 87% of the lines in the topiary codebase are automatically tested for correct inputs, 

outputs, and logic every time we update any part of the code. We paid special attention to core 

functions in our test development. For example, the module that interfaces with RAxMLNG has 

100% test coverage. Such efforts give us confidence that the software should behave as expected.  

We also validated that topiary is useful for realistic ASR studies. We solicited seed 

datasets from scientists studying a wide variety of proteins from different species (Table 2.2). 

This allowed us to test the pipeline on real inputs from different classes of proteins, protein sizes, 

and taxonomic distributions. We then ran these eight seed datasets through both stages of the 

pipeline. We did no manual corrections to the alignments, so these represent fully automatic 

outputs with no human input beyond initial seed dataset construction.  

Much of what topiary does is to connect existing pieces of software. Rather than 

attempting to test each component, we focused our validation on the connections between 

components. The first step we checked was that of going from BLAST to alignment. Our 

BLAST/ reciprocal BLAST strategy is standard; however, topiary reduces dataset size in a novel 

way (Figure 2.4). We therefore compared topiary to a strategy that lowered redundancy using 

sequence identity alone. We performed BLAST/reciprocal BLAST on all eight datasets, reduced 

redundancy using either topiary or CD-HIT156, and then aligned the resulting datasets using 

Muscle5. For each dataset, we selected a CD-HIT redundancy cutoff that yielded the same 
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number of sequences as the topiary dataset. We then compared the resulting sequence-identity-

alone versus topiary datasets with three quality metrics (Figure 2.7a–c).  

The first metric was alignment length relative to average seed sequence length. A higher 

value indicates the presence of long, potentially poorly aligned, sequences in the alignment. We 

found that topiary significantly outperformed a sequence-identity-alone approach using this 

metric (Figure 2.7a). While the sequence-identity-alone approach gave alignments up to 35-

times longer than the seed sequence, the longest alignment coming from the topiary pipeline was 

only 5 times longer than the seed sequences. We next measured retention of key sequences. As 

expected, topiary never dropped key sequences from the dataset, while the simple redundancy 

cutoff was highly variable in this metric (Figure 2.7b). As a third comparison, we characterized 

the imbalance of the species tree corresponding to the final sequence dataset using the Colless 

Index157 as calculated by DendroPy158 (Figure 2.7c). Because topiary uses a taxonomically 

informed sampling strategy, we predicted the topiary trees would be more balanced than those 

from the dataset reduced by simple sequence identity. This was not true; both approaches gave 

similarly balanced trees for each dataset. This suggests that the tree imbalance reflects the real 

taxonomic diversity in the sequence databases for these proteins, rather than a problem with how 

that diversity is sampled to make tractably-sized datasets.  

We also validated the reliability of the branch supports generated by topiary. Topiary 

calculates branch supports by generating pseudoreplicate gene trees in RAxML-NG, then passing 

them into GeneRax for reconciliation. By default, RAxML-NG generates bootstrap replicates 

until the supports converge on the gene tree. We wanted to verify that the branch supports on the 

reconciled tree converged reliably, even though the number of pseudoreplicates required was 

determined by convergence on the gene tree. To do this, we performed an a posteriori 
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convergence test on the bootstrap replicate trees generated for either the gene tree alone or the 

reconciled gene trees. For this, we used the RAxML-NG “—bsconverge” analysis mode with a 

default cutoff of 0.03.159 The results for the LY86/ LY96 family are shown in Figure 2.7d. The 

gene tree required over 600 bootstrap replicates for converged branch supports; the reconciled 

tree required <300. We observed similar results for all eight families, with the gene tree taking 

more replicates to converge than the reconciled tree. This indicates that the species tree is indeed 

constraining the gene tree and that the bootstrap supports converge with our standard protocol. 

As a final validation of the pipeline, we reconstructed all ML ancestors for the eight 

protein families (1027 ancestors in total). We then calculated the average posterior probability of 

each ML ancestor and plotted this against the branch length between that ancestor and the nearest 

modern protein sequence (Figure 2.7e). An ancestor identical to a modern protein would be 

plotted at zero on the x-axis; a more negative value corresponds to more substitutions per site 

between that ancestor and the most similar modern protein. In this plot, we observed that 

ancestral sequences close to the tips of the tree were better reconstructed than earlier ancestors. 

This is expected: more recent ancestors require less evolutionary extrapolation than more ancient 

ancestors. Despite the drop in quality for our deepest ancestors, however, we found that most 

reconstructed sequences are likely usable for reconstruction studies. Only 13 of the 1027 

ancestors had average posterior probabilities below 0.90. This demonstrates that the pipeline—

even without manual inspection and editing of the sequence alignment—generally yields high 

quality ancestral sequences.  
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CONCLUSION  

The resources for performing high-quality ancestral sequence reconstruction already 

exist, but the complexity of the process and the importance of expert knowledge create a barrier 

to wider adoption; the topiary pipeline overcomes this barrier. It requires only that scientists 

define an evolutionary question and scope, and then lets computers do the rest, integrating 

powerful existing software to give users useful output for reconstructing and evaluating ancestral 

sequences. We hope this will improve the quality of ASR studies by codifying best practices and 

will increase the accessibility of the technique for protein scientists from a wide variety of 

backgrounds. 

 

BRIDGE TO CHAPTER III 

 With this topiary ancestral sequence reconstruction tool in hand, we were able to 

reconstruct and characterize the bony vertebrate, tetrapod, and teleost ancestral Toll-like receptor 

4 complexes used in the next chapter. Being able to resurrect and functionally characterize these 

key ancestral states was pertinent to revealing the origin of difference in ligand specificities 

between the human and zebrafish TLR4 complexes. 

 

 

 

  



 72 

CHAPTER III 

TOLL-LIKE RECEPTOR 4 EVOLUTION OF LPS SPECIFICITY IN EARLY VERTEBRATES 

AND DIVERGENCE IN ZEBRAFISH 

 

*This chapter contains unpublished co-authored material. 

 

Author contributions: Orlandi KN and Harms MJ designed the study. Orlandi KN designed and 

performed experiment, analyzed the data, and wrote the text. Harms MJ was the funding 

acquisition lead and oversaw the experiments and writing. Sánchez-Borbón J constructed the 

CD14 ancestors used in the study and contributed input on experiments. Brown C performed 

site-directed mutagenesis on several plasmids and executed one of the experiments included in 

this text. Robinson C helped to execute the zebrafish experiments. Guillemin K contributed 

experimental guidance. 
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ABSTRACT 

 Toll-Like Receptor 4 (TLR4) plays a pivotal role the innate immune system in humans by 

activating the inflammatory response to lipopolysaccharide (LPS) from Gram-negative bacteria. 

Dysregulation of TLR4 activation can cause excessive inflammation resulting in myriad health 

problems including sepsis, heart disease, chronic arthritis, and other conditions. Much of our 

understanding about inflammation comes from careful studies of model organisms. One 

powerful model is the zebrafish, Danio rerio, which is often used to study mechanisms of human 

disease and host-microbe interactions. It was recently discovered that zebrafish express a 

functional TLR4. This could allow zebrafish to be a valuable, tractable model for the human 

innate immune response. This would require that we can relate zebrafish and human receptor 

functions. Here, we explored the function of zebrafish TLR4 in vivo and in vitro. We discovered 

that zebrafish TLR4 is activated in vitro by a class of LPS molecules that antagonize the human 

receptor, and that a unique structural feature is necessary for its activity. The mechanism of 

TLR4-induced inflammation in vivo also appears to be different than in humans. To understand 

the evolutionary context for the disparity between human and zebrafish TLR4 specificity, we 

used ancestral sequence reconstruction to infer and resurrect ancestral vertebrate TLR4 proteins 

and functionally compared them to several modern species. The results suggest complicated, 

species-dependent evolutionary trajectories originating from a low-sensitivity ancestral TLR4. 

Overall, this work will help guide future investigations using the zebrafish model of innate 

immunity by providing insight into the divergent functional roles of zebrafish and human TLR4. 
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INTRODUCTION 

Toll-like receptor 4 (TLR4) is known to play a central role in the human immune defense 

against pathogens. TLR4 is a member of the Toll-like receptor (TLR) family of pattern 

recognition receptors. TLRs are type I transmembrane proteins expressed on innate immune cells 

and conserved across vertebrates. They recognize evolutionarily conserved molecules associated 

with danger and stimulate intracellular signaling cascades that activate the host immune 

response. TLR4 is responsible for discriminating host lipids from lipopolysaccharide (LPS), a 

component of Gram-negative bacteria outer.25–27 TLR4 was discovered because of its role 

mediating sepsis; sepsis occurs when the body produces excessive inflammation that damages 

host tissues in response to an infection. In 2017, sepsis accounted for almost 20% of all global 

deaths.160 TLR4 also contributes to the onset and progression of other illnesses such as cancer, 

atherosclerosis, osteoarthritis, and Alzheimer’s disease.161,162 Because of its importance to human 

health, TLR4 is an immune protein of major interest. 

TLR4 is only able to sense LPS by forming a heterodimer with a cofactor protein 

myeloid differentiation factor-2 (MD-2).36 In the absence of LPS, MD-2 forms a stable 

heterodimer with the extracellular domain of TLR4 and its expression is important for the correct 

distribution of TLR4 to the cell membrane.163 The beta-cup structure of MD-2 creates a 

hydrophobic pocket which accommodates the hydrophobic fatty acyl chains of LPS in crystal 

structures.41,42,46 MD-2 also forms the interface for dimerization required for TLR4 activation 

and its positioning of LPS inside the binding pocket is critical42,164 (Fig 3.1A-B). 
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Figure 3.1. Current knowledge of the evolution of TLR4/MD-2 LPS specificity. A) TLR4 is 

shown in gray/white; MD-2 in cyan/blue. LPS (to the right of arrow) induces dimerization of 

TLR4/MD-2, triggering inflammation. B) LPS binds in a deep pocket in MD-2, creating a new 

dimerization surface (yellow). Right panel makes front TLR4 transparent to reveal interface. C) 

Structure of LPS from E. coli. D) Phylogenetic tree showing the evolution of TLR4/MD-2 with 

known activities of extant species. We aimed to characterize agonist specificity of TLR4 from 

extant species that would provide insight for species-specific TLR4 ligand specificity (sharks 

have no TLR4) and three ancestors (gray circles). 
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The transfer of LPS into the binding pocket of MD-2 is catalyzed by the presence of LPS-

binding protein (LBP) and cluster of differentiation 14 protein (CD14). LBP is able to bind LPS-

rich surfaces like bacterial membranes, somehow altering the membrane, which permits CD14 to 

bind monomeric LPS.165–167 CD14 shields the hydrophobic acyl chains as it chaperones the LPS 

molecule to the binding pocket of MD-2.168 CD14 seems to be important in TLR4’s detection of 

LPS, but it may not be necessary. CD14-deficient mice are resistant to doses of LPS that are 

lethal to wild-type mice or would induce cytokine expression, but still respond to high doses of 

LPS.169 CD14 likely serves a more complex role in LPS signaling than simply LPS 

chaperone.166,167,170 

Ligand-binding drives the dimerization of two TLR4/MD-2 complexes, which brings the 

two TLR4 intracellular TIR domains together to act as a scaffold for adaptor proteins involved in 

MyD88 and TRIF signaling170,171 (Fig 3.1A). MyD88-mediated TLR4 signaling occurs mainly at 

the plasma membrane and results in the activation of transcription factor NF-κB and induction of 

proinflammatory cytokines like TNFα and IL-6. TRIF-mediated signaling occurs at the 

endosomal membrane after internalization of TLR4, which further activates IRF3 and the 

production of type-1 interferons and other IRF3-dependent genes, as well as delayed NF-κB 

activation.170,172,173 Structural modifications to LPS have been demonstrated to differentially 

activate these pathways.174–176 

LPS is an essential structural feature of Gram-negative bacteria outer membranes.22 It 

exhibits a high degree of structural diversity but generally consists of three components: a highly 

variable O-antigen, a less variable core oligosaccharide, and a highly conserved lipid A (Fig 

3.1C). The lipid A moiety of LPS is the structural feature recognized by TLR4/MD-2 and 

therefore accounts for most of the immunostimulatory effects of LPS.177 Structural and 
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functional analyses show that the most proinflammatory forms of lipid A, which are generally 

purified from Escherichia coli and Salmonella strains, have two phosphate groups and six fatty 

acyl chains each with 12-14 carbons.34 Lipid A with more or less fatty acyl chains, longer chains, 

or a single phosphate group are typically less active and can act as antagonists of toxic LPS.34,35 

Bacteria have built in pathways to modify their lipid A structures in response to changing 

environmental conditions. Modifications occur through constitutive and regulated processes in 

response to external stimuli including changes in growth condition (temperature, nutrient, 

osmolarity), host detection (conversion of host immune agonist to antagonist), and antimicrobial 

molecules (modulation of surface exposed negative charge, deacylation of their outer 

membrane.178 Several studies of pathogens converge on the theme that alteration to lipid A is a 

common virulence strategy adopted by bacterial pathogens to evade host innate immune 

detection.49,51–56,170 There are also examples of the order Bacteroidales, a human gut commensal 

bacteria, that produce tetra- and penta-acylated LPS that can silence TLR4 signaling for the 

whole microbial community, potentially facilitating host tolerance of a healthy adult 

microbiome.47,48 

To understand the implications of this mutable host-microbe interface and how to develop 

treatment strategies for infections and disease requires leveraging studies in model systems. 

There are many inflammatory disease models in zebrafish (Danio rerio) which have been widely 

employed in immune system, host-microbe interaction, and drug discovery studies. Zebrafish are 

uniquely advantageous for research in these fields because as larvae they are optically 

transparent, enabling imaging in live organisms, and their microbiota can be easily manipulated. 

TLR4-induced inflammation has not yet been included in these models. Zebrafish have been 

shown to have an inflammatory response to LPS. However, the zebrafish response to LPS is 
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much weaker than in humans or mice. It was widely accepted that this was due to gene loss of 

the TLR4 cofactors MD-2 and CD14.179 

Recently, the zebrafish MD-2 gene was discovered and shown to be expressed in immune 

cells.101 Furthermore, the zebrafish TLR4/MD-2 complex can be activated by LPS in vitro, 

although CD14 is required. MD-2 mutant zebrafish exhibited perturbed transcriptional responses 

to LPS challenge but did not show improved tolerance to LPS-induced death as observed for 

mice.101 These critical findings suggest that TLR4/MD-2 could play a role in LPS sensing in the 

zebrafish, but other pathways are likely also involved. This work has paved a way towards 

developing the zebrafish model of TLR4 inflammation.   

Here, we use an evolutionary lens to try to better understand the role of zebrafish TLR4 

in innate immunity. It has been shown that mammalian TLR4 is lowly responsive to “foreign” 

LPS from the deep sea Moritella genus of bacteria potentially due to acyl chain length.180 The 

authors posit that pattern recognition strategies may be defined by local environment rather than 

universal threats. We hypothesized, therefore, that differences in evolutionary pressures, like 

distinctive pathogenic bacteria present in a terrestrial versus tropical freshwater aqueous 

environment, could have led to divergent LPS specificities in zebrafish and mammals. To test 

this, we employed a broad range of LPS variants in a functional assay against zebrafish 

TLR4/MD-2 and discovered that the complex is uniquely sensitive to tetra-acylated lipid A. We 

also found that the lineage of teleost fish including zebrafish evolved a novel MD-2 C-terminal 

peptide that is essential for TLR4 signaling in functional assays. 

Next, we tested whether the heightened sensitivity to tetra-acyl lipid A we found for 

zebrafish TLR4/MD-2 in vitro would translate to a stronger immune response in the zebrafish 

immune system in vivo compared to previous studies. On the contrary, we find no elevated 
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immune response to tetra-acyl lipid A relative to the vehicle control or when fish were pre-

treated with a TLR4-specific inhibitor. We determine that although zebrafish maintain functional 

copies of TLR4 and MD-2 with the ability to recognize and respond to various LPS structures, 

there is significant divergence in the human and zebrafish immune response to LPS. More 

studies will need to be done to define what role TLR4 might play in zebrafish innate immunity. 

We remained curious about the evolutionary origin of the difference in human and 

zebrafish TLR4/MD-2 specificity observed in vitro. Does the zebrafish state represent an 

ancestral state that was modified along the tetrapod lineage? Or did teleost fish lose high 

ancestral activity? To explore the specificity of evolutionary intermediates between human and 

zebrafish, we selected key modern species and reconstructed ancestors to compare in a functional 

assay (Fig 3.1D). We used ancestral sequence reconstruction to infer the ancestral states for 

TLR4 and MD-2 protein sequences and then resurrected these proteins for our assay. We find 

that other fish, amphibians, and early vertebrate ancestral complexes exhibit low sensitivity to all 

ligands tested. We infer that the zebrafish TLR4 lineage evolved heightened LPS sensitivity with 

unique specificity for tetra-acyl LPS. Interestingly, the tetrapod ancestor is highly active in the 

absence of ligand and can be stimulated with all ligands tested. This suggests that tetrapods may 

show increased TLR4 stimulation relative to early branching vertebrates due to sequence 

changes on the evolutionary trajectory from the ancestor of bony vertebrates to tetrapods.  

  

RESULTS 

Zebrafish TLR4/MD-2 is potently activated by tetra-acyl LPS in vitro 

We started by assessing differences between human and zebrafish TLR4 specificities for 

structural variations of the lipid A portion of LPS. Depending on the bacterial species, the lipid A 
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moiety can have between four and eight acyl chains, each with different abilities to activate 

TLR4/MD-2.181 Loes et al. revealed mild activity when zebrafish TLR4 was challenged with 

hexa-acylated LPS molecules in vitro, and similar results for hexa- and hepta-acylated LPS 

challenge in vivo by immersion or cardiac ventricular injection.101 

We challenged human and zebrafish TLR4/MD-2 complexes in an in vitro functional 

assay with commercially available LPS variants. These are generally complex mixtures of LPS 

structures, so we report our findings based on the most abundant LPS structure stated by the 

supplier. We used Salmonella enterica Typhimurium LPS ((L7)-LPS-ST) to represent our hepta-

acyl chain variant, Escherichia coli K12 LPS ((L6)-LPS-EK) is our hexa-acylated variant with 

an O-antigen, Rhodobacter sphaeroides LPS ((L5)-LPS-RS) for a penta-acylated structure, and 

synthetic lipid IVa ((L4)-lipid IVa) to represent tetra-acylated LPS (Fig 3.2).  

For the TLR4 functional assay, we transfected HEK293T cells with plasmids containing 

either the human or zebrafish TLR4 complex components under constitutive promoters, as well 

as a luciferase reporter gene under control of the NF-κB transcription factor. Since zebrafish do 

not have a CD14, we included a mouse CD14 plasmid which confers zebrafish TLR4 the greatest 

sensitivity to LPS.101 HEK293T cells do not endogenously express the TLR4 complex but they 

do have the capacity to mount an NF-κB-mediated response to TLR4 activation. The following 

day, we treated cells with each of the LPS variants described, incubated the cells in treatment 

media for four hours to allow a robust transcriptional response, and then measured the amount of 

luciferase enzyme activity associated with each condition. The quantity of luciferase enzyme 

should be directly proportional to the level of NF-κB activation initiated by TLR4. To account 

for differential expression of immune receptors on the surface of cells and activation capacity, we 
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normalize the observed signal to that of (L6)-LPS-EK for human TLR4 and (L4)-lipid IVa for 

zebrafish TLR4, unless otherwise noted.  

Our in vitro experiments (Fig 3.2) show that zebrafish TLR4/MD-2 exhibits a robust 

response to challenge with tetra-acyl lipid IVa, a low-level response to hexa-acyl LPS-EK, and 

little to no activity in the presence of hepta- and penta-acylated LPS variants. This specificity 

contrasts human TLR4, which is inhibited by lipid IVa and strongly activated by both hexa- and 

hepta-acylated LPS.  

 

Figure 3.2. Revealing differences in LPS specificity between human and zebrafish TLR4 

complexes. In vitro NF-κB activation by human TLR4 (blue) and zebrafish TLR4 (orange) 

challenged with LPS variants. LPS variants include a gradient of lipid A acyl chain number, from 

7 acyl chains (left) to 4 acyl chains (right). NF-κB activity level is shown relative for each 

species: LPS-EK for human, lipid IVa for zebrafish. These four LPS variants cover a range of 

chemical features and are readily available commercially. Yellow indicates additional acyl chains 

relative to lipid IVa. Human TLR4 was treated with 0.1 ng/uL LPS-ST and LPS-EK. All other 

conditions show treatments at 1 ng/uL LPS. Error bars indicated standard error of the mean 

across several experiments. 
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Zebrafish have three TLR4 ohnologs (gene duplicates originating from whole genome 

duplication): tlr4ba, tlr4bb, and tlr4al which are all expressed in immune cells of larval fish.101 

Our previous experiment used the tlr4ba protein because Loes et al. had determined it was the 

only ohnolog that could respond to (L6)-LPS-EK. Now that we had found a more potent agonist 

of tlr4ba, we investigated whether the other zebrafish TLR4s or heterocomplexes of the ohnologs 

could be activated by LPS variants (Fig 3.3A-B). Slight variations to transfection conditions and 

LPS treatment concentrations between the experiments shown in 3.3A and B are noted in the 

figure caption. Our preliminary experiments did not identify agonists for homocomplexes of 

tlr4bb or tlr4al. They did, however, suggest that tlr4bb may enhance the signal of tlr4ba when co-

expressed in vitro. Although this may play a physiological role in the fish, we did not further 

pursue characterization of tlr4ba/bb complexes because tlr4bb appeared to enhance sensitivity 

without altering specificity of tlr4ba. Further analysis should be done to determine whether this 

initial observation is physiologically relevant, or if other heterocomplexes could be informative 

of zebrafish TLR4 agonist specificity. In the rest of the chapter, we will use zebrafish tlr4ba and 

TLR4 interchangeably. 

Discovering an agonist of zebrafish TLR4 brought up several questions including: What 

structural features of zebrafish TLR4/MD-2 confer this altered specificity? Is this specificity 

reminiscent of the vertebrate ancestral TLR4, or did it evolve on the zebrafish lineage? Can we 

use this agonist to further probe ambiguity in the role of zebrafish TLR4 in innate immunity? 

Can this difference in specificity explain previous observations of low-level immune responses 

of zebrafish to challenge with LPS-ST and LPS-EK?101 
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Figure 3.3. Zebrafish ohnologs tlr4bb and tlr4al do not respond on their own to LPS 

variants in vitro. NF-κB activation of human and zebrafish TLR4 paralogs in response to LPS 

variant challenge. LPS variants include a gradient of lipid A acyl chain number, from 7- to 4-acyl 

chains, indicated by colors in the legends. HEK293T cells were transfected with human TLR4 or 

zebrafish TLR4 ohnologs: tlr4ba, tlr4bb, or tlr4al. A) Zebrafish complexes were made by 

transfecting TLR4:MD-2:mouse CD14 with 25:20:1 ng plasmid/well. All LPS concentrations 

were 2 ng/μL, except human TLR4 treated with LPS-EK was at 0.2 ng/μL. B) Similar to panel A 

but including a co-transfection with tlr4ba and tlr4bb (far right) and a 7-acyl chain LPS (purple). 

For this experiment, zebrafish complexes were made by transfecting TLR4:MD-2:human CD14 

with 25:25:1 ng plasmid/well. All LPS variants were used at 0.2 ng/μL. For both panels, NF-κB 

activity level was buffer-subtracted and is shown normalized by species: human TLR4 signal is 

normalized to human TLR4 treated with LPS-EK; zebrafish TLR4 signal is normalized to 

zebrafish tlr4ba treated with lipid IVa. Error bars indicate standard deviation for technical 

triplicates of a single experiment. 

  

A subset of teleost fish evolved a functionally necessary MD-2 C-terminal peptide 

 We first sought to understand the structural origin of these divergent LPS specificities. 

We used topiary182, the bioinformatic phylogenetics pipeline discussed in Chapter II, to gather 

TLR4, MD-2, and their paralog amino acid sequences from the NCBI database, sampling a wide 

taxonomic spread, and then aligned these sequences. In our multiple sequence alignment 

generated for MD-2 there was an anomaly in Cyprinidae, a family of ray-finned fish including 

zebrafish. At the C-terminus, there was an extension of roughly ten amino acids (Fig 3.4C).  

We used the AlphaFold2 structure prediction tool183–185 to predict the structure of the 

zebrafish TLR4 extracellular domain in complex with MD-2, with and without this C-terminal 

peptide (Fig 3.4A). At least in the absence of LPS, the C-terminal peptide was predicted to form 
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a flexible linker connected to a small amphipathic alpha helix that fits snuggly inside the 

hydrophobic LPS-binding pocket. The crystal structure of human TLR4/MD-2 bound to E. coli 

LPS-Ra, which is similar to LPS-EK but has no O-antigen, is shown on the left in Fig 3.4A. 

TLR4 is in cyan, MD-2 is yellow, the LPS core oligosaccharide and lipid A diglucosamine group 

are shown in orange and the hydrophobic acyl chains in pink. Comparing this structure to the 

predicted zebrafish TLR4/MD-2 structure to the right reveals the peptide in the LPS-binding 

pocket of MD-2.   

The predicted zebrafish TLR4/MD-2 structure is colored by pLDDT to show per residue 

confidence in the structure, with high confidence in red and low confidence in blue. Most of the 

TLR4 leucine rich repeat (LRR) domain was predicted with high confidence, which is reasonable 

given there are many crystal structures of LRR domains. MD-2 was also predicted with high 

confidence except at the C-terminus which consists of the full C-terminal extension (amino acids 

GGNKSFFSPQIGRL). We can’t be certain that this peptide sits within the binding pocket, but 

zooming in on the peptide shows that there are nonpolar groups that could associate with the 

inside of the MD-2 beta-cup while exposing hydrophilic residues to the solvent (Fig 3.4B).  

Because the C-terminal peptide is at the opening of the MD-2 binding pocket, we 

hypothesized that it could be a structural feature of zebrafish MD-2 that defines LPS acyl chain 

number specificity. To test this hypothesis, we made a series of MD-2 C-terminal truncation 

mutants (Fig 3.4C). We chose two cut sites that seemed relevant to other species in the MD-2 

alignment and the predicted structure. We made a cut after residue 139 (139Δ) to mimic the frog 

sequence in the dataset and eliminate the amino acids associated with low structural confidence. 

The second truncation was after position 142 (142Δ) to match the chicken, mouse, and human 

proteins which have been well characterized. We made three additional distal truncations that 
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included two more amino acids in each step to evaluate hydrophobic and length requirements of 

the peptide. Nomenclature refers to the amino acid position after the signal peptide is cleaved.  

We transfected cells with zebrafish TLR4 and either full-length (FL:154 amino acids) 

MD-2 or one of the truncation mutants and challenged them with (L7)-LPS-ST, (L6)-LPS-EK, or 

(L4)-lipid IVa. We included a wild-type human complex transfection as a positive control for 

LPS variant treatments. Our results show that the entire zebrafish MD-2 C-terminus is necessary 

for zebrafish TLR4 activation (Fig 3.4D). The signal from zebrafish TLR4/MD-2_154 (FL) is 

not rescued by any of the truncation mutants, and we do not see emergence of new specificity. 

We were curious, then, if this loss-of-function is specific to zebrafish TLR4. 

We tested whether human TLR4 would differentially respond to LPS challenge when 

expressed with either full-length or zebrafish MD-2_142Δ mutant (Fig 3.4E). We transfected 

cells with human TLR4, wild-type or truncated zebrafish MD-2, and either human or mouse 

CD14 and treated with LPS variants (Fig 3.4E). The human TLR4/wild-type zebrafish MD-2 

complex had not yet been characterized in our assay. In Figure 3.4E we show that human TLR4 

expressed with full-length zebrafish MD-2 and human CD14 mounts little to no immune 

response to LPS-EK or lipid IVa. However, in the presence of mouse CD14 there is some signal 

in response to LPS-EK. Intriguingly, zebrafish MD-2_142Δ conferred a slight increase in human 

TLR4 response in the presence of both human and mouse CD14. This suggests the peptide is not 

necessary for zebrafish MD-2 to bind LPS for TLR4 signaling but is specifically required for 

zebrafish TLR4. We infer that cyprinid TLR4 and MD-2 have co-evolved to make this C-

terminal extension functionally required for activation of TLR4 in this family of fish. We hope to 

further investigate the role of the cyprinid C-terminal peptide in TLR4/MD-2/LPS dimerization. 
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Figure 3.4. The C-terminal peptide of fish MD-2 is necessary for zebrafish TLR4 signaling. 

A) The crystal structure of human TLR4 (cyan)/MD-2 (yellow) bound to E. coli LPS-Ra (PDB: 

3FXI; left) compared to the AlphaFold2 predicted structure of zebrafish TLR4/MD-2 (right). The 

predicted structure is colored by pLDDT, the confidence of the prediction per residue, from high 

to low confidence (red to blue, respectively). B) The zebrafish MD-2 predicted structure from 

panel A, zoomed in and twisted to look down into the LPS-binding pocket. Residues of the C-

terminal extension are shown as sticks with polar groups labeled. C) A set of taxonomic 

representatives (tree to the left) from the MD-2 alignment showing the zebrafish C-terminal 

peptide and where we made mutant truncations (scissors). D) NF-κB activated by zebrafish 

TLR4 co-expressed with MD-2 truncation mutants in response to LPS challenge (see legend). 

Truncations are ordered from least amino acids removed the most severe truncation (left to 

right). FL indicated full-length MD-2 and human TLR4 complex is included for comparison 

(left). E) NF-κB activated by human TLR4 co-expressed with full-length or 142Δ mutant 

zebrafish MD-2 and either human or mouse CD14, then challenged with LPS (see legend). The 

full human complex is included as a control on the left. To the right, zebrafish TLR4 with full 

length MD-2 shows ligand sensitivity in the presence of either human or mouse CD14. All NF-

κB activity is normalized by species: human TLR4 signal is normalized to the wild-type complex 

treated with LPS-EK; zebrafish TLR4 is normalized to zebrafish TLR4/MD-2 with mouse CD14 

treated with lipid IVa. Error bars show standard deviation for technical triplicates. 
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Live zebrafish exhibit reduced immune response to lipid IVa compared to E. coli LPS 

Zebrafish have been shown to have a high tolerance to challenge with hexa- and hepta-

acylated LPS but succumb to high doses.101,186 We suspected that this high dose is required either 

because the hexa- and hepta-acylated LPS molecules are poor zebrafish TLR4 agonists, or 

because commercially available LPS have low-level lipoprotein and peptidoglycan contaminants 

that can activate the MyD88-mediated inflammatory response via TLR2. Based on our in vitro 

findings, we hypothesized that if zebrafish TLR4 was playing a major role in the immune 

response to LPS in these previous experiments then we would see a stronger immune response to 

challenge with lipid IVa, an ultrapure and potent zebrafish TLR4 agonist in vitro. 

We used two different LPS delivery routes to probe this question: microgavage into the 

gut and hindbrain injection into the circulatory system. We did not try delivery by submersion 

which is often used to test survival to high dose LPS due to the high cost of synthetic lipid IVa. 

To test the immune response dependence on TLR4, we used the TLR4-specific inhibitor TAK-

242 (resatorvid) that has been used in clinical trials.187,188 We had also hoped to use both standard 

purification and ultrapure E. coli LPS to test whether we would see a difference in immune 

stimulation, but for lack of time we have not tried this yet. We used fish at 6 days post-

fertilization (dpf) because TLR4 was shown to be upregulated in immune cells starting at 5 

dpf.101 

We first challenged 6 dpf fish by oral microgavage which involves moving a blunt needle 

tip into the fish mouth and down its throat to the top of the gut bulb where we dispensed 4.6 nL 

of 1 mg/mL standard purification (L6)-LPS-0111:B4, (L4)-lipid IVa, or vehicle treatment (Fig 

3.5A). For this experiment we tracked the immune response by using a fish line with GFP under 

the TNFα cytokine promoter (tnfα:GFP) and mCherry-marked macrophages (mpeg:mCherry). 
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We imaged live fish 6 hours post-gavage using fluorescence stereo microscopy to assess the 

location and abundance of mCherry and GFP. After imaging, fish were immediately sacrificed 

and fixed in paraformaldehyde for subsequent staining and quantification of neutrophils 

associated with gut tissue.  

Figure 3.5A shows a representative image of GFP signal at the distal gut region of a fish 

treated with LPS-0111:B4. For each fish, we quantified the total GFP intensity and the quantity 

of GFP-positive (GFP+) pixels in the distal gut and divided the total GFP intensity by number of 

GFP+ pixels. Figure 3.5B shows the total GFP intensity averaged across all GFP+ pixels 

normalized to vehicle treated fish from two experiments. Unexpectedly, there was a significant 

decrease in tnfα:GFP expression for fish gavaged with LPS-0111:B4 relative to vehicle treatment 

(p value: 0.043). Lipid IVa treated fish did not appear different from control or LPS-0111:B4 

treated fish. The mCherry signal was too low for quantification. Figure 3.5C shows the 

neutrophil quantification of dissected gut tissue from one experiment. Because this quantification 

was subjective, we had two individuals do treatment-blind neutrophil counting. Counter 1 (blue) 

did not observe any difference between treatments. Counter 2 (orange) observed significant 

increases for both LPS-0111:B4 and lipid IVa treated fish relative to vehicle treatment (p values: 

0.029 and 0.008, respectively). No difference was observed between (L6)-LPS-0111:B4 and 

(L4)-lipid IVa conditions. 

The results of our microgavage experiments indicate that, relative to vehicle treatment, 

hexa-acylated and tetra-acylated LPS delivered directly to the gut do not increase TNFα 

expression in the distal gut but may play a role in neutrophil infiltration to gut tissue (Figure 

3.5B-C). There were no observable differences prompted by different LPS variants. Because 
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these results did not match previous observations of increased inflammatory responses to LPS-

EK, we turned to a different LPS delivery method. 

Injection of 5 ng E. coli LPS into the brain tectum of 4 dpf larval fish has been shown to 

result in the systemic distribution of LPS and induction of liver-associated immune responses.189 

Neutrophil and macrophage infiltration into the liver after LPS injection was orchestrated by a 

MyD88-dependent inflammatory response.189 An experimental system with systemic LPS 

distribution through the bloodstream seemed that it would better model the role of TLR4s in 

sepsis compared to LPS delivery to the gut that is primed with modes for detoxifying LPS.186 

Like before, we hypothesized that if TLR4 plays a role in the zebrafish immune response to LPS, 

then injecting larval fish with lipid IVa would cause a stronger immune response than when 

treated with LPS-EK.  

For our injection experiment, we chose to test TLR4-specific activity using an orthogonal 

approach by pre-treating fish with the TLR4-specific inhibitor, TAK-242 (resatorvid).190 To our 

knowledge, the effects of TAK-242 on zebrafish or zebrafish TLR4 have not previously been 

reported. We first confirmed that TAK-242 knocks down zebrafish TLR4 signaling in vitro (Fig 

3.5F). Then we tested the effects of a range of TAK-242 concentrations on larval zebrafish. We 

did not anticipate that TAK-242 would have detrimental health effects because there are none 

reported for mouse or human. We found, however, that submersion in 83 μM or more TAK-242 

in embryonic media was toxic to 5 dpf fish. These fish showed signs of yolk sac edema and 

tissue degradation. Fish treated at 8.3 μM or less TAK-242 showed no signs of toxicity when 

assessing heart rate, behavior, and general appearance. Our in vitro work showed that short 

treatments with 1 μM of TAK-242 is sufficient to block subsequent immune stimulation of 
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zebrafish TLR4 by lipid IVa. We inferred that 8.3 μM TAK-242 taken up by fish through flask 

water over 24 hours would be sufficient to block zebrafish TLR4 signaling. 

 

Figure 3.5. Zebrafish response to (L6)-LPS-EK and (L4)-lipid IVa challenge via 

microgavage and hindbrain injection. A-C) Immune response 6 hours after challenge with 

LPS via microgavage in 6 dpf live fish with transgenes tnfα:GFP and mpeg1:mCherry 

(macrophages). A) A representative fluorescence microscopy image of GFP signal in the distal 

gut after challenge with LPS-0111:B4. B) Plotting the results of two independent experiments. 

Each datapoint represents the total GFP signal divided by the quantity of GFP+ pixels in the 

distal gut region of a single fish and normalized to the average for vehicle-treated controls. C) 

Gut-associated neutrophils counted by two individuals (blue and orange) in a single experiment. 

An “X” indicates the mean value for each treatment. The asterisk denotes a significant difference 

determined by a t test; p values indicated on graphs. D-E) Hepatic immune response 3-5 hours 

after challenge with LPS via hindbrain injection in 6 dpf live fish with transgenes tnfα:GFP and 

mpx:mCherry (neutrophils). D) A representative maximum intensity projection of a mock-treated 

fish (vehicle) 4 hours post-injection (hpi) with the liver region used for analysis outlined with 

white dashes and neutrophils labeled with 1 μm spheres. E) Neutrophil counts in the liver of fish 

across two experiments 3-5 hpi with LPS-EK, lipid IVa, or vehicle (PBS). All fish were pre-

treated for 24 hours either with TLR4-specific inhibitor (TAK-242) or with volume-matched 

mock treatment (DMSO). F) HEK293T cells expressing either human or zebrafish TLR4 

complexes and treated with agonist (LPS-EK for human; lipid IVa for zebrafish) with or without 

pre-treatment with TLR4-specific inhibitor (TAK-242).  
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We pretreated 5 dpf fish by submersion in either 8.3 μM TAK-242 in DMSO or an equal 

volume of DMSO alone (final concentration of 0.003% DMSO) in embryonic media for 24 

hours. The following day, 6 dpf fish were anesthetized then injected with ~4.2 nL of 2.17 ng/nL 

LPS-EK, lipid IVa, or ultrapure PBS control into the brain tectum. After injection, fish were 

rinsed and recovered in fresh embryonic media until imaging. We imaged fish 3-6 hours post 

injection (hpi) using fluorescence light sheet microscopy. The fish strain used had transgenes 

tnfα:GFP to report on TNFα cytokine expression and mpx:mCherry to mark neutrophils. We 

collected 5 sets of fluorescent z-stack images over the liver region through the full width of each 

fish to evaluate neutrophil infiltration of the liver. Fig 3.5D shows the maximum intensity 

projection in GFP and mCherry channels for one set of z-stack images of a mock-treated fish 

imaged 4 hpi.  

We are currently analyzing these data and plan to compare the number of neutrophils 

(pink) associated with the liver (white dashed line) between conditions. Our preliminary 

observations in Fig 3.5E indicate there are no statistically significant differences between any 

treatment. From visual observations of data not yet analyzed, there might be increased neutrophil 

infiltration of the liver for fish treated with standard purification E. coli LPS ((L6)-LPS-EK) and 

decreased levels for fish treated with (L4)-lipid IVa compared to other conditions. If these 

observations are supported by our analysis, we would be interested in investigating whether 

TAK-242 inhibits immune stimulation by standard purification E. coli LPS to determine if this 

response is TLR4-dependent. We would also like to test whether ultrapure hexa-acylated LPS, 

which lacks potential agonists of other immune receptors, is an agonist or antagonist for the 

zebrafish immune response.191 This would further shed light on our conflicting observations in 

vitro and in vivo for lipid IVa-induced TLR4 activation. 
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These investigations of the in vivo role of zebrafish TLR4 support the impression that the 

human and zebrafish innate immune response to LPS are quite different. However, we find it 

fascinating that the evolution of zebrafish and other species with low LPS sensitivity would 

maintain the TLR4 complex genes for hundreds of millions of years if not to use them. If these 

the lineage leading to zebrafish has not used TLR4 throughout evolution, then it is astonishing to 

find that the zebrafish TLR4 and MD-2 sequences have not diverged so much to abolish the 

ability to activate in the presence of LPS. To understand this evolutionary history better, we 

investigated whether there are evolutionary trends in TLR4 ligand specificity or sensitivity 

across previously uncharacterized early diverging vertebrate species.  

  

Zebrafish and human TLR4 evolved from an ancestor with low LPS sensitivity 

To explore the sensitivity and specificity of TLR4 evolutionary intermediates between 

human and zebrafish, we selected key modern species and reconstructed ancestors to compare in 

a functional assay (Fig 3.6A). We used topiary182, an ancestral sequence reconstruction pipeline, 

to infer the most probable amino acid sequences of TLR4, MD-2 and CD14 from the ancestors of 

tetrapods (ancTetrapod), bony vertebrates (ancBonyVert), and teleost fish (ancTeleost) based on 

the protein sequences from hundreds of modern species. José Sánchez-Borbón, a fellow graduate 

student in the Harms lab, has made significant progress in identifying candidate teleost CD14 

proteins and was the one to do the CD14 ancestral sequence reconstruction with these protein 

sequences. I will not elaborate on his findings here, but we plan to co-author a manuscript with 

our reconstructed ancestral data. 
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Figure 3.6. Characterization of TLR4 activity for reconstructed early vertebrate ancestors 

and modern fish and amphibian sequences. The phylogenetic tree on the left demonstrates 

evolutionary relationships between modern species (black) and ancestors (red) with their TLR4 

complex activities compared in the graph to the right. NF-κB activity measurements of the 

response to LPS-EK (dark blue), LPS-RS (orange), and lipid IVa (green) are shown stacked for 

each complex. Because pike and zebrafish are not known to have CD14, we included CD14 from 

human (h), mouse (m), chicken (c), or frog (f) to assess TLR4/MD-2 function. NF-κB activities 

from the teleost fish and the bony vertebrate ancestor complexes are shown relative to zebrafish 

TLR4/MD-2 with mouse CD14 in the presence of lipid IVa. Activities from all tetrapod 

complexes are shown normalized to the human TLR4 complex treated with LPS-EK. Human and 

mouse complexes were treated with 0.1 ng/uL LPS-EK (!). All other treatments were done with 1 

ng/uL LPS variant. There was no data collected for caecilian TLR4 challenged with LPS-RS.  

 

We provide a brief overview for our selection of modern species: Zebrafish are a species 

of teleost within the Otocephala clade. We selected the northern pike (Esox lucius) to represent 

the sister teleost clade, Euteleostei. Teleost fish make up most of the modern ray-finned fish 

(Actinopterygii). The sister lineage of ray-finned fish is lobe-finned fish (Sarcopterygii), and 

together they form the clade of bony vertebrates (Euteleostomi). The lobe-finned fish 

descendants include Tetrapoda, which is comprised of Amphibia and Amniota. We selected two 

amphibians, the African clawed frog (Xenopus laevis) and the two-lined caecilian (Rhinatrema 

bivittatum), to represent two distinct clades of Amphibia: the Salientia and the Gymnophiona, 
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respectively. We directly compare our findings to the human, mouse, opossum, and chicken 

complexes as representative amniotes in the functional assay, which have been well studied 

elsewhere.192 Sequences for these species were used in the TLR4 and MD-2 ancestral sequence 

reconstructions. For zebrafish and pike, which do not have CD14, we supplemented these 

complexes with a CD14 from a different organism in the functional assay. 

The functional assay results indicate that low-level LPS sensitivity was present in the 

bony vertebrate and teleost ancestors and high sensitivity to LPS evolved before the tetrapod 

ancestor (Fig 3.6; red labels). All ancestral complexes show slight specificity for hexa- and 

penta-acylated LPS over tetra-acylated LPS. The pike TLR4/MD-2 complex did not show 

activity under any condition. This does not match what we found for zebrafish or ancTeleost, 

suggesting that the lineage to pike TLR4/MD-2 lost LPS recognition. For the amphibians, the 

caecilian TLR4/MD-2/CD14 complex responds moderately to (L6)-LPS-EK and not at all to 

(L4)-lipid IVa. We have not yet tested its response to (L5)-LPS-RS. The frog TLR4/MD-2/CD14 

complex does not show activity in the presence of any ligand tested. These data suggest that 

amphibians have also experienced lineage-specific loss of function in TLR4 complexes.  

We wondered if complexes with low signal could alternatively be explained by a problem 

with our heterologous expression system. In addition to low NF-κB signal, we noticed that the 

HEK cells expressing these complexes often had low overall expression as measured by a 

reporter of constitutive protein expression. We considered that the structural interface of the TIR 

domain and immune signaling adaptors of early branching vertebrates may have diverged 

significantly from the human proteins expressed in HEK cells, and this mismatch could result in 

low immune stimulation as well as altered levels of protein expression. We tested whether 

creating hybrid TLR4s with human intracellular domains would allow us to better interrogate the 
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ligand sensitivity and specificity of other species’ extracellular domains. We designed a vector 

with the human TLR4 signaling peptide, transmembrane domain, and TIR domain in which we 

could scarlessly insert the extracellular domain of any TLR4 between the signaling peptide and 

transmembrane domain.  

This strategy also offered itself to the investigation of the TLR4 and MD-2 paralogs, 

CD180 and MD-1. CD180 (also known as RP105) does not have a TIR domain but forms a 

complex with MD-1 that is able to bind lipid A and induce a distinct TLR heterodimer 

complex.193 CD180/MD-1 is thought to regulate LPS-induced TLR4 signaling.163,194,195 

Exploring the LPS specificity of CD180/MD-1 by providing a measurable output for ligand 

recognition would give us insight into the early evolution of TLR4/MD-2. 

We generated plasmids with the extracellular domains (ectodomains) of two zebrafish 

TLR4 ohnologs, tlr4ba and tlr4al, and zebrafish CD180 attached to the transmembrane and TIR 

domains of human TLR4. We transfected these hybrid plasmids with their corresponding 

coreceptors, MD-2 for TLR4s and MD-1 for CD180, as well as mouse CD14. We measured the 

relative NF-κB activity induced by hybrid zebrafish receptors in response to LPS-EK and lipid 

IVa (Fig 3.7A). Our results show similar LPS specificity of zebrafish tlr4ba in the context of 

zebrafish and human transmembrane and TIR domains, perhaps with slightly decreased 

sensitivity to LPS-EK when in the human context. Zebrafish tlr4al and CD180 hybrid proteins 

show minimal, if any, activation above background.  
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Figure 3.7. Hybridizing the human TLR4 transmembrane and TIR domains to other 

species extracellular domains does not reveal function. NF-κB activity of hybrid TLR4 and 

CD180 proteins with the human transmembrane and TIR domains (hum-TM/TIR) in response to 

LPS-EK and lipid IVa. A) On the right, the ectodomains of zebrafish TLR4 ohnologs tlr4ba and 

tlr4al (zf tlr4ba-ecto and zf tlr4al-ecto, respectively) as well as the TLR4 paralog, CD180, from 

zebrafish (zf CD180-ecto) were expressed with the human transmembrane and TIR domain. B) 

The transmembrane helical register was shifted for human TLR4 and the frog hybrid proteins by 

adding or removing amino acids from the interface of the transmembrane and ectodomain. These 

are displayed from left to right as the longest to shortest helix (TM(+/- # amino acids)). The frog 

helical register mutants were expressed with frog CD14. Wild-type zebrafish, human, and frog 

TLR4s are included as controls. Error bars indicate standard deviation. 

 

We also created a hybrid frog TLR4 ectodomain/human transmembrane and TIR domain 

protein and found it did not show activity in the presence of frog or human CD14 (Fig 3.7B). To 

test if our hybrid proteins were nonfunctional because of an improper relative orientation of the 

ectodomain to TIR domain, Corinthia Brown made mutants of both human and hybrid frog 

TLR4s to shift the helical register of the transmembrane domains. There are 3.6 amino acid 

residues per turn of an alpha helix with each additional residue conferring a 100o rotation around 

the helical axis. We constructed mutants to sample each step of at least one full rotation of the 

helical transmembrane domain, allowing all possible relative orientations of the extracellular to 

intracellular domains. When we tested these proteins in the functional assay, we found that 

human TLR4 can accommodate at least up to a 200o rotation when adding amino acids at the 

interface between transmembrane and extracellular domain (Fig 3.7B). It can only tolerate a 100o 
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rotation into the membrane, as seen by a loss of function when removing 2 amino acids. Overall, 

the human TLR4 helical register mutant data indicate that human TLR4 can assume any relative 

orientation of the extracellular and intracellular domains without breaking function. No mutant 

of the frog TLR4 hybrid was able to activate activity (Fig 3.7B). We conclude that the frog 

TLR4/MD-2 complex is unable to mount an immune response to LPS.  

 Overall, these hybrid TLR4 experiments indicated that heterologous expression of TLR4 

complexes in HEK cells does not drastically affect NF-κB signaling. We did note some 

improvement to the overall level of protein expression in the cells expressing the hybrid forms of 

TLR4 (data not shown). But this improvement only made us more confident in the measurements 

of low NF-κB signal. Therefore, we did not further investigate other low-sensitivity complexes 

under these conditions. 

  

Initial investigations into possible CD14 functional homologs in fish 

We worked to identify a molecule that could serve an LPS-transport role like CD14. 

CD14 is known to catalyze the delivery of LPS to the TLR4/MD-2 complex in mammals. It 

retrieves monomeric LPS from the extracellular space, usually with the help of the LPS-binding 

protein (LBP) that extracts LPS from the outer membranes of Gram-negative bacteria, and then 

transfers LPS to the TLR4/MD-2 complex. At the time of these experiments, CD14 was believed 

not to be present in fish; phylogenetic studies suggested CD14 evolved in tetrapods before the 

divergence of amphibians and amniotes. In this section of the chapter, I will present several 

preliminary investigations into possible LPS chaperone candidates in fish that I took point on. 

These experiments paved the way for current research being conducted by José Sánchez-Borbón, 

a fellow graduate student in the Harms lab. José and I are preparing a manuscript that consists of 
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findings previously reported in this chapter as well as José’s discoveries from digging further 

into the evolutionary history of fish CD14.  

The following preliminary experiments were done while still optimizing our in vitro 

assay for studying the ligand specificity of zebrafish TLR4. Unfortunately, this has made direct 

comparisons between experiments difficult, but I will highlight important experimental 

modifications. Critical details that were altered include: 1) The amount of TLR4, MD-2, and 

CD14 plasmids transfected into cells. We noticed this contributed significantly to signal strength. 

The transfection amount will always be presented as TLR4:MD-2:CD14 with “1” equal to 1 ng 

of plasmid transfected per well. Transfections with human TLR4 were consistently at 10:0.5:1, as 

established previously.102 2) The concentration of LPS used to treat cells. Most often, 

experiments include a control with human TLR4 treated with 0.2 or 0.1 ng/μL (L6)-LPS-EK. 

There are a few instances that this did not occur. All other treatments were applied with 2 or 1 

ng/μL LPS. And 3) the CD14 used to catalyze the zebrafish TLR4 response to LPS. As I will 

describe below, a CD14 molecule has not been found in zebrafish but including CD14 drastically 

improves in vitro zebrafish TLR4 signaling.101 

Our previous experiments used human or mouse CD14 as these were reported to allow 

zebrafish tlr4ba signaling in vitro.101 Now that we had a potent agonist of zebrafish tlr4ba, we 

wondered if we could see activation in the absence of CD14. Our preliminary investigations 

showed no signal from zebrafish tlr4ba/MD-2 in the absence of CD14 (Fig 3.8A). This was 

probably due to using low and variable concentrations of lipid IVa around 0.2 ng/μL. Signal 

amplitude and reproducibility were greatly improved in later experiments by transfecting cells 

with a plasmid ratio of 10:20:1 (mouse CD14) and treating with 1 ng/µL lipid IVa that was 

ultrasonicated to disrupt micelles prior to the experiment (Fig 3.8B). José Sánchez-Borbón first 
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noticed that zebrafish tlr4ba/MD-2 exerts low-level NF-κB activation independent of CD14 and 

is currently following up on it. 

We considered the possibility that the chaperone role of CD14 could be achieved through 

some other zebrafish protein. CD14 is a gene duplicate of vertebrate TLR2, which is present in 

fish. Like TLR4, TLR2 is an innate immune pattern recognition receptor. In mammals, TLR2 

binds a wide variety of bacterially associated ligands including acylated lipopeptides and 

peptidoglycan but does not initiate the inflammatory response to LPS.196 It can also 

heterodimerize with other TLRs to initiate immune responses. We hypothesized that CD14’s 

ability to chaperone LPS could stem from an ancestral trait of the TLR2-CD14 ancestor, and 

perhaps the fish lineage maintained this function in their TLR2. We did not find this to be the 

case (Fig 3.8A). We transfected HEK293T cells with increasing doses of human CD14 or 

zebrafish TLR2 plasmid and found that all concentrations of CD14 promoted tlr4ba activation, 

but no amount of zebrafish TLR2 plasmid induced LPS-sensitivity. We did not test whether 

TLR2 was being expressed on the surface of cells, therefore we have not proven here that 

zebrafish TLR2 lacks an LPS-chaperoning ability, but it seems unlikely given our data. 

We next tested whether CD180 with or without MD-1 could act as an LPS chaperone. 

The CD180/MD-1 complex is able to bind lipid A and is implicated in LPS-induced TLR4 

signaling.163,194,195 We transfected cells with combinations of human or zebrafish TLR4, MD-2, 

CD180, MD-1 and CD14 in the presence of LPS-EK and lipid IVa (Fig 3.8C). Our data indicate 

a possible role for human CD180/MD-1 to activate TLR4 in the absence of MD-2, but zebrafish 

TLR4 is not activated in any condition without both MD-2 and CD14. 

 

Figure 3.8 (next page). Zebrafish TLR2, CD180/MD-1, and human transferrin do not 

rescue the zebrafish TLR4 response to lipid IVa in the absence of CD14. 
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Figure 3.8. Zebrafish TLR2, CD180/MD-1, and human transferrin do not rescue the 

zebrafish TLR4 response to lipid IVa in the absence of CD14. A) NF-κB activation of 

zebrafish TRL4 in response to lipid IVa or LPS-EK in the presence of candidate LPS chaperone 

molecules. We tested zebrafish TLR2’s ability to catalyze LPS delivery to zebrafish TLR4. 

Zebrafish TLR4/MD-2 was transfected at 25:20 ng plasmid/well with human CD14 or zebrafish 

TLR2 at plasmid concentrations of 0, 1, 5, or 10 ng per well. Cells were challenged with 0.2 

ng/μL lipid IVa or LPS-EK. For comparison, human TLR4 with and without CD14 is shown on 

the far right. Human TLR4 was treated with 0.002 ng/μL LPS variants. B) Zebrafish TLR4/MD-

2 challenged with high dose (1 ng/μL) lipid IVa in the presence or absence of CD14. In addition 

to increasing concentration, lipid IVa was ultrasonicated before treatment and cells were 

transfected with 10:20 TLR4:MD-2 with or without 1 ng mouse CD14 per well. C) Testing 

human and zebrafish CD180/MD-1 for LPS chaperone abilities. Zebrafish complex transfected at 

25:20:1, zebrafish CD180:MD-1 transfected at 15:15, and human CD180:MD-1 at 10:10. Human 

proteins treated were with 0.2 ng/μL LPS variants, whereas zebrafish proteins were treated with 

2 ng/μL LPS. For experiments in panels A-C, NF-κB activity level was buffer-subtracted and is 

shown normalized by species: human TLR4 signal is relative to human TLR4 treated with LPS-

EK; zebrafish TLR4 signal is relative to its signal in the presence of lipid IVa. D) Testing if 

transferrin can act as an LPS chaperone for zebrafish TLR4. We treated zebrafish tlr4ba/MD-2 

with 1 ng/μL lipid IVa in the presence of full length and proteinase K-digested transferrin 

peptides (green). Digestion products are displayed in increasing concentration from left to right 

(gradient). A value of “1” is equal to 71.5 nM of transferrin starting material that was 

subsequently proteolyzed. For comparison, human TLR4/MD-2/CD14 and zebrafish TLR4/MD-

2 with mouse CD14 were treated with LPS-EK and lipid IVa, respectively. For this experiment, 

the plasmid ratio for zebrafish tlr4ba:MD-2:mouse CD14 was 10:20:1 ng/well. NF-κB activity 

level was buffer-subtracted and all data normalized to human TLR4 signal in the presence of 0.1 

ng/μL LPS-EK. 

  

The final candidate we probed for an LPS delivery role was transferrin. Transferrin is an 

iron-binding molecule that can bind the lipid A moiety of LPS and is implicated in sequestering 

iron from microbes. Macrophages from goldfish, teleost fish closely related to zebrafish, express 

transferrin and transferrin proteases in response to the presence of microbes.197 Cleavage 

products of transferrin are shown to enable the activation of goldfish macrophage immune 

responses in the presence of LPS.198,199 One of these cleavage products shares sequence 

similarity with the LPS-binding site of mouse CD14. In addition, transferrin, likely when bound 

to the transferrin receptor, colocalizes with TLR4 during LPS-induced TLR4 endocytosis which 
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is essential for robust immune activation by TLR4.200 The culmination of this evidence suggested 

that transferrin could serve at least an incidental LPS-transport role that CD14 has become 

specialized in. We assessed this possibility using full-length or proteinase K-digested human 

transferrin and tested for CD14-like functions in vitro. 

Our results show that full-length transferrin might have some capacity to help lipid IVa 

get to TLR4 (Fig 3.8D). This can be seen by comparing the lipid IVa-induced activity of 

zebrafish TLR4 in the presence of full-length transferrin (second green bar) to the control 

without transferrin (third green bar: “0”). This is roughly a 3-fold increase (0.09 to 0.28 units). 

Yet CD14 provides ~5.5 times better enhancement of signaling. While working on this, it seemed 

that transferrin and/or proteinase K would sometimes cause the cells to form liquid-like droplets 

on the plate surface. This was more extreme at higher concentrations. Although perhaps 

interesting, we did not pursue this further. 

Overall, we have learned from these experiments that zebrafish TLR2 and transferrin 

probably do not serve a homologous role to CD14 in zebrafish. However, this work established a 

basis for José’s future functional characterizations of other candidate fish CD14-like proteins.  

  

DISCUSSION 

 Extrapolating findings from studies in model organisms to human biology hinges on our 

ability to define homology between species. We have shown here that the zebrafish innate 

immune response to LPS is different than in humans. We are optimistic that the root of these 

differences can be revealed by the functional characterization of homologous proteins in vitro 

and in vivo. We have shown that ancestral sequence reconstruction is an excellent tool that can be 

applied to the interrogation of evolutionary trajectories between zebrafish and human proteins. 
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We are left with several future directions to explore the zebrafish immune response to LPS, the 

role of zebrafish TLR4, and the origin of LPS recognition and specificity of TLR4/MD-2/CD14 

complexes. 

  

Zebrafish TLR4 ohnologs might play important physiological roles 

 Our study began with the observation that one of the three zebrafish TLR4 ohnologs, 

tlr4ba, can induce a robust inflammatory response when challenged with tetra-acylated LPS in a 

human cell-based assay (Fig 3.2 & 3.3). We observed that it may be possible for 

heterocomplexes of TLR4 ohnologs to amplify the immune response to LPS (Fig 3.3B). 

Heterocomplexes may play an important role in ligand sensitivity in the zebrafish. The three 

ohnologs of TLR4 likely arose from unequal gene gain and loss throughout multiple rounds of 

whole genome duplications in the lineage leading to zebrafish.201-202 Gene duplications can lead 

to functional diversification of genes, including gain or loss of function, or subfunctionalization 

of the original function between the duplicate proteins.203 These three genes have been 

maintained in the zebrafish genome for hundreds of millions of years and are all expressed at 

least in developing larval fish tissues.101 We think it would be an interesting avenue of 

investigation to uncover what these proteins do for zebrafish physiology and health.202 

  

Possible functional roles of the zebrafish MD-2 C-terminal peptide 

We initially predicted that the zebrafish C-terminal peptide played a role in determining 

the number of acyl chains that fit into the MD-2 binding pocket. Our data show that it is more 

complicated than this, rather, the peptide is specifically necessary for zebrafish TLR4 to mount 

an immune response to LPS (Fig 3.4D-E). We consider that the peptide might stabilize the 
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dimerization interface of zebrafish TLR4 in a way that is unnecessary for human TLR4. It has 

been reported that when (L6)-LPS packs its acyl chains into the human MD-2 binding pocket, 

the lipid A diglucosamine backbone is displaced upwards by ~5Å relative to lipid IVa-bound 

structures. This positions the phosphate groups such that they can interact with the positively 

charged residues of two dimerizing TLR4s (Park et al., 2009).42 Perhaps there is also some 

unique structural feature of the zebrafish TLR4 dimerization interface that requires the C-

terminal peptide to correctly position the diglucosamine backbone and phosphates for productive 

dimerization. This interaction could be between TLR4 and LPS or between TLR4 and the LPS-

bound peptide.  

A similar but alternative hypothesis is that the peptide serves as part of the hydrophobic 

core with LPS acyl chains to form the dimerization interface. Ohto et al. proposed from their 

crystal structures that for productive TLR4 signaling, amino acids at the opening of the MD-2 

beta-cup must interact with at least a partial LPS acyl chain to form the dimerization interface 

between two TLR4/MD-2/LPS complexes.45 For dimerizing mouse TLR4/MD-2/lipid IVa 

complexes, the MD-2 Phe126 side chain shifts more that 4Å toward the MD-2 cavity where the 

Phe126 loop interacts with another MD-2 loop and a partially exposed chain of LPS to form the 

hydrophobic core of the dimerization interface. This core interacts with the hydrophobic patch on 

the dimerizing TLR4. Perhaps the zebrafish MD-2 peptide has evolved to serve this role at the 

dimerization interface. The peptide is positioned at the outer edge of the MD-2 beta-cup opening 

and has two phenylalanines that could potentially be involved in dimerization like the mouse 

MD-2 Phe126 loop. 

Understanding the functional role of the cyprinid MD-2 C-terminal extension would help 

clarify how this protein has evolved, and potentially why in vitro zebrafish TLR4/MD-2 exhibits 
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contrasting specificity to the human complex. Our next steps would be to gain more detailed 

structural information about zebrafish and other cyprinid species TLR4/MD-2s. Did other 

cyprinid species evolve to recognize LPS, and if so, is their function and their ancestral states 

also dependent on the C-terminal peptide? We could alternatively make mutations to zebrafish 

TLR4 at sites that are predicted to interface with the peptide during dimerization. This kind of 

mutational analysis would benefit from structural simulations of dimerization or ligand binding. 

In conclusion, there are many ways to continue probing the difference between human and 

zebrafish TLR4 in vitro. 

 

Is TLR4 used in the zebrafish innate immune response to Gram-negative bacteria? 

Our in vivo results suggest that larval 6 dpf fish do not recognize or respond to TLR4 

agonists. It is unclear if standard purification LPS-induced immune responses previously 

reported are mediated by TLR4, TLR2, or a redundant LPS-sensing pathway. RNAseq data of 5 

dpf fish showed there are a small subset of immune cells that upregulate expression of zebrafish 

TLR4 ohnologs and MD-2. It is possible, then, that our 6 dpf studies were too early in fish 

development to assess functional consequences of TLR4 in immunity if this defense mechanism 

is still maturing. Or perhaps lipid IVa is not a strong agonist of zebrafish TLR4 in vivo. 

Alternatively, maybe zebrafish TLR4 can bind lipid IVa in vivo but there are other regulatory 

mechanisms to dampen the immune response. Zebrafish have been shown to express intestinal 

alkaline phosphatase which detoxifies LPS in their gut and prevents intestinal inflammation in 

response to the gut microbiota.186 We considered that our microgavage experiment may have 

been affected by the dephosphorylation of LPS in the fish intestine with an intact microbiota. 



 106 

The inflammasome might serve as an alternate LPS-sensing pathway in zebrafish. 

Inflammasomes are cytosolic multiprotein complexes that regulate the immune response to 

intracellular danger signals much like TLRs at the extracellular surface. Caspase-11-deficient 

mice are resistant to LPS-induced sepsis, implying that caspase-11 participates in host response 

to LPS.204 Caspase-4 and caspase-5 in humans and the ortholog in mice, caspase-11, are 

activated by direct binding to intracellular LPS.205 Much like human TLR4/MD-2 activation, 

underacylated lipid IVa and (L5)-LPS-RS were shown to bind to caspase-4/11 but could not 

induce oligomerization and activation of the inflammasome.204–206 This LPS-binding was 

mediated by the CARD domain of the caspases.205 Zebrafish have homologs but not direct 

orthologs of mammalian caspases. One of these homologs, caspy2 (or Casb), when 

overexpressed in HEK293T cells can directly bind LPS via the N-terminal pyrin death domain, 

resulting in caspy2 oligomerization which is necessary for pyroptosis.207 Knockdown of caspy2 

expression protects larvae from lethal sepsis.207 However, LPS needs to be delivered to the 

cytosol in order for caspy2 to bind to it. This happens naturally during an infection due to 

bacterial effector proteins that can inject LPS into host cells. It is possible that this LPS-sensing 

role of the inflammasome protein caspy2 has taken over the responsibility of Gram-negative 

bacterial detection in zebrafish. It would be interesting to investigate whether TLR4 plays a role 

in priming zebrafish immune cells to upregulate the expression of caspy2 for LPS recognition, or 

in regulating the delivery of LPS to the intracellular space. 

  

Further probing ancestral complexes will help us understand TLR4 ligand responses 

The reconstructed bony vertebrate and teleost ancestors showed low-level LPS 

sensitivity. This makes sense given the lack of signal we see for the pike, frog, and zebrafish 
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tlr4bb and tlr4al complexes, as well as the low sensitivity of zebrafish tlr4ba to LPS variants with 

more than four acyl chains and the caecilian TLR4 to hexa-acylated LPS. However, a lack of 

signal is harder to make a case for functional similarity than a positive signal.  

Ancestral sequence reconstruction relies on several assumptions of the evolution between 

sequences in a dataset. We cannot access every sequence change along an evolutionary trajectory 

and therefore, we rely on complex models to infer the most likely series of mutational events 

connecting modern sequences. Because of this, it is more than likely that the sequences 

reconstructed do not reflect the exact ancestral states of the protein. Posterior probability is a 

useful statistical measurement used to indicate our uncertainty in the amino acid call at each 

position along a reconstructed protein. If we were completely confident in our reconstruction, 

meaning there was only one residue at each position with high probability, the average posterior 

probability across the entire sequence would be 1.0. Our reconstructed sequences for the tetrapod 

ancestor (ancTetrapod) TLR4, MD-2, and CD14 have average posterior probabilities of 0.881, 

0.854, and 0.955, respectively. The average posterior probability for the ancestor of bony 

vertebrates (ancBonyVert) complex was 0.806, 0.798, and 0.929, respectively. And the teleost 

ancestor (ancTeleost) yielded average posterior probabilities of 0.885, 0.774, and 0.926 for 

TLR4, MD-2 and CD14, respectively. Typically, ancestral proteins have been shown to exhibit 

function when they have posterior probabilities > 0.85.  

It is possible that the ancestral complexes show low activity due to borderline poor-

quality reconstructions of TLR4 and MD-2 sequences. However, we argue that there are far more 

ways to break a protein’s function than there are to maintain it. A good next step would be to 

resurrect and characterize the altAll ancestors—ancestral sequences with every ambiguous amino 

acid substituted with the next most probable alternate. These proteins would serve as the “worst 
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case” scenario if the reconstruction chose the wrong amino acid at every ambiguous site. If the 

maximum likelihood and altAll ancestors have the same function, then the function is robust to 

uncertainty in the reconstruction and likely reflects the protein’s ancestral state.76,115,134–138 

We would also be interested in doing further investigation into the biochemical changes 

that have occurred throughout these evolutionary intermediates that confer different LPS 

sensitivity and specificity. We would better understand the mechanism of TLR4/MD-2/CD14 

ligand responses if we were to compare these ancestors at a deeper level. 

  

Did zebrafish lose CD14 as a mechanism to avoid LPS toxicity? 

 A major hindrance to our investigations of zebrafish TLR4 function has been the elusive 

CD14-like protein. We have investigated several candidate molecules (TLR2, CD180/MD-1, and 

transferrin) that exist in zebrafish, can bind LPS, and have been shown to be involved in immune 

responses. However, none of these proteins could catalyze TLR4/MD-2 ligand-induced activity 

like CD14 in our functional assays. It is possible that zebrafish do not have a CD14-like protein 

and that could explain their low sensitivity to LPS even if zebrafish TLR4/MD-2 can mount an 

immune response. Currently, José Sánchez-Borbón is taking point on investigating the 

evolutionary history of CD14 and has begun to reveal when it became a functional part of the 

TLR4 complex. José has identified that most fish species either have TLR4/MD-2 or a proto-

CD14 molecule, but not all three proteins. If this is true, then perhaps fish lost the ability to sense 

LPS via TLR4 by selective pressure to evade sepsis-like diseases, or alternatively they have not 

needed the full complex to deal with infections by Gram-negative bacteria. 

 In conclusion, we have leveraged ancestral sequence reconstruction, cell-based and 

organismal functional assays, and mutational analyses to probe the evolutionary divergence 
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between human and zebrafish TLR4 complex structure, function, and role in the innate immune 

response to LPS. We find that although human and zebrafish TLR4/MD-2 share many properties, 

like the ability to bind LPS and stimulate an inflammatory response, there are many 

dissimilarities after 430 million years of evolutionary separation in the way these homologous 

proteins are activated by their ligand and how they are involved in the immune response. Much 

more work remains to really understand the role of zebrafish TLR4, if the zebrafish can be used 

to model TLR4-induced inflammation, and why the tlr4ba ohnolog has evolved the unique 

ability to specifically recognize tetra-acylated LPS. 

  

MATERIALS AND METHODS 

Ancestral sequence reconstruction 

We reconstructed ancestral sequences using the topiary pipeline available on GitHub 

(https://github.com/harmslab/topiary).182 The multiple sequence alignments generated by the first 

stage of the topiary script were manually edited to remove ambiguous sequences and gene 

duplicates using AliView software.152 Sequences from key species were added to the alignment 

to increase taxonomic sampling when it was lacking. At this point, the signal peptide for every 

sequence in the alignment was predicted by SignalP – 6.0208 and then removed from the 

alignment before being fed back in to stage 2 of topiary to perform the ancestral inference. TLR4 

and MD-2 sequence alignments, reconstructed ancestral sequences, and phylogenetic trees built 

during ASR are available in the supplement files. The Jones-Taylor-Thornton (JTT) substitution 

model was used in the MD-2/MD-1 ancestral inference. The maximum likelihood species-

reconciled gene tree for MD-2/MD-1 aligned fairly well with the species tree except that it 

placed two duplication events within the early branches of the MD-1 clade and placed several 

https://github.com/harmslab/topiary
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amphibians outside of fish. This was probably due to high variability in amphibian MD-1 

sequences in the alignment. The MD-2 clade, however, aligns well with the species tree. The 

MD-2 ancestors we wanted to characterize ancBonyVert (anc88), ancTeleost (anc87), and 

ancTetrapod (anc76) had average sequence posterior probabilities of 0.798, 0.774, and 0.854, 

respectively. Bootstrap sampling of the gene-species tree resulted in high branch supports for 

these nodes. The TLR4/CD180 ancestral inference used the JTT general amino acid exchange 

rate matrix and discrete Gamma model with 8 rate categories (JTT+G8). The reconciled gene-

species tree aligns well with the species tree. There were also duplication events labeled early on 

in both TLR4 and CD180 clades suggesting fish TLR4 and CD180 have significantly diverged 

from their tetrapod homologs. The TLR4 ancBonyVert (anc345), ancTeleost (anc57), and 

ancTetrapod (anc334) reconstructions had posterior probabilities of 0.806, 0.885, and 0.881, 

respectively. Bootstrap analysis for the TLR4/CD180 tree is not complete, so we do not yet know 

the branch supports at ancestral nodes. Both maximum likelihood and altAll sequences were 

reconstructed for every ancestor. We used the maximum likelihood ancestral sequences for 

functional characterization. 

  

Plasmids 

 Ancestral gene sequences were human codon optimized and synthesized by GeneWiz 

(Azenta) in a pcDNA3.1(+) backbone without the T7 promoter. TLR4, MD-2, and CD14 

ancestral sequences without native signal peptides were flanked upstream by the CMV enhancer 

and promoter, a Kozak sequence, the human signal peptide, and a FLAG tag, and then flanked 

downstream by two stop codons. 
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 Most mammalian expression plasmids were already in house. Pike TLR4 and MD-2 

genes were human codon optimized and then synthesized by GenScript in the pcDNA3.1(+) 

vector with a Kozak sequence upstream of the start codon. Zebrafish tlr4al (Accession No. 

:NM_001328605.1), cd180 (Accession No.: NM_001310490.1), ly86 (md-1) (Accession No. : 

NM_001310488.1), and human CD180 (Accession No.: NM_005582.3) and LY86 (MD-1) 

(Accession No.: NM_004271.4) were cloned by GenScript into the pcDNA3.1(+) expression 

vector with a Kozak sequence upstream. In house cloning was done using SLIC and KLD 

mutagenesis kits. 

  

Cell culture and transfection conditions 

We followed well-established protocols for transient transfection using the Dual-Glo 

Luciferase Assay System (Promega).102 Human embryonic kidney cells (HEK293T /17, 

American Type Culture Collection CRL-11268) were maintained up to 30 passages in DMEM 

supplemented with 10% FBS at 37oC with 5% CO2. For each transfection, a confluent 100 mm 

plate of cells was treated at room temperature with 0.25% Trypsin-EDTA in HBSS and 

resuspended with an addition of DMEM + 10% FBS. This was diluted four-fold into fresh 

medium and 135 µL aliquots of resuspended cells were transferred to a 96-well cell culture 

treated plate. All transfection mixes were made with 1 ng of Renilla and 20 ng of ELAM-Luc. 

Transfection mixes for human TLR4 complexes were made with an additional 10 ng of TLR4, 

0.5 ng of MD-2, 1 ng of CD14, and 67.5 ng of pcDNA3 per well for a total of 100 ng of DNA. 

Transfection mixes for other species TLR4 complexes, unless otherwise noted, were made with 

10 ng of TLR4, 20 ng of MD-2, 1 ng of CD14, and 48 ng of pcDNA3 per well for a total of 100 

ng of DNA. All plasmids contained human codon optimized genes and were in mammalian 
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expression vectors. Transfection mixes were diluted in OptiMEM to a volume of 10 µL/well. To 

the DNA mix, 0.5 µL per well of PLUS reagent was added and thoroughly mixed followed by a 

10 min incubation at room temperature. Lipofectamine was diluted 0.5 µL into 9.5 µL OptiMEM 

per well. This was added to the DNA + PLUS mix, mixed well, and incubated at room 

temperature for 15 min. The transfection mix was diluted to 65 μL/well in OptiMEM and 

aliquoted onto the cells in the plate. Cells were incubated with transfection mix overnight (20–24 

h). For cells that received a pre-treatment with the TLR4 inhibitor TAK-242 (synonyms: 

Resatorvid; CLI-095) (HY-11109, MedChemExpress), 2 μL of 100 μM TAK-242 in cell culture 

grade DMSO was applied per well and the plate was incubated for 5 min at 37oC before media 

was removed and cells were treated as normal with 100 μL of LPS mixtures prepared in 25% 

PBS, 75% DMEM. E. coli K-12 LPS (tlrl-eklps, Invivogen) and R. sphaeroides LPS (tlrl-rslps, 

Invivogen) were dissolved at 5 mg/mL in endotoxin free water, aliquots were stored at −20°C. S. 

enterica serotype typhimurium LPS (L6511, Sigma-Aldrich) was dissolved at 5 mg/mL in 

endotoxin free water and stored at 4°C. Lipid IVa (CLP-24006-S, Biosynth) was dissolved at 0.1 

mg/mL in endotoxin free water, aliquots were stored at −20°C. To avoid freeze-thaw cycles, 

working stocks of LPS were prepared at 10μg/mL and stored at 4°C. To disrupt micelle 

formation and evenly distribute LPS in solution, LPS stocks were placed in a room temperature 

jewelry ultrasonicator for 15 min prior to use in treatments. Cells were incubated with treatments 

for 4 hr. The Dual-Glo Luciferase Assay System (Promega) was used to assay Firefly and Renilla 

luciferase activity of individual wells. Each NF-κB induction value shown represents the buffer-

subtracted Firefly luciferase activity/vehicle blanked Renilla luciferase activity, normalized to 

LPS-treated transfection controls for each species in order to normalize between plates. For cells 

treated with transferrin proteolysis products, 100 μL of 100 μM human transferrin (T8158, 
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Sigma-Aldrich) in endotoxin-free water was digested with 30 μL of 20 μM proteinase K 

overnight at room temperature before being mixed at indicated concentrations with treatment 

mixes. 

  

Oral microgavage of LPS 

Zebrafish experiments were approved by the University of Oregon Institutional Animal 

Care and Use Committee. Larval 6 dpf fish were anesthetized in 168 mg/ml tricaine methane 

sulfonate in embryo medium (EM) and microgavaged with 4.6 nL of 1 mg/mL LPS purified from 

E. coli 0111:B4 (L2630; Sigma-Aldrich) dissolved in EM. After gavage, fish were transferred to 

fresh EM. Fish were imaged 6 h post-gavage using a fluorescence stereo microscope. Fish were 

anesthetized in 168 mg/ml tricaine methane sulfonate in EM before being mounted on a glass 

slide and images were taken over the distal gut region in bright field, GFP, and mCherry 

channels. The fish used in this experiment were tg(tnfα:GFP; mpeg:mCherry). After imaging, 

fish were immediately sacrificed and fixed in paraformaldehyde for subsequent staining and 

quantification of neutrophils associated with gut tissue. Fixed zebrafish were dissected to isolate 

the gut bulb and intestinal tract. Stained neutrophils were counted by two treatment-blind 

individuals.  

  

Brain tectum microinjection of LPS 

We used a modified version of a previously published protocol.209 Larval 5 dpf fish were 

submersed in either 8.3 μM TAK-242 (synonyms: Resatorvid; CLI-095) (HY-11109, 

MedChemExpress) or an equal volume of cell culture grade DMSO (final concentration of 

0.003%) in EM for 24 hours. 6 dpf fish were anesthetized in 168 mg/ml tricaine methane 
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sulfonate in embryo medium (EM) and microinjected by brain tectum injection with ~4.2 nL of 

2.17 ng/nL E. coli LPS-EK (tlrl-eklps, InvivoGen), lipid IVa (CLP-24006-S, Biosynth), or 

ultrapure PBS. After injection, fish were rinsed and recovered in fresh EM until imaging. Fish 

were imaged 3-6 hours post-injection by fluorescence light sheet microscopy. For imaging, fish 

were anesthetized in 168 mg/mL tricaine methane sulfonate in EM before being mixed with 

0.7% low-melt agarose at 40oC in EM and mounted into a capillary tube. We collected 5 sets of 

fluorescent z-stack images over the liver region through the full width of each fish to track 

immune cells near the liver. The fish strain used in this experiment was tg(tnfα:GFP; 

mpx:mCherry). Images were analyzed using Imaris software. 

 

BRIDGE TO CHAPTER IV 

There have been many discoveries of host-microbe interactions, drug developments, and 

disease pathologies using the zebrafish model of innate immunity. In Chapter III, we showed 

ample evidence of dissimilarities between homologous innate immune proteins in humans and 

zebrafish. In Chapter IV, we present an investigation of zebrafish proteins that are homologous, 

but not orthologous to the mammalian innate immune protein, calprotectin. This work was 

stimulated by a recent publication describing the zebrafish s100a10b protein as the functional 

homolog of human calprotectin in the zebrafish innate immune response to bacterial infection. 
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CHAPTER IV 

ZEBRAFISH DO NOT HAVE CALPROTECTIN 

 

*This chapter contains unpublished co-authored material. 

 

Author contributions: Orlandi KN and Harms MJ designed the study. Orlandi KN designed and 

performed experiments, analyzed data, and wrote the manuscript. Harms MJ obtained funding 
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ABSTRACT 

 The protein heterodimer calprotectin and its component proteins play important 

antibacterial and proinflammatory roles in the mammalian innate immune response. Calprotectin 

is also a well-validated, non-invasive biomarker of inflammation. Gaining mechanistic insights 

into the regulation and biological function of calprotectin will help facilitate patient diagnostics 

and therapy. Recent literature proposed that the zebrafish S100A10b protein is analogous to 

human calprotectin based on sequence similarity and genomic context. The field would benefit 

from expanding the breadth of calprotectin studies into a zebrafish innate immunity model. 

However, thus far there is no phylogenetic nor functional evidence demonstrating the existence 

of calprotectin in fish. Here, we evaluate the possibility that a zebrafish S100 protein could have 

convergently evolved a calprotectin-like role in the zebrafish innate immune response. We show 

the phylogenetic and syntenic relationships of human and zebrafish S100s. We identify and 

zebrafish S100s that are expressed in immune cells and upregulated during the immune response. 

We then recombinantly express and purify four candidate proteins and evaluated them for 

antimicrobial and proinflammatory characteristics. We find that none of the most promising 

candidates proved to be functionally orthologous to calprotectin nor its component proteins.



INTRODUCTION 

Calprotectin plays critical roles in the innate immune response.210 This protein is a 

complex formed by two calcium binding proteins: S100A8 and S100A9. Calprotectin is found in 

heterodimeric and heterotetrameric states, both of which play biological roles.63,64,82,211 Its 

individual components, S100A8 and S100A9, are also both found as homodimers with biological 

functions distinct from the heterocomplexes.  

S100A8 and S100A9 are highly expressed in the cytoplasm of immune cells212 

comprising up to 45% of soluble cytosolic protein in neutrophils62. Intracellular S100A8 and 

S100A9 are implicated in the calcium-dependent microtubule reorganization of phagocytes 

allowing migration to sites of infection.65,66,68 Upon release from cells after damage or during an 

immune response calprotectin exerts antimicrobial activity by sequestering transition metals 

essential for microbial growth in the extracellular matrix.86–88,213–220 Extracellular S100A8 and 

S100A9 homodimers can amplify the immune response by activating Toll-like receptor 4 (TLR4) 

and the Receptor for Advanced Glycation End-products (RAGE) promoting cytokine expression 

and immune cell migration, respectively.72 Several other important functions are associated with 

S100A8 and S100A9.69–71,221 Dysregulated expression of these proteins is linked to ailments such 

as Alzheimer’s disease, Parkinson’s disease, cerebral ischemia, obesity and cardiovascular 

disease.222 Correlated with its role in the immune response, high levels of calprotectin in tissues, 

serum, or stool are indicative of inflammation associated with severe infections, cystic fibrosis, 

digestive tract disorders, autoimmune diseases, rheumatoid arthritis and cancer.91–94  

Given the importance of calprotectin, there is interest in developing new models to study 

its function. One attractive model is the zebrafish, which is increasingly being used to understand 

the molecular mechanisms of immune functions. Recent work has begun to characterize the role 
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of a calprotectin homolog in the zebrafish response to infection.107,108 As vertebrates, zebrafish 

share much of their physiology and molecular components with humans. They also have 

exceptional experimental advantages: well-established genetic tools, optically transparent larvae 

(making it possible to visualize tagged molecules in real-time in live fish), and rapid generation 

times.223 They are particularly useful for studying innate immunity because they survive with 

only the innate immune responses until 4-6 weeks post-fertilization when their adaptive immune 

system is morphologically and functionally mature.224–227  

Despite the power of the zebrafish model system, it can be challenging to map zebrafish 

biology to human biology. Millions of years of evolution have allowed the divergence, 

emergence, and loss of proteins and protein functions between species, often making the 

comparison difficult. One of the most important considerations is whether the genes being 

compared between species are, in fact, the same genes. Are they the result of speciation 

(orthologs) which often have very similar functions, or did they arise by gene duplication 

(paralogs) which often have very different functions. Establishing gene orthology is particularly 

challenging for S100 proteins, as they form the largest subgroup within the superfamily of 

proteins carrying the Ca2+-binding EF-hand motif. Humans have 24 S100 genes228,229; zebrafish 

have 14.230,231 

There is no annotated s100a8 or s100a9 in the zebrafish genome; however, there are 

several zebrafish S100 genes in a similar genomic location to that of human s100a8 and s100a9. 

One of the zebrafish genes annotated in this genomic location is s100a10b. When performing a 

BLAST query against the zebrafish proteome, human S100A8 pulls up zebrafish s100a10b as a 

top similarity hit. On this basis, zebrafish s100a10b has been classified as “calprotectin.” This 

was followed by experimental studies reporting its transcriptional response to pathogenic 
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bacteria.107,108 Commercially available “fish calprotectin” ELISA antibodies also imply 

calprotectin is present in fish. However, these antibodies were raised against the highly 

conserved N-terminal helix of S100A8 and likely bind several S100 proteins. No rigorous 

investigations have yet been employed to demonstrate the presence of a calprotectin ortholog, or 

even a convergently-evolved paralog, in zebrafish.  

We set out to find phylogenetic, biochemical, or biological evidence of calprotectin (or 

calprotectin-like) activity in zebrafish s100 proteins. Through a careful review of existing 

phylogenetic literature, we confirm that fish do not have a calprotectin ortholog: both S100A8 

and S100A9 evolved in mammals 250 million years after the divergence of tetrapods and ray-

finned fishes. We support this phylogenetic result through a comparative synteny analysis of 

s100 genes in zebrafish and human genomes. We also investigate the possibility that fish 

convergently evolved a calprotectin-like s100 protein using single-cell RNAseq data to identify 

zebrafish s100 proteins expressed in immune cells. We recombinantly expressed and purified 

four of these proteins—including zebrafish s100a10b, the protein previously identified as fish 

calprotectin in the literature—and experimentally tested their antimicrobial and pro-

inflammatory activities. None of the proteins give measurable activity.  

We conclude that zebrafish have neither a vertically inherited ortholog of calprotectin, 

nor an obvious candidate protein that convergently evolved similar function. Our results 

highlight the danger of relying on sequence similarity and genomic placement to identify genes. 

We demonstrate it is necessary and prudent to use an explicitly evolutionary lens with careful 

functional analyses when mapping results from model organisms to human biology. 
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RESULTS 

Zebrafish s100a10b is only distantly related to human S100A8 and S100A9 

 We started by looking for phylogenetic evidence that fish have a protein orthologous to 

mammalian S100A8 or S100A9. Orthologous proteins are ones that arose by speciation and are 

thus the same gene in the species being compared. Paralogous proteins arose by gene duplication 

and often exhibit gain or loss of function from the ancestral state203, establishing themselves as 

new proteins. Fig 4.1A summarizes the evolutionary history of S100s. This tree was built 

referencing several published phylogenetic analyses of the family, including two from our 

group102,232. The phylogeny at the top shows the current best estimate of the S100 gene tree; the 

phylogeny on the left shows the evolutionary history of bony vertebrates. Each circle denotes the 

S100 gene observed in at least one member of the taxonomic groups on the left.  

This evolutionary tree indicates that S100A8 and S100A9 evolved by gene duplication 

from a single gene in the ancestor of amniotes. Reptiles and birds preserve a single calgranulin 

protein (MRP-126), while mammals expanded it into three proteins (S100A8, S100A9 and 

s100a12). The closest evolutionary relatives of these proteins are s100a7, s100a7a and s100a15. 

Like the calgranulins, these arose by duplication of a single gene in the ancestor of amniotes. The 

reptile/bird protein MRP-126 is the earliest diverging protein known to exhibit nutritional 

immunity and/or Toll-like receptor 4 activation in functional assays.102,233 These observations 

indicate that calprotectin evolved in amniotes ~320 million years ago.   

In contrast, zebrafish s100a10b (the putative zebrafish calprotectin) falls into a clade with 

the proteins S100A10 and S100A11. This is one of the earliest S100 protein subfamilies to 

evolve, with orthologs present in species ranging from tetrapods to jawless fishes. This group of 

S100 proteins thus diverged from the lineage that led to mammalian S100A8 and S100A9 at 
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least 563 million years ago, in the last common ancestor of humans and lampreys. Further, after 

this speciation event, there were at least two more gene duplications on the lineage leading to 

S100A8 and S100A9. S100a10b is therefore a different gene than S100A8 or S100A9. 

 

Chromosome placement indicates a shared origin but complicated evolution of homologous 

human and zebrafish S100s 

To cross-validate the lack of evidence for vertical inheritance from published 

phylogenies, we used syntenic analysis to identify zebrafish s100 genes in a similar genomic 

location to human S100A8 and S100A9. We used ENSEMBL to identify the zebrafish genomic 

region most similar to human chromosome Chr 1:152-155M, which encodes 19 of the 24 human 

S100 proteins, including S100A8 and S100A9. This region corresponded to zebrafish 

chromosome 16. Specifically, human Chr 1:154.6M-154.7M and zebrafish Chr 16:23.5M-23.7M 

cover the KCNN3 and ADAR genes adjacent to tandem repeats of S100 genes in both species 

(Fig 4.1C).  

The existence of this shared cluster indicates that a handful of s100 genes were in this 

genomic context at least in the bony vertebrate ancestor ~430 million years ago, as established in 

previous work.230 The syntenic relationships, however, also give evidence for extensive evolution 

after the divergence of bony fishes and tetrapods: the orientation and placement of genes are 

different, and orthologs to the human S100s are missing from this genomic location but present 

on other chromosomes. Further, most of the zebrafish s100s in this region appear to be teleost-

specific duplicates.230 This includes ictacalcin (icn), icn2, s100t, s100s, and s100w. The only 

clear orthologs to human proteins are s100a10b and s100a1 (Fig 4.1A).  
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Human calprotectin and zebrafish s100 protein sequences have low sequence identity 

Previous workers identified zebrafish s100a10b as calprotectin using human S100A8 as a 

query in a BLAST search against the zebrafish proteome.108 Via ENSEMBL, S100A10b is the 

top hit; however, the e-value for this hit is only 0.045 and the percent identity is 36.17%. Via 

NCBI, this hit scores an e-value and percent identity of 8E-17 and 36.36%, respectively. We 

assessed the quality of the hit by reciprocal BLAST, meaning we used the zebrafish s100a10b 

protein sequence as a query against the human proteome on NCBI. This yielded human S100A1 

(9E-34; 55.9%) as the top hit, not S100A8. In fact, S100A8 (5E-16; 36.4%) was the 13th hit 

(after S100A1, S100A10, S100Z, S100P, S100B, S100A4, S100A12, S100A5, S100A6, 

S100A2, S100A4, and S100A9). This is consistent with the previous phylogenetic analyses that 

place S100A8 and S100A9 as relatively distant paralogs to zebrafish s100a10b (Fig 4.1A).  

To evaluate sequence similarity and identity, we aligned zebrafish s100 protein sequences 

from the syntenic region to human S100A8, S100A9, and S100A10 sequences (Figure 4.1C). As 

expected, there is high conservation at sites that form the EF-hand and pseudo-EF-hand calcium-

binding domains of the s100 proteins. There is low conservation in the region connecting the two 

EF-hands and at the termini. We used Clustal Omega to determine the sequence identity shared 

between zebrafish s100s and human S100A8, S100A9, and S100A10 (Fig 4.1D). We find 

similarly low levels of shared identity between human S100A8 and S100A9 and the zebrafish 

s100s. Overall, there is no obvious candidate zebrafish s100 that is like calprotectin by sequence 

similarity or identity. 
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Figure 4.1: Phylogenetic analyses reveal there is no calprotectin ortholog outside of 

amniotes. A) S100 gene tree adapted from Wheeler et al., 2017 shows the evolutionary 

relationships determined for S100s across vertebrates. The phylogeny on the left shows the 

relationships between species, with branch point times noted in millions of years ago; the 

phylogeny on the top shows the estimated S100 gene tree. Circles denote S100 genes from the 

phylogeny at the top found in at least one member of the taxonomic group from the left. A 

horizontal line through a circle indicates a single gene that is co-orthologous to multiple S100 

genes found in mammals. S100A8, S100A9, and S100A12 form a clade specific to amniotes 

(orange). Zebrafish genes in the syntenic region shown in panel C are shown in blue. Zebrafish 

s100a10b, which has been treated as a calprotectin ortholog, is denoted with a white star. B) 

Syntenic regions of human chromosome 1 (top) and zebrafish chromosome 16 (bottom) 

identified by ENSEMBL. Arrows denote relative gene length and orientation. Human S100A8, 

S100A9, and S100A12 are shown in orange; zebrafish s100s and their human orthologs are 

shown in blue. The non-S100 genes adar/ADAR and kcnn3/KCNN3 are diagnostic for the 

syntenic region. Not all genes in the region are depicted. C) A multiple sequence alignment of 

the S100 proteins in this dataset displays the amino acid similarity at each position of human 
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Figure 4.1 (continued) S100A8, S100A9 and S100A10 compared to the zebrafish s100s from a 

similar genomic context. At the top, secondary structure features of human S100A8 are shown. 

Under this, the bar is colored by sequence conservation (blue=low, red=high). The consensus 

sequence from all sequences in the alignment is shown above the individual protein sequences. 

Amino acids found in at least 50% of the sequences shown are shaded. The antigen for the “Fish 

Calprotectin” antibody was raised against the peptide boxed in yellow. D) Percent identity matrix 

comparing S100 proteins in this dataset (darker box indicates higher identity). S100 pair identity 

values range from 25.81-87.37% with a mean value of 39.35% and median value of 35.25%. 

Identity values comparing human S100A8 and S100A9 to zebrafish S100s are highlighted in the 

blue boxes.    

 

This alignment also allowed us to ask what zebrafish s100 protein(s) might be recognized 

by the commercially available “Fish Calprotectin” ELISA Kit from MyBioSource. This kit was 

made with antibodies raised against a 20 amino acid partial peptide of a human calprotectin-like 

protein (GenBank: AAB33355.1), which forms the N-terminal helix and beginning of the EF-

hand 1 domain of human S100A8 (Fig 4.1C, yellow box). An NCBI BLAST search reveals that 

eight to nine residues in this helix are highly conserved in several zebrafish s100s including 

s100b, s100a10b, s100a10a, s100a1, s100z, s100s and s100w as well as several other unrelated 

proteins. These residues are on the inside of the amphipathic helix, involved in stabilizing 

secondary and tertiary structures, and are potentially used to coordinate metal ions. The N-

terminal helix of S100 proteins is at the surface when in dimeric and tetrameric complexes and 

so the antibody in this kit is likely non-specific. 

 

Single cell RNA sequencing dataset mining points to candidate zebrafish s100 proteins 

expressed similar to calprotectin 

Our bioinformatic analyses revealed that no zebrafish S100 protein is orthologous to 

human calprotectin; however, it is possible that an S100 protein convergently evolved 

calprotectin-like activity. To investigate this possibility, we identified zebrafish s100s that share a 
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similar expression profile to calprotectin. Calprotectin is expressed constitutively in mammalian 

neutrophils, monocytes, and several epithelial cell types is upregulated upon infection and 

injury.62,212 We queried existing zebrafish single cell RNA sequencing (scRNAseq) datasets for 

zebrafish s100s expressed in immune cells that are upregulated in response to injury. (We could 

not find a cell browser for zebrafish infection models.) 

We used the UCSC cell browser to visualize a zebrafish development dataset deposited by 

Farnsworth et al., 2019234, and assessed constitutive immune cell expression in whole fish 1-, 2-, 

and 5-days post-fertilization. Of the genes that share a genomic context with s100a9 (Fig 4.1B), 

we found that s100a10b, icn, icn2, s100w and s100a1 are expressed in immune cells of 

developing zebrafish (Table 4.1). s100t, also in this genomic region, shows very low expression 

in immune cells. We found that five s100 genes from other zebrafish chromosome locations 

show some expression in immune cells: s100v1, s100v2, s100u, s100z, and s100a11. Finally, the 

remaining annotated zebrafish s100 genes—s100s, s100b, and s100a10a—appear in very few 

cells within these clusters.  

To evaluate whether these proteins are expressed during the innate immune response to 

injury, we used the fin clip and tissue regeneration scRNAseq dataset and cell browser provided 

by Hou et al., 2020.235 In this dataset, cells were isolated from adult zebrafish caudal fins at 1-, 2-

, and 4-days post-amputation. The macrophage marker mpeg1.1 is highly expressed in 

hematopoietic cells during the response to fin clip injury and is also expressed in other cell types. 

The neutrophil marker mpx was only detected at very low levels in four basal epithelial cells. We 

see that s100a10b, icn, icn2, s100w, and s100a1 are expressed in hematopoietic cell clusters, 

albeit s100a1 to a lesser degree. S100t only appears twice in the hematopoietic cells sequenced 

but shows more expression in epithelial cells. Zebrafish s100s from other regions of the zebrafish 
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genome show varying levels of expression in hematopoietic cells. Notably, all s100 genes from 

outside of zebrafish chromosome 16 were expressed to a lesser degree than s100a10b, icn, icn2 

and s100w. The injury model is consistent with the development model, although it is missing 

data for s100a10a and s100b—perhaps these genes were not detectable in regenerating fin 

tissues.  

 

Table 4.1: Single-cell RNAseq profiles for zebrafish s100s syntenic to human calprotectin 

Gene 

name 

Linkage Group 

and Synteny 

Ortholog 

Call 
Developmental dataset Injury dataset 

s100a1 
Chr 16 

~syntenic 
Z, A1 Immune cells 

Widely upregulated, 

low-level expression, 

hematopoietic cells 

s100a10b 
Chr 16 

Syntenic 
A10 Immune cells 

Widely upregulated, 

high expression, 

hematopoietic cells 

s100w 
Chr 16 

Syntenic 

A13, A14, 

A16 
Immune cells 

Widely upregulated, 

moderate expression, 

hematopoietic cells 

icn 
Chr 16 

Syntenic 
A1 Immune cells 

Widely upregulated, 

high expression, 

hematopoietic cells 

icn2 
Chr 16 

Syntenic 
A1 Immune cells 

Widely upregulated, 

high expression, 

hematopoietic cells 

s100t 
Chr 16 

~syntenic 
A1 Low in immune cells Epithelial cells 

 

Recombinant zebrafish s100 proteins fold and interact with calcium 

We chose to functionally characterize a subset of the zebrafish s100s which seemed most 

promising to behave like calprotectin based on genomic context and gene expression profiles: 

s100a10b, s100a1, s100 and icn. We left out icn2 because it is very similar to icn by all metrics 
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including sequence identity (87.37%: they differ by 14 amino acids, 8 of these at the termini; Fig 

4.1).  

We started by structurally characterizing the four selected zebrafish proteins. We used 

AlphaFold2 to predict structures for all four proteins.183–185 Overlaying the predicted structures 

with the crystal structure of human calprotectin shows high predicted structural similarity (Fig 

4.2A). High α-helical content is a shared feature of all known S100 proteins, as well as the 

predicted zebrafish s100 structures. We tested whether this held for zebrafish s100 proteins by 

heterologously expressing and purifying the proteins from E. coli and then measuring their 

secondary structure content by far-UV circular dichroism (CD). This revealed signal minima at 

208 and 222 nm consistent with primarily α helical structures (Figure 4.2B).  

Most S100 proteins also bind calcium and undergo a conformational change exposing a 

hydrophobic binding surface.236,237 We tested whether this held for the four zebrafish S100 

proteins by measuring calcium-induced changes in protein secondary and tertiary structure by 

far-UV CD and intrinsic fluorescence, respectively. We found that all four recombinantly 

expressed zebrafish proteins exhibited evidence of calcium-induced conformational change (Fig 

4.2B-C). 

Upon addition of saturating calcium, zebrafish s100a10b and s100a1 exhibited an 

increase in helical content, while s100w and icn, in contrast, show little change in secondary 

structure (Fig 4.2B). The intrinsic fluorescence of all four proteins, however, responded to 

calcium (Fig 4.2C). Intrinsic fluorescence captures changes in the local chemical environments 

of tyrosine and tryptophan residues, suggesting that calcium binding induces a change in the 

tertiary structure of all s100 proteins. This is consistent with the canonical calcium-induced 

rotation of the third helix relative to the other helices of S100s.236 
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Taken together, these results show that these four zebrafish S100 proteins are folded, bind 

to calcium, and undergo the calcium-induced conformational changes expected for members of 

the family. 

 

Figure 4.2: Structural comparisons of human and zebrafish S100s. A) Overlaid AlphaFold 

structure predictions for all S100 homodimers in this dataset, as well as the human 

S100A8/S100A9 heterodimer (5W1F RCSB ID). Different chains of each homodimer are shown 

in black or white. B) Far UV circular dichroism spectra for each protein in the presence of 2 mM 

Ca++ (green) and then adding 5mM EDTA (blue). Units are in molar ellipticity (deg×cm2/dmol) 

over wavelength (nm). C) Fluorescence excitation and emission spectra for each protein in the 

presence or absence of calcium (green and blue, respectively). The fluorescence units are 

arbitrary; the x-axis is wavelength in nanometers. Excitation spectra were collected while 

observing fluorescence at the maximum emission wavelength; emission spectra were collected 

while exciting at the maximum excitation wavelength.   

 

Zebrafish s100s do not exhibit nutritional immunity like calprotectin 

One of the most important biological functions of human calprotectin is antimicrobial 

activity via nutritional immunity. We evaluated the antimicrobial abilities of each of the four 

zebrafish s100 proteins against human-derived Stapholococcus epidermidis and zebrafish-

derived Vibrio ZWU0020 and Aeromonas ZOR001 strains. S. epidermidis was previously shown 

to be susceptible to human calprotectin238,239; the response of the zebrafish-derived strains is 

unknown. Fig 4.3A shows the dose-dependent antimicrobial activity of human calprotectin 
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against each strain over 13 hours in nutrient rich media across three biological replicates. For all 

three strains, increasing amounts of calprotectin (from blue to green) leads to decreased final 

OD600 values (indicated by black arrows). We quantified this response by measuring difference in 

area under the OD600 curve from 0-13 hrs with and without calprotectin (AUC). We then 

plotted ΔAUC as a function of protein concentration. A negative AUC value indicates growth 

inhibition at the indicated s100 concentration, while a zero or positive value indicates no 

antimicrobial activity. This revealed a calprotectin-dependent decrease in growth for all three 

bacterial strains (Fig 4.3B, yellow curves). 

To assess the nutritional immunity capacity of the zebrafish s100s, we performed 

identical experiments using each of the four proteins. We calculated ΔAUC curves for each 

bacterial strain under increasing concentrations of each s100 (Fig 4.3B). Unlike the effect of 

human calprotectin, none of the four zebrafish s100 proteins exhibited nutritional immunity (Fig 

4.3B). Human calprotectin was the only protein to exhibit nutritional immunity under these 

conditions (yellow curve). Bacteria treated with zebrafish s100a1 showed improved growth 

relative to bacteria in the absence of s100 (brown curve). Zebrafish s100a10b increased growth 

of S. epidermidis and had no effect on growth of zebrafish-derived bacterial strains (orange). 

Zebrafish s100w (purple) improved S. epidermidis growth, showed a possible slight inhibitory 

effect on Aeromonas ZOR001 for concentrations at or above 50 μM, and did not affect Vibrio 

ZWU0020 growth at any concentration. Similarly, zebrafish ICN (blue) improved S. epidermidis 

growth, had a slight inhibitory effect on Aeromonas ZOR001 when used at or above 50 μM, and 

increased Vibrio ZWU0020 growth at all concentrations.  
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Figure 4.3: Zebrafish s100s do not exhibit nutritional immunity activity like human 

calprotectin. All data were collected in biological and technical triplicate. Error bars indicate 

standard error. A) Dose dependence of human calprotectin challenge on human and zebrafish 

commensal bacteria. Each column specifies which bacteria was used for the set of nutritional 

immunity assays: a human-derived Gram-positive Stapholococcus epidermidis and two 

zebrafish-derived Gram-negative bacteria, Aeromonas strain: ZOR001 and Vibrio strain: 

ZWU0020. Bacterial growth was measured by OD600 over 13 hours after challenge with 

increasing doses of human calprotectin noted in the legend on the right. Concentration increases 

from dark blue to dark green and black arrows indicate how growth is affected as calprotectin 

increases. B) Zebrafish s100 dose effects on human and zebrafish commensal bacterial growth 

compared to human calprotectin. The dotted line at zero represents no effect of s100 challenge 

on bacterial growth. Each datapoint shows the change in the area under the curve from the 

absence of s100 protein to the indicated s100 concentration, measured from growth curves like 

those shown in panel A.  

 

Zebrafish s100s do not exhibit proinflammatory activity like S100A9 

 Antimicrobial activity is not the only function of mammalian calprotectin. Calprotectin is 

a heterodimer of S100A8 and S100A9. The homodimer of mammalian S100A9, for example, 

can activate an innate immune response through the Toll-like receptor 4 complex (TLR4), 
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inducing nuclear localization of NF-κB and transcription of a wide variety of pro-inflammatory 

proteins. This activity can be reproduced in an in vitro functional assay by transfecting HEK293T 

cells with plasmids encoding the proteins of the TLR4 complex (TLR4, MD-2, and CD14), as 

well as a plasmid placing luciferase behind an NF-κB promoter. We can treat the cells with 

exogenous S100A9 and measure the luciferase response.  

We wanted to see if our purified zebrafish s100 proteins could play a similar role; 

therefore, we tested the ability of these proteins to activate TLR4 in this assay (Fig 4.4). 

Zebrafish have three ohnologs of tetrapod TLR4: TLR4ba, TLR4bb, and TLR4al. Zebrafish 

TLR4ba has been shown to induce inflammation in response to endotoxin: the small molecule 

lipopolysaccharide (LPS)101 but neither TLR4bb nor TLR4al showed activity. We validated our 

assay by testing the ability of each complex to activate in response to the canonical agonist for 

the receptor, endotoxins derived from Gram-negative bacterial outer membranes (green). As 

expected, the human and TLR4ba complexes responded strongly to endotoxin. TLR4bb and 

TLR4al did not show signal above vehicle treatment (light blue). We next challenged all four 

complexes with human S100A9 (yellow). We found that 2 μM human S100A9 activated human 

TLR4, as expected, but that none of the zebrafish TLR4 complexes showed signal above 

background. This suggests that this pro-inflammatory activity is not a conserved function in 

zebrafish. Finally, we tested the ability of zebrafish s100s to activate each TLR4 complex at 2 

μM: we observed no statistically significant agonist activity for any protein. Although we 

detected a small amount of signal zebrafish s100a10b (orange) and s100w (brown), this was not 

statistically significant (Bonferroni-corrected one-sample t-test). We repeated the same 

experiment with 10 μM zebrafish s100s and observed no convincing agonist activity. 
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These zebrafish s100 proteins show no evidence of activity against either human TLR4 or 

the three zebrafish tlr4 ohnologs. Given the potent response of these receptors to positive 

controls (endotoxin or human S100A9), this strongly suggests the activity is not present in these 

proteins. Further, with this assay, false positives are common due to endotoxin contamination 

from the heterologously expressed proteins. The lack of signal thus gives strong evidence that 

these zebrafish proteins cannot activate TLR4 in the same fashion as human S100A9.  

 

 

Figure 4.4: Zebrafish s100s do not exhibit the pro-inflammatory characteristics of human 

S100A9. Activation of human and zebrafish TLR4 complexes in the presence of zebrafish s100 

proteins. Bars show the average signal across three biological replicates, with error bars 

indicating standard error. The positive controls for this experiment included human TLR4 and 

zebrafish TLR4ba treated with endotoxin (green), and human TLR4 treated with human S100A9 

(yellow). There is no known agonist for zebrafish TLR4bb and al complexes. All data was 

background subtracted and normalized to the signal from human TLR4 treated with endotoxin.  

 

DISCUSSION 

 Employing zebrafish as a model for studies of innate immunity is a promising field of 

work. As vertebrates, zebrafish share much of their physiology and immune defense mechanisms 

with humans, thus enabling mechanistic insight into health, disease, and host-microbe 

interactions. However, when approaching this research, we must be cognizant of the more than 
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400 million years since our most recent common ancestor, allowing for species-specific 

differences evolved to cope with diverse environments and other pressures.  

We assert here that recent studies and commercial products have made the incorrect 

assumption that calprotectin exists in the fish innate immune response. We re-evaluate 

phylogenetic evidence to look for a homolog of calprotectin in fish and confirm that, although 

the evolutionary history of S100 proteins is messy, zebrafish do not share an s100 protein within 

the clade containing mammalian calprotectin.  

We also tested the possibility that a fish s100 protein from a similar genomic context to 

calprotectin might have evolved calprotectin-like innate immune functions. We characterized the 

nutritional immunity and proinflammatory activity of four zebrafish s100s, including the 

previously studied zebrafish “calprotectin” s100a10b, in assays which are normally used to test 

calprotectin function. None of the zebrafish proteins performed like human calprotectin.  

We cannot prove a negative: this work does not show that no zebrafish s100 protein does some 

subset of the functions of human calprotectin. Our work does, however, put the burden of proof 

on researchers who would claim such functions exist. If a zebrafish s100 has antimicrobial or 

pro-inflammatory activity, it must have evolved that activity convergently and independently of 

those activities from mammalian calprotectin. Further, and importantly, such a protein does not 

shed direct light on mammalian biology. A convergent zebrafish s100 calprotectin-like protein 

would help us understand zebrafish biology; it would also be intriguing from the perspective of 

protein evolution. It would almost certainly have a different regulatory scheme and would only 

have a subset of human calprotectin functions.  

We also did not test all possible zebrafish S100 proteins because we focused on those that 

seemed most promising to be expressed in immune cells during the immune response and shared 
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genomic origin.  Zebrafish s100 proteins represent a largely uncharacterized set of new proteins, 

many of which are specific to the ray-finned fishes.230 We are excited to see how investigations 

of their functional roles continue. We remain intrigued by the idea that convergent evolution may 

exist between mammalian calprotectin and some other protein(s) in zebrafish. In addition to 

studying zebrafish s100 proteins individually, one important line of work will be to investigate 

various s100 heterocomplexes. Mammalian calprotectin is a heterodimer and heterotetramer, but 

we only performed experiments with homodimeric zebrafish s100s. Studies of other 

heterodimeric human S100 complexes have been done and prove to have altered functions.240 In 

the future, this type of analysis could be done with zebrafish proteins to explore whether a 

heterodimer state confers nutritional immunity or proinflammatory activity. However, there is 

currently no evidence at this point suggesting this is likely.  

We conclude that it is crucial that we use an evolutionary lens and careful biochemical 

analyses to probe homology between zebrafish and human proteins so that we can make accurate 

extrapolations of findings from zebrafish models of human biology.  

 

MATERIALS AND METHODS 

Protein Purification 

We purchased all zebrafish s100 genes from GenScript in the pET-28a(+)-TEV vector 

with an N-terminal 6x-Histidine tag and TEV protease cleavage site. All genes were codon-

optimized for expression in E. coli. We expressed human calprotectin (with S100A9 containing 

the C3S mutation) and human S100A9/C3S in a pET-Duet vector without purification tags. We 

transformed Rosetta2(DE3)pLysS E. coli cells with plasmids. We used transformant glycerol 

stocks to inoculate cultures in 15 mL Luria broth (LB) with 50 μg/mL kanamycin and 34 μg/mL 
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chloramphenicol. We incubated cultures overnight at 37 oC, shaking at 250 rpm. The following 

day, we diluted 15 mL saturated cultures into 1.5 L of LB with antibiotics. When the OD600 

reached 0.6-1.0, we induced recombinant protein expression with 1 mM IPTG and 0.2% glucose 

and then grew overnight at 16 oC, shaking at 250 rpm. We pelleted cells at 3,000 rpm for at least 

15 minutes in an F6B rotor in a Beckman Coulter preparative centrifuge. We stored pellets at -20 

oC for up to one month.  

We prepared protein lysates for purification with the following method: We vortexed 

pellets (6-9 g) in 45 mL buffer from the first chromatography step (see below) until cells were 

resuspended, added 15 µL each of DNase I and Lysozyme (ThermoFisher Scientific), and 

incubated at room temperature with gentle shaking for at least 10 minutes. We sonicated the 

resuspended cells at 55% amplitude with 0.3 second pulse on, 0.7 second pulse off, for 3-5 

minutes. We pelleted cell debris by centrifugation at 15,000 rpm at 4 oC for at least 20 minutes in 

a JA-20 rotor in a Beckman Coulter preparative centrifuge and collected the supernatant. To 

remove remaining large debris, we filtered lysate supernatant through a 0.2 µm pore syringe 

filter immediately prior to purification chromatography. 

We purified all proteins using an Äkta PrimePlus Fast Protein Liquid Chromatography 

system using two stacked 5 mL HiTrap columns at each step. We used HisTrap FF columns for 

Ni-affinity and Q HP columns for anion exchange (GE Health Science). All chromatography was 

performed at 4 oC. At the end of purification, we confirmed protein purity was >95% by SDS-

PAGE. Then, we dialyzed each protein overnight into 4 L of 25 mM Tris, 100 mM NaCl, pH 7.4 

at 4 oC. We placed 2 g/L Chelex 100 resin (Bio-Rad) in the dialysis buffer to remove divalent 

metal ions. We concentrated each protein to roughly 2 mg/mL and syringe-filtered through a 0.22 

µm pore filter directly into liquid nitrogen to sterilize and flash freeze before storing at -80 oC.  
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We purified TEV-cleavable 6xHis-tagged zebrafish S100 proteins with the following 

scheme. We used 25 mM Tris, 100 mM NaCl, pH 7.4 buffer as the base for all chromatography 

buffers. We ran our protein lysate over a Ni-affinity column with a 50 mL wash and eluted over a 

75 mL gradient from 25-1000 mM imidazole to collect proteins with strong Ni binding capacity. 

We determined which fractions contained our desired protein by SDS-PAGE and pooled these 

fractions. To separate our recombinant proteins from their Ni-binding His-tag, we added 5 mM 

DTT and 6xHis-tagged TEV protease to the pooled fractions and incubated the reaction at room 

temperature with gentle shaking for at least 5 hours. We then dialyzed the protein solution 

overnight into 4 L buffer with 25 mM imidazole and 5 mM DTT to allow cleavage to come to 

completion and to remove excess imidazole from the sample. We performed a second round of 

Ni-affinity chromatography. Without the His-tag, the zebrafish S100s have low affinity for Ni. 

Therefore, we isolated pure, non-tagged zebrafish S100 proteins at this step during a 50 mL wash 

in 25 mM imidazole and then used a step gradient to 1 M imidazole to elute His-tagged and other 

contaminant proteins that had higher affinity for the Ni column. Purified zebrafish S100s were 

prepared for storage as described above. 

We purified human calprotectin using Ni-affinity chromatography at pH 7.4 and anion 

exchange at pH 8. When expressing calprotectin, S100A8 and S100A9 homodimers are also 

expressed and must be removed during chromatography. In the presence of calcium, S100A9 and 

calprotectin bind divalent metal ions like Ni, but S100A8 and most other lysate proteins do not. 

We loaded our Ni-affinity column with calprotectin lysate, washed away most A8 and 

contaminants in a 50 mL wash, and then eluted calprotectin and S100A9 over a 75 mL gradient 

from 0-1000 mM imidazole and 1-0 mM CaCl2 in 25 mM Tris, 100 mM NaCl, pH 7.4 buffer. We 

pooled elution peak fractions containing calprotectin and contaminant S100A9 homodimers, as 
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determined by SDS-PAGE, and dialyzed overnight in 4 L of 25 mM Tris, 100 mM NaCl at pH 8. 

We loaded our sample onto an anion exchange chromatography column in 25 mM Tris, 100 mM 

NaCl at pH 8 with 100 mM NaCl. Because A9 has a lower pI than calprotectin, it binds the anion 

column more strongly at pH 8. We used a 50 mL wash in 100 mM NaCl to isolate calprotectin 

and then used a step gradient increasing the salt to 1 M NaCl to remove S100A9 and other 

contaminants from the column. At this point, calprotectin was pure and prepared for storage as 

described, and fractions with S100A9 and other contaminants were discarded.   

We used a similar protocol to purify human S100A9. We performed Ni-affinity 

chromatography as described for calprotectin. We then performed anion exchange 

chromatography using a 50 mL wash and collected fractions over a 70 mL gradient elution from 

100-1000 mM NaCl in 25 mM Tris, pH 8 buffer to isolate S100A9 from contaminant proteins 

that also bind the anion column. We used SDS-PAGE to confirm fractions with S100A9, pooled 

and dialyzed these fractions overnight into 4 L of 25 mM Tris, 100 mM NaCl at pH 6. As a final 

step, we loaded the A9 sample onto an anion exchange column in 25 mM Tris, 100 mM NaCl 

buffer at pH 6. S100A9 binds weakly to the anion column at pH 6. Therefore, we collected 

S100A9 in a 50 mL wash in 100 mM NaCl, and then removed contaminants from the column 

with a step elution at 1 M NaCl. Pure S100A9 was prepared for storage as described. 

 

Far-UV Circular Dichroism and Fluorescence Spectroscopy 

 Prior to biophysical measurements, we thawed and exchanged all proteins into 25 mM 

Tris, 100 mM NaCl, pH 7.4 via overnight dialysis in 4 L buffer at 4 oC. We determined protein 

concentrations by Bradford Assay using bovine serum albumin (BSA) standards and the 

molecular weight of each dimeric structure, then diluted to ~10 µM in dialysis buffer. 
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For all spectroscopic measurements, we assessed metal-induced changes to the spectra by 

measuring the spectrum in the presence of 2 mM CaCl2 and then adding excess EDTA at 5 mM 

and re-measuring the spectrum. We collected far-UV circular dichroism data between 200–250 

nm using a J-815 CD spectrometer (Jasco) with a 1 mm quartz spectrophotometer cell (Starna 

Cells, Inc. Catalog No. 1-Q-1). We collected 3 scans for each condition, and then averaged the 

spectra and subtracted a blank buffer spectrum using the Jasco spectra analysis software suite. 

We converted raw ellipticity into mean molar ellipticity using the concentration and number of 

residues in each protein. We collected intrinsic tyrosine and/or tryptophan fluorescence using a J-

815 CD spectrometer (Jasco) with an attached model FDT-455 fluorescence detector (Jasco) 

using a 1 cm quartz cuvette (Starna Cells, Inc.). We collected a single excitation and emission 

scan at 10 nm/min with a 10 nm bandwidth, 1 nm data pitch, and 1 sec D.I.T. for each condition 

and then subtracted a blank buffer spectrum using the Jasco spectra analysis software suite. 

Depending on the sample signal, we set the detector sensitivity to either 630 or 800 Volts. We 

conducted excitation scans by measuring 305 nm light emitted at for all zebrafish proteins and 

345 nm emitted light for human S100A9 for each excitation wavelength from 200-295 nm. For 

emission scans we used 280 nm light to excite zebrafish proteins and 288 nm for human 

S100A9, and measured light emitted at all wavelengths from 285-425 nm. 

 

Nutritional Immunity Assay 

We measured the antimicrobial activity of zebrafish S100s and human calprotectin 

against human- and zebrafish-derived bacterial strains using a modified version of a well-

established assay86,216,219,238 that will be described here. Bacterial strains used in this assay 

include 1) Staphylococcus epidermidis, a human commensal strain previously shown to respond 
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to calprotectin219,238; 2) Aeromonas ZOR001, isolated from zebrafish and not previously 

characterized for response to calprotectin; and 3) Vibrio ZWU0020, isolated from zebrafish and 

not previously characterized for response to calprotectin but related to human-derived Vibrio 

cholerae shown to respond to calprotectin.107 We obtained both zebrafish-derived strains from 

the Guillemin lab at the University of Oregon.  

Each week, we plated bacterial strains from glycerol stocks onto antibiotic-free LB agar 

and grew at 30 oC overnight before storing plates at 4 oC. The day before an experiment, we 

inoculated a 5 mL culture in liquid LB media with a single colony from each strain and grew 

overnight at 30 oC with shaking. The following day, we diluted cultures 1:100 in 5 mL LB and 

grew to an OD600 around 0.8 by the time of the experiment. Aeromonas ZOR001 and Vibrio 

ZWU0020 were diluted 2 hours before the experiment. S. epidermidis grew more slowly so 

required dilution 4 hours prior to the experiment.  

The day before each experiment, we thawed a single S100 protein from -80 oC, 

concentrated to at least 200 μM using a Nanosep 3K Omega spin concentrator (Pall 

Corporation), and dialyzed overnight at 4 oC into 4 L of Experimental Buffer (25 mM Tris, 100 

mM NaCl, pH 7.4) with 2 g/L Chelex 100 resin (Bio-Rad) to chelate residual transition metal 

ions. After dialysis, we filter-sterilized the protein through a Ultrafree-MC-VV centrifugal filter 

with Durapore PVDF 0.1 µm and kept at 4 oC until time of experiment.  

To start the experiment, we made a protein dilution series by mixing a desired amount of 

protein in sterile Experimental Buffer with the appropriate amount of LB to achieve a ratio of 

62:38. We then brought the volume of these protein solutions up to 1.7 mL in Experimental 

Media (EM). We made EM by diluting 62:38 Experimental Buffer:LB, and filter-sterilized. We 

distributed each sample in aliquots of 160 µL across ten wells of a clear Falcon 96-Well, Cell 
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Culture-Treated, Flat-Bottom Microplate. At this time, we diluted each bacterial strain to an 

estimated OD600 of .008 in 5 mL Experimental Media with calcium (EMC). We made EMC by 

adding 10.2 μM CaCl2 to EM, and sterile-filtered. Then, we added 40 µL of dilute bacteria or 

EMC without bacteria (contamination control) to each well, making technical triplicate 

conditions for bacterial strains. To counteract sample evaporation, the outermost wells of the 

plate contained 160 μL EM and 40 μL EMC only and we wrapped the plate in a single layer of 

parafilm.  

We measured bacterial growth by OD600 every 15 minutes over 13 hours in a Molecular 

Devices SpectraMax i3. The plate was shaken for 5 seconds before the first read, then for 10 

minutes between each subsequent read. We set the plate reader temperature to 25 oC, however, 

over the course of the overnight growth, the actual temperature reached 37 oC. The final 

concentration of metals in the media without bacteria was measured using ICP-MS. The 

measured concentrations were Ni: 45.4 μM, Ca: 107.3 μM, Cu: 157.4 μM, Mg: 160.5 μM, Mn: 

216.6 μM, Fe: 1.1 mM, and Zn: 5.9 mM. 

For the analysis, we background subtracted each experimental condition using OD600 

values for the matching concentration of S100 protein concentration in buffer without bacteria 

added. We used Prism to average the replicates by condition, determine the standard error, and 

graph the results. 

 

Proinflammatory Activity Assay 

 We tested the S100A9-like proinflammatory activity of zebrafish S100s using a well-

established assay.101,102,238 This assay measures relative activation of the TLR4-mediated immune 

response through NF-κB. For each experiment, we thawed all zebrafish S100 proteins and 
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human S100A9 from -80 oC, buffer exchanged into endotoxin-free PBS, then treated with 

endotoxin removal spin columns (ThermoFisher Scientific) to remove LPS residual from the 

purification process.  

 We performed each experiment in technical triplicate and followed the Dual-Glo 

Luciferase Assay System protocol (Promega). We transiently transfected adherent HEK293T 

cells in a Falcon 96-Well, Cell Culture-Treated, Flat-Bottom Microplate with pcDNA vector 

plasmids using PLUS and Lipofectamine Reagents (ThermoFisher Scientific). Plasmids 

contained genes for human or zebrafish TLR4 complex components and Renilla luciferase 

enzyme under constitutively active promoters, and the firefly luciferase gene controlled by an 

NF-κB promoter. For human TLR4 complex transfections, we transfected 10 ng human TLR4, 

0.5 ng human MD-2, and 1 ng human CD14 plasmids per well. For zebrafish TLR4 complex 

transfections, we used 10 ng zebrafish TLR4, 20 ng zebrafish MD-2, and 1 ng mouse CD14 

plasmids per well, as this ratio gives us the best signal to noise ratio. Zebrafish do not have an 

annotated CD14, but previous studies have shown zebrafish TLR4ba can be activated in the 

presence of mouse and human CD14, but more strongly with mouse. We also transfected all 

wells with 1 ng Renilla plasmid, 20 ng elam-Luc (firefly), and brought the total DNA mass per 

well to 100 ng with empty pcDNA vector in a total media volume of 200 μL per well. 

After 20-24 hours incubation at 37 oC in 5% CO2, we removed all 200 µL of transfection 

mix from each well. We then treated transfected HEK293T cells with 100 µL of one of the 

following treatment mixes: 1) 2 µM S100 protein and 200 ng/μL Polymyxin B to bind up LPS in 

media, 2) 0.2 ng/µL LPS-R (tlrl-eklps; Invivogen) as a positive control for human TLR4, or 3) 2 

ng/µL lipid IVa as a positive control for zebrafish TLR4ba activation. Because there is no known 

activator of zebrafish TLR4bb and TLR4al complexes (Loes et al., 2021), we treated these 
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transfections with 2 ng/µL lipid IVa for consistency. After incubating again at 37 oC in 5% CO2 

for 3-4 hours, we removed and discarded 60 µL of treatment mix from each well. We chemically 

lysed the cells by adding 30 µL Dual Glo lysis reagent containing firefly luciferin and incubated 

in the dark for 7 minutes. We then mechanically lysed the cells by scraping the bottom of each 

well with a pipet tip and transferring 60 µL of cell solution to an opaque 96-well plate. After a 7-

minute incubation in the dark at room temperature, we measured luminescence per well 

produced by firefly luciferase activity using a Molecular Devices SpectraMax i3. Then we added 

30 μL of Dual-Glo Stop & Glo buffer containing firefly luciferase quencher and Renilla 

luciferase reagent, incubated for 7 more minutes, and measured luminescence.  

 For the analysis, we took the firefly signal for each experimental condition and 

background subtracted the averaged firefly signal of wells transfected with the corresponding 

complex but treated with buffer without agonist. We did the same for the Renilla signal, with 

background signal considered as the averaged signal from wells with same treatment condition 

but transfected only with vector. We divided the background-subtracted firefly signal for each 

well by the background-subtracted Renilla signal for that same well. To simplify comparisons 

across experiments, we normalized the firefly/Renilla value for each well to the triplicate average 

of the firefly/Renilla values for human TLR4 complex treated with 0.2 ng/μL LPS-R. 

  

BRIDGE TO CHAPTER V 

 We conclude from this chapter that zebrafish do not have an ortholog of human 

calprotectin and likely do not possess an s100 protein that convergently evolved similar 

antibacterial and proinflammatory activities. Because S100 proteins generally have the capacity 

for metal ion binding, further investigation into zebrafish s100 complexes might yield 
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discoveries of species-specific host-microbe interactions in the fight for metal sequestration. 

Adding to our conclusions of zebrafish TLR4/MD-2, it is possible that the functions of these 

important human immune system proteins are paralleled in some way in the zebrafish. But our 

~430 million years of unique selective pressures seem to have changed the players and strategies 

at the host-microbe interface. 
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CHAPTER V 

SUMMARY AND CLOSING REMARKS 

 

Our functional characterizations of homologous human and zebrafish immune proteins 

have shown us remarkable differences in the way these two species respond to microbes. We find 

that the zebrafish TLR4 has high specificity for tetra-acylated LPS molecules which inhibit 

human TLR4 signaling. But even though the zebrafish complex can activate an inflammatory 

response to tetra-acyl LPS in vitro, injecting live fish with this potent TLR4 activator does not 

stimulate the immune response. This completely contrasts the human and mouse systems, where 

a stronger TLR4 agonist induces a stronger immune response, which can lead to death caused by 

an overactive immune system. Resurrected ancestral proteins from early vertebrates suggest that 

this hyperactive TLR4 response to LPS evolved at some point between the ancestor of bony 

vertebrates and tetrapods but is not maintained by all tetrapod species. The reconstructed bony 

vertebrate and teleost ancestor proteins show low-level stimulation by LPS and suggest that 

zebrafish have evolved a unique sensitivity to tetra-acyl LPS. What could explain this evolution 

of ligand specificity in the absence of functional consequence? Perhaps we have yet to reveal the 

true role of zebrafish TLR4. 

Similar to our story of TLR4, zebrafish do not appear to have a functional ortholog of 

human calprotectin. Calprotectin plays several roles in the human defense against pathogens: at 

sites of inflammation, calprotectin chelates transition metal ions that are essential for microbial 

growth and so inhibits bacterial growth at wound sites. Calprotectin can also amplify the immune 

response by activating TLR4 and other damage-sensing immune receptors. But zebrafish do not 

have an ortholog of calprotectin. Our studies suggest that none of the zebrafish proteins that 
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share homology with human calprotectin can serve either this antibacterial or proinflammatory 

role. Have zebrafish evolved alternative compensatory mechanisms to deal with infections? 

What new immune strategies can we learn from studying the zebrafish immune response in the 

absence of these proteins that humans rely so heavily on?     

Our work demonstrates it is necessary to consider the long evolutionary divergence 

between human and zebrafish when extrapolating findings from model systems. 
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	The pipeline (Figure 2.3) is broken into two stages: (1) Construct an MSA from the seed sequences and (2) Construct phylogenetic tree ancestors given the MSA. The first computational stage of the pipeline can be run on a user's personal computer (Linu...
	Figure 2.3. Summarized topiary ASR pipeline. The pipeline is a series of human and automatic steps (indicated on the left with brain and topiary icons, respectively). The approximate time, in hours, required for each step is indicated on the right.
	Our focus will be on topiary's algorithms and software settings; however, in passing, we want to note several aspects of the software. We refer users to the online documentation (https://topiary-asr.readthedocs.io/) for more details.
	1. Topiary has a fully documented Application Programming Interface (API), allowing users to run interactive analyses in a Jupyter notebook or write their own python scripts.
	2. Topiary is multithreaded, improving the speed of local BLAST queries, redundancy reduction, and NCBI downloads. It also takes full advantage of the parallelization support implemented in Muscle5, RAxML-NG, and GeneRax.
	3. Topiary allows users to restart interrupted pipelines without having to start over. This is particularly useful for the second stage, which can take a fair amount of time to run on a computing cluster.
	Stage 1: Seed to alignment
	As described in the Overview, the starting point for an ASR calculation is defining the problem. Topiary does this in a straightforward way: the user constructs a seed dataset that defines the paralogs of interest and the desired taxonomic distributio...
	Initial dataset construction
	Topiary uses the seed sequences to BLAST against the NCBI non-redundant protein sequence database. To maximize the number of productive results, topiary automatically sets the taxonomic scope of the BLAST search. For non-microbial proteins, the scope ...
	In addition to this default method for building a sequence dataset, users can specify other sources of sequences including other NCBI BLAST databases, local BLAST databases, or previously saved BLAST XML files. Users can also manually add sequences by...
	Once the initial dataset is constructed, topiary identifies each hit by reciprocal BLAST. It downloads proteomes for the key species in the seed dataset and constructs a combined local BLAST database. It then uses the hits above as queries against the...
	Redundancy reduction, quality control, and alignment
	This BLAST approach typically finds many more sequences than are necessary or practical for a standard phylogenetic analysis. We must therefore select sequences that sample the diversity in the dataset without compromising our ability to infer ancesto...
	Topiary uses four strategies to decrease the size of the dataset while maintaining dataset quality. First, sequences defined in the initial seed dataset (Figure 2.2a) are kept, regardless of their quality score or redundancy. This means users can pre-...
	Second, for datasets containing non-microbial genes, topiary selects sequences based on their placement on the species tree rather than solely based on their identity. (For microbial datasets, topiary lowers redundancy based on sequence identity alone...
	Because of this explicitly taxonomic strategy, sequences that are taxonomically important are not removed from the dataset, even if their quality is lower than other, taxonomically redundant, sequences. The frog sequence in Figure 2.4, for example, ha...
	Third, lowering sequence redundancy, topiary preferentially keeps sequences that align well to the seed sequences. We take this alignment-focused approach because ASR can only reconstruct ancestral states for columns seen in many modern proteins. Line...
	Figure 2.4: Topiary redundancy reduction and quality control. This analysis starts with seven sequences (taken from seven organisms) with the goal of retaining five for the downstream analysis. The numbers next to the ancestral nodes on the tree are t...
	Fourth and finally, there are a few steps where topiary lowers redundancy based on shared sequence identity. Whenever this is done, topiary chooses the sequence to keep based on its relative quality. It calculates an identity score by performing a pai...
	This protocol yields a relatively clean dataset with 5% more sequences than our target alignment number. We leave these extra sequences in place so we can manually delete the worst aligners upon visual inspection and still have our approximate target ...
	Alignment
	Topiary uses Muscle5 with its default parameters to generate the MSA (Figure 2.2c).139 We selected this algorithm due to its demonstrated high performance, as well as the extremely fast “super5” algorithm that is useful for generating draft alignments...
	There are differing views about whether to manually edit alignments or not.124,125 The topiary pipeline leaves this decision in the hands of the user. The goal for topiary is to make the task of finalizing an alignment relatively painless by carefully...
	Stage 2: Alignment to ancestors
	In stage 2, we go from our alignment to ancestral sequences (Figures 2.2c–g and 2.3). We selected RAxML-NG140 as our primary phylogenetic package. One key reason for this choice was that RAxML-NG integrates well with GeneRax, a clear choice for reconc...
	Infer the evolutionary model
	The first step in a maximum likelihood phylogenetic analysis is determining the maximum likelihood model of sequence evolution. This includes the matrix for amino acid substitution (i.e., LG, JTT, WAG, etc.), the stationary frequencies for that model,...
	Although this protocol is done automatically, topiary returns a variety of statistics including AIC (Akaike Information Criterion), AICc (Corrected Akaike Information Criterion), and BIC (Bayesian Information Criterion) to help users who want more con...
	Build a maximum likelihood gene tree
	Topiary next infers an ML gene tree using the inferred phylogenetic model with the default RAxML-NG settings for the “—search” protocol. This starts the inference from 10 random trees and 10 different parsimony trees. It then optimizes the tree topolo...
	Reconcile gene and species tree
	The next step in the pipeline is to reconcile the gene tree with the species tree (Figure 2.2e). (Note, this reconciliation step is skipped for datasets containing only microbial genes.) Reconciliation automatically roots the tree and has been shown t...
	Topiary uses the ML evolutionary model and ML gene tree inferred previously as inputs to GeneRax. For the rooted species tree, topiary automatically downloads the most recent synthetic tree from the Open Tree of Life (OTL) database.120,145 (Previous s...
	The resulting tree is a maximum likelihood species-reconciled gene tree with optimized branch lengths and nodes labeled with inferred evolutionary events (speciation, duplication, or transfer). GeneRax returns a variety of other outputs that are made ...
	Reconstruct ancestors
	The next step is to infer sequences of ancestral nodes on the species-reconciled gene tree (Figure 2.2f). For this, we use RAxML-NG, which implements a standard marginal ancestral reconstruction method.133 (This differs from previous versions of RAxML...
	The evolutionary models used by RAxML-NG do not explicitly treat gaps; therefore, the first draft of the reconstructed ancestor will be ungapped. Topiary assigns gaps by treating them as characters during ancestral character reconstruction. For this p...
	Branch supports
	To determine branch supports (Figure 2.2g), topiary uses non-parametric bootstrapping.149 Briefly, RAxML-NG generates pseudoreplicate alignments by sampling columns, with replacement, from the input alignment. RAxML-NG then infers an evolutionary tree...
	Output
	Topiary generates a single directory containing all ancestors, all trees, and an html file that allows users to browse their results. This directory can be shared with others without requiring the recipient to have installed topiary. The html file can...
	PROTOCOL
	This section complements the previous section, which focused mostly on the computational steps in the pipeline (Figure 2.3). We will expand on the steps that require human intervention using the LY86/LY96 protein family to help demonstrate specific co...
	Construct a seed dataset
	The first step in a topiary ASR calculation is constructing a seed dataset (Figure 2a). This dataset defines protein family members of interest and the distribution of these proteins across species. Topiary uses this seed dataset to automatically find...
	Run the seed-to-alignment pipeline
	At this point the seed dataset is ready to be passed to the topiary-seed-to-alignment script. This script uses BLAST to build a dataset of thousands of protein sequences (Figure 2.2b), does quality control, lowers redundancy, and then generates an ali...
	Table 2.1: Example seed dataset.
	Inspect and edit alignment
	Before reconstructing a phylogenetic tree and ancestors, we strongly recommend inspecting and possibly editing the alignment (Figure 2.2c). There are a variety of pieces of software for visualizing alignments, including AliView152, JALView153, and MEG...
	There are differing views on whether to manually edit an alignment124,125; the topiary package allows a user to manually edit their alignment but does not require it. We generally recommend making a few adjustments to alignments. We describe our appro...
	Perform the ancestral inference
	We recommend performing the ancestral inference in a high-performance computing environment. Because of different parallelization requirements, the ancestral inference step uses two scripts run in sequence (alignment-to-ancestors and bootstrap-reconci...
	Checking gene/species-tree reconciliation
	Before selecting ancestors to characterize, it is important to make sure the phylogenetic tree is reasonable. The probabilistic models used in ASR are powerful, but do not capture all possible evolutionary events. One common problem is incomplete line...
	In the worst case, ILS and gene fusion can lead to nonsensical ancestors that still have high branch supports and high posterior probabilities. Looking at the reconciled tree (Figure 2.5b) can help you decide if this might apply to your family. A stan...
	Figure 2.5. Example trees at each step in the ASR calculation. Summary trees from an ASR inference using a toy alignment with seven LY96 sequences (orange) and seven LY86 sequences (blue). Black arrows indicate steps done by the first script (alignmen...
	If your protein has more than one domain, one option would be to try to reconstruct each domain independently. If the discordance disappears, it is good evidence for a gene fusion event. If the discordance remains, proceed with extreme caution.
	One way forward in the face of discordance is to compare the sequences—and functional characteristics—for any ancestors of interest reconstructed using either the gene tree alone or the reconciled gene tree. (Topiary returns ancestors inferred on both...
	Figure 2.6. Graphs for evaluating ancestor quality. (a) The final bootstrap supported gene-species reconciled tree built from an example set of 14 sequences. Reconstructed ancestral sequences at each node are labeled with a unique name. Duplication ev...
	Figure 2.7. Validation of the topiary pipeline. Panels show topiary results generated for the eight protein families from Table 2. Colors indicate the family in question (see panel e for color legend). Panels a–c show topiary alignment quality as meas...
	Figure 2.7 (continued) sequences); (b) The fraction of seed sequences lost during redundancy reduction; (c) Species tree imbalance (measured by the Colless Index of the species tree for the sequences in the alignment). (d): Number of pseudoreplicates ...
	Selecting ancestors
	After checking for a reasonable reconciled tree and running the bootstrap-reconcile script, one can identify ancestors that are amenable to reconstruction based on their average posterior probability (Figure 2.2f) and branch supports (Figure2. 2g). As...
	In addition to summary statistics on the tree, topiary provides more detailed information about each ancestor. Figure 2.6b,c show minimally modified versions of graphs that topiary automatically writes out for each ancestor. Figure 2.6b shows site-spe...
	We can compare the results in Figure 2.6b to the tetrapod LY86 ancestor returned by the pipeline for a 188-sequence alignment of LY86/LY96 sequences without manual MSA edits (Figure 2.6c). Upon increasing our number of sequences from 14 to 188 in the ...
	We note, however, that there are still 21 ambiguous positions with alternate reconstructions whose posterior probabilities are above 0.25. This is real phylogenetic uncertainty that is unlikely to be resolved with the addition of more protein sequence...
	The altAll can be thought of as “worst case” for the reconstruction, allowing one to ask what the consequences would be if the reconstruction got every ambiguous site wrong. The true, historical ancestral sequence is likely somewhere between the ML an...
	On black boxes
	Topiary automates much of the drudgery of an ASR study, going from a seed dataset to reconstructed ancestors with minimal input. One of our goals is to make the technique accessible for non-experts. It should not, however, be treated as a black box. T...
	One final note. Generating ancestors is relatively easy, but experimentally characterizing them can take years; it is worth some caution upfront. Specifically, if the species-reconciled gene tree has a huge excess of non-speciation events, pause. Do n...
	PIPELINE VALIDATION
	In this final section, we describe how we validated the topiary pipeline itself. Our first level of validation is part of the software package. We developed topiary using a test-driven development framework, meaning we write test code in parallel with...
	We also validated that topiary is useful for realistic ASR studies. We solicited seed datasets from scientists studying a wide variety of proteins from different species (Table 2.2). This allowed us to test the pipeline on real inputs from different c...
	Much of what topiary does is to connect existing pieces of software. Rather than attempting to test each component, we focused our validation on the connections between components. The first step we checked was that of going from BLAST to alignment. O...
	The first metric was alignment length relative to average seed sequence length. A higher value indicates the presence of long, potentially poorly aligned, sequences in the alignment. We found that topiary significantly outperformed a sequence-identity...
	We also validated the reliability of the branch supports generated by topiary. Topiary calculates branch supports by generating pseudoreplicate gene trees in RAxML-NG, then passing them into GeneRax for reconciliation. By default, RAxML-NG generates b...
	As a final validation of the pipeline, we reconstructed all ML ancestors for the eight protein families (1027 ancestors in total). We then calculated the average posterior probability of each ML ancestor and plotted this against the branch length betw...
	CONCLUSION
	The resources for performing high-quality ancestral sequence reconstruction already exist, but the complexity of the process and the importance of expert knowledge create a barrier to wider adoption; the topiary pipeline overcomes this barrier. It req...
	BRIDGE TO CHAPTER III
	With this topiary ancestral sequence reconstruction tool in hand, we were able to reconstruct and characterize the bony vertebrate, tetrapod, and teleost ancestral Toll-like receptor 4 complexes used in the next chapter. Being able to resurrect and f...
	Recently, the zebrafish MD-2 gene was discovered and shown to be expressed in immune cells.101 Furthermore, the zebrafish TLR4/MD-2 complex can be activated by LPS in vitro, although CD14 is required. MD-2 mutant zebrafish exhibited perturbed transcri...
	Here, we use an evolutionary lens to try to better understand the role of zebrafish TLR4 in innate immunity. It has been shown that mammalian TLR4 is lowly responsive to “foreign” LPS from the deep sea Moritella genus of bacteria potentially due to ac...
	Next, we tested whether the heightened sensitivity to tetra-acyl lipid A we found for zebrafish TLR4/MD-2 in vitro would translate to a stronger immune response in the zebrafish immune system in vivo compared to previous studies. On the contrary, we f...
	We remained curious about the evolutionary origin of the difference in human and zebrafish TLR4/MD-2 specificity observed in vitro. Does the zebrafish state represent an ancestral state that was modified along the tetrapod lineage? Or did teleost fish...
	DISCUSSION
	Extrapolating findings from studies in model organisms to human biology hinges on our ability to define homology between species. We have shown here that the zebrafish innate immune response to LPS is different than in humans. We are optimistic that ...
	Zebrafish TLR4 ohnologs might play important physiological roles
	Our study began with the observation that one of the three zebrafish TLR4 ohnologs, tlr4ba, can induce a robust inflammatory response when challenged with tetra-acylated LPS in a human cell-based assay (Fig 3.2 & 3.3). We observed that it may be poss...
	Possible functional roles of the zebrafish MD-2 C-terminal peptide
	We initially predicted that the zebrafish C-terminal peptide played a role in determining the number of acyl chains that fit into the MD-2 binding pocket. Our data show that it is more complicated than this, rather, the peptide is specifically necessa...
	A similar but alternative hypothesis is that the peptide serves as part of the hydrophobic core with LPS acyl chains to form the dimerization interface. Ohto et al. proposed from their crystal structures that for productive TLR4 signaling, amino acids...
	Is TLR4 used in the zebrafish innate immune response to Gram-negative bacteria?
	Did zebrafish lose CD14 as a mechanism to avoid LPS toxicity?
	A major hindrance to our investigations of zebrafish TLR4 function has been the elusive CD14-like protein. We have investigated several candidate molecules (TLR2, CD180/MD-1, and transferrin) that exist in zebrafish, can bind LPS, and have been shown...
	In conclusion, we have leveraged ancestral sequence reconstruction, cell-based and organismal functional assays, and mutational analyses to probe the evolutionary divergence between human and zebrafish TLR4 complex structure, function, and role in th...
	There have been many discoveries of host-microbe interactions, drug developments, and disease pathologies using the zebrafish model of innate immunity. In Chapter III, we showed ample evidence of dissimilarities between homologous innate immune protei...
	We conclude from this chapter that zebrafish do not have an ortholog of human calprotectin and likely do not possess an s100 protein that convergently evolved similar antibacterial and proinflammatory activities. Because S100 proteins generally have ...
	Our functional characterizations of homologous human and zebrafish immune proteins have shown us remarkable differences in the way these two species respond to microbes. We find that the zebrafish TLR4 has high specificity for tetra-acylated LPS molec...
	Similar to our story of TLR4, zebrafish do not appear to have a functional ortholog of human calprotectin. Calprotectin plays several roles in the human defense against pathogens: at sites of inflammation, calprotectin chelates transition metal ions t...
	Our work demonstrates it is necessary to consider the long evolutionary divergence between human and zebrafish when extrapolating findings from model systems.

