
Hermitian Jacobi Forms of Higher Degree

by

SEAN PATRICK ROBERT HAIGHT

A dissertation accepted and approved in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Mathematics

Dissertation Committee:

Chair Person, Ellen Eischen

Core Member, Nicholas Addington

Core Member, Alexander Polishchuk

Core Member, Benjamin Young

Representative, Christopher Hendon

University of Oregon

Spring 2024



© 2024 Sean Patrick Robert Haight

This work is openly licensed via CC BY 4.0.

2

https://creativecommons.org/licenses/by/4.0/


DISSERTATION ABSTRACT

Sean Patrick Robert Haight

Doctor of Philosophy in Mathematics

Title: Hermitian Jacobi Forms of Higher Degree

We develop the theory of Hermitian Jacobi forms in degree n > 1. This builds

on the work of Klaus Haverkamp in [Hav95] who developed this theory in degree

n = 1. Haverkamp in turn generalized a monograph of Eichler and Zagier, [EZ85].

Hermitian Jacobi forms are holomorphic functions which appear in certain infinite

series expansions (Fourier Jacobi expansions) of Hermitian modular forms. In this

work we give a definition of Hermitian Jacobi forms in degree n > 1, give their

relationship to more classical Hermitian modular forms and construct a useful tool

for studying Hermitian Jacobi forms, the theta expansion. This theta expansion

allows us to relate our forms to classical modular forms via the Eichler-Zagier map

and thereby bound the dimension of our space of forms. We then go on to apply

the developed theory to prove some non-vanishing results on the Fourier coefficients

of Hermitian modular forms.
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CHAPTER 1

INTRODUCTION

We develop core aspects of the theory of Hermitian Jacobi forms in degree

n > 1. This builds on the work of Klaus Haverkamp in [Hav95] who developed

this theory in degree n = 1. Haverkamp was in turn generalizing a monograph

of Eichler and Zagier [EZ85]. Hermitian Jacobi forms are holomorphic functions

which appear in certain infinite series expansions (Fourier Jacobi expansions) of

Hermitian modular forms. In this work we give a definition of Hermitian Jacobi

forms in a higher-dimensional setting, give their relationship to more classical Hermitian

modular forms and construct a useful tool for studying Hermitian Jacobi forms,

the theta expansion. This theta expansion allows us to relate our forms to classical

modular forms via the Eichler--Zagier map and thereby bound the dimension of our

space of forms. We then apply the developed theory to prove some non-vanishing

results on the Fourier coefficients of Hermitian modular forms.

1.1 Motivation

Broadly speaking, the goal of this paper is add an additional tool to studying

a class of functions known as automorphic forms. These functions can generally be

thought of as holomorphic functions on some complex manifold, sometimes identified

with the moduli space of some family of geometric objects, that satisfy symmetry

properties with respect to a linear algebraic group that acts on the domain manifold.

Auotomorphic forms have broad applications in number theory, for example the

application of classical modular forms in Andrew Wiles’ solution to Fermat’s Last

Theorem. Today many mathematicians study automorphic forms as objects of

interest in their own right or to help shed light on a very broad family of conjectures
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in the field known as the Langlands Program.

The study of automorphic forms can be divided into different subfields based

on the group that governs the symmetry of these forms. Classically this group was

SL2(Z) with which we associate classical modular forms. In his 1939 paper [Sie39]

Carl Ludwig Siegel introduced a higher dimensional analogue known as Siegel modular

forms which transform with respect to the group Spn(Z). The class of automorphic

forms that we are most interested in here are those known as Hermitian modular

forms introduced by Hel Braun in three papers, [Bra49], [Bra51a], and [Bra51b] .

We give a formal definition and some introduction to the theory in chapter 3.

In [EZ85], Eichler and Zagier formally introduced Jacobi forms, a class of C-valued

functions on H × C that satisfied some symmetry conditions with respect to the

group SL2(Z) as well as some holomorphy conditions. Two important examples

include Jacobi’s theta function and the Weierstrass ℘ function which parametrizes

the complex points of an associated elliptic curve. Jacobi forms also appear as

the coefficients in a certain series expansion of Siegel modular forms known as the

Fourier Jacobi expansion. In this way Jacobi forms have proven to be a useful tool

in studying Siegel modular forms.

In [Hav95] Haverkamp gives a generalization of the theory of Jacobi forms to the

setting of Hermitian modular forms, though only in degree 2. This paper is the

most direct logical predecessor to the current work. Even with this limit on the

degree, there are applications of this work, principally to the study of the Fourier

coefficients of Hermitian modular forms of degree 2, as in [AD19]. Our goal in this

work is to generalize Haverkamp’s work to an arbitrary degree n. As an initial

motivation we hoped to extend the results of [AD19] and generalize similar results

of [BD22]. As often happens, we found an insurmountable difficulty that is discussed

in the final chapter.
10



1.2 Description of results

Our primary result is the following. Let K be a quadratic imaginary field with

ring of integers O.

Theorem 1.1. Let ϕ be an Hermitian Jacobi form of weight k, degree n ≥ 1 and

invertible index T . Then ϕ has a theta expansion of the form

ϕ(τ, w, z) =
∑

s∈(O#)
n
/TOn

hs(τ)θT,s(τ, w, z) (1.1)

where each hs is a classical modular form.

Here w, z ∈ Cn and τ ∈ H the complex upper-half plane. We define θT,s in

Equation (4.7). This is Theorem 5.5 in the main text. In Chapter 2 we give new

definitions of Hermitian Jacobi forms in degree n > 1. These directly generalize

those of Haverkamp. These definitions are chosen so that in Chapter 3 we can prove

the following proposition.

Proposition 1.2. Let F be an Hermitian modular form. Then F has a Fourier

Jacobi expansion

F


τ w

z T


 =

∑
T∈Λn(O)

ϕT (τ, w, z)e(TZ) (1.2)

where each ϕT is an Hermitian Jacobi form.

Here

Λn(OK) :=
{
A ∈Mn(C)|A = A

t
, ai,i ∈ Z, ai,j ∈ O#

}
(1.3)

and e(TZ) is shorthand for e2πitr(TZ). This is Proposition 4.1 in the main text. We

give an introduction to the theory of Hermitian modular forms in Chapter 3 before

this proposition.
11



Chapter 4 is the technical heart of the paper. In this chapter we first introduce our

theta functions and explain the existence of the expansion given in Theorem 5.5.

The bulk of this chapter is establishing Proposition 4.8, a transformation law for

these theta functions under an action of a congruence subgroup of SL2(Z). The fact

that each hs in the theta expansion is a modular form will eventually follow from

this transformation law. In chapter 5 we begin by translating the transformation

law for the theta functions into transformations of the coefficients. After proving

the theorem above we move onto generalizing the Eichler--Zagier map and the twists

there-of to our setting. These functions, which take Hermitian Jacobi forms to

classical modular forms, are a central tool in [AD19], Anamby and Das’s paper on

non-vanishing fundamental Fourier coefficients. In chapter 6 we introduce some of

the theory of vector valued Hermitian modular forms in order to give some novel

applications of our work to the theory of Hermitian modular forms. In this chapter

we prove the following result.

Proposition 1.3. Let F be a non-zero, possibly vector valued, Hermitian modular

form of degree n ≥ 2. Then F has infinitely many non-zero Fourier Jacobi coefficients

with non-singular index.

The above result essentially tells us that each Hermitian modular form gives

rise to many Hermitian Jacobi forms. Using this and the theta expansion we prove

the proposition below.

Proposition 1.4. Let F be a non-zero Hermitian modular form of weight k and

degree n ≥ 2. Then F has infinitely many non-zero Fourier coefficients with index

12



A =

m rt

r T

 such that

det(A) ≤ Ck,n−1,D det(T )2 (1.4)

where

Ck,n,D =
(k − n)D3+2⌊n

2
⌋

12
(1.5)

and D is |∆K |, the discriminant of the number field K.

In the final section we explain the relationship between this work and the existence

of non-zero fundamental Fourier coefficients. As stated in the motivation the initial

goal of this work was to generalize [BD22, Theorem 1.1] of Böcherer and Das, stated

below, to the Hermitian setting.

Theorem 1.5 (Theorem 1.1 of [BD22]). Let F be a non-zero vector valued Siegel

modular form of weight ρ and degree n. Suppose further that k(ρ)− n
2
≥ ϱ(n). When

n is even, assume that F is cuspidal. Then there exists infinitely many GLn(Z)

inequivalent matrices T ∈ Λ+
n such that dT is odd and square free, and aF (T ) ̸= 0.

Anamby and Das have proven a similar result, [AD19, Theorem 1], for Hermitian

modular forms when the degree n = 2 and heavily leveraged the theory of Hermitian

Jacobi forms in this setting. While we were not able to generalize the approaches of

either of these two papers here, we do outline the general strategy and where the

road blocks are to generalizing these approaches.
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CHAPTER 2

HERMITIAN JACOBI FORMS

2.1 The Hermitian Jacobi Group

The goal of this chapters is to give the definition of Hermitian Jacobi forms in

degree greater than or equal to 1. Let n ≥ 1 be a integer and K be a quadratic

imaginary field with ring of integer O. Let D = |∆K | be the absolute value of

the discriminant of K. Hermitian Jacobi forms of degree n are functions ϕ : H ×

Cn × Cn → C which satisfy some transformation properties and admit a Fourier

expansion. Before we can define Hermitian Jacobi forms, we need to define a group

action on H× Cn × Cn. Let

U(n, n) :=
{
A ∈M2n(O) : A

t
JnA = Jn

}
(2.1)

where Jn =

 0 −In

In 0

. The group U(n, n) is the unitary group of degree n which

governs the transformations of Hermitian modular forms of degree n. We define a

right action of U(1, 1) on Cn × Cn via

[λ, µ] · A := [λ, µ]A = [a11λ+ a21µ, a12λ+ a22µ] (2.2)

for any λ, µ ∈ Cn × Cn and A = [aij] ∈ U(1, 1). This action gives rise to the

following definition.

Definition 2.1. Define multiplication in Γ1 := U(1, 1)⋉C2n via

(A,X1) · (A,X2) := (A1A2, X1 · A2 +X2). (2.3)

This group will be that which governs the transformation law of our Hermitian

Jacobi forms.
14



Let (τ, w, z) ∈ H × Cn × Cn. Throughout the paper we consider w to be a row

vector and z to be a column vector. In order to define our group action of Γ1 on

H × Cn × Cn we define actions of the two constituent groups. First for [λ, µ] ∈

Cn × Cn, where both λ and µ are row vectors, we define

[λ, µ] · (τ, w, z) := (τ, w + λτ + µ, z + λ
t
τ + µt). (2.4)

Here we write At for the transpose of a matrix. Often in related literature the convention

is tA. Next we consider the action of U(1, 1) on (τ, w, z). We also note that

U(1, 1) = {ϵM : ϵ ∈ O×,M ∈ SL2(Z)}. (2.5)

For M =

a b

c d

 ∈ SL2(Z) define Mτ = aτ+b
cτ+d

and j(M, τ) = cτ + d. We define

an action of U(1, 1) on H× Cn × Cn by

ϵM · (τ, w, z) :=
(
Mτ,

ϵw

j(M, τ)
,

ϵz

j(M, τ)

)
. (2.6)

We then define a group action of Γ1 on H× Cn × Cn via

(A, [λ, µ]) · (τ, w, z) := A · ([λ, µ] · (τ, w, z)). (2.7)

Remark 2.2. One can check that this is a well-defined group action by first computing

that, for A ∈ U(1, 1) and [λ, µ] ∈ Cn × Cn,

[λ, µ] · (A(τ, w, z)) = A([λ, µ] · A) · (τ, w, z). (2.8)

With the group actions defined above we can define associated slash operators.

Let ϕ : H × Cn × Cn → C be a function. For ϵM ∈ U(1, 1), λ, µ ∈ Cn, an integer k

and T ∈ Λn(O) define

ϕ|T,kϵM(τ, w, z) := ϵ−k(j(M, τ))−ke (−cwTz/j(M, τ))ϕ (ϵM · (τ, w, z)) (2.9)

ϕ|T (λ, µ)(τ, w, z) := e(λTλ
t
τ + wTλ

t
+ λTz)ϕ

(
τ, w + λτ + µ, z + λ

t
τ + µt

)
.

(2.10)
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2.2 Hermitian Jacobi Forms

In the previous section we introduced the transformation group for our Hermitian

Jacobi forms. The other condition on our forms is the existence of a Fourier expansion

of a certain form. In order to give this condition explicitly we introduce a couple

indexing sets for these expansions. Let O# := i√
D
O be the different of our ring of

integers.

Remark 2.3. The set O# is the dual lattice of O with respect to the trace pairing

on K. In particular, for each α ∈ O# and β ∈ O we have

2Re[αβ] ∈ Z. (2.11)

Define

Λn(O) :=
{
A ∈Mn(C)|A = A

t
, ai,i ∈ Z, ai,j ∈ O#

}
(2.12)

and

Λ+
n (O) := {A ∈ Λn(O) : A is positive definite } . (2.13)

Finally define our indexing set, for a matrix T ∈ Λn(O),

ST :=

(m, r) ∈ Z×
(
O#
)n

:

m rt

r T

 ∈ Λ+
n+1(O)

 . (2.14)

Now we can define an Hermitian Jacobi form.

Definition 2.4. Let k be an integer and T ∈ Λn(O). A holomorphic function ϕ :

H×Cn×Cn → C is an Hermitian Jacobi form of weight k, degree n, and index T if

1. ϕ satisfies the following transformation laws

ϕ|T,kA(τ, w, z) = ϕ(τ, w, z) for all A ∈ U(1, 1) (2.15)

ϕ|T [λ, µ](τ, w, z) = ϕ(τ, w, z) for all [λ, µ] ∈ On ×On (2.16)

16



2. ϕ has a Fourier expansion

ϕ(τ, w, z) =
∑

(m,r)∈ST

α(m, r)e(mτ + wr + rtz). (2.17)

We call this space J n
T,k(O) or just J n

T,k if O is clear from context.

These transformations given in condition (1) above can be rephrased as a single

requirement using the group Γ1 though we find it easier to think of these two transformations

separately.
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CHAPTER 3

HERMITIAN MODULAR FORMS

3.1 Definition and Notation

Hermitian modular forms are a higher dimensional analogue of classical modular

forms, similar to Seigel modular forms. Whereas Seigel modular forms transform

with respect to the symplectic group, Hermitian modular forms transform with

respect to the unitary group U(n, n) for some integer n ≥ 1. These objects were

first introduced in a sequence of three papers by Hel Braun [Bra49], [Bra51a] and

[Bra51b]. Since their definition, these forms have grown to be an important class

of automorphic forms with a theory that parallels many of the developments in the

theory of Seigel modular forms. In this chapter we give an overview of this theory

and explain the relationship between Hermitian modular forms and Hermitian Jacobi

forms.

First define the Hermitian upper-half space of degree n by

Hn := {Z ∈Mn(C) : (Z − Z
t
)/2i > 0}. (3.1)

The group U(n, n) has an action on Hn defined by

M⟨Z⟩ := (AZ +B)(CZ +D)−1 (3.2)

for M =

A B

C D

 ∈ U(n, n) and Z ∈ Hn. Now we define Hermitian modular forms.

Definition 3.1. Let k be an integer. A function F : Hn → C is a Hermitian

modular form of weight k, and degree n for the group U(n, n) if it is holomorphic

18



and, for any M =

A B

C D

 ∈ U(n, n) and Z ∈ Hn, we have

F (Z) = F |kM(Z) := det(CZ +D)−kF (M⟨Z⟩). (3.3)

Here A,B,C and D are n × n block matrices. When n = 1 we require that F be

holomorphic at the cusps of SL2(Z) as well. Concretely this means that we require

that F (Z) is bounded as Im(z) tends to infinity. We denote the space of such functions

by Mn
k(O).

For a matrix B define e(B) = e2πitrB. Then a Hermitian modular form F has a

Fourier expansion

F (Z) =
∑

A∈Λn(O)

a(F,A)e(AZ). (3.4)

If instead the above sum is over Λ+
n (O) we say that F is a cusp form.

3.2 Relationship with Hermitian Jacobi Forms

We now explain the relationship between Hermitian Jacobi forms and Hermitian

modular forms. The basic principle is that the Fourier series can be rearranged in

order to give F as a sum of Hermitian Jacobi forms multiplied by an exponential

term. We first need a lemma in order to verify the transformation law of these

coefficients.

Lemma 3.2. Let µ, λ ∈ On. Then for any T ∈ Λn(O) we have that

λTµt + µTλ
t ∈ Z. (3.5)

Proof. We have, using the formula for the trace of a matrix product,

tr
(
µtTλ+ λ

t
Tµ
)
=

n∑
i=1

n∑
j=1

tijµjλi + tjiλjµi. (3.6)

19



The terms for which i = j are in Z since

tii ∈ Z and
(
µjλi + λjµi

)
∈ O ∩ R = Z. (3.7)

Then we have

tr(µtTλ+ λ
t
Tµ) ≡

n∑
i=1

n∑
j=1
j ̸=i

2Re[tijµiλj] (mod Z) (3.8)

Since tij ∈ O# and µiλj ∈ O, Remark 2.3 implies each term in the above sum is an

integer. Thus tr(µtTλ+ λ
t
Tµ) is as well.

With this we can prove the that the Fourier Jacobi coefficients of an Hermitian

modular form are Hermitian Jacobi forms.

Proposition 3.3. Let F : Hn+1 → C be a Hermitian modular form of weight k. Let

F have Fourier expansion

F (Z) =
∑

A∈Λn+1(O)

a(F,A)e(AZ).

For T ∈ Λn(O) define

ϕT (τ, w, z) :=
∑

(m,r)∈ST

a

F,
m rt

r T


 e(aτ + wr + rtz).

Then

F


τ w

z Z


 =

∑
T∈Λn(O)

ϕT (τ, w, z)e(TZ) (3.9)

and each ϕT is an Hermitian Jacobi form of degree n, weight k and index T .

Proof. First we address the holomorphy concerns of ϕT . The Fourier series of F

converges absolutely on compact subsets of the domain Hn+1. Hence the sub-sum

e(TZ)ϕT (τ, z, w) =
∑

(m,r)∈ST

a

F,
m rt

r T


 e


m rt

r T


τ w

z Z


 (3.10)
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will converge absolutely on compact subsets of Hn and thus so too will the sum

defining ϕT . In particular we see that ϕT is a well-defined holomorphic function on

H× Cn × Cn with the proper Fourier expansion.

In order to prove that ϕT satisfies the necessary transformation laws we first

need Equation (3.9). If m rt

r T

 ∈ Λn+1(O) (3.11)

then T ∈ Λn(O). Observe that

e(TZ)e(mτ + wr + rtz) = e


m rt

r T


τ w

z Z


 . (3.12)

so that Equation (3.9) immediately follows from the definition of ϕT .

It remains to check that ϕT satisfies the proper transformation law. Let ϵ ∈

O× and M =

a b

c d

 ∈ SL2(Z). Note that

M :=



ϵa 0 ϵb 0

0 In 0 0

ϵc 0 ϵd 0

0 0 0 In


∈ U(n+ 1, n+ 1). (3.13)

Since F is an Hermitian modular form of weight k, we have

F |kM = F. (3.14)

If follows from direct computation that

M

〈τ w

z Z

〉 =

 Mτ ϵw
j(M,τ)

ϵz
j(M,τ)

Z − czw
(cτ+d)

 . (3.15)
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Expanding Equation (3.14) using Equation (3.9) and comparing the coefficients of

e(TZ) gives Equation (2.15) for ϕT .

Next consider our other transformation requirement. Let λ, µ ∈ On. Again, we

consider these as row vectors. To get Equation (2.16) for ϕT we use the matrix

N :=



1 0 0 µ

λ
t
In µt λ

t
µ

0 0 1 −λ

0 0 0 In


. (3.16)

We have

N

〈τ w

z Z

〉 =

 τ λτ + w + µ

λ
t
τ + µt + z Z + λ

t
w + zλ+ τλ

t
λ+ (λ

t
µ+ µtλ)

 . (3.17)

If we expand Equation (3.14) using Equation (3.9) and compare the coefficients we

almost get the desired equality. On the left-hand side we have an extra term of

e(λTµt + µTλ
t
) = 1

by Lemma 3.2. Equation (2.16) follows.

The expansion above is known as the Fourier Jacobi expansion of an Hermitian

modular form. By studying the Fourier expansion of Hermitian Jacobi forms, we

can get information about Hermitian modular forms, similar to the Siegel setting,

where the theory of Jacobi forms sheds light on Siegel modular forms.
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CHAPTER 4

THETA EXPANSIONS

This chapter is the most technically dense. We introduce our theta functions,

relate them to Hermitian Jacobi forms and study their transformations. We’ll almost

exclusively be studying Hermitian Jacobi forms of positive definite index as non-

singularity of the index is required for the definition of the theta functions. Proposition

6.11 tells us this requirement is not too restrictive.

4.1 Definitions and Existence

Throughout this section let ϕ be a Hermitian Jacobi form of degree n, weight k

and index T ∈ Λ+
n (O) with Fourier expansion

ϕ(τ, w, z) =
∑

(m,r)∈ST

α(m, r)e(mτ + wr + rtz). (4.1)

Since T ∈ Λ+
n (O) we see that T is necessarily non-singular. We introduce some

notation that will be helpful for this section.

Define, for A ∈ Λn(O)

d(A) :=


| det

(
i
√
DA
)
| if n is even∣∣∣ −i√

D
det
(
i
√
DA
)∣∣∣ if n is odd

. (4.2)

This quantity is called the content of the matrix A. For n ≥ 1 and D ∈ R let

En(D) =


D if n is odd

1 if n is even
. (4.3)

This is a correction term to d(A) that is necessary to relate the content of an n × n

matrix to the content of an n+ 1× n+ 1 matrix. Finally let

IT,s :=

{
N ∈ Z>0 :

N

En(D)d(T )
+ stT−1s ∈ Z

}
. (4.4)
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This will be the indexing set of our theta coefficients. The main result of this sections

is

Proposition 4.1. Let ϕ be as above. For s ∈
(
O#
)n and an integer N > 0 define

αs+TOn(N) = a(m, r) (4.5)

if r ≡ s (mod TOn) and N = d


m rt

r T


. Define for τ ∈ H and w, z ∈ Cn,

hs(τ) :=
∑

N∈IT,s

αs+TOn(N)e

(
N

En(D)d(T )
τ

)
(4.6)

θT,s(τ, w, z) :=
∑

r∈(O#)
n

r≡s (mod TOn)

e
(
rtT−1rτ + wr + rtz

)
. (4.7)

Then we have

ϕ(τ, w, z) =
∑

s∈(O#)
n
/TOn

hs(τ)θT,s(τ, w, z) (4.8)

We will see that the quantity En(D)d(T ) will be the level of the theta coefficients

hs of our Hermitian Jacobi form ϕ. In order to prove Proposition 4.1 we need 4

preliminary results. We first argue that our theta functions are well-defined holomorphic

functions.

Proposition 4.2. Let s ∈ (O#)n. Then

∑
r∈(O#)n

r≡s (mod TOn)

e
(
rtT−1rτ + wr + rtz

)
(4.9)

is absolutely and uniformly convergent on compact subsets of H× Cn × Cn.

Proof. Let K ⊂ H× Cn × Cn be compact.
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First we find ω1, ω2, ω3 > 0 such that∣∣e (rtT−1rτ
)∣∣ ≤ exp

(
−ω1||r||2

)
(4.10)

|e (wr)| ≤ exp (ω2||r||) (4.11)∣∣e (rtz)∣∣ ≤ exp (ω3||r||) (4.12)

for all (τ, w, z) ∈ K and r ∈ (O#)n with ||r|| sufficiently large. If d > 0 is the

minimal eigenvalue of T−1 then

|rtT−1r| ≥ d||r||2. (4.13)

This follows from the fact that, because T−1 is a positive definite, Hermitian matrix,

T−1 is orthogonally diagonalizable.

Since K ⊂ H × Cn × Cn is compact we can choose some v0 > 0 so that Im(τ) > v0

for all (τ, w, z) ∈ K. We have∣∣e (rtT−1rτ
)∣∣ ≤ exp

(
−2πdv0||r||2

)
. (4.14)

Let ω1 = 2πdv0. Inequalities 4.11 and 4.12 just follow from the Cauchy--Schwarz

inequality and the fact that w and z are such that (τ, w, z) ∈ K for some τ .

These together give∣∣e (rtT−1rτ + wr + rtz
)∣∣ ≤ exp

(
−ω1||r||2 + (ω2 + ω3)||r||

)
(4.15)

for r with ||r|| sufficiently large. If 0 ≤ ω4 < ω1 then for ||r|| sufficiently large we

have

−ω4||r||2 > −ω1||r||2 + (ω2 + ω3)||r||. (4.16)

Let Mr = exp (−ω4||r||2). The for all (τ, w, z) ∈ H × Cn × Cn and
(
r ∈ O#

)n with

||r|| sufficiently large we have∣∣e (rtT−1rτ + wr + rtz
)∣∣ ≤Mr. (4.17)
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By the Weierstrass M -test it suffices to show that

∑
r∈(O#)n

r≡s (mod TOn)

Mr <∞. (4.18)

Let Λ = {r ∈ (O#)n : r ≡ s (mod TOn)}. We see that Λ is a shift of a lattice in Cn

so that, for

ΛN = {λ ∈ Λ : (N − 1) ≤ ||λ|| ≤ N} (4.19)

we have |ΛN | ≤ CN2n for some fixed constant C and N sufficiently large. After

splitting sum (4.18) into a sum over N and a sum over ΛN we see convergence

follows from the ratio test.

In order to ensure that the coefficients αs+TOn(N) are well-defined, we need

the following lemma.

Lemma 4.3. Let r,m, s and p be such thatm rt

r T

 ,

p st

s T

 ∈ Λn+1(O). (4.20)

If s ≡ r (mod TOn) and

det


m r

rt T


 = det


p s

st T




then a(m, r) = a(p, s)

Proof. There are two useful equations for this proof. Applying Equation (2.16)

with µ = 0 and comparing coefficients of e[mτ + wr + rt] in the Fourier expansion

of ϕ gives

a(m, r) = a(m+ λTλ
t
+ rλ+ rtλ

t
, r + Tλ

t
) (4.21)
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for each λ ∈ On.

Since T is non-singular we can write

det


m rt

r T


 = det(T )(m− rtT−1r) (4.22)

If

det(T )(m− rT−1rt) = det(T )(p− sT−1st) (4.23)

then

m− rT−1rt = p− sT−1st. (4.24)

Let λt = T−1(s− r) ∈ On. We then compute

rtλ
t
+ λr + λTλ

t
= stT−1s− rtT−1r. (4.25)

Thus

a(m, r) = a(m+ sT−1st − rT−1rt, s) = a(p, s)

as desired.

We need two more lemmas in order to prove Proposition 4.1. Both are of a

similar flavor and are used in comparing the Fourier expansion of ϕ with the theta

expansion.

Lemma 4.4. Let M ∈ Λ+
n (O). Then d(M) ∈ Z>0.

Proof. First consider the case when n is even. Then

d(M) =
∣∣∣det(i√DM)

∣∣∣ . (4.26)
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We have det
(
i
√
DM

)
∈ O because i

√
DM ∈ Mn(O). Since M ∈ Λ+

n (O) we have

M =M
t. Thus

det
(
i
√
DM

)
= det(−i

√
DM) = (−1)ndet(i

√
DM) = det(i

√
DM). (4.27)

Thus det
(
i
√
DM

)
∈ R ∩ O = Z and since M is positive definite det(i

√
DM) ̸= 0

and d(M) ∈ Z>0

Now consider when n is odd. In this case we have

d(M) =

∣∣∣∣ −i√
D

det(i
√
DM)

∣∣∣∣ . (4.28)

As in the preceding argument, −i√
D
det(i

√
DM) ∈ R. We argue that −i√

D
det(i

√
DM) ∈

O. Let A = i
√
DM . The important characteristics of A for the following are that

A = −At, aij ∈ O and aii ∈ i
√
DO. Let Sn denote the symmetric group on n

letters. We have

det(A) =
∑
σ∈Sn

(−1)σ
∏

ai,σ(i). (4.29)

Write Sn = P
∐
Q where P = {σ ∈ Sn : σ = σ−1} and Q = Sn\P . Then

det(A) =
∑
σ∈P

(−1)σ
∏

ai,σ(i) +
∑
σ∈Q

(−1)σ
∏

ai,σ(i). (4.30)

For σ ∈ Q we have σ ̸= σ−1 so we can pair summands of index σ with summands of

index σ−1. We have

(−1)σ
∏

ai,σ(i) = (−1)σ
−1
∏

ai,σ(i) = −(−1)σ
−1
∏

aσ(i),i (4.31)

−(−1)σ
−1
∏

ai,σ−1(i). (4.32)

The terms in the sum over Q after being grouped in this way will be of the form

2iIm(a) for some a ∈ O. We have

−i√
D
2iIm(a) = 2Re

(
−i√
D
a

)
∈ Z. (4.33)
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Now consider the sum over P . If σ is written as a product of disjoint cycles then

the order of σ will be the length of the largest cycle. We see that σ must be a product

of disjoint transpositions because σ has order two. Because n is odd σ must have a

fixed point. If σ(i) = i then ai,σ(i) = ai,i ∈ i
√
DO. Hence

det(A) =
∑
σ∈P

(−1)σ
∏

ai,σ(i) ∈ i
√
DO (4.34)

so −i√
D
det(i

√
DM) ∈ O ∩ R = Z. Thus d(M) ∈ Z>0 when n is odd.

Lemma 4.5. Let s ∈ (O#)n. Then

En(D)d(T )stT−1s ∈ Z. (4.35)

Proof. First consider when n is odd. In this case we have

En(D) = D (4.36)

d(T ) = ± i√
D

det(i
√
DT ). (4.37)

We see

d(T )T−1 = ± det(i
√
DT )(i

√
DT−1) = Adj(i

√
DT ) ∈Mn(O). (4.38)

Then

En(D)d(T )sT−1s = ±
(
i
√
Ds
)t

Adj(i
√
DT )(i

√
Ds) ∈ O. (4.39)

We also have En(D)d(T )stT−1s ∈ R because T is Hermitian so En(D)d(T )stT−1s ∈

Z as desired.

Now consider when n is even. In this case we have

En(D) = 1 (4.40)

d(T ) = ± det(i
√
DT ). (4.41)
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Note that the diagonal entries of Adj(i
√
DT ) are the determinants of form det(i

√
DA)

for some A ∈ Λn−1(O). Since n − 1 is odd we see that these diagonal entries lie in

i
√
DO, as in Equation (4.34). Thus

d(T )T−1 = ±i
√
DAdj(i

√
DT ) (4.42)

is Hermitian with diagonal entries in DO and off diagonal entries in i
√
DO. We

have

sAst =
n∑

i=1

aii|si|2 +
∑
i<j

2Re[aijsisj]. (4.43)

Since aii ∈ DO aii|si|2 ∈ Z. Since aij ∈ i
√
DO we have aijsi ∈ O. Thus 2Re[aijsisj] ∈

Z because sj ∈ O#. Thus d(T )sT−1st ∈ Z as desired.

We now prove the existence of theta expansions for Hermitian-Jacobi forms.

Proof of Proposition 4.1. We first recall the setting. We have an Hermitian Jacobi

form ϕ with Fourier expansion

ϕ(τ, w, z) =
∑

(m,r)∈ST

α(m, r)e(mτ + rw + rtz). (4.44)

Furthermore we have for τ ∈ H and w, z ∈ Cn,

hs(τ) :=
∑

N∈IT,s

αs+TOn(N)e

(
N

En(D)d(T )
τ

)
(4.45)

θT,s(τ, w, z) :=
∑

r∈(O#)
n

r≡s (mod TOn)

e
(
rtT−1rτ + wr + rtz

)
(4.46)

where

Is,T :=

{
N ∈ Z≥0 :

N

En(D)d(T )
+ stT−1s ∈ Z

}
(4.47)
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and

αs+TOn(N) = a(m, r) (4.48)

if r ≡ s (mod TOn) and N = d


m rt

r T


.

First we argue that N = d


m rt

r T


 for some

m rt

r T

 ∈ Λn+1(O) with

r ≡ s (mod TOn) if and only if N ∈ IT,s. First suppose N = d


m rt

r T


. The

fact that N ∈ Z>0 is the content of Lemma 4.4.

Consider N
En(D)d(T )

+ stT−1s. We have

N

En(D)d(T )
+ stT−1s = m− rtT−1r + stT−1s (4.49)

by Equation (4.22). An application of Lemma 3.2 shows that if r ≡ s (mod TOn)

stT−1s− rtT−1r ∈ Z. (4.50)

We then see that N ∈ IT,s.

Next suppose N ∈ IT,s then take m = m(N, r) := N
En(D)d(T )

+ rtT−1r for any

r ≡ s (mod TOn) so that N = d


m rt

r T


 . To see that

m rt

r T

 > 0 use that,

for

x1
x

 ∈ C× Cn we have

[
x1 xt

]m rt

r T


x1
x

 = |x1|2
(

N

En(D)d(T )

)
+ (x+ T−1x1r)

t
T (x+ T−1x1r) > 0

(4.51)
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as long as

x1
x

 ̸= 0. To get

∑
s∈(O#)n/TO

θshs = ϕ(τ, w, z) (4.52)

write out both sums and use the argument above to realize (s, r,N) 7→ (m(N, r), r)

gives a bijection between the two indexing sets.

We will see that the functions hs are classical modular forms and, since the

Fourier coefficients of hs are directly related to those of ϕT (and hence to F ), we

can use our knowledge of classical modular forms to gain information about Hermitian

modular forms. We explain this process in more detail in Chapter 6.

4.2 The Transformation of Theta Functions

In order to prove that the hs are modular forms we will prove some transformation

laws for our theta functions and then use the transformation law satisfied by our

Hermitian Jacobi forms to translate these into transformation laws satisfied by the

hs. We introduce some notation.

We then define a character χD : Z → C by the Kronecker symbol

χD(q) :=

(
D

q

)
. (4.53)

This is a character modulo D because D is a fundamental discriminant. Recall the

group

Γ0(r) :=


a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod r)

 . (4.54)

The primary result of this section is as follows:
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Proposition 4.6. For the theta function θT,s and M =

a b

c d

 ∈ Γ0 (En(D)d(T ))

we have

θT,s|T,nMJ =
1

det(−i
√
DT )

χD(d)
n

∑
s′∈(O#)

n
/TOn

e
[
a
(
2Re[stT−1s′] + bstT−1s

)]
θT,s′ .

(4.55)

We follow Haverkamp [Hav95, Satz 4.5] closely for this proof. The steps are as

follows.

1. Introduce auxiliary functions ψ and ϕ and prove these satisfy two useful transformations

by computing some related exponential integrals.

2. Relate these two functions to our theta functions using Fourier expansions.

3. Translate the transformation laws of ψ and ϕ into those of the theta functions.

4. Relate a Gauss-like sum that appears to our character χD.

First we’ll introduce these auxiliary functions and prove two transformation laws

for ψ and ϕ.

Definition 4.7. Let s, σ, w, z ∈ Cn,

a b

c d

 ∈ Γ0(En(D)d(T )) and τ ∈ H. Again,

we consider w as a row vector and s, σ and z as column vectors. Define

ϕ(w, z) = e[wT−1z(aτ + b)a] (4.56)

ψs,σ(w, z) =
∑

r≡s (mod On)

e
[
rtTrτ + (wr + rtz)(aτ + b) + 2Re[σtr]

]
. (4.57)

Similarly to Proposition 4.2 ψs,σ is given by a series that converges absolutely and

uniformly on compact subsets of Cn × Cn.
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Remark 4.8. We assume that a ̸= 0. If a = 0 then c = ±1 so En(D)d(T ) = 1. We

see En(D) = 1 so that n is even and Γ0(En(D)d(T )) = SL2(Z). If we prove for any

M ∈ SL2(Z) with a ̸= 0 then we see that for any M ∈ SL2(Z) with a ̸= 0 we have

θT,s|T,nMJ = θT,s. (4.58)

Since

1 1

0 1

 J−1 and JJ−1 have non-zero (1,1) entry we see that θT,s|T,nA = θT,s

for every A ∈ SL2(Z). In particular we have this equation for MJ when a = 0.

Thus we can assume a ̸= 0 from here on out.

Now we prove the transformation laws for ϕ and ψ.

Lemma 4.9. Let α ∈ TOn and β ∈ (O#)n. Then we have

ϕ(w + αt, z + α)ψs,σ(w + αt, z + α) = e
[
2Re[bstα− aσtT−1α]

]
ϕ(w, z)ψs,σ(w, z)

(4.59)

and

ϕ(w + β
t
(JMτ), z + β(JMτ))ψ(w + β

t
(JMτ), z + β(JMτ)) =

(4.60)

e
[
−
(
β
t
T−1βJMτ + wT−1β + β

t
T−1z + 2Re((dstβ − cσtT−1β))

)]
ϕ(w, z)ψ(w, z).

(4.61)

Proof. First we consider the proof of Equation (4.59). We have

ϕ(w, z)ψs,σ(w, z) (4.62)

=
∑

r≡s (mod On)

e
[
wT−1z(aτ + b)a+ rtTrτ + (wr + rtz)(aτ + b) + 2Re[σtr]

]
.

(4.63)
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Note that we can replace r in the above sum by r + aT−1α and it will leave the

whole sum unchanged because aT−1α ∈ On. If we add and subtract b(αtr + rtα +

aαtT−1α) within our exponential then our rth term will be

e
[
wT−1z(aτ + b)a+ αtT−1α(aτ + b)a+ (wT−1α + αtT−1z)(a)(aτ + b)

]
(4.64)

·e
[
rtTrτ + (wr + rtz)(aτ + b) + rtα(aτ + b) + αtr(aτ + b) + 2Re[σtr]

]
(4.65)

·e[2Re[σt(aT−1α)− brtα]] · e[−abαtT−1α]. (4.66)

Since α ∈ TOn we have αtT−1α ∈ Z so this last term is just 1. Since r ≡ s

(mod On) we have

e[2Re[brtα]] = e[2Re[bstα]]. (4.67)

Hence our sum for ϕ · ψ has rth term

e
[
(w + αt)T−1(z + α)(aτ + b)a

]
· e
[
rtTrτ +

(
(w + αt)r + rt(z + α)

)
(aτ + b) + 2Re

[
σtr
]]

(4.68)

·e
[
2Re[σt(aT−1α)− bstα]

]
.

(4.69)

From this our first transformation law follows.

Now we consider the second of these transformation laws. To prove this we make

another change of variables in our sum ϕ(w, z)ψ(w, z). Note that

d(T )T−1 = ± det
(
i
√
DT
)
(i
√
DT )−1 or ± i

√
D det

(
i
√
DT
)
(i
√
DT )−1 (4.70)

depending on whether n is odd or even. In any event we see that En(D)d(T )T−1β ∈

On. Thus cT−1β ∈ On. We exchange r for r − cT−1β.
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After this change of variables we proceed by direct comparison of the sums in

Expressions 4.60 and 4.61. Since JMτ = −cτ−d
aτ+b

, it suffices to show

(β
t
r + a(β

t
T−1z + wT−1β + β

t
T−1β(JMτ)) + rtβ))(−cτ − d)

(4.71)

≡ (−c(βt
T−1β) + rtβ + β

t
r + awT−1β + aβ

t
T−1z)(−cτ) + b(wT−1β(−c) + (−c)(βt

T−1z))

(4.72)

−d(rtβ + β
t
r)− β

t
T−1z − wT−1β − β

t
T−1βJMτ (mod Z)

(4.73)

The difference of these two modulo Z is dcβt
T−1β which, by Lemma 4.5, is an integer.

Next our goal is to relate these functions ψ and ϕ to our theta functions. The

basic idea is to study the Fourier expansion of the product and compute the Fourier

coefficients. From here we can use a change of variables to relate our function ψ to

θ.

Lemma 4.10. Let s′ = bTs− aσ and σ′ = dTs− cσ. Then we have

e
[
s′

t
T−1s′JMτ + 2Re[s′T−1σ′]

]
ϕ(w, z) · ψs,σ(w, z) (4.74)

= γ(0)
∑

g∈(O#)
n

e
[
(s′ + g)

t
T−1(s′ + g)JMτ + wT−1(s′ + g) + (g + s′)

t
T−1z + 2Re[(s′ + g)

t
T−1σ′

]
(4.75)

for some constant γ(0).

Proof. Let

F (w, z) := ϕ(w, z)ψs,σ(w, z). (4.76)

We follow the following steps:
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1. Define a new function F̃ and check the transformation

F̃ (w + αt, z + α) = F̃ (w, z)

for all α ∈ TOn.

2. Write out the Fourier expansion of F̃ and translate this to a series expansion

of F .

3. Evaluate F (w+ β
t
JMτ, z+ βJMτ) in two ways. First evaluate directly, using

step (2).

4. Use the equality of 4.60 and 4.61 F (w + β
t
JMτ, z + βJMτ) and perform the

change of variables g 7→ g + β on the sum.

5. Compare the series in (3) and (4) and plug in g = 0 to get a formula for the

coefficients.

6. Use (5) and the series expansion of F to prove the equality of Expressions

4.90 and 4.91.

Step 1: Let F (w, z) = ϕ(w, z)ψ(w, z). Define

F̃ (w, z) = e
[
−(wTs′ + s′

t
Tz)

]
F (w, z). (4.77)

The transformation law for F̃ follows from Equation (4.59).

Step 2: We know F̃ is holomorphic on Cn × Cn because both ϕ and ψ are. By Step

1 we know that F̃ is periodic with respect to the lattice

{
(αt, α) : α ∈ TOn

}
. (4.78)
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Because F̃ is holomorphic F̃ will have a Fourier expansion over the dual lattice of

the form

F̃ (w, z) =
∑

g∈T−1(O#)n

γ(Tg)e[wg + gtz]. (4.79)

Then, after the change of variables g 7→ T−1g, we have

F (w, z) =
∑

g∈(O#)n

γ(g)e
[
wT−1(s′ + g) + (s′ + g)

t
T−1z

]
. (4.80)

Step 3: Let β ∈
(
O#
)n. Plugging in (w + β

t
JMτ, z + βJMτ) gives

F (w + β
t
JMτ, z + βJMτ) (4.81)

=
∑

g∈(O#)
n

γ(g)e
[
2Re[(s′ + g)

t
T−1β]JMτ

]
e
[
wT−1(s′ + g) + (s′ + g)

t
T−1z

]
. (4.82)

Step 4: Note

dstβ − cσtT−1β = σ′tT−1β. (4.83)

By Equation (4.59) we have,

F (w + β
t
JMτ, z + βJMτ) = e

[
−
(
β
t
T−1βJMτ + wT−1β + β

t
T−1z + 2Re[σ′tT−1β]

)]
F (w, z).

(4.84)

Using the series expansion of F and replacing the index g by g + β gives

F (w + β
t
JMτ, z + βJMτ)

(4.85)

=
∑

g∈(O#)n

γ(g + β)e
[
−
(
β
t
T−1βJMτ + 2Re[σ′tT−1β]

)]
e
[
wT−1(s′ + g) + (s′ + g)

t
T−1z

]
.

(4.86)
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Step 5: Comparing 4.82 and 4.86 we see∑
g∈(O#)

n

γ(g)e
[
2Re

[
(s′ + g)

t
T−1β

]
JMτ

]
e
[
wT−1g + gtT−1z

]
(4.87)

=
∑

g∈(O#)
n

γ(g + β)e
[
−βt

T−1βJMτ − 2Re[σ′tT−1β]
]
e
[
wT−1g + gtT−1z

]
. (4.88)

If we compare the g = 0 coefficients then we get

γ(β) = γ(0)e
[(
β
t
T−1β + 2Re[s′tT−1β]

)
JMτ + 2Re[σ′tT−1β]

]
. (4.89)

Step 6: If we combine Equation (4.89) with 4.80 we get

e
[
s′

t
T−1s′JMτ + 2Re[s′T−1σ′]

]
ϕ(w, z) · ψs,σ(w, z) (4.90)

= γ(0)
∑

g∈(O#)
n

e
[
(s′ + g)

t
T−1(s′ + g)JMτ + wT−1(s′ + g) + (g + s′)

t
T−1z + 2Re[(s′ + g)

t
T−1σ′

]
(4.91)

where

σ′ = dTs− cσ and s′ = bTs− aσ. (4.92)

as desired.

Let

η = η(τ, s, σ) = e
[
−
(
s′

t
T−1s′JMτ + 2Re[s′tT−1σ′]

)]
γ(0). (4.93)

Lemma 4.10 then becomes

ϕ(w, z) · ψs,σ(w, z) (4.94)

= η
∑

g∈(O#)
n

e
[
(s′ + g)

t
T−1(s′ + g)JMτ + wT−1(s′ + g) + (g + s′)

t
T−1z + 2Re[(s′ + g)

t
T−1σ′

]
(4.95)

In the next lemma we compute the value of η. In the process we’ll run into the

following Gauss sum.
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Definition 4.11. For T and a ∈ Z non-zero , define

G(T, a) =
∑

s∈On/aOn

e

[
stTs

a

]
.

We’ll also need the following lemma from Haverkamp’s thesis [Hav95]:

Lemma 4.12. For c ∈ R and r, q ∈ C with Im(q) < 0 we have∫
Im(z)=c

e
[
−qz2 + rz

]
dz = (2iq)−1/2e

[
r2/4q

]
(4.96)

Lemma 4.13. We have

η =
1

det
(
−i

√
DT
) 1

(a(aτ + b))n
G(bT, a)e

[
−bdstTs− acσtT−1σ + 2adRe[σtTs]

]
.

(4.97)

Proof. We start by multiplying both sides of equation from 4.10 by

e
[
−
(
s′

t
T−1sJMτ + wT−1s′ + s′

t
T−1z

)]
.

We write the left hand side as ∑
q∈On

e[R(q, w, z)]

where

R(q, w, z) = wT−1z(aτ + b)(a) + (s+ q)
t
T (s+ q)τ +

(
w(s+ q) + (s+ q)

t
z
)
(aτ + b)

(4.98)

+2Re[σt(s+ q)]− s′
t
T−1s′JMτ − wT−1s′ − s′

t
T−1z.

(4.99)

The right hand side will be

η
∑

p≡s′ (mod (O#)
n
)

e
[(
ptT−1p− s′

t
T−1s′

)
JMτ + (wT−1(p− s′) + (p− s′)tT−1z + 2Re[ptT−1σ′]

]
.

There are two transformation laws that R satisfies: Let g, h ∈ Cn
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1.

R(ag+h,w, z) = R(h,w, z)+
(
a2gtTg + 2Re[(ag)

t
T (s+ h)]

)
τa(wg+gtz)(aτ+b)+2aRe[σtg].

2.

R(h,w+gtT, z+Tg) = R(h,w, z)+2aRe[σtg]+(gtz+wg+gtTg)(a)(aτ+b)+2aRe[gtT (s+b)]τ.

Both of these follow from direct computation.

From (1) and (2) above together we see that, for g, h ∈ On

R(ag + h,w, z) ≡ R(h,w + gtT, z + Tg) (mod Z).

In order to compute η we set z = wt and integrate both the left and right hand

sides over Cn/ (OnT ). We first consider the right side.

The right side is invariant under translation of w by α ∈ OnT . Our integral is

η
∑

p≡s′ (mod (O#)n)

I(p) (4.100)

where

I(p, s′) :=

∫
Cn/OnT

e
[
(wT−1(p− s′) + (p− s′)tT−1wt + 2Re[ptT−1σ′]

]
dw. (4.101)

Note that if we substitute w + z for w we get

I(p, s′) = e
[
2Re[(p− s′)T−1zt]

]
I(p, s′) (4.102)

for any z ∈ Cn. Hence I(p, s′) = 0 unless p = s′. After plugging in p = s′ our right

hand side becomes.

ηe
[
2Re[s′tT−1σ′]

]
vol (OnT ) . (4.103)
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We have

vol (OnT ) = det(T )2vol(On) = det(T )2

(√
D

2

)n

. (4.104)

Thus our right hand side is

η det(T )2

(√
D

2

)n

e
[
2Re[s′tT−1σ′

]
(4.105)

Next we compute the left hand side. We have∫
Cn/OnT

∑
p∈On

e[R(t, w, wt)] =

∫
C/OnT

∑
h∈On/aO

e
[
R(h,w + gtT,wt + Tg)

]
(4.106)

=
∑

h∈On/aOn

∫
C
e[R(h,w,wt)] (4.107)

=
∑

h∈On/aOn

∫
C
e

[
R

(
h,w − (h+ s)

t
T

a
, wt − T (h+ s)

a

)]
dw

(4.108)

Recall that a ̸= 0. Now we need to compute this integral. After expanding R and

simplifying the resulting expression breaks into two pieces:∫
C
e
[
wT−1wt(a)(aτ + b)− 2Re[wT−1s′]

]
dw (4.109)

∑
h∈On/aOn

e

[
2Re[σt(s+ h)]− s′

t
T−1s′JMτ +

2

a
Re[s′(h+ s)]− (s+ h)

t
T (s+ h)

a
b

]
.

(4.110)

First we’ll simplify (4.110). Our sum in (4.110) is

e

[
b

a
stTs− s′

t
T−1s′JMτ

]
G(bT, a). (4.111)

Now we consider (4.109). Since T is Hermitian we can find another Hermitian matrix

G such that G2 = T−1. Let v = wG and u = Gs′. Our integral is, after making the

substitution w 7→ wG−1

det(T )

∫
Cn

e
[
vvt(a)(aτ + b)− 2Re[vu]

]
dv. (4.112)
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If we break this integral into components and write v and u for vi and ui respectively

we’ll find [∫
C
e
[
(v)2(a)(aτ + b)− 2Re[vu]

]
dv

]n
. (4.113)

Let v = x+ iy and u = p+ iq so that our integral split into∫
R
e
[
x2(a)(aτ + b)− 2xp

]
dx ·

∫
R
e
[
y2(a)(aτ + b)− 2yq

]
dy. (4.114)

We view R = {z ∈ C : Im(z) = 0} so we can apply Lemma 2.6. (b) from

Haverkamp’s thesis, Lemma 4.12 in this paper, to each of the above. We get that

the above integral is equal to

i

2(a)(aτ + b)
e

[
− p2 + q2

a(aτ + b)

]
. (4.115)

In total we find that our integral in (4.110) is equal to

det(T )

(
i

2(a)(aτ + b)

)n

e

[
− 1

(a)(aτ + b)
s′

t
T−1s′

]
. (4.116)

Combining 4.109 and 4.110 give the expression for the left hand side as

e
[
bdstTs− 2cbRe[stσ] + acσtT−1σ

]
G(bT, a) det(T )

(
i

2a(aτ + b)

)n

. (4.117)

Setting expressions (4.116) and (4.105) equal and solving for η gives

η =
1

det(T )

(
i√

D(a)(aτ + b)

)n

G(bT, a)e
[
−bdsTs− acσtT−1σ + 2adRe[σtTs]

]
.

(4.118)

A slight simplification of the above gives the desired result.

Using this we can get a transformation for our theta function which, after

analyzing the sum G will be that given in Proposition 4.8.
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Proposition 4.14. We have, for M ∈ Γ0(En(D)d(T )),

θT,s|T,n(MJ) = (4.119)
1

det
(
−i

√
DT
) · 1

dn
G(bT, d)

∑
s′∈(O#)

n
/TOn

e
[
a
(
2Re[stT−1s′] + bstT−1s

)]
· θT,s′ .

(4.120)

Proof. Plugging in our value for η to Equation (4.10) gives

ψT−1s,0

(
wT

aτ + b
,
Tz

aτ + b

)
= (4.121)

1

det(−i
√
DT )

· 1

an
G(bT, a)

∑
s∈(O#)

n
/TOn

e
[
d
(
2Re[stT−1s′]− bstT−1s

)]
· θm,s′ |T,n[−JM ].

(4.122)

Recall we have

ψs,σ(w, z) :=
∑

r≡s (mod On)

e
[
rtTrτ + (wr + rtz)(aτ + b) + 2Re[σtr]

]
. (4.123)

Using this and the change of variables r 7→ T−1r gives

ψT−1s,0

(
wT

aτ + b
,
Tz

aτ + b

)
= θT,s(τ, w, z). (4.124)

After slashing both sides by M−1J and replacing M−1 by M we get, for any M ∈

Γ0(En(D)d(T ))

θT,s|T,n(MJ) = (4.125)
1

det
(
−i

√
DT
) · 1

dn
G(−bT, d)

∑
s′∈(O#)

n
/TOn

e
[
a
(
2Re[stT−1s′] + bstT−1s

)]
· θT,s′ .

(4.126)

Our goal over the next few results is to show that G(bT,d)
dn

is a character modulo

En(D)d(T ) and that it does not depend on b. First we show that it is a group homomorphism
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from the group Γ0(En(D)d(T )) to C×. In the process we’ll need to compute some

exponential sums that appear, for which we need the following lemmas.

Lemma 4.15. Let A ∈Mn(O). Then [On : AOn] = Nm(det(A)).

Proof. See [Cla14, Lemma 1.15] for a proof of this claim. Here R = O, M = T and

Λ = O.

Lemma 4.16. We have

∑
s∈(O#)

n
/TOn

e
[
2Re

[
stT−1s′

]]
=


0 if s′ ̸= 0

Nm(det(i
√
DT )) if s′ = 0.

(4.127)

Proof. Suppose that s′ ̸= 0. I claim 2Re(s0T−1s′) ̸∈ Z for some s0. Since we

know s′ ̸∈ TOn we must have T−1(s′) ̸∈ On. We can find s0 ∈ (O#)n such that

2Re[s0tT−1s′] ̸∈ Zn because O is the dual lattice of O#. With this choice of s0 in

mind we have

e
[
2Re(s0T−1s′)

] ∑
s∈(O#)

n
/TOn

e
[
2Re(sT−1s′)

]
(4.128)

=
∑

s∈(O#)
n
/TOn

e
[
2Re(s′T−1(s+ s0)

]
(4.129)

=
∑

s∈(O#)
n
/TOn

e
[
2Re(sT−1s′)

]
. (4.130)

Since e [2Re(s0T−1s′)] ̸= 1 we must have that the sum is zero. If s′ = 0 then the

result follows from Lemma 4.15.

Lemma 4.17. For M =

a b

c d

 ∈ Γ0(En(D)d(T )) let

χ (M) =
G(bT, d)

dn
. (4.131)

Then χ(MM ′) = χ(M)χ(M ′).
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Proof. This result follows by applying Proposition 4.14 to θT,0. By Proposition 4.14

we have

θT,0|T,nMJ =
1

det(−i
√
DT )

χ(M)
∑

s′∈(O#)
n
/TOn

θT,s′ . (4.132)

Thus

θT,0|T,nM =
1

det(−i
√
DT )

χ(M)
∑
s′

θT,s′|T,n(−J). (4.133)

Now again by Proposition 4.14 we have

θT,s′|T,n(−J) =
1

det(−i
√
DT )

(−1)nG(−T,−1)
∑
s′′

e
[
−2Re[s′′T−1s′]

]
θT,s′′ . (4.134)

Direct computation from the definition gives G(−T,−1) = 1. In total we have

θT,0|M =
(−1)n

det(−i
√
DT )2

χ(M)
∑
s′

∑
s′′

e
[
−2Re[s′tT−1s′′]

]
θT,s′′ . (4.135)

By Lemma 4.16 we have

θT,0|M =
(−1)n

det(−i
√
DT )2

χ(M)Nm(det(i
√
DT ))θT,0 (4.136)

= χ(M)θT,0. (4.137)

Since θT,0 ̸= 0 and the slash operator is multiplicative the desired result follows.

Next we want to compute χ(M) in the case that d is coprime to 2Dd(T ). The

idea is to try and diagonalize bT modulo d and then reduce to the one dimensional

case, which is solved by Haverkamp.

Lemma 4.18. We have for d coprime to 2Dd(T ) and b coprime to d,

G(bT, d)/dn = (χD(d))
n (4.138)
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Proof. Recall

G(T, a) =
∑

s∈On/aOn

e

[
stTs

a

]
. (4.139)

We first reduce to the case when d = pr. We show that for coprime integers p and q

we have

G(bT, pq) = G(pT, q)G(qT, p). (4.140)

Note that (x, y) 7→ px + qy gives a bijection from On/pOn × On/qOn to On/pqOn.

Thus

G(T, pq) =
∑

s∈On/pqOn

e

[
stTs

pq

]
(4.141)

=
∑

x∈On/p

∑
y∈On/q

e

[
xt(qT )x

p
+
yt(pT )y

q
+ 2Re[xtTy]

]
. (4.142)

The result then follows from the fact that, since T ∈ Λn(O) and x, y ∈ On we have

2Re[xtTy] ∈ Z (4.143)

by Lemma 3.2. We can then reduce to the case when d = pr by splitting d into

prime factors in this way.

Since d is coprime to D we see that i
√
D is an invertible element of O/dO. If T

does not have entries in O then we can replace T by DT by replacing s with i
√
Ds

in our sum for G. We assume that T has entries in O.

Next I claim that we can find P ∈ GLn(O/dO) such that P t
TP is diagonal modulo

d. We prove the result by induction on the dimension n. The n = 1 case is clear.

Now suppose that we know that for any n × n half-integral Hermitian matrix R ∈

Mn(O) with determinant coprime to p we can find an invertible G such that Gt
RG

is diagonal modulo d. Using our induction hypothesis it suffices to show that T is
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equivalent to a matrix ℓ 0

0 R

 (4.144)

where R is an n× n Hermitian matrix.

First we argue that we can assume one of the diagonal entries of T is coprime to

p. To do this we construct a vector v such that vtTv is coprime to p. We’ll then

extend {v} to a basis for On/dOn to get a matrix P such that P t
TP has the first

diagonal entry coprime to p. Suppose that all the diagonal entries are divisible by

p. I claim that since det(T ) is coprime to p we can find P such that P t
TP has an

off diagonal entry aij such that |aij|2 is coprime to p.

If p is inert we can take P = In+1. This immediately follows from the fact that

det(T ) is coprime to p. Suppose that p = pp. Let Q = {σ ∈ Sn : σ = σ−1}. Then,

after pairing the terms corresponding to σ and σ−1 we have

det(T ) =
∑
σ∈Sn

(−1)σ
n∏

i=1

tiσ(i) =
∑
σ∈Q

(−1)σ
n∏

i=1

tiσ(i) +
∑
σ ̸∈Q

(−1)σ2Re

[
n∏

i=1

tiσ(i)

]
.

(4.145)

Since det(T ) is coprime to p we must have either
∏n

i=1 tiσ(i) for σ = σ−1 or 2Re
[∏n

i=1 tiσ(i)
]

for σ ̸= σ−1 not lie in p.

First suppose that
∏n

i=1 tiσ(i) is coprime to p with σ = σ−1. Since tii is divisible

by p by assumption we can find i with σ(i) ̸= i. Then |tiσ(i)|2 divides the above

product and hence must be coprime to p.

Now suppose that 2Re
[∏n

i=1 tiσ(i)
]

is coprime to p for some σ ̸= σ−1. Note that

none of the tiσ(i) can lie in pO. If for some i tiσ(i) ̸∈ p, p then we’ll have |tiσ(i)|2

coprime to p and we’re done. Consider when tiσ(i) ∈ p or p for each i. Since σ ̸=

σ−1 we can choose i0 with σ(i0) ̸= σ−1(i0). Without loss of generality assume
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ti0σ(i0) ∈ p. Then ti0σ−1(i0) ∈ p. Now choose P to be the elementary matrix which

replaces column σ−1(i0) by column σ−1(i0) added to column σ(i0). Then P t
TP will

have (i0, σ
−1(i0)) entry ti0,σ(i0) + ti0,σ−1(i0). Since ti,σ(i) ̸∈ pO = p ∩ p we see that

ti0,σ(i0) + ti0,σ−1(i0) does not lie in p or p and hence has norm coprime to p. Thus in

any event we can conjugate by an invertible matrix P and assume that T has an

entry tij with |tij|2 coprime to p.

Let v = [vi] be a vector with vi = tij and vj = 1 and all other entries zero.

Then

vtTv = |tij|2tii + 2|tij|2 + tjj (4.146)

which is coprime to p. The set {v} ∪ {ek}k ̸=j will give a basis for On/prOn. Let P

be the matrix with columns v, b2, . . . bn where b2, . . . , bn are the basis vectors chosen

above. Then the first entry of P t
TP is coprime to p, as it is equal to vtTv.

Thus in any event we can assume one of the diagonal entries of T is coprime to p.

If one of the other diagonal entries is coprime, say tii to p we can move it to the

front by reordering our basis. Thus we can assume t11 is coprime to p. Using this

and conjugation by transvections (ti,j(a) = In+1 + aEij with i ̸= j) we can eliminate

the top row, and since our conjugation preserves the Hermitian property, it will

also eliminate the first column as well. To do this note that after conjugation by

t1,j(a) our matrix has entry (1, j) entry given by

t1,j + at1,1. (4.147)

Since t1,1 is coprime to p we can choose a so that this is congruent to zero. Since

this conjugation does not interfere with entries left of (1, j) we can progressively

reduce the entire first row to zero (except the very first entry). Then we can apply

the induction hypothesis to get the desired result.
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After a change of variables by our matrix P we can assume that T is a diagonal

matrix. Note that each of the diagonal entries must be coprime to p. Let mi be the

ith diagonal entry of T . We can break our sum defining G into a product of n sums

of the form ∑
si∈O/dO

e

[
miN(si)

d

]
. (4.148)

Now as long as d is odd, by [Hav95, Lemma .04], we have∑
si∈O/dO

e

[
miN(si)

d

]
= χD(d)d. (4.149)

From this the result follows.

Now we prove Proposition 4.8.

Proof of Proposition 4.8. Let M =

a b

c d

 ∈ Γ0(En(D)d(T )). By Proposition 4.14

it suffices to show χ(M) = χD(d)
n. This follows immediately from Lemma 4.18

when (d, 2D) = 1.Suppose that d is not coprime to 2D. Let s be the product of all

prime factors of 2D not dividing d. Note that when the lower right entry of M ′ is 1

χ(M ′) = 1. Then

χ(M) = χ(M)χ


1 + sd(T ) s

d(T ) 1


 = χ


∗ ∗

∗ sc+ d


 . (4.150)

Let p divide 2D. If p divides d then it doesn’t divide c because ad − bc = 1 and

it doesn’t divide s by construction. Hence in this case p doesn’t divide sc + d.

If p doesn’t divide d then it must divide s by construction and hence sc. Since p

doesn’t divide d it doesn’t divide sc + d. Thus sc + d is coprime to 2D. We see

χ(M) = χD(sc + d)n. If n is even then this is 1 because χD is a real character so

χ(M) = 1χD(d)
n. If n is odd then D divides c and so χD(sc + d)n = χD(d)

n.

Proposition 4.8 then follows.
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4.3 Linear Independence of Theta Functions

One of the important properties we’d like to know about our theta functions

is that they’re linearly independent. This allows us to conclude that if we have two

theta expansions that are equal, they must have identical theta coefficients, which

will become useful in the next chapter.

Proposition 4.19. We have, for s, s′ ∈ (O#)n with s ̸≡ s′ (mod TOn),∫
Pn
τ

θT,s(τ, w, z)θT,s′(τ, w, z)dwdz = 0. (4.151)

Here

Pτ := {(α + βω + γτ + δωτ, α + βω + γτ + δωτ) : 0 ≤ α, β, γ, δ < 1} ⊂ C× C

(4.152)

and O = Z+ ωZ.

Proof. Let

θT,s(τ, w, z) =
∑

σ∈(O#)n

σ≡s (mod TOn)

e
[
σtT−1στ + wσ + σtz

]
(4.153)

θT,s′(τ, w, z) =
∑

ρ∈(O#)n

ρ≡s′ (mod TOn)

e
[
ρtT−1ρτ + wρ+ ρtz

]
. (4.154)

After exchanging the order of summation and integration integral 4.151 we get∑
σ≡s
ρ≡s′

e
[
σtT−1σ − ρtT−1ρτ

]
I (4.155)

where

I =

∫
Pn
τ

e
[
wσ + σtz − ρtwt − ztρ

]
dzdw. (4.156)

Consider the substitution w 7→ w + ωzt, z 7→ wt + ωz. If we call this substitution

H : Cn × Cn → Cn × Cn then the equations below follow from direct computation:
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• det(H) = Dn/2

• H−1(P n
τ ) =

(
(C/Z+ τZ)2

)n
.

Then

I = Dn

∫
((C/Z+τZ)2)

n
e (w(2Re[σ]) + 2Re[ωσ]z − w(2Re[ρ])− 2Re[ωρ]z) dwdz.

(4.157)

If we write w = x1 + iy1 and z = x2 + iy2 then we get

I = Dn

∫
e [x1 (2Re[σ]− 2Re[ρ])] e [(2Re[ωσ]− 2Re[ωρ])x2] dx1dx2e [f(y1, y2)] dy1dy2

(4.158)

for some unimportant linear function f . We see, after some potential shifting of the

domain, the integrals with respect to x1 and x2 are∫
[0,1]n

e [x1 (2Re[σ]− 2Re[ρ])] dx1 ·
∫
[0,1]n

e [(2Re[ωσ]− 2Re[ωρ])x2] dx2. (4.159)

Since s ̸≡ s′ (mod TOn) we must have σ ̸≡ ρ (mod TOn) which means in particular

that σ ̸= ρ. We must have either 2Re[σ] ̸= 2Re[ρ] or 2Re[ωσ] ̸= 2Re[ωρ] since

otherwise σ = ρ. Since σ, ρ ∈ (O#)n we must have 2Re[σ], 2Re[ωσ], 2Re[ρ], and 2Re[ωρ]

must all lie in Zn. Thus I = 0 as desired and the result follows.

Corollary 4.20. The collection {θs}s∈(O#)n/TOn is linearly independent over C.

Proof. Suppose we have

∑
s∈(O#)n/TOn

csθs = 0. (4.160)

Then for any s′ ∈
(
O#
)n
/TOn we have

0 =
∑
s

cs

∫
Pτ

θsθs′dwdz = cs′

∫
Pτ

|θs′ |2dwdz. (4.161)
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Note that θs ̸= 0 on Pτ , plug in (i, 0, 0) for example, so that∫
Pτ

|θs′|2dwdz ̸= 0 (4.162)

and so we must have cs′ = 0 as desired.
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CHAPTER 5

THE EICHLER--ZAGIER MAP FOR HERMITIAN JACOBI FORMS

5.1 Eichler--Zagier Map

Now that we have theta expansions we can define an Eichler--Zagier map. This

will take our Hermitian-Jacobi form and give us a classical modular form. This will

be a generalization of a similar map from [EZ85]. We give a brief overview of the

original Eichler--Zagier map.

Given a classical Jacobi form of index m ϕ Eichler and Zagier give a series expansion

of the form

ϕ(τ, z) =
∑

µ (mod 2m)

hµ(τ)θm,µ(τ, z). (5.1)

Each of the functions hµ is a classical modular form of half integer weight and the

map

ϕ 7→
∑

µ (mod ()2m)

hµ(4mτ), (5.2)

the original Eichler--Zagier map, gives an isomorphism from the space of Jacobi

forms of index m and weight k and a particular subspace of modular forms of weight

k−1
2
. We generalize this map here and explore some of the relationship between our

Hermitian Jacobi forms and classical modular forms

First we need to translate the transformation law of our theta function into a transformation

law for our coefficients. Throughout let ϕ be an Hermitian Jacobi form of degree n,

weight k and non-singular index T with theta expansion

ϕ =
∑

s∈(O#)n/TOn

θT,shs. (5.3)
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Let Θ = [θs]s∈(O#)n/TOn and H = [hs](O#)n/TOn so that ϕ = ΘtH. We can define

slash operators component-wise on these vector-valued functions. Using the definitions

directly gives

(
ΘtH

)
|T,kM = (Θ|T,nM)tH|k−nM (5.4)

for any M ∈ SL2(Z). If we translate Proposition 4.8 into a law for Θ we find that if

UT (MJ) =

 1

det
(
−i

√
DT
)χD(d)

ne
[
a
(
bstT−1s+ 2Re

[
stT−1s′

])]
s,s′

(5.5)

then

Θ|T,nMJ = UT (MJ)Θ (5.6)

for any M ∈ Γ0(En(D)d(T )).

We also have

θs

∣∣∣∣∣
T,n

1 1

0 1

 = e
[
stT−1s

]
θs (5.7)

so that

UT


1 1

0 1


 =

[
δs,s′e

[
stT−1s′

]]
s,s′∈(O#)n/TOn . (5.8)

These two computations show that for every M ∈ SL2(Z) there exists some

matrix UT (M) such that Θ|T,nM = UT (M)Θ.

Our first goal is to show UT (M) is always unitary.

Lemma 5.1. Let M ∈ SL2(Z). Then UT (M) is unitary.

Proof. Since UT is multiplicative, it suffices to check that UT (J) and UT


1 1

0 1




are unitary, since these matrices generate SL2(Z).
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The fact that UT


1 1

0 1


 is unitary follows from the fact that T is Hermitian.

Consider UT (J). The i, j entry of UT (J)
t
UT (J) is

1

| det
(√

DT
)
|2

∑
1≤k≤|(O#)

n
/TOn|

e
[
2Re((si − sj)T

−1sk)
]
. (5.9)

By Lemma 4.15 the diagonal entries are all 1. To show that the off diagonal entries

are 0 apply Lemma 4.16. Thus UT (J) is unitary as desired.

Proposition 5.2. We have, for M ∈ Γ0(En(D)d(T )),

hs|k−nMJ =
(χD(d))

n

det(i
√
DT )

∑
s′∈(O#)

n
/TOn

e
[
−a(bstT−1s+ 2Re[stT−1s′])

]
hs′ . (5.10)

Proof. Since ϕ|T,kMJ = ϕ we have

ΘtH = (Θ|T,nMJ)t(H|k−nMJ) = Θt(UT (MJ))t(H|k−nMJ). (5.11)

By the linear independence of theta functions, Corollary 4.20, we see that

(UT (MJ))−tH = H|k−nMJ. (5.12)

By Lemma 5.1 we know UT (M) is unitary for any M ∈ SL2(Z). Thus Equation

(5.12) gives

H|k−nMJ = UT (MJ)H (5.13)

and translating this to each hs gives the desired result.

Lemma 5.3. If x ≡ y (mod En(D)d(T )) then we have

stT−1sx ≡ stT−1sy (mod Z). (5.14)

Proof. This follows immediately from Lemma 4.5
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Corollary 5.4. Let ϕ be an Hermitian Jacobi form of degree n, invertible index T

and weight k. Let hs be a theta coefficient of ϕ. Then hs ∈ Sk−n(Γ(En(D)d(T ))).

Proof. First we address holomorphy concerns. We know that hs is given by a Fourier

series that converges absolutely and uniformly on compact subsets of H. This gives

us holomorphy on H and boundedness of hs at infinity. To get holomorphy at other

cusps recall that, for H = [hs] our vector of theta coefficients we have, for any

M ∈ SL2(Z) H|k−nM = UT (M)
t
H. We then see that hs|k−nM has a similar Fourier

expansion (given as some linear combination of the other theta coefficients) and is

thus bounded at infinity as well. Since T is non-singular the Fourier expansions of

each hs has no constant term. Hence each hs is a cusp form.

The important part is the transformation law. For M =

a b

c d

 ∈ Γ(En(D)d(T ))

we have, by Proposition 5.2,

hs|k−nMJ =
χD(d)

n

det(i
√
DT )

∑
s′

e
[
−a(bstT−1s+ 2Re[stT−1s′])

]
hs′ . (5.15)

If n is even then χD(d)
n = 1 since χD(d) = ±1. If n is odd then d ≡ 1 (mod D)

and χD is a character modulo D we must have χD(d) = 1. By Lemma 5.3 we have

e
[
−a
(
bstT−1s+ 2Re[stT−1s′]

)]
= e

[
−2Re[stT−1s′]

]
. (5.16)

Using Proposition 5.2 we see

hs|J =
1

det(i
√
DT )

∑
s′

e
[
−2Re[stT−1s′]

]
h′s. (5.17)

Hence hs|MJ = hs|J so hs|M = hs.

Theorem 5.5. Let ϕ be an Hermitian modular form of weight k, degree n ≥ 1 and

non-singular index T . Then ϕ has a theta expansion of the form

ϕ(τ, w, z) =
∑

s∈(O#)
n
/TOn

hs(τ)θs(τ, w, z) (5.18)
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where each hs is a classical modular form.

Proof. The existence of this expansion is Proposition 4.1 and the fact that each hs

is a classical modular form is Proposition 5.4.

Using this we can prove the following corollary.

Corollary 5.6. The space of Hermitian Jacobi forms of degree n and invertible

index T is finite dimensional.

Proof. We have an injective map of C vector spaces

H : J n
T,k →

⊕
s∈(O#)n/TOn

Sk−n(Γ(En(D)d(T ))) (5.19)

defined by H(ϕ) = [hs]s∈(O#)n/TOn . We know

dimC(Mk−n(Γ(En(D)d(T ))) =

⌊
(k − n)(En(D)d(T ))3

∏
p|En(D)d(T )(1− 1/p2)

12

⌋
(5.20)

so we get

dim
(
J n

T,k

)
≤
∣∣(O#)n/TOn

∣∣ ⌊(k − n)(En(D)d(T ))3
∏

p|En(D)d(T )(1− 1/p2)

12

⌋
(5.21)

= Dn det(T )2

⌊
(k − n)(En(D)d(T ))3

∏
p|En(D)d(T )(1− 1/p2)

12

⌋
(5.22)

We define our Eichler--Zagier map and prove it is well-defined.

Definition 5.7. Define ι : J n
T,k → Sk−n(Γ0(En(D)d(T )), χn

D) by

ι(ϕ)(τ) = h(τ) :=
∑

s∈(O#)
n
/TOn

hs(En(D)d(T )τ). (5.23)

We argue that ι is well-defined.
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Proposition 5.8. If we define ι as above then ι(ϕ) ∈ Sk−n(Γ0(En(D)d(T )), χn
D) for

ϕ ∈ J n
T,k.

Proof. Let ϕ be an Hermitian Jacobi form of degree n and invertible index T . Let

hs be a theta coefficient of ϕ and

 a b

En(D)d(T )c d

 ∈ Γ0(En(D)d(T )). We have

h|k−n

 a b

En(D)d(T )c d

 =
∑
s

hs|k−n

a En(D)d(T )b

c d


 (En(D)d(T )τ). (5.24)

In order to use the above result note thata En(D)d(T )b

c d

 = J

 −d c

bEn(D)d(T ) −a

 J. (5.25)

Using this and the transformation for each hs gives

h|k−nM (5.26)

=
χD(d)

n

det(
√
DT )2

∑
s

∑
s′

∑
s′′

e
[
−2Re[stT−1s′] + dcs′

t
T−1s′ + 2dRe[s′tT−1s′′]

]
hs′′ .

(5.27)

We see that, computing the sum over s, this inner sum will be zero unless s′ ≡ 0, in

which case it is det(
√
DT )2. Simplifying gives the desired transformation for h.

The following results give an important subspace of J n
k,T on which the Eichler-

-Zagier map is injective, and introduce a family of maps between different spaces of

Hermitian Jacobi forms. These maps give us some additional relationships between

spaces of Hermitian Jacobi forms and generalize useful constructions in [AD19].

Definition 5.9. Let k ∈ Z≥0, n ∈ Z>0 and T ∈ Λ+
n (O). Define a subspace

J n,spez
k,T ⊂ J n

k,T (5.28)
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consisting of those ϕ ∈ J n
k,T whose Fourier coefficients α(m, r) depend only on

det


m r

rt T


. That is ϕ ∈ J n,spez

k,T if, whenever d


m r

rt T


 = d


m′ r′

r′
t
T


,

we also have α(m, r) = α(m′, r′).

Proposition 5.10. The Eichler--Zagier map is injective on J n,spez
k,T .

Proof. Let

ϕ =
∑

s∈(O#)n/TOn

θT,shs ∈ J n,spez
k,T (5.29)

be non-zero. Choose s ∈
(
O#
)n so that hs ̸= 0. Recall the Fourier expansion of hs

hs(τ) =
∑

N∈IT,s

αs+TOn(N)e

[
N

En(D)d(T )
τ

]
. (5.30)

Choose N such that hs has non-zero Nth Fourier coefficient.

Since ϕ ∈ J n,spez
k,T we have αs+TOn(N) = αr+TOn(N) for any r ∈ (O#)n and N ∈

IT,s. Denote this common value by α(N). Then we have

ι(ϕ) =
∑

r∈(O#)n/TOn

∑
N∈IT,r

α(N)e [τ ] . (5.31)

From this we see that the Nth Fourier coefficient of ι(ϕ) is

α(N) ·
∣∣{r ∈ (O#

)n
: N ∈ IT,r

}∣∣ . (5.32)

Since α(N) ̸= 0 and s ∈ {r : N ∈ IT,r} we see that ι(ϕ) has non-zero Nth Fourier

coefficient and is thus non-zero.

In [AD19, Proposition 4.8] Anamby and Das prove that this is the maximal

subspace of J n
k,T on which the Eichler Zagier map is injective when n = 1 under

some additional conditions on T and our quadratic imaginary field K.
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Definition 5.11. Let P ∈ Mn(O) be a matrix with non-zero determinant. Define,

for ϕ ∈ J n
k,T a function ϕ|UP ∈ J n

k,PTP
t defined by

ϕ|UP (τ, w, z) := ϕ(τ, wP, P
t
z). (5.33)

One can check that PTP t ∈ Λn(O) and that ϕ|UP has the correct transformations.

The Fourier expansion is discussed in the following proposition.

Proposition 5.12. Let ϕ ∈ J n
k,T have Fourier expansion

ϕ(τ, w, z) =
∑

m∈Z,r∈(O#)n
m r

rt T

∈Λ+
n+1(O)

α(m, r)e(mτ + wr + rtz). (5.34)

Then we have

ϕ|UP (τ, w, z) =
∑

m∈Z,r∈(O#)n
m r

rt T

∈Λ+
n+1(O)

β(m, r)e(mτ + wr + rtz). (5.35)

where

β(m, r) :=


0 if r ̸∈ P (O#)n

α(m, r′) if r = Pr′ for r′ ∈
(
O#
)n
.

(5.36)

Note that β is well-defined provided det(P ) ̸= 0.

Proof. The result follows immediately from the definition of ϕ|UP .

Proposition 5.13. Let ϕ ∈ J n,spez
k,T and P ∈Mn(O) be non-singular. Then ι(ϕ|UP )

is non-zero.
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Proof. For this proof we write ιT and ι
PTP

t for the Eichler Zagier maps of index T

and PTP t respectively. In order to show ι
PTP

t(ϕ|UP ) is non-zero we show

ι
PTP

t(ϕ|UP )(τ) = ιT (ϕ)(τ). (5.37)

First we relate the theta coefficients of ϕ|UP to those of ϕ. Consider when s ̸∈

P (O#)n. In this case the sth theta coefficient of ϕ|UP is zero because for any N ∈

I
PTP

t
,s

we have

α
s+PTP

tOn(N) = aϕ|UP
(m, r) = 0 (5.38)

as every Fourier coefficient of ϕ|UP with r ̸∈ P (O#)n is zero by Equation (5.36).

Now suppose s ∈ P (O#)n. Let Ps′ = s, and for N ∈ Z≥0 let f(N) := N
| det(P )|2 .

Using Lemma 4.5 directly reveals that f gives a well-defined bijection from I
s,PTP

t

to Is′,T . From this and Equation (5.36) we see that hs(τ) = hs′(τ). Thus we see

that

ι
PTP

t(ϕ|UP ) = ιT (ϕ)
(
| det(P )|2τ

)
̸= 0. (5.39)

5.2 Twists of the Eichler--Zagier Map

In this section we’ll define twists of the Eichler--Zagier map. These slight variations

of the Eichler--Zagier map can be non-zero on a given input even when our original

Eichler--Zagier map is zero on that input. Though we are unable to generalize their

result here, Anamby and Das in [AD19, Proposition 3.2], were able to show that

for any non-zero form ϕ ∈ Jk,p, there exists some character such that the twist of

the Eichler--Zagier map by that character sends ϕ to something non-zero. We know
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introduce these twists in our setting. Let

f =


En(D)d(T ) if D is odd

En(D)d(T )/2 if D is even
(5.40)

Let ψ : Z → C be a character modulo 2fEn(D)d(T ) and g : (O#)n/TOn → C be

such that, for any d ∈ Z and s ∈ (O#)n/TOn we have

g(ds) = ψ(d)g(s). (5.41)

Define the twist of the Eichler--Zagier map by g to be

ιg(ϕ) =
∑

s∈(O#)
n
/TOn

g(s)hs(En(D)d(T )τ). (5.42)

One can show, in similar fashion to our proof for ι, that ιg(ϕ) ∈ Sk−n(Γ0(2fEn(D)d(T ), χDψ).

See [Hav95, Proposition 5.8]. We now introduce a group G and give an action of

this group on J . This action gives J the structure of a G-representation and hence

allows us to decompose the space into eigenspaces. We then see that these eigenspaces

interact nicely with our twisted Eichler--Zagier maps.

Definition 5.14. Let

G := {µ+ En(D)d(T ) ∈ O/En(D)d(T )O : N(µ) ≡ 1 (mod En(D)d(T ))} . (5.43)

Then G is a multiplicative group.

Proposition 5.15. Define, for µ ∈ G,

Wµ : J n
T,k(O) → J n

T,k(O) (5.44)∑
θshs 7→

∑
θshµs. (5.45)

Then {Wµ} is a commuting family of diagonalizable maps.
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Proof. First we check that Wµ gives a well-defined map. We verify the follow three

conditions:

1. Wµ(ϕ) transforms properly with respect to ϵM ∈ U(1, 1).

2. Wµ(ϕ) transforms properly with respect to [λ, µ] ∈ On ×On.

3. Wµ(ϕ) to has an appropriate Fourier expansion.

By equations 5.13 and 5.8 we have

hµs|k−n

1 1

0 1

 = e
[
−µstT−1µs

]
hµs. (5.46)

After computing θs|T,nϵI directly from the definition and using the relationship

between the transformation for Θ and H, we can get that

hµs|k−nϵI = ϵhϵ−1µs. (5.47)

Finally we have

hµs|k−nJ =
1

det(i
√
DT )

∑
s′∈(O#)n/TOn

e
[
−2Re[Nm(µ)sT−1s′]

]
hµs′ . (5.48)

One can quickly check that the conditions on µ give

e
[
−2Re[Nm(µ)sT−1s′]

]
hµs′ = e

[
−2Re[sT−1s′]

]
hµs′ . (5.49)

Hence, since


1 1

0 1

 , ϵI, J
 generate U(1, 1), we have

Hµ|ϵM = UT (ϵM)Hµ. (5.50)

This, together with the transformation law for Θ, gives the transformation law

for Wµ(ϕ).
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One can compute directly that θs|[µ, λ] = θs. This will give the desired transformation

for Wµ(ϕ).

We move onto the Fourier expansion of Wµ(ϕ). Writing this out naively gives

∑
(s,r,N)∈S1

αµs+TOn(N)e

[(
N

En(D)d(T )
+ rtT−1r

)
τ + rw + rtz

]
. (5.51)

Here

S1 =
{
(s, r,N) ∈ (O#)n/TOn × (O#)n × Z≥0 : r ≡ s (mod TOn) and N ∈ IT,s

}
.

(5.52)

If we define m(N, r) = N
En(D)d(T )

+rtT−1r then we have f(s,N, r) := (m(N, r), r)

gives a well-defined bijection between S1 and S2 where

S2 =

(m, r) :

m rt

r T

 ∈ Λ+
n+1(O)

 . (5.53)

This is essentially the same as the argument that gives the existence of theta

expansions given in Proposition 4.1. From this the Fourier expansion will follow.

It is clear that this family of operators commutes so it remains to show that that

each operator is diagonalizable. By Proposition 5.6 we know that J n
T,k is a finite

dimensional space. The fact that each Wµ is diagonalizable just follows from the

fact that G is a finite group and µ 7→ Wµ gives a representation of G on J n
T,k.

Corollary 5.16. If, for a character η : G→ C we define

J n,η
k,T :=

{
ϕ ∈ J n

T,k : Wµ(ϕ) = η(µ)ϕ
}
. (5.54)

then we have

J n
T,k =

⊕
n,η

J n,η
T,k . (5.55)
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We now can study how how twists act on these spaces.

Proposition 5.17. Let g : (O#)n/TOn → C be such that g(µs) = η(µ)g(s) for

µ ∈ G. Recall that we have a map ιg : J n
T,k → Sk−n(Γ0(2fEn(D)d(T ), χDη). For a

character η′ ̸= η we have ιg(Wµ′(h)) = 0.

Proof. We have

ιg(ϕ) =
∑

s∈(O#)
n
/TOn

g(s)hs(En(D)d(T )τ) =
∑
s

g(µs)hµs(En(D)d(T )τ). (5.56)

Since Wµ(ϕ) = η(µ)ϕ we have, by the linear independence of theta functions, hµs =

η(µ)hs. We then have

ιg(ϕ) = η(µ)η′(µ)
∑
s

g(s)hs(En(D)d(T )τ) = η(mu)η′(µ)ιg(ϕ). (5.57)

If we choose µ such that η(µ) ̸= η′(µ) then we see ιg(ϕ) = 0 as desired.

In the next section we explore applications of the main results presented in

Chapters 4 and 5.
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CHAPTER 6

NON-VANISHING FOURIER COEFFICIENTS

6.1 Vector-valued Hermitian Modular Forms

The main goal of this chapter is to prove that an Hermitian modular form

has infinitely many non-zero Fourier Jacobi coefficients. We give an argument by

induction on the degree of the Hermitian modular form. The base case follows

from the fact that classical modular forms have infinitely many non-zero Fourier

coefficients. In order to use the induction hypothesis we need to work with vector-

valued Hermitian modular forms. We start by introducing the theory of those forms

here. For a reference on the basic theory see [FM15].

Definition 6.1. Fix a quadratic imaginary field K, positive integer n ≥ 1, a vector

space V and a representation ρ : GLn(C) × GLn(C) → GL(V ). Let U(n, n) =

U(n, n)(O). A vector-valued Hermitian modular form of weight ρ and degree n is a

holomorphic function F : Hn → V such that

F (MZ) = ρ
(
CZ +D,CZ

t
+D

)−1

F (Z) (6.1)

for any M =

A B

C D

 ∈ U(n, n).

We’ll be studying those with polynomial representations.

Definition 6.2. A representation ρ : GLn(C) → GL(V ) is polynomial if there is a

basis of V such that the coordinate functions ρij : GLn(C) → C are polynomial in

the entries of the input matrix. Similarly we can define the notion of a polynomial

representation on GLn(C)× GLn(C).
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In order to use our induction hypothesis we need to link F to an Hermitian

modular form of smaller degree. Below we give the definition of this related, smaller

degree, Hermitian modular form. This follows a similar construction given by Böcherer

and Das in [BD22, Section 3.1.]. Note that the reduction in degree entails moving

to vector-valued Hermtian modular forms, even when starting with a scalar-valued

Hermitian modular form.

Definition 6.3. Let F : Hn+1 → V be an Hermitian modular form. For A ∈ Hn+1

write A =

τ w

z Z

 with w ∈ Cn a row vector, z ∈ Cn a column vector and Z ∈ Hn.

For fixed τ, Z the map (w, z) 7→ F


τ w

z Z


 is a holomorphic function on an

open set containing (0, 0). Hence we can take a Taylor expansion to get

F


τ w

z Z


 =

∑
λ,λ′

Fλ,λ′(τ, Z)wλzλ
′

(6.2)

for some holomorphic functions Fλ,λ′ . Here λ and λ′ are multi-indices. For two such

multi-indices let ν(λ, λ′) be the degree, that is the sum of the entries in both tuples.

Choose the multi-index (λ, λ′) of the smallest degree such that Fλ,λ′ ̸= 0. If this

degree is ν0 then define

F 0(τ, Z) :=
∑
(λ,λ′)

ν(λ,λ′)=ν0

Fλ,λ′(τ, Z)xλ2
2 · · ·xλn

n y
λ′
2

2 · · · yλ′
n

n . (6.3)

We view F 0 as a function from H × Hn → C[x2, . . . , xn, y2, . . . , yn]ν0 . Here the

subscript indicates the polynomials are homogeneous of degree ν0.

Our goal is to show that, for fixed τ , F 0(τ, Z) is a vector valued Hermitian

modular form of degree n. Then we’ll show that the Fourier coefficients of F 0 are
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the Fourier-Jacobi coefficients of F . F 0 will have infinitely many non-zero Fourier

coefficients by induction and we’ll be able to conclude that F 0 has infinitely many

non-zero Fourier-Jacobi coefficients as desired.

The main difficulty in showing that F 0 is a vector valued Hermitian modular

form of degree n is showing that F 0 satisfies the proper transformation law. The

following lemma will be necessary. We first introduce some useful notation. Let

g =

A B

C D

 ∈ U(n, n) and Z ∈ Hn. Then we define

ĝ :=



1 0 0 0

0 A 0 B

0 0 1 0

0 C 0 D


(6.4)

and

µg(Z) := CZ +D and λg(Z) := CZt +D. (6.5)

Lemma 6.4. Let g =

A B

C D

 ∈ U(n, n). We have

ĝ

τ w

z Z

 =

τ − w(CZ +D)−1Cz w(CZ +D)−1

λg(Z)
−tz gZ

 (6.6)

Proof. Direct computation gives
0 0

0 C


τ w

z Z

+

1 0

0 D




−1

=

 1 0

−(µg(Z))
−1Cz (µg(Z))

−1.

 (6.7)

One can then compute
1 0

0 A


τ w

z Z

+

0 0

0 B




0 0

0 C


τ w

z Z

+

1 0

0 D




−1
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=

τ − w(µg(Z))
−1cz −w(µg(Z))

−1

Az − (gZ)Cz gZ


To prove the claim it suffices to prove that

(λg(Z))
−t = A− (gZ)C. (6.8)

We know A,B,C and D satisfy

D
t
A−B

t
C = In (6.9)

A
t
C − C

t
A = 0 (6.10)

BD −DB = 0. (6.11)

because

A B

C D

 ∈ U(n, n). From these equations it follows that

λg(Z)
tA = ZA

t
C + In +B

t
C

λg(Z)
t(AZ +B) = (ZA

t
+B

t
)µg(Z)

from which Equation (6.8) follows.

Definition 6.5. Let F : Hn+1 → V be a Hermitian modular form of weight

ρ : GLn+1(C)× GLn+1(C) → GL(V ). (6.12)

Define a representation

ρ0 : GLn(C)× GLn(C) → GL(V ⊗ C[x1, . . . , xn, y1, . . . , yn]v0) (6.13)

by

ρ0(α, β) · v ⊗ f(x⃗, y⃗) := (ρ(α̂, β̂) · v)⊗ f(xα, βTy). (6.14)
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Proposition 6.6. For fixed τ ,

F 0(τ, Z) : Hn → V ⊗ C[x1, . . . , xn, y1, . . . , yn]v0 (6.15)

is a Hermitian modular form of weight ρ0.

Proof. The fact that F 0 is holomorphic follows immediately from the holomorphy

of each Fλ,λ′ which in turn follows from the holomorphy of F . Next we consider the

transformation law. Let Z =

τ w

z Z

 ∈ Hn+1. Lemma 6.4 implies

F |ρĝ = ρ(µĝ(Z), λĝ(Z))−1 ·
∑
λ,λ′

Fλ,λ′(τ − w(µg(Z))
−1Cz, gZ)((λg(Z))

−tz)λ
′
(w(µg(Z))

−1)λ.

(6.16)

If we consider the Taylor expansion of Fλ,λ′ we see

F |ρĝ = ρ(µĝ(Z), λĝ(Z))−1 ·
∑
λ,λ′

ν(λ,λ′)=ν0

Fλ,λ′(τ, gZ)((λg(Z))
−tz)λ

′
(w(µg(Z))

−1)λ + h.o.t.

(6.17)

It follows that

F 0(τ, Z) = ρ0(CZ +D,CZT +D)−1F 0(τ, gZ). (6.18)

6.2 Vector-Valued Hermitian Jacobi Forms

With vector-valued Hermitian modular forms we can construct vector-valued

Hermitian Jacobi forms similarly to the scalar case. Rather than give a general

theory of such forms we do the bare minimum to relate these forms to the scalar

setting so that we can use the previously developed theory there.
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Definition 6.7. Let V be a finite dimensional complex vector space and ρ : GLn+1(C)×

GLn+1(C) → GL(V ) be a representation. A vector-valued Hermitian Jacobi form of

degree n, index T and weight ρ is a holomorphic function φ : H × Cn × Cn → V

such that

1. For all M = ϵ

a b

c d

 ∈ U(1, 1)

φ(τ, w, z) = ρ


ϵcτ + ϵd ϵcw

0 In−1

 ,
ϵcτ + ϵd ϵczt

0 In−1




−1

e (−cwTz/j(M, τ))φ (ϵM · (τ, w, z))

(6.19)

2. For all λ, µ ∈ On
K

φ(τ, w, z) = ρ


1 −λ

0 In−1

 ,
1 −λ

0 In−1




−1

eT (λ
t
λτ + zλ+ λ

T
w)φ(τ, w + λτ + µ, z + µt + λ

t
τ).

(6.20)

3. φ has a Fourier expansion of the form

φ(τ, w, z) :=
∑

(m,r)∈ST

α(m, r)e(mτ + wr + rz) (6.21)

where α(m, r) ∈ V .

Proposition 6.8. Let F : Hn+1 → V be a vector valued Hermitian modular form of

weight ρ. Let F have Fourier expansion

F (Z) =
∑

A∈Λn+1(O)

a(F,A)e(AZ). (6.22)
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For T ∈ Λn(O) define

ϕT (τ, w, z) :=
∑

m∈Z,r∈(O#)n
m rt

r T

∈Λ+
n+1(O)

a

F,
m rt

r T


 e(aτ + wr + rtz). (6.23)

Then

F


τ w

z Z


 =

∑
T∈Λn(O)

φT (τ, w, z)e(TZ) (6.24)

and each φT is a vector valued Hermitian Jacobi form of degree n− 1, weight ρ and

index T .

Proof. See the proof of Proposition 3.3. This follows in a nearly identical fashion.

Our next goal is to show that if φ is a vector valued Hermitian Jacobi form

then it has a component which is a scalar valued Hermitian Jacobi form. This will

allow us to use our already developed theory in this setting.

Proposition 6.9. Let φ be a non-zero Hermitian Jacobi form of degree n, index T

and weight ρ : GLn+1(C) × GLn+1(C) → GL(V ). Suppose that ρ is a polynomial

representation. Then there exists a basis for V and a component of φ with respect

to this basis that is a vector-valued Hermitian Jacobi form with co-domain C.

Proof. First recall the Lie-Kolchin theorem: For a connected solvable linear algebraic

group G and a representation ρ : G → GL(V ), the image ρ(G) is simultaneously

triangularizable. Let Bn(C) ⊂ GLn(C) be the subgroup of upper triangular matrices.

Recall that Bn(C) is both solvable and connected. Thus Bn(C) × Bn(C) is as well
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and so we can apply the Lie-Kolchin theorem to get a basis {vi}mi=1for V such that,

whenever A,B are upper triangular ρ(A,B) is upper triangular in this basis.

Let φi be φ composed with the ith coordinate function from V to C with respect

to this basis and let r be the largest i such that φi is non-zero. I claim that

φr : H× Cn × Cn → C (6.25)

is a scalar valued Hermitian Jacobi form. First we determine the weight. Let ρr,r(A,B)

be the (r, r) entry of ρ(A,B). I claim that the maps

f1 : z 7→ ρr,r


z 0

0 In−1

 , In


f2 : z 7→ ρr,r

In,
z 0

0 In−1




are polynomial homomorphisms from C to C. If a representation is polynomial in

one choice of basis, then it is polynomial in any choice of basis. Hence f1, f2 ∈

C[z]. When ρr,r is restricted to upper-triangular matrices it is a homomorphism

because on the ring of upper-triangular matrices the (r, r)th coordinate map is a

homomorphism. Thus f1 and f2 are polynomial homomorphisms. The only such

maps are of the form z 7→ λk. Let fi(z) = zki . Define a one-dimensional representation

of GLn(C)× GLn(C) by

(A,B) 7→ det(A)k1 × det(B)k2 . (6.26)

I claim this is the weight of φr.

Let M = ϵ

a b

c d

 ∈ U(1, 1). First we consider transformation (1). We have


ϵcτ + ϵd ϵcw

0 In−1

 ,
ϵcτ + ϵd ϵcwt

0 In−1


 (6.27)
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=


1 ϵcw

0 In−1

 ,
1 ϵcwt

0 In−1




ϵcτ + ϵd 0

0 In−1

 ,
ϵcτ + ϵd 0

0 In−1


 (6.28)

If (A,B) are unitriangular, that is they are upper triangular with 1’s along the

diagonal, then so is ρ(A,B) since the subgroup of unitriangular matrices is the

derived subgroup of the Borel subgroup. Thus ρ


1 ϵcw

0 In−1

 ,
1 ϵcwt

0 In−1


 will be

unitriangular and will leave the rth component of a vector unchanged. We have

then, using the transformation law for φ,

φr(τ, w, z) = ρr,r


ϵcτ + ϵd 0

0 In−1

 ,
ϵcτ + ϵd 0

0 In−1




−1

e (−cwTz/j(M, τ))φr (ϵM · (τ, w, z))

= (cτ + d)−k1−k2ϵk2−k1e (−cwTz/j(M, τ))φr (ϵM · (τ, w, z))

as desired.

Next we check the other desired transformation. We have, for φ

φ(τ, w, z) = ρ


1 −λ

0 In−1

 ,
1 −λ

0 In−1




−1

e
[
λTλ

t
τ + wTλ

t
+ λTz

]
(6.29)

·φ(τ, w + λτ + µ, z + λ
t
τ + µ). (6.30)

Since φ takes uni-triangular to uni-triangular we see, for λ ∈ On

ρ


1 −λ

0 In−1

 ,
1 −λ

0 In−1


 (6.31)

is uni-triangular. A comparison of the rth entries on either side and the fact that

φr is the last non-zero entry in φ gives the desired result.

The existence of the proper Fourier series for φr follows directly from the Fourier

series for φ and the definition of φr.
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Remark 6.10. A vector-valued Hermitian Jacobi form of scalar weight, as in the

result above, and a Hermitian Jacobi form are not quite the same. The only difference

being transformation with respect to the matrices ϵM ∈ U(1, 1) when ϵ ̸= ±1. That

said, the important theory we have developed, i.e. that of theta expansions and

theta coefficients, will still exist for vector-valued Hermitian Jacobi forms of scalar

weight.

6.3 Non-zero Fourier Coefficients

Now that we’ve linked vector-valued Hermitian Jacobi forms to the scalar setting

we can prove a few results on the non-zero Fourier coefficients of Hermitian modular

forms.

Proposition 6.11. Let F be a non-zero vector valued Hermitian modular form of

degree n ≥ 2. Then F has infinitely many non-zero Fourier Jacobi coefficients with

non-singular index.

Proof. We prove the result by induction on the degree n. First consider when n =

2. Let F 0 be as in Definition 6.3 and let V be the codomain of F 0 and fix τ0 so

that F 0(τ0, Z) is non-zero as a function of Z. By Proposition 6.6 we know F 0 is an

Hermitian modular form. Analogously to Proposition 6.9 we can choose a basis for

V such that F 0 has a non-zero component, say F 0
r that is a scalar-valued modular

form. Because F 0
r has infinitely many Fourier coefficients with non-zero index so

too will F 0. If F has Fourier Jacobi expansion∑
n≥0

φn(τ, w, z)e(nZ) (6.32)

then

aF 0(n) = c(τ0)
∑

ν(λ,λ′)=ν0

∂

∂wλ

∂

∂zλ′φn(τ0, w, z)|w,z=0 (6.33)
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for some constant c(τ0). Hence, for each n > 0 with aF 0(n) ̸= 0 we must also have

φn ̸= 0. Then F has infinitely many non-zero Fourier-Jacobi coefficients with non-

singular index because F 0 has infinitely many non-zero Fourier coefficients aF 0(n)

with n > 0.

Now suppose we know the result for vector valued Hermitian forms of degree n and

let F have degree n + 1. Let F 0 be as in Definition 6.3 and again call the codomain

V . By hypothesis F 0 has infinitely many non-zero Fourier Jacobi coefficients of

non-singular index. Let φ be one such coefficient say of index T . By Proposition

6.9 we can choose a basis of V and a component of φ with respect to this basis

such that φr : H× Cn × Cn → C is a vector valued Hermitian Jacobi form of scalar

weight. As in Remark 6.10 φr will have a theta expansion. Choose a non-zero theta

coefficient hs. By Corollary 5.4 hs will be a classical modular form and hence will

have infinitely many non-zero Fourier coefficients of non-zero index. Each such

coefficient of hs will give rise to a non-zero Fourier coefficient of φr with non-singular

index. Recall if αs+TOn(N) ̸= 0 then φr has a Fourier coefficient α(m, r) ̸= 0 with

d


m rt

r T


 = N. (6.34)

This Fourier coefficient of non-singular index for φr will guarantee one for F 0. An

argument identical to the one given at the end of the preceding paragraph will

show that for each Fourier coefficient of hs with non-zero index, we get a different

non-zero Fourier Jacobi coefficient of F with non-singular index. Thus, since hs has

infinitely many non-zero Fourier coefficients with non-zero index, F has infinitely

many non-zero Fourier Jacobi coefficients with non-singular index.

Next we’ll look at the actual Fourier coefficients of F . This result reduces to

the Sturm bound for classical modular forms though in dimensions ≥ 2 it is not
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nearly as restrictive as that result. We no longer need consider vector valued Hermitian

Jacobi forms. First recall the Sturm bound which states the following: Let f =∑
anq

n be a classical modular form of weight k and level N . If an = 0 for all

n ≤ ⌊km
12
⌋ then f = 0. Here

m = [SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
. (6.35)

We now state our generalization of this result.

Definition 6.12. Define, for k ≥ 1, n ≥ 1 and D ∈ R,

Ck,n,D =
(k − n)D3+2⌊n

2 ⌋

12
. (6.36)

Proposition 6.13. Let ϕ be a non-zero Hermitian Jacobi form of non-singular

index T , weight k and degree n. Suppose that ϕ has Fourier expansion

∑
(m,r)∈ST

α(m, r)e
[
mτ + wr + rtz

]
. (6.37)

Then there exists (m, r) ∈ ST with α(m, r) ̸= 0 and

det


m rt

r T


 ≤ Ck,n,D det(T )2. (6.38)

Proof. We start with the theta expansion

ϕ =
∑

s∈(O#)
n
/TOn

θshs. (6.39)

Since ϕ ̸= 0 we can find s ∈
(
O#
)n
/TOn such that hs ̸= 0. By Corollary 5.4

we have hs ∈ Sk−n (Γ(En(D)d(T ))). The Sturm bound for classical modular forms

implies that we can find a non-zero Fourier coefficient of hs, say αs+TOn(N) with

N <
(k − n)(En(D)d(T ))3

12

∏
p|En(D)d(T )

(
1− 1

p2

)
≤ (k − n)(En(D)d(T ))3

12
. (6.40)
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We see that ϕ will have a non-zero Fourier coefficient with index (m, r) such that

d


m rt

r T


 = N and r ≡ s (mod TOn) by definition of hs. From this the result

follows.

Proposition 6.14. Let F be an Hermitian modular form of weight k and degree

n ≥ 2 with non-zero T th Fourier Jacobi coefficient for some non-singular T . Then

F has a non-zero Fourier coefficient with index A ∈ Λn(O) such that

A =

m rt

r T

 (6.41)

and

det(A) ≤ Ck,n−1,D det(T )2 (6.42)

Proof. Let ϕT be the non-zero T th Fourier Jacobi coefficient of F . Then ϕT is a

non-zero Hermitian Jacobi form of weight k, index T and degree n−1. By Proposition

6.13 ϕT has a non-zero Fourier coefficient α(m, r) with

det


m rt

r T


 ≤ Ck,n−1,D det(T )2. (6.43)

Since

a


m rt

r T


 = α(m, r) ̸= 0 (6.44)

by definition of φT (see Proposition 3.3.) we see that the proposition is satisfied for

A =

m rt

r T

.

.
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Corollary 6.15. Let F be a non-zero Hermitian modular form of weight k and

degree n ≥ 2. Then F has infinitely many non-zero Fourier coefficients with index

A =

m rt

r T

 such that

det(A) ≤ Ck,n−1,D det(T )2 (6.45)

Proof. By Proposition 6.11 we know F has infinitely many non-zero Fourier Jacobi

coefficients whose index is a non-singular matrix. For each such coefficient we will

get a non-zero Fourier coefficient with index A satisfying the conditions of the proposition.

In this chapter we’ve seen a few consequences the developed theory has on the

theory of Hermitian modular forms. As stated in the introduction original intent

of this work was to generalize some results on non-vanishing Fourier coefficients of

Hermitian modular forms to higher degree. In the next chapter we discuss some of

the issues in generalizing their results to this setting.
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CHAPTER 7

FUNDAMENTAL FOURIER COEFFICIENTS

7.1 Difficulties and Roadblocks

The goal of this final chapter is to explain several difficulties in using this theory

to generalize the papers of Böcherer and Das [BD22] and Anamby and Das [AD19].

Though the approaches of Böcherer and Das are superficially distinct, the fundamental

issue to generalizing both is the same. First we outline the general approach of

Böcherer and Das. The main theorem of their paper is as follows:

Theorem 7.1. Let F be a non-zero vector valued Seigel modular form of weight ρ

and degree n. Suppose further that k(ρ)− n
2
≥ ϱ(n). When n is even, assume that F

is cuspidal. Then there exists infinitely many GLn(Z) inequivalent matrices T ∈ Λ+
n

such that d(T ) is odd and square free, and aF (T ) ̸= 0.

Note here two matrices in T, T ′ ∈ Λ+
n are inequivalent over GLn(Z) if At

TA ̸=

T ′ for any A ∈ GLn(Z). The overarching strategy is a proof by induction on the

degree n of the form. The base case of n = 1, which is the above statement for

classical modular forms, is proven in [AD19].

The first step in the induction is to construct a non-zero Fourier Jacobi coefficient

φT for which T has an odd, square-free discriminant. This follows from the construction

of vector valued form F 0, very similar to that given in Definition 6.3, and the induction

hypothesis. From this φT they derive infinitely many non-zero Fourier coefficients

aF (A) such that dA is odd and square free. Böcherer and Das then prove, in analogue

to 6.9, that φT has a non-zero component which is a scalar-valued Jacobi form, say

φ
(r)
T .

The final step before dealing with classical modular forms is to construct a non-
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zero theta coefficient of this scalar-valued Jacobi, say hµ, such that µ is primitive.

Here µ ∈ Zn−1/2TZn−1 is primitive if

µ

2

t

T−1µ

2
(7.1)

has the largest possible denominator. This step is accomplished in [BD22, Proposition 3.5]

and is the step that I was unable to generalize to my setting.

The existence of such a primitive hµ together with the base case and the relationship

between the Fourier coefficients of F and those of hµ prove the result.

We say a few words about generalizing this approach to the Hermitian setting. As

illustrated in Chapter 6 we can generalize these results and constructions until

we need the existence of a primitive hµ. In what follows we give a definition for

primitivity in our setting and explain the particular difficulty we faced in proving

Proposition 3.5. from Böcherer and Das’ paper in this setting.

Definition 7.2. We say µ ∈
(
O#
)n is primitive with respect to T ∈ Λ+

n (O) if

1

i
√
D

(
i
√
DT
)−1

[i
√
Dµ]

has denominator exactly d(T )T
√
D if n is odd and d(T ) if n is even. Similarly µ ∈

(O)n is primitive if
1

i
√
D

(
i
√
DT
)−1

[µ]

has denominator exactly id(T )
√
D if n is odd and d(T ) if n is even. This notion of

primitive descends to On/i
√
DOn which can be seen by computing

1

i
√
D
(i
√
DT )−1[µ+ i

√
DTq] (7.2)

=
1

i
√
D

(
i
√
DT
)−1

[µ] +
1

i
√
D

(
µtq − qtµ− qt(i

√
DT )q

)
. (7.3)
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The existence of a non-zero primitive theta coefficient in Böcherer and Das

boils down to proving that the matrix[
e
(

µν
p

)]
µ∈Z/pZx

ν∈Z/pZ, ν2=ν20

(7.4)

has maximal rank for some fixed ν0 ∈ Z/pZ. Such a matrix either has 2 columns

or one column depending on whether ν0 ≡ 0 or not and so demonstrating that this

matrix has maximal rank is relatively straightforward.

In the Hermitian setting the analogous matrix looks like[
e

(
(µν + νµ)

p

)]
µ∈O/pO×

ν∈O/pO, |ν|2≡|ν0|2 (mod p)

(7.5)

and in particular the number of columns is equal to the number of solutions

to |ν|2 ≡ |ν0|2 in O/pO, which could be as high as 2p − 1 if p is split in O. The

matrices that appear here can fail to have maximal rank and hence are not sufficient

to prove that φT has a non-zero primitive theta coefficient. Without such a coefficient

we are still able to lift a Fourier coefficient of hµ to that of F , we just can no longer

guarantee that the index of this Fourier coefficient of F will be primitive. In [AD19]

Anamby and Das give the following result:

Theorem 7.3. Let F be an Hermitian cusp form of degree 2. Then a(F, T ) ̸= 0

for infinitely many matrices T such that D det(T ) is of the form pαKn where n is

square-free with (n, pK) = 1 and 0 ≤ α ≤ 2 if D ̸= 8 and 0 ≤ α ≤ 2 if D ̸= −8 and

0 ≤ α ≤ 3 if D = −8.

Our goal would be to generalize this result beyond degree 2. To prove this

result Anamby and Das essentially leverage the Eichler--Zagier map and the twists

there-of to relate the Fourier coefficients of a non-zero Fourier Jacobi coefficient

to those of a classical modular form. By conjugating by a matrix in GL2(O), they
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are able to guarantee the existence of a non-zero Fourier Jacobi coefficient of prime

index. The central result of their work is that, for forms of prime index, either the

Eichler--Zagier map or a twist of this map, is injective. This allows them to get a

non-zero classical cusp form of a certain index and level with Fourier coefficients

equal to those of the Hermitian Jacobi form. Then, having reduced to the case of

classical modular forms, they prove a non-vanishing result in this setting.

The roadblock in trying to generalize Anamby and Das is essentially the same.

The first is getting a Fourier Jacobi of prime determinant. Anamby and Das use a

result specific to the setting of n = 2, though this can possibly be circumvented

by using an induction argument. The second, and more fundamental, is trying to

generalize the non-vanishing of either the Eichler--Zagier map or a twist on a given

form of prime index.

To prove this result Anamby and Das make the following argument. If each twist

sends a form to zero, then all the "primitive" theta coefficients must be zero. They

then, just like in Böcherer and Das, look at hs|J , get a family of sums that must

be zero and from this construct a matrix they argue must be of maximal rank and

arrive at a contradiction with the fact that all the "primitive" theta coefficients are

zero. Thus we run into the same issue.
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