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ABSTRACT

Agustina Czenky

Doctor of Philosophy in Mathematics

Title: Two Problems in Symmetric Tensor Categories

Fix an algebraically closed field k of characteristic p ≥ 0. A symmetric fusion category

C over k is a fusion category endowed with a braiding cX,Y : X ⊗ Y → Y ⊗ X such that

cY,XcX,Y = idX⊗Y for all X, Y ∈ C.

The first part of this dissertation focuses on the study of symmetric fusion categories in

positive characteristic. We give lower bounds for the rank of a symmetric fusion category

in characteristic p ≥ 5 in terms of p. We also prove that the second Adams operation ψ2

is not the identity for any non-trivial symmetric fusion category, and that symmetric fusion

categories satisfying ψa2 = ψa−1
2 for some positive integer a are super-Tannakian. As an

application, we classify all symmetric fusion categories of rank 3 and those of rank 4 with

exactly two self-dual simple objects.

The second part of this dissertation treats symmetric categories in the context of topo-

logical quantum field theories. We construct a family of unoriented 2-dimensional cobordism

theories parametrized by certain triples of sequences, and prove that some specializations of

these sequences yield equivalences with an exterior product of Deligne categories. It is known

that, modding out the category of 2-dimensional oriented cobordisms by the relation that a

handle is the identity, and evaluating 2-spheres to t, produces a category equivalent to the

Deligne category Rep(St), which generalizes the representation category of the symmetric

group Sn from n ∈ N to t ∈ k. We show an analogous story for unoriented 2-dimensional
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cobordisms, with a construction that recovers the category Rep(St o Z2).

This dissertation contains previously published material.
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Chapter 1

Introduction

This chapter contains previously published material. The material in Section 1.2 appeared

in [11]. The material in Section 1.3 appeared in [12].

1.1 Symmetric categories

Fix an algebraically closed field k of characteristic p ≥ 0. A braided monoidal category C

over k is a monoidal category endowed with a natural isomorphism cX,Y : X ⊗ Y ∼−→ Y ⊗X,

for all X, Y ∈ C, called braiding. Intuitively, this means the category is equipped with

an isomorphism that allows us to permute the tensor product of any two objects in the

category. That is, the tensor product “commutes” in a categorical sense. Hence this notion

is a categorification of that of a commutative monoid.

When this braiding satisfies the condition

cY,XcX,Y = idX⊗Y ,

for all X, Y ∈ C, we say that the category C is symmetric. Note that in the definition of
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braiding, we get that the tensor product of two objects commutes up to isomorphism. The

difference here is that in a symmetric monoidal category, going from X ⊗ Y to Y ⊗X and

back to X ⊗Y gives an equality with the original. This is why it is said that in a symmetric

monoidal category, the tensor product is made to be “as commutative as possible”.

The simplest example of a symmetric monoidal category is the category Vec of finite-

dimensional vector spaces over k, with the standard tensor product of vector spaces and

braid given by the isomorphism V ⊗W
∼−→ W ⊗ V, defined on homogeneous elements by

v⊗w 7→ w⊗ v, for all V,W ∈ Vec and v ∈ V,w ∈ W . More generally, for an abelian group

G the category VecG of G-graded finite-dimensional vector spaces over k is a symmetric

monoidal category. For G = Z2, modifying the braiding V ⊗W → W ⊗ V so that v ⊗ w 7→

(−1)deg(v) deg(w)w ⊗ v, for homogeneous elements v ∈ V,w ∈ W , we get the symmetric

monoidal category sVec of super vector spaces.

More examples arise from groups in the following way: for any group G the category

Rep(G) of finite-dimensional representations of G over k is a symmetric monoidal category,

where the tensor product and braiding are induced from Vec. In fact, these are all exam-

ples of tensor categories, which are monoidal categories with an abelian k-linear structure

compatible with the tensor product. It is a well known result by Deligne [13] that over a

field of characteristic zero, every pre-Tannakian category under a moderate-growth condi-

tion arises from the representation category of an affine group scheme over sVec, where by

pre-Tannakian we mean a symmetric tensor category wherein all objects have finite length.

However, when we take k of characteristic p > 0, Deligne’s theorem for pre-Tannakian

categories of moderate growth is no longer true. Counter-examples come from the symmetric

tensor categories Verp, called the Verlinde categories, which are defined as the semisimpli-
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fication of the category of tilting modules over SL2. When p ≥ 5, these categories have no

fiber functor to Vec or sVec, hence in contrast to what happens in characteristic zero, they

cannot be reconstructed from group scheme theory in sVec, see [4].

The Verlinde categories are the first term in a nested sequence of incompressible categories

of moderate growth [4],

Verp ⊂ Verp2 ⊂ · · · ⊂ Verpn ⊂ . . .

By incompressible, we mean a pre-Tannakian category for which any symmetric tensor func-

tor from it is an embedding. As a consequence, incompressible categories cannot be recon-

structed from group theory in a smaller symmetric tensor category. In characteristic zero,

it is known that Vec and sVec are the only examples of incompressible categories of mod-

erate growth. On the other hand, in positive characteristic p > 0, it is conjectured that

incompressible categories of moderate growth are of the form Verpn for some n ∈ N [9].

Recently, it was proven in [9] that pre-Tannakian categories of moderate growth admit

a symmetric tensor category to some incompressible category of moderate growth. So this

gives a version of Deligne’s theorem in positive characteristic. Furthermore, it was shown in

[10] that assuming a Frobenius-exact condition on a pre-Tannakian category is equivalent to

getting a symmetric tensor functor into Verp. Thus pre-Tannakian categories of moderate

growth that are Frobenius-exact can be constructed from group schemes in the Verlinde

category. In particular, this is the case of fusion categories, which fall under the moderate-

growth and Frobenius-exact conditions. The first part of this work will focus on the study

of symmetric fusion categories in the positive characteristic case. We give more details of

the context and results obtained in this direction in Section 1.2.
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There are also examples of symmetric monoidal categories which do not satisfy the

moderate-growth condition. This is the case for the category Rep(St) introduced by Deligne

in [14], which interpolates the category Rep(Sn) of finite-dimensional k-representations of

the symmetric group Sn from n ∈ N to any parameter t ∈ k. In particular, it is known that

this category is equivalent to a category constructed in purely topological terms, giving an

explicit relation between Rep(St) and the category of oriented 2-dimensional cobordisms. In

the second part of this thesis, we further study symmetric monoidal categories in the context

of 2-dimensional unoriented cobordisms, and prove a related equivalence with the category

Rep(St o Z2), which interpolates the representation category of the wreath product group

Sn oZ2 from n ∈ N to any parameter t ∈ k. In the last part of this Introduction, Section 1.3,

we give a brief description of the context and our results in this direction.

1.2 In positive characteristic

A tensor category that is semisimple and has finitely many simples is called a fusion category.

In particular, fusion categories in characteristic zero satisfy the moderate-growth condition.

A well-known theorem by Deligne [13] implies that a symmetric fusion category in charac-

teristic 0 is super-Tannakian, that is, admits a symmetric tensor functor to the category

sVec of super vector spaces. As a consequence of this theorem, a symmetric fusion category

over a field of characteristic 0 is equivalent to the category Repk(G, z) of finite-dimensional

representations of a finite group G. Here z ∈ G is a central element of order 2 that modifies

the braiding, see [13, Section 8.19]. This result gives a classification of symmetric fusion

categories in characteristic zero in terms of group data.
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An important result by Victor Ostrik in [37] gives a new version of Deligne’s theorem

for the case of symmetric fusion categories in positive characteristic. He proved that any

symmetric fusion category C in characteristic p > 0 admits a Verlinde fiber functor, that is,

a k-linear exact symmetric tensor functor

F : C → Verp .

As a consequence, any k-linear symmetric fusion category is equivalent to the category

RepVerp(G, ε) of representations of some finite group scheme G in Verp [37, Corollary 1.6].

However, this statement does not give an explicit classification for p ≥ 5, since the classifica-

tion of finite group schemes G in Verp such that RepVerp(G, ε) is semisimple is not known,

even when ε is trivial.

When p > 0, Nagata [16, IV, 3.6] and Masuoka [32] give a classification of finite group

schemes G in Vec and sVec, respectively, such that Repk(G) is semisimple. This yields a

reasonable classification of symmetric fusion categories in the super-Tannakian case. Note

that when char(k) = 2 or 3, symmetric fusion categories over k are Tannakian and super-

Tannakian, respectively, so we know their classification.

In this work we will focus on the non super-Tannakian case. We will approach the

classification of symmetric fusion categories in positive characteristic by rank, i.e., by the

number of simple objects. Here is our first result.

Theorem 3.1.1. Let p ≥ 5. If C is a non super-Tannakian symmetric fusion category, then

rank(C) ≥ p− 1

2
.

We note that the statement above does not hold for super-Tannakian categories. For

17



example, for p ≥ 3 the category Rep(Z2) is semisimple and has rank 2 which is strictly less

than p−1
2

for p > 5.

Note that equality in Theorem 3.1.1 is achieved by Ver+
p , the fusion subcategory of Verp

generated by simple objects of odd index, see Section 2.3.1. In characteristic 5, it is known

that the equality is only achieved by Ver+
5 , see [21, 4.6].

Question 1.2.1. Let p > 5 and C a symmetric fusion category of rank p−1
2

. If C is not

super-Tannakian, is it true that C ∼= Ver+
p ?

We give a positive answer for Question 1.2.1 for the case p = 7 in Theorem 4.1.2.

We also know that there exist non super-Tannakian symmetric fusion categories of rank

p+3
2

. In fact, let δ ∈ k and consider the Karoubian envelope Rep(O(δ)) of the Brauer category

as defined in [13, Section 9.3]. Let Repss(O(δ)) denote the semisimplification of Rep(O(δ)),

i.e., the quotient of Rep(O(δ)) by the tensor ideal of negligible morphisms, see e.g. [13,

Section 6.1]. It turns out that when δ = −1 this category contains a symmetric subcategory

equivalent to Rep(Z2). The symmetric fusion category obtained by de-equivariantization by

Z2 of the neutral component of the standard Z2-grading of Repss(O(−1)) has rank p+3
2

[36].

We thus have examples of non-super-Tannakian symmetric fusion categories in ranks p−1
2

and p+3
2

. A natural question follows.

Question 1.2.2. Are there non super-Tannakian symmetric fusion categories of rank p+1
2

?

For p ≥ 5, the category Verp has precisely four fusion subcategories: Vec, sVec,Ver+
p

and Verp, see [37, Proposition 3.3]. Thus, if C is not super-Tannakian, its Verlinde functor

F : C → Verp is either surjective or its image is Ver+
p . Our next result gives an improvement

on the bound for the former case.
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Theorem 3.1.4. Let p ≥ 5 and let C be a symmetric fusion category with Verlinde fiber

functor F : C → Verp. If F is surjective then

rank(C) ≥ p− 1.

The main tool in the proofs of Theorems 3.1.1 and 3.1.4 is Galois theory.

Another useful tool for the classification of symmetric fusion categories in positive char-

acteristic is the second Adams operation. Let p 6= 2. For a symmetric fusion category

C with Grothendieck ring K(C), the second Adams operation is the ring endomorphism

ψ2 : K(C)→ K(C) given by

ψ2(X) = S2(X)− Λ2(X),

for all X in C, see [21].

Theorem 3.2.6. Let p > 2 and let C be a non-super-Tannakian symmetric fusion category.

If the Adams operation ψ2 : K(C) → K(C) satisfies ψa2 = ψb2 for some a, b ∈ Z≥0, then

2a ≡ ±2b mod p.

Corollary 3.2.7. Let p > 2 and let C be a symmetric fusion category. If ψa2 = ψa−1
2 for

some a ≥ 1, then C is super-Tannakian.

The following comes as a consequence.

Theorem 3.2.9. Let p 6= 2. If C is a non-trivial symmetric fusion category then ψ2 is not

the identity.

We apply the second Adams operation to the problem of classification of symmetric fusion

categories of low rank in positive characteristic. In [21], the second Adams operation was
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employed to give a complete clasification for rank 2. We classify symmetric fusion categories

of rank 3, and symmetric fusion categories of rank 4 with exactly two self-dual simple objects,

see Theorems 4.1.2 and 4.2.7, respectively. We also note that by Theorem 3.1.1 non super-

Tannakian symmetric fusion categories of rank 4 are only possible in characteristic p = 5 or

7.

Even though our results show that the second Adams operation is non-trivial for non-

trivial symmetric fusion categories, we note that it is useful for the classification problem

but definitely not sufficient on its own, see Remark 4.2.3.

1.3 In the TQFTs context

Let k be an algebraically closed field. Symmetric monoidal functors from the category Cobn

of oriented n-dimensional cobordisms into a symmetric monoidal category C are known as n-

dimensional C-valued topological quantum field theories (TQFTs) [2]. In the 2-dimensional

oriented case, the theory of tensor categories has been employed to understand and build

examples of TQFTs, see e.g. [26, 27, 39] and references therein. A special feature of Cob2

is that it admits a description by generators and relations, which provides an algebraic

understanding of topological quantum field theories in the 2-dimensional case. Explicitly,

it is well known (see e.g. [39, Theorem 0.1]) that 2-dimensional TQFTs Cob2 → C are in

bijection with commutative Frobenius algebras in C.

The second part of this work is devoted to the study of unoriented 2-dimensional TQFTs,

that is, symmetric monoidal functors from the category UCob2 of unoriented 2-dimensional

cobordisms into a symmetric monoidal category. As in the oriented case, UCob2 admits
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a description by generators and relations. We will use the one given in [41], see also [1]

for a related construction. Explicitly, the generators are given by the cup, cap, pair of

pants, reverse pair of pants, and twist cobordisms, same as in Cob2, plus two extra ones,

representing the orientation reversing diffeomorphism of the circle, and the Möebius band or

crosscap. The presence of these two extra generators results in a connection with extended

Frobenius algebras, which are Frobenius algebras with additional structure [41].

A family of k-linear 2-dimensional TQFTs, one for each rational sequence α in k, was

introduced by Khovanov and Sazdanovic in [28]. One can “linearize” the category Cob2

using the sequence α by allowing k-linear combinations of cobordisms and evaluating closed

connected oriented surfaces of genus g to αg. This results in the k-linear monoidal category

VCobα of viewable cobordisms [28, 27]. It can then be quotiented by a tensor ideal defined

using the sequence α to produce the category SCobα of skein cobordisms, with objects non-

negative integers, and hom spaces HomSCobα(n,m) given by linear combinations of oriented

cobordisms from n to m circles. See also [6] for a related construction concerning r-spin

TQFTs, which generalizes some of the results in [27].

When k has characteristic zero, 2-dimensional cobordisms can be understood in purely

algebraic terms using the Deligne category Rep(St). Introduced in [14], Rep(St) interpolates

the categories Rep(Sn) of finite-dimensional k-representations of the symmetric group Sn

from n ∈ N to any parameter t ∈ k. It was observed by Comes in [7, Section 2.2] that,

quotienting Cob2 by the tensor ideal arising from the relation that a handle is the identity and

evaluating 2-spheres to t, induces an equivalence with Rep(St). In terms of the Khovanov-
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Sazdanovic construction, if we specialize

α = (t, t, . . . ),

we get an equivalence

Cobα ∼= Rep(St),

where Cobα denotes the pseudo-abelian envelope of SCobα. That is, this construction recov-

ers the Deligne category Rep(St) from Cob2, and so the categories SCobα give generalizations

of the Deligne categories.

The aim of our work is to show an analogous story in the unoriented case. It turns out

that, in characteristic zero, unoriented 2-dimensional cobordisms can also be understood in

purely algebraic terms. We show a connection to the category Rep(StoZ2), which interpolates

the category Rep(Sn oZ2) of finite dimensional representations of the wreath product Sn oZ2,

see [29, 34]. Our two main results, Theorems I and II, describe this connection explicitly.

Following the construction in the oriented case, see [26, 27], we define a family of 2-

dimensional unoriented TQFTs parametrized by sequences α, β and γ. We still evaluate

orientable closed surfaces of genus g to αg. However, the presence of the two extra sequences

β and γ is due to the existence of unorientable surfaces: unorientable surfaces with one or two

crosscaps and genus g are evaluated to βg and γg, respectively. We thus start by constructing

the category VUCobα,β,γ of viewable unoriented cobordisms, obtained by linearizing UCob2

and evaluating unoriented closed surfaces via α, β and γ. When these sequences satisfy

certain conditions, we can quotient VUCobα,β,γ by the tensor ideal generated by the handle

relation associated to these sequences, see Section 5.3. The resulting category SUCobα,β,γ
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has objects non-negative integers and morphisms given by linear combinations of unoriented

cobordisms from n to m circles, with up to a certain number of handles. Hence the morphism

spaces HomSUCobα,β,γ (n,m) are finite dimensional. We denote the pseudo-abelian closure of

SUCobα,β,γ by UCobα,β,γ, see Table 1.1.

Assume from now on that k has characteristic zero. For a spherical category C, we denote

by C its quotient by negligible morphisms. Our first main result, stated below, considers

theories that evaluate unorientable closed surfaces to zero and orientable closed surfaces via

a geometric progressions.

Theorem I. Let α = (α0, λα0, λ
2α0, . . . ) and β = (0, 0, . . . ) = γ be sequences in k, for

α0, λ ∈ k×. We have an equivalence of k-linear symmetric monoidal categories

OCobα ∼= Rep(St o Z2),

where t = λα0

2
, and OCobα is the quotient of SUCobα,β,γ by the relation θ = 0, where θ

denotes the crosscap cobordism.

Corollary 6.4.7. Let α, β and γ be as above. If λα0 is not a non-negative even integer, then

OCobα ∼= Rep(St o Z2).

In particular, OCobα is semisimple.

The proofs of Theorem I and Corollary 6.4.7 can be found in Section 6.4.

We state now our second main result in this direction, where we consider theories that

evaluate all closed surfaces via geometric progressions, and show their connection with a

product of Deligne categories.
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Theorem II. Let α0, β0, γ0, λ ∈ k×, and consider the sequences

α = (α0, λα0, λ
2α0, . . . ), β = (β0, λβ0, λ

2β0, . . . ) and γ = (γ0, λγ0, λ
2γ0, . . . ).

We have an equivalence

UCobα,β,γ ∼= Rep(St o Z2)�Rep(St+)�Rep(St−),

where t = λ
2
α0 − 1

2
γ0, t+ =

√
λ

2
β0 + 1

2
γ0 and t− = −

√
λ

2
β0 + 1

2
γ0.

Notation Category

UCob2 Unoriented 2-dimensional cobordisms.

VUCobα,β,γ

Viewable unoriented cobordisms. Closed compo-

nents are evaluated via α, β, γ.

SUCobα,β,γ Quotient of VUCobα,β,γ by the handle relation.

UCobα,β,γ Pseudo-abelian envelope of SUCobα,β,γ .

SOCobα

For β = γ = (0, . . . ), quotient of SUCobα,β,γ by

θ = 0.

OCobα Pseudo-abelian envelope of SOCobα .

Table 1.1: Constructions arising from the unoriented cobordism category
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Chapter 2

Preliminaries

This chapter contains previously published material, which appeared in [11] and [12].

2.1 Notational conventions

Throughout this paper k will denote an algebraically closed field of characteristic p ≥ 0,

unless otherwise stated.

We denote the ring of integers by Z, and by N the ring of non-negative integers.

For a ring R, we denote by RQ the scalar extension R ⊗Z Q. If z is a complex number,

we denote by Q(z) the field extension generated by z over Q, and by [Q(z) : Q] the degree of

said extension.

We denote by Vec the categories of finite dimensional vector spaces, and by VecG the

category of finite-dimensional G-graded vector spaces over k. We denote by sVec the cate-

gory of finite-dimensional Z2-graded vector spaces with braiding V ⊗W → W ⊗ V given by

v ⊗ w 7→ (−1)deg(v) deg(w)w ⊗ v, for all homogeneous v ∈ V,w ∈ W . Let also Rep(G) be the
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category of finite-dimensional representations of a group G over k.

For a category C, we denote by HomC(X, Y ) the space of morphisms X → Y in C, and

by EndC(X) the space of endomorphisms X → X in C, for all X, Y ∈ C.

2.2 Tensor categories background

In this section, we recall some useful definitions regarding monoidal and tensor categories.

We refer the reader to [22] for a more detailed background on these topics.

2.2.1 Monoidal categories

Definition 2.2.1. A monoidal category is a collection (C,⊗, a,1, l, r), where C is a category,

⊗ : C × C → C is a bifunctor, called tensor product, 1 ∈ C is the unit object, and aX,Y,Z :

(X⊗Y )⊗Z ∼−→ X⊗(Y ⊗Z), rX : X⊗1
∼−→ X, y lX : 1⊗X ∼−→ X are natural isomorphisms,

for all X, Y, Z ∈ C, such that the following diagrams commute:

((X ⊗ Y )⊗ Z)⊗W (X ⊗ Y )⊗ (Z ⊗W ) X ⊗ (Y ⊗ (Z ⊗W ))

(X ⊗ (Y ⊗ Z))⊗W X ⊗ ((Y ⊗ Z)⊗W ),

aX⊗Y,Z,W

aX,Y,Z⊗idW

aX,Y,Z⊗W

idX⊗aY,Z,W

aX,Y⊗Z,W

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y.

aX,1,Y

rX⊗idY idX⊗lY

We will call a : (−⊗−)⊗− ∼−→ −⊗(−⊗−) the associativity isomorphism of C. A monoidal
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subcategory of C is a monoidal category (D,⊗, a,1, l, r), where D ⊂ C is a subcategory such

that 1 ∈ D, and is closed under the tensor product.

Example 2.2.2. The category Vec is a monoidal category. More generally, for a commu-

tative ring with unity R, the category R-Mod of left R-modules is monoidal, with ⊗ = ⊗R

and unit 1 = R.

For a group G, the category Rep(G) is also monoidal, where ⊗ is the tensor product of

representations and the unit is the trivial representation.

Example 2.2.3. For a group G, consider the category VecG of finite-dimensional G-graded

vector spaces. That is, objects are vector spaces V with a decomposition V =
⊕
g∈G

Vg, and

morphisms are linear transformations that preserve the grading. This is a monoidal category,

with tensor product given by

(V ⊗W )g =
⊕

x,y∈G : xy=g

Vx ⊗Wy,

unit object δ1 defined by (δ1)1 = k and (δ1)g = 0 for g 6= 1, and associativity given by the

identity.

More generally, let ω : G×G×G→ k× be a 3-cocycle, that is, a function satisfying

ω(g1g2, g3, g4)ω(g1, g2, g3g4) = ω(g1, g2, g3)ω(g1, g2g3, g4)ω(g2, g3, g4),

for all g1, g2, g3, g4 in G. We obtain the monoidal category VecωG modifying the associativity

isomorphism in VecG in the following way. For U, V,W ∈ VecG, define aωU,V,W : (U ⊗ V )⊗

W → U ⊗ (V ⊗W ) as the lineal extension of

aωUg ,Vh,Wm
:= ω(g, h,m) IdUg⊗Vh⊗Wm : (Ug ⊗ Vh)⊗Wm → Ug ⊗ (Vh ⊗Wm),

for all g, h,m ∈ G.
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Definition 2.2.4. Given two monoidal categories (C,⊗, a,1, l, r) and (C ′,⊗′, a′,1′, l ′, r′), a

monoidal functor from C to C ′ is a triple (F, J, u), where F : C → C ′ is a functor, u : 1′ → F (1)

is an isomorphism, and J : ⊗′ ◦ (F × F ) → F ◦ ⊗ is a natural isomorphism, such that the

following diagrams commute,

(F (X)⊗′ F (Y ))⊗′ F (Z) F (X)⊗′ (F (Y )⊗′ F (Z))

F (X ⊗ Y )⊗′ F (Z) F (X)⊗′ F (Y ⊗ Z)

F ((X ⊗ Y )⊗ Z) F (X ⊗ (Y ⊗ Z)),

a′
F (X),F (Y ),F (Z)

JX,Y ⊗′idF (Z) idF (X)⊗′JY,Z

JX⊗Y,Z JX,Y⊗Z

F (aX,Y,Z)

1′ ⊗′ F (X) F (X)

F (1)⊗′ F (X) F (1⊗X),

l′
F (X)

u⊗idF (X) F (lX)−1

J1,X

F (X)⊗′ 1′ F (X)

F (X)⊗′ F (1) F (X ⊗ 1),

r′
F (X)

idF (X)⊗u F (rX)−1

JX,1

for all X, Y, Z in C.

A monoidal functor F : C → D is said to be full or faithful if HomC(X, Y )
F−→ HomD(F (X), F (Y ))

is surjective or injective for all X, Y ∈ C, respectively, and it is said to be essentially sur-

jective if for all Y ∈ D there exists X ∈ C such that F (X) ∼= Y . We say that F is an

equivalence if it is both essentially surjective and fully-faithful.

2.2.2 Rigidity

Let C be a monoidal category, and let X ∈ C.

Definition 2.2.5. ♦ A left dual of X (if it exists) is a triple (X∗, evX , coevX), such that

X∗ ∈ C, and the morphisms evX : X∗ ⊗X → 1 and coevX : 1 → X ⊗X∗ satisfy that the
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following compositions yield the identity of X and X∗, respectively:

X ∼= 1⊗X (X ⊗X∗)⊗X X ⊗ (X∗ ⊗X) X ⊗ 1 ∼= X,

X∗ ∼= X∗ ⊗ 1 X∗ ⊗ (X ⊗X∗) (X∗ ⊗X)⊗X∗ 1⊗X∗ ∼= X∗.

coevX ⊗ idX aX,X∗,X idX ⊗ evX

idX∗ ⊗ coevX a−1
X∗,X,X∗ evX∗ ⊗ idX∗

The morphisms evX and coevX are called evaluation and co-evaluation, respectively.

♦ The definition of a right dual for X is analogous.

Left and right duals are unique up to unique isomorphism.

Remark 2.2.6. Let C and D be monoidal categories, and F : C → D be a monoidal functor.

If X has left dual X∗, then F (X∗) is a left dual of F (X). The analogous statement is true

for right duals.

Definition 2.2.7. A monoidal category is said to be rigid if every object has a left and right

dual.

Example 2.2.8. The category Vec of finite-dimensional vector spaces over k is rigid. On the

other hand, the category of all vector spaces (that is, including those of infinite dimension)

is not rigid.

Similarly, for a group G, the category RepG of finite-dimensional representations of G

over k is rigid, and so are the categories VecG and VecωG.

2.2.3 Abelian categories

Definition 2.2.9. ♦ We call a category C k-linear if for each pair of objects X, Y ∈ C the

set HomC(X, Y ) has a k-module structure such that composition of morphisms is k-bilinear.

♦We say C is additive if it is k-linear and for every finite sequence of objects X1, . . . , Xn

in C, there exists their direct sum X1 ⊕ · · · ⊕Xn in C.
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♦ We say C is Karoubian if it is k-linear and every idempotent e = e2 : X → X in C has

a kernel, and hence also a cokernel.

♦ We say C is pseudo-abelian if it is additive and Karoubian.

♦ An additive category is called abelian if every morphism has a kernel and cokernel,

every monomorphism is a kernel, and every epimorphism is a cokernel.

If C is Karoubian then for any idempotent e ∈ EndC(X) there exists its image eX ∈ C.

That is, we have a direct sum decomposition X ' eX ⊕ (1− e)X.

Starting with a k-linear category we can construct new categories by formally adding

images of idempotents or direct sum of objects.

Definition 2.2.10. Let C be a k-linear category.

♦ We define the additive envelope A(C) as the category with:

• Objects: Finite formal sums X1 ⊕ · · · ⊕Xm of objects in C.

• Morphisms: For every X1 ⊕ . . . Xm, Y1 ⊕ . . . Yn in A(C), let

HomA(C)(X1 ⊕ . . . Xm, Y1 ⊕ · · · ⊕ Yn) :=
⊕
i,j

HomC(Xi, Yj).

Composition of morphisms is given by matrix multiplication.

♦ We define the Karoubian envelope K(C) of C as the category with:

• Objects: Pairs (X, e), where X is an object in C and e is an idempotent in EndC(X).

• Morphisms: For every (X, e), (Y, f) ∈ K(C), let

HomK(C)((X, e), (Y, f)) = f ◦ HomC(X, Y ) ◦ e.

Composition of morphisms is as expected.
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♦ We define the pseudo-abelian envelope of C as the category P(C) := K(A(C)).

We note that the operations above do not commute in general. These constructions take a

k-linear category and return an additive, Karoubian or pseudo-abelian category, respectively.

2.2.4 Tensor categories

Definition 2.2.11. A tensor category C is a k-linear abelian and monoidal category, such

that the tensor bifunctor ⊗ is k-bilinear.

Example 2.2.12. For a group G, the categories Vec, VecωG and Rep(G) are tensor cate-

gories.

Definition 2.2.13. For tensor categories C and D, a tensor functor F : C → D is a k-linear

exact monoidal functor, such that F preserves the unit object.

For tensor categories C and D, a tensor functor F : C → D is fully faithful if the induced

function HomC(X, Y )→ HomD(F (X), F (Y )) is a bijection, and essentially surjective if every

object D ∈ D is isomorphic to F (X) for some X ∈ C. We say F is an equivalence if it is

fully faithful and essentially surjective, and in such case we say the categories C and D are

equivalent, and denote it by C ∼= D.

2.2.5 Braided categories

Definition 2.2.14. ♦ A braided monoidal category is a monoidal category C endowed with

a natural isomorphism cX,Y : X ⊗ Y → Y ⊗ X, X, Y ∈ C, called braiding, such that the
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following diagrams commute,

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗X),

aX,Y,Z

σX,Y ⊗idZ

σX,Y⊗Z

aX,Y,Z

aY,X,Z idY ⊗σX,Z

X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y (Z ⊗X)⊗ Y,

a−1
X,Y,Z

idX⊗σY,Z

σX⊗Y,Z

a−1
Z,X,Y

a−1
X,Z,Y σX,Z⊗idY

for all X, Y, Z ∈ C.

♦ We say a braided monoidal category C is symmetric if

cY,XcX,Y = idX⊗Y ,

for all X, Y ∈ C.

A symmetric tensor functor between symmetric tensor categories is a tensor functor

compatible with the commutativity isomorphism.

Example 2.2.15. For a group G, the categories Vec and Rep(G) are braided, with braided

given by the usual transposition of factors. If G is abelian, the category VecG is also braided.

In particular, all these categories are symmetric.

We note that for a monoidal category, having a braiding is an extra structure, not a

property. For example, the category VecZ2 can be endowed with two different braidings,

yielding non-isomorphic braided categories. We denote by sVec the braided category VecZ2

with braiding V ⊗W → W ⊗ V so that v ⊗ w 7→ (−1)deg(v) deg(w)w ⊗ v, for homogeneous
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elements v ∈ V,w ∈ W . This is a symmetric monoidal category, called the category of super

vector spaces.

Definition 2.2.16. We say a symmetric fusion category C is Tannakian (resp., super-

Tannakian) if it admits a symmetric fiber functor, that is, a symmetric tensor functor

C → Vec (resp., C → sVec), see [38, 15, 13].

2.2.6 Grothendieck ring

Let C be a tensor category. An object X in C is simple if 0 and X are its only subobjects,

and semisimple if it can be written as direct sum of simple objects. If all objects in C are

semisimple, then the category is said to be semisimple.

Definition 2.2.17. An object X in C has finite length if there exists a chain

0 = X0 ⊂ X1 ⊂ ... ⊂ Xn−1 ⊂ Xn = X,

of objects Xi in C such that Xi is a subobject of Xi+1 and Xi+1/Xi is simple for all i =

1, . . . , n− 1.

A chain like this is called a Jordan-Hölder series for X. We say that this series contains

a simple object Y with multiplicity m if Xi/Xi−1 is isomorphic to Y for exactly m distinct

values of i = 1, . . . , n. Jordan-Hölder’s theorem establishes that if X has finite length, then

any filtration of X can be extended into a Jordan-Hölder series for X, and any two series

contain each simple object with the same multiplicity.

Let C be a tensor category in which every object has finite length. We denote by [X : Y ]

the multiplicity of Y in a Jordan-Hölder series for X, which is well defined by Jordan-Hölder’s

theorem.
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Definition 2.2.18. The Grothendieck group K(C) of C is the free abelian group generated

by the isomorphism classes of simple objects in C.

For every object X ∈ C, we denote its class in K(C) also by X, to simplify the notation.

Let Xi, i ∈ I, be the (isomorphism classes of) simple objects in C. The tensor product in C

induces a multiplication in K(C) given by

XiXj :=
∑
k∈I

[Xi ⊗Xj : Xk]Xk. (2.2.1)

This multiplication is associative, and makes K(C) a Z+-ring with basis {Xi}i∈I and unit 1,

which we call the Grothendieck ring of C. Equation (2.2.1) is often referred to as the fusion

rules of C.

A tensor functor F : C → D determines a ring homomorphism K(C)→ K(D), which we

will also denote by F to simplify the notation.

2.2.7 Fusion categories

Definition 2.2.19. A tensor category C is said to be pre-Tannakian if it satisies:

1. For every pair of objects X, Y in C, HomC(X, Y ) is a finite dimensional k-vector space.

2. Every object in C has finite length.

3. The category C is rigid.

4. We have EndC(1) ∼= k.

An object X ∈ C in a pre-Tannakian category is called simple if its only subobjects are

0 and itself.
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Definition 2.2.20. A fusion category C is a pre-Tannakian category such that:

1. C is semisimple, i.e., every object can be written as a finite direct sum of simple objects,

and

2. C has finitely many simple objects.

We will denote the (finite) set of isomorphism classes of simple objects in C by O(C).

Example 2.2.21. The category Vec is a fusion category, with a unique (isomorphism class

of) simple object, with representative the field k. More generally, for a finite group G, the

category VecG is a fusion category, where the simple objects are given by δg, with g ∈ G,

defined by (δg)h = 0 if h 6= g, and (δg)g = k.

If |G| does not divide char(k), then Rep(G) is also fusion category, where simple objects

are the irreducible representations of G.

In a fusion category, the left and right duals of an object are isomorphic. Morever, if X

is simple, then so is its dual X∗.

A fusion subcategory of a fusion category C is a full tensor subcategory C ′ ⊂ C, such that

if X ∈ C is isomorphic to a direct summand of an object of C ′, then X ∈ C ′, see [17, 2.1].

Let X1, . . . , Xn denote the simple objects in C. Then any other object X in C can be

written as X =
n∑
i=1

NiXi, where Ni = dim(Hom(Xi, X)). Hence, we have that

Xi ⊗Xj =
n∑
k=1

Nk
ijXk,

for all i, j = 1, . . . , n, where Nk
ij = dim(Hom(Xk, Xi ⊗ Xj). These non-negative integers

{Nk
ij}i,j,k=1,...,n are called the fusion rules of C.
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For fusion categories C and D, a tensor functor F : C → D is a k-linear exact and faithful

monoidal functor, see [22, Definition 4.2.5]. For a tensor functor F : C → D, its image F (C)

is the fusion subcategory of D generated by objects F (X), X ∈ C. The functor F is called

surjective if F (C) = D, see [23, 5.7]. Thus a tensor functor is an equivalence if and only if it

is both surjective and fully-faithful.

For two fusion categories C and D, we can define their external tensor product, see [35,

Section 2.2], which we will denote by C �D.

2.2.8 Frobenius-Perron dimension

Let C be a fusion category. There is a unique ring homomorphism FPdim : K(C) → R

called Frobenius-Perron dimension such that FPdim(X) ≥ 1 for any object X 6= 0. For

X ∈ K(C), FPdim(X) is given by the maximal non-negative real eigenvalue of the matrix

of left multiplication by X. This is well defined thanks to the Frobenius-Perron theorem,

since said matrix has non-negative entries. For a simple object X ∈ C, the Frobenius-Perron

dimension of X is given by FPdim(X).

We list some of the properties of the Frobenius-Perron dimension below:

1. FPdim(X) ≥ 1 for all X 6= 0.

2. The number FPdim(X) is an algebraic integer, for all X ∈ C.

3. FPdim(1) = 1.

4. FPdim(X ⊗ Y ) = FPdim(X) FPdim(Y ), for all X, Y ∈ C.

5. FPdim(X) = FPdim(X∗), for all X ∈ C.
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See for example [22, Section 3.3] for details.

We define the Frobenius-Perron dimension FPdim(C) of C by

FPdim(C) =
∑

X∈O(C)

FPdim(X)2.

Definition 2.2.22. Let C be a fusion category.

♦ We say C is weakly integral if FPdim(C) is an integer.

♦ We say C is integral if FPdim(X) is an integer for all simple objects X in C. In this

case, FPdim(C) is also an integer.

Let F : C → D be a tensor functor between fusion categories. Then F preserves the

Frobenius-Perron dimension. That is, FPdimD(F (X)) = FPdimC(X)f or all X in C, see for

example [22, Proposition 3.3.13].

Example 2.2.23. Let G be a finite group such that |G| does not divide the charactersitic of

k. The fusion category Rep(G) is integral, with Frobenius-Perron dimension FPdim(C) =

|G|. In fact, the Frobenius-Perron dimension of a representation is the same as its dimension

as a k-vector space.

Example 2.2.24. For G a finite group, all simple objects δg, for g ∈ G, in VecG have

Frobenius-Perron dimension 1. Hence FPdim(VecG) = |G|.

Definition 2.2.25. Let C be a fusion category.

♦ An object X ∈ C is said to be invertible if its evaluation evX : X∗ ⊗ X → 1 and

coevaluation coevX : 1→ X ⊗X∗ morphisms are isomorphisms.

♦ We say C is pointed if every simple object in C is invertible.
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It is easy to check that an object X ∈ C is invertible if and only if FPdim(X) = 1. Hence

if an object X is invertible, so is its dual. And if X and Y are invertible, so is X ⊗ Y .

Example 2.2.26. Let G be a finite group such that |G| does not divide p = char(k).

Invertible objects in Rep(G) are one-dimensional representations.

For a finite group G and a 3-cocycle ω, the category VecωG is pointed. In fact, it is well

known that every pointed fusion category is of this form.

Definition 2.2.27. The pointed subcategory of a fusion category C is the fusion subcategory

Cpt generated by the invertible objects in C.

2.2.9 Equivariantization by groups

We give here a brief introduction to the construction given by equivariantization by a group,

which we will use in Sections 4.1 and 4.2. We refer to [22, Section 2.7] for details.

Let C be a tensor category, and denote by Aut⊗(C) the monoidal category whose objects

are the autoequivalences of C, morphisms are natural isomorphisms between functors, and

tensor product is given by the composition of functors. Let G be a group, and define G as

the strict monoidal category with objects the elements in G, morphisms are identities, and

the tensor product is given by the multiplication in G.

Definition 2.2.28. An action of G on a category C is given by:

1. For every g ∈ G, a tensor functor Tg : C → C;

2. For g, h ∈ G, a monoidal isomorphism Jg,h : TgTh
∼−→ Tgh;

3. A monoidal isomoprhism u : IdC
∼−→ Te;
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such that the following diagrams commute,

TgThTk TghTk

TgThk Tghk,

Jg,hTk

TgJh,k Jgh,k

Jg,hk

Tg TgTe

TeTg Tg,

Tgu

uTg
=

Jg,e

Je,g

(2.2.2)

for all g, h, k ∈ G.

Definition 2.2.29. Let C be a category with an action of a group G.

♦ A G-equivariant object in C is a pair (X, v), where X ∈ C and v = {vg : Tg(X)
∼−→

X | g ∈ G}, such that the diagram

Tg(Th(X)) Tg(X)

Tgh(X) X

Tg(vh)

Jg,h(X) vg

vgh

(2.2.3)

commutes for all g, h ∈ G.

♦ A G-equivariant morphism f : (X, v) → (Y,w) is a morphism f : X → Y in C such

that fvg = wgf , for all g ∈ G.

♦ The G-equivariantization CG of a category C by a group G is the category of equivariant

objects and morphisms in C.

If C is a fusion category and G a finite group such that |G| does not divide char(k), CG

is also a fusion category. Moreover, its Frobenius-Perron dimension satisfies FPdim CG =

|G|FPdim C.

2.2.10 Categorical trace

Let C be a rigid monoidal category.
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Definition 2.2.30. Let X ∈ C. For an isomorphism f : X → X∗∗, its left quantum trace is

given by

Tr(f) : 1 X ⊗X∗ X∗∗ ⊗X∗ 1.
coevX f⊗idX∗ evX∗ (2.2.4)

Its right quantum trace is similarly defined. This notion of trace behaves well with direct

sums, tensor products and duals, see for example [22, Proposition 4.7.3].

By definition, Tr(f) ∈ EndC(1). Under the assumption EndC(1) ∼= k, we can identify

Tr(f) with an element in k. In this work, this will be the case for tensor (and hence fusion)

categories, which will be used throughout. .

Definition 2.2.31. A pivotal structure in C is an isomorphism of tensor functors ψ : Id →

(−)∗∗, see [3, 22]. That is, for every X ∈ C we have a natural isomorphism ψX : X
∼−→ X∗∗,

and these isomorphisms satisfy that

ψX⊗Y = ψX ⊗ ψY ,

for all X, Y ∈ C.

A category with a pivotal structure is called pivotal.

The pivotal structure is called spherical if for any such morphism its right trace equals

its left trace. A spherical fusion category is a fusion category equipped with a spherical

structure.

In the case when C is symmetric, there is a canonical choice of spherical structure given

by

X X ⊗X∗ ⊗X∗∗ X∗ ⊗X ⊗X∗∗ X∗∗,
IdX ⊗ coevX∗ cX,X∗⊗idX∗∗ evX ⊗ IdX∗∗

see e.g. [22, Secion 9.9].
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2.2.11 Quantum dimension and non-degenerate categories

Let C be a pivotal tensor category, with pivotal structure given by ψX : X
∼−→ X∗∗.

Definition 2.2.32. For an object X ∈ C, its quantum dimension dim(X) with respect to ψ

is defined by

dim(X) := Tr(ψX) ∈ End(1) ∼= k.

Hence dim(X) can be thought of as en element in k, for all X ∈ C. This determines a

ring homomorphism dim : K(C) → k, sending X to dim(X). By [22, Proposition 4.8.4], if

X is simple then dim(X) 6= 0.

Example 2.2.33. In the category Rep(G) for a group G, the quantum dimension of a

representation coincides with its dimension as a vector space.

The global dimension dim(C) ∈ k of a pivotal fusion category C is defined as

dim(C) :=
∑

X∈O(C)

dim(X) dim(X∗) ∈ k.

When C is spherical, we have that dim(X) = dim(X∗) for all X ∈ C. In particular, for a

spherical fusion category (and thus for a symmetric fusion category), dim C =
∑

X∈O(C)
dim(X)2.

Remark 2.2.34. We note that the quantum dimension of an object in a pivotal category C

is not necessarily a real number. Hence it is not true in general that dim(X) = FPdim(X)

for an object X ∈ C.

Definition 2.2.35. We say a pivotal fusion category C is non-degenerate if dim(C) 6= 0, see

[23, Definition 9.1].
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A crucial property of non-degenerate fusion categories is that they can be lifted to char-

acteristic zero, see [18] and [23, Section 9]. It is known that for p = 0, any fusion category

is non-degenerate, see [23, Theorem 2.3]. We will use these facts repeatedly in Sections 4.1

and 4.2.

2.2.12 Semisimplification

For a spherical category C, we recall the theory of semisimplification, a process through

which we obtain a semisimple quotient of C, see [3, 20] for details.

Definition 2.2.36. A tensor ideal I in a k-linear monoidal category C is a collection of sub-

spaces I(X, Y ) ⊂ Hom(X, Y ), for every pair of objects X, Y ∈ C, closed under composition

and tensor product in the following way:

1. For f ∈ I(X, Y ), g1 ∈ Hom(Y, Z) and g2 ∈ Hom(Z,X), the compositions g1 ◦ f and

f ◦ g2 are in I(X,Z) and I(Z, Y ), respectively;

2. For f ∈ I(X, Y ) and g ∈ Hom(Z,W ), the products f ⊗ g and f ⊗ f are in I(X ⊗

Z, Y ⊗W ) and I(Z ⊗X,W ⊗ Y ), respectively;

for all X, Y, Z,W ∈ C.

For a tensor ideal I in C, we can define the quotient C ′ of C by I, see [20, Section 2.1].

The new category C ′ is again a k-linear monoidal category, with:

• Objects are the objects of C, and

• Hom spaces are defined by

HomC′(X, Y ) := HomC(X, Y )/I(X, Y ),
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for all X, Y ∈ C.

• Composition of morphisms and tensor product are induced from C.

Definition 2.2.37. [22, Exercise 8.18.9] Let C be a spherical k-linear monoidal category.

We call a morphism x ∈ HomC(X, Y ) negligible if, for any y ∈ HomC(Y,X), we have that

tr(yx) = 0.

The setN (C) of all negligible morphisms in a spherical category C is a proper tensor ideal,

see for example [20, Proposition 2.4]. Moreover, the spherical category category C̄ := C/N (C)

is semisimple.

Definition 2.2.38. We call C̄ the semisimplification of C. The simple objects of C are the

images of the indecomposable objects of C of nonzero dimension [3, 20]

2.3 In positive characteristic

For this section, we assume k is an algebraically closed field of characteristic p > 0.

2.3.1 Verlinde categories

Let Zp denote the cyclic group of p elements, and let σ be a generator σ. We then have an

isomorphism of algebras

k[Zp] ∼= k[σ]/(σp − 1) ∼= k[σ]/(σ − 1)p.

Thus isomorphism classes of indecomposable objects in the category Repk(Zp) are given by

the Zp-modules L̃s := k[σ]/(1− σ)s, for s ∈ Z satisfying 1 ≤ s ≤ p.
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Definition 2.3.1. The Verlinde category Verp is the semisimplification of Rep(Zp).

That is, Verp is the symmetric fusion category obtained by quotienting Repk(Zp) by the

tensor ideal of negligible morphisms, see Section 2.2.12. Since the indecomposable object

L̃p in Rep(Zp) has quantum dimension 0, simple objects in Verp are the images of the

indecomposables L̃s for s = 1, . . . , p− 1. We denote them by

1 = L1, L2, . . . , Lp−1,

respectively. So Verp has rank p− 1. The Verlinde fusion rules are given by

Lr ⊗ Ls =

min(r,s,p−r,p−s)∑
i=1

L|r−s|+2i−1.

In particular, we have that all simple objects in Verp are self-dual.

Example 2.3.2. For p = 2, Ver2 is equivalent to Vec. For p = 3, Ver3 is equivalent to

sVec.

For p = 5, Ver5 has 4 simple objects 1 = L1, L2, L3, L4, and

L2 ⊗ L2 = 1⊕ L3, L2 ⊗ L3 = L2 ⊕ L4, L2 ⊗ L4 = L3,

L3 ⊗ L3 = 1⊕ L3, L3 ⊗ L4 = L2, L4 ⊗ L4 = 1.

From this, we can compute

FPdim(1) = 1 = FPdim(L4), and FPdim(L3) =
1 +
√

5

2
= FPdim(L2).

Definition 2.3.3. Let Ver+
p be the abelian subcategory of Verp generated by Li for i odd.

By the Verlinde fusion rules, it turns out that Ver+
p is a fusion subcategory of Verp. Hence

rank(Ver+
p ) = p−1

2
. For p > 2, the fusion subcategory generated by L1 and Lp−1 is tensor
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equivalent to sVec. Moreover, Verp has exactly 4 fusion subcategories: Verp,Ver+
p , sVec

and Vec, and we have an equivalence of categories

Verp ∼= Ver+
p � sVec, (2.3.1)

see [37].

The Verlinde fiber functor

Let C be a symmetric fusion category over k of characteristic p > 0. The main result of [37]

states:

Theorem 1. [37, Theorem 1.5] There exists a symmetric tensor functor F : C → Verp.

The functor F is called the Verlinde fiber functor. It is shown in [21, Theorem 2.6] that

it is unique up to a non-unique isomorphism of tensor functors.

As a consequence of this theorem, a symmetric fusion category is of the form RepVerp(G, π),

for G a linearly reductive finite group scheme in Verp. However, this does not give a com-

plete classification of fusion categories in positive characteristic, as at the moment there are

not many known examples of group schemes in Verp.

In characteristic 2, the theorem implies that all symmetric fusion categories are Tan-

nakian, as Ver2 = Vec. Moreover, we have a classification of finite group schemes G in Vec

such that Repk(G) is semisimple, following a well known theorem by Nagata [16]. Hence we

do have classification of symmetric fusion categories in the particular case p = 2. Namely,

any such category is obtained as the equivariantization of a pointed category associated with

an abelian 2-group, by the action of a group of odd order.
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Similarly, since Ver3 = sVec, the theorem implies that symmetric fusion categories in

characteristic 3 are super-Tannakian. In [32], Masuoka provided a classification of finite

group schemes G in sVec such that Repk(G) is semisimple, and so we also have a classifi-

cation of symmetric fusion categories when p = 3.

2.3.2 The second Adams operation

Let C be a symmetric fusion category over a field of characteristic p 6= 2. We recall the

definition of the n-th symmetric and exterior powers of an object X ∈ C, following [22,

Definition 9.9.5] and [19, 2.1].

Consider the action of the symmetric group Sn on X⊗n in C, where

Sn → AutC(X
⊗n)

(i i+ 1) 7→ idX⊗(i−1) ⊗ cX,X ⊗ idX⊗(n−i−1) ,

for all i = 1, . . . , n − 1, where (i i + 1) denotes the transposition i 7→ i + 1 in Sn, see [22,

Remark 8.2.5].

Definition 2.3.4. ♦ The n-th symmetric power Sn(X) of X is the maximal quotient of

X⊗n on which the action of Sn is trivial.

♦ The n-th exterior power Λn(X) of X is the maximal quotient of X⊗n on which the

action of Sn factors through the sign representation.

Definition 2.3.5. The second Adams operation ψ2 : K(C)→ K(C) is defined by

ψ2(X) = S2(X)− Λ2(X),

for all X ∈ K(C).
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The second Adams operation defines a ring endomorphism of K(C), see [21, Lemma 4.4].

Example 2.3.6. Let G be an abelian finite group. In VecG, ψ2(g) = g2 for all g ∈ G.

Example 2.3.7. Let G be a finite group such that p 6 | |G|. Recall that K(Rep(G)) can be

identified with the group of characters of G. Thus ψ2(g) : K(Rep(G))→ K(Rep(G)) maps

χ(g) 7→ χ(g2), for every character χ and all g ∈ G.

Since X2 = S2(X) + Λ2(X) for all X ∈ C, then

X2 ≡ ψ2(X) mod 2 for all X ∈ K(C).

We will use this fact repeatedly throughout this work. We also have that ψ2 commutes with

duality, that is, ψ2(X)∗ = ψ2(X∗) for all X ∈ K(C).

When studying properties of the second Adams operation, we will often look at its scalar

extension

(ψ2)Q := ψ2 ⊗ 1 : K(C)Q → K(C)Q.

2.4 Unoriented TQFTs

In this last section of the preliminaries, we give context to the study of unoriented tqfts, their

relation to extended Froebnius algebras, and show graphical representation of the category

Rep(St o G) [34], which will be used for our results in later chapters.

2.4.1 The category of unoriented cobordisms

We denote by Cobn the category of n-dimensional oriented cobordisms. This is a symmetric

monoidal category, with monoidal structure given by disjoint union, see for example [30].
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Definition 2.4.1. Let UCobn be the category of n-dimensional unoriented cobordisms de-

fined as follows:

♦ Objects: closed (n− 1)-dimensional smooth manifolds.

♦ Morphisms: given two objects X, Y , we define HomUCobn(X, Y ) to be the space con-

sisting of n-dimensional smooth compact manifolds with boundary M , together with a dif-

feomorphism of their boundary ∂M ∼= X t Y . Such two manifolds are considered to be

the same if they differ by a diffeomorphism which induces a diffeomorphism between their

boundaries that is isotopic to the identity.

♦ Composition: let M : X → Y and N : Y → Z be morphisms in UCobn. Since

∂M ∼= X t Y and ∂N ∼= Y t Z, we have induced diffeomorphisms M0
∼= Y and N0

∼= Y for

some M0 ⊆ ∂M and N0 ⊆ ∂N . The composition of M and N is given by glueing M with N

via these diffeomorphisms, see [33].

The category UCobn is a rigid symmetric monoidal category, with monoidal structure

induced by the disjoint union.

Example 2.4.2. Let X be a closed (n − 1)-manifold. Then HomUCobn(X,X) contains

cylinder n-manifolds M = X × [0, 1].

In the special case where n = 2 and X = S1 we have exactly two classes of diffeomor-

phisms up to isotopy: one which is orientation preserving and another which is orientation

reversing. Thus we have exactly two diffeomorphism classes in HomUCob2(S
1, S1), pictured

below:
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Id φ

↔ .

Figure 2.1: Two cylinders

From a slightly different point of view, we can consider the cylinders above as morphisms

from 0→ 2 and 2→ 0, instead of 1→ 1. This yields two different compositions of cylinders,

which result in the Klein bottle and the Torus, respectively:

= , = .

Figure 2.2: Composition of cylinders

Definition 2.4.3. An n-dimensional C-valued unoriented topological quantum field theory

(TQFT) is a symmetric monoidal functor UCobn → C for some symmetric monoidal category

C.

There is a similar definition of C-valued oriented TQFTs Cobn → C, and it is well known

they are in bijection with Frobenius algebras in C, see for example [30]. We discuss in the

following section the relation between unoriented TQFTs and extended Frobenius algebras.
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2.4.2 Extended Frobenius algebras

In this section we recall some algebraic structures in monoidal categories, with the goal of

talking about extended Frobenius algebras and their relation to unoriented TQFTs.

Definition 2.4.4. Let C be a monoidal category.

• An algebra in C is a triple (A,mA, uA), consisting of an object A ∈ C, and morphisms

mA : A ⊗ A → A and uA : 1 → A in C, called multiplication and unit, satisfying the

following commutative diagrams:

A⊗ A⊗ A A⊗ A

A⊗ A A

mA⊗IdA

IdA⊗mA mA

mA

,

1⊗ A A⊗ A

A⊗ A A.

∼

uA⊗IdA

IdA⊗uA mA

mA

(2.4.1)

A morphism of algebras (A,mA, uA) and (B,mB, uB) is a morphism f : A → B in C

so that fmA = mB(f ⊗ f) and fuA = uB.

• A coalgebra in C is a triple (A,∆A, εA), consisting of an object A ∈ C, and morphisms

∆A : A → A ⊗ A and εA : A → 1 in C, called comultiplication and counit, satisfying

the following commutative diagrams:

A A⊗ A

A⊗ A A⊗ A⊗ A

∆A

∆A ∆A⊗IdA

IdA⊗∆A

,

A A⊗ A

A⊗ A 1⊗ A.

∼

∆A

∆A εA⊗IdA

IdA⊗∆A

(2.4.2)

A morphism of coalgebras (A,∆A, εA) and (B,∆B, εB) is a morphism f : A→ B in C

so that ∆Bf = (f ⊗ f)∆A and εBf = εA.

• A Frobenius algebra in C is a 5-tuple (A,mA, uA,∆A, εA) where (A,mA, uA) is an algebra
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in C and (A,∆A, εA) is a coalgebra in C, so that the following diagram commutes

A⊗ A A⊗ A⊗ A

A⊗ A⊗ A A⊗ A.

IdA⊗∆A

∆A⊗IdA
∆AmA

mA⊗IdA

IdA⊗mA

(2.4.3)

A morphism of Frobenius algebras f : A→ B is a both an algebra and coalgebra map.

Definition 2.4.5. Let C be a braided monoidal category with braiding cX,Y : X⊗Y ∼−→ Y ⊗X

for all X, Y ∈ C.

• A commutative algebra in C is an algebra (A,mA, uA) in C such that mA cA,A = mA.

• A commutative Frobenius algebra in C is a Frobenius algebra that is commutative as

an algebra.

It is well known that commutative Frobenius algebras in a symmetric tensor category

C are in bijection with 2-dimensional oriented TQFTs Cob2 → C (see e.g. [39, Theorem

0.1]). An analogous correspondence takes place between extended Frobenius algebras and

unoriented TQFTs. We give a precise statement in what follows.

Definition 2.4.6. [41] Let C be a braided monoidal category. An extended Frobenius algebra

in C is a 7-tuple (A,mA, uA,∆A, εA, φA, θA), where (A,mA, uA,∆A, εA) is a commutative

Frobenius algebra in C, φA : A → A and θA : 1 → A are morphisms of Frobenius algebras,

φ2
A = idA, and the diagrams

1⊗ A A⊗ A

A⊗ A A A

θA⊗idA

θA⊗1 mA

mA φA

,

1 A A⊗ A A⊗ A

1⊗ 1 A⊗ A A

uA

∼

∆A φA⊗idA

mA

θA⊗θA mA

(2.4.4)

commute.
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Example 2.4.7. Let n ≥ 1 and let Sn o Z2 denote the wreath product of Sn and Z2, where

Sn acts on Zn
2 by permutation of indices. Let C = Rep(Sn o Z2). For λ ∈ k×, we define

A = Aλ ∈ C to be the algebra of functions on the set {x1, x−1, . . . , xn, x−n} over k, with unit

and multiplication maps given by

uA : k→ A, mA : A⊗ A→ A,

1 7→
n∑
i=1

(δi + δ−i) f ⊗ g 7→ fg

respectively, where δi(xj) = δi,j and δ−i(x−j) = δi,j for all 1 ≤ i, j ≤ n. Note that A is in

fact in C, since Sn oZ2 acts on {x1, x−1, . . . , xn, x−n} by permuting indices, and thus also acts

on its algebra of functions A.

We show that (A,mA, uA,∆A, εA, φA, θA) is an extended Frobenius algebra in C, where

εA : A→ k, ∆A : A→ A⊗ A, φA : A→ A, θA : k→ A

f 7→ 1

λ

n∑
i=1

(f(xi) + f(x−i)) δi 7→ λδi ⊗ δi, δi 7→ δ−i, 1 7→ 0

δ−i 7→ λδ−i ⊗ δ−i, δ−i 7→ δi,

for all 1 ≤ i ≤ n and for all f, g : {x1, x−1, . . . , xn, x−n} → k.

It is easy to check that (A, uA,mA) is an algebra and (A, εA,∆A) is a coalgebra in C. We

compute

(mA ⊗ IdA)(IdA⊗∆A)(δi ⊗ δi) = λ(mA ⊗ IdA)(δi ⊗ δi ⊗ δi) = λδi ⊗ δi = ∆AmA(δi ⊗ δi), and

(mA ⊗ IdA)(IdA⊗∆A)(δi ⊗ δj) = λ(mA ⊗ IdA)(δi ⊗ δj ⊗ δj) = 0 = ∆AmA(δi ⊗ δi),

for i 6= j ∈ {1,−1, . . . , n,−n}. Thus (A, uA,mA, εA,∆A) is a Frobenius algebra in C, which
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is clearly commutative. On the other hand, φ(θA) = θA trivially, and

mA(φA ⊗ Id)(∆A(1)) = λmA(φA ⊗ Id)

(
n∑
i=1

(δi ⊗ δi) + (δ−i ⊗ δ−i)

)

= λmA

(
n∑
i=1

(δ−i ⊗ δi) + (δi ⊗ δ−i)

)

= 0, and

mA(θA ⊗ θA) = mA(0) = 0.

Hence all the conditions for an extended Frobenius algebra are satisfied, see Definition 2.4.4.

Proposition 2.4.8. Let C be a symmetric monoidal category. Isomorphism classes of un-

oriented 2–dimensional C-valued TQFTs are in bijective correspondence with isomorphism

classes of extended Frobenius algebras in C.

A proof for the Proposition above is given in [41, Proposition 2.9], for the case where C

is the category of modules over a commutative ring R. Their proof works verbatim for the

general case.

Explicitly, an extended Frobenius algebra A in a symmetric monoidal category C gives

rise to a symmetric monoidal functor FA : UCob2 → C by mapping the circle object in

UCob2 to A in C.

2.4.3 The category Rep(St oG)

For this section, we assume k has characteristic zero. We also assume that whenever C is a

k-linear monoidal category, the tensor bifunctor ⊗ is k-bilinear.

Fix a finite group G and let k[G] be the regular representation of G. The symmetric k-

linear monoidal category Rep(St oG), introduced by Knop in [29], interpolates the category
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Rep(Sn o G) of representations of the wreath product Sn o G from n ∈ N to t ∈ k. In [34],

Mori introduced a 2-functor which sends a k-linear monoidal category C to a new k-linear

monoidal category St(C). When C = Rep(G), we have that St(C) = Rep(St oG) as defined

by Knop, see [34, Remark 4.14].

We will give a brief summary of the construction and graphical description of St(C) as

presented in [34]. We will use this description later on to prove Theorems I and II.

Definition 2.4.9. Let I1, . . . , Il be finite sets. A recollement of I1, . . . , Il is an equivalence

relation r on I1 t . . . t Il such that for any k = 1, . . . , l and i, i′ ∈ Ik, if i ∼r i′ then i = i′.

We denote by R(I1, . . . , Il) the set of recollements of I1, . . . , Il. For example, any element

in R(I, J) is of the form

r = {{i, j}, . . . , {i′}, . . . , {j′}, . . . }

where i, i′ ∈ I and j, j′ ∈ J .

For {a1, . . . , ap} ⊆ {1, . . . , l}, let πa1...,ap : R(I1, . . . , Il)→ R(Ia1 , . . . , Iap) be the map that

restricts the equivalence relation R(I1, . . . , Il) to Ia1 t · · · t Iap ⊂ I1 t · · · t Il. Given finite

sets I, J,K and r ∈ R(I, J), s ∈ R(J,K), let

R(s ◦ r) = {u ∈ R(I, J,K) | π1,2(u) = r, π2,3(u) = s}.

Definition 2.4.10. [34, Definition 2.13] Let C be a k-linear category, and let t ∈ k. Then

St(C) is the pseudo-abelian envelope of the category defined as follows:

♦ Objects: Finite families UI = (Ui)i∈I of objects in C. We denote them by 〈UI〉t.

♦ Morphisms: For objects 〈UI〉t and 〈VJ〉t,

HomSt(C)(〈UI〉t, 〈VJ〉t) ∼=
⊕

r∈R(I,J)

⊗
(i,j)∈r

HomC(Ui, Vj)

 , (2.4.5)
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where for each Φ on the right hand side, we denote by 〈Φ〉t the corresponding morphism in

St(C).

♦ Composition: For Φ ∈
⊗

(i,j)∈r
HomC(Ui, Vj) and Ψ ∈

⊗
(j,k)∈s

HomC(Vj,Wk), composition

is given by

〈Ψ〉t ◦ 〈Φ〉t :=
∑

u∈R(s◦r)

Pu(t)〈Ψ ◦u Φ〉t,

where we denote by Ψ ◦u Φ the element obtained by composing terms of Φ⊗Ψ using

HomC(Ui, Vj)⊗ HomC(Vj,Wk)→ HomC(Ui,Wk),

for all (i, j, k) ∈ u, and Pu(t) is the polynomial

Pu(t) =
∏

#π1,3(u)≤a<#u

(t− a).

The unit object 1St(C) of St(C) is the object corresponding to the empty family.

Remark 2.4.11. In this language, Deligne’s category Rep(St,C) as defined in [13] is equiv-

alent to St(Vec), see [?, Remark 4.14].

Having a monoidal structure in C induces a monoidal structure in St(C), with tensor

products defined as follows.

Definition 2.4.12. [34, Definition 4.16] Let C be a k-linear monoidal category. Define tensor

products in St(C) by:

• For families UI = (Ui)i∈I and VJ = (Vj)j∈J in C,

〈UI〉t ⊗ 〈VJ〉t :=
⊕

r∈R(I,J)

〈(Ui ⊗ Vj)(i,j)∈r〉t.
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• For families UI = (Ui)i∈I , VJ = (Vj)j∈J ,WK = (Wk)k∈K and XL = (Xl)l∈L, and mor-

phisms Φ ∈
⊗

(i,j)∈r
HomC(Ui, Vj) and Ψ ∈

⊗
(k,l)∈s

HomC(Wk, Xl),

〈Φ〉t ⊗ 〈Ψ〉t :=
∑

u∈R(r⊗s)

〈Φ⊗u Ψ〉t,

where Φ⊗u Ψ is obtained by composing terms of Φ⊗Ψ using tensor products

HomC(Ui, Vj)⊗ HomC(Wk, Xl)→ HomC(Ui ⊗Wk, Vj ⊗Xl),

for all (i, k, j, l) ∈ u.

Graphical description of St(C)

When C is a braided k-linear monoidal category, it induces a natural braiding in St(C), see

[34, Section 4.5]. In particular, when C is symmetric then so is St(C).

For C a braided k-linear monoidal category, [34] shows a useful graphical description of

morphisms in St(C). We will use it later on for C = Rep(G), as it is easier to work with

than the definitions above. We give now a quick summary of this graphical description. We

note however that we make a minor change, as we represent morphisms from left to right,

rather than from top to bottom.

♦ Represent objects 〈U1〉t ⊗ · · · ⊗ 〈Ul〉t by labeled points placed vertically:

U1

U2

...

Ul

The unit object 1St(C) is represented by “no points”. Morphisms between objects of this

form are represented by strings which connect points from left to right. Since objects of the
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form 〈U1〉t⊗ · · ·⊗ 〈Ul〉t generate St(C) as a pseudo-abelian category, it is enough to consider

morphisms between them [34, Corollary 4.18].

♦ For each morphism Φ : U → V in C, represent the corresponding morphism in St(C)

by a string with a label:

ΦU V〈Φ〉t := .

When Φ = id, we will sometimes omit the label.

♦ Take morphisms uC ∈ HomSt(C)(1St(C), 〈1C〉t) and εC ∈ HomSt(C)(〈1C〉t, 1St(C)) which

correspond to Id1C via their respective isomorphisms to HomC(1C, 1C), and represent them

by broken strings:

uC := 1C, εC := .1C

♦ Since 〈U ⊗ V 〉t is a direct summand of 〈U〉t ⊗ 〈V 〉t (see [34]), we have retraction

µC(U, V ) : 〈U〉t⊗〈V 〉t → 〈U⊗V 〉t and section ∆C(U, V ) : 〈U⊗V 〉t → 〈U〉t⊗〈V 〉t morphisms,

which we represent by ramifications of strings:

µC(U, V ) :=

V

U
U ⊗ V , ∆C(U, V ) :=

V

U
U ⊗ V ,

for all U, V ∈ C.

The tensor product of these maps is represented by stackings of diagrams, and composi-

tion by connecting them from left to right.

Proposition 2.4.13. [34, Section 4.6] The morphisms 〈Φ〉t, µC(U, V ), uC, ∆C(U, V ) and

εC, for U, V ∈ C and arbitrary Φ : U → V, generate the category St(C) as a pseudo-abelian

57



braided k-linear monoidal category.

It is shown in [34, Section 4.6] that St(C) is defined by generators and relations, with the

generators given in the proposition above. We include below the relations, which we will use

throughout this work.

Relations:

♦ 〈·〉t : C → St(C) is k-linear and compatible with the composition in C:

aΦ + bΨ = a Φ + b Ψ ,

Φ Ψ = .ΨΦ

♦ µC : 〈·〉t⊗〈·〉t → 〈·⊗ ·〉t and ∆C : 〈·⊗ ·〉t → 〈·〉t⊗〈·〉t are k-linear and compatible with

the tensor product in C:

Ψ

Φ
= Φ⊗Ψ , Φ⊗Ψ =

Φ

Ψ
. (2.4.6)

♦ Associativity and coassociativity:

= , = .

♦ Unitality and counitality:

= = , = = .

♦ Compatibility between µC and ∆C:

= , = .
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♦ µC is a retraction and ∆C is a section:

= .

♦ The object 〈1C〉t is of dimension t:

1C
= t id1.

♦ Relations concerning the braiding (see relations (5) and (8) in [34]).

In [?, Section 4.6], it is discussed that C → St(C) is a Frobenius functor [?, Definition

4.28]. The following proposition shows (graphically) how to get extended Frobenius algebras

in St(C) from extended Frobenius algebras in C.

Proposition 2.4.14. 1. A Frobenius algebra A ∈ C induces a Frobenius algebra 〈A〉t in

St(C), with structure maps

uAu〈A〉t :=
A1C

, ε〈A〉t := εA
A 1C

,

mAm〈A〉t :=

A

AA A⊗ A
, ∆〈A〉t :=

A

AA⊗2A
∆A

.

2. An extended Frobenius algebra A ∈ C induces an extended Frobenius algebra 〈A〉t in

St(C), with multiplication, comultiplication, unit and counit maps as above, and

φAA Aφ〈A〉t := , θAθ〈A〉t :=
A1C

,

Proof. Let A ∈ C be a Frobenius algebra. We show first that 〈A〉t with the maps given in

(1) is a Frobenius algebra in St(C) by graphical calculus.
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Associativity:

mA

A

A

A A⊗2

A

A⊗2

A
mA

A
=

A

A

A A⊗2

A

A⊗3

mA(IdA⊗mA)
A

linearity of µC,

=

A

A

A

A⊗2

A
A⊗3

mA(mA ⊗ IdA)
A

associativity of µC and mA,

=
mA

A

A

A

A⊗2

A
A⊗2

A

mA
A

linearity of µC.

Unitality:

A

1C
uA

A

A
A⊗2

mA
A =

A A

1C 1C ⊗ A A
mA(uA ⊗ IdA) linearity of µC, (2.4.7)

= A A unitality of St(C) and uA. (2.4.8)

This shows that (〈A〉t, u〈A〉t ,m〈A〉t) is an algebra in St(C). Similarly, coassociativity and

counitality of St(C) make (〈A〉t, ε〈A〉t ,∆〈A〉t) a coalgebra. Moreover, by the equalities below

mA

A

AA A⊗2

∆A

A⊗2 A

A
=

A

A⊗2

mA

A

A
A⊗2

A

A

A

∆A
A⊗2

compatibility of µC and ∆C,

=
A⊗2

A

A

A⊗2

∆A

A⊗2

A⊗2

mA
A

associativity of µC and mA,

=
A⊗2

∆A A

A A

A⊗2

mA
AA⊗2

A⊗2
compatibility of µC and ∆C.

multiplication and comultiplication satisfy diagram (2.4.2) and thus we have a Frobenius

algebra structure in 〈A〉t.

We show now that ifA ∈ C is an extended Frobenius algebra, then 〈A〉t with maps as in (2)

defines an extended Frobenius algebra in St(C). Commutativity follows from commutativity
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of mA and µC. Since φA is an involution in C, then φ〈A〉t is an involution in St(C). We show

below that the first diagram in Equation (2.4.4) commutes. In fact, we arrive at the same

equality when computing

A

1C
θA

idA
A

A
A⊗2

mA
A

=
A A

1C 1C ⊗ A
mA(θA ⊗ idA)

A
linearity of µC,

=
A1C

mA(θA ⊗ idA) unitality of µC.

and

A

1C
θA

idA
A

A
A⊗2

mA
A A

φA =
A A

1C 1C ⊗ A
φAmA(θA ⊗ idA)

A
linearity of µC,

=
A1C

mA(θA ⊗ idA) unitality of µC.

Lastly, the second diagram in Equation (2.4.4) also commutes since

A

A
A⊗2A

A

A
A1C A⊗2 A⊗2

∆AuA
φA

mA = A

A
A1C A⊗2 A⊗2

mA(φA ⊗ IdA)∆AuA

=
A1C

mA(φA ⊗ IdA)∆AuA

=
A1C

mA(θA ⊗ θA)

is equal to

1C

1C
θA

θA
A

A
A⊗2

mA
A

= 1C

1C 1C ⊗ A
mA(θA ⊗ θA)

A
linearity of µC,

=
A1C

mA(θA ⊗ θA) unitality of µC.

Hence 〈A〉t is an extended Frobenius algebra in St(C).
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Chapter 3

Symmetric fusion categories in

positive charactersitic

This chapter contains previously published material, which appeared in [11].

3.1 Bounds for the ranks of symmetric fusion cate-

gories

In this section we prove our two main results concerning the ranks of non-super-Tannakian

symmetric fusion categories. Throughout this section, we assume char(k) = p ≥ 5. Let

z = e2πi/p be a primitive p-th root of unity. Recall that we denote by Q(z) the field extension

generated by z over Q.

Let C be a symmetric fusion category and consider its Verlinde fiber functor F : C →

Verp. Recall that by [37, Proposition 3.3] we have an equivalence of symmetric fusion
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categories

Verp ∼= Ver+
p � sVec .

Consider the monoidal (non symmetric) forgetful functor Forget : sVec→ Vec. We have a

(possibly non symmetric) tensor functor

F̃ := (id�Forget) ◦ F : C → Ver+
p ; (3.1.1)

we denote also by F̃ the induced ring homomorphism K(C) → K(Ver+
p ), and the induced

Q-algebra homomorphism K(C)Q → K(Ver+
p )Q. We are interested in studying the image of

this map. By [4, Theorem 4.5 (iv)], we have an isomorphism of Q-algebras

K(Ver+
p )Q
∼= Q(z + z−1),

and so F̃ (K(C)Q) is a subalgebra of Q(z+ z−1). Since a subalgebra of a finite field extension

is a field, then F̃ (K(C)Q) is a subfield of Q(z + z−1). Hence to study the image of K(C)Q

under F̃ , we start by looking at subfields of Q(z + z−1).

We make the usual identification of the Galois group of Q(z) with the multiplicative

group Z×p . This is a cyclic group with p− 1 elements, where j acts on Q(z) by j · z = zj for

all j ∈ Z×p . We denote the Galois group of the maximal real subextension Q(z+ z−1) of Q(z)

by G, which corresponds to the quotient of Z×p by the subgroup {±1}. Thus G is a cyclic

group of order p−1
2

.

By Galois correspondence, subextensions of Q(z+ z−1) are in bijection with subgroups of

G. That is, for every positive integer k that divides p−1
2

there exists a unique subextension

Ak of Q(z+ z−1) such that [Ak : Q] = k, and its Galois group is exactly the quotient of G by
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the unique subgroup Hm of order m, where mk = p−1
2

. Moreover, every subextension is of

this form, and Ak is the set of elements fixed by every element in Hm.

Consider the basis {zi + z−i}
p−1
2

i=1 of Q(z + z−1). Then the group G (and thus also all

subgroups Hm) acts on this set freely and transitively by permutation,

a · (zj + z−j) = zaj + z−aj,

for all a ∈ G. So the orbits of the action of Hm on this set have exactly m elements. Let

O1, . . . ,Ok denote the orbits of the action of Hm, and define

xi :=
∑

zt+z−t∈Oi

(zt + z−t), (3.1.2)

so that {x1, . . . , xk} is a basis of Ak. Without loss of generality, we choose the labelling so

that z + z−1 = zp−1 + z−(p−1) ∈ Ok,

Theorem 3.1.1. Let p ≥ 5. If C is a non-super-Tannakian symmetric fusion category, then

rank(C) ≥ p− 1

2
.

Proof. Consider the tensor functor F̃ : C → Ver+
p as defined in Equation (3.1.1). According

to [4, Theorem 4.5 (iv)], under the isomorphism

K(Ver+
p )Q
∼= Q(z + z−1),

we have identifications

L2j+1 =

j∑
l=1

(z2l + z−2l) + 1, for j = 0, . . . , (p− 3)/2. (3.1.3)

Recall that F̃ (K(C)Q) is a subfield of K(Ver+
p )Q
∼= Q(z + z−1). Now,

rank(K(C)) ≥ rank(F̃ (K(C))) = dim(F̃ (K(C)Q)),
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where rank(K(C)) refers to the rank of K(C) as a free abelian group. Thus we would like to

show that dim(F̃ (K(C)Q)) = p−1
2

, or in other words, that F̃ (K(C)Q) = Q(z + z−1).

By our discussion at the beginning of this section, we know that F̃ (K(C)Q) is of the form

Ak for some k that divides p−1
2

, where Ak is the unique subextension of order k. Hence to

prove the statement it is enough to show that k = p−1
2

. Note that k > 1, since if k = 1

the image of F̃ would be a multiple of the identity and we would have a symmetric tensor

functor from C to sVec, which would mean that C is super-Tannakian.

For objects X ∈ C, their images under F̃ are objects in Ver+
p , and thus can be written

as Z≥0 linear combinations of Li’s with i odd. Then F̃ (K(C)) has a basis of elements of this

form, and thus so does Ak. That is,

Ak has a basis given by Z≥0 linear combinations of Li’s for i odd. (3.1.4)

For the sake of contradiction, assume that k < p−1
2

. We already know that k > 1.

Using formula (3.1.3) we compute

zt + z−t = Lt+1 − Lt−1 for t even, 2 ≤ t < p− 1.

On the other hand,

Lp−2 =

p−3
2∑
l=1

(z2l + z−2l) + 1 = −(zp−1 + z−(p−1)),

since
p−1∑

i=−(p−1)
i even

zi = 0. Let O1, . . . ,Ok and x1, . . . , xk be as in (3.1.2). Since we can pick t to

be a positive even number for each summand zt + z−t of xi (if not, replace t by −t or t− p),

then we can identify each xi with a sum of Ls’s with multiplicity ±1, as follows:

xi =
∑

zt+z−t∈Oi
t even

2≤t<p−1

(Lt+1 − Lt−1), for i 6= k, and xk = −Lp−2 +
∑

zt+z−t∈Ok
t even

2≤t<p−1

(Lt+1 − Lt−1).

65



Let s odd, 1 < s ≤ p− 2. Note that Ls appears with nonzero multiplicity in either two basis

elements, with multiplicity 1 and −1, respectively, or in none (since it may cancel out with

itself). On the other hand, L1 appears in only one basis element (explicitly, the basis element

xj such that z2 + z−2 ∈ Oj), with multiplicity −1. We will say Ls is a “positive” summand

of xi if it has multiplicity 1 in xi, and is a “negative” summand if it has multiplicity −1.

We claim that every xi has at least one positive and one negative summand. In fact,

this is clear for 1 ≤ i < k, since the number of positive summands in xi is the same as the

number of negative summands. Suppose for contradiction that we have xk = −Ls for some

even s, 2 ≤ s ≤ p − 2. Our assumption k < p−1
2

assures that every orbit has at least two

elements, so it is not possible to have xk = −Lp−2. Since we are assuming xk has only one

negative summand, Lp−2 must cancel out with a positive summand. This implies z3 + z−3 =

zp−3 + z−(p−3) ∈ Ok as well, and so Hm, the unique subgroup of order m, contains the class

3̄ of the number 3 ∈ Z×p , see discussion around Equation (3.1.2). Now, either xk = −Lp−4,

or −Lp−4 cancels out. In the latter case, we have that z5 + z−5 = zp−5 + z−(p−5) ∈ Ok and

so 5̄ ∈ Hm. Recursively, we get that Hm = {1̄, 3̄, 5̄, . . . , j̄} for some odd 3 ≤ j ≤ p − 2. We

claim this contradicts that Hm is a proper subgroup. In fact, since Hm is a subgroup, it must

contain the classes of 3l for all l odd, 1 ≤ l ≤ j. Let l ∈ Hm such that 3l ≤ j < 3(l + 2).

Note that l+ 2 is also in Hm (if not, then 3l ≤ j < l+ 2, and so l < 1, which is not possible).

So 3(l+ 2) must also be in Hm. But since j < 3(l+ 2), it must be the case that 3(l+ 2) > p

and 3(l + 2) = n̄ for some odd 1 ≤ n < j. So we have the inequalities

3l ≤ j < p < 3(l + 2),

which imply p = 3l + 2 or p = 3l + 4. If p = 3l + 2, since Hm contains the classes of all
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odd elements from 1 to 3l = p − 2 we get that |Hm| = p−1
2

, a contradiction. If p = 3l + 4,

then Hm contains all odd elements from 1 to 3l = p − 4 (its missing at most one element)

and thus again Hm must have all odd elements, a contradiction. Hence xk has at least one

positive and one negative summand.

Our aim is to construct sequences of indexes, alternating between negative and positive

summands of different xi’s. We have shown every basis element has at least one positive and

one negative summand. With this in mind, we begin the construction of our sequences.

Fix s0 6= 1 so that Ls0 is a positive summand of some xj0 . Since k > 1, then there

exists j1 6= j0 such that Ls0 is a negative summand of xj1 . By our preceding discussion,

there must exist a positive summand of xj1 . So we can find s1 6= 1 (since L1 can only be

a negative summand) such that Ls1 is a positive summand of xj1 . Thus Ls1 is a negative

summand of xj2 for some j2 6= j1. Again, there exists some s2 6= 1 such that Ls2 is a

positive summand of xj2 . Recursively, we can construct sequences of indexes {st} and {jt}

such that st 6= 1 and jt 6= jt+1 for all t, and Lst is a positive summand of xjt and a negative

summand of xjt+1 . Since there are only finitely many {xi}, the indexes jt must repeat at some

point. Without loss of generality, assume j1 is the first one that repeats, so our sequence is

{j1, j2, j3, . . . , jn, j1, . . . }, for some n ≥ 2.

Let y := a1x1 + · · · + akxk be an element in Ak that can be written as a positive linear

combination of Lt’s. We show that y is in the subspace generated by {xi}i 6=j1,...jn and

xj1 + · · · + xjn . Since Ls1 has multiplicity aj1 − aj2 in y, it must happen that aj1 ≥ aj2 .

Now, Ls2 has multiplicity aj2 − aj3 in y, which implies aj2 ≥ aj3 . Then we can obtain a
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sequence

aj1 ≥ aj2 ≥ · · · ≥ ajn ≥ aj1 ,

which implies aj1 = aj2 = · · · = ajn , as desired.

Consequently, elements that can be written as a positive linear combination of Li’s are

contained in a subspace of dimension less than k, which contradicts our statement (3.1.4).

Hence k = p−1
2

and so

rank(K(C)) ≥ rank(F̃ (K(C))) = dim(F̃ (K(C)Q)) = dim(Ak) =
p− 1

2
,

which finishes the proof.

Let C now be a symmetric fusion category with Verlinde fiber functor F : C → Verp,

and suppose F is surjective. We denote also by F the induced Q-algebra homomorphism

K(C)Q → K(Verp)Q. Then F (K(C)Q) is a subalgebra of K(Verp)Q, and we will show that it

is exactly K(Verp)Q.

Remark 3.1.2. Consider the Q-algebra Q[Z2] ∼= Q(ε)/(ε2−1). Then we have an isomorphism

of Q-algebras

Q(z + z−1)⊗ Q[Z2]
∼−→ Q(z + z−1)⊕ Q(z + z−1)

w ⊗ (a+ bε) 7→ ((a+ b)w, (a− b)w),

(3.1.5)

for all w ∈ Q(z + z−1) and a, b ∈ Q. Recall that by [37, Proposition 3.3] we have an

equivalence of symmetric fusion categories

Verp ∼= Ver+
p � sVec .
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Hence (3.1.5) induces an isomorphism of Q-algebras

K(Verp)Q
∼= K(Ver+

p )Q ⊗K(sVec)Q
∼= Q(z + z−1)⊗ Q[Z2]

∼−→ Q(z + z−1)⊕2, (3.1.6)

where the second isomorphism is given in [4, Theorem 4.5 (iv)].

By (3.1.6), we can identify F (K(C)Q) with a Q-subalgebra of Q(z+z−1)⊕2. Hence we start

by looking at subalgebras of Q(z + z−1)⊕2. Recall we denote by Ak the unique subextension

of Q(z + z−1) such that [Ak : Q] = k, see discussion at the beginning of the section.

Lemma 3.1.3. Subalgebras of Q(z + z−1)⊕2 of dimension greater than p−1
2

are of the form

Q(z + z−1)⊕ Ak or Ak ⊕ Q(z + z−1), where k is a positive integer dividing p−1
2

.

Proof. Let A be a subalgebra of Q(z + z−1)⊕2. Suppose first that A has no nontrivial

idempotents. Note that Q(z + z−1)⊕2 has no nilpotent elements and thus neither does A.

Hence A is semisimple and so by Artin-Wedderburn’s theorem it is isomorphic to a finite

product of field extensions over Q. Since A has no idempotents, this implies that A is

isomorphic to a field extension over Q.

Consider the projection map p from Q(z + z−1)⊕2 to its first summand, and let q denote

its restriction to A. Then ker(q) = 0 or A. If ker(q) = A then elements in A are of the

form (0, a), which is only possible for a = 0 since A is a field. Hence if A 6= 0 we must have

ker(q) = 0, that is, we have an injective map A ↪→ Q(z + z−1), and so dim(A) ≤ p−1
2

.

Suppose now that A contains a nontrivial idempotent e. Then e is either (1, 0) or (0, 1),

and we have an isomorphism of Q-algebras

A ∼= e · A ⊕ (1− e) · A.
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Hence A is a direct sum of Ak ⊕ Al of subalgebras of Q(z + z−1), where k, l ∈ Z≥0 divide

p−1
2

. Lastly, note that if both k, l < p−1
2

, then

p− 1

2
< dim(Ak ⊕ Al) = k + l ≤ p− 1

4
+
p− 1

4
=
p− 1

2
,

a contradiction. Hence we must have either k = p−1
2

or l = p−1
2

, and thus either Ak =

Q(z + z−1) or Al = Q(z + z−1), as desired.

The proof of the following theorem follows analogous steps as the ones in the proof of

Theorem 3.1.1.

Theorem 3.1.4. Let p ≥ 5 and let C be a symmetric fusion category with Verlinde fiber

functor F : C → Verp. If F is surjective, then

rank(C) ≥ p− 1.

Proof. Let F : C → Verp be as in the statement. By Equation (3.1.6), we have an isomor-

phism of Q-algebras

K(Verp)Q
∼= K(Ver+

p )Q ⊗K(sVec)Q
∼= Q(z + z−1)⊗ Q[Z2]

∼−→ Q(z + z−1)⊕2, (3.1.7)

induced from the Q-algebras isomorphism Q(z + z−1) ⊗ Q[Z2]
∼−→ Q(z + z−1)⊕2, given in

Equation 3.1.5. Hence, under this isomorphism we have identifications

Lt+1 − Lt−1 = (zt + z−t, zt + z−t), for t even, 1 < t < p− 1,

Lt+1 − Lt−1 = (zt + z−t,−(zt + z−t)), for t odd, 1 < t < p− 1,

−Lp−2 = (zp−1 + z−(p−1), zp−1 + z−(p−1)), and

L2 = (z + z−1,−(z + z−1)).

(3.1.8)
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Since C is not super-Tannakian, by the proof of Theorem 3.1.1 we know that the compo-

sition

K(C) F−→ K(Verp) ∼= K(Ver+
p )�K(sVec)

id�Forget−−−−−−→ K(Ver+
p ),

is surjective. Moreover, since we are assuming that F : C → Verp is surjective, F (K(C))

cannot be equal to K(Ver+
p ), and so

rank(F (K(C))) > p− 1

2
.

This together with Lemma 3.1.3 implies that F (K(C)Q) is identified with a subalgebra of the

form Q(z + z−1)⊕ Ak, for some k that divides p−1
2
. Note that the rank of F (K(C)) is equal

to the dimension of F (K(C)Q), and so we want to show that k = p−1
2

.

For objects X ∈ C, their images under F are objects in Verp, and thus can be written as

Z≥0 linear combinations of Lt’s. Then F (K(C)Q) = Q(z + z−1)⊕ Ak has a basis of elements

of this form. That is,

Q(z + z−1)⊕ Ak has a basis given by Z≥0 linear combinations of Lt’s. (3.1.9)

For the sake of contradiction, assume that k < p−1
2

. Since F is surjective, we already

know that k > 1.

Let O1, . . . ,Ok and x1, . . . , xk be as in (3.1.2). Without loss of generality, we choose the

labelling so that z + z−1 = zp−1 + z−(p−1) ∈ O1. Then

{(zi + z−i, 0)}i odd, 1≤i≤p−1 ∪ {(0, xi)}i=1,...,k,

is a basis for Q(z+ z−1)⊕Ak. We start by writing this basis as a linear combination of Lt’s,
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following the identification (3.1.8). Let 1 < t < p− 1 even. Then we have

2(zt + z−t, 0) = (zt + z−t, zt + z−t) + (zt + z−t,−(zt + z−t))

= (zt + z−t, zt + z−t) + (zp−t + z−(p−t),−(zp−t + z−(p−t)))

= Lt+1 − Lt−1 + Lp−t+1 − Lp−t−1,

(3.1.10)

where the last equality is due to (3.1.8), since t is even and p− t is odd. Analogously,

2(zp−1 + z−(p−1), 0) = −Lp−2 + L2.

On the other hand,

2(0, zt + z−t) = (zt + z−t, zt + z−t)− (zt + z−t,−(zt + z−t))

= (zt + z−t, zt + z−t)− (zp−t + z−(p−t),−(zp−t + z−(p−t)))

= Lt+1 − Lt−1 − Lp−t+1 + Lp−t−1, and

2(0, zp−1 + z−(p−1)) = −Lp−2 − L2.

Hence

2(0, xi) =
∑

zt+z−t∈Oi
t even

2≤t<p−1

2
(
0, zt + z−t

)

=
∑

zt+z−t∈Oi
t even

2≤t<p−1

(Lt+1 − Lt−1 − Lp−t+1 + Lp−t−1), for i 6= 1,

(3.1.11)

and

2(0, x1) =
∑

zt+z−t∈O1
t even

2≤t<p−1

(Lt+1 − Lt−1 − Lp−t+1 + Lp−t−1) + (−Lp−2 − L2).

Consider first the set {2(0, xi)}i=1,...,k of basis elements of Ak. Let 1 < s < p − 1. Note

that Ls appears with nonzero multiplicity in either two of these elements, with multiplicity
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1 and −1, respectively, or in none (since it may cancel out with itself). On the other hand,

L1 and Lp−1 appear in only one basis element (explicitly, the basis element 2(0, xj) such that

z2 + z−2 ∈ Oj), both with multiplicity −1. We will say Ls is a “positive” summand of xi if

it has multiplicity 1 in xi, and is a “negative” summand if it has multiplicity −1. We will

also say that Ls is an “odd” summand if 1 ≤ s ≤ p − 1 is odd, and an “even” summand

when s is even.

Our assumption k < p−1
2

assures that every orbit has at least two elements. We thus claim

that every 2(0, xi) has at least one odd positive summand and one odd negative summand.

In fact, this is clear for i 6= 1 since the number of odd positive summands in 2(0, xi) is the

same as the number of odd negative summands. For 2(0, x1), the argument is the same as

the one given in the proof of Theorem 3.1.1.

Our aim is to construct sequences of indexes, alternating between negative odd and

positive odd summands of different 2(0, xi)’s. We know every basis element has at least one

positive and one negative odd summand. With this in mind, we begin the construction of

our sequences.

Fix 1 < s0 < p − 1 so that Ls0 is an odd positive summand of some (0, xj0). Since

k > 1, then there exists j1 6= j0 such that Ls0 is an odd negative summand of (0, xj1). By

our preceding discussion, there must exist an odd positive summand Ls1 of xj1 , s1 6= 1 (L1

can only be a negative summand). Thus Ls1 must be an odd negative summand of some

(0, xj2), with j2 6= j1. Again, there exists some Ls2 odd positive summand of (0, xj2), s2 6= 1.

Recursively, we can construct sequences of indexes {st} and {jt} such that 1 < st < p − 1

is odd, jt 6= jt+1 for all t, and Lst is an odd positive summand of xjt and an odd negative

summand of xjt+1 . Since there are only finitely many {(0, xi)}, the indexes jt must repeat
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at some point. Without loss of generality, assume j1 is the first one that repeats, so our

sequence is {j1, j2, j3, . . . , jn, jn+1 = j1, . . . }, for some n ≥ 2.

We now use our sequences of indexes to show that elements of Q(z + z−1)⊕Ak that can

be written as a positive linear combination of Lt’s are contained in a subspace of dimension

strictly less than dim(Q(z + z−1)⊕ Ak) = p−1
2

+ k.

Consider now the basis

{2(zi + z−i, 0)}i odd, 1≤i≤p−1 ∪ {2(0, xi)}i=1,...,k,

of Q(z + z−1)⊕ Ak. Let

y :=

(∑
i odd

ai2(zi + z−i),
k∑
j=1

bj2xj

)
∈ Q(z + z−1)⊕ Ak, (3.1.12)

so that y that can be written as a positive linear combination of Lt’s under the identification

3.1.8. We show that y is in the subspace generated by

{2(zi + z−i, 0)}i odd, 1≤i≤p−1 ∪ {2(0, xi)}i 6=j1,...,jn ∪ {2(0, xj1 + · · ·+ xjn)}. (3.1.13)

We do this by computing the multiplicities of Lst and Lp−st in (3.1.12), for all t = 1, . . . , n.

Note that, if Ls is an odd positive (respectively, negative) summand of 2(0, xi), then Lp−s is

an even positive (respectively, negative) summand of 2(0, xi), see Equation (3.1.11).

Recall that Ls1 is an odd positive summand of 2(0, xj1), and an odd negative summand of

2(0, xj2). Also, Ls1 is a positive summand of 2(zs1−1 + z−(s1−1), 0) and a negative summand

of 2(zs1+1 +z−(s1+1), 0), see Equation (3.1.10). Hence the multiplicity of Ls1 in (3.1.12) under

the identifications (3.1.10) and (3.1.11) is

bj1 − bj2 + as1−1 − as1+1 ≥ 0. (3.1.14)
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On the other hand, Lp−s1 is an even positive summand of 2(0, xj1), and an even negative

summand of 2(0, xj2). But Lp−s1 is a negative summand of 2(zs1−1+z−(s1−1), 0) and a positive

summand of 2(zs1+1 + z−(s1+1), 0), see Equation (3.1.10). Hence the multiplicity of Lp−s1 in

(3.1.12) under the identifications (3.1.10) and (3.1.11) is

bj1 − bj2 − as1−1 + as1+1 ≥ 0. (3.1.15)

Now, equations (3.1.14) and (3.1.15) imply that

bj1 ≥ bj2 .

Analogously, for 1 ≤ i ≤ n we have that Lsi has multiplicity

bji − bji+1
+ asi−1 − asi+1 ≥ 0,

in (3.1.12), and Lp−si has multiplicity

bji − bji+1
− asi−1 + asi+1 ≥ 0,

which implies

bji ≥ bji+1
.

Hence, since jn+1 = j1, we have that

bj1 ≥ bj2 ≥ · · · ≥ bjn ≥ bjn+1 = b1,

which implies bj1 = bj2 = · · · = bjn , as desired.

Consequently, elements of Q(z+z−1)⊕Ak that can be written as a positive linear combi-

nation of Lt’s are contained in the subspace (3.1.13), which has dimension strictly less than
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dim(Q(z + z−1) ⊕ Ak), since n ≥ 2. This contradicts (3.1.9), and the contradiction came

from assuming k < p−1
2

. Thus we must have k = p−1
2

, and so

F (K(C)Q) ∼= Q(z + z−1)⊕ Ak = Q(z + z−1)⊕ Q(z + z−1), (3.1.16)

as Q-algebras. Lastly,

rank(K(C)) ≥ rank(F (K(C))) = dim(F (K(C)Q))

= dim(Q(z + z−1)⊕ Q(z + z−1)) = p− 1,

(3.1.17)

which finishes the proof.

Corollary 3.1.5. Let p ≥ 5, and let C be a symmetric fusion category that is not super

Tannakian. Let F : C → Verp be the Verlinde fiber functor. Then

F (K(C)) = K(Verp) or F (K(C)) = K(Ver+
p ).

In particular,

F (K(C)Q) ∼= Q(z + z−1)⊕2 or F (K(C)Q) ∼= Q(z + z−1).

Proof. The image of the functor F : C → Verp is a fusion subcategory of Verp, thus it

can only be Vec, sVec,Ver+
p or Verp. The first two choices are not possible since we are

assuming that C is not super Tannakian.

Suppose first that the image is Verp. Then F is surjective, and so by the proof of

Theorem 3.1.4 we have that rank(F (K(C)) = p − 1, see Equation (3.1.17), which implies

F (K(C)) = K(Verp). Also F (K(C)Q) ∼= Q(z + z−1)⊕2 by Equation (3.1.16).

Suppose now that the image of F is Ver+
p . Then the induced ring homomorphism

F : K(C)→ K(Verp) has image contained in K(Ver+
p ), which implies

rank(F (K(C)) ≤ rank(K(Ver+
p )) =

p− 1

2
. (3.1.18)
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On the other hand, by the proof of Theorem 3.1.1, we know that the functor

F̃ := (id�Forget) ◦ F : C → Ver+
p ,

induces a surjective homomorphism of Q-algebras

F̃ : K(C)Q � K(Ver+
p )Q
∼= Q(z + z−1). (3.1.19)

Then

p− 1

2
≥ rank(F (K(C))) = dim(F (K(C)Q)) ≥ dim(F̃ (K(C)Q)) =

p− 1

2
,

where the first inequality is due to Equation (3.1.18) and the last to Equation (3.1.19). This

implies that rank(F (K(C))) = p−1
2

, and thus F (K(C)) = K(Ver+
p ). In particular, this implies

that F (K(C)Q) ∼= Q(z + z−1).

3.2 Some properties of the Adams operation

Throughout this section, we assume p > 2.

3.2.1 Adams operation in Verp

Recall that the Adams operation of a symmetric fusion category C is defined as the ring

endomorphism ψ2 : K(C)→ K(C) given by

ψ2(X) = S2(X)− Λ2(X),

for all X ∈ K(C), see Section 2.3.2. We note that, for an object X in C, ψ2(X) is in K(C),

and thus ψ2(X) is not necessarily a linear combination (of simple objects) with non-negative

coefficients.
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In this section we study some properties of the Adams operation in Verp. We first give

an explicit formula for the second Adams operation on simple objects Lt, 1 ≤ t ≤ p− 1. We

then use this formula to show that if an object X in Verp is fixed by the Adams operation,

then X is in the abelian subcategory Vec generated by 1 = L1.

Remark 3.2.1. The image of ψ2 : K(Verp)→ K(Verp) is contained in K(Ver+
p ). In fact,

L2
t =

min(t,p−t)∑
s=1

L2s−1 = S2(Lt) + Λ2(Lt),

for all i = 1, . . . , p − 1, and so the multiplicity of even simples is zero in both S2(Li) and

Λ2(Li).

Note that to compute ψ2 on simple objects Lr of Verp, it is enough to compute it for r

odd, since

ψ2(Lr) = −ψ2(Lp−r).

This follows from

Λ2Lr = L2
p−1 ⊗ S2Lp−r = S2Lp−r,

see [21, Proposition 2.4].

Example 3.2.2. In Ver5,

ψ2(L3) = L1 − L3 = −ψ2(L2).

In fact, we know that ψ2(L3) = S2(L3)−Λ2(L3) and L2
3 = L1 +L3 = S2(L3)+Λ2(L3). Hence

there must exist ε1, ε3 ∈ {±1} such that ψ2(L3) = ε1L1 + ε3L3. Now,

L1 + 2ε1ε3L3 + L2
3 = ψ2(L3)2 = ψ2(L2

3) = (1 + ε1)L1 + ε3L3,

and so 2 = 1 + ε1, which implies ε1 = 1. It follows that ε3 = −1.
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Proposition 3.2.3. The second Adams operation ψ2 : K(Verp)→ K(Verp) is given by

ψ2(Lt) =

min(t,p−t)∑
s=1

(−1)s+1L2s−1 for t odd, 1 ≤ t ≤ p− 1, and

ψ2(Lt) =

min(t,p−t)∑
s=1

(−1)sL2s−1 for t even, 1 ≤ t ≤ p− 1.

Proof. Note that the second formula follows from the first by the equality ψ2(Lr) = −ψ2(Lp−r).

We will use the isomorphism of Q-algebras

K(Ver+
p )Q
∼= Q(z + z−1),

for z a primitive p-th root of unity, see [4, Theorem 4.5 (iv)] and Section 3.1. Consider the

basis {z2i + z−2i}i=1,..., p−1
2

of Q(z + z−1). Via this isomorphism, we have identifications

L2j+1 =

j∑
l=1

(z2l + z−2l) + 1, for j = 0, . . . , (p− 3)/2,

from which we compute

zt + z−t = Lt+1 − Lt−1 for t even, 2 ≤ t < p− 1, and

zp−1 + z−(p−1) = −Lp−2,

(3.2.1)

see Section 3.1 and the proof of Theorem 3.1.1 for details.

Note that (ψ2)Q : Q(z+ z−1)→ Q(z+ z−1) maps z+ z−1 = zp−1 + z−(p−1) to z2 + z−2. In

fact, we compute

dim(S2(Lp−2)) =
(p− 2)(p− 1)

2
= 1 mod p, and

dim(Λ2(Lp−2)) =
(p− 2)(p− 3)

2
= 3 mod p.

Since S2(Lp−2) + Λ2(Lp−2) = L2
p−2 = L1 + L3, and L1 can appear in either S2(Lp−2) or

Λ2(Lp−2) but not both, then it must be the case that S2(Lp−2) = L1 and Λ2(Lp−2) = L3.
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Thus using identification (3.2.1) we get

ψ2(zp−1 + z−(p−1)) = −ψ2(Lp−2) = −S2(Lp−2) + Λ2(Lp−2) = L3 − L1 = z2 + z−2, (3.2.2)

as desired. In particular, this implies

ψ2(zm + z−m) = z2m + z−2m, for all 1 ≤ m ≤ p− 1.

We prove now our formulas for ψ2(Lt), t odd, by induction. We do the case 1 ≤ t ≤ p−1
2

first. We know ψ2(L1) = L1, so the formula works for t = 1. Fix 1 < t ≤ p−1
2

odd, and

suppose the formula is true for all odd 1 ≤ r < t. Then

ψ2(zt−1 + z−(t−1)) = z2(t−1) + z−2(t−1) = L2(t−1)+1 − L2(t−1)−1 = L2t−1 − L2t−3,

where in the second equality we are using the identification (3.2.1). Since zt−1 + z−(t−1) =

Lt − Lt−2, we compute using induction

ψ2(Lt) = ψ2(Lt−2) + L2t−1 − L2t−3

=
t−2∑
s=1

(−1)s+1L2s−1 + L2t−1 − L2t−3

=
t∑

s=1

(−1)s+1L2s−1 =

min(t,p−t)∑
s=1

(−1)s+1L2s−1,

and so the formula holds for t.

It remains to show that the formula holds for the case of odd p−1
2
< t < p−1 . We already

computed ψ2(Lp−2) = L1−L3, so it works for t = p−2. Fix odd p−1
2
< t = p− l < p−1 and

assume the formula holds for all odd t < r < p−1. Since zp−l+1 +z−(p−l+1) = Lp−(l−2)−Lp−l,
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we compute same as before

ψ2(Lp−l) = ψ2(Lp−(l−2))− (L2l−1 − L2l−3)

=
l−2∑
s=1

(−1)s+1L2s−1 − L2l−3 + L2l−1

=
l∑

s=1

(−1)s+1L2s−1 =

min(t,p−t)∑
s=1

(−1)s+1L2s−1,

as desired.

We now study objects in Verp that are fixed by the second Adams operation. For a

simple object X in a symmetric fusion category C, we denote by [Y : X] the multiplicity of

X in Y for all Y ∈ C.

Corollary 3.2.4. An object X ∈ Verp is fixed by ψ2 if and only if X ∈ Vec.

Proof. Let X ∈ Verp such that ψ2(X) = X and let a1, . . . , ap−1 be non-negative integers

such that X =
p−1∑
j=1

ajLj. Since the image of ψ2 is contained in K(Ver+
p ) (see Remark 3.2.1)

then a2 = a4 = · · · = ap−1 = 0.

Using the formulas from Proposition 3.2.3 we compute

a1 = [X : L1] = [ψ2(X) : L1] =

p−1
2∑
j=1

a2j−1.

Since ai is non-negative for all i this implies a3 = a5 = · · · = ap−2 = 0, as desired.

Remark 3.2.5. The statement of Corollary 3.2.4 only works for actual objects in Verp, that

is, objects that can be written as Z≥0 linear combinations of L1, . . . , Lp−1. There can exist

objects in K(Verp) that are fixed by the second Adams operation but are not multiples of

81



L1. For example, consider p = 17 and L5 − L7 + L9 − L15 ∈ K(Verp). Then

ψ2(L5 − L7 + L9 − L15) = ψ2(L5)− ψ2(L7) + ψ2(L9)− ψ2(L15)

= (L1 − L3 + L5 − L7 + L9)−

− (L1 − L3 + L5 − L7 + L9 − L11 + L13)+

+ (L1 − L3 + L5 − L7 + L9 − L11 + L13 − L15)− (L1 − L3)

= L5 − L7 + L9 − L15

and so L5 − L7 + L9 − L15 is fixed by ψ2 but is not in Vec.

3.2.2 Powers of the Adams operation

Recall that in this section we assume p > 2. Here we classify symmetric fusion categories

C such that ψa2 = ψa−1
2 for some a ≥ 1. Namely, we show that such categories are super-

Tannakian and thus classified by group data, see [15, 13, 16]. Moreover, we show that the

case a = 1 is only possible for the trivial category. That is, we prove that if ψ2 = Id in K(C)

then C = Vec.

Theorem 3.2.6. Let p > 2 and let C be a non-super-Tannakian symmetric fusion category.

If the Adams operation ψ2 : K(C) → K(C) satisfies ψa2 = ψb2 for some a, b ∈ Z≥0, then

2a ≡ ±2b mod p.

Proof. Consider the fiber functor F : C → Verp; we denote also by F the induced ring

homomorphism K(C)→ K(Verp). Suppose now that a > 1. Since F preserves the symmetric

structure, we have that

ψa2(F (X)) = F (ψa2(X)) = F (ψb2(X)) = ψb2(F (X)), for all X ∈ K(C).
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That is, ψa2 = ψb2 on the image of K(C) under F . Suppose C is not super Tannakian. In

particular, this implies p > 3, since for p = 3 all symmetric fusion categories are super

Tannakian. By Corollary 3.1.5, we know that F (K(C)Q) is isomorphic as a Q-algebra to

Q(z+z−1) or Q(z+z−1)⊕2. Recall that ψ2(z+z−1) = z2+z−2, see (3.2.2). Then (ψa2)Q = (ψb2)Q

in F (K(C)Q) would imply that z2a + z−2a = z2b + z−2b , and so 2a ≡ ±2b mod p.

Corollary 3.2.7. Let p > 2 and let C be a symmetric fusion category. If ψa2 = ψa−1
2 for

some a ∈ Z≥1, then C is super-Tannakian.

Proof. By Theorem 3.2.6, if C is not super Tannakian then 2a ≡ ±2a−1 mod p, which implies

2 ≡ ±1 mod p, a contradiction.

Remark 3.2.8. Let p > 2. If ψ2 : K(C) → K(C) satisfies ψ2 = id, then C is actually

Tannakian. In fact, since F preserves the symmetric structure, we have that

ψ2(F (X)) = F (ψ2(X)) = F (X),

for all X ∈ C. Since F (X) ∈ Verp and ψ2 fixes F (X), then by Corollary 3.2.4 we have that

F (X) ∈ Vec for all X ∈ C, and so C is Tannakian, as desired.

However, we show next that ψ2 = id is only possible for C = Vec.

Theorem 3.2.9. Let p 6= 2. If C is a non-trivial symmetric fusion category then ψ2 is not

the identity.

Proof. Let p > 2. Suppose ψ2 is the identity in C. In Remark 3.2.8 we showed that C is

Tannakian, and thus equivalent to Repk(G) for a finite group scheme G. A classification

of finite group schemes G such that Repk(G) is semisimple is given by Nagata’s theorem
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[16, IV, 3.6]; thus Remark 3.2.8 yields a classification of symmetric fusion categories such

that ψ2 = Id. Namely, any such category is an equivariantization (see [17, Section 4]) of a

pointed category such that the group of simples is an abelian p-group (see e.g. [22, 8.4]), by

the action of a group H of order relatively prime to p. Suppose H is non-trivial and consider

the subcategory Repk(H) of C.

The Adams operation acts on Repk(H) by mapping a character χ(g) to χ(g2) for all

g ∈ H. Thus if ψ2 = Id then

χ(g2) = χ(g) for all g ∈ H.

Hence for all g in H, g is conjugate to g2. So if |H| is even, there is an element h ∈ H of

order 2, which is conjugated to h2 = 1, a contradiction.

Suppose then |H| is odd. We have that for all g in H there exists some h ∈ H such that

g2 = hgh−1 and so

g = hgh−1g−1.

Thus g is in the commutator subgroup of H, and so H ⊆ [H,H]. This contradicts the

Feit-Thompson theorem, which states that every finite group of odd order is solvable. So H

must be trivial.

We thus have that C is a pointed category associated with an abelian p-group P . Hence

ψ2 maps g 7→ g2 for all g ∈ P and so g = g2 for all g ∈ P . Then P is trivial and C is

equivalent to Vec.

The result also holds in characteristic 0, since the Adams operation acts on Repk(G) by

mapping a character χ(g) to χ(g2) for all g ∈ G.

Remark 3.2.10. The hypothesis of C being finite is neccesary. Indeed, in [24] it is shown
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that in any characteristic there is a semisimple, but not finite, symmetric category, known

as the Delannoy category, for which all Adam operations are the identity.

3.2.3 Symmetric fusion categories with two self-dual simple ob-

jects

In this subsection we prove some general properties of the Adams operation ψ2 : K(C) →

K(C) for the case when C is a symmetric fusion category with exactly two self-dual simple

objects. These results will be useful for the classification of symmetric fusion categories of

ranks 3 and 4 in Sections 4.1 and 4.2. In particular, we show that if ψ2 is an automorphism

then it has even order, see Theorem 3.2.12.

Recall that throughout this section we assume p > 2.

Lemma 3.2.11. Let C be a symmetric fusion category with exactly two self-dual simple

objects 1 and Y . Then

[ψ2k+1
2 (Y ) : 1] ≡ 1 mod 2

for all k ≥ 0.

Proof. We proceed by induction on k. Let 1, Y,X1, X
∗
1 , . . . , Xn, X

∗
n denote the simple objects

in C. Since ψ2(Y ) ≡ Y 2 mod 2 and [Y 2 : 1] = 1 then [ψ2(Y ) : 1] ≡ 1 mod 2, which proves

the base case.

Fix k > 1 and suppose that

[ψ2l+1
2 (Y ) : 1] ≡ 1 mod 2, for all l < k.
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We want to show this also holds for l = k. Since Y is self-dual then [Y 2 : Xi] = [Y 2 : X∗i ]

for all i = 1, . . . , n, and so

ψ2(Y ) ≡ Y 2 ≡ 1 +
n∑
i=1

[Y 2 : Xi] (Xi +X∗i ) + [Y 2 : Y ] Y mod 2,

for all i = 1, . . . , n. Applying ψ2k
2 on both sides of the previous equation we get

ψ2k+1
2 (Y ) ≡ 1 +

n∑
i=1

[Y 2 : Xi]
(
ψ2k

2 (Xi) + ψ2k
2 (X∗i )

)
+ [Y 2 : Y ]ψ2k

2 (Y ) mod 2. (3.2.3)

Recall that ψ2 commutes with duality. That is, ψ2(Xi)
∗ = ψ2(X∗i ) and so

[ψl2(Xi) : 1] = [ψl2(Xi)
∗ : 1] ≡ [ψl2(X∗i ) : 1] mod 2, (3.2.4)

for all l ≥ 1. From Equations (3.2.3) and (3.2.4) we get

[ψ2k+1
2 (Y ) : 1] ≡ 1 + 2

n∑
i=1

[Y 2 : Xi] [ψ2k
2 (Xi) : 1] + [Y 2 : Y ] [ψ2k

2 (Y ) : 1] mod 2

≡ 1 + [Y 2 : Y ] [ψ2k
2 (Y ) : 1] mod 2.

Analogously,

[ψ2k
2 (Y ) : 1] ≡ 1 + [Y 2 : Y ][ψ2k−1

2 (Y ) : 1] mod 2

≡ 1 + [Y 2 : Y ] mod 2,

since we assumed [ψ2k−1
2 (Y ) : 1] ≡ 1 mod 2. Hence

[ψ2k+1
2 (Y ) : 1] ≡ 1 + [Y 2 : Y ]

(
1 + [Y 2 : Y ]

)
mod 2

≡ 1 + [Y 2 : Y ] + [Y 2 : Y ]2 mod 2

≡ 1 mod 2,

as desired.
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The following is a direct application of Lemma 3.2.11.

Theorem 3.2.12. Let C be a symmetric fusion category with exactly two self-dual simple

objects. If ψ2 is an automorphism of K(C) then it has even order.

Proof. Let k ≥ 0 such that ψk2 = Id, and let 1, Y denote the self-dual objects. By Theorem

3.2.11 the multiplicity of 1 in ψk2(Y ) = Y is positive whenever k is odd, and thus k must be

even.

In the following proposition we restrict to the case when ψ2 : K(C) → K(C) has trivial

image.

Proposition 3.2.13. Let C be a symmetric fusion category with exactly two self-dual simple

objects 1 and Y . If Im(ψ2) ∼= Z then Y 2 = 1 and ψ2(Y ) = −1. Moreover, [XX∗ : Y ] = 1

and [XY : Y ] = 0 for all non-self-dual simple X.

Proof. Let X be a non-self-dual simple object. Since 1 is not a summand of X2 then 1

has multiplicity zero in ψ2(X). On the other hand, the multiplicity of 1 in Y 2 is 1 and so

its coefficient in ψ2(Y ) is ±1. Thus if ψ2 has trivial image we get that ψ2(X) = 0 for all

non-self-dual simple X and ψ2(Y ) = ε, where ε = ±1. Hence

1 = ψ2(Y )2 = ψ2(Y 2) =
∑

simple Z

[Y 2 : Z] ψ2(Z) =
(
1 + ε · [Y 2 : Y ]

)
· 1,

which implies

[Y 2 : Y ] = 0. (3.2.5)

Similarly,

0 = ψ2(XY ) =
∑

simple Z

[XY : Z]ψ2(Z) = ε · [XY : Y ] · 1, (3.2.6)
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and thus

[XY : Y ] = 0, for all non-self-dual simple X.

From the fusion rule [XY : Y ] = [Y 2 : X] and Equations (3.2.5) and (3.2.6) we conclude

Y 2 = 1. Lastly, note that

0 = ψ2(XX∗) = 1 + ε · [XX∗ : Y ] · 1,

and thus we must have ε = −1 and [XX∗ : Y ] = 1.
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Chapter 4

Classification results

This chapter contains previously published material, which appeared in [11].

4.1 Rank 3 symmetric fusion categories

In this section we classify symmetric fusion categories C of rank 3, making use of the prop-

erties of the Adams operation. Namely, we show that C is equivalent to one of the following:

• If p = 2, C ∼= Repk(Z3).

• If p = 3, C ∼= VecZ2
Z3

or C ∼= VecZ3 .

• If p = 7, C ∼= Repk(S3), C ∼= Repk(Z3) or C ∼= Ver+
7 .

• If p = 5 or p > 7, C ∼= Repk(S3) or C ∼= Repk(Z3).

We note that if C is non-super-Tannakian, then by Theorem 3.1.1 we know that p ≤ 7 .

Hence the only possibilities are p = 5 or 7, since in the cases p = 2 or p = 3 the category

would be super-Tannakian.
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We make use of the parametrization of self-dual based rings of rank 3 as given in [35].

Let k, l,m, n be non negative integers satisfying

k2 + l2 = kn+ lm+ 1, (4.1.1)

and consider the ring K(k, l,m, n) with basis 1, X, Y and multiplication rules

X2 = 1 +mX + kY, Y 2 = 1 + lX + nY, XY = Y X = kX + lY. (4.1.2)

Note that we have a based ring isomorphism K(k, l,m, n) ∼= K(l, k, n,m) obtained by the

interchange X ↔ Y . Hence we will assume l ≥ k. By [35, Proposition 3.1] any unital based

ring of rank 3 is isomorphic to either K(k, l,m, n) or K(Z3), where K(Z3) denotes the group

algebra of the group Z/3Z, which has rank 3 with basis given by the group elements.

Recall that a fusion category is integral if the Frobenius Perron dimension of every simple

object X is an integer. We have the following result.

Theorem 4.1.1. There is an integral symmetric fusion category C with Grothendieck ring

K(k, l,m, n) with l > k if and only if (k, l,m, n) = (0, 1, 0, 1) and p ≥ 3. Moreover, in such

case

1. C ∼= Rep(S3) if p > 3, or

2. C ∼= VecZ2
Z3

if p = 3.

Proof. Suppose C is an integral fusion category with Grothendick ring given by K(k, l,m, n)

with l ≥ k. Taking Frobenius-Perron dimension on the multiplication rules for X2 and XY

(Equation (4.1.2)), we get that

FPdim(X)2 = 1 +mFPdim(X) + k FPdim(Y ) and 1 =
k

FPdim(Y )
+

l

FPdim(X)
,
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respectively. From the first equality we deduce that FPdim(X) and FPdim(Y ) are coprime.

Hence the second equality is only possible if k = 0 and l = FPdim(X). So the multiplication

rules are

X2 = 1 +mX, Y 2 = 1 + FPdim(X)X + nY, XY = Y X = FPdim(X)Y.

Taking Frobenius-Perron dimension on both sides of the equation forX2 we get that FPdim(X)2−

mFPdim(X)− 1 = 0, which implies

FPdim(X) =
m+

√
m2 + 4

2
.

Since FPdim(X) is an integer, we need for m2 + 4 to be a square. It is easy to check this is

only possible for m = 0, and so the multiplication rules are

X2 = 1, Y 2 = 1 +X + nY, XY = Y X = Y.

Taking Frobenius-Perron dimension on both sides of the equation for Y 2 we get that

FPdim(Y ) =
n+
√
n2 + 8

2
.

We thus need n2 + 8 to be a square, which is only possible for n = 1. Hence

X2 = 1, Y 2 = 1 +X + Y, XY = Y X = Y. (4.1.3)

So far we have showed that if C is integral, then it must have fusion rules as above. We have

not used the assumption that C is symmetric yet. We will use it in what follows to complete

the proof.

We look at the case p > 3 first. From Equations (4.1.3) we get that dim(X) = 1 and

dim(Y ) = 1 or 2, and thus dim(C) = 3 or 6. Since p > 3, then dim(C) 6= 0 and thus C
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is non-degenerate. Hence we can lift C to a symmetric fusion category C̃ over a field f in

characteristic zero, which has the same Grothendick ring as C, see [22, Subsection 9.16] and

[18]. Thus C̃ is equivalent to Repf(S3) (see [13, Section 8.19]), and so by uniqueness of the

lifting we get that C is equivalent to Repk(S3).

For the case p = 3 we have that C contains a copy of Rep(Z2). Doing de-equivariantization

by Z2 we obtain a symmetric fusion category CZ2 of dimension 3 [22, Section 2.7]. Hence CZ2

is a symmetric pointed category and must be equivalent to VecZ3 . There is only one action

of Z2 on Z3, and so doing equivariantization by Z2 gives us back C. Hence C ∼= VecZ2
Z3

.

On the other hand, for p = 2 there is no category realizing these fusion rules. In fact,

in such case we would have that the category is Tannakian, and so we have a fiber functor

F : C → Vec. From Equation (4.1.3) we know that X is invertible and Y is not, and thus

the same is true for F (X) and F (Y ), respectively. Thus d := dim(F (Y )) is not 1 and must

satisfy d2 = 2 + d = d. The only other possible solution is thus d = 0, and since F preserves

dimensions we obtain dim(Y ) = 0, which is not possible.

Theorem 4.1.2. If C is a non-integral symmetric fusion category with Grothendieck ring

K(k, l,m, n) then p = 7 and C = Ver+
7 .

Proof. Note that p 6= 2, 3 since in that case C is super-Tannakian and thus integral. Moreover,

we also know that p ≤ 7 by Theorem 3.1.1. However, our proof does not require use of this

fact.

Consider the Adams operation ψ2 : K(k, l,m, n) → K(k, l,m, n). Since X is self-dual,

either S2(X) or Λ2(X) contains a copy of the unit object (but not both). The same is true
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for Y . Hence the multiplicity of 1 in both ψ2(X) and ψ2(Y ) is 1 or -1, and so

ψ2(X) = ε11 + αX + βY, ψ2(Y ) = ε21 + γX + δY,

for some ε1, ε2 ∈ {1,−1} and α, β, γ, δ ∈ Z.

Since K(C) is a based ring of rank 3 then K(C)Q := K(C)⊗Q is a semisimple commutative

Q-algebra of dimension 3, see [22, Corollary 3.7.7]. Hence we have three distinct possibilities

for K(C)Q as a Q-algebra, and we proceed by looking at them separetly.

H Case 1: K(C)Q
∼= Q⊕Q⊕Q. In this case the homomorphism FPdimQ : K(C)Q → R can

only have rational image. Since FPdim(X) is an algebraic integer for all X ∈ C, this implies

that FPdim(X) is an integer for all X ∈ C, and thus C is integral.

H Case 2: K(C)Q
∼= Q ⊕ Q(

√
m) for some m ∈ Z. Since (ψ2)Q is an endomorphism of

K(C)Q
∼= Q⊕Q(

√
m) mapping (1, 1) 7→ (1, 1), then it is either an automorphism of order 1 or

2, or has image the diagonal copy of Q inside Q⊕ Q(
√
m). Hence we have three possibilities

for ψ2 : K(C) → K(C): it satisfies ψ2 = Id, ψ2
2 = Id or Im(ψ2) = Z. We show none of these

are possible.

We assume first that Im(ψ2) = Z. So we have ψ2(X) = ε11 and ψ2(Y ) = ε21. The

equalities

1 = [ψ2(X)2 : 1] = [ψ2(X2) : 1] = [1 +mψ2(X) + kψ2(Y ) : 1] = 1 +mε1 + kε2,

imply that ε1 and ε2 must have opposite signs and that m = k. The analogous computation

with Y shows that l = n. Moreover, since

ε1ε2 = [ψ2(X)ψ2(Y ) : 1] = [ψ2(XY ) : 1] = [kψ2(X) + lψ2(Y ) : 1] = kε1 + lε2,
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we have that l = k ± 1. Recall that we are assuming l ≥ k and thus l = k + 1. Then

X2 = 1 + kX + (k + 1)Y,

and so

X2 ≡ 1 +X mod 2 or X2 ≡ 1 + Y mod 2,

which contradicts X2 ≡ ψ2(X) ≡ 1 mod 2. So the case Im(ψ2) = Z is not possible.

On the other hand, ψ2 = Id is not possible by Theorem 3.2.9. Thus it remains to show

that we cannot have ψ2
2 = Id either. Suppose ψ2

2 = Id. Then

0 = [ψ2
2(X) : 1] = ε1 + αε1 + βε2 and 0 = [ψ2

2(Y ) : 1] = ε2 + γε1 + δε2,

which imply

β = −(α + 1)ε1ε2 and γ = −(δ + 1)ε1ε2. (4.1.4)

Also

0 = [ψ2
2(X) : Y ] = β(α + δ) and 0 = [ψ2

2(Y ) : X] = γ(α + δ).

If α + δ 6= 0 then β = γ = 0, which implies α = δ = −1. That is,

ψ2(X) = ε11−X and ψ2(Y ) = ε21− Y.

We compute

ψ2(X)ψ2(Y ) = ε1ε21 + (k − ε2)X + (l − ε1)Y,

ψ2(XY ) = kψ2(X) + lψ2(Y ) = (kε1 + lε2)1− kX − lY.
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Since the right-hand sides of the previous equations must be equal, we have that k−ε2 = −k

and so 2k = ±1, which is not possible.

Hence we should have α + δ = 0, and using this together with (4.1.4) we get

α ≡ δ mod 2, β = γ mod 2 and α ≡ β + 1 mod 2. (4.1.5)

On the other hand, from the equation

mα + kγ = [ψ2(X2) : X] = [ψ2(X)2 : X] = 2ε1α + α2m+ 2αβk + β2l,

we obtain

mα + kγ ≡ mα + lβ mod 2.

This together with congruences (4.1.5) gives kβ ≡ lβ mod 2. Lastly,

[ψ2(XY ) : X] = kα + lγ,

[ψ2(X)ψ2(Y ) : X] = ε1γ + ε2α +mγα + kαδ + kγβ + lβδ,

and so

γ + α +mγα + kαδ + kγβ + lβδ ≡ kα + lγ mod 2.

Note that αγ ≡ 0 ≡ βδ mod 2, see (4.1.5). Hence the equation above is

γ + α + kαδ + kγβ ≡ kα + lγ mod 2.

Now, using the congruences in (4.1.5) and kβ ≡ lβ mod 2 in the equation above, we obtain

1 ≡ 0 mod 2. Thus (ψ2)Q cannot be an automorphism of order 2 and this case is not

possible.
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H Case 3: K(C) is a field extension of degree 3 over Q. In this case (ψ2)Q must be

an automorphism of order 3, since it cannot be the identity by Theorem 3.2.9. Note that

Theorem 3.2.6 implies p = 3 or 7. We show p = 7 and C ∼= Ver+
7 . Since ψ2 has order 3, then

X,ψ2(X) and ψ2
2(X) are distinct roots of the minimal polynomial of X, given by

mX(t) = t3 − (m+ l)t2 − (1 + k2 −ml)t+ l.

By the Vieta formulas we have that

m+ l = [X + ψ2(X) + ψ2
2(X) : 1] = 2ε1 + αε1 + βε2. (4.1.6)

Repeating this for Y we get

k + n = [Y + ψ2(Y ) + ψ2
2(Y ) : 1] = 2ε2 + γε1 + δε2. (4.1.7)

On the other hand,

1 +mε1 + kε2 = [ψ2(X2) : 1] = [ψ2(X)2 : 1] = 1 + α2 + β2, and

1 + lε1 + nε2 = [ψ2(Y 2) : 1] = [ψ2(Y )2 : 1] = 1 + γ2 + δ2,

and thus

α2 + β2 + γ2 + δ2 = (m+ l)ε1 + (k + n)ε2.

Combining this together with Equations (4.1.6) and (4.1.7) we get

α2 + β2 + γ2 + δ2 = (2ε1 + αε1 + βε2)ε1 + (2ε2 + γε1 + δε2)ε2

= 2 + α + βε1ε2 + 2 + δ + γε1ε2,

and so

α2 − α + β2 − βε1ε2 + γ2 − γε1ε2 + δ2 − δ = 4. (4.1.8)
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Hence |α|, |β|, |γ| and |δ| are at most 2, which implies by (4.1.6) and (4.1.7) that m+l, k+n ≤

6.

From each of the equalities ψ2(X2) = ψ2(X)2, ψ2(Y 2) = ψ2(Y )2 and ψ2(XY ) = ψ2(X)ψ2(Y )

we get three equations on the parameters α, β, γ, δ, k, l,m, n, ε1, ε2. The bound k, n ≤ 6 al-

lows us to verify in Sage that the only solutions to said equations fulfilling (4.1.1) and (4.1.8)

are

k = 1, l = 1,m = 1, n = 0, α = −1, β = 1, γ = −1, δ = 0, and

k = 1, l = 1,m = 0, n = 1, α = 0, β = −1, γ = 1, δ = −1.

By symmetry, it is enough to consider the second case. We have multiplication rules

X2 = 1 + Y Y 2 = 1 +X + Y, XY = Y X = X + Y.

Note that these are the same fusion rules as Ver+
7 . Taking dimension on the equalities above

we arrive at the equation

dim(Y )3 − 2 dim(Y )2 − dim(Y ) + 1 = 0. (4.1.9)

On the other hand, note that C must be degenerate. In fact, if it was non-degenerate (see

Section 2.2.11) it would lift to a symmetric category over a field of characteristic zero [18] and

thus would have integer Frobenius-Perron dimensions [22, Theorem 9.9.26]. We compute

0 = dim(C) = 1 + dim(X)2 + dim(Y )2

= 1 + 1 + dim(Y ) + dim(Y )2,

and so

dim(Y )2 = −2− dim(Y ).
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Replacing this into (4.1.9) we get

0 = dim(Y )3 − 2 dim(Y )2 − dim(Y ) + 1

= dim(Y )(−2− dim(Y ))− 2(−2− dim(Y ))− dim(Y ) + 1

= −2 dim(Y ) + 2 + dim(Y ) + 4 + 2 dim(Y )− dim(Y ) + 1

= 7.

Thus we must have p = 7. Since K(C) ∼= K(Ver+
7 ) we see that the fiber functor F : C → Ver7

gives an equivalence onto Ver+
7 .

Remark 4.1.3. Theorem 4.1.2 gives a positive answer for Question 1.2.1 in the case p = 7.

4.2 Rank 4 symmetric fusion categories

4.2.1 Exactly two self-dual simple objects

In this section we classify symmetric fusion categories C of rank 4 with exactly two self-dual

simple objects. Namely, we show that C is equivalent to one of the following:

• If p = 2, C ∼= VecZ3
Z4

or C ∼= C (Z4, q), where q : Z4 → k× is one of the two group maps

satisfying q(g)2 = 1 for all g ∈ Z4, see [22, Section 8.4].

• If p = 3, C ∼= C (Z4, q).

• If p > 3, C ∼= Rep(A4) or C ∼= C (Z4, q).

We use the parametrization of based rings of rank 4 with exactly two self-dual basis

elements as given in [31]. Let c, e, k, l, p, q be non-negative integers satisfying the following
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equations:

kl + lc = lp+ kq, (4.2.1)

kp+ le+ kc = 2lq + k2, (4.2.2)

l2 + c2 = 1 + q2 + p2, (4.2.3)

l2 + k2 + q2 = 1 + 2pk + qe. (4.2.4)

We denote by K(c, e, k, l, p, q) the based ring with basis 1, X, Y, Z and multiplication given

by

X2 = pX + lY + cZ XY = Y X = qX + kY + lZ

Y 2 = 1 + kX + eY + kZ Y Z = ZY = lX + kY + qZ

Z2 = cX + lY + pZ XZ = ZX = 1 + pX + qY + pZ.

(4.2.5)

Any based ring of rank 4 with exactly two self-dual basis elements is of the formK(c, e, k, l, p, q)

for some non-negative integers c, e, k, l, p, q satisfying (4.2.1)-(4.2.4), see [31].

When p > 2, recall that for the second Adams operation ψ2 : K(c, e, k, l, p, q) →

K(c, e, k, l, p, q) we have that ψ2(W ) ≡ W 2 mod 2 for any W ∈ K(c, e, k, l, p, q). Hence

ψ2(X) = α1X + α2Y + α3Z,

ψ2(Y ) = ε1 + β1X + β2Y + β3Z, and

ψ2(Z) = γ1X + γ2Y + γ3Z,

(4.2.6)

for some ε = ±1 and αi, βi, γi ∈ Z, i = 1, 2, 3. Recall that ψ2(W ) ≡ W 2 mod 2 and thus

α1 ≡ p ≡ γ3 mod 2 α2 ≡ l ≡ γ2 mod 2 α3 ≡ c ≡ γ1 mod 2

β1 ≡ k ≡ β3 mod 2 β2 ≡ e mod 2.
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We will use the previous congruences repeatedly throughout this section.

We start by discarding some possibilities for the Adams operation in the lemmas below.

Lemma 4.2.1. Let C be a symmetric fusion category of rank 4 with exactly two self-dual

simple objects. Then Im(ψ2) 6= Z .

Proof. Suppose that Im(ψ2) = Z. Then by Proposition 3.2.13 we have that Y 2 = 1 and

[XZ : Y ] = 1, which imply k = e = 0 and q = 1. But then from Equation (4.2.4) we get

that l2 + 1 = 1, thus l = 0. Thus Equation (4.2.3) is c2 = 2 + p2, which has no integer

solutions.

Lemma 4.2.2. Let C be a symmetric fusion category of rank 4 with exactly two self-dual

simple objects. Then ψ2 does not have order 2.

Proof. Suppose for the sake of contradiction that ψ2
2 = Id. Then from ψ2

2(X) = X and

Equation (4.2.6), we get the equations

0 = α2ε, 1 = α2
1 + α2β1 + α3γ1, 0 = α1α3 + α2β3 + α3γ3.

Thus α2 = 0 and

1 = α2
1 + α3γ1, 0 = α3(α1 + γ3). (4.2.7)

Similarly, from ψ2
2(Z) = Z we get that γ2 = 0 and

1 = γ1α3 + γ2
3 , 0 = γ1(α1 + γ3). (4.2.8)

We divide the rest of the proof in two cases.
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H Case 1: α1 6= −γ3. Then by Equations (4.2.7) and (4.2.8) we must have α3 = 0 = γ1

and α2
1 = 1 = γ2

3 , so γ3 = α1 = ±1. Then

εl = [ψ2(X2) : 1] = [ψ2(X)2 : 1] = α2
2 + 2α1α3 = 0,

which implies l = 0. On the other hand,

1 + qε = [ψ2(XZ) : 1] = [ψ2(X)ψ2(Z) : 1] = α1γ3 = 1,

which implies q = 0. But then by Equation (4.2.3) we have p = 0 which contradicts p ≡ α1

mod 2.

H Case 2: α1 = −γ3. Then

εl = [ψ2(X2) : 1] = [ψ2(X)2 : 1] = 2α1α3 = −2γ3α3,

εl = [ψ2(Z2) : 1] = [ψ2(Z)2 : 1] = 2γ1γ3,

and so γ1γ3 = −γ3α3. Suppose first that γ3 6= 0. Then γ1 = −α3 and so by Equation (4.2.7)

1 = α2
1 − α2

3,

which implies α1 = ±1 and α3 = 0 = γ1. But then

εl = [ψ2(X2) : 1] = [ψ2(X)2 : 1] = 0,

so l = 0 and

pα1 = [ψ2(X2) : X] = [ψ2(X)2 : X] = α2
1p = p.

Since p ≡ α1 ≡ 1 mod 2 this implies α1 = 1, and thus γ3 = −1. But then

[ψ2(Z2) : Z] = [ψ2(cX + pZ) : Z] = cα3 + pγ3 = −p,

[ψ2(Z)2 : Z] = [(γ3Z)2 : Z] = γ2
3p = p,
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since l, α3, γ1 and γ2 are all 0 and γ3 = −1. Since the two equations above should be equal,

then p = 0 which contradicts p ≡ 1 mod 2.

The contradiction came from assuming γ3 6= 0, and thus we should have γ3 = 0 = α1.

Hence from the equations

[ψ2(X2) : 1] = [ψ2(pX + lY + cZ) : 1] = εl,

[ψ2(X)2 : 1] = [(α3Z)2 : 1] = 0

we get that l = 0. On the other hand, by Equation (4.2.7) we have that α3γ1 = 1, and so

[ψ2(XZ) : 1] = [ψ2(1 + pX + qY + pZ) : 1] = 1 + qε,

[ψ2(X)ψ2(Z) : 1] = [(α3Z)(γ1X) : 1] = α3γ1 = 1,

hence q = 0. Then from Equations (4.2.3) and (4.2.4) we conclude k = 1 = c and p = 0.

Moreover, ψ2
2(Y ) = Y implies 0 = ε(β2 + 1) and so β2 = −1. Using also that ψ2(XY ) =

ψ2(X)ψ2(Y ) and ψ2(X) = α3(Z), we obtain

ε = [ψ2(XY ) : 1] = [ψ2(X)ψ2(Y ) : 1] = α3β1,

β1 = [ψ2(XY ) : X] = [ψ2(X)ψ2(Y ) : X] = α3β3,

−1 = [ψ2(XY ) : Y ] = [ψ2(X)ψ2(Y ) : Y ] = −α3

β3 = [ψ2(XY ) : Z] = [ψ2(X)ψ2(Y ) : Z] = εα3,

which imply 1 = α3 = γ1 and ε = β1 = β3. Lastly

eε = [ψ2(Y 2) : 1] = [ψ2(Y )2 : 1] = β2
2 + 2β1β3 = 3.
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Thus the fusion rules for C would be

X2 = Z XY = Y,

Y 2 = 1 +X + 3Y + Z ZY = Y,

Z2 = X ZX = 1.

(4.2.9)

These are the fusion rules of the Izumi-Xu category (see [6]). The Frobenius Perron dimension

of C is 21+2
√

21
2

, which is not possible in positive characteristic. In fact, dimensions in Verp

are in the field Q(z + z−1), see [4, Theorem 4.5 (iv)]. Since we have a symmetric fiber

functor F : C → Verp, the same should be true for C, which makes the obtained dimension

impossible.

Remark 4.2.3. The Adams operation is not enough on its own to classify symmetric fusion

categories in positive characteristic. In fact, in the proof of the previous Lemma we found a

possible based ring (4.2.9) and a suitable Adams operation, given by

ψ2(X) = Z, ψ2(Y ) = 1 +X − Y + Z, ψ2(Z) = X.

However, as stated, there is no fusion category over a field of positive characteristic with

(4.2.9) as its Grothendieck ring.

Lemma 4.2.4. Let C be a symmetric fusion category of rank 4 with exactly two self-dual

simple objects. Then ψ2
2 6= ψ2.

Proof. Suppose that ψ2
2 = ψ2. From the equality ψ2

2(X) = ψ2(X) we get the equations

0 = α2ε, α1 = α2
1 + α2β1 + α3γ1, α3 = α1α3 + α2β3 + α3γ3.
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Thus α2 = 0 and α3 = α3(α1 +γ3). If α3 6= 0 then α1 +γ3 = 1 and so p+p ≡ 1 mod 2 which

is a contradiction. Thus we have α3 = 0 and α1 = 1 or 0. Analogously, from ψ2
2(Z) = ψ2(Z)

we get γ2 = 0 = γ1 and γ3 = 1 or 0. Lastly, from ψ2
2(Y ) = ψ2(Y ) we have that β2 = 0.

On the other hand,

εl = [ψ2(X2) : 1] = [ψ2(X)2 : 1] = α2
2 + 2α1α3 = 0,

which implies l = 0, and so

cγ3 = [ψ2(X2) : Z] = [ψ2(X)2 : Z] = cα2
1.

If c = 0 then 0 = 1 + q2 + p2 by Equation (4.2.3), which is not possible. Thus γ3 = α2
1 = α1.

We divide the rest of the proof in two cases:

H Case 1: α1 = γ3 = 0. Then

εk = [ψ2(XY ) : 1] = [ψ2(X)ψ2(Y ) : 1] = α1β3 + α3β1 + α2β2 = 0,

and so k = 0. Then by Equation (4.2.4) we have q2 = 1 + qe, thus q = 1 and so c2 = 2 + p2

by Equation (4.2.3), which has no integer solutions.

H Case 2: α1 = γ3 = 1. Then

0 = [ψ2(XY ) : Y ] = [ψ2(X)ψ2(Y ) : Y ] = qβ3,

so q = 0 or 0 = β3 = β1. If q = 0 then c2 = 1 + p2 by Equation (4.2.3) and so c = 1 and

p = 0. Then 1 ≡ c ≡ α3 ≡ 0 mod 2, a contradiction. Thus we must have 0 = β3 and so

εk = [ψ2(XY ) : 1] = [ψ2(X)ψ2(Y ) : 1] = β3 = 0,

which implies k = 0. Since q2 = 1+qe by Equation (4.2.4) we get q = 1. But then c2 = 2+p2

by Equation (4.2.3), which has no integer solutions.
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We will need the following auxiliary lemma.

Lemma 4.2.5. If C is a fusion category with commutative K(C) and a non-self-dual object,

then there exists a ring homomorphism K(C)→ C whose image is not contained in R.

Proof. Let X ∈ C be a non-self-dual object, and consider the map of multiplication by

X − X∗ in K(C)C. In the basis given by simple objects, we can represent this map by a

non-trivial skew symmetric matrix. Thus its eigenvalues are zero or non-real. Since X 6∼= X∗

there must exist at least one non-real eigenvalue λ 6= 0. Hence K(C)C has a 1 dimensional

representation where X acts as multiplication by λ.

Theorem 4.2.6. Let C be a symmetric fusion category of rank 4 with exactly 2 self-dual

simple objects. Then C is integral.

Proof. We proceed by looking at the different possibilities for K(C)Q. Since K(C)Q is a

semisimple commutative Q-algebra of dimension 4, we have five cases:

H Case 1: K(C)Q
∼= Q⊕Q⊕Q⊕Q. Note that Q-algebra maps K(C)Q → C are projections

to Q, and so this case is not possible by Lemma 4.2.5.

H Case 2: K(C)Q
∼= Q(

√
n) ⊕ Q ⊕ Q. By Lemma 4.2.5 we must have n < 0. But then

FPdimQ : K(C)Q → R can only have rational image and so C is integral.

H Case 3: K(C)Q
∼= Q(

√
n)⊕Q(

√
m) with Q(

√
n) 6∼= Q(

√
m). Endomorphisms of Q(

√
n)⊕

Q(
√
m) are given by

(1, 0) 7→ (1, 0) (0, 1) 7→ (0, 1) (
√
n, 0) 7→ (±

√
n, 0) (0,

√
m) 7→ (0,±

√
m).

These are all automorphisms of order 1 or 2, which is not possible for (ψ2)Q by Lemma 4.2.2.

Hence this case is discarded.

105



H Case 3: K(C)Q
∼= Q(

√
n) ⊕ Q(

√
n). By Lemma 4.2.5 we have n < 0. But Q-algebra

morphisms from Q(
√
n)⊕Q(

√
n) to C are embeddings onto Q(

√
n). This contradicts the fact

that FPdim : Q(
√
n)⊕ Q(

√
n)→ C should have real image, and so this case is discarded.

H Case 4: K(C)Q
∼= F ⊕ Q, where F is a field extension of degree 3 over Q. The only

endomorphism of F ⊕ Q with non-trivial kernel is given by (a, b) 7→ (b, b) for all a ∈ F and

b ∈ Q. By Lemma 4.2.1 we know that (ψ2)Q is not of this form.

On the other hand, non-trivial automorphisms of F⊕Q have order 3 which is not possible

for (ψ2)Q by Theorem 3.2.12. Hence this case is also discarded.

H Case 5: K(C)Q is a field extension of degree 4 over Q. Since (ψ2)Q 6= Id by Theorem

3.2.9, then it must be an automorphisms of order 2 or 4. Using Lemma 4.2.2 we can discard

the former possibility. If (ψ2)Q has order 4 then Y, ψ2(Y ), ψ2
2(Y ) and ψ3

2(Y ) are distinct roots

of the minimal polynomial of Y . Since the minimal polynomial of Y is given by

mY (t) = t4 + (−2q− e)t3 + (2qe+ q2−k2− l2− 1)t2 + (−q2e+ qk2− lk2 + l2e+ 2q)t+ l2− q2,

then by the Vieta formulas the sum of the roots equals 2q + e. Hence

[Y + ψ2(Y ) + ψ2
2(Y ) + ψ3

2(Y ) : 1] = 2q + e.

We compute

[ψ2(Y ) : 1] = ε, [ψ2
2(Y ) : 1] = ε+ β2ε, [ψ3

2(Y ) : 1] = ε+ β2ε+ ε(β1α2 + β2
2 + β3γ2),

and thus

ε+ ε+ β2ε+ ε+ β2ε+ ε(β1α2 + β2
2 + β3γ2) = 2q + e.

Taking congruence mod 2 on both sides we get

e ≡ 1 + 1 + e+ 1 + e+ kl + e+ kl ≡ 1 + e mod 2,
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which is not possible, so this case is also discarded.

Theorem 4.2.7. Let C be an integral symmetric fusion category of rank 4 with exactly 2

self-dual simple objects. Then either

• C ∼= C (Z4, q) and p ≥ 2, or

• C ∼= Rep(A4) and p > 3, or

• C ∼= VecZ3
Z4

and p = 2.

Proof. Let C be as in the statement with Grothendieck ring K(c, e, k, l, p, q), see Equation

4.2.5. Since X∗ = Z we have that FPdim(X) = FPdim(Z). Thus taking Frobenius-Perron

dimensions on both sides of the fusion rule Y 2 = 1 + kX + eY + kZ we get

FPdim(Y )(FPdim(Y )− e) = 1 + 2k FPdim(X),

and so gcd(FPdim(X),FPdim(Y )) = 1. From the fusion rule XY = qX + kY + lZ we get

1 = q+l
FPdim(Y )

+ k
FPdim(X)

and so since the denominators are coprime either FPdim(Y ) = q+ l

and k = 0 or q + l = 0 and FPdim(X) = k. We split the rest of the proof in two cases.

H Case 1: FPdim(Y ) = q + l and k = 0. Since Y 2 = 1 + eY then

FPdim(Y ) =
e+
√
e2 + 4

2
.

But FPdim(Y ) is an integer and then e2 + 4 must be a square, so e = 0. Hence Y 2 = 1

which implies q + l = FPdim(Y ) = 1. Recall that q and l are non-negative integers, and so

there are only two options: either q = 1 and l = 0, or q = 0 and l = 1. The former is not

possible, since in that case c2 = 2 + p2 by Equation (4.2.3), which has no integer solutions.
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Hence we have that q = 0 and l = 1. Moreover, the fusion rule X2 = pX + Y + pZ implies

that

FPdim(X)2 = 2pFPdim(X) + 1.

This has integer solutions only for p = 0, in which case FPdim(X) = 1. Lastly by Equation

(4.2.3) we have c = 0. Thus the fusion rules are

X2 = Y XY = Y X = Z

Y 2 = 1 Y Z = ZY = X

Z2 = Y XZ = ZX = 1.

Hence the category is pointed and C ∼= C (Z4, q), where q : Z4 → k× is a quadratic form

satisfying

q(gh) = q(g)q(h)b(g, h),

where b(g, h) = cY,XcX,Y ∈ AutC(X, Y ) ∼= k× for X and Y simple objects representing g

and h, respectively, see [22, Lemma 8.4.2]. Since C is symmetric, it follows that q is a group

homomorphism. Finally, from the fusion rules above we get q(g)2 = 1 for all g ∈ Z4.

H Case 2: FPdim(X) = k and q + l = 0. Since q and l are non-negative integers

this implies q = 0 = l. The fusion rule XZ = 1 + pX + pZ implies that FPdim(X)2 =

1 + 2pFPdim(X) and so FPdim(X) = 1 and p = 0. On the other hand, from Equations

(4.2.3) and (4.2.4) we get that k = 1 = c. Lastly, since Y 2 = 1 +X + eY + Z we have that

FPdim(Y ) =
e+
√
e2 + 12

2
.

108



Thus for FPdim(Y ) to be an integer we need e = 2. Consequently. the fusion rules are

X2 = Z XY = Y X = Y

Y 2 = 1 +X + 2Y + Z Y Z = ZY = Y

Z2 = X XZ = ZX = 1.

Suppose p > 3. The equations above imply that dim(X) = 1 = dim(Z) and dim(Y ) = −1

or 3. Hence dim(C) 6= 0 and thus we can lift C to a symmetric fusion category C̃ over a field

f in characteristic zero [18, Section 4.1], which has the same Grothendick ring as C. Thus C̃

is equivalent to Repf(A4) [13, Section 8.19], and so by uniqueness of the lifting we get that

C is equivalent to Repk(A4).

For the case p = 2 we have that the objects 1, X and Z in C generate a copy of Rep(Z3).

Doing de-equivariantization by Z3 we obtain a symmetric fusion category CZ3 of dimension

4 [22, Section 2.7]. Hence CZ3 is pointed and thus equivalent to VecZ4 . There is only one

action of Z3 on Z4, and so doing equivariantization by Z3 gives us back C. Hence C ∼= VecZ3
Z4

.

Lastly, for p = 3 there is no category realizing these fusion rules. In fact, we know all

symmetric fusion categories in characteristic 3. Any such category is an equivariantization

of a pointed category associated with a 3-group by the action of a group G of order relatively

prime to 3, see [21, Section 8]. Note that the group G is non-trivial, since the category with

the fusion rules above is not pointed as FPdim(Y ) = 3. Thus the category should contain

a non-trivial Tannakian subcategory Rep(G) of rank prime to 3, which is not possible with

the fusion rules above.

Remark 4.2.8. In the proof of Theorem 4.2.6 we showed that, when C is a symmetric fusion

category of rank 4 and exactly 2 self-dual simple objects, then the only possibilities for K(C)Q
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are Q⊕4 and Q(
√
n) ⊕ Q⊕2, for n a negative square-free integer. Moreover, Theorem 4.2.7

shows that such a category is equivalent to either C(Z4, q), Rep(A4) or VecZ3
Z4
, the first of

which satisfies K(C)Q ' Q(
√
−1)⊕ Q⊕2, and the other two K(C)Q ' Q(

√
−3)⊕ Q⊕2.

4.2.2 All simple objects are self-dual

We are not able to provide a classification of symmetric fusion categories of rank 4, but

here are some comments for the remaining case, in which all simple objects are self-dual.

It follows from Theorem 3.1.1 that we can have examples of such categories that are non

super-Tannakian only in characteristics p = 5 or 7.

We take a look first at the case p = 5.

Proposition 4.2.9. Let C be a non-super-Tannakian symmetric fusion category of rank 4

in characteristic p = 5. Then K(C)Q
∼= Q(

√
5)⊕ Q⊕2 or K(C)Q

∼= Q(
√

5)⊕ Q(
√
m) for some

m ∈ Z.

Proof. Since K(C)Q is a semisimple commutative Q-algebra of dimension 4, it can either be

Q⊕4, Q⊕2 ⊕ Q(
√
n), Q(

√
n)⊕ Q(

√
m), Q(a)⊕ Q or Q(b), for n,m ∈ Z, and a, b ∈ Q such that

[Q(a) : Q] = 3 and [Q(b) : Q] = 4.

Consider the Verlinde fiber functor F : C → Ver5, and let F̃ : C → Ver+
p be as in (3.1.1).

We denote also by F̃ the induced Q-algebra homomorphism K(C)Q → K(Ver+
p )Q. By the

proof of Theorem 3.1.1, since C is not super-Tannakian then this map is surjective and so

F̃ : K(C)Q � K(Ver+
5 )Q
∼= Q(ξ5 + ξ−1

5 ) = Q(
√

5).

That is, the image of K(C)Q under F̃ is Q(
√

5). Then the only remaining possibilities for

K(C)Q are Q⊕2 ⊕ Q(
√

5) or Q(
√

5)⊕ Q(
√
m) for some m ∈ Z.
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For p = 7, we have the following result.

Proposition 4.2.10. Let C be a non-super-Tannakian symmetric fusion category of rank

4 in characteristic p = 7. Then K(C)Q
∼= Q ⊕ Q(a) for some a such that [Q(a) : Q] = 3.

Moreover, ψ3
2 = Id.

Proof. Since K(C)Q is a semisimple commutative algebra of dimension 4, it can either be

Q ⊕ Q ⊕ Q ⊕ Q, Q(
√
n) ⊕ Q ⊕ Q, Q(

√
n) ⊕ Q(

√
m), Q(a) ⊕ Q or Q(b), for a, b ∈ C such that

[Q(a) : Q] = 3 and [Q(b) : Q] = 4.

Thus we have that if f ∈ End(K(C)Q) then either fn = Id for n = 1, 2, 3, 4, fk = f for

k = 2, 3 or f 3 = f 2. By Theorem 3.2.6, the only possibility for (ψ2)Q ∈ End(K(C)Q) is that

(ψ2)3
Q = Id, which can only happen if K(C) ∼= Q⊕ Q(a), as desired.
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Chapter 5

Constructions from unoriented

2-dimensional cobordisms

This chapter contains previously published material, which appeared in [12].

In this chapter, when we say C is a symmetric k-linear monoidal category we are also

assuming the bifunctor ⊗ is k-bilinear.

5.1 Generators and relations for UCob2

Consider the category UCob2 of unoriented 2-dimensional cobordisms, as defined in Defini-

tion 2.4.1. In [40, Section 2.2], Tubbenhauer defines a category uCob2
R(∅)∗ by generators

and relations, which has an obvious functor to UCob2. Arguments in [41, Section 2.2] es-

sentially prove that this functor is an equivalence, giving a description by generators and

relations of the category of 2-dimensional unoriented cobordisms.

Specifically, every morphism can be obtained by composition (from left to right) and
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disjoint union (vertical stacking) of the following 8 cobordisms:

Id
∆ m

ε u τ φ

↔ .

θ

(5.1.1)

The first 6 cobordisms are the usual generators for Cob2, the category of oriented 2-dimensional

cobordisms. As is traditional, we will refer to these morphisms, from left to right, in the

following way: identity, pair of pants, reverse pair of pants, cap, cup and twist. The last

2 cobordisms are new: φ : 1 → 1 denotes the orientation reversing diffeomorphism of the

circle, see Example 2.4.2, and θ : 0→ 1 the once punctured projective plane, also called the

Möbius or crosscap cobordism, which is non-orientable.

We include below the relations, as described in [40, 41].

♦ Associativity and coassociativity:

= , = ,

♦ Unit and counit:

= = , = = , (5.1.2)

= , = , (5.1.3)
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♦ Commutativity and cocommutativity:

= , = ,

♦ First and second permutation relations:

= , = ,

♦ Third permutation relations:

= , = ,

♦ Frobenius relation:

= = ,

♦ φ is an involution:

↔ ↔ = ,

♦ φ is multiplicative and comultiplicative:

↔

↔
= ↔ , ↔

↔
= ↔ , (5.1.4)

♦ φ is unital and counital:

↔ = , ↔ = , (5.1.5)
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♦ Extended Frobenius relations:

= ↔ ,
↔

= . (5.1.6)

Using the previous relations we can deduce the following one,

= ,
(5.1.7)

which allows us to identify a triple crosscap with a handle with a unique crosscap.

Next we work towards a description of HomUCob2(m,n) for m,n ≥ 0. A morphism from

m to n has a finite number of closed connected components, and a finite number of connected

components with boundary. Each of these can be orientable or unorientable. We consider

orientable and unorientable connected components separately in what follows.

Remark 5.1.1. Note that HomUCob2(m,n) ∼= HomUCob2(0, n + m). This isomorphism is

given by bending the left n circles to the rigth, see Figure 5.1.

5.1.1 Orientable connected cobordisms with boundary

The goal of this section is to give a graphical description of orientable connected morphisms,

which will be useful later on. We note that orientable morphisms in UCob2 do not contain

any crosscaps.

What we will be doing in the following Proposition is similar to what is done in [30,

Section 1.4.16].
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;
.

Figure 5.1: Illustration of the isomorphism HomUCob2(4, 4) ∼= HomUCob2(0, 8)

Proposition 5.1.2. Any orientable connected cobordism with boundary m → n in UCob2

can be decomposed into three parts, which we will call the in, mid and out parts:

♦ The in part consists of:

• If m = 0, a cup.

• If m > 0, a composition of cylinders and reverse pairs of pants. The cobordism starts

with m stacked cylinders, each of which is either the identity or the involution φ.

Following the cylinders we have a composition of multiplication maps m→ 1.

♦ The mid part consists of a composition of handles . The number of handles is

unique and gives the genus of the cobordism. When the genus is zero, the mid part is empty.

♦ The out part consists of:

• If n = 0, a cap.
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• If n > 0, a composition of cylinders and pairs of pants. The cobordisms ends with a

composition of pairs of pants 1→ n, followed by n stacked cylinders, each of which can

be either the identity or φ.

Example 5.1.3. The following is an orientable cobordism 4→ 3 of genus 3,

↔

↔
↔ .

︸ ︷︷ ︸
in

︸ ︷︷ ︸
mid

︸ ︷︷ ︸
out

Figure 5.2: Example of an orientable connected cobordism 4→ 3.

Proof. Start with any connected orientable cobordism m→ n. Our first step will be to move

all shapes of the form

↔

↔

↔

↔ , (5.1.8)

if any, to the left of the cobordism, so that they consitute the in part. In order to do so, we

must compute the composition of these shapes with the ones we may have to their left, that

is, a cup, a pair of pants, or an orientation reversing cylinder (recall that this cobordism has

no crosscaps, as it is orientable). We list below all possible cases.

? Precomposition with a cup:

=
↔

=
↔

= ↔
↔

↔
= ↔ .
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We get cylinders in every case, which we will move to the outmost left in the last step.

? Precomposition with a pair of pants, forming a handle:

If the shape (5.1.8) has one orientation reversing cylinder, the composition would result

in a non-orientable surface:

↔
=

↔
= . ,

So this case is not possible.

If the shape (5.1.8) has two orientation reversing cylinders, we can use comultiplicativity

of φ to get an involution composed with a handle,

↔

↔
= ↔ ,

see relations (5.1.4). The handle will become part of the mid part of the cobordism, and we

will move the orientation reversing cylinder to the outmost left in the last step.

If the shape (5.1.8) has no orientation reversing cylinders, similarly to the previous case,

precomposition with a pair of pants forms a handle, which stays in the mid part of the

cobordism.

? Precomposition with a pair of pants, without forming a handle: it will look like one of

the following,

= ↔ = .
↔ ↔

The picture above shows how we can move shape (5.1.8) to the left in each case.
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? Precomposition with an orientation reversing cylinder: this just changes the shape from

(5.1.8) into one of the other possible ones shown in (5.1.8).

We have covered all the possible cases for precomposition, and so we are done with

moving the shapes (5.1.8) to the left of the cobordism, which completes the first step.That

is, all reverse pair of pants are now to the left of the cobordism.

Our second step is to move all figures of the form

↔

↔

↔

↔

to the right. This can be achieved analogously to the previous step.

Finally, we move any orientation reversing cylinder to either the outmost left or right of

the cobordism, as follows.

? We move any involution precomposed with a handle to its left as in the figure below,

↔ =
↔

↔
= ↔ .

? Then, we move any involution precomposed by a reverse pair of pants (but not a handle)

to its left as in the figure below,

↔ =
↔

↔
= .↔

↔

↔
(5.1.9)

? Lastly, we move any remaining involution composed with a pair of pants to its right as

in the figure below,
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↔ =
↔

↔
=

↔

↔

↔

. (5.1.10)

If m,n 6= 0, we are done. If m = 0, then every orientation reversing cylinder disappears

using relation (5.1.5). Moreover, by the relation (5.1.2), which concerns the cup and reverse

pair of pants, we are left with just one cup on the in part. Analogously, if n = 0, using

relations (5.1.5) and (5.1.2) concerning the cap, we are left with just one cap on the out

part.

Remark 5.1.4. The decomposition described in Proposition 5.1.2 is not unique. For exam-

ple, the following two morphisms are equal in UCob2,

↔ = ↔

.

︸ ︷︷ ︸
mid

︸ ︷︷ ︸
out

︸ ︷︷ ︸
in

︸ ︷︷ ︸
mid

Remark 5.1.5. In the case m = 0 (respectively, n = 0), the in part (respectively, the out

part) consists of just a cap (respectively, just a cup).

Example 5.1.6. Pictured below is a connected orientable cobordism 0→ 4,

Definition 5.1.7. Let ξm{i1,...,il} denote the connected cobordism in HomUCob2(0,m) that

has genus zero, and orientation reversing cylinders in its out part exactly in the positions

1 ≤ i1 < · · · < il ≤ m, where 1 ≤ l ≤ m. That is, if we denote by ∆m the composition

∆m−1 := (id⊗(m−2) ⊗∆) . . . (id⊗∆)∆ : 1→ m,
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↔

↔

.

︸︷︷︸
in
︸ ︷︷ ︸

out

Figure 5.3: Example of a connected orientable cobordism 0→ 4.

and by φi1,...,il the cobordism m→ m given by

φi1,...,il = c1 ⊗ · · · ⊗ cm, where cj =


id if j 6∈ {i1, . . . , il}

φ if j ∈ {i1, . . . , il},

then

ξm{i1,...,il} := φi1,...,il∆
m−1u.

For instance, the cobordism in the previous example is ξ4
{1,3}.

Lemma 5.1.8. If we have a partition {1, . . . ,m} = {i1, . . . , il} t {j1, . . . , js}, then

ξm{i1,...,il} = ξm{j1,...,js}.

Proof. Let {1, . . . ,m} = {i1, . . . , il} t {j1, . . . , js}. Recall that by relation (5.1.4), ∆φ =
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(φ⊗ φ)∆. In general, this implies that ∆m−1φ = φ⊗m∆m−1. We compute

ξmi1,...,il = φi1,...,il∆
m−1u

= φi1,...,il∆
m−1φ2u

= φi1,...,ilφ
⊗m∆m−1φu

= (c1φ⊗ . . . cmφ)∆m−1u,

= ξmj1,...,js ,

where we are also using the relations φ2 = id, φu = u, and that ckφ = φ if k 6∈ {i1, . . . , il}

and ckφ = id if k ∈ {i1, . . . , il}.

Example 5.1.9. To illustrate the previous Lemma, we show that ξ4
{1,3} = ξ4

{2,4} using graph-

ical calculus:

ξ4{1,3} = ↔

↔

= ↔ ↔
↔

↔

= ↔
↔

↔

↔

↔

↔

↔

↔

=
↔

↔

=
↔

↔

↔

↔

↔

↔

=
↔

↔

= ξ4{2,4} .

Remark 5.1.10. We note that Lemma 5.1.8 generalizes to any genus. That is, if ξm{i1,...,il},g

denotes the connected cobordism in HomUCob2(0,m) that has genus g ≥ 0, and orientation

reversing cylinders in its out part exactly in the positions 1 ≤ i1 < · · · < il ≤ m, then

ξm{i1,...,il},g = ξm{j1,...,js},g,

where {1, . . . ,m} = {i1, . . . , il} t {j1, . . . , js}. We leave the proof to the reader.
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5.1.2 Unorientable connected cobordisms with boundary

We describe now connected cobordisms with boundary in UCob2 that have at least one

crosscap, i.e., unorientable ones.

Proposition 5.1.11. Any unorientable connected cobordism with bounday m→ n in UCob2

can be decomposed in three parts, as follows:

♦ The in part, which consists of one or two crosscaps, followed by a composition of

reverse pairs of pants.

♦ The mid part, given by a composition of handles (this part is empty when the genus is

zero).

♦ The out part, which is either:

• a cap, when n = 0, or

• a composition of pairs of pants 1→ n.

Example 5.1.12. Shown in Figure 5.1.2 is an example of a connected unorientable cobor-

dism 2→ 3 of genus 3 and two crosscaps.

Proof. Unorientable cobordisms have at least one crosscap. By relation (5.1.7), if we have

three crosscaps we can replace them by a handle with a crosscap. Hence, we can always

reduce to having either one or two crosscaps. On the other hand, relations (5.1.6) can be

used to get rid of orientation reversing cylinders, as they either disappear or get replaced by

two crosscaps. Lastly, analogously to the orientable case in Proposition 5.1.2, we can move

pairs of pants (respectively, reverse pairs of pants) to the out part (respectively, to the in

part) forming handles in the mid part.
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,

︸ ︷︷ ︸
in

︸ ︷︷ ︸
mid

︸ ︷︷ ︸
out

Figure 5.4: Example of a connected unorientable cobordism 2→ 3.

5.1.3 Closed connected components.

It will be convenient to divide closed connected surfaces in three types, according to their

number of crosscaps.

♦ Type 1: orientable surfaces of genus g, denoted Mg, for all g ≥ 0. See the figure below

illustrations for g = 1, 2 and 3, respectively:

M1M0 M2

.

Figure 5.5: Orientable closed surfaces with no crosscaps

♦ Type 2: unorientable surfaces with one crosscap and genus g, denoted M1
g , for all

g ≥ 0. See below illustrations for g = 1, 2 and 3, respectively:
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M1
0 M1

1 M1
2

.

Figure 5.6: Unorientable closed surfaces with one crosscap

♦ Type 3: unorientable surfaces with two crosscaps and genus g, denoted M2
g , for all

g ≥ 0. See below illustrations for g = 1, 2 and 3, respectively:

M2
0 M2

1 M2
2

.

Figure 5.7: Unorientable closed surfaces with two crosscaps

5.2 The category VUCobα,β,γ

Given three sequences α = (α0, α2, . . . ), β = (β0, β1, . . . ) and γ = (γ0, γ1, . . . ) with αi, βi, γi ∈

k, we define a linearization of the category UCob2, denoted by VUCobα,β,γ. This is the

analogue of the linearization of Cob2 by a sequence α denoted VCobα in [27] and Cob′α in

[28].

Definition 5.2.1. We define VUCobα,β,γ as the category with:

• Objects: Same as in UCob2, objects are non-negative integers.
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• Morphisms: Morphisms m→ n are k-linear combinations of unoriented 2-cobordisms

m→ n, modulo the following relations. For the connected closed cobordisms Mg,M
1
g

and M2
g as in Subsection 5.1.3, we set

Mg = αg, M1
g = βg and M2

g = γg.

• Composition: Given by glueing as induced from UCob2, followed by evaluating closed

components.

By our definition, a closed surface M in UCob2 is evaluated to

M 7→
∏
g≥0

αagg β
bg
g γ

cg
g , (5.2.1)

in VUCobα,β,γ, where ag, bg, cg ∈ Z≥0 denote the number of connected components of type

Mg,M
1
g and M2

g of M , respectively.

The category VUCobα,β,γ is a rigid symmetric k-linear monoidal category, with tensor

product and braiding induced from those on UCob2. We call a 2-dimensional cobordism

viewable if it has no closed components. Thus morphisms m → n in VUCobα,β,γ are linear

combinations of unoriented viewable cobordisms m → n. Since a cobordism can have any

number of handles, Hom spaces in this category are infinite-dimensional.

Definition 5.2.2. Let n ≥ 0. We define a trace

tr = trα,β,γ : HomVUCobα,β,γ (n, n)→ k,

as follows. Closing an unoriented cobordism M from n → n by connecting its n source

circles with its n target circles via n annuli results in an unoriented closed connected surface

M ′. Then trα,β,γ(M) is the evaluation of M ′ as in equation (5.2.1).
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Example 5.2.3. Consider the map M ′ ∈ Hom(2, 2) given in the following picture,

M ′ := =⇒ M =

Figure 5.8: Closing a cobordism by attaching annuli

In this case, tr(M ′) = β2.

Definition 5.2.4. The sequences (α, β, γ) determine a k-bilinear symmetric form

(·, ·)α,β,γ : HomVUCobα,β,γ (0,m)× HomVUCobα,β,γ (0,m)→ k,

as follows. Given S1, S2 unoriented cobordisms 0→ m, define

(S1, S2)α,β,γ := (S1, S2) = trα,β,γ((−S1) t S2),

where (−S1)tS2 is the closed surface obtained by gluing the m target circles of S1 with the

respective m target circles of S2, and trα,β,γ is as in Definition 5.2.2. Then extend linearly

to all of HomVUCobα,β,γ (0,m).

The notion of trace above is the analogue of the one defined for oriented cobordisms in

[27, Section 2.1].

Example 5.2.5. Consider the cobordisms

M := and N := .
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Then

M tN = ; ,

and the last cobordism has trace β1. Hence

(M,N) = β1.

We distinguish the following morphisms in HomVUCobα,β,γ (1, 1):

Handle

x : 1
∆−→ 1⊗ 1

m−→ 1

,

Cross

y : 1
∼−→ 0⊗ 1

θ⊗1−−→ 1⊗ 1
m−→ 1

,

Cup-Cap

c : 1
ε−→ 0

u−→ 1

. (5.2.2):=

Note that xn, xny and xny2 are connected cobordisms 1 → 1 of genus n and 0, 1 and 2

crosscaps, respectively. To take trace, we close these cobordisms by an annulus connecting

their in and out boundaries, obtaining a connected closed surface of genus n+1 and 0, 1 and

2 crosscaps, respectively, see Definition 5.2.2. Hence

tr(xn) = αn+1, tr(xny) = βn+1 and tr(xny2) = γn+1, for all n ∈ Z≥0.

Example 5.2.6. The cobordisms

xnu =︸ ︷︷ ︸
n

. . . =︸ ︷︷ ︸
n

. . . ↔ ,

xnyu = ︸ ︷︷ ︸
n

. . . ,
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xny2u = ︸ ︷︷ ︸
n

. . . ,

for n ≥ 0, generate HomVUCobα,β,γ (0, 1) as a vector space, see Propositions 5.1.2 and 5.1.11.

Example 5.2.7. The cobordisms

xn =︸ ︷︷ ︸
n

. . . , ↔xnφ = ︸ ︷︷ ︸
n

. . . ,

xny = ︸ ︷︷ ︸
n

. . . , xny2 = ︸ ︷︷ ︸
n

. . . ,

yixncxmyj, where xncxm =︸ ︷︷ ︸
m

. . . . . . ,︸ ︷︷ ︸
n

for n ≥ 0 and i, j = 0, 1, 2, generate EndVUCobα,β,γ (1) as a vector space, see Propositions

5.1.2 and 5.1.11.

5.2.1 A distinguished subset in HomVUCobα,β,γ(0,m)

We prove a technical result in Theorem 5.2.10, describing a linearly independent subset of

orientable maps in HomVUCobα,β,γ (0,m) for all m ∈ Z≥0, which will be useful later.

Let m ∈ Z≥0 and let Pm denote the power set of {1, . . . ,m}. We define an equivalence

relation ∼ in Pm by

J ∼ I iff J = I or J = Ic, for all J ∈ Pm.
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Let Rm denote the set of equivalence classes given by this relation. Note that the size of

this set is |Rm| = 2m−1 if m > 0.

Definition 5.2.8. Let ξm{i1,...,il} ∈ HomVUCobα,β,γ (0,m) denote the connected cobordism that

has genus zero and orientation reversing cylinders exactly in the positions 1 ≤ i1, . . . , il ≤ m,

for 1 ≤ l ≤ m, see Definition 5.1.7. By Lemma 5.1.8, for each J ∈ Rm we have a well-defined

connected cobordism

ξm
J

: 0→ m,

where J denotes the class of J ∈ Pm in Rm.

We will need the following auxiliary Lemma.

Lemma 5.2.9. Let a, b ∈ k×, and let A be the n× n matrix given by

A :=



a b . . . b

b a
. . . b

...
. . . . . .

...

b . . . b a


.

That is, A has a’s on the diagonal and b’s everywhere else. Then

det(A) = (a− b)n−1 · (a+ (n− 1)b).

Proof. We start by adding columns 2 to n to the first column in the matrix, obtaining

a+ (n− 1)b b . . . b

a+ (n− 1)b a
. . . b

...
. . .

...

a+ (n− 1)b b . . . a


.
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Now, substracting from rows 2 to n the first row, we get

a+ (n− 1)b b . . . b

0 a− b 0 . . . 0

... 0
. . .

...

. . . . . . 0

0 0 . . . 0 a− b


,

which has determinant (a− b)n−1 · (a+ (n− 1)b), as desired.

Theorem 5.2.10. Let α, β and γ be sequences in k, and let m ≥ 2. Suppose that

αm−1 6= γm−2, (1− 2m−1)γm−2. (5.2.3)

Then the set {ξm
J

: J ∈ Rm}, as given in Definition 5.2.8, is a linearly independent subset

of HomVUCobα,β,γ (0,m).

Proof. Fix m ≥ 2. We want to compute the matrix of inner products (see Definition 5.2.4)

for cobordisms in the set {ξm
J

: J ∈ Rm}.

Let J, L ∈ Rm, with J 6= L. Since φ is an involution then the inner product of ξm
J

with

itself results in the surface of type Mm−1, see Subsection 5.1.3, which evaluates to αm−1.

On the other hand, relations (5.1.6) imply that the inner product of ξm
J

and ξm
L

results in

the surface of type M2
m−2, which evaluates to γm−2. Hence, the resulting matrix of inner

products is the 2m−1 × 2m−1 matrix given by

M :=



αm−1 γm−2 . . . γm−2

γm−2 αm−1
. . . γm−2

...
. . . . . .

...

γm−2 . . . γm−2 αm−1


.
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By Lemma 5.2.9, this matrix has determinant

det(M) = (αm−1 − γm−2)2m−1−1 · (αm−1 + (2m−1 − 1)γm−2),

and thus cobordisms in the set {ξm
J

: J ∈ Rm} are linearly independent, since by assumption

αm−1 6= γm−2 and αm−1 6= (1− 2m−1)γm−2.

We generalize the previous result to any genus. For g ∈ N. Consider the maps ξm{i1,...,il},g
∈

HomVUCobα,β,γ (0,m), where ξm{i1,...,il},g
represents the connected cobordism of genus g that

has orientation reversing cylinders exactly in the positions 1 ≤ i1 < · · · < il ≤ m, where

1 ≤ l ≤ m. Note that this is well defined by Remark 5.1.10.

Theorem 5.2.11. Let α, β and γ be sequences in k, and let m ≥ 2, g ≥ 1. Suppose that

α2g+m−1 6= γm−2, (1− 2m−1)γ2g+m−2. (5.2.4)

Then the set {ξm
J,g

: J ∈ Rm} is a linearly independent subset of HomVUCobα,β,γ (0,m).

Proof. Fix m ≥ 2, g ≥ 1. We want to compute the matrix of inner products of the set

{ξm
J,g

: J ∈ Rm}. Same as in the proof of Proposition 5.2.10, this matrix has size 2m−1×2m−1

and is given by

M :=



α2g+m−1 γ2g+m−2 . . . γ2g+m−2

γ2g+m−2 α2g+m−1
. . . γ2g+m−2

...
. . . . . .

...

γ2g+m−2 . . . γ2g+m−2 α2g+m−1


.
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Thus by Lemma 5.2.9 it has determinant

det(M) = (α2g+m−1 − γ2g+m−2)2m−1−1 · (α2g+m−1 + (2m−1 − 1)γ2g+m−2).

The result follows.

5.3 The skein category SUCobα,β,γ

Given three sequences α = (α0, α2, . . . ), β = (β0, β1, . . . ), and γ = (γ0, γ1, . . . ), with

αi, βi, γi ∈ k, we define a rigid symmetric k-linear monoidal category with finite dimen-

sional Hom spaces, denoted by SUCobα,β,γ. This is the analogue of the category SCobα in

[27], and Cobα in [28].

Definition 5.3.1. We say that a sequence η = (η0, η1, . . . ) in k satifies a linear recurrence

(or is linearly recurrent) if there exist fixed K ≥ r and a1, . . . , ar ∈ k, such that

ηl = a1ηl−1 + · · ·+ arηl−r, for all l ≥ K. (5.3.1)

A sequence η is linearly recurrent if and only if it has a rational generating function

Zη(T ) =
pη(T )

q(T )
=
∑
k≥0

ηkT
k,

where pη(T ), q(T ) ∈ k[T ] are relatively prime, see for example [25]. Normalizing so that

q(0) = 1, the polynomials pη(T ) and q(T ) are uniquely determined by the sequence η.

Assume from now on that

Zη(T ) =
pη(T )

q(T )
=
∑
k≥0

ηkT
k, (pη(T ), q(T )) = 1, q(0) = 1, (5.3.2)
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and let

N = deg(pη(T )), M = deg(q(T )), and K = max(N + 1,M). (5.3.3)

Then, if

q(T ) = 1− a1T + a2T
2 + · · ·+ (−1)MaMT

M , (5.3.4)

we have that

ηl = a1ηl−1 − a2ηl−2 + · · ·+ (−1)M−1aMηl−M , for all l ≥ K. (5.3.5)

Now we apply this to our sequences (α, β, γ). We want to take the category VUCobα,β,γ

and quotient by relations defined by the sequence α in order to get finite dimensional Hom

spaces.

Assume from now on that α is linearly recurrent, with generating function satisfying

(5.3.2) and (5.3.4). Recall that in the category VUCobα,β,γ we have a trace, see Definition

5.2.2. Let x denote the handle cobordism, as defined on (5.2.2). It follows from the linear

recurrence on α, see equation (5.3.5), that the trace of the map σ given by

σ := xK +
M∑
i=1

(−1)iaix
K−i, (5.3.6)

where K is as in (5.3.3), is zero in VUCobα,β,γ, see also [26, Section 2.4]. We call the equation

σ = 0 the handle relation.

We want to show that by imposing conditions on β and γ, the quotient of VUCobα,β,γ

by the tensor ideal generated by σ will be non-trivial. Recall that the set of all negligible

morphisms in a spherical category C is a proper tensor ideal, see Section 2.2.12. Hence, if σ is

negligible, then the quotient of VUCobα,β,γ by the tensor ideal generated by σ is non-trivial.
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We prove in what follows that, under certain conditions on α, β and γ, the handle morphism

σ is negligible. We will need the following auxiliary Lemma.

Lemma 5.3.2. Fix an integer B ≥ 0. Let η be a linearly recurrent sequence in k, with

generating function

Zη(T ) =
pη(T )

q(T )
, where pη(T ), q(T ) ∈ k[T ].

Let q(T ) = q0 + q1T + · · · + qLT
L, for q0, . . . , qL−1 ∈ k and qL ∈ k×. A sequence µ in k

satisfies

l∑
j=0

ql−jµj = 0, for all l ≥ B,

for some B ≥ 0, if and only if it has a generating function

Zµ(T ) =
pµ(T )

q(T )
,

for some pµ(T ) ∈ k[T ] with deg(pµ(T )) < B.

Proof. Define

pµ(T ) :=

(∑
j≥0

µjT
j

)
qη(T ).

Then

l∑
j=0

ql−jµj = 0, for all l ≥ B,

is equivalent to pµ(T ) being a polynomial of degree at most B − 1, as desired.

As a consequence, we get the following.
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Lemma 5.3.3. Consider a linearly recurrent sequence α in k, with generating function

satisfying (5.3.2), (5.3.3) and (5.3.4). Let β and γ be sequences in k with generating functions

Zβ(T ) =
pβ(T )

q(T )
=
∑
k≥0

βkT
k and Zγ(T ) =

pγ(T )

q(T )
=
∑
k≥0

γkT
k,

respectively, where pβ(T ), pγ(T ) ∈ k[T ] satisfy

deg(pβ(T )), deg(pγ(T )) < K = max(N + 1,M).

Then the handle morphism σ from (5.2.2) is negligible in VUCobα,β,γ.

Proof. We want to show that the trace of σ ◦ z is zero for every z ∈ EndVUCobα,β,γ (1, 1). By

Example 5.2.7, it is enough to show that the traces of σxnyi, σxnφ and σyixmuxnyj are zero

for all m,n ≥ 0 and i, j = 0, 1, 2.

As in Equation (5.3.5), we have that

αl +
M∑
s=1

(−1)sasαl−s = 0, for all l ≥ K.

On the other hand, since deg(pβ(T )), deg(pγ(T )) ≤ K, taking B = K in Lemma 5.3.2 we get

βl +
M∑
s=1

(−1)sasβl−s = 0 and γl +
M∑
s=1

(−1)sasγl−s = 0, for all l ≥ K.

Using this, we compute

tr(σyixn) =



αK+n+1 −
M∑
s=1

asαK+n+1−s = 0 if i = 0,

βK+n+1 −
M∑
s=1

asβK+n+1−s = 0 if i = 1,

γK+n+1 −
M∑
s=1

asγK+n+1−s = 0 if i = 2.
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On the other hand

tr(σyixmuxnyj) =



αK+n+m −
M∑
s=1

asαK+n+m−s = 0 if i = j = 0,

βK+n+m −
M∑
s=1

asβK+n+m−s = 0 if i = 0, j = 1, or i = 1, j = 0,

γK+n+m −
M∑
s=1

asγK+n+m−s = 0 if i = 2, j = 0, or i = 0, j = 2,

or i = j = 1,

βK+n+m+1 −
M∑
s=1

asβK+n+m+1−s = 0 if i = 2, j = 1, or i = 1, j = 2,

γK+n+m+1 −
M∑
s=1

asγK+n+m+1−s = 0 if i = 2, j = 2.

Lastly, since closing the cobordism xnφ via an annulus between its boundary circles results

in the surface uxn+1ε, then tr(σxnφ) = tr(σxn) = 0 by the equations above, for all n ≥ 0.

Thus σ is negligible, as desired.

Definition 5.3.4. Let (α, β, γ) be as in Lemma 5.3.3. We define the unoriented skein

category SUCobα,β,γ as the quotient of VUCobα,β,γ by the tensor ideal generated by σ.

The category SUCobα,β,γ is a non-trivial rigid symmetric k-linear monoidal category, with

tensor product and braiding induced from VUCobα,β,γ. Hom spaces in SUCobα,β,γ consist

of linear combinations of unoriented cobordisms whose connected components have genus

strictly less than K. Thus they are finite dimensional.

Example 5.3.5. Consider the sequences α, β, γ with generating functions

Zα(t) =
α0

1− λt
, Zβ(t) =

β0

1− λt
, and Zγ(t) =

γ0

1− λt
,

respectively, for α0, β0, γ0, λ ∈ k×. That is,

α = (α0, λα0, λ
2α0, . . . ), β = (β0, λβ0, λ

2β0, . . . ), and γ = (γ0, λγ0, λ
2γ0, . . . ).
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Suppose that λα0 6= γ0 and γ0 6= ±
√
λβ0. Then HomSUCobα,β,γ (0, 1) has dimension 3, with

basis

u = θ = , θ[2] = := .

In fact, in this case K = 1 and the handle relation is

x− λid = 0,

see Equation (5.3.6). Hence, by definition, morphisms in SUCobα,β,γ are linear combinations

of cobordisms whose connected components have no handles. Hence, by Propositions 5.1.2

and 5.1.11, the set {u, θ, θ[2]} generates HomSUCobα,β,γ (0, 1). Moreover, the matrix of inner

product (see Definition 5.2.4) of this set is given by

A :=


α0 β0 γ0

β0 γ0 λβ0

γ0 λβ0 λγ0

 ,

with determinant

det(A) = α0(λγ2
0 − λ2β2

0) + γ0(λβ2
0 − γ2

0) = (α0λ− γ0)(γ2
0 − λβ2

0),

which is nonzero by our assumptions on α0, β0 and γ0. Hence {u, θ, θ[2]} is a basis for

HomSUCobα,β,γ (0, 1).

Definition 5.3.6. Let (α, β, γ) be as in Lemma 5.3.3. We denote by UCobα,β,γ the pseudo-

abelian envelope of SUCobα,β,γ, i.e.,

UCobα,β,γ = K(A(SUCobα,β,γ)),

see Definition 2.2.10.
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Thus, UCobα,β,γ is a pseudo-abelian (that is, additive and idempotent-complete) rigid

symmetric k-linear monoidal category, with finite dimensional Hom spaces. Our main results,

Theorems I and II, describe the relationship between these categories and Rep(St o Z2).

5.4 Universal properties

In this section we state the universal properties of the categories UCob2, VUCobα,β,γ and

SUCobα,β,γ. Let C be a symmetric monoidal category and let A be an Frobenius algebra in

C. Consider the following morphisms in EndC(A),

x : A
∆A−−→ A⊗ A mA−−→ A, and

y : A
∼−→ 1⊗ A θA⊗1−−−→ A⊗ A mA−−→ A.

(5.4.1)

We define

an := εAx
nuA, bn := εAx

nyuA, and cn := εAx
ny2uA ∈ EndC(1C) for all n ∈ Z≥0.

Since k ' EndC(1C), we have that an = αnid1C , bn = βnid1C and cn = γn Id1C , for some

αn, βn, γn ∈ k. The sequences α := (αn)n≥0, β := (βn)n≥0 and γ := (γn)n≥0 will be called

the evaluation of A, and we say that A is a realization of (α, β, γ) if the evaluation of A is

(α, β, γ).

Proposition 2.4.8 induces an equivalence of categories{
symmetric monoidal functors UCob2 → C

}
↔
{

extended Frobenius algebras in C
}
.

Proposition 5.4.1. When C is a tensor category, this results in an equivalence of categories
symmetric tensor functors

VUCobα,β,γ → C

↔


extended Frobenius algebras in C

with evaluation (α, β, γ)

 . (5.4.2)
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Proof. Let F : VUCobα,β,γ → C be a symmetric tensor functor and let A = F (1) be the

corresponding extended Frobenius algebra in C. Note that

an = εAx
nuA = F (ε)(F (m)F (∆))nF (u) = F (ε(m∆)nu) = F (αn) = αn.

Similarly, bn = βn and cn = γn. Hence A has evaluation (α, β, γ).

Conversely, let A be an extended Frobenius algebra in C with evaluation (α, β, γ), and

let FA : UCob2 → C be the symmetric tensor functor mapping 1 → A and the gener-

ators of UCob2 to the corresponding structure maps of A. Then FA(ε(m∆)nu) = αn,

FA(ε(m∆)nyu) = βn and FA(ε(m∆)ny2u) = γn. Hence FA factors through a symmetric

tensor functor FA : VUCobα,β,γ → C, as desired.

Given an extended Frobenius algebra A with extended evaluation (α, β, γ) in C, denote by

FA : VUCobα,β,γ → C the corresponding functor mapping 1 to A. For (α, β, γ) as in Lemma

5.3.3, FA factors through SUCobα,β,γ if and only if FA annhiliates the handle polynomial, see

Equation (5.3.6). When C is pseudo-abelian, there is a unique extension FA : UCobα,β,γ → C.

5.4.1 Finite realizations

Let A ∈ C be an extended Frobenius algebra with evaluation (α, β, γ). We say that the

realization is finite if the Hom spaces Hom(1, A⊗n) in C are finite dimensional.

The following theorem is the unoriented analogue of [27, Theorem 3.1].

Theorem 5.4.2. The tuple (α, β, γ) admits a finite realization if and only if the following

conditions hold:
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• α is linearly recurrent, with generating function Zα(T ) satisfying

Zα(T ) =
pα(T )

q(T )
, (pα(T ), q(T )) = 1 and q(0) = 1;

• β and γ have generating functions

Zβ(T ) =
pβ(T )

q(T )
and Zγ(T ) =

pγ(T )

q(T )
,

where deg(pβ(T )), deg(pγ(T )) ≤ max(deg(pα(T )) + 1, deg(q(T ))).

Proof. Assume first that (α, β, γ) admits a finite realization A in C. Consider the map

x ∈ EndC(A) as defined in (5.4.1). Since by assumption tr(xn) = αn, we aim to find a linear

relation satisfied by powers of x, and thus also by α.

Since EndC(A) = HomC(1, A
⊗2) is finite dimensional, there exists a minimal polynomial

m(T ) ∈ k[T ] for x. As m(x) = 0, then xlm(x) = 0 for all l ≥ 0. Taking trace on both sides

of these equations yields a linearly recurrent relation with coefficients in k satisfied by αl,

for all l ≥ deg(m(T )). That is, α is linearly recurrent, and thus has a generating function

Zα(T ) =
pα(T )

q(T )
=
∑
n≥0

αnT
n, where (pα(T ), q(T )) = 1 and q(0) = 1. (5.4.3)

Let N = deg(pα(T )),M = deg(q(T )), and K = max(N + 1,M). Since the first term at

which the recurrence happens is αK , we must have K = deg(m(T )).

We now want to compute generating functions for β and γ. Let y as in (5.4.1). Recall

that tr(yxn) = βn and tr(y2xn) = γn, for all n ≥ 0. Since yxim(x) = 0 and y2xim(x) = 0,

taking traces on these equations we obtain linear relations satisfied by βl and γl, for l ≥ K,

equal to the ones satisfied by α. Hence by Lemma 5.3.2, β and γ have generating functions

Zβ(T ) =
pβ(T )

q(T )
and Zγ(T ) =

pγ(T )

q(T )
,

with deg(pβ(T )), deg(pγ(T )) < K, as desired.
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Conversely, assume α, β and γ are as in the statement. Under these assumptions, Lemma

5.3.3 implies that the cobordism σ is negligible, and thus we can quotient VUCobα,β,γ by

the handle relation. The resulting category SUCobα,β,γ (see Section 5.3), with extended

Frobenius algebra given by the circle S1, equipped with the orientation reversing diffeomor-

phism φ : S1 → S1 and the Möebius band θ : ∅ → S1, gives a finite extended realization of

(α, β, γ).

5.5 Exterior product decompositions

This section is the analogue of [27, Section 2.4] for the unoriented case. We want to show a

decomposition of UCobα,β,γ as an exterior product of categories.

Let C be a symmetric k-linear monoidal category and consider an extended Frobenius

algebra A ∈ C with evaluation (α, β, γ). Suppose A has finite dimensional Hom spaces and

let

Zα(T ) =
pα(T )

q(T )
, Zβ(T ) =

pβ(T )

q(T )
and Zγ(T ) =

pγ(T )

q(T )
, (5.5.1)

be the generating functions of α, β and γ, respectively, satisfying the conditions of Theorem

5.4.2. That is, deg(pβ(T )), deg(pγ(T )) ≤ max(deg(pα(T )), deg(q(T )) + 1).

Consider the algebra homomorphism

Ψ : HomC(1, A)→ EndC(A),

induced from the action of HomC(1, A) on A. Let mA,∆A, uA, θA denote the multiplication,

comultiplication, unit and crosscap morphisms of A, respectively. Define the handle x0 :=

mA∆AuA and cross y0 := mA∆AθA morphisms of A, which are in HomC(1, A). We denote
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by A0 the subalgebra of HomC(1, A) generated by x0. Since A0 is finite dimensional, x0 has

a minimal (monic) polynomial m(T ), where

q(T ) = T dm(T−1), d = deg(m(T )). (5.5.2)

Let e ∈ A0 be an idempotent. Then Ψ(e)A is an extended Frobenius subalgebra of A

with cross morphism Ψ(e)(θA) and unit Ψ(e)(uA), and we have a decomposition

A = Ψ(e)A⊕Ψ(1− e)A,

as a direct sum of extended Frobenius subalgebras. We denote their handle endomorphisms

by x′0 and x′′0, and their evaluations by (α′, β′, γ′) and (α′′, β′′, γ′′), respectively.

Lemma 5.5.1. If Zα(T ), Zβ(T ), Zγ(T ) are the generating functions of (α, β, γ), then the

generating functions Z ′α, Z
′
β, Z

′
γ and Z ′′α, Z

′′
β , Z

′′
γ of Ψ(e)A and Ψ(1−e)(A), respectively, satisfy

Zα(T ) = Z ′α(T ) + Z ′′α(T ), Zβ(T ) = Z ′β(T ) + Z ′′β(T ), and Zγ(T ) = Z ′γ(T ) + Z ′′γ (T ).

Proof. We compute

β′′n = ε(y0(x′′0)n) = ε(y0(1− e)xn0 ) = ε(y0x
n
0 )− ε(y0ex

n
0 ) = βn − ε(y0(x′0)n) = βn − β′n.

That is, βn = β′n + β′′n, and so the statement follows for β. Analogously, we have that

αn = α′n + α′′n and γn = γ′n + γ′′n,

and so it is also true for α and γ.

Remark 5.5.2. The parametrization of idempotents given in [27, Section 2.4] is still true

in this context. That is, idempotents e ∈ A0 are labelled by factorizations

m(T ) = m′(T )m′′(T ), (5.5.3)
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where m′(T ) and m′′(T ) are relatively prime. This labelling goes as follows. Given said

factorization, we have that e = a(x0)m(x0) is an idempotent, where a(T ), b(T ) ∈ k[T ]

satisfy a(T )m′(T ) + b(T )m′′(T ) = 1. Conversely, given an idempotent e = s(x0), setting

m′(T ) = gcd(m(T ), s(T )) and m′′(T ) = gcd(m(T ), 1−s(T )), we get the desired factorization.

Note that a factorization (5.5.3) induces a factorization

q(T ) = q′(T )q′′(T ),

where q′(T ), q′′(T ) are determined by m(T ) and m′(T ) as in (5.5.2). By assumption, m′(T )

and m′′(T ) are relatively prime, and thus we may assume that T does not divide m′(T ). It

follows that we have partial fraction decompostitions

Zα(T ) =
v′α(T )

q′(T )
+
v′′α(T )

q′′(T )
=: Z ′α(T ) + Z ′′α(T ),

Zβ(T ) =
v′β(T )

q′(T )
+
v′′β(T )

q′′(T )
=: Z ′β(T ) + Z ′′β(T ), and,

Zγ(T ) =
v′γ(T )

q′(T )
+
v′′γ(T )

q′′(T )
=: Z ′γ(T ) + Z ′′γ (T ),

(5.5.4)

so that Z ′α(T ), Z ′β(T ) and Z ′γ(T ) are proper fractions, but Z ′′α(T ), Z ′′β(T ) and Z ′′γ (T ) may not

be proper.

Remark 5.5.3. Since m′′(x′′0) = 0, we get equations (x′′0)nm′′(x′′0) = 0, y(x′′0)nm′′(x′′0) = 0 and

y2(x′′0)nm′′(x′′0) = 0, for all n ≥ 0. From the first set of equations we get the linear recurrence

relation satisfied by the sequence α′′, which begins at K = max(deg(v′′α(T )) + 1, q′′(T )). The

other two sets of equations imply that β and γ also satisfy this recurrence relation, and thus

by Lemma 5.3.2 we must have

deg(v′′β(T )), deg(v′′γ(T )) ≤ K.

144



The same can be done for α′, β′, γ′. That is, we get that

deg(v′β(T )), deg(v′γ(T )) ≤ K.

This will be important to us due to Lemma 5.3.3.

The following proposition is the analogue of [27, Proposition 2.6] for the case of extended

Frobenius algebras. The proof is analogous but we include it for the sake of completeness.

Proposition 5.5.4. If the generating functions of (α, β, γ) are as in (5.5.1), then the gen-

erating functions for the evaluations (α′, β′, γ′) and (α′′, β′′, γ′′) of Ψ(e)A and Ψ(1 − e)(A)

are Z ′α(T ), Z ′β(T ), Z ′γ(T ) and Z ′′α(T ), Z ′′β(T ), Z ′′γ (T ) as given in (5.5.4), respectively.

Proof. Let

x′0 = ex0, y
′
0 = ey0 and x′′0 = (1− e)x0, y

′′
0 = (1− e)y0,

be the handle and cross endomorphisms of Ψ(e)A and Ψ(1 − e)A, respectively. Let s(T ) ∈

k(T ) be such that e = s(x0) ∈ A0. The extended evaluation of Ψ(e)(A) is given by

α′n = ε(x′0)nu = ε(exn0 )u = ε(s(x0)xn0 )u,

β′n = ε(y0x
′
0)nu = ε(ey0x

n
0 )u = ε(s(x0)y0x

n
0 )u,

γ′n = ε(y2
0x
′
0)nu = ε(ey2

0x
n
0 )u = ε(s(x0)y2

0x
n
0 )u,

(5.5.5)

and thus it is uniquely determined by e. Analogously, the extended evaluation of ψ(1− e)A

is uniquely determined by e. By Remark 5.5.2, this implies that the extended evaluations of

ψ(e)A and ψ(1− e)A are uniquely determined by the factorization of m(T ).

Since the evaluations depend only on the factorization of m(T ), we may compute them

in a specific setting. Consider symmetric k-linear monoidal categories C ′ and C ′′. Let A′ ∈ C ′
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and A′′ ∈ C ′′ be extended Frobenius algebras such that the generating functions of their

evaluations are Z ′α(T ), Z ′β(T ), Z ′γ(T ) and Z ′′α(T ), Z ′′β(T ), Z ′′γ (T ) as in (5.5.4), respectively, and

their handle endomorphisms x′0 and x′′0 have minimal polynomials m′(T ) and m′′(T ) as in

(5.5.3). By Remark 5.5.3 and Section 5.3, we know such categories exist, see Definition 5.3.4.

Denote by y′0 and y′′0 the cross endomorphisms of A′ and A′′.

Let C ′ � C ′′ be the external tensor product of C ′ and C ′′ [37, Section 2.2], and consider

the object

A := (A′ � 1)⊕ (1� A′′) ∈ C ′ � C ′′,

with extended Frobenius algebra structure induced from that of A′ and A′′. Then the handle

and cross endomorphisms of A are x0 = x′0 ⊕ x′′0 and y0 = y′0 ⊕ y′′0 , respectively, and the

generating functions of A are

Zα = Z ′α + Z ′′α, Zβ = Z ′β + Z ′′β , and Zγ = Z ′γ + Z ′′γ .

Since m′(T ) and m′′(T ) are relatively prime, the minimal polynomial of x0 is m(T ) =

m′(T )m′′(T ). The idempotents determined by them (see Remark 5.5.2) are the units of

A′ � 1 and 1 � A′′, respectively. Thus, the respective evaluations can be computed as in

(5.5.5), and the result follows.

We list in what follows a series of results from [27, Section 2.6] that still hold in our

context. From now on, let (α′, β′, γ′) and (α′′, β′′, γ′′) have generating functions as in (5.5.4)

(satisfying the conditions in Remark 5.5.3). Let

SUCob′ := SUCobα′,β′,γ′ and SUCob′′ := SUCobα′′,β′′,γ′′ .
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Denote by A′ and A′′ the extended Frobenius algebras in SUCob′ and SUCob′′ given by

the circle object with structure maps the generating cobordisms of SUCob′ and SUCob′′,

respectively. Consider also the category SUCob′�SUCob′′ with extended Frobenius algebra

A := A′ � 1⊕ 1� A′′, (5.5.6)

and denote by U(T ) the minimal polynomial for its handle endomorphism. Define

α := α′ + α′′, β := β′ + β′′ and γ = γ′ + γ′′, (5.5.7)

so that A has extended evaluation (α, β, γ).

Lemma 5.5.5. [27, Lemma 2.8] Let m′(T ) and m′′(T ) denote the handle polynomials of A′

and A′′, respectively. Then

U(T ) = lcm(m′(T ),m′′(T )).

Corollary 5.5.6. [27, Corollary 1] Consider the category SUCobα,β,γ with extended Frobe-

nius algebra A, for α, β and γ as in (5.5.7). The minimal polynomial mα(T ) for its handle

endomorphism is a divisor of U(T ).

The following Proposition is the analogue of [27, Proposition 2.10] for the unoriented

case.

Proposition 5.5.7. With the notation above, U(T ) = mα(T ) iff there exists a functor

F : SUCobα,β,γ → SUCob′� SUCob′′, (5.5.8)

mapping the extended Frobenius algebra A given by the circle object of SUCobα,β,γ to A, see

(5.5.6), and the extended Frobenius structure maps of A to the ones of A.
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Proof. Since both A and A have extended evaluation (α, β, γ), by the universal property (see

Section 5.4), there exists a symmetric k-linear monoidal functor F : VUCobα,β,γ → SUCob′�

SUCob′′ as described. Let x0 and z0 denote the handle endomorphisms of SUCobα,β,γ and

SUCob′� SUCob, respectively. Then F factors through SUCobα,β,γ if and only if F maps

mα(x0) 7→ 0. If U(T ) = mα(T ), then F (mα(x0)) = mα(z0) = U(z0) = 0. For the converse, if

the functor F factors, then mα(z0) = 0, and so by Corollary 5.5.6 we must have mα(T ) =

U(T ).

Assume from now on that mα(T ) = U(T ). The following is the analogue of [27, Propo-

sition 2.14].

Proposition 5.5.8. With the notation above, the functor (5.5.8) induces an equivalence of

pseudo-abelian symmetric k-linear monoidal categories

F : UCobα,β,γ
∼−→ UCob′�UCob′′ .

Proof. Consider the functor F : SUCob(α,β,γ) → SUCob′�SUCob′′ as in (5.5.8), which maps

A 7→ A. Taking the pseudo-abelian envelope, we get an induced functor

F : UCobα,β,γ → UCob′ � UCob′′.

On the other hand, consider the factorization mα(T ) = m′(T )m′′(T ), which induces a

decomposition Zα(T ) = Zα′(T ) +Zα′′(T ) as in equation (5.5.4). By Remark 5.5.2 we have a

corresponding idempotent e ∈ Hom(1, A), and a decomposition

A = Ψ(e)A⊕Ψ(1− e)A,

where the generating functions of Ψ(e)A and Ψ(1 − e)A are as in Proposition 5.5.4. Note

that A′ in SUCob′ and Ψ(e)A in UCobα,β,γ have the same extended evaluation and thus by
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the universal property, see Section 5.4, there exists a symmetric k-linear monoidal functor

SUCob′ → UCobα,β,γ. Similarly, we have a functor SUCob′′ → UCobα,β,γ mapping A′′ 7→

Ψ(1− e)A. On the other hand, by the universal property of the external tensor product (see

[37, Section 2.2]), we have a symmetric k-linear monoidal functor

G : SUCob′ � SUCob′′ → UCobα,β,γ,

mapping A′�1 to Ψ(e)A and 1�A′ to Ψ(1− e)A. This induces a unique k-linear monoidal

functor from the pseudo-abelian closure of the source category,

G : UCob′ � UCob′′ → UCobα,β,γ .

Note that the compositions

UCobα,β,γ
F−→ UCob′ � UCob′′

G−→ UCobα,β,γ,

and

UCob′ � UCob′′
G−→ UCobα,β,γ

F−→ UCob′ � UCob′′,

map A to itself and A′ � 1 and 1� A′′ to themselves, respectively. Hence G ◦ F and F ◦G

are isomorphic (as k-linear monoidal functors) to the corresponding identity functor, and

the statement follows.
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Chapter 6

Equivalence with the category

Rep(St o Z2)

This chapter contains previously published material, which appeared in [12].

In this chapter, when we say C is a symmetric k-linear monoidal category we are also

assuming the bifunctor ⊗ is k-bilinear.

6.1 (Unoriented) orientable cobordisms

Let α be a linearly recurrent sequence in k. In this section, we define the category SOCobα,

obtained by modding out the crosscap cobordism θ. We also show that when specializing to

the sequence α = (α0, λα0, λ
2α0, . . . ), with α0, λ ∈ k× such that λα0 is not a non-negative

even integer, its pseudo-abelian envelope OCobα is equivalent to Rep(St o Z2), for t = λα0

2
.

Definition 6.1.1. Let α = (α0, α1, . . . ) be a linearly recurrent sequence in k, and let β =

γ = (0, 0, . . . ). We define the orientable skein category SOCobα, with:
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• Objects: Non-negative integers n ∈ Z≥0.

• Morphisms: HomSOCobα(m,n) is equal to HomSUCobα,β,γ (m,n) modulo the relation θ =

0.

• Composition: Induced from SUCobα,β,γ.

The category SOCobα is a rigid symmetric k-linear monoidal category. Morphisms in

SOCobα are k-linear combinations of orientable cobordisms without closed components and

genus at most K, for K as in (5.3.3). Hence, connected components of cobordisms in

SOCobα are as in Proposition 5.1.2. Same as in SUCobα,β,γ, Hom spaces in SOCobα are finite

dimensional. We denote its pseudo-abelian envelope by OCobα. We note that the category

SOCobα of orientable cobordisms is different from the category of oriented cobordisms, see

Example 6.1.2.

Let C be a symmetric k-linear monoidal category with an extended Frobenius algebra A,

such that A has extended evaluation α and β = γ = 0, with α linearly recurrent. Let FA :

VUCobα,β,γ → C be the symmetric k-linear monoidal functor given by the universal property

of VUCobα,β,γ, mapping 1 to A, see Section 5.4. Then FA factors through SUCobα,β,γ if and

only if FA annhiliates the handle polynomial, and through SOCobα if and only if it also

anhiliates θ, i.e, if and only if 0 = FA(θ) = θA. In such case, when C is pseudo-abelian there

is a unique extension FA : OCobα → C.
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Example 6.1.2. The cobordisms below

xn = ︸ ︷︷ ︸
n

. . .

,

φxn =

↔︸ ︷︷ ︸
n

. . .

,

xmuεxn = ︸ ︷︷ ︸
n

. . . ︸ ︷︷ ︸
m

. . .

,

for 0 ≤ n,m ≤ K, where K is as in (5.3.5), span EndSOCobα(1), see Proposition 5.1.2.

6.2 Preliminary results

Throughout this section, let k be an algebraically closed field of characteristic zero.

Let

α = (α0, λα0, λ
2α0, . . . ) and β = γ = (0, 0, . . . ),

for some α0, λ ∈ k×. Here, the generating function for α is given by

Zα(T ) =
α0

1− λT
.

Hence, SOCobα is the quotient of VUCobα,β,γ by the relations x− λ Id = 0 and θ = 0.

We are interested in finding a spanning set for HomSOCobα(0,m) for all m ∈ N. Let Wm

denote the subspace spanned by connected cobordisms in HomSOCobα(0,m). For m = 1,
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there is only one connected cobordism, namely u, see Section 5.1. Hence W1 has dimension

1.

Proposition 6.2.1. Let m ≥ 2. The set {ξm
J

: J ∈ Rm} from Definition 5.2.8 is a basis for

Wm. In particular, dim(Wm) = 2m−1.

Proof. We show first that {ξm
J

: J ∈ Rm} spans Wm. In fact, connected cobordisms in

SOCobα are orientable and thus they are of the form given in Proposition 5.1.2. Moreover,

by the relation x = λ Id, every handle gets replaced by a multiple of the identity and so

every cobordism has genus zero. Hence every connected cobordism 0→ m in SOCobα is in

the set {ξm
J

: J ∈ Rm}.

On the other hand, note that αm−1 = λm−1α0 6= 0, as α0, λ ∈ k×. Since the sequence

γ is constantly zero, by Theorem 5.2.10 cobordisms in the set {ξm
J

: J ∈ Rm} are linearly

independent.

Remark 6.2.2. Now that we have a basis for connected cobordisms 0→ m, we can describe

all cobordisms 0→ m as follows. For every partition P of {1, . . . ,m} and every p ∈ P , assign

a connected cobordism ξ
|p|
J

to p, where J ∈ R|p|. Then the set of cobordisms obtained by

running through all possible partitions P and all posible classes J ∈ R|p| for every p ∈ P

gives a spanning set for HomSOCobα(0,m).

Example 6.2.3. If λα0 6= 2, the following is a basis for HomSOCobα(0, 2):

, ,

↔

.

In fact, we know this is a spanning set by Remark 6.2.2. On the other hand, the matrix of
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inner products is given by

A =


α2

0 α0 α0

α0 α1 0

α0 0 α1

 ,

which has determinant

det(A) = α2
0α

2
1(α1 − 2) = λα3

0(λα0 − 2) 6= 0,

so the set is also linearly independent. Hence

dim(HomSOCobα(0, 2)) = 3.

Example 6.2.4. Suppose that λα0 6= 2, 4. Then the following is a basis for HomSOCobα(0, 3):

, , , ,

↔

,

↔

,

↔

, ,

↔

, ↔ ,

↔

.

Again, this is a spanning set by Proposition 5.1.2 and Remark 6.2.2. In this case, the matrix
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of inner products is

α3
0 α2

0 α2
0 α2

0 α2
0 α2

0 α2
0 α0 α0 α0 α0

α2
0 λα2

0 α0 α0 0 α0 α0 λα0 0 0 λα0

α2
0 α0 λα2

0 α0 α0 0 α0 λα0 λα0 0 0

α2
0 α0 α0 λα2

0 α0 α0 0 λα0 0 λα0 0

α2
0 0 α0 α0 λα2

0 α0 α0 0 λα0 λα0 0

α2
0 α0 0 α0 α0 λα2

0 α0 0 0 λα0 λα0

α2
0 α0 α0 0 α0 α0 λα2

0 0 λα0 0 λα0

α0 λα0 λα0 λα0 0 0 0 λ2α0 0 0 0

α0 0 λα0 0 λα0 0 λα0 0 λ2α0 0 0

α0 0 0 λα0 λα0 λα0 0 0 0 λ2α0 0

α0 λα0 0 0 0 λα0 λα0 0 0 0 λ2α0



,

which has determinant

λ6α11
0 (λα0 − 2)7(λα0 − 4).

Hence

dim(HomSOCobα(0, 3)) = 11.

Let P = {p1, . . . , pk} be a partition of {1, . . . ,m}, and let Ji ∈ R|pi| for all 1 ≤ i ≤

k. Denote by cP,J1,...,Jk the cobordism 0 → m with k connected components, where the

i-th component is of the form ξmi
Ji

, with out-boundary given by the circles in positions

ji,1, . . . , ji,mi , where pi = {ji,1, . . . , ji,mi}. For instance, in Example 6.2.4 the first and seventh

cobordisms are c{{1},{2},{3}},∅,∅,∅ and c{{1,3},{2}},{1},∅, respectively. Then a spanning set for
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HomSOCobα(0,m) is given by

Sm :=
{
cP,J1,...,Jk : P = {p1, . . . , pk} is a partition of {1, . . . ,m} and Ji ∈ R|pi| for 1 ≤ i ≤ k

}
,

(6.2.1)

see Remark 6.2.2.

Lemma 6.2.5. The determinant of the matrix of inner products of morphisms in Sm is a

non-zero polynomial on the variables λ and α0, for all m ≥ 1.

Proof. Fix m ≥ 1. Let A be the matrix of inner products of morphisms in Sm, and let

p(λ, α0) be its determinant as a polynomial on λ and α0. Note that to show p(λ, α0) is a

non-zero polynomial, it is enough to show that p(α0, α0) 6= 0. Hence we assume from now

on that λ = α0.

We will show that every row of A has the highest power of λ only in its diagonal entry.

Let c := cP,J1,...,Jk in Sm, and consider its corresponding row on A. Recall that, for any

d ∈ Sm, the inner product of c and d is given by evaluating the cobordism c t (−d), see

Definition 5.2.4. If c t (−d) is unorientable, then (c, d) = 0. Otherwise,

(c, d) = αl1 . . . αls = λl1+···+lsαs0 = αl1+···+ls+s
0 ,

where s is the number of connected components of c t (−d), and li is the genus of its i-th

component, for all 1 ≤ i ≤ s. That is, the power of α0 at the entry (c, d) will be the

sum of the genuses of the connected components of c t (−d) and the number of connected

components of c t (−d). Hence the highest it can be is

(|p1| − 1) + · · ·+ (|pk| − 1) + k = m− k + k = m.
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In fact, the number s of connected components of ct(−d) is at most the number of connected

components k of c, and the sum of the genuses is at most (|p1| − 1) + · · · + (|pk| − 1) since

that is the highest genus we can generate with c (when every space between two connected

circles is closed).

We check now that this power is reached only in the diagonal entry (c, c). Note first

that the sum of genuses in c t (−d) can be (|p1| − 1) + · · · + (|pk| − 1) only when every

pair of connected circles in c gets closed, and so d must be of the form d : cQ,L1,...,Lk
for

some Li ∈ R|pi|. But by relation (5.1.6) we have (ξ
|pi|
Ji
, ξ
|pi|
Li

) = 0 if Ji 6= Li, in which

case (c, d) = 0. On the other hand, involutions cancel each other out in c t (−c) and so

(ξ
|pi|
Ji
, ξ
|pi|
Ji

) = λ|pi|−1α0 = α
|pi|
0 , which implies

(c, c) = Πk
i=1α

|pi|
0 = αm0 ,

as desired.

We showed that in every row of the matrix A, the highest power of α0 in that row happens

only at the diagonal entry. Hence the term of p(α0, α0) computed using the diagonal entries

of A will have degree (as a polynomial on α0) strictly greater than any other term, and thus

does not cancel out. This shows the determinant of A is not the zero polynomial on λ and

α0.

Corollary 6.2.6. Fix α0 ∈ k×. For all but countably many λ and α0 in k×, the dimension

dimm of HomSOCobα(0,m) is given by

dimm =
m∑
l=1

2m−l


m

l

 , for all m ≥ 1,
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where


m

l

 denotes the Stirling number of the second kind, which counts the number of

partitions of a set with m elements into l non-empty subsets.

Proof. As per Remark 6.2.2, the set of cobordisms Sm, obtained by assigning to every par-

tition P of {1, . . . ,m} and every p ∈ P a connected cobordism ξ
|p|
J

(see (7.1.3)), gives a

spanning set for HomSOCobα(0,m). Let P be a partition of {1, . . . ,m} with parts {p1, . . . , pl},

for 1 ≤ l ≤ m. The number of ways of assigning connected cobordisms to P is then

|R|p1|| . . . |R|pl||,

see Section 5.2.1. Thus the number of cobordisms in the spanning set is

m∑
l=1

 ∑
{p1,...,pl}∈Part(m)

|R|p1|| . . . |R|pl||

 =
m∑
l=1

 ∑
{p1,...,pl}∈Part(m)

2|p1|−1 . . . 2|pl|−1


=

m∑
l=1

 ∑
{p1,...,pl}∈Part(m)

2m−l



=
m∑
l=1

2m−l


m

l

 .

Lastly, note that by Lemma 6.2.5 the determinant of the matrix of inner products of cobor-

disms in Sm is a non-zero polynomial on λ and α0, for all m ≥ 1. Thus, for values of λ

and α0 such that these polynomials are not evaluated to zero, cobordisms in Sm are linearly

independent, and the result follows.

Remark 6.2.7. The generating function of the sequence given by
m∑
l=1

2m−l


m

l

 in the

Lemma above is exp((exp(2x)− 1)/2). The first 6 terms are given by 1, 1, 3, 11, 49, 257. See

sequence A004211 at https://oeis.org/A004211 for more information.
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Remark 6.2.8. By Corollary 6.2.6 and the proof of Lemma 6.2.5, the highest power of λ in

the determinant of the matrix of inner products in Sm is given by

m−1∑
l=1

(m− l) · 2m−l


m

l

 .

The first five terms in the sequence for m ≥ 1 are 0, 2, 14, 92, 644.

Remark 6.2.9. It follows from Remark 6.2.8 and Corollary 6.2.6, that the highest power of

α0 in the determinant of the matrix of inner products of Sm is given by

m∑
l=1

l · 2m−l


m

l

 .

The first five terms in the sequence for m ≥ 1 are given by 1, 4, 19, 106, 641.

Remark 6.2.10. We will see later on that the exceptional values of λ and α0 in Corollary

6.2.6 are those such that λα0 is a non-negative even integer. We thus predict that the

determinant of the matrix of inner products of Sm, see (7.1.3), will factor into powers of the

form (λα0− 2k), for k = 0, . . . ,m− 1. Note that we know this to be the case for m = 1, 2, 3,

see Examples 6.2.3 and 6.2.4.

6.3 Extended Frobenius algebras in Rep(St o Z2)

For this subsection, let C = Rep(Z2). For λ ∈ k×, let A = Aλ be the extended Frobenius

algebra given in Example 2.4.7 for n = 1, and consider the induced extended Frobenius

algebra 〈A〉t = 〈Aλ〉t in Rep(St o Z2), as described in Proposition 2. We remark that both

of these algebras depend on λ, but we drop the subscript λ to simplify the notation.
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Lemma 6.3.1. The evaluation (α, β, γ) of 〈A〉t in Rep(St o Z2) is given by

α = (2λ−1t, 2t, 2λt, . . . ) and β = (0, 0, . . . ) = γ.

Proof. We will use the graphical description of maps in Rep(St o Z2) as shown in Section

2.4.3. The structure maps of 〈A〉t are

uAu〈A〉t :=
A1C

, ε〈A〉t := εA
A 1C

,

mAm〈A〉t :=

A

AA A⊗ A
, ∆〈A〉t :=

A

AA⊗2A
∆A

.

φAA Aφ〈A〉t := , θAθ〈A〉t :=
A1C

.

To obtain the sequences α, β and γ we need to compute

αn = ε〈A〉tx
nu〈A〉t , βn = ε〈A〉tx

nyu〈A〉t and γn = ε〈A〉tx
ny2u〈A〉t ,

for all n ≥ 0, where

x := m〈A〉t∆〈A〉t =

A

A
A⊗2A

∆A
.

A⊗2

mA

A

,

and

y = m〈A〉t(θ〈A〉t ⊗ id) = 0,

since θA = 0. It follows trivially that β = (0, . . . ) = γ. To compute αn, we show first that
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x = λIdA by graphical calculus:

A

x =

A
A⊗2A

∆A
.

A⊗2

mA

A

=
A⊗2A

∆A

A⊗2

mA

A

=

A
mA∆A

A

= λIdA,

(6.3.1)

since mA∆A = λIdA in Rep(Z2). Then xn = λnIdA, and so

ε〈A〉tx
nu〈A〉t = uA

A A A1C
εAλn IdA

= λn
1C1C

εAuA

= 2λn−1
1C

= 2λn−1tId1.

Hence

αn = 2λn−1t for all n ≥ 0,

as desired.

Remark 6.3.2. Consider the graphical description of Rep(St o Z2) as given in Section

2.4.3. We will say that a map in Rep(St o Z2) is connected if its graphical representation

is a connected diagram. Thus maps given by stackings of connected diagrams generate

Rep(St o Z2) as a pseudo-abelian category.
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Let uC, εC, µC and ∆C in St(C) = Rep(St o Z2) as defined in Section 2.4.3.

Lemma 6.3.3. Connected maps 1Rep(StoZ2) → 〈A⊗n〉t can be written as a composition

∆n−1
C ◦ 〈f〉t ◦ uC,

where f ∈ HomC(1C, A⊗n) and ∆n−1
C is the appropriate composite of ∆C’s.

Proof. This follows from [34, Proposition 4.24].

Example 6.3.4. Connected maps 1Rep(StoZ2) → 〈A⊗3〉t in Rep(St o Z2) are given by

∆3
C ◦ 〈f〉t ◦ uC =

A

A⊗2

A

A

A⊗31C
f ,

where f : 1→ A⊗3 is a map in Rep(Z2).

Corollary 6.3.5. The subspace Un spanned by connected maps in HomRep(StoZ2) (1, 〈A⊗n〉t)

has dimension

dim(Un) = dim(HomC(1C, A
⊗n)) = 2n−1 for all n ≥ 1.

Proof. This follows from linearity of the functor Rep(Z2)→ Rep(St o Z2), see [34], and the

previous Lemma.

6.4 Proof of Theorem I

We give here a proof of our first main result, stated below. For a symmetric k-linear monoidal

category C, we denote by C its quotient by the tensor ideal of negligible morpshims, see

Section 5.3.
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Theorem I. Let α = (α0, λα0, λ
2α0, . . . ) and β = (0, 0, . . . ) = γ be sequences in k, for

α0, λ ∈ k×.We have an equivalence of symmetric k-linear monoidal categories

OCobα ∼= Rep(St o Z2),

where t = λα0

2
.

To prove this, we will use the following result, adapted from [5, Lemma 2.6], see also [27,

Proposition 2.4].

Proposition 6.4.1. Let C be a semisimple Karoubian symmetric tensor category with finite

dimensional Hom spaces. Suppose there is a symmetric tensor functor F : OCobα → C that

is surjective on Hom’s. Then there is a unique fully faithful symmetric tensor functor

F : OCobα
∼−→ C.

For the rest of this section, fix sequences

α = (α0, λα0, λ
2α0, . . . ) and β = (0, 0, . . . ) = γ,

where α0, λ ∈ k×, and set t = λα0

2
. We will show that Rep(St o Z2) satisfies the conditions

in the Proposition above via a series of Lemmas.

Recall we denote by 〈A〉t = 〈Aλ〉t the extended Frobenius algebra in Rep(St oZ2), where

A = Aλ in Rep(Z2) is defined in Example 2.4.7 for n = 1, and structure maps are constructed

as in Proposition 2.4.14. We recall that the structure maps of these algebras depend on λ,

but we drop the subscript to simplify the notation.

Lemma 6.4.2. There is a symmetric k-linear monoidal functor FA : VUCobα,β,γ → Rep(Sto

Z2), mapping the circle object of VUCobα,β,γ to the extended Frobenius algebra 〈A〉t in

Rep(St o Z2).
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Proof. This follows from the universal property of VUCobα,β,γ, see Section 5.4, and Lemma

6.3.1.

Lemma 6.4.3. The functor FA : VUCobα,β,γ → Rep(St o Z2) factors through SOCobα.

Proof. We need to check that FA annhilates the handle relation x − λ Id = 0 and the

crosscap relation θ = 0. The latter is trivial since FA(θ) = θ〈A〉t = 0. On the other hand,

FA(x− λI) = m〈A〉t∆〈A〉t − λId〈A〉t = λId〈A〉t = 0, see equation (6.3.1).

Lemma 6.4.4. The functor FA : SOCobα → Rep(St oZ2) satisfies that any indecomposable

object of Rep(St o Z2) is a direct summand of F (n) for some n in SOCobα.

Proof. By definition, FA(1) = 〈A〉t, and so

FA(n) = 〈A〉⊗nt .

The result follows since objects of the form 〈A〉⊗nt generate Rep(St oZ2) as a pseudo-abelian

category, see [34, Remark 4.25].

Fix n ≥ 1. Let Wn denote the subspace of HomSOCobα(0, n) spanned by connected

cobordisms, and let Un be the subspace of HomRep(StoZ2)(1, 〈A〉⊗nt ) spanned by connected

diagrams, see Lemma 6.3.3.

Lemma 6.4.5. The functor FA : SOCobα → Rep(St o Z2) induces an isomorphism

Wn
FA−→ Un.

Proof. Consider the basis {ξn
J
}J∈Rn of Wn as in Definition 5.2.8, see also Proposition 6.2.1.

That is,

ξn
J

= φJ∆n−1u,
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where J is the representative of J with |J | ≤ n/2,

φJ := c1,J ⊗ · · · ⊗ cn,J , with cj,J =


id if j ∈ J,

φ if j 6∈ J,

∆n−1 denotes

∆n−1 = (id⊗(n−2) ⊗∆) . . . (id⊗∆)∆,

and u is the cap cobordism of SOCobα.

We compute the image of ξn
J

under FA. By definition, FA(∆) = ∆C∆A, and so

FA(∆n−1) =
(

id⊗(n−2) ⊗∆C〈∆A〉t
)
. . . (id⊗∆C〈∆A〉t) ∆C〈∆A〉t.

Let

∆k
C =

(
id⊗(k−2) ⊗∆C

)
. . . (id⊗∆C) ∆C,

for all k ≥ 1. Using the relation (〈f〉t ⊗ 〈g〉t)∆C = ∆C〈f ⊗ g〉t in Rep(St o Z2), see equation

(2.4.6), we have that

(id⊗∆C〈∆A〉t) ∆C〈∆A〉t = (id⊗∆C)∆C〈(id⊗∆A)∆A〉t = ∆2
C〈∆2

A〉t.

In general,

(
id⊗(n−2) ⊗∆C〈∆A〉t

)
. . . (1⊗∆C〈∆A〉t) ∆C〈∆A〉t = ∆n−1

C 〈∆
n−1
A 〉t,

and thus FA(∆n−1) = ∆n−1
C 〈∆

n−1
A 〉t. Thus if we define

ψi,J =


φA if i ∈ J,

id if i 6∈ J,
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then

F (ξn
J
) = (F (c1,J)⊗ · · · ⊗ F (cn,J))F (∆n−1

C )F (uA)

= (〈ψ1,J〉t ⊗ · · · ⊗ 〈ψn,J〉t) ∆n−1
C 〈∆

n−1
A 〉t〈uA〉tuC

= ∆n−1
C 〈(ψ1,J ⊗ · · · ⊗ ψn,J)∆n−1

A uA〉tuC.

(6.4.1)

Hence under FA, Wn is mapped to Un. We want to show that the set {F (ξn
J
)}J∈Rn is a basis

of Un. We prove first that it is linearly independent. By the equation above, it is enough to

show that {fn
J
}J∈Rk is linearly independent in Rep(Z2), where

fn
J

:= (ψ1,J ⊗ · · · ⊗ ψn,J)∆n−1
A uA ∈ HomRep(Z2)(1, A

⊗n).

For this, we check that the value of each fn
J

at 1 ∈ 1 ∼= k is

δJ := δ1,J ⊗ · · · ⊗ δn,J + δ1,Jc ⊗ · · · ⊗ δn,Jc , where δi,J :=


δ1 if i ∈ J,

δ−1 if i 6∈ J,

for all 1 ≤ i ≤ n, and δ1, δ−1 ∈ A are such that δ1(xl) = δl,1 and δ−1(xl) = δl,−1 for l = 1,−1,

see Example 2.4.7. We compute

fn
J

(1) = (ψ1,J ⊗ · · · ⊗ ψn,J) ∆n−1
A (δ−1 + δ1)

= (ψ1,J ⊗ · · · ⊗ ψn,J) (δ⊗n−1 + δ⊗n1 )

= ψ1,J(δ−1)⊗ · · · ⊗ ψn,J(δ−1) + ψ1,J(δ1)⊗ · · · ⊗ ψn,J(δ1).

Recall that φA(δ−1) = δ1 and φA(δ1) = δ−1. Hence

ψi,J(δ−1) =


δ1 if i ∈ J

δ−1 if i 6∈ J

= δi,J and ψi,J(δ1) =


δ−1 if i ∈ J

δ1 if i 6∈ J

= δi,Jc ,
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so we get that

fn
J

(1) = δ1,J ⊗ · · · ⊗ δn,J + δ1,Jc ⊗ · · · ⊗ δn,Jc = δJ .

So it is enough to note that {δJ}J∈Rn is linearly independent in A⊗n. In fact, since {δ1, δ−1}

is a basis for A as a vector space, then {δ1,J ⊗ · · · ⊗ δn,J}J∈P(n) is a basis for A⊗n, and so the

set

{δ1,J ⊗ · · · ⊗ δn,J + δ1,Jc ⊗ · · · ⊗ δn,Jc}J∈P(n) = {δJ}J∈Rn ,

is linearly independent, as desired.

Lastly, by Proposition 6.2.1 and Lemma 6.3.5, we know that dim(Wn) = 2n−1 = dim(Un),

and so the statement follows.

Taking Karoubian envelope on the source category, FA : SOCobα → Rep(St oZ2) extends

uniquely to a symmetric tensor functor

FA : OCobα → Rep(St o Z2).

Moreover, by Lemma 6.4.4 FA is essentially surjective.

Lemma 6.4.6. The functor FA : OCobα → Rep(St o Z2) is full.

Proof. To show that FA is surjective on morphisms, it is enough to check that the maps

HomOCobα(n,m)
FA−→ HomRep(StoZ2)(〈A〉⊗nt , 〈A〉⊗mt )

induced by FA are surjective for all n,m ≥ 1. Note that since A ∈ Rep(Z2) is self-dual,

then by [34, Appendix A] so is 〈A〉t in Rep(St oZ2). Hence, by duality, it is enough to check

surjectivity of the maps

HomOCobα(0, n)
FA−→ HomRep(StoZ2)(1, 〈A〉⊗nt ),
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for all n ≥ 1. This follows from Lemma 6.4.5, since connected diagrams generate Rep(St oZ2)

as a pseudo-abelian k-linear monoidal category.

We now show a proof for Theorem I.

Proof of Theorem I. Consider the symmetric tensor functor

FA := OCobα
FA−→ Rep(St o Z2)→ Rep(St o Z2),

where FA is as defined previously, followed by the semisimplification functor. By Lemma

6.4.6, FA satisfies the conditions of Proposition 6.4.1. Hence FA induces a fully faithful

symmetric tensor functor

FA : OCobα −→ Rep(St o Z2).

Moreover, since FA is essentially surjective then so is FA and we have the desired equivalence.

Corollary 6.4.7. If λα0 is not a non-negative even integer, then

OCobα ∼= Rep(St o Z2).

In particular, OCobα is semisimple, and dimOCobα(0,m) =
m∑
l=1

2m−l


m

l

 , for all m ≥ 1.

Proof. By Corollary 6.2.6 we know that for all but countably many values of λ and α0 in

k×, there are no negligible morphisms in OCobα. From this and Theorem I, it follows that

from all but countably many λ and α0 we get an equivalence

OCobα = OCobα ∼= Rep(St o Z2),
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where t = λα0

2
. Hence, when λ and α0 are not one of the exceptional values, we have that

dim HomRep(StoZ2)(1, 〈A〉⊗mt ) = dim HomOCobα(0,m) =
m∑
l=1

2m−l


m

l

 ,

see Corollary 6.2.6. But by [34], for t 6∈ Z≥0, the category Rep(St o Z2) is semisimple,

and so dimRep(StoZ2)(1, 〈A〉⊗mt ) does not depend on t. Therefore, dimRep(StoZ2)(1, 〈A〉⊗mt ) =

m∑
l=1

2m−l


m

l

 whenever t = λα0

2
6∈ Z≥0.

Let t = λα0

2
6∈ Z≥0, and consider again the equivalence

OCobα = Rep(St o Z2) = Rep(St o Z2).

Since

m∑
l=1

2m−l


m

l

 = dim HomRep(StoZ2)(1, 〈A〉⊗mt ) = dim HomOCobα(0,m) ≤
m∑
l=1

2m−l


m

l

 ,

then dim HomOCobα(0,m) =
m∑
l=1

2m−l


m

l

. Hence, when λα0 is not a non-negative even

integer, there are no negligible morphisms in OCobα and thus by Theorem I we conclude

OCobα = OCobα ∼= Rep(St o Z2) = Rep(St o Z2),

as desired.
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Chapter 7

Equivalence with the category

Rep(St o Z2)� Rep(St+)� Rep(St−)

This chapter contains previously published material, which appeared in [12].

7.1 Preliminary results

In this section we study the category SUCobα,β,γ for the sequences

α = (α0, λα0, λ
2α0, . . . ), β = (β0, λβ0, λ

2β0, . . . ) and γ = (γ0, λγ0, λ
2γ0, . . . ), (7.1.1)

where α0, β0, γ0, λ ∈ k×. Here, the generating functions for α, β and γ are

Zα(T ) =
α0

1− λT
, Zβ(T ) =

β0

1− λT
, Zγ(T ) =

γ0

1− λT
,

respectively.

Recall that for a k-linear symmetric monoidal category C, we denote by C its quotient

by the tensor ideal of negligible morpshims, see Section 2.2.12.
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Theorem II. Let α, β and γ be sequences as in (7.1.1). Then we have an equivalence of

symmetric k-linear monoidal categories

UCobα,β,γ ' Rep(St o Z2)�Rep(St+)�Rep(St−),

where t = 1
2
(λα0 − γ0), t+ = 1

2
(γ0 +

√
λβ0) and t− = 1

2
(γ0 −

√
λβ0).

The rest of this section is dedicated to giving a proof for Theorem II.

Recall that SUCobα,β,γ is a rigid symmetric k-linear monoidal category with finite di-

mensional Hom spaces. In this case, the handle relation is x− λId = 0, and so Hom spaces

are spanned by cobordisms where all connected components have genus 0.

Proposition 7.1.1. For m ≥ 2, let {ξm
J

: J ∈ Rm} be as in Definition 5.2.8, and let

θm := ∆m−1θ and θm[2] := ∆m−1m(θ ⊗ θ). Then the set

tm := {ξm
J

: J ∈ Rm} ∪ {θm, θm[2]}, (7.1.2)

is a spanning set for the subspace of HomSUCobα,β,γ (0,m) spanned by connected cobordisms.

Proof. This follows from Propositions 5.1.2 and 5.1.11, since connected cobordisms have

genus 0.

Let P = {p1, . . . , pk} be a partition of {1, . . . ,m}. Let P1 = {pli}
k1
i=1, P2 and P3 be disjoint

subsets of P such that P = P1 ∪ P2 ∪ P3. Choose Jli ∈ R|pli | for all 1 ≤ i ≤ k1. Denote by

cP,Jl1 ,...,Jlk1 ,θP2 ,θ
2
P3

the cobordism 0→ m with k connected components where:

• the li-th component is of the form ξ
|pli |
J li

with out-boundary the circles in positions

corresponding to the elements of pli , for all 1 ≤ i ≤ k1,
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• for p ∈ P2, the corresponding connected component is of the form θ|p| with out-

boundary the circles in positions corresponding to the elements of p,

• for p ∈ P3, the corresponding connected component is of the form θ|p|[2] with out-

boundary the circles in positions corresponding to the elements of p.

Then

Tm :=
{
cP,Jl1 ,...,Jlk1 ,θP2 ,θ

2
P3

}
(7.1.3)

moving over all possible such choices is a spanning set for HomSOCobα(0,m).

Example 7.1.2. Suppose that λα0 6= γ0 and γ0 6= ±
√
λβ0. Then HomSUCobα,β,γ (0, 1) has

dimension 3, with basis

u = θ = , θ[2] = := .

In fact, from Example 5.3.5 we know that the matrix of inner products has determinant

α0(λγ2
0 − λ2β2

0) + γ0(λβ2
0 − γ2

0) = (α0λ− γ0)(γ2
0 − λβ2

0).

Example 7.1.3. Suppose that λα0 − γ0 6= 0, 2 and γ0 ±
√
λβ0 6= 0, 2. Then the following is

a basis for HomSUCobα,β,γ (0, 2):

, , ,

,

, , , , ,
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↔

.

In fact, it is a generating set by the proposition above, and the matrix of inner products

is

α2
0 α0β0 α0β0 β2

0 α0γ0 α0γ0 β0γ0 β0γ0 γ20 α0 α0 β0 γ0

α0β0 α0γ0 β2
0 β0γ0 α0β0λ β0γ0 γ20 β2

0λ β0γ0λ β0 β0 γ0 β0λ

α0β0 β2
0 α0γ0 β0γ0 β0γ0 α0β0λ β2

0λ γ20 β0γ0λ β0 β0 γ0 β0λ

β2
0 β0γ0 β0γ0 γ20 β2

0λ β2
0λ β0γ0λ β0γ0λ β2

0λ
2 γ0 γ0 β0λ γ0λ

α0γ0 α0β0λ β0γ0 β2
0λ α0γ0λ γ20 β0γ0λ β0γ0λ γ20λ γ0 γ0 β0λ γ0λ

α0γ0 β0γ0 α0β0λ β2
0 l γ20 α0γ0λ β0γ0λ β0γ0λ γ20λ γ0 γ0 β0λ γ0λ

β0γ0 γ20 β2
0λ β0γ0λ β0γ0λ β0γ0λ γ20λ β2

0λ
2 β0γ0λ

2 β0λ β0λ γ0λ β0λ
2

β0γ0 β2
0λ γ20 β0γ0λ β0γ0λ β0γ0λ β2

0λ
2 γ20λ β0γ0λ

2 β0λ β0λ γ0λ β0λ
2

γ20 β0γ0λ β0γ0λ β2
0λ

2 γ20λ γ20λ β0γ0λ
2 β0γ0λ

2 γ20λ
2 γ0λ γ0λ β0λ

2 γ0λ
2

α0 β0 β0 γ0 γ0 γ0 β0λ β0λ γ0λ α0λ γ0 β0λ γ0λ

α0 β0 β0 γ0 γ0 γ0 β0λ β0λ γ0λ γ0 α0λ β0λ γ0λ

β0 γ0 γ0 β0λ β0λ β0λ γ0λ γ0λ β0λ
2 β0λ β0λ γ0λ β0λ

2

γ0 β0λ β0λ γ0λ γ0λ γ0λ β0λ
2 β0λ

2 γ0λ
2 γ0λ γ0λ β0λ

2 γ0λ
2



,

which has determinant

λ3(γ0 −
√
λβ0)6(γ0 +

√
λβ0)6(γ0 −

√
λβ0 − 2)(γ0 +

√
λβ0 − 2)(λα0 − γ0)7(λα0 − γ0 − 2).

Hence

dim(HomSUCobα,β,γ (0, 2)) = 13.

Conjecture 7.1.4. We conjecture that for λ, α0, β0, γ0 in k× such that λα0 − γ0 and γ0 ±
√
λβ0 are non-negative even integers, the determinants of the matrices of inner products of

morphisms in Tm are non-zero polynomials on λ, α0, β0, γ0, for all m ≥ 1.
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We know this to be true for m = 0, 1, 2, see the examples above. The general computation

would follow the same lines as the proof of Lemma 6.2.5. However, this case requires a more

careful combinatorial analysis, since for instance, for certain ai, bi ≥ 0 such that
l∑

i=1

(ai+bi) =

k, we will get

(θk, θk) = γk−1 = (θk, θ
⊗a1 ⊗ θ[2]⊗b1 ⊗ θ⊗a2 ⊗ · · · ⊗ θ[2]⊗bl).

That is, the diagonal entry in Tk corresponding to the row of θk will be repeated in another

entry of the same row. Moreover, it will actually be repeated more than once in the same

row, since

(θk, θ
⊗a1 ⊗ θ[2]⊗b1 ⊗ θ⊗a2 ⊗ · · · ⊗ θ[2]⊗bl) = (θk, θ

⊗a′1 ⊗ θ[2]⊗b
′
1 ⊗ θ⊗a′2 ⊗ · · · ⊗ θ[2]⊗b

′
j),

whenever ai, a
′
i, bi, b

′
i ≥ 0 are such that

l∑
i=1

(ai + bi) =
j∑
i=1

(a′i + b′i) = k, and a1 + · · · + al +

2(b1 + · · ·+ bl) = a′1 + · · ·+ a′l + 2(b′1 + · · ·+ b′l).

Remark 7.1.5. We conjectured that the exceptional values of λ, α0, β0, γ0 are those such

that λα0 − γ0 and γ0 ±
√
λβ0 are non-negative even integers. We thus predict that the

determinant of the matrix of inner products of Tm, see (7.1.3), will factor into powers of the

form λα0− γ0− 2k and γ0±
√
λβ0− 2k, for k = 0, . . . ,m− 1. Note that we know this to be

the case for m = 1 and 2, see Examples 5.3.5 and 7.1.3.

To prove Theorem II, we will need the following Proposition, adapted from [5, Lemma

2.6], see also [27, Proposition 2.4].

Proposition 7.1.6. Let C be a semisimple Karoubian symmetric k-linear monoidal category

with finite dimensional Hom spaces. Suppose there is a symmetric k-linear monoidal functor

F : UCobα,β,γ → C that satisfies
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• Any indecomposable object of C is a direct summand of F (n) for some n in UCobα,β,γ,

and

• F is surjective on Hom’s.

Then F induces an equivalence

F : UCobα,β,γ
∼−→ C.

7.2 Extended Frobenius algebras in Rep(St)

We define now Deligne’s category Rep(St) for t ∈ k, following [8, 14].

Definition 7.2.1. [8, Definition 2.11] Consider the category Rep0(St) given by:

• Objects are non-negative integers. We represent n ∈ Z≥0 by n horizontal dots (zero is

represented by “no dots”).

• Morphismsm→ m′ are k-linear combinations of partitions of the set {1, . . . ,m, 1′, . . . ,m′}.

Such a partition is represented by a diagram with m points on top labelled 1 to m and

m′ points on the bottom labeled 1′ to m′, such that points in the same part of the

partition are connected by a path.

• Composition is as described in [8, Definition 2.11].

Definition 7.2.2. [14] Let Rep(St) be the pseudo-abelian envelope of Rep0(St).

Remark 7.2.3. Let t ∈ k×. Recall that we represent morphisms in Rep0(St) as going from

top to bottom. There is a canonical Frobenius algebra A = Aλ in Rep(St), given by the
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object 1 (represented as 1 point) and unit, mutiplication, counit and comultiplication maps

given by

u = , m = , ε =
1

λ
, ∆ = λ ,

respectively. Then if

φ = and θ = ±
√
λu,

we get that A with these structure maps is an extended Frobenius algebra in Rep(St), see

Definition 2.4.4

From now on, let

t =
1

2
(λα0 − γ0), t+ =

1

2
(γ0 +

√
λβ0) and t− =

1

2
(γ0 −

√
λβ0).

Let A± = A±,λ denote the extended Frobenius algebras in Rep(St±) as defined above,

respectively, and let At = At,λ := 〈A〉t in Rep(St o Z2) be the extended Frobenius algebra

induced from the algebra of functions introduced in Example 2.4.7 for n = 1. We remark

that the structure maps of these algebras depend on λ, but we drop the subscript to simplify

notation.

Lemma 7.2.4. The extended Frobenius algebra

A := (At � 1� 1)⊕ (1� A+ � 1)⊕ (1� 1� A−)

in Rep(St oZ2)�Rep(St+)�Rep(St−) has evaluation α, β, γ as defined on Equation (7.1.1).

Proof. The evaluation of At � 1� 1 was computed in Lemma 6.3.1, and is given by

αt = (2λ−1t, 2t, 2λt, . . . ) and βt = γt = (0, . . . ).
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On the other hand, it is easy to check that the evaluations of 1�A+�1 and 1�1�A− are

α± = (λ−1t±, t±, λt±, . . . ), β± = (±λ−1/2t±,±λ1/2t±,±λ3/2t±, . . . ), γ± = (t±, λt±, λ
2t±, . . . ),

respectively.

Call α̃, β̃ and γ̃ the evaluation sequences of A. Note that 2t+ t+ + t− = λα0. Hence the

α̃ sequence of the evaluation of A is

α̃ = αt + α+ + α−

= (λ−1(2t+ t+ + t−), 2t+ t+ + t−, λ(2t+ t+ + t−), . . . )

= (α0, λα0, λ
2α0, . . . ),

as desired. On the other hand, t+ − t− =
√
λβ0 and so

β̃ = βt + β+ + β−

= (λ−1/2(t+ − t−), λ1/2(t+ − t−), λ3/2(t+ − t−), . . . )

= (β0, λβ0, λ
2β0, . . . ).

Lastly, t+ + t− = γ0, thus

γ̃ = γt + γ+ + γ−

= (t+ + t−, λ(t+ + t−), λ2(t+ + t−), . . . )

= (γ0, λγ0, λ
2γ0, . . . ).
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7.3 Proof of Theorem II

It follows from the previous section and the universal property of VUCobα,β,γ, see Section

5.4, that there exists a symmetric k-linear monoidal functor

FA : VUCobα,β,γ → Rep(St o Z2)�Rep(St+)�Rep(St−),

mapping the circle object of VUCobα,β,γ to A, and the extended Frobenius algebra structure

maps of the circle to those of A.

Lemma 7.3.1. FA : VUCobα,β,γ → Rep(St o Z2) � Rep(St+) � Rep(St−) annihilates the

handle relation x− λ Id, and so it factors through SUCobα,β,γ.

Proof. We know by equation (6.3.1) that mAt∆At −λIdAt = 0 in Rep(St oZ2). On the other

hand,

mA±∆A± = λ ◦ = λ ,

in Rep(St±). It follows that FA(x− λIdA) = 0.

Lemma 7.3.2. The functor FA : SUCobα,β,γ → Rep(StoZ2)�Rep(St+)�Rep(St−) satisfies

that any indecomposable object of Rep(St o Z2)�Rep(St+)�Rep(St−) is a direct sumand

of F (n) for some n.

Proof. The functor FA maps 1 7→ A. Any object in Rep(St oZ2), respectively, in Rep(St±),

is a direct summand of tensor powers of A, respectively A±, and so the statement follows.

Lemma 7.3.3. The unique extension

FA : UCobα,β,γ → Rep(St o Z2)�Rep(St+)�Rep(St−),

is surjective on Hom’s.
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Proof. Let C := Rep(St o Z2) � Rep(St+) � Rep(St−). To show that FA is surjective on

morphisms, it is enough to check that the maps

HomUCob2(n,m)
FA−→ HomC(A⊗n,A⊗m),

induced by FA are surjective for all n,m ≥ 1. Since A is self-dual, it is enough to check

surjectivity of the maps

HomUCob2(0,m)
FA−→ HomC(1,A⊗m),

for all m ≥ 1. Since A = (At � 1 � 1) ⊕ (1 � A+ � 1) ⊕ (1 � 1 � A−), it follows it is

enough to check that the direct summands HomC(1, A
⊗m
t � 1 � 1), HomC(1, 1 � A

⊗m
+ � 1)

and HomC(1, 1 � 1 � A⊗m− ) of HomC(1,A⊗m) are in the image of FA, for all m ≥ 1. Then,

all remaining summands will be in the image by induction.

We show surjectivity on HomC(1, 1�A
⊗m
+ � 1) and HomC(1, 1� 1�A⊗m− ) for all m ≥ 1

first. Note that partitions of the form

. . .︸ ︷︷ ︸
k for k ≤ m,

generate HomRep(St± )(0,m). That is, any morphism in HomRep(St± )(0,m) is linear combi-

nation of tensor products of partitions of this form. So it is enough to show that these

partitions are in the image of FA. Recall that FA maps the structure maps of the circle

object in UCobα,β,γ to those of A. So

θm 7→ 0⊕ λm−1/2 . . .︸ ︷︷ ︸
m

⊕ (−λm−1/2)
. . .︸ ︷︷ ︸
m

and

θm[2] 7→ 0⊕ λm . . .︸ ︷︷ ︸
m

⊕ λm
. . .︸ ︷︷ ︸
m

,
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for all m ≥ 1.

Hence

λ−(m−1/2)θm + λ−mθm[2] 7→ 0⊕ . . .︸ ︷︷ ︸
m

⊕ 0, and

−λ−(m−1/2)θm + λ−mθm[2] 7→ 0⊕ 0⊕ . . .︸ ︷︷ ︸
m

.

Thus we have surjectivity on HomC(1, 1�A
⊗m
+ �1) and HomC(1, 1�1�A⊗m− ), for all m ≥ 1.

It remains to show that FA is surjective on HomC(1, A
⊗m
t � 1 � 1). Consider the set

{ξm
J
}J∈Rn as in Definition 5.2.8. Then FA maps

ξm
J
7→ Fm

J
⊕ λm−1 . . .︸ ︷︷ ︸

m

⊕ λm−1 . . .︸ ︷︷ ︸
m

,

where {Fm
J
} is a basis for the subspace of connected maps 1 → 〈A〉⊗mt in Rep(St o Z2), see

Lemma 6.4.5 and Equation (6.4.1). Since we already know FA is surjective on HomC(1, 1�

A+� 1) and HomC(1, 1� 1�A+), this implies that F n
J

is in the image of FA, and it follows

that FA is surjective on HomC(1, At � 1� 1), as desired.

Proof of Theorem II. Consider the symmetric tensor functor

FA : UCobα,β,γ
FA−→ Rep(StoZ2)�Rep(St+)�Rep(St−)→ Rep(St o Z2)�Rep(St+)�Rep(St−),

where FA is as defined previously, followed by the semisimplification functor. By Lemma

7.3.3, FA satisfies the conditions of Proposition 7.1.6. Moreover, by Lemma 7.3.2 FA is

essentially surjective. Hence FA induces an equivalence

UCobα,β,γ ∼= Rep(St o Z2)�Rep(St+)�Rep(St−),

as desired.
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Proposition 7.3.4. Let α, β and γ be sequences as in (7.1.1). Suppose λα0 − γ0 and γ0 ±
√
λβ0 are not non-negative even integers. If Conjecture 7.1.4 holds, we get an equivalence

of k-linear monoidal categories

UCobα,β,γ ∼= Rep(St o Z2)�Rep(St+)�Rep(St−).

Proof. If Conjecture 7.1.4 holds, then for λ, α0, β0 and γ0 as in the statement there are no

negligible morphisms in UCobα,β,γ. On the other hand, by [34, 13] the categories Rep(St oZ2)

and Rep(St±) are semisimple when t = 1
2
(λα0− γ0) and t± = 1

2
(γ0±

√
λβ0) are not positive

integers. Hence by Theorem II we conclude

UCobα,β,γ ∼= Rep(St o Z2)�Rep(St+)�Rep(St−).
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