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DISSERTATION ABSTRACT

Holt W. Bodish
Doctor of Philosophy in Mathematics

Title: Reducible Dehn Surgeries, Ribbon Concordance and Satellite Knots

In this thesis we investigate knots and surfaces in 3- and 4-manifolds
from the perspective of Heegaard Floer homology, knot Floer homology and
Khovanov homology. We first investigate the Cabling Conjecture, which
states that the only knots that admit reducible Dehn surgeries are cabled
knots. We study this question and related conjectures in Chapter 2 and de-
velop a lower bound on the slice genus of knots that admit reducible surg-
eries in terms of the surgery parameters and study when a slope on an al-
most L-space knot is a reducing slope. In particular, we show that when
g(K) is odd and > 3, the only possible reducing slope on an almost L-space
knot is g(K') and in that case the complement of an almost L-space knot
does not contain any punctured projective planes. In Chapter 3 we inves-
tigate the effect of satellite operations on knot Floer homology using tech-
niques from bordered Floer homology [LOT18| and the immersed curve re-
formulation [HRW22; Chel9; CH23|. In particular we study the functions
n — g(P.(K)),e(P.(K)) and 7(P,(K)) for some families of (1,1) pat-
terns P from the immersed curve perspective. We also consider the function
n— dim(H/FT((S?’, P,(K),g(P,(K))), and use this together with the fibered
detection property of knot Floer homology [Ni07] to determine, for a given
pattern P, for which n € Z the twisted pattern P, is fibered in the solid
torus. In Chapter 4 we answer positively a question posed by Lipshitz and
Sarkar about the existence of Steenrod operations on the Khovanov homol-
ogy of prime knots [LS18, Question 3|. The proof relies on a construction of
a particular type of surface, called a ribbon concordance in S* x I, interpo-
lating between any given knot and a prime knot together with the fact that
the maps induced on Khovanov homology by ribbon concordances are split
injections [Will2; LZ19].



This thesis contains previously published material and unpublished coau-

thored material.
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CHAPTER 1
INTRODUCTION
1.1 Background

In this section we will introduce some background and notation that we

will use throughout the arguments in this thesis.
Genus, Fiberedness, and Concordance

A knot K is a smooth embedding K : S!' — S? considered up to
ambient isotopy. We will also write K for the image of the embedding. In
this thesis we are interested in properties of surfaces embedded in S® or B*
bounded by the knot. Any knot K bounds an orientable surface ¥ in S3,
called a Seifert surface. We define the 3-genus, g(K), of a knot as

g(K) =min{g(X) : ¥ < S?, and 0% = K}

As such, the genus is difficult to compute. It is however a powerful knot
invariant. For example it detects the unknot: g(K) = 0 if and only if K is
isotopic to the unknot.

Similarly, any surface in S® = 0B* can be pushed into B* so that 0% =
¥ n 8% = K. Then, we can define the 4-genus, g4(K), of a knot K as

g4(K) =min{g(X): X c B =Y n S = K}

Given a Seifert surface 3 for a knot K, the embedding of ¥ into S3
gives rise to a pairing on H;(X) which gives bounds on the 3- and 4-dimensional
genus of K. The pairing S, called the Seifert pairing, is defined as follows.
Given a curve a representing a class [a] € Hi(X), let a™ denote the result of
pushing the curve a off the surface in the positive normal direction of . Let
S(a,b) = lk(a,b"). Moreover, given a basis for H;(X) the Seifert pairing is
represented by a matrix, called the Seifert matrix.

Two important knot invariants that are defined in terms of the Seifert

matrix are the knot signature, o(K), and the Alexander polynomial, Ag(t).
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The matrix S + ST is symmetric, so it can be diagonalized over Q. The knot
signtaure, o(K), is defined to be the signature of this symmetric matrix,
namely the number of positive eigenvalues minus the number of negative
eigenvalues. The Alexander polynomial is defined as Ag(t) = det(t'/2S —
t1/287) and it turns out that A (t) is a Laurent polynomial in ¢ that satis-
fies Ag(1) = 1 and Ag(t) = Ag(t7'). The breadth of the Laurent polyno-
mial Ag(t), defined as the difference of the largest and smallest exponents

that occur, is a lower bound for g(K):
breadth(Ag(t)) < 2¢9(K).
Further, the signature gives a lower bound for the slice genus:
|0 (K)| < g4(K)

A knot is called slice if g4(K) = 0 and so the signature vanishes on
the set of slice knots. We call two knots K and K’ (smoothly) concordant if
there is a smoothly embedded annulus S* x I — S3 x I so that S' x {0} = K
and S x {1} = K’. For example it is easy to see that a knot K is concordant
to the unknot U if and only if K is slice. The set of knots considered up to
concordance has a group structure given by connected sum. Let us denote
this group by C. Then the signature actually gives a homomorphism o : C —
Z.

In Chapter 2 and 3 we study knot invariants coming from Heegaard
Floer and knot Floer homology that in some sense generalize the above in-
variants. Knot Floer homology, introduced by Ozsvath and Szabo [OS04b]
and independently by Rasmussen |[Ras03al, is a bigraded Abelian group
HFK(S3, K) =~ Dina HFK,. (53, K, A) and the graded Euler characteristic is

the Alexander polynomial:

Ag(t) = D (~1)™ dim(HFK,, (S%, K, A))t.
m,A

The A-grading is called the Alexander grading and the m-grading is the
homological or Maslov grading. An important property that we use repeat-
16



edly in our arguments in Chapter 3 is the genus detection property of knot
Floer homology [OS04a, Theorem 1.2

g(K) = max{A : HFK(S?, K, A) # 0}.

This shows that knot Floer homology is a strictly stronger invariant than
the Alexander polynomial, for which there are non-trivial knots such that
Ak(t) = 1. In particular, since the knot genus detects the unknot, knot
Floer homology detects the unknot.

Knot Floer homology is the homology of the associated graded of a Z-
filtered Z-graded chain complex defined in terms of a Heegaard diagram for
the pair (9%, K). See Section 1.2. From the definition, there is a spectral
sequence with s page HFK(S3, K) and E,, page HF(S%) =~ F [0S03b].
Then, there is a numerical invariant 7(K), which is defined to be the min-
imal Alexander grading of any cycle homologous to a generator of I@(S 3).
The invariant 7(K) is a lower bound for the slice genus, |7(K)| < g4(K)
[OS03b, Corollary 1.3]. Similarly to the knot signature, 7 also gives a homo-
morphism 7 : C — Z. Although in general 7(K) is different from o(K), it
agrees with o(K') up to a factor for a few classes of knots, for example al-
ternating knots [Pet13|. The invariant 7(K) has also proved fruitful in the
discovery of many subgroups of infinite rank in the smooth knot concordance
group |Lev16; Hom14; Hed07].

In addition to the complexity of the surface ¥ in S® or B* measured
in terms of the genus, we are also interested in the complement of ¥ in S3.
In particular, we are interested in when this complement is a product. We
call a knot K fibered with fiber ¥ if there is a locally trivial fiber bundle
S3 — v(K) — S! with fiber . Tt is easy to see that K is fibered if and
only if S — v(X) =~ ¥ x [. It is worth pointing out that while it is possi-
ble for a knot to have two or more minimal genus Seifert surfaces that are
non-isotopic, fibered knots have a unique minimal genus Seifert surface up to
isotopy. As with the genus, there is an obstruction coming from the Alexan-
der polynomial of fibered knots, namely if K is fibered then the Alexander

polynomial is monic.
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In Chapter 3 we will repeatedly use the fact that knot Floer homology
detects when a knot is fibered in S* [Ni07; JuhO8b]: K is fibered in S? if
and only if dim(fﬁ‘T{(Sz)’, K,g(K))) = 1. Since the trefoil knot and the fig-
ure eight knot are the only genus 1 fibered knots in S3, it follows that knot
Floer homology detects these knots as well as the unknot.

Computing knot Floer homology directly from the definition is extremely
difficult. Although there are combinatorial models, for example the grid ho-
mology of [OSS15] and the nice diagrams of [OSS12] that do not require any
of the analysis that originally goes into the construction, the number of gen-
erators in this construction also makes computations impractical. In the fol-
lowing, we make use of bordered Floer homology and the bordered pairing
theorem to compute knot Floer homology of satellite knots in Chapter 3,
where we apply the genus and fiberedness detection results to some families
of satellite knots and compute 7 for these same families, thus giving smooth
slice genus bounds, as well as independence results and constructions of
satellite operators that do not acts surjectively on the smooth concordance

group. See Section 1.3 and Chapter 3 for more details.
Dehn Surgery

A link in S? is an embedding L : | | S* — 5% up to ambient isotopy.

A fundamental theorem in knot theory and low-dimensional topology says
that any closed, connected orientable 3-manifold can be obtained from S* by
cutting out a neighborhood of a link L and re-gluing. This cutting out and
re-gluing operation is called Dehn surgery. We will study this operation in
Chapter 2, so we give a brief overview of it here.

Given a knot K in S3, we can thicken K to a tubular neighborhood,
v(K), which is diffeomorphic to a solid torus. Cutting S® along the bound-
ary ov(K), we get two 3-manifolds-with-boundary: the complement of the
knot in S®, S® — v(K), and the tubular neighborhood of K, v(K) =~ D? x S*.
We can then use any homeomorphism h : 0D? x St — 9(S? — v(K)) to reglue
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the solid torus and obtain a potentially new 3-manifold
(S —v(K)) uy (D* x SY.

It turns out that the diffeomorphism class of the 3-manifold obtained in
this way only depends on the image of the meridian h(0D? x {pt}). In fact,
H,(S? — v(K)) is generated by a meridian p of K, and there is a unique ho-
mology class of curve on the boundary 0(S® — v(K)) that is null-homologous
in $% — v(K) (the boundary of the Seifert surface from the previous section).
We call this curve a preferred longitude A. Then p and A form a basis for
H,(3(S®—v(K))) and any simple closed curve (e.g. h(dD? x {pt})) is isotopic
to a curve of the form pu + g\, with ged(p, q) = 1. This sets up a bijection
between the set of simple closed curves on d(S* — v(K)) and the set of re-
duced fractions p/q together with oo = 1/0 (o0 corresponds to gluing back
along the meridian, so o0 surgery on any knot K in S® gives back S%). Since
the diffeomorphism type of the manifold only depends on the isotopy class of

the attaching curve, we will write S? ), (1) to denote the 3-manifold

(S —v(K)) uy (D* x SY

where h(0D? x {pt}) = pu + q)\, and we will call it the result of §—Dehn
surgery on K, and call § a slope. If L is a link with multiple components,
Dehn surgery on L is Dehn surgery on each component of L. We say the

surgery is integral if all the slopes are integral (i.e. ¢ = 1).

Theorem 1.1.1. [Lic62; Wal60] Every closed orientable 3-manifold can be

obtained from S® by performing an integral Dehn surgery on a link L < S3.

As we will discuss in Chapter 2 the question of which 3-manifolds can
be obtained from Dehn surgery (rational or integral) on a knot in S® is still
far from resolved. However, recently techniques have been developed that
allowed for the construction or recognition of 3-manifolds that are not Dehn

surgery on a knot.
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Heegaard Floer Homology

In Chapter 2 we study the question of when a Dehn surgery on a knot
can produce a non-trivial connected sum of two 3-manifolds, called an re-
ducible 3-manifold, from the perspective of Heegaard Floer homology. As
such, we want to understand the Heegaard Floer homology of 3-manifolds
that are Dehn surgery along a knot: HFO(Sz’/q(K )). We give a brief discus-
sion of the definition of Heegaard Floer homology here, and postpone dis-
cussing the computation of Heegaard Floer homology of Dehn surgeries us-
ing the mapping cone formula of [OS11| until Chapter 2.

Let Y be a closed, connected, oriented 3-manifold and let H = (X, o, 3, 2)
be a pointed Heegaard diagram for Y. Here ¥ < Y is a closed, connected,
orientable surface of genus g, Y — ¥ consists of two handlebodies Hy and
Hy, a = {o,...,q,} is a collection of non-intersecting simple closed curves
that form a set of compressing disks for Hy (we’ll refer to this as the a-
handlebody) and 8 = {51, ..., 5,} is a collection of non-intersecting simple
closed curves that form a set of compressing disks for H; (we'll refer to this
as the S-handlebody). We also require that o and /3 intersect transversely
and that z is contained in ¥ — (o U ). From this data we construct two La-
grangian submanifolds of the symmetric product Sym?¢(¥) = £*9/S,, where
Sy is the symmetric group acting on the coordinates of ¥*9, for an appropri-
ate choice of symplectic form on Sym?(¥). The Lagrangian submanifolds are

the tori determine by the o and (8 curves

Ta:alx...xag

and similarly for Ts. The Heegaard Floer chain complex CF*(H) is freely
generated over Fy by pairs [z,i] where x € T,NnTs and i € Z. The differential

is given by

il =Y > #MO)yi - na(0)]

{yeTanTg} {¢em(z,y)|u(d)=1}

Here my(x,y) denotes the set of homotopy classes of Whitney disks from
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x to y, (@) denotes the Maslov index of ¢, /T/l\(gb) is the moduli space space
of J-holomorphic disks in the class of ¢, and n,(¢) = #(dn({z}xSym9I~(2))).
Moreover, if we let Spin®(Y’) denote the set of Spin® structures on Y (an
affine copy of H*(Y;Z)), there isamap s, : T, n Tz — Spin°(Y) so

that = and y are connected by a Whitney disk if and only if s,(x) = s,(y).
Therefore CEF*(H) naturally splits over Spin® structures on Y: CF*(H) =
D sespinc vy CF”(H, 5). There is also an action by Fo[U, U] on CF*(H, s)
given by Ulz,i] = [x,7 — 1] and the U action decreases the grading by 2.
There are other flavors of the Heegaard Floer chain complex for a pointed
Heegaard diagram, @(’H, s),CF~(H,s) and CF*(H, s), which are generated
by elements [z,i] with s.(x) = sandi = 0,7 < 0, or i > 0 respectively.
We will write CF°(H, s) for any of these flavors of the Heegaard Floer chain
complex, and HF°(H, s) for the homology of this chain complex. In this no-

tation we have the following theorem

Theorem 1.1.2. [0S04d] The isomorphism class of HF?(H,s) as a Fo[U]
module is an invariant of the 3-manifold Y .

Given this theorem, we will write HF°(Y, s) instead of HF°(#, s). In
Chapter 2 we will recall how to compute HFO(Sg/q(K )) from data associated
to the knot Floer chain complex using the mapping cone formula of [OS11].
In our work in Chapter 2 we are mostly interested in P/IF(S;’(K ), s) and
HF*(S}(K),s). Importantly, if Y is a rational homology 3-sphere, and s €
Spin®(Y’), we have the following structure theorem for HF (Y] s): HF (Y, s) ~
T+ @ HF, (Y, s) [OS04c, Theorem 10.1] where HF,..4(Y, s) is a finite dimen-
sional U-torsion module (called the reduced Heegaard Floer homology) and
T+ =~ F[U,U'|/UF[U] (called the tower summand). An important numer-
ical invariant of rational homology 3-spheres derived from this is the grading
of the element 1 € T+, which we denote d(Y,s). It turns out that d(Y,s) € Q
and if Y and Y’ are Spin®-homology cobordant, that is if they cobound a
Spin® 4-manifold W with H,(W;Z) =~ H.(Y;;Z), then d(Y,s) = d(Y',s)

where s and s are restrictions of the same Spin® structure ¢ on W. In our
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work in Chapter 2 we will investigate the behaviour of the d-invariant for

reducible manifolds.
Khovanov Homology

Khovanov homology is a bi-graded Abelian group, denoted Kh*’ (K),
that categorifies the Jones polynomial in the sense that the graded Euler
characteristic recovers the Jones polynomial V(K) up to a factor of (¢ + ¢ ')
[Kho99]:

(q+q YV (K) =) (~1)" dim(Kh*/ (K))q’
.3
Khovanov homology is an invariant of the isotopy class of a knot or link
in S® that is combinatorially defined from a diagram of the knot or link.
Khovanov homology is most strikingly useful in its functoriality under knot

cobordisms. Namely given an oriented cobordism ¥ : Ky — K there is an

induce map Kh(X) : Kh(Ky) — Kh(K).
Ribbon Concordance

Let us consider the concordance S* x I sitting inside of S® x I so that
the projection map S®x I — I restricts to a Morse function of S xI. Then a
concordance is called ribbon if there are only index 0 and 1 critical points for
this Morse function, that is the concordance annulus can be built with only
births and band attachments, no deaths. A fundamental open problem in
knot theory is the Slice-Ribbon conjecture which asserts that a knot is slice if
and only if the knot is ribbon.

Recently progress has been made relating ribbon concordanes between
knots to properties on the induced maps on Khovanov and knot Floer ho-
mology. Work of Zemke in [Zem19] and Levine and Zemke in [LZ19] showed
that ribbon concordance of knots induce injective maps on knot Floer ho-
mology and Khovanov homology, respectively. Classical work of Kirby and

Lickorish [KL79| shows that any knot K is ribbon concordant to a prime
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knot, which implies that the Khovanov homology of any knot K is a sum-
mand of the Khovanov homology of a prime knot; see Chapter 4. This ob-
servation allows for the propagation of Steenrod squares from the Khovanov

homology of composite knots to the Khovanov homology of prime knots.
1.2 Chapter 2: Reducible Surgeries on Slice and Almost L-Space Knots

This chapter contains unpublished co-authored material with Robert
DeYeso III. Recall that Heegaard Floer homology is the homology of a graded
chain complex CF°(Y') where o € {",+, —, o0}, where CF°(Y) is either a
Z-graded Fy-vector space, a F[U]-module or a F[U, U~!]-module for o €
{’,+,—,00}. The chain homotopy type of any flavor of the chain complex
is a smooth 3-manifold invariant. The definition of knot Floer homology is
similar to the definition for Heegaard Floer homology. One starts with a
doubly-pointed Heegaard diagram for the pair (52, K) which is the data of
a tuple (X, «, 8, z,w) so that w and z are in the complement of the o and /3
curves and (3, o, 3, z) is a pointed Heegaard diagram for S3. The knot K is
the union of two arcs: an arc a in X — « connecting w to z and pushed into
the a-handlebody and and arc b in ¥ — 8 connecting z to w and pushed into
the B-handlebody. The chain complex CFK™(S3, K) is generated over F[U]
by the intersections between the a and S tori, and the differential is defined

as

EEDY #M(O)U" "y

Yy (beﬂ—Q (337:11)
ind(¢)=1

The chain complex CFK™ (53, K) has a Z-grading, called the homolog-
ical or Maslov grading, denoted m, and a Z-filtration called the Alexander
filtration, denoted A. The differential decreases the Maslov grading by one
and respects the Alexander filtration. For generators x and y the relative

Maslov and Alexander gradings are defined as

M(z) = M(y) = ind(¢) — 2n,(¢) and  A(z) — A(y) = n.(¢) — nw(d)
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Furthermore, M (Uz) = M(x) — 2 and A(Uz) = A(z) — 1. Moreover,
setting U = 0 we obtain the filtered complex (TFT{(S 3 K). The homology of
the associated graded is denoted by }ﬁ:‘T{(S?’, K) and the filtration induces
a spectral sequence with F.-page ﬁF(S 3). We lift the Maslov grading to an
absolute grading by setting the Maslov grading of this generator to be zero.

There is a related complex, that governs the mapping cone formula
and specializes to the hat and minus complexes above. Define the complex
CFK*(S3, K) := CFK (S K) ® F[U,U~']. This is a Z @ Z-filtered Z-
graded chain complex. We view this complex in the (i, j)-plane where a gen-
erator Uz is plotted at the coordinates (—n, A(z)—n). Then, given a subset
S < Z @ Z such that (i,7) € S implies (¢, j') € S for all (¢, j") < (4,7), we
can form a subcomples C'{S}, the set of all generators of CFK* (53, K) with
(i,) coordinates in S. Note that in this language CFK~(S3 K) = C{i < 0}
and C/PT((SB', K) = C{i < 0}/C{i < 0}. In these terms we can define 7(K) as
follows [OS03b]

7(K) =min{s|¢: C{i = 0,j < s} — C{i = 0} induces a non-trival map on homology}

An important computational tool in the theory of Heegaard Floer ho-
mology is the mapping cone formula which relates information about the
knot Floer complex to the Heegaard Floer homology of the 3-manifold ob-
tained by Dehn surgery on K [OS11|. Using the mapping cone formula one
can both compute the Heegaard Floer homology of many 3-manifolds that
are surgery on knots and one can also hope to obstruct certain 3-manifolds
from being realized as Dehn surgery on a knot (or a knot of a particular
type) in S3.

An easy obstruction to a 3-manifold being Dehn surgery on a knot is
that the first homology of the 3-manifold must be Z or Z/nZ. Therefore,
many 3-manifolds, e.g. 7% and (S' x S?)#(S* x S?), cannot be obtained by
Dehn surgery on a knot in S3. Similarly, it is easy to see from the Wirtinger
presentation for m(S® — v(K)) that a 3-manifold obtained by Dehn surgery
on a knot must also have weight-one fundamental group, that is the funda-

mental group is normally generated by a single element. If we restrict atten-
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tion to integer homology 3 spheres (3-manifolds with the same integral ho-
mology as S3) there are examples of irreducible integer homology 3-spheres
that do not arise as Dehn surgery on a knot. The first example was discov-
ered by David Auckly [Auc97|, using gauge theory and Donaldson’s Diago-
nalization theorem. Auckly’s construction is sufficiently complicated that he
was not able to verify if the fundamental group was weight one.

More recently, the mapping cone formula and Heegaard Floer homology
has proved useful in studying this question. For example, Hom-Karakurt-
Lidman in [HKL16| showed that many irreducible integer homology spheres
are not surgery along a knot in S® (see also [HL16]). Their proof involves
in a non-trivial way both the mapping cone formula of [OS11] and the com-
putation of Heegaard Floer homology of some small Seifert fibered spaces.
In particular they find a relation between the d-invariant of an integer ho-
mology 3-sphere Y and the module structure on HF,.4(Y) when Y is Dehn
surgery on a knot K in S®, and show that this relation does not hold for a
family of Seifert fibered spaces, namely the Seifert fibered spaces ¥ (p, 2p —
1,2p+1). Furthermore, because their examples are relatively small 3-manifolds,
they were able to verify that they have weight one fundamental group.

In a similar direction, one might ask when Dehn surgery on a knot pro-
duces a non-trivial connected sum of two or more 3-manifolds, called a re-
ducible 3-manifold. Perhaps surprisingly, there are numerous examples of
such knots. In [Mos71], Moser showed that S3 (T},,) = L(p, q)#L(q, p) where
T,,, denotes the (p, q) torus knot, and by a similar argument one can show
that S5 (Kpq) = L(p, q)#5S2,(K), where K, , denotes the (p, g)-cable of the

a/p
knot K. In [GS86], the authors propose the following conjecture, called the

Cabling Conjecture, which is still open:

Conjecture 1.2.1. If K is a knot that admits a reducible surgery with slope
p, then K = J, s for some knot J and p = rs.

Note that this question is asking when does Dehn surgery on a knot
contain an essential separating 2-sphere. This conjecture has been verified

in many cases, and many properties of the resulting reducible manifold are
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known. See Chapter 2 for a more comprehensive survey. We only mention
a few important results here. If Dehn surgery on a knot is a reducible 3-
manifold, then there must be a non-trivial lens space summand (and so the
surgery slope has to be > 1) and the slope is integral [GL87|. In particu-
lar there are no reducible integer homology spheres that can be obtained
from S3 by Dehn surgery on a knot. Additionally, the Cabling Conjecture

is known for torus and satellite knots [Mos71; Sch90] so it remains to study
integral surgeries on hyperbolic knots. Moreover for hyperbolic knots the re-
ducing slopes satisfy the restrictive bound 1 < [p| < 2¢(K) — 1 [MS03].
Two other related conjectures that we explore are the Two-Summands Con-
jecture and the Multiple Reducing Slopes Conjecture. The two-summands
conjecture asserts that at most two summands can result from Dehn surgery
along a knot in S® and the multiple reducing slope conjecture asserts that
any knot has at most one reducing slope. If we consider slopes as curves

on the boundary of the knot complement, we can compute their geometric
intersection in 72. A theorem of Gordon and Luecke |[GL96, Theorem 1.2]
shows that if there are multiple reducing slopes for a given knot, then they
have geometric intersection 1, and since they are integral slopes this implies
they are consecutive integers. Furthermore, no more than three summands
can occur in a Dehn surgery along a knot in S? [Val99; How02|, and if three
summands occur one is an integer homology sphere and the other two are
non-trivial lens spaces.

Recently, Heegaard Floer homology has proved useful in studying the
Cabling, Multiple Reducing Slopes and Two Summand Conjecture, as well
as the general question of when a 3-manifold is surgery along a knot. Since
there is a non-trivial lens space summand in any reducible surgery on a knot
in S3, which has the simplest possible Floer homology in each Spin® struc-
ture, and Heegaard Floer homology satisfies a Kiinneth formula for con-

nected sums [OS04c, Theorem 1.5, we have the following

Theorem 1.2.2 ([HLZ15] Lemma 2.6). Suppose K satisfies S3(K) = L(a, s)#R
where p = ar and |H\(R;Z)| = r. Then for any t € Spin®(Sy(K)) and any
o e H*(S3(K)) we have HF(S3(K), [t]) = HF " (S3(K), [t+ar]) as relatively
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graded F[U] modules.

In [HLZ15], the authors use the above observation to show that if an L-
space knot K has a reducible surgery, then the reducing slope is 2g(K) — 1
[HLZ15, Theorem 1.3]. So in particular, L-space knots do not have multi-
ple reducing slopes and do not have properly embedded punctured projec-
tive planes in their complements, since the surgery slope is odd [HLZ15,
Corollary 1.5]. Moreover, they show using the mapping cone formula that
for knots of genus 1 and 2, there are not multiple reducing slopes. Greene,
in [Grelb|, verified the Cabling Conjecture when the resulting manifold is a
connected sum of two lens spaces, and in [Meil7] Meier shows that a slice
knot satisfies the two-summands conjecture by comparing the d-invariants
of S3(K) when K is slice (which are equal to the d invariant of L(p, 1) by
[NW15, Proposition 1.6]) to L(r,a)#L(s,b)#Y, where p = rs and Y is an
integer homology sphere and showing that these are never equal, using the
computation of d-invariants of lens space provided in [OS03a].

In Chapter 2, we use the mapping cone formula and d-invariants to
study reducible Dehn surgeries on slice and almost L-space knots in S? and
determine obstructions to general knots admitting reducible surgeries. Re-
call that if a knot K is slice, then so is the (p,1)-cable of K, K, ;. Then as
above, S (K1) = L(p,1)#57,,(K). In particular, in a reducible surgery on
a cable of a slice knot there are two summands, one a lens space that car-
ries all the homology and the other an integer homology 3-sphere. Using the
formula for the d-invariant of surgery along a knot established in [NW15,
Proposition 1.6], it also follows that d(Sf/p(K)) = 0. We show that this

holds in a general reducible surgery on a slice knot

Theorem 1.2.3. For a slice knot K and a reducing slope p, S;’(K) ~ L(p, 1)#Y,
where Y is an integer homology 3-sphere with d(Y') = 0.

The above theorem, when combined with [GS86, Proposition 1.4], gives
the following Corollary, which further restricts the possible reducing slopes
on fibered hyperbolic slice knots. Recall that if K is a hyperbolic knot with
reducing slope r, then 1 < |r| < 2¢(K) — 1. We show
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Corollary 1.2.4. If K s a fibered, hyperbolic slice knot of genus g and r is

a reducing slope, then |r| < g.

For a general knot K with a reducing slope r = pq, we prove the follow-

ing slice genus bound:

—1)(g—1
Theorem 1.2.5. If S (K) = Y, #Y,, then gi(K) > (P—D-1) _

2
g4 (Tp,q) .

This generalizes a result of [GS86| (See also |Eis22|) that says that the
3-genus of a knot K with reducing slope pq is bounded below by ¢(7},,) =
(p—1(g—1)

We also study the question of when a knot can admit multiple reducing
slopes and show that if a hyperbolic slice knot K admits multiple reducing
slopes 7 and r + 1 then r + 1 < g(K). In the following Theorem we make
reference to the invariant v(K). The map v; : //1\5 — és is the map from the

mapping cone formula of [OS11] (see also Chapter 2).

Definition 1.2.6. /0S11, Definition 9.1] For a knot K < S®, let v(K) :=
min{s | (05) # 0}.

Theorem 1.2.7. Suppose K is a hyperbolic knot in S* with v(K) < g(K)
that admits consecutive reducing slopes r and r + 1. Further, suppose that
both r and r + 1 surgery split off an integer homology sphere summand. Then
r+1<g(K).

In joint work with Robert DeYeso III, we also study the question of
when 2¢(K) — 1 surgery on an L-space knot can be reducible and prove the
following. This theorem, combined with the work of [DeY21|, shows that
thin knots satisfy the Cabling Conjecture.

Theorem 1.2.8. Thin hyperbolic L-space knots do not admit reducible surg-

eries.
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In a similar direction, building on work of [HLZ15] we show that only
certain slopes on almost L-space knots can produce reducible 3-manifolds,
see Chapter 2, Section 2.3.

An L-space is a rational homology 3-sphere Y so that dim(I-/IF(Y)) =
|H,(Y;Z)|. A knot K is called an L-space knot if S3(K) is an L-space for
all n > 2¢g(K) — 1. In |BS22| the authors define a generalization of an L-
space, called an almost L-space, which is a rational homology 3-sphere Y so
that dim(HF(Y)) = |Hy(Y;Z)| + 2 (the next to smallest possible dimen-
sion). Exactly as above we call a knot K an almost L-space knot if S3(K)
is an almost L-space for all n > 2¢(K) — 1. It turns out that the full knot
Floer complex of almost L-space knots can be determined, similarly to the
case of L-space knot, see [Bin23|. We use these results to prove the following

theorems.

Theorem 1.2.9. For an almost L-space knot K, the only possible reducing
slopes are g(K) (or +g(K) if g(K) = 3), £2, or (29(K) —2) (and the latter

two only in the case g(K) is even)

Corollary 1.2.10. If K is an almost L-space knot with odd genus g(K) and
g(K) > 3, then g(K) is the only reducing slope.

Corollary 1.2.11. If K is an almost L-space knot with odd genus g(K),
then the complement of K does not contain any properly embedded punctured

projective planes.

Proof. Suppose that the complement of K contained a properly embedded

punctured projective plane P. Then 0P gives a slope p so that filling along
that slope gives an embedded RP?, P. Consider a tubular neighborhood of
P in SHK). If S3(K) — P were a 3-ball, then S3(K') would be homeomor-

phic to RP3. By the RP? theorem, [Kro+07, Theorem 1.1], this is impossi-
ble since K is non-trivial. Therefore S3(K) =~ RP*#Y for some 3-manifold
Y with p = 2|H,(Y;Z)|. However, p is even and is also a reducing slope for

an almost L-space knot with odd genus. This contradicts Theorem 1.2.9. [J
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Corollary 1.2.12. Almost L-space knots of genus g(K) = 2 do not admit

multiple reducing slopes.

1.3 Chapter 3: Knot Floer Homology, Immersed Curves and Twisted
Satellites

In this chapter we study the behavior of certain invariants, coming from
classical 3-manifold topology and Heegaard Floer homology, under the oper-
ation of taking the n-twisted satellite. Given a knot K in S® and a knot P
in S* x D2, we can form a new knot in S3, called the n-twisted satellite knot

with pattern P and companion K, denoted P,(K), as follows:

(8% Pa(K)) = (5% = w(K)) ug (" x D, P),

where the map ¢ takes the meridian of the solid torus, dD? x {pt}, to the
meridian of K and the longitude of the solid torus, S* x {pt}, to nu + A,
where p and A\ are a meridian and longitude for the knot.

In general, computing the knot Floer homology of satellite knots from
the definition is extremely difficult. Our approach to studying the question
of how knot Floer homology behaves under satellite operations uses the bor-
dered Floer homology of [LOT18| and the reformulation of the bordered in-
variants and the bordered pairing theorem for manifolds with torus bound-
ary in terms of immersed curves [HRW17; HRW22; Chel9; CH23].

Bordered Algebra

In this section we describe the algebraic preliminaries to understand
the bordered pairing theorem. In what follows we will focus on bordered 3-
manifolds with torus boundary. Let A = A(T?). The algebra A is defined as
follows. Over F it has a basis consisting of two mutually orthogonal idempo-
tents ¢p and ¢; and six other nontrivial elements py, po, p3, p12, P23, p123. The

non-zero products in the algebra are given as follows:

P1P2 = P12 P23 = P23 P1P23 = P12P3 = P123
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P1 = Lop1ly P2 = L1P2lo pP3 = Lopsta

P12 = lopPi2to P23 = L1P23l1 P123 = loP123t1

If welet Z = {19) @ {11), then a type D structure over A is a unital left 7
module N together with an Z linear map 6 : N — A ®z N such that

(L®L) o (I®)od =0

A type A structure is a right unital Z module M with a collection of
maps M1 : M ® A* — M, for i > 0, such that M = My @® M, and

n—2

0= Z Myp—i(M; (2@ @ - -®a;_1)®:- - '®an71)+2 Mp-1(2®- - -®a;0;41Q- - -Qay,)
i=1 1=1

(1.1)
and so that for x € M and a; € A

me(x,1) =z
mi(z, -, 1,---) =0

Given a type A structure M and a type D structure N, we can form a
chain complex, called their box tensor product and denoted M [x] N. The
underlying vector space is the tensor product M ®7 N, and the differential is
defined by

o0

Er®y) = Y (mn @Dz ® (1), (12)

i=0
In the case that the type D structure is bounded, as defined in [LOT18,
Section 2|, then the above sum is finite and the box tensor complex is well
defined.
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Bordered 3-manifolds and the Pairing Theorem

Given a closed three manifold Y and a surface F' embedded in Y so
that [F] = 0 € Hy(Y), we can cut Y along F' to produce two 3-manifolds-
with-boundary Y; and Y5 so that 0Y; =~ —dY, =~ F. Such a 3-manifold-with-
boundary together with a diffeomorphism ¢ : F' — 0Y is called a bordered
3-manifold. To such a surface, [LOT18] associate a differential graded alge-
bra, A(F'), and to Y; and Y, as above they associate a right Type A struc-
ture (ﬁ(yl) and a left type D structure (TPT)(YQ) Furthermore, given a
doubly-pointed bordered Heegaard diagram H = (X, a%, 3, z,w) for a knot
K in Y; which becomes null-homologous in Y, we can associate a right type
A structure over A(F) with coefficients in F[U] denoted CFA™(H), or a fil-
tered type A structure @(H) Then the work in [LOT18, Theorem 1.3,

11.21] shows that there are homotopy equivalences

CF(Y) ~ CFA(Y:) ® CFD(Y2)
CFK(Y, K) ~ CFA(H) x CFD(Y2)
gCFK (Y, K) ~ CFA~(H) X CFD(Y,)

Warning: CFA™(H) depends on the choice of Heegaard diagram for the pair
(Y1, K), but the result of pairing with C/FT)(S?’\V(K)) does not. We will
abuse notation by writing CFA™ (Y}, K) when it’s clear we have fixed a Hee-
gaard diagram for (Y, K).

Bordered Floer and Satellites Knots

In the satellite knot construction, we have two 3-manifolds with torus
boundary, S* — v(K) and (S x D? P) and the latter is a 3-manifold with
boundary together with a knot P that becomes null homologous in the glued
up manifold. Note that in the n-twisted satellite construction we can either
directly add n twists to the pattern knot P, or we can change the fram-
ing of the knot complement. The bordered pairing theorem implies that
gCFK™ (S, P,(K)) = CFA™(S! x D%, P)® CFD(S® — v(K),n), where
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Figure 1.1. Type D structure for O-framed right handed trefoil complement

C/PT)(S3 — v(K),n) denotes the type D structure associated to the n-framed
knot complement. So one way to compute the knot Floer homology of n-
twisted satellite knots is to understand C/FT)(S3 — v(K),n) and CFA™(S! x
D% P).

In the case of a knot in S?, [LOT18, Theorem 11.26] shows that the
type D structure for the n-framed knot complement is algorithmically ob-
tainable from the knot Floer complex CFK™ (53, K). Indeed, they show that
given a horizontally and vertically simplified basis for the knot Floer com-
plex CFK™(K) and a choice of framing n, one can easily write down the
bordered type D structure associated to the n-framed knot complement.

See Figure 1.1 for an example of (TF—‘]\)(S?’ — v(T33),0). In fact, we can feed
in partial information about CFK™ (K), and still extract some information
about the type D structure. In particular, we will see in Chapter 3, Lemma
3.2.2 that this algorithm allows us to understand a piece of the type D struc-
ture C/F‘TD(S3 — v(K),n) only knowing the triple (7(K), e(K),n), and this
piece of the type D structure ends up carrying a lot of the information in the
pairing with CFA(S! x D2, P).

More recently [HRW22] showed that the bordered invariants for mani-
folds with torus boundary are equivalent to the data of an immersed multi-
curve in the once-punctured torus 72 — {z}. Therefore for the case of type

D structures associated to n framed knot complements, @(53 —v(K),n)
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Figure 1.2. A genus-1 doubly-pointed Heegaard diagram. The blue curve is
the £ curve

gives rise to an immersed multi-curve, which we will denote a(K, n), in the
punctured torus 72 — {z}. In Chapter 3, Lemmas 3.2.2, 3.8.2 and 3.8.3, we
recall how this correspondence works. The work of [LOT18| discussed in the
previous paragraph gives a partial structure theorem for one special com-
ponent of the immersed curve in terms of the triple (7(K), e(K),n), and we
use that to give a partial structure theorem for a( K, n) in terms of the triple
(T(K),e(K),n).

The other ingredient in the bordered pairing theorem are the Type A
structures associated to pattern knots in S' x D?. In general, these are
difficult to compute since the definition of the type A structure involves
counting holomorphic disks with prescribed boundary conditions in some
symplectic manifold associated to a bordered Heegaard diagram for the pair
(S x D?, P).

A (1,1)-pattern knot is a knot in S' x D? that has a genus-1 doubly-
pointed bordered Heegaard diagrams. A genus-1 doubly pointed bordered
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Figure 1.3. The pattern in the solid torus determined by the doubly pointed
Heegaard diagram in figure 1.2 by the procedure described in the text

Heegaard diagram is a tuple (T2, %, 8(P), z, w), where a® = {u,\} is a
preferred framing of the boundary and S(P) is a curve in T? that is iso-
topic to the meridian after forgetting the z basepoint, so when we attach a
two-handle to 3(P) we obtain the 3-manifold-with-boundary S' x D?. The
knot P is specified by joining z to w and w to z in the complement of the a®
andv [(P) respectively. See figures 1.2 and 1.3 for an example.

For (1, 1)-patterns P and arbitrary companions K [Chel9| showed that
the bordered pairing theorem for computing CTFT{(S?’, P,(K)) can be re-
formulated as the intersection Floer homology of two curves in the twice-
punctured torus: namely the immersed multi-curve «(K,n) and the [ curve
from the (1, 1) diagram associated to P, B(P). See Figure 1.4 for an exam-
ple of this pairing in 72— {z, w} where a(K,n) = a(T3,0) and S(P) is the 3
curve from the genus-1 doubly pointed bordered Heegaard diagram in figure
1.2. We review this work in Section 3.2 and use it to prove the main results

of Chapter 3, namely a computation of the Heegaard Floer concordance in-
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Figure 1.4. Executive summary of the pairing theorem for satellites with
(1,1) patterns. Intersection points in the second and fourth quadrant
correspond to generators of the knot Floer chain complex of the satellite and
Whitney disks as shown connecting two generators and not containing either
basepoint are differentials

variants 7(P,(K)) and €(P,(K)) for satellite knots with patterns from two
novel families of (1,1)-patterns. The first family, denoted P®Y is a family of
patters so that P®Y(U) ~ Ty 3 (called trefoil patterns) with winding number
p + 1. See figure 1.3 for a picutre of PGV, As discussed in Chapter 3 these
trefoil patterns are related to the (p, 1) cabling patterns by a finger move
applied to the curve (p, 1). The second family is a family of pattern knots
denoted Q%/, shown in figure 3.24, so that Qg”(U) ~ U and the winding
number of Q%' is j. The family of patterns Q"7 generalizes both the White-
head doubling pattern and the Mazur pattern, both of which have been used
to probe the structure of the smooth, topological and PL structure of knot
concordance and homology cobordism [Hed07], [Lev16].

On top of understanding the behaviour of the concordance invariants
7(Q%(K)) and €(Q% (K)) as functions of n, we also study the three genus
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and fiberedness of these families of satellite knots via bordered Floer homol-
ogy. In [HMS08| the authors give a criterion for when a satellite knot fibers
in S3: the n-twisted satellite knot P,(K) is fibered if and only if both K

is fibered in S® and P, is fibered in S' x D?. This result can be read as a
way to detect if a pattern knot P, is fibered in the solid torus, all that is re-
quired is to determine whether or not the satellite knot P, (7% 3) is fibered.
Since knot Floer homology detects fiberedness of knots in S3, to show that
P, (T, 3) is fibered it is enough to compute the rank of the knot Floer homol-
ogy of the satellite knot P, (73 3) in the top Alexander grading. As we will
see in Chapter 3 this computation is relatively simple for (1, 1)-patterns as
the type D structure associated to the complement of the right-handed tre-
foil is relatively simple. Using this, we determine for which triples (i, j, n)
the pattern knot Q% is fibered in the solid torus:

Theorem 1.3.1. The pattern knots Q4 = S x D?* are fibered if and only if
1 =0 and either j =22 andn #0 orj =1 andn # 0,—1.

It is interesting to compare the above result with the following theorem

which classifies fibered unknot patterns.

Theorem 1.3.2. [HMS08, Theorem 5.1] If P is a pattern so that P(U) ~
U, then P is fibered if and only if it is braided.

In particular Qé’j is never fibered. However, it is interesting that this is
in some sense the only bad slope in that for basically all the other values of
n and j, the pattern Q% is fibered and for no values of n is the pattern Q%
fibered when ¢ > 0. This raises the interesting question: which (non-braided)
unknot patterns admit infinitely many twist parameters so that the resulting
pattern (no longer of unknot type in S?) is fibered.

Another 3 dimensional invariant of knots is their genus, the minimal
genus of a surface that the knot bounds. A classical result of Schubert [Sch53|
shows that the genus of a satellite with non-trivial companion knot K can
be expressed in terms of the genus of the companion, the winding number of

the pattern, and the genus of the pattern as follows:
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9(P(K)) = lw(P)|g(K) + g(P).

In particular, since the above equality works for any non-trivial knot K,
we might as well take X' = T53. Then the genus of the pattern is g(P) =
g(P(Ty3)) — |w(P)|. Since knot Floer homology detects the genus of knots
in S8, we see that in some sense the bordered invariant CFA(S! x D2, P)
detects the genus of the pattern knots P,, by pairing with the type D struc-
ture associated to the n-framed trefoil complement (TFT)(SS —v(Ty3),n),
finding the genus of the resulting satellite and then using Schubert’s formula
[Sch53]. We perform this computation for the family of patterns Q% and
find:

Theorem 1.3.3. For K non trivial, we have

ICRANIIND LS

9(Q7(K)) = jg(K) + == . .
-7 n<

We can use the same techniques to determine g(Q% (U))

Theorem 1.3.4. For K = U,

o
%n+l n>0

9(@(U)) =10 n=0
i(j+1
ﬁ%;lhq+1—j n<0

This shows that the genus of these twisted patterns depends quadrat-
ically on j (the winding number) and linearly on the number of meridional
twists n added to the pattern. This generalizes work of [PW21], where the
study the genus of the n-twisted Mazur pattern Q%'. The question of how
the genus of knots that are related by adding full twists grows is also ex-
plored in [BM19].

The question of how satellite knots behave with respect to concordance

is especially interesting, as there are many open questions that are easily
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stated. For example, if W denotes the Whitehead double pattern, it is un-
known if W (T_53) is smoothly slice (it has Alexander polynomial 1, so is
topologically slice by work of Freedman). However, in the last 20 years,
many invariants have been developed that obstruct certain families of satel-
lite knots from being slice. Two of the more successful invariants are 7(K)
and €(K') coming from knot Floer homology. Recall that, by construction,
the knot Floer homology @(53, K) admits a spectral sequence to }/IF(S?’)
and the invariant 7(K) is the Alexander grading of the generator that sur-
vives this spectral sequence. In fact there are two spectral sequences to ﬁ]\?(53),
by symmetry of the knot Floer homology, and the invariant ¢ measures how
the above generator interacts with the other spectral sequence. In our work,
we also compute 7 and € of the two families of satellites with arbitrary com-
panion knots and patterns P®! and Q7. In particular, we show that for

the patterns Q% as above, we have
Theorem 1.3.5. If K is a knot in S® with e(K) = —1, then

G-1),

Qi () = j(r(K) + 1) + T

If K is a knot in S® with e(K) = 1, then

HQY(E)) - JT(K) + ‘7(‘72_ )n+ 1 n<27(K)
Jr(K) + ‘7(‘72_ Do nson(k)
If K is a knot in S® with e(K) = 0, then
=v, n=0
T(Q(K)) = j(j2_1)n+ o
2 S

Corollary 1.3.6. For M = Q%! the Mazur pattern, the value of T(Q%'(K))

does not depend on n, only on n relative to 27(K).

Theorem 1.3.7. For any knot K, ¢(Q%(K)) # —1.
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A consequence of the above theorem is that these patterns do not act
surjectively as operators on the smooth or rational homology concordance
group, since for any knot K, Q% (K) is never concordant to a knot L with
€(L) = —1. This shows that there are infinitely many patterns of arbitrarily
large winding number with this property, and shows that this property is
preserved by adding twists in the clasp region, and adding full meridional
twists to these patterns. Consequently, following a construction of Levine in
[Lev16], the patterns Q%' can be used to construct infinitely many knots not

concordant to any knot in S3.

1.4 Chapter 4: Non-trivial Steenrod Squares on the Khovanov Homology of

Prime Knots

This chapter contains previously published material. In 2014, Lipshitz
and Sarkar introduced a stable homotopy refinement of Khovanov homology
[LS14a]. For each knot K and fixed j it takes the form of a suspension spec-
trum X7(K). The cohomology H*(X?K)) of this spectrum is isomorphic to
the Khovanov homology Kh*7(K). In subsequent work (e.g. [LS14c|) they
used this refinement to define stable cohomology operations on Khovanov
homology. This lead to a refinement of Rasmussen’s s-invariant [Ras03b]
for each nontrivial cohomology operation, and in particular for the Steen-
rod squares [LS14c|. In Chapter 4 we positively answer a question posed in
Lipshitz-Sarkar [LS18, Question 3|: Are there prime knots with arbitrarily
high Steenrod squares on their Khovanov homology? Explicitly, we prove the

following theorem:

Theorem 1.4.1. Given any n, there exists a prime knot P, so that the op-

eration
~ i+n,]

Sq" : Kh'™(P,) — Kh' " (P,)
is nontrivial for some (i, 7). Here Kh denotes reduced Khovanov homology.

We construct these knots explicitly by ribbon concordances. The main re-

sults we use are a classical result of Kirby and Lickorish that any knot K is
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ribbon concordanct to a prime knot [KL79|, a result of Levine-Zemke [LZ19]
(see also [Will2]) that if ¥ : K — K’ is a ribbon concordance between knots
K and K’ then the map induce on Khovanov homology Kh(X) : Kh(K) —
Kh(K’) is injective and the fact that there are composite knots with ar-
bitrarily large Steenrod operations on their Khovanov homology [LLS15,
Proof of Corollary 1.4, Page 67|. We are also able to use a result of Liv-
ingston which shows that any knot is ribbon concordant to a prime satel-
lite knot [Liv81] to show that there are prime satellite knots with arbitrarily
large Steenrod squares on their Khovanov homology. Further, using work of
[Kaw89], we also note that since any knot K has an invertible concordance
to a hyperbolic knot, we can propagate Steenrod squares from composite
knots to prime hyperbolic knots as well, without the use of the injectivity
result of Levine-Zemke [LZ19].
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CHAPTER 2
REDUCIBLE SURGERIES
2.1 Overview

In this chapter we study obstructions to knots admitting reducible surg-
eries. This chapter draws on unpublished co-authored material joint with
Robert DeYeso III, though the included material is all the author’s own.

Introduction

In the following section, we will be making use of the relationship be-
tween knot Floer homology and the Heegaard Floer homology of 3-manifolds
obtained from Dehn surgery along a knot in S3. This relationship was first
worked out by Oszvath and Szabo in [OS11] and we recall their notation and
results here. In the first section we are mostly interested in the d-invariants
of Dehn surgery, which are the gradings of some distinguished generators in
the Heegaard Floer homology. In later sections, we make use of the full map-
ping cone to study reducible surgeries on almost L-space knots and multiple
reducing slopes on general knots.

Let K be a knot in S3, and denote the result of %—Dehn surgery on K
as § :r?;/q
K, v(K) =~ S' x D? in S? and replacing it with a solid torus S' x D? so
that {pt} x dD? maps to a slope p/q curve on 0(v(K)) in terms of a basis
[p] and [A] Hi(0(v(K));Z). Here [u] is a curve that bounds a disk in v(K)

and [A] is a curve on d(v(K)) that intersects u in a single point and provides

(K). This is the operation of removing a tubular neighborhood of

the Seifert framing of K (so it is nullhomologous in S*\K). We are inter-
ested in Dehn surgeries that produce essential 2-spheres. A 2-sphere in a 3-
manifold is essential if it is not the boundary of an embedded 3-ball B3, and
we say that M is reducible if it contains an essential 2-sphere. The solution
of the Property-R conjecture in [Gab87] allows us to assume that £ # 0 and
that the surgery decomposes as a connected sum. All known examples of re-

ducible surgeries on knots in S3 are given by pg-surgery on the (p, q)-cable of
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a knot K. Letting C,,(K) denote the (p, q)-cable of K, we have

Spa(Cpa(K)) = L(p, )38y, (K). (2.1)

The Cabling Conjecture of Gonzales-Acuna and Short asserts that these are

the only examples.

Conjecture 2.1.1 (Cabling Conjecture - |GS86]). If K is a knot in S®
which has a reducible surgery, then K is a cabled knot and the reducing slope

15 given by the cabling annulus.

The Cabling Conjecture is known to be true for many families of knots:
satellite knots [Sch90], alternating knots [MT92|, torus knots [Mos71|, genus
1 knots [BZ96|, and for knots with symmetries and low bridge number (for
a survey of known results and techniques see [Boy02].) In particular, it re-
mains to study reducible surgeries on hyperbolic knots with genus larger
than one. We will make this assumption throughout the rest of this chap-
ter.

Much is known about reducible surgeries on general knots. Observe that
in the case of cabled knots, the reducing slope is integral and one of the con-
nected summands is a non-trivial lens space. Gordon and Luecke [GL87|
show that this is the case for any reducing slope. In particular, any reducing
slope r satisfies 1 < |r| since a reducible surgery contains a non-trivial lens
space summand. Due to the theorem of Gordon and Luecke [GLI6| that the
geometric intersection number of any two reducing slopes is 1, we see that a
knot admits at most two reducing slopes, which would necessarily be consec-
utive integers. Further work in [MS03| shows that for non-cabled knots, the

reducing slope r satisfies the restrictive bound
1< |rl <2¢(K)—1. (2.2)

It is also known that in a reducible surgery, no more than one of the sum-
mands is an integer homology sphere, and at most two of the summands
are lens spaces [How02; Val99|. It is conjectured that three summands never
arise from Dehn surgery on a knot in S3.
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Another bound on the reducing slopes, this time for fibered knots with
reducible surgeries with integer homology sphere summands, is proved in
|GS86, Proposition 1.4]. We state it here for convenience, rephrased from the

original source and using the Poincaré Conjecture.

Theorem 2.1.2 (|GS86| ). Suppose K is a fibered knot in S* of genus g. If
S3(K) = L(r,a)#Y for'Y a homology sphere, thenr < g.

More recently, progress has been made on the Cabling Conjecture us-
ing tools from Heegaard Floer homology. Hom, Lidman, and Zufelt show in
[HLZ15] that L-space knots admit at most one reducing slope r = 2¢g(K) — 1.
In [Grel5], Greene shows that the Cabling Conjecture is true for knots that
have surgeries to connected sums of lens spaces. Meier shows in [Meil7| that
reducible surgeries on slice knots (or more generally knots with V;(K) = 0
for all i > 0) only have two summands. In [DeY21], it is shown that hyper-
bolic thin knots do not admit reducible surgeries, except possibly when such
a knot is also an L-space knot.

In this chapter, we show that slice knots only admit reducible surgeries
of a particular type, and more generally we can bound the slice genus of a
knot in terms of the reducing slope parameters. The form of the reducible
surgery on a slice knot allows us to restrict the possible slopes on fibered,
hyperbolic slice knots, as well as restrictions on multiple reducing slopes
on slice knots. Our techniques mostly involve studying differences of the d-
invariants of a reducible surgery, which are largely affected by the order of
second cohomology of the connected summands. To that end, let Y, denote
a manifold with |H?(Y,;Z)| = p.

Theorem 2.1.3. Suppose K < S? is a hyperbolic slice knot and p,q are rela-
tively prime integers. If pq is a reducing slope for K and S;’q(K) =~ L(p, a)#Y,,
thenq=1,a=1, and d(Y) = 0.

For fibered, hyperbolic slice knots, Theorem 2.1.3 together with The-

orem 2.1.2 implies the following, which when compared with Equation 2.2
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shows that we cut down the possible reducing slopes on fibered, hyperbolic
slice knots by half.

Corollary 2.1.4. If K is a fibered, hyperbolic slice knot of genus g and r is

a reducing slope, then r < g.
The proof of Theorem 2.1.3 also gives the following slice genus bounds.

Corollary 2.1.5. Suppose K admits a reducible surgery of the form S;’q(K) ~
Y, #Y, with p > q > 1 and relatively prime. Then gs(K) = (19—1)2& > 0.

Remark 1: Note that by [GS86, Theorem 2.2| and |Eis22, Theorem 8|, the
Alexander polynomial of the (p, ¢) torus knot divides the Alexander poly-
nomial of any knot K which admits a reducible surgery of the form Y, #Y}.
This implies that g3(K) = ¢3(T,4) = (p — 1)(¢ — 1)/2. Corollary 2.1.5 above
shows that the slice genus satisfies the same bound.

Remark 2: It is not known if more than two summands can occur in a re-
ducible surgery on a slice knot. By [Val99] we know that there are at most
three summands, and if three summands occur in a reducible Dehn surgery,
then two of them are lens spaces and one is an irreducible integer homology
three-sphere. Work in |[Meil7| shows that slice knots admit only two sum-
mands in any reducible surgery. Corollary 2.1.5 implies that if a slice genus
1 knot K has a reducible surgery with two summands carrying non-trivial
homology, then the reducing slope is 6. This implies that the two summands
conjecture is true for all reducing slopes on slice genus 1 knots except for the
possibility that Sg(K) =~ L(2,1)#L(3,2)#Y for Y an irreducible homology
sphere with d(Y) = 0. Similarly the only possible reducing slopes for slice
genus 2 knots that could produce more than two summands are r = 6 and
r = 10. As far as we know, Heegaard Floer theoretic invariants cannot ob-
struct three summands from appearing in these surgeries.

Next, we investigate how Theorem 2.1.3 may be applied to the problem

of multiple reducing slopes for slice knots. This theorem and its proof are
inspired by [HLZ15, Theorem 1.6]. For the definition of v, see Definition
2.1.12.
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Theorem 2.1.6. Suppose K is a hyperbolic knot in S* with v(K) < g(K)
that admits consecutive reducing slopes r and r + 1. Further, suppose that
both r and r 4+ 1 surgery split off an integer homology sphere summand. Then
r+1<g(k).

Corollary 2.1.7. Suppose that r and r + 1 are simultaneous reducing slopes
for a hyperbolic slice knot K in S®. Thenr+ 1< g(K).

Spin® Structures

Let Spin°(Y’) denote the set of Spin® structures on Y, and recall that
Spin®(Y') is an affine copy of H*(Y;Z). Given a choice of Spin® structure s
on Y, every other Spin® structure satisfies s = sy + a for some a € H*(Y;Z).
Furthermore we have an identification Spin®(Y;#Y2) = Spin®(Y;) x Spin®(Y3)
and the projection maps onto each factor, my, and my,, intertwine the conju-
gation actions. Therefore, for s € Spin®(Y;#Y5) a self-conjugate Spin® struc-
ture, both 7y, (s) and 7y, (s) are self-conjugate Spin® structures on Y; and Y,
respectively. Next, observe that if p = |H;(Y1;7Z)|, then 7y, (s + p) = 7y, (s)
for any s € Spin®(Y;#Y5). This gives a relation among the d-invariants of
reducible three-manifolds that arise as Dehn surgery along a knot in S?.

For surgeries on knots in 53, we fix an identification of SpinC(S;’/ K))
with Z/pZ, given by o : Z/pZ — SpinC(Sg/q(K)) which sends [i] — o([])
and satisfies o([i + 1]) — o([i]) = [K'] € Hl(S;’/q(K)) s SpinC(S;’/q(K)),
where [K'] is the homology class of the dual knot. For more details on this
assignment, see [0S03a, Section 4.1]. We will often abuse notation and write
i or [i] for the image of [i] under the map o, and will take [i] to be notation

for ¢ (mod p) unless otherwise stated.
Heegaard Floer Homology

Heegaard Floer homology is an invariant of closed, oriented three man-
ifolds that was introduced by Oszvath and Szabo in [OS04d]. We will as-

sume familiarity with all flavors of Heegaard Floer homology, as well as the
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Z @ Z-filtered knot Floer complex CFK”(K) for knots K in S® defined in
[OS04d] and [Ras03b|. For the readers convenience, we give a brief review of
the structure of HF* (Y, s), the properties of the d invariants, and the map-
ping cone formula, since they will be used in our main arguments in the next
section.

Given a rational homology three-sphere, consider the invariants HF (Y),
HF*(Y), and HF*(Y'). These are a finite dimensional F-vector space, an
F[U]-module, and an F[U, U~!]-module respectively. Further, we have HF"(Y')
Dicspine vy HE (Y, 8) for 0 € {7, +, 0}

For any rational homology three-sphere Y with Spin® structure s, we
have HF*(Y,s) =~ F[U,U"']. Also, HF"(Y,s) decomposes non-canonically
into two pieces. The first is the image of HF®(Y,s) in HF*(Y,s). This
summand is isomorphic to F[U, U] /UF[U], which is called the tower and
is denoted 7. The grading of 1 € 77 is an invariant of the pair (Y,s) and

lle

is denoted d(Y,s). The rational number d(Y,s) is called the correction term
or d invariant. The second summand in HF*(Y,s) is the quotient by the
image of HF*(Y,s) and is denoted H F,.4(Y,s). It is a finite dimensional F
vector space annihilated by a high enough power of U.

The d-invariant has many useful properties [OS03a, Section 4]:
e Suppose § is the image of s under conjugation. Then d(Y,5) = d(Y, s).
e For pairs (Y1,s1) and (Y2, 52),

d(Y1#Y2, 51#s2) = d(Y1,51) + d(Ya, 52) (2.3)

e d is a homology cobordism invariant: If W : Y — Y’ is a Z homology
cobordism and there is a Spin® structure on W that restricts to s on Y
and s’ on Y’ then d(Y,s) = d(Y’,s').

By work in [OS11], the d-invariants of (p/q)-surgery along a knot are
related to the d-invariants of L(p,q). The latter are determined in [OS03a,
Proposition 4.8|, where they show
QL +1-p—q)®—pg

4pq
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with r and j the reductions of p and ¢ modulo ¢, respectively. We also use
the notation [i] to denote the residue class of ¢ mod p. This formula to-
gether d(S®) = 0 allows one to determine the d-invariants of a lens space
recursively.

The work of [LLO08, Proposition 5.3| also shows that the d-invariants of
L(p, a) satisfy the relation

p—1-2

A(Lp,0). [1) = d(L(p.a). o + ) = P

(2.5)
The Mapping Cone Formula and the v Invariant

In this section, we establish some terminology and notation for the map-
ping cone formula and the v* invariant. For more details, see [HW16] and
[Gail7]. Material from this section will be used to establish the claimed slice
genus bounds and the bound on multiple reducing slopes.

As above, we write HF° to mean either the plus or hat version of Floer
homology. Let C' = CFK®(S3, K) denote the knot Floer complex associated
to K. This is a Z @ Z-filtered Z-graded chain complex over F[U, U], where
the U action lowers the filtration degree by one and the Z grading by 2. As-
sociated to C' are the following quotient and sub-quotient complexes useful
for computing the plus and hat versions of Floer homology of manifolds aris-

ing as Dehn surgery along a knot K. To this end, define:
Af = C{max{i,j — k} =0} and A := C{max{i,j — k} = 0}

as well as

Bt :=C{i>0} and B:=C{i=0}

where i and j refer to the two filtration degrees. From the definition of CFK*(S?, K)
the complex B° is isomorphic to CF°(S?).
There is an obvious map v; : A — B* defined by projection. Sim-
ilarly, there is a map hf : A} — B* which projects to C{j > k}, shifts
to C{j > 0} via multiplication by U*, and then applies a chain homotopy
equivalence between C{i > 0} and C{j = 0} (both of which compute
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CF*(S%), so by general theory are chain homotopic). There are similar
maps for the hat versions.

Just as HF™*(Y,s) decomposes as a tower and a reduced part, the ho-
mology of the quotient complexes A; (K) decompose non-canonically as
T+ @ Ar°d. The maps v; and h', are isomorphisms for large values of k
and so represent multiplication by some non-negative power of U, say U"*
and U™k respectively when restricted to the tower summand in each A .
The non-negative integers V; and Hj are concordance invariants of K which
satisfy, by [NW15, Lemma 2.4| and [HLZ15, Lemma 2.5], the relations Hj, =
V i, H, =V, + k, and

Vi = 1< Vi <V (2.6)

Furthermore, for each i, we have [Ras03b, Corollary 7.4]

Vi < [%} : (2.7)

The V; also determine the correction terms or d invariants of surgery along
the knot K:

Theorem 2.1.8. [NW15, Proposition 1.6/ For p,q = 0 and 0 < i < p— 1.

we have:
d(Sg/q(K),i) =d(L(p,q),1) — QmaX{Vli/qJ, Vlmqfflfij} (2.8)

Now we explain how the maps vy and hj together with the quotient
complexes A; determine the Heegaard Floer homology of p/q surgery along
K. Since we are only interested in integer surgery in this paper, we write
the theorem down in this case. The reader interested in the change to the
case of fractional surgeries and a more detailed explanation of the notation
should consult [OS11; Gail7|. To this end, let

Azp(K) = (—B(n,ASﬂm), B° = (—D(n,BO).

nez nez
Then define a chain map D;, : A7, — B° by Df,p({(k7 ar)rez) = {(k, bk) brez

where by = v7, . (ar) + b7, 41y (ak—1). Letting A7, denote the mapping cone

1+p

of D7, we have
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Theorem 2.1.9. [0S11, Theorem 1.1] There is a relatively graded isomor-
phism of F[U]-modules
Ho (X)) = HF°(S(K), ).

Next, we introduce the v* invariant. as defined in [HW16, Definition
2.1].

Definition 2.1.10. The invariant v* is defined as follows: v* := min{k €
Z | vg: A — C/']\?(S?’),v,j(l) = 1}, where 1 € H,(A]) is a generator with

lowest grading of the tower summand.

Recall that v*(K) < g,(K) [HW16, Proposition 2.4]. With the mapping
cone formula we can give an alternative definition of v»*. This definition is
equivalent to the one just given since the integers Vj determine the map v;"

on the non-torsion summand of A;" [NW15].
Lemma 2.1.11. v*(K) = min{k € Z | V}, = 0}.

We will also make use of the hat version v as defined in [OS11, Definition
9.1]

Definition 2.1.12. For a knot K < S3, define v(K) := min{s | (0s). # 0}.

Then genus detection of knot Floer homology implies that

~

g(K) = max{v(K), {s | dim H,(As_1) > 1}}. (2.9)
2.2 Reducible Surgeries on Slice Knots
In this section we prove Theorems 2.1.3 and 2.1.6.
The d-invariants of Reducible Manifolds

Theorem 2.1.3 follows from the more general Theorem 2.2.1 below, which

deals with d-invariants of knots which admit a reducible surgery.
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Theorem 2.2.1. Suppose K is a knot in S® such that pq is a reducing slope
with (p,q) =1, p > q and S;’q(K) =~ Y,#Y,. Then for each 0 < { < @71)2&,
the V;’s satisfy

2 VZ—H £+z+p)) w - g? (2'1())

Where o(j) = min{j, pq — j}.

Proof. Suppose K is a knot in 5% with S3 (K) = Y,#Y,. We will write ,
for the projection map 7y, : SpinC(S;’q(K )) — Spin®(Y,) and similarly for .
As |H*(Y); Z)| = p we have m,([p+i]) = m,([4]) for [i], [p+i] € Spin®(S},(K)).
Then by additivity of the d-invariants, for any ¢ € Z we have:

d(Spy(K), [p+i+0]) = d(Sp,(K), [i+€]) = d(Yg, m[p + i+ £]) — d(Yg, mg[i + {]).
(2.11)

Our assumptions on p and ¢ imply that «(¢ 4+ ¢) = ¢ + i, so by Theorem 2.1.8

and Equation 2.4 we see that the left hand side difference in equation 2.11

equals
200+ 1) + p(1 —
( ) P o ) + 2V — 2Via(esitp)-

Summing from ¢ = 0 to ¢ = ¢ — 1 we see:

q—1 .
200+ 1) + p(1 —
Zd )6+ +p]) — d<S§q(K),[e+¢]):Z< e+ qp( ‘I))

i=0

q—1
+ 2 Z (V£+z‘ - Va(£+i+p)) :
i=0
(2.12)
On the other hand, by Equation (2.11) the left-hand side of Equation
(2.12) is equal to

Zd [0+ i+ p]) — d(Yg, mg[€ + ]).

Additionally, this sum is zero because the projection 7, induces bijections
between Spin®(Y,) and both sets {¢,....f +q¢—1}, {p+¢,....p+{+q—1}.
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Rearranging the sum in Equation 2.12, we see that

q—1 B B
Z (Vfﬂ' - Va(€+i+p)) = W — /.
i=0

[]

Proof of Theorem 2.1.3. We first show that Theorem 2.2.1 implies Y is an
integer homology sphere. Since V;; = 0 by Equation 2.7 when K is slice, we
have that V; = 0 for all ¢« > 0 due to their non-increasing behavior. Equation
2.10 with £ = 0 implies (p —1)(¢ — 1) =0, so either p=1org=1. If p = 1,
the positive solution of the two summands conjecture in the case where V; =
0 for all i = 0 in [Meil7] implies that ¢ was not a reducing slope since Y is
irreducible. Therefore, under the assumption that we have a reducing slope,
it follows that ¢ = 1 and the reducible surgery is S;’(K) ~ L(p,a)#Y with Y
an irreducible homology sphere.

To finish off the proof of Theorem 2.1.3, it remains to show that a = 1
and d(Y) = 0. Using Equation 2.5, we have

p—1—2[i]
5 .
Notice that if 7 is a self-conjugate spin® structure of L(p, a), then [i — a] and

d(L(p,a),[i]) = d(L(p,a),[a +i]) =

[i + a] are conjugate for any a. Then d(L(p,a),[i — a]) = d(L(p,a),[i + a])
using [OS04c¢, Theorem 2.4|. Equation 2.5 used for the pairs [¢], [ + a] and
[7], [¢ — a] then yields

p—1—2[i] p—1—2[i —al

p p

This implies that 2i = a — 1 (mod p), and so the self-conjugate Spin® struc-
ture(s) of L(p,a) correspond to the integers amongst [%52] and [EX2=1].
Both are realized as self-conjugate Spin® structures when p is even, and pre-
cisely one of them is realized when p is odd (depending on the parity of a).
Recall that Sg(K) = L(p,a)#Y with Y a Z-homology sphere, and let

[s] € Spin°®(S;(K)) satisfy 7 ([s]) = 72([0]) + a. Equation 2.5 yields

d(S,(K).[0]) = d(Sp(K), [s]) = d(L(p, a), 7.([0])) + d(Y) = (d(L(p,a), 7r([s])) + d(Y))
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= d(L(p, a), 7.([0])) — d(L(p, a), 7.([0]) + a)
p—1-2m,([0])

5 :
Additionally recall that d(S3(K), [i]) = d(L(p,1), [i])—2Va@) due to Equation
2.8. This implies

d(S,(K), [0]) — d(S,(K), [s]) = ) [0]) = d(L(p, 1), [s]) = 2(Vo = Vastp)

since V; = 0 for all i > 0.
Now either 77([0]) = 25% or m([0]) = 2221, Provided the former, the
two equations above yield s(p — s) = p — a. However s(p —s) = p— 1, and

so we must have a = 1 when 7,([0]) = %;*. If we suppose the latter so that

m1[0] = EE2=L then these two equations yield the contradiction s(p — s) =

—a. Thus a = 1, which forces d(Y') = 0 using Equation 2.8 with s = 0 and
Vo =0.
[

Proof of Corollary 2.1.5. Suppose K is a knot in S® which admits a reduc-

ing slope of the form 7 = pg with S} (K) = Y,#Y,. Choosing k = w;q_l) -

1 for ¢ in Equation 2.10 shows

q—1 q—1
Z Vigi =1+ Z Va(ktitp)s
i=0 i=0

after rearranging terms. Thus, Vi > 0 since the V;’s are non-negative and
non-increasing, and so v*(K) > k+ 1 = W by Lemma 2.1.11. Since
vT(K) is a lower bound for the slice genus of a knot [HW16], the result fol-
lows.

]
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Multiple Reducing Slopes on Slice Knots

In this subsection we use the mapping cone formula for AF and the fol-
lowing lemma to prove Theorem 2.1.6. The lemma below follows immedi-
ately from the Kinneth theorem for AF and the fact that lens spaces are L-
spaces (for the proof and for the analogous statement for HF'", see [HLZ15,
Lemma 2.6] and Lemma 2.3.13.

Lemma 2.2.2. Suppose Y is a three manifold and Y = L(p,a)#Y, with
|\H*(Y,,Z)| = q. Then for any « € H*(Y) and s € Spin®(Y') we have
dim I-/IF(Y,E + qo) = dim I—/IT?(Y,s).

Proof of Theorem 2.1.6. Suppose S¥(K) =~ L,#Y and S? (K) = L, .1 #Z
where r > ¢(K), Y and Z are both integer homology spheres, and L, is
either a lens space or a connected sum of two lens spaces, and similarly for
L,.1. We assume the two reducing slopes are consecutive positive integers
r and r + 1 by mirroring the knot if necessary. Since both surgeries split
off integer homology three spheres, and the complementary summand is an

L-space, we see by Lemma 2.2.2 that

dim(HF(S3(K), 1)) = dim(HF(S(K), j))

for any two Spin® structures i and j on S?(K). Similarly,

dim(AF(S2,,(K),4)) = dim(FF(S2,,(K), j)).

Note that if r is odd, we choose representatives [i] of Spin® satisfying
—|r/2| < i < |r/2|. If r is even, choose representatives with —|r/2| < i <
|7/2]. By the assumption r > g(K) we have r = g +ifor 0 < i < g — 2,
since a reducing slope on a hyperbolic knot is bounded above by 2¢g(K) — 1
by Equation (2.2) and r + 1 is a reducing slope, we have r + 1 < 2¢(K) — 1.
In this case, the mapping cone formula implies that Iﬁ‘(Sﬁ(K), k) ~ H,(A)
for k= —i,—i+1,...,0,...,i— 1,4. For all other k between 0 and |r/2| we

have
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HE(S3(K), k) ~ H,(Cone(A_;i_, ® Ay, — F)).

Note that @(SS’(K), —k) = H*(Cone(ﬁ_k &) /Algﬂ-_k) — [F), so it suffices
to consider only those k with 0 < k < |r/2], since by [HLZ15, Lemma 2.3|
H, (ﬁs) = H*(ﬁ,s) and under this isomorphism the maps v, and h_, agree
in the mapping cone.

Now, consider the mapping cone for r+ 1 surgery. Since r+1 = g+i+1,
HF (53, (K), k) = Hy(Ay) for k= —i—1,—i,—i+1,--- ,i—1,i,i+ 1 and for
all other k& between 0 and |(r + 1)/2] we have

HF (52, ,(K), k) = H,(Cone(Ay_;_1_, ® Ay — F)).
Let ny = dim(H,(Ay)). Then by Lemma 2.2.2, since r is a reducing

slope with a Z homology sphere summand, we have
Ng=N1 =MNg="+--=MN; =Nj41 + Ni—g +1—- 2rank(h1,g (—szqu).

However, r + 1 surgery reducible implies that ny = n;,1, and so

Nit1 = Nig1 + Ni—g + 1 — 2rank(hy_, @ v;41). (2.13)

Since rank(hy_, @ v;+1) = 0 or 1, we either have n;_, = —1 or ny_, = 1 by
Equation (2.13). The former case is impossible, so rank(hi_; @ v;41) = 1 and

~

H,(A,_1) is one dimensional. This contradicts equation (2.9). O

Proof of Corollary 2.1.7. This follows immediately from Theorem 2.1.3 and
Theorem 2.1.6.
m

2.3 Almost L-space knots and the Mapping Cone Formula

In this section we dive a bit deeper into the mapping cone formula and
use it to both count the ranks of knot Floer homology of Dehn surgeries on
almost L-space knots in each Spin®-structure and determine relative grad-
ings of generators of HF,¢q(S3(K), [s]). This will allow us to rule out many
slopes p with 1 < [p| < 2¢g(K) — 1 from being reducing slopes.
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Facts about Almost L-space knots

Most of this section comes from [BS22] and [Bin23|. We review the
necessary facts about almost L-space knots that will be used in the proofs.
Since we are interested in producing obstructions to a knot admitting a re-
ducible surgery, we restrict ourselves to considering almost L-space knots
of genus g > 2 (since genus 1 knots satisfy the cabling conjecture [HLZ15;
BZ96|.) Recall that an L-space is a rational homology 3-sphere Y that satis-
fies dim(HF(Y)) = |H,(Y;Z)|.

Definition 2.3.1. [BS22, Definition 1.9] A closed 3-manifold Y is called
an almost L-space if Y is a rational homology sphere and dim(ﬁ?(Y)) =
|\H\(Y;Z)| + 2. A non-trivial knot K < S is an almost L-space knot if
dim(HF(S3(K))) = n + 2 for all n > 2g(K) — 1.

Theorem 2.3.2. [BS22, Proposition 3.9] Suppose K is an almost L-space
knot of genus g = 2, then K s fibered and Vy_y # 0

A corollary of this theorem is that V; # 0 for all i < ¢ — 1. In particular,
©; vanishes on the copy of F coming from the tower summand in A;. We

will also need the following lemmas:

Lemma 2.3.3. [BS22, Lemma 3.8] For K an almost L-space knot, we have
A; = F fori # 0 and Ay =~ F3. Moreover Af = T% fori # 0 and A =
TH@®F,[U/U™ for somen > 1.

Proof. The proof of the above lemma follows from [BS22, Lemma 3.8], and

the large surgery formula. m

Recall that there is a chain map Dy, : A7 (K) — B7,, defined by

D;,({k, ar}) = {(k, be)}
where by = v, .(ar) + hizpr-1yo(ar—1). If we let X7 denote the mapping

cone of D7, then we have the following result
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Theorem 2.3.4. There is a relatively graded isomorphism of F[U] modules
H*(ch,)p) = HFO(S;)(K)’”

We can in fact be more explicit. In the following lemma Dgp denotes

the restriction of the map D:p to the tower summand of .A;f »

Lemma 2.3.5. Forp > 0, the map D], : Al — B is surjective and
1\ ~ _ T red ~
HFJ’(S;’(K), [i]) = ker(D;fp) = ker(D;,) ® A7 = El—)l.zp ker(v;” + h)

Proof. Tt follows from [NW15| and [Gail7, Corollary 14| that for positive
surgeries the map Dgp is surjective for all ¢. Since we are dealing with an
almost L-space knot, the result follows for ¢ # 0 immediately. In the case

i = 0, it follows from [Gail7, Proposition 15] that ker(Dg,) = ker(Df,) @
Aped, O

Lemma 2.3.6. In the case p < 0, the map vy vanishes on the summand of

1 . d
Ay coming from Aj°

Corollary 2.3.7. For p < 0 the map coker(D;)) = T+ and HF,.q(S3(K), [i]) =
ker(D;)) = ker(D]) @ Aj*

Proof. By |Gail7, Proposition 19| and Lemma 2.3.3, the result follows if we
can show that Vo(m(K)) = 0. This can be done by analyzing the 3 cases

in [Bin23]. In each case, the filtered homotopy type of CFK® is given ex-
plicitly. The proof that Vo(m(K)) = 0 for K an almost L-space knot with
g(K) > 2 is exactly the same as the proof that Vo(m(K)) = 0 for K an
L-space knot. ]

To obstruct reducible surgeries on almost L-space knots, first we will de-
termine the rank of I-/IT?(S;’(K ), [s]) for each [s]. Following [HLZ15|, we pass
to a smaller, but quasi-isomorphic model, of the mapping cone. Recall that
for s > g(K), the map v, induces an isomorphism on homology, similarly,
for s < —g(K), the map h, also induces an isomorphism on the level of ho-
mology. Now, if we let A7 := H,(A7)), and similarly B? ) := H.(B;,) and
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Vip = (Vip)« and similarly for h;,, we see that the truncated mapping cone

complex, defined as

P o o
Xip = @ Ai,p ® @ Bi,p
1—g<i<max{g—1,9—1+p} 1—g+p<s<g—1

With the induced differential, is quasi-isomorphic to the mapping cone
X°. Since this model has only finitely many objects, it is simpler to work
with.

Using the truncated mapping cone model, it is a simple task to count
the rank of Heegaard Floer homology of Dehn surgery on an almost L-space
knot in S3.

Lemma 2.3.8. Let K be a knot with a positive almost L-space surgery, and
let p be an integral slope on K satisfying 1 < |p| <2g(K)—1. Let k=29 —1
mod p with 0 < k < |p|. If p > 0, then for se Z withg—k <s<g—k+p

we have

<s<g and s=0 modp

rk®S3K,S = 3
( (p( ) )) <S<g_k+p and SEO mOdp

If p <0, then

212211 +3 g—k<s<g s#0 modp

2 2?—7 +5 g—k<s<g s=0 modp

IR (S3(), ) =
2155 +3 g<s<g—k+]|p] s=0 modp

2 2‘7—_| +1 g<s<g—k+|p|] s#0 modp
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Proof. This proof is exactly the same as the proof of [HLZ15, Lemma 3.2|.
Indeed when p > 0 Lemma 2.3.3 shows that the maps 0; vanish on the tower
summands of A and Lemma 2.3.14 shows that the rank of p surgery on K
in Spin® structure [s] is the either the same as the rank of p surgery on an
L-space knot if [s] # [0] or is 2 more than the rank of p surgery on an L-
space knot if [s] = [0]. The case for negative surgeries is also the same by
Lemma 2.3.15 since Vo(m(K)) = 0 for K an almost L-space knot, we just
need to add 2 to the rank of @(Sﬁ(}(), [0]). O

Now suppose that p is a reducing slope for the hyperbolic almost L-
space knot K. Then we have S}(K) = L(a,b)#R where p = ar and |H\(R; Z)| =
r. Note that in particular this implies that (a,r) = 1. Since L(a,b) is an L-
space Lemma 2.2.2 implies that for any s € Spin®(S3(K)) we have

rank(HF(S(K), [s]) = rank(HF(S3(K), [s + ])

This shows that in order for p surgery to be reducible there must be
some periodicity, so the rank of ArF is any particular Spin® structure cannot
be the unique Spin® structure with that rank (they at least come in pairs).
We first deal with the case £ = 0, and show that in this case p is not a re-

ducing slope.

Lemma 2.3.9. With the notation as in Lemma 2.3.8, for k = 0 there is no
possible periodicity among the ranks of P/IF(S;’(K), [s])

Proof. When k = 0 we see from Lemma 2.3.8 that there is a unique [s],
anmely [s] = [0], so that ¢ < s < g + p and rank(HF(S3(K), [s])) =
{29 -1

P

In a similar way, we handle the cases where 1 < k < p — 1.

J 4+ 1. The contradicts Lemma 2.2.2 OJ

Lemma 2.3.10. For 1 < k < p—1 there is no possible periodicity among the
ranks of Iﬁ‘(S;’(K), [s]).

Proof. By Lemma 2.3.8 for 1 < k < p — 1 we see that there are at least 2
Spin® structures [s] satisfying ¢ — k < s < g and at least 2 Spin® structures
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[s] satisfying ¢ < s < g — k + p. In any case either there is an [s] with
g—k < s < gsothat s =0 mod p or there is an [s] so that g < s < g—k+p
and s = 0 mod p. In the former case Lemma 2.3.8 implies that there is a
2g —1
Pl
In the latter case, there are k consecutive Spin® structures [s], namely those
2g —
p|
[s] with ¢ < s < g—k+p with the same rank. Again this contradicts Lemma

2.2.2 [l

unique Spin® structure with rank 2 { | + 3, contradicting Lemma 2.2.2.

s with g — k < s < g, with rank 2 { + 1 and only one Spin® structure

Recall that £ = 2¢g(K) — 1 mod |p|. Lemma 2.3.10 implies that if K
admits a reducible surgery of slope p, then k =1 ork=p—1=—1 mod [p|.

Therefore we have the following Corollary

Corollary 2.3.11. Suppose K is an almost L-space knot with a reducing
slope p. Then either p|g(K) or p|2g(K) — 2 and p is even.

Proof. By Lemmas 2.3.9 and 2.3.10 we see that the only possibilities are k& =
1=29(K)—1 modpand k = p—1 = 2¢9(K) — 1 mod p. In the former
case, we have that p|2¢g(K) — 2 and in the latter case we have that p|2¢g(K).
If k=p—1=29(K)—1 mod p, then by Lemma 2.3.8 we see that the Spin°®
structure labelled g must satisfy ¢ = 0 mod p, so actually p|g(K) and in
that case all the Spin® structures have the same rank. If p|2¢g(K)—2, then we
see that the Spin® structure labelled g — 1 cannot be equivalent to the Spin®
structure labelled 0 mod p. So in particular p does not divide g(K) — 1.
Hence p is even. Moreover, we have g(K) — 1 = P where m is odd (if m

were even then p would divide g(K) — 1). O

Lemma 2.3.12. Suppose that p is a reducing slope so that p|2g(K) — 2.
Then g(K) is even and S3(K) = L(2,1)#R with |H\(R; Z)| = g

Proof. In the proof of Corollary 2.3.11 we found that if p is a reducing slope
then either p|g(K) or p|2¢g(K) — 2. If we are in the latter case then [g — 1]
and [g — 1 + r] have to be paired up where r divides p and g — 1 + r is the
unique Spin® structure so that [g — 1 + r] = 0. By Corollary 2.3.11 we see
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that g — 1 +r = §m~|—r =0 mod p,sor = g Hence S;’(K) ~ L(2,1)#R

with [Hy(R;Z)| = g, and we necessarily have that (2, g) = 1, so that g is

odd. Again by Corollary 2.3.11 we find that g(K) = gm + 1 for some m > 1

and odd. Since g is also odd, we see that g(K) is even. O

In summary, we showed that for p to be a reducing slope on an Almost
L-space knot, we have either p|g(K) or p|2¢g(K) — 2 and p and g(K) are both

even.
Relative Gradings and Proper Divisors

In this section we use the gradings of elements of HF,..4(S3(K), [s]) to
further restrict the possible reducing slopes on almost L-space knots. The

following is an upgraded version of Lemma 2.2.2 (see [HLZ15|)

Lemma 2.3.13. For S3(K) = L(a,s)#R, there is an isomorphism of rela-
tively graded F[U]-modules HF" (S3(K), [s]) = HF " (S3(K), [s + 7]).

We will use this lemma in conjunction with a computation of the rela-
tive gradings from the mapping cone to rule out divisors of g(K) and 2¢g(K)—
2 from being reducing slopes.

To extract the gradings of elements in HF,..4(S}(K), [s]) we want to
dive deeper into the mapping cone and identify certain cycles in the map-
ping cone that generate HF,.q(S3(K), [s]).

The following is from Gainullin [Gail7], building on work of [NW15]
[HLZ15] and [OS04b]

Lemma 2.3.14. [Gail7, Proposition 15] Suppose p > 0, then there is an
isomorphism HF*(S3(K), [i]) = ker(D})) and
ker(D’:_p) =T C_D 7(H;—np) C—D T(Vitnp) C—B Aired
nz=1 n>=1

fori<p—1

and otherwise
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ker(D;) = T @D 7(Hi—np) D 7(Vienp) D Airea

n=2 n=0

Lemma 2.3.15. [Gail7, Lemma 18] Suppose p < 0 and K is a knot so that
Vi(m(K)) = 0. Then coker(D;,) = T™, and

HF,cqa(S3(K), [i]) = ker(D})) = ker(D},) ® Ajrea

In particular, we can identify the largest graded pieces of each tower in
HF,cq(S3(K), [s]) as follows. By Lemma 2.3.3, for ecach s # 0 A} = T+,
Define z, = U~ ™axtVells} 0 — =min{Vels} and 2, = U—min{VeHsk+l Qo
that z, is the top graded element in ker(v} + h}) = F[U~']/U~mindVe Hs}
Knowing HF,..4(S;(K), [s]) as a relatively graded F[U]-module is equivalent
to knowing the gradings of the z; for t = s mod p. In the case s = 0 by
Lemma 2.3.3 we have AJ =~ T+ @ F[U]/U", so we have x¢,y and 2, as
above in the 7 summand, and we have and element a in F[U~!]/U~" so
that a # Ub for some b. Then by Lemmas 2.3.15 and 2.3.14 understanding
HF,cq(S3(K), [0]) as a relative graded F[U]-module is equivalent to knowing
the grading of both z; for £ = 0 mod p and a. Expressed a different way,
define the auxilliary object

HVF(S;*(K), [s]) := coker(U : HF*(S3(K), [s]) — HF (S3(K), [s]))

That is, EZ/T(S;’(K), [s]) picks off the top of each truncated tower in
HF,cq(S3(K), [s]), so when [s] # [0] this is equivalent to picking of the z{s
with ¢ = s mod p and when [s] = [0] this is picking out both the z;s for
t =0 mod p and the element a € F[U!]/U~" so that a # Ub for any b by
Lemmas 2.3.14 and 2.3.15. In particular, we see that for [s] # [0] and p > 0,

we have

rank(ﬁf?n(S;’(K), [s])) =#{t:t=5s mod p,g < |t| < g(K)—1,g9r(2) = n}
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and for p < 0 and [s] # [0], we have

rank(}\ﬁ?n(S;'(K), [s]) = #{t:t=s mod p,gr(z)=n}

[s]

top denote the largest grading of an element of

Moreover, if we let gr
ﬁ?(S{Z’(K ), [s]) and grl?} denote the smallest, then a consequence of Lemma
2.3.13 is that if p is a reducing slope with S}(K) = L(a, b)#R, then for for

every n € 7

rank(HFgr[s] +n(S§(K), [s]) = rank(HFgr

top

el (Sp(K), [s 4 7])

top p

and

~— 3 . ~—
rank(HFgr£z]t+n(S (K),[s]) = rank(HFgr

p

e, (S (K, [s +7])

bot p

In summary, we want to understand the relative gradings of the elements
z; and z;4, when these elements exist and when [t] and [t + r] are distinct
non-conjugate Spin® structures. With this in mind the following is [HLZ15,

Lemma 3.8 and Lemma 3.9].
Lemma 2.3.16. For x; and y; as above, we have gr(xz;) — gr(y;) = 2]t

Lemma 2.3.17. For z as above we have:
Ifp>0
2t t>0
gr(zeep) —gr(z) = 2(t+p) t+p<0
0 t<0<t+p
Ifp <0
2t t—1p| =0
gr(zip) —gr(z) = 2@t —p))  t<0
2(2t —pl) t—Ipl <0<t
We will us the above Lemma in conjunction with Lemma 2.3.13 to rule

out proper divisors of +¢(K') and +(2¢g(K) — 2) from being reducing slopes.
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Lemma 2.3.18. Suppose K is an almost L-space knot and p is a slope with
plg(K) and p # g(K). If p is a reducing slope then p = 2r or p = —2r and
g9(K) is even

Proof. Let K be an almost L-space knot. Suppose g(K) = pm for some m
with [m| > 2. Further, suppose S3(K) = L(a,b)#R with p = +ar and
(a,7) = 1. We first deal with the case p > 0. We will compare the relative
gradings of elements in ﬁF(Sg(K), [0]) and Iﬁ(SE(K), [—7]). In Spin® struc-
ture [0] the elements a, 2y 2,, and z_, are all non-zero in the mapping cone
and a, z, and z_, survive in I—ﬁ‘(S;’(K), [0]) by Lemma 2.3.14, where a is the
clement in HF,.4(S}(K),[0]) coming from the Aj, ., summand of Lemma
2.3.3. Note that Lemma 2.3.17 shows that gr(z0) = gr(z,) = gr(z—p).
Therefore, rank(ﬁ‘gr(ZO)(S;’(K ),[0])) = 2. Now consider Spin® structure
[-7]. In the mapping cone for Spin® structure [—r]| the elements z_,, z,_,
Zop—p and z_,_, are all non-zero, and z,_,, 2p4, and 29, , are non-zero in
}\IF(SS(K), [-7]) by Lemma 2.3.14. By Lemma 2.3.17 we see that gr(ze,—,)—
gr(zps) = 2(p —7), gr(zpr) = gr(z_,) and gr(=_, ) — gr(z_,) = 2r. There-
fore, the only way for there to be a relatively graded isomorphism is if these
two elements are in the same relative grading, so we need 2(p —r) = 2r. This
implies that p = 2r.

Next, suppose p < 0. Then as before we have the elements zy, z, and
z_, in the mapping cone for Spin® structure [0], as well as the element a
coming from Aged, but in this case all the z; with ¢ = p are non-zero in
ﬁ?(Sg(K), [0]). Computing relative gradings we see that gr(zg) — gr(z,) =
gr(z0) — gr(z—,) = 2|p|, so rankI-\II?gr(zO)_ﬂp‘(Sg(K), [r]) = 2. Comparing with
Spin® structure [r], we see that the elements z,, 2,_,, 2o, and z_,_, are all
non-zero and contribute to I-\IT?(S;’(K ), [r]). Computing relative gradings, we
find that gr(z.) — gr(z—p) = 2(r — p), gr(2z,) — gr(z-4p) = —2(2r + p) and
gr(2r4p) — gr(2r49p) = —2(r + 2p). In [r], the z; with ¢ = r mod p are the
only elements that contribute to ﬁf’(S;’(K ), [r]) and so g?“gl, = gr(z,) and if
there is a relative graded isomorphism HF*(S3(K), [0]) = HF*(S3(K),[r])
necessarily —2(2r + p) = 2(2r + p), which implies p = —2r. Otherwise there
are not two or more of the z; in the same relative grading in Spin® structure
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[r]. Therefore, the only possible reducing slopes for an almost L-space knot

that are proper divisors of g(K) are p = +2r with r > 1 odd. O

Corollary 2.3.19. If g(K) is odd, then K does not admit any reducing
slopes that are proper divisors. That s, if p is a reducing slope for an almost

L-space knot with odd genus then p = +g(K).

Proof. We saw in Lemma 2.3.8 that the only possible reducing slopes for
an almost L-space knot are divisors of g(K') and even divisors of 2¢(K) — 2
when ¢(K) is even. So if g(K) is odd, only the former are possible. But by
Lemma 2.3.18 we see that also the only possible reducing slopes are even

divisors of g(K), so in particular g(K) is even. O

Now, we analyze the cases when p = 2r, p|g(K) with p # ¢(K) and
r> 1.

Lemma 2.3.20. Suppose p > 0, plg(K), p # g(K) andp = 2r. Ifr > 1,

then p is not a reducing slope.

Proof. Suppose p = 2r and consider Spin® structures [1] and [1 + r]. By
Lemma 2.3.13 there is a relatively graded isomorphism HF " (S3(K), [1]) =
HE*(S3(K),[1+7]). To this end, in Spin® structure [1] the elements 21, z142,, 21-2r
and z;_y4, are all non-zero in the mapping cone and z1,o,, 21_92, and z;_y4,
contribute to ﬁ?(S;’(K), [1]). By lemma 2.3.17 we find gr(zi42,) — gr(z1) =
2, gr(z1-2,) = gr(z) and gr(z1_2,) — gr(z1-4r) = —2(2r — 1). We com-
pare this with Spin® structure [1 + r] (here we use the fact that r > 1 so
that [1 + r] # [0]). In that Spin® structure we have the elements z;,,
21437, 21— and z;_g, are all non-zero in the mapping cone and by Lemma
2.3.14 all but z;,4, survive in }\IT?(S;’(K), [1 + r]). Computing relative grad-
ings, we find that gr(z14s:) — gr(2140) = 2(1 + 1), gr(z14r) = gr(z1-) and
gr(z1-3,) —gr(z1—,) = 2(r—1). Therefore, in order for there to be a relatively
graded isomorphism we must have 2 = 2(r — 1) and 2(1 + r) = 2(2r — 1).
Hence r = 2. This contradicts Lemma 2.3.18 where we proved that in this

case r 1s odd. O
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Lemma 2.3.21. Suppose p < 0, p|g(K) withp # g(K) andp = —2r. If

r > 1 then p is not a reducing slope.

Proof. In the mapping cone the elements z; and z;_,, are non-zero and sur-
vive in ﬁ?(Sj’(K), [1]). We compute gr(zi—9,) — gr(z1) = 2(2 — 2r). In
Spin® structure [1 + r], the elements z;_, and z;,, are non-zero and survive
in ﬁ?(Sg(K ), [1 + r]). Computing their relative grading difference we have
gr(z1-) — gr(z14») = 4. Hence either 2(2 — 2r) = 4 or 2(2 — 2r) = —4.
So either r = 0, which is impossible, or r = 2. The latter contradicts
Sg’(K) ~ L(2,1)#R. O

Lemma 2.3.22. For K an almost L-space knot the slope. If g(K) > 3 then
p = —g(K) is not a reducing slope.

Proof. Let p = —g(K) = —ar and consider the mapping cone for Spin®
structure [1]
Al Af
+ oF
el b
T+ oo T+

There are two generators in I-\IT?(SE’(K ), [1]), z1-4 and 2z;. We compute

their relative grading difference:

gr(z1-g) — gr(z1) = 2(2 — g)
By periodicity, there should be a relatively graded isomorphism between
ﬁ?(S;’(K), [1]) and I-ﬁ?(SS(K), [1 4 7]). When r # 1 are two non zero gener-
ators in ﬁ?(Sﬁ(K );[1+7]), 21—g4» and z14,. Their relative grading difference

1S

gT(21,g+T) - g?“(2’1+r) = 2(2(1 + 71) - g)
Hence, in order for there to be a relatively graded isomorphism, we need

either 4(1+7)—2g = 2(2—g) or 29—4(1+7r) = 4—2g. In the former case we
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find that 4 + 4r = 4, hence » = 0 which is a contradiction. In the latter case
we find that g — 2(1 + r) = 2 — g, this implies g = 2 + r. Since p = —g(K)
and p = —ar, we have that —ar = 2+ r So —r(a + 1) = 2. Therefore either
r = 2 and a = —2, which contradicts (a,7) = 1, or 7 = 1 and a = —3. This

implies that p = —3. O

Lemma 2.3.23. If p > 0, K is an almost L-space knot and p|2g(K) — 2 with
p # 2,29(K) — 2. Then p is not a reducing slope.

Proof. By Lemma 2.3.8, we see that p = ar witha = 2and r = £ odd.
Therefore, we will compare relative gradings of elements in [1] and [1 — £].
Now in Spin® structure [1] by Lemma 2.3.17 we have gr(z1) + 2 = gr(z14p)
and gr(z1) = gr(zi—p). In [1—%] we have gr(zy,2) = gr(z1-2 and gr(z;_z) +
2(5—1) = gr(z_ %p) Therefore, in order for there to be a relatively graded
isomorphism, we would need 1 = £ — 1, so p = 4. This is impossible since
(2,2) = 1.

[

Lemma 2.3.24. Suppose p < 0, K is an almost L-space knot and p|2g(K) —
2 with p # 2 — 2g,—2. Then p is not a reducing slope.

Proof. In this case the elements 21, 211, and z;_, are all non-zero in the
mapping cone and survive in I-\I?(S;’(K), [1]). By Lemma 2.3.17 we have
that gr(z1—p) — gr(z1) = —2(p — 1) and gr(z14+p) — gr(z1) = 2(2 + p).
Since p # —2, the Spin® structures [0] and [1 — £] are distinct. We have the
elements Z1-8], 21 3p and Z142. Computing their relative grading differences
we find gr(z1-2) — gr(z142) = —4 and gr(zlfsﬁp) —gr(z-z) = —2(2 - 1).
Hence in order for there to be a relatively graded isomorphism from [1] to
[1 — £], we would need either 2(2 4 p) = 4 or 2(2 + p) = —4. In the former
case we have p = 0, which obviously cannot happen, and in the latter we

have p = —4, which cannot happen because by Lemma 2.3.8 £ is odd. O]

Lemma 2.3.25. Suppose p =2 —2g and p # —2 (so g(K) # 2). Then p is

not a reducing slope.
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Proof. Since p # —2, we have that ¢ > 4 (recall that in the case when p
divides 2¢g(K) — 2, the genus is even) and [1] and [2 — g] are not conjugate.

We have that in each Spin® structure [s] # [0],[¢g — 1] there is just
one non-zero z,. However, we can still compare the grading on this z, to the
bottom of the tower in two Spin® structures in the same orbit, namely [1]
and [2—g]. In [1], we have gr(z;) = dy + 1, hence gr(z;) = d; —3. In [2—¢],
we have gr(zs_,) = do—, — 1. So there is no relatively graded isomorphism of
F[U]-modules.

O

In summary, we have shown that for p to be a reducing slope, p must
satisfy either p = 2, or p = ¢g(K), unless g(K) = 3 in which case p =
+g(K), or p = (29(K) — 2) with p and g even. Hence if ¢ is odd and greater
than 3, then the only possible reducing slope is g(K).

Corollary 2.3.26. Almost L-space knots of genus g(K) = 2 do not admit

multiple reducing slopes.
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CHAPTER 3
(1,1) PATTERNS

In this chapter we study the knot Floer homology of satellite knots with
(1, 1)-patterns from the perspective of bordered Floer homology and the im-
mersed curve reformulation of the pairing theorem for satellite knots with
(1,1)-patterns with a goal of computing various 3- and 4-dimensional invari-
ants of satellite knots with patterns from two novel families of patterns. In
Sections 3.1-3.6 we study a family of patterns which we denote by P®b.
These patterns satisfy w(P®Y) = p + 1 and PPY(U) ~ Ty3. We call such
patterns trefoil patterns. We compute the three-genus, and bound the four-
genus of these satellites. We show that all patterns in this family are fibered
in the solid torus. This implies that satellites with fibered companions and
patterns from this family are also fibered. We also show that satellites with
thin fibered companions or companions K with 7(K) = +g¢(K) formed from
these patterns have left or right veering monodromy. We then use this to
show that satellites with fibered companion knots K so that |7(K)| < g(K)
formed from these patterns do not have thin knot Floer homology, using a
recent result of [BNS22].

In Sections 3.7-3.11 we study a family of patterns denoted by Q% such
that w(Q*) = j and Q" (U) ~ U (called unknot patterns) and the knot
Floer homology of the n-twisted satellites that are formed from these pat-
terns with arbitrary companions. Recall that an n-twisted satellite knot,
denoted P,(K), is formed from a companion knot K and a pattern knot
P where the longitude of the solid torus containing P is glued to the curve
np + A on S% — v(K). We study how the invariants g(Q% (K)), 7(Q%(K))
and €(Q%(K)) behave under this twisting operation and find closed for-
mulas for then in terms of ¢, j,n. We also investigate the function n —
dim(AFK (5%, Qi (K), g(Q(K)))) and use this and fibered detection of
knot Floer homology to understand when the n-twisted pattern Q%' is fibered

in the solid torus.
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3.1 Introduction

Knot Floer homology, introduced by Rasmussen |[Ras03a| and Ozsvath
and Szabo6 [OS04b], is an invariant of null homologous knots in the three
sphere. Its simplest instantiation takes the form of a bigraded Abelian group,
H/FT((S?’, K)=®,.4 H/ﬁim(sg, K, A). Here m is called the Maslov grading
and A is called the Alezander grading. Knot Floer homology contains in-
formation about the knot K and its complement S*\v(K). For example, it
detects the three-genus [OS04a] and fiberedness of the knot [Juh08¢; Ni07],
contains information about the monodromy of fibered knots [Ni20|, bounds
the number of disjoint, non-isotopic Seifert surfaces in the knot complement
[Juh08a], and bounds the four-genus of the knot [OS03b]. In this note, we
use these detection properties to investigate three- and four-dimensional in-
variants of satellite knots formed from a family of (1, 1)-patterns.

Recall that, given a knot K < S% and a pattern P < S' x D? we can
construct a new knot, called the (0-twisted) satellite knot with companion
knot K and pattern knot P, denoted P(K), by removing a tubular neigh-
borhod of K and gluing in the pair (S* x D?, P) so that S' x {pt} is identi-
fied with the Seifert longitude of K. A pattern knot P is a (1, 1)-pattern if it
admits a genus-1 doubly-pointed bordered Heegaard diagram, a concept that
we recall in section 3.2.

Our main reason for restricting to (1, 1)-patterns is computational. For
an arbitrary pattern P, the bordered pairing theorem of [LOT18| expresses
HFK(S3, P(K)) in terms two invariants: CFA(Sx D?, P) and CFD(S*\v(K)).
For (1, 1)-patterns, the work of Chen in [Chel9] recasts this pairing theo-
rem in terms of Lagrangian intersection Floer homology of two curves in the
punctured torus. This facilitates computation in two ways: it allows one to
vary the pattern within a family and it allows one to compute the decom-
positon into Alexander gradings much more efficiently than with the lan-
guage of the original bordered pairing theorem.

Many of the computations of knot Floer homology of satellite knots

that exist in the literature involve (1, 1)-patterns. For example the cabling
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patterns studied in [Hom14| (see also [HW19]), Mazur pattens studied in
[Lev16| and [PW21], and Whitehead double patterns studied in [Hed07] are
all (1, 1)-patterns. Given this, it is interesting to compute knot Floer homol-
ogy of satellites where the pattern comes from a family of (1, 1)-patterns. In
[Chel9] this project is taken up and he examines the case where P is an ar-
bitrary (1, 1)-pattern P so that P(U) ~ U, called an unknot pattern, and the
companion knot is the right or left handed trefoil.

In the following, we use the immersed curve pairing theorem as stated
in [Chel9] to compute the knot Floer homology of satellites with arbitrary
companion knots K and patterns P from a specific family of (1, 1)-patterns
with the property that P(U) ~ T53. We will refer to such patterns as tre-
foil patterns. In section 3.4 we introduce, for each p > 1, a trefoil pattern
denoted P®Y which is closely related to the (p, 1) unknot cabling pattern.
Our goal is to investigate various three- and four-dimensional properties of
the satellite knots obtained from these trefoil patterns. First, for each p > 1
and for any knot K, we compute the invariant 7(P®(K)), an integer val-
ued concordance invariant derived from the knot Floer homology package

first defined by [OS03b], in terms of 7(K') and €(K).

Theorem 3.1.1. For the patterns P®Y and for an arbitrary companion

knot K < 83, we have
e Ife(K) =1, then T(PPY(K)) = (p+ 1)7(K) + 1
o Ife(K) = —1, then T(PPY(K)) = (p+ 1)(7(K) + 1)
o Ife(K) =0, so7(K) =0, then T(PPY(K)) = 7(Tp3) = 1.

As shown in [OS03b, Corollary 1.3|, the integer 7(K) satisfies |7(K)| <
94(K), where g4(K) is the smooth four-genus of a knot (the minimal genus
of a surface properly embedded in B* with boundary K < S3). This gives

the following corollary concerning the slice genus of these satellite knots.

Corollary 3.1.2. For any companion knot K with 7(K) # —1 and ¢(K) #
—1, the satellite knots P®Y(K) are not slice.
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Given a pattern in the solid torus, we can associate to it an integer
w(P), called the winding number of the pattern, by computing the algebraic
intersection between the pattern P and a meridional disk {0} x D?. Given
a pattern P with winding number r, we define a relative Seifert surface for
P to be a surface ¥ in S* x D? so that the interior of X is disjoint from P,
and the boundary of ¥ consists of P together with r coherently oriented lon-
gitudes. A pattern is fibered if the complement S* x D?*\v(P) is fibered over
ST with fiber surface a relative Seifert surface for P. Furthermore, the genus
of a pattern, g(P), is defined to be the minimal genus of a relative Seifert
surface for P.

For a satellite knot P(K) with a non-trivial companion K a result of
Schubert [Sch53| shows that the three-genus of the satellite knot g(P(K))
can be expressed in terms of w(P), g(K) and g(P):

9(P(K)) = lw(P)|g(K) + g(P). (3.1)

This has the consequence that for any non-trivial knot K, the value of
g(P(K)) is determined by the value of g(K) and g(P). However, g(P) de-
pends only on the pattern. Hence, we can compute g(P) if we can compute
the three genus of some satellite with non-trivial companion K and pattern
P, for example P(T53). Using the fact that knot Floer homology detects the

genus of knots, we prove
Lemma 3.1.3. For any p > 1, the trefoil patterns PPV have g(P®Y) = 1.

Now, given the value of g(P), we can determine g(P(K)) in terms of
g(K) for any non-trivial companion knot K by using equation (3.1). This
gives the following corollary. Note that the case K = U follows since g(U) =
0 and PPV (U) ~ Ty 3 has genus 1.

Corollary 3.1.4. For any knot K and for any p > 1, g(P®V(K)) = (p +
1)g(K) + 1.

In a similar vein, Hirasawa, Murasugi, and Silver proved in [HMSO0S|
that a satellite knot with non-trivial companion is fibered if and only if both
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the pattern and the companion knot are fibered. This has the consequence
that to determine if a pattern P is fibered in the solid torus, it is enough

to determine if the knot P(T33) is fibered. Since knot Floer homology de-
tects when a knot is fibered, to show that the pattern P is fibered, it is then
enough to compute ITF\K(S?’, P(Ty3),9(P(Ty3))) and show that it has rank
1.

Theorem 3.1.5. Forp > 1 the pattern knot P®V) is fibered in the solid

torus.

Omne motivation to understand fibered patterns is the result of Ni [Ni06,
Theorem 1.2| that the knot Floer homology of satellites with fibered pat-
terns in the top Alexander grading has the same dimension as the knot Floer

homology of the companion in the top Alexander grading. That is
rkAFK(S®, K, g(K)) = tkHFK(S?, P(K), g(P(K))). (3.2)

This theorem, when combined with the work of Juhasz in [Juh08c; Juh08a)
which relates the knot Floer homology in the top Alexander grading to the
sutured Floer homology of the complement of a Seifert surface for the knot

K has the following consequences.

Proposition 3.1.6. If K is a knot with rk(HFK(S3, K, g(K))) < 4 and P
is a fibered pattern, then for all i = 1 the knots K and P'(K) have unique

minimal genus Seifert surfaces.

Proposition 3.1.7. If K is a knot with rk(HFK(S?, K, g(K))) = 3 and
P is a fibered pattern, then K and P'(K) admit depth < 1 taut foliations

transverse to the boundary.

Recall that fibered knots have unique minimal genus Seifert surfaces.
These propositions can be viewed as generalizations of this fact. In particu-
lar, by Theorem 3.1.5, these propositions apply to the patterns P®1).

Finally we study the next to top Alexander graded piece of the knot
Floer homology of these satellite knots. In the case that K is a fibered knot,
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}Tﬁ((S 3K, g(K) — 1) contains information about the monodromy of the

fibration, in the following sense.

Theorem 3.1.8 (|Ni20]). If K is a fibered knot and rk(H/FT((S?’,K,g(K) -
1)) = 1, then the monodromy of K 1is either left or right veering.

Remark 3.1.9. There is no analogue of equation (3.2) for the next to top
Alezander graded piece of knot Floer homology of a satellite and its compan-
ton. In general, there is not even an inequality relating them, even for fibered
patterns. For example rk(}TF‘T{(S3,T273, 0) =1 and rk‘}TFT{(S?’, (T53)21,1) =2
and as Theorem 3.1.10 shows, constructing satellites with certain patterns
can decrease the rank in the next to top Alexander graded piece by an arbi-
trary amount. Note, certain families of patterns do preserve the property of
having one dimensional Floer homology in the next to top Alexander grading,
for example if K is an L-space knot and P is a pattern so that P(K) is also
an L-space knot (for example the (p,q) cable pattern with 1% > 29(K)—-1)
then by [HW18] both K and P(K) have one dimensional Floer homology in
the next to top Alexander grading.

Recall that the -grading on knot Floer homology is define by 6 = m —
A. We call a knot K Floer thin (or thin) if the d-grading is constant for all
generators of HFK(S3, K).

Theorem 3.1.10. For each p > 1, and for any fibered knot K with 7(K) =
+g(K), or for any fibered thin knot K, we have

rk(HFK(S®, PPV(K), g(PPY(K)) — 1)) = 1.

Corollary 3.1.11. For any fibered knot K with 7(K) = +g(K), or for any
fibered thin knot K, the fibered knot P®Y(K) has left or right veering mon-

odromy.

Lastly, we use Theorem 3.1.10 to show that for some fibered companion
knots K, the satellite knots P®(K) are not Floer thin. The main result
we use is [BNS22, Corollary 1.7|] which says that a fibered thin knot with
|7(K)| < g(K) cannot have left or right veering monodromy.
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Proposition 3.1.12. If K is a non-trivial fibered knot with thin knot Floer
homology such that |7(K)| < g(K), then the knot Floer homology of PPV (K)

18 not thin.

Since quasialternating knots have thin knot Floer homology by [MOO0§|,

we have the following consequence of Proposition 3.1.12.

Corollary 3.1.13. For any p > 1 and for any thin fibered knot K with
IT(K)| < g(K), the knots PPV (K) are not quasialternating.

Organization

In section 3.2 we introduced the bordered pairing theorem from [LOT18]
and recall the work of [HRW22| reinterpreting the bordered invariants in
terms of immersed curves in the punctured torus. In section 3.3, we recall
Chen’s immersed curve version of the pairing theorem from [Chel9]. In sec-
tion 3.4 we prove Theorem 3.1.1. In section 3.5, we prove Theorem 3.1.5, as
well as propositions 3.1.6 and 3.1.7. In section 3.6, we prove Theorem 3.1.10

and Proposition 3.1.12.
3.2 Bordered Floer Homology

In this section we introduced the necessary notation to state and inter-
pret the pairing theorem for bordered Floer homology of [LOT18|. Bordered
Floer homology is an invariant that is used to study Heegaard Floer homol-
ogy of three manifolds that have been decomposed along essential embedded
surfaces. In our case, studying satellite operators, we are interested in de-
composing the ambient three manifold, S? together with a knot K, along an
essential torus. Then one can compute certain algebraic invariants of both
sides and the Floer homology of the ambient three manifold (together with
the knot filtration) can be computed by suitably combining these invariants.

In [LOT18|, Lipshitz, Oszvath and Thurston associate, to a three man-

ifold with parameterized torus boundary, a type A and D structure over
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the torus algebra 4. We now briefly describe these concepts. The torus al-
gebra A is defined as follows. Over F it has a basis consisting of two mu-
tually orthogonal idempotents ¢y and ¢; and six other nontrivial elements

P1, P2, P3, P125 P23, P123- Lhe non-zero products in the algebra are given as fol-

lows:
P1P2 = P12 P23 = P23 P1P23 = P12P3 = P123
P1 = lop1tr P2 = L1pP2lo P3 = Lopsta
P12 = lopPi2to P23 = L1P2301 P123 = loP123t1

If we let Z < A denote the subring of idempotents, then a type D structure
over A is a unital left Z module N together with an Z linear map 6 : N —
A®z N such that

(p®No(I®dod=0

A type A structure is a right unital Z module M with a collection of
maps m;y, : M ® A* — M, for i > 0 such that

n n—2
0= Y My i(mi(1RL R - ®;i_1)® Ran_1)+ Y My_1(2@ - ®t011® - -Ray,)
i=1 =1
(3.3)
and so that

mo(z,1) =z
mi(z, - 1,--) =0

Given a type A structure M and a type D structure IV, we can form a
chain complex, called as the box tensor product and denoted M [xX] N. The
underlying vector space is the tensor product M ®z N, and the differential is
defined by
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0

Pa®y) =Y (M @D)(z @ 6(y)) (3.4)

i=0
In the case that the type D structure is bounded, as defined in in [LOT18,
Section 2|, then the above sum is finite and the box tensor complex is well
defined.

In what follows, we are interested in the following version of the bor-

dered pairing theorem.

Theorem 3.2.1. [LOT18, Theorem 11.19] Suppose Y is a closed 3-manifold
decomposed asY =Y, U Yy with 0Y; = —0Yy = T?. Suppose further that
K < YY) is a knot which becomes null homologous in Y. Then up to homo-

topy equivalence of chain complexes

gCFK(Y, K) ~ CFA(Yy, K) < CFD(Y2)

We will give the immersed curve interpretation of this pairing theorem
due to [Chel9] for (1, 1) patterns in section 3.3. First, we will describe in
more detail how to compute and interpret @(SS\I/(K)) and C/Pﬁ(S1 X

D? P) as immeresed curves in the punctured torus in the next two sections.
CFD(S3\v(K)) from CFK™ (K)

In this section, we recall the algorithm from [LOT18, Section 11.5| for
computing C/FT)(S?’\I/(K )) from CFK™ (K). For the definitions of reduced,
filtered basis, we refer the reader to the original source (see also [HW18]).
We call a filtered reduced basis over F[U] vertically simplified if for each ba-

sis element x; exactly one of the following conditions is satisfied

e There is a unique incoming vertical arrow, and no outgoing vertical

arrow, or

e There is a unique outgoing vertical arrow and no incoming vertical ar-

TOW, Or
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e There are no vertical arrows.

A horizontally simplified basis is defined similarly, replacing vertical
by horizontal in the above. Given a knot K and a framing n, there exists
a pair of bases 7 = {7,..., 7} and &€ = {&,..., &y} for CFK~(K) that
are horizontally and vertically simplified respectively. They are indexed so
that for every pair 7j5;_1 and 7jo; there is a horizontal arrow of length [; > 1
connecting them and similarly, there is a vertical arrow of length k; > 1
connecting &1 to &;. There are corresponding bases £ = {0, ..., En}
andn = {no,..., N} for LO(TPT)(Xk,n) so that if §; = Z?io a;;7; and
n; = Z?ﬁo bijé, then the corresponding change of bases formulas hold with
the coefficients restricted to U = 0. The summand Llﬁ) has basis

k k

Ut ok o U A O s ey}

i=1 =1

There are non-zero coefficient maps induced from the horizontal and
vertical arrows in the complex for CFK~ as follows. A length k; vertical ar-
row from &, 1 to &; induces type D operations, sometimes called coefficient

maps:

P1 i P23 i P23 i pP123
§2im1 —> Ky <— Ky .. — Ky, — &

Similarly, for each length [; horizontal arrow from 7y;_1 to 19;, we get
coefficient maps

Additionally, there are coefficient maps from &, to 79 depending on the

framing and the value of the invariant 7(K).
o & Py if n=27(K)
o L B 2, By i n<2r1(K) m=27(K)-n

o &o P 2 B By if n>27(K), m=n-—27(K)
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Figure 3.1. Type D structure for O-framed right handed trefoil complement

For example, for the knot K = T5 3, the right-handed trefoil, CFK™ (7% 3)
has a simultaneously vertically and horizontally simplified F[U] basis {éo, &, 52}
with differential given by 0(¢;) = U&, + &. Applying the above algorithm, we
get the type D structure shown in Figure 3.1.

For any knot K in S2, there is always a vertically distinguished element
of a horizontally simplified basis, which is an element in a horizontally sim-
plified basis with no incoming or outgoing vertical arrows. Similarly, there
is a horizontally distinguished element of a vertically simplified basis. In
[Hom14, Lemma 3.2|, it is shown that it is always possible to find a hor-
izontally simplified basis for CFK®(K) so that one of the horizontal ba-
sis elements & is the vertically distinguished generator of some vertically
simplified basis. Note that the concordance invariant ¢(K) can be defined
in terms of the generator &): If £ occurs at the end of a horizontal arrow,
then e(K) = 1, if & occurs at the beginning of a horizontal arrow, then

¢(K) = —1. If there is no horizontal arrow to or from &g, then ¢(K) = 0.
Immersed Curves for knot complements

Given a type D structure over the torus algebra, like @(53\V<K )ym),
the work in [HRW22| shows how we can represent it as an immersed mul-

ticurve with local systems in the torus, which we now describe. The first
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step is to construct a decorated graph from the type D structure. Let N be
a type D structure over the torus algebra, and let N; = (;/N. This gives a
decomposition N = Ny @ N;. Given bases B; of N;, for ¢ = 0,1, we con-
struct a decorated graph I' as follows. The vertices of I are in correspon-
dence with the basis elements and are labelled e or o depending on if the ver-
tex corresponds to a basis element in By or B; respectively. Suppose now
that we have two vertices corresponding to basis elements x and y such that
0z) =pr®y+ -, for I € {F,1,2,3,12,23,123}. In this case we put an
edge labelled p; from x to y. A decorated graph is called reduced if no edge
labelled by pg appears. The next step is to take a decorated graph and turn
it into an immersed train track in the punctured torus. Let 7% = R?/Z? and
let w = (1—¢,1—¢€) be a basepoint. Let u and A be the images of the z and
y axes respectively and embed the vertices of I' into T2 so that the e vertices
13

lie on A in the interval {0} x [, 3] and the o vertices liec on A in the interval
13

[3:3] x {0}. Then we embed the edges into the torus according to the rules
shown in [HRW22, Figure 19| (see also Figure 3.2). In general this train
track is not necessarily an immersed curve, but work in [HRW22] shows that
for type D structures that arise from 3-manifolds with torus boundary one
can always choose a nice basis so that the train track is an immersed curve
(possibly with local systems). For example, we construct the immersed curve
associated to the trefoil complement in Figure 3.2, where for example the
arc from &; to x indicates the presence of a p; edge from &; to k in the deco-

rated graph. We will denote this immersed curve by a(K).
Properties of Immersed Multicurves for Knot Complements

In this section we recall how the immersed curve o(K) encodes the con-
cordance invariants 7(K) and ¢(K) as well as the genus of the knot g(K).
In order to do this, we fix a representative of the lift of the immersed curve
to the universal cover, called the peg-board representative of the immersed
curve. This is discussed in [HRW22, Section 4.2]. In brief, we assume that

we have chosen a minimal length representative of the immersed multicurve.
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Figure 3.2. The immersed curve associated to the 0 framed trefoil
complement

Given a peg-board representative of o(K), the genus of the knot is half the
maximal number of pegs between the minimum and maximum height at-
tained by the immersed curve. The invariants 7(K) and €(K) are related to
the essential component -y, of the immersed curve, see [HRW22] and [HW19,
Proposition 2|. The essential component g is the unique non-vertical seg-
ment of the immersed curve, in the sense that all other components are sup-
ported in a neighborhood of the meridian, and the component 7, wraps once
around the cylinder (in the covering of the torus corresponding to the longi-
tudinal subgroup). As mentioned in [HRW17, Remark 50| this component
does not carry any non-trivial local system as only one curve component
can wrap around the cylinder (since otherwise the meridional filling would
have rank > 2). This observation, together with the discussion surrounding
[Hom14, Lemma 3.2| in Section 3.2 implies the following lemma concerning

the shape of the essential component of a(K) lifted to the universal cover.

Lemma 3.2.2. Suppose that K is a knot in S® and that v, is the essential
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curve component of a(K) lifted to the universal cover.

o Ife(K) =1 and 7(K) = 0 7y slopes upwards for 27(K) rows and turns
down at the top and up at the bottom

o Ife(K) = —1 and 7(K) = 0, then 7o slopes upwards for 27(K) rows

and turns up at the top and down at the bottom

o Ife(K) =1 and 7(K) < 0 then 7y slopes downwards for 27(K) rows

and turns down at the bottom at up at the top

o Ife(K) = —1 and 7(K) < 0 then vy slopes downwards for 27(K) rows

and turns up at the bottom and down at the top.
o [fe(K) =0, then 7(K) = 0 and vy is horizontal at height 0.

In each case the remaining portion of the essential component of the im-
mersed curve and any other component of the immersed curve are contained

i a neighborhood of the meridian.

Proof. We will show that the immersed curve has the claimed form in the
case that 7(K) > 0 and €(K) = 1. The rest of the cases are similar. As
mentioned above, in [Hom14|, Hom constructs a horizontally simplified ba-
sis {&o, Mo, -+ , M} so that & is the distinguished element in a vertically
simplified basis with no incoming or outgoing vertical arrows. In the case
¢(K) = 1, this generator appears at the end of a horizontal arrow. Suppose
that 71 — &y is a length [ arrow from 7, to &. In this case, the portion of
@(S 3\v(K)) has the following form: From the length [ horizontal arrow
from 7 to &, the algorithm in [LOT18| produces a sequence of type D oper-

ations

P3 P23 P23 P2
SRS NS O N VNP

(Note that this part of the type D operations or immersed curve is what
changes when ¢(K') changes sign)
Since 7(K) > 0, the unstable chain takes the form
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P1 p23 P23 P3
fo—>ﬁb1<—"'<—,u2¢(K)‘—770

(Note that this part of the type D operations or immersed curve is what
changes when 7(K') changes sign)

Using the procedure described in [HRW17] and the previous section,
this decorated graph becomes the portion of the immersed curve shown in
Figure 3.3. As claimed, the immersed curve slopes upwards for 27(K) rows,
turns down at the top (from the p, from A} to &) and turns up at the bot-
tom by the symmetry of the immersed curve under the elliptic involution.
The remaining bullet points follow similarly.

The fact that the remaining portion of the immersed curve is contained
in a neighborhood of the meridian follows since the meridional filling of any
knot complement has rank one. If any other component wrapped around the

longitude, this would imply that the meridional filling has rank > 2. O
@(51 x D?, P) for (1,1)-patterns P < S* x D?

As we saw in the previous section, the type D structure from the pair-
ing theorem can be obtained algorithmically from knowledge of CFK™(K).
For the type A side, there is no such algorithm for determining @(S b x
D? P) in terms of CFK™(P(U)). However, when the pattern (S* x D? P)
admits a particular type of Heegaard diagram, called a genus-1 doubly-pointed
bordered Heegaard diagram, we can compute @(S L' x D?, P) directly. We
now describe how to do this. First, we introduce the notation of a genus 1

doubly-pointed bordered Heegaard diagram.

Definition 3.2.3. A genus-1 doubly-pointed bordered Heegaard diagram is

a five tuple (3, 0%, B, w,z). Here ¥ is a compact oriented surface of genus 1
with a single boundary component. The alpha arcs a® = (af,a8) are a pair
of properly embedded, disjoint arcs in X with a fived order to the intersec-
tions a® n 0. The basepoint w lies on the boundary of ¥ in the complement

of the endpoints of the a arcs; i.e. w < 0X\0a®. The resulting subdivision
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Figure 3.3. The essential component of the immersed curve for a knot K
with 7(K) > 0 and ¢(K) = 1. The curve crosses at heights —7(K) and 7(K).
The lighter portion of the curve indicates that vy is potentially immersed in
the punctured torus, but is contained in a small neighborhood of the
meridian, along with all the other components of the immersed multicurve
a(K)

of 0% results in the data of a pointed matched circle. The B-curve is an em-
bedded closed loop in ¥ so that B is transverse to the a-arcs and the comple-
ment ¥\ is connected. Furthermore, we place a basepoint z in the interior
of ¥ without the a-arcs and (-circles, so that if we forget the z basepoint,

. . a
the 8 curve is isotopic to af.

This data specifies a three manifold with torus boundary together with
a knot. The three manifold and knot can be recovered by the following recipe.
Attach a two-handle to ¥ x [0, 1] along 5 x {1}. The knot is specified by
connecting the z basepoint to the w basepoint in the complement of 5 and
pushing the arc into the handlebody compressed by the g curve and con-
necting w to z in the complement of a® in . Note that the a-arcs are the

cores of the 1-handles of the boundary torus. In our case, we have af = A
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i) r1 X2

Figure 3.4. The genus 1 doubly pointed Heegaard diagram for the pattern
PG

and o = p the longitude and meridian of the torus boundary d(S' x D?).
See Figure 3.4 for an example of a genus 1 doubly pointed bordered Heeg-
gard diagram. Note that by definition we have §- = 0 and §- A = 1 since
if we forget the z basepoint the S curve is isotopic to the meridian. We ori-
ent the meridian as shown in Figure 3.4 and the § curve inherits an induced
orientation from the meridian.

Now we describe how to obain @(S 1'x D? P) from a given genus 1
doubly pointed bordered Heegaard diagram. As an [F vector space @(S b
D?, P) is generated by elements of the set

G={zlxrefna}

For each x € G, we have the following right action of the idempotent subalge-
braZ: z-1g=xifxeafnpand x-1 =0 otherwise. Similarly, z -1, = z if

reayn fand x - = 0 otherwise.
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Now, regard the surface-with-boundary ¥ as T*\D?. Let R? — T? de-
note the universal cover of the torus, and set 3 to be the covering space ob-
tained from R? by removing the lifts of D?. Using this covering space, we

define the maps
Myt M QA" — M

for n = 0 as follows.

mn-ﬁ-l(xapfu‘ o 7p]n) = Z#M(x7y>y

yeg
where #M (z,y) is the mod 2 count of index 1 immersed disks in ¥ such
that, when we traverse the boundary of the disk we start from a lift of x and
walk along an arc of some lift of a® then along the arc p;, on some lift of
0D? ..., then walk along some the arc p;, and then along some lift of a® to
y and finally along a lift of 8 from y to x.

For example, consider the doubly pointed genus 1 Heegaard diagram
shown in Figure 3.4. The generators of C/F\A(P) in idempotent ¢ (intersec-
tion of § with af) are labelled xg, 21, x5 from left to right and the generators
in idempotent ¢; (intersections of 5 with a§) are labelled yo, - - - , y; from top
to bottom. We draw the lift to the cover & in Figure 3.6 and indicate a few
of the type A operations given by the disks shown. The gray disk gives a
ms(xo, p12, p1) = Y3, the green disk gives ma(x1,p1) = y1 and the pink disk
gives ms(y1, p2, p1) = ya. The full type A module C/FI(S1 x D2, P3Y) is
shown in Figure 3.5. In that figure, an arrow labelled py,, pr,, ..., p1, from x

to y means there is an A, operation my,1(z, pr,,...,p1,) = Y-
3.3 The pairing theorem for (1,1) patterns

The main result in [Chel9] is a reinterpretation of the pairing theorem
from [LOT18, Theorem 11.19] in terms of immersed curves when @(S b
D? P) comes from a (1,1) pattern P. In this section we recall this theorem.

Let S(P) denote the 8 curve in the data of a genus one doubly pointed

Heegaard diagram and let a(K) denote the immersed curve for S*\v(K) as
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p12& l,UZPI plzm lpz,m % plzk lpz,m

Figure 3.5. C/ﬁ(%) where H is the doubly pointed bordered Heegaard
diagram shown in Figure 3.4

described in section 3.2. Chen’s theorem says that to compute HFK(S3, P(K))
we can compute the intersection Floer homology of a(K) and §(P), denoted
CFK(a, B), in the torus as follows. Let T2 = [0,1]?/ ~ and divide the square
into four quadrants. Include the immersed curve a(K) into the first quad-
rant [1,1] x [1,1]) and include (3(P),w, z) into the third quadrant. Then
extend both curves horizontally and vertically, so that o and 8 intersect in
the second and fourth quadrants only. In this set up intersections in the sec-
ond quadrant correspond to generators of @(53, P) C/FT)(SS\I/(K )) that
come from pairing generators in idempotent ¢y and intersection points in the
fourth quadrant correspond to generators of CFA(S3, P)  CFD(S3\v(K))
that come from pairing generators in the ¢; idempotent. The main work

in [Chel9] is constructing from a differential in the Lagrangian Floer chain
complex, (TF\K(oz, B), a type A operation in @(Sl x D? P) and a corre-
sponding type D operation in @(53\V(K )) so that these pair in the box
tensor product to produce the given differential.

The data of the torus divided into quadrants, with the curves a(K) and
B(P) included as described, or this same picture lifted to the universal cover,
will be referred to as a pairing diagram for the knot Floer homology of the
satellite P(K). For an example of a pairing diagram for the knot Floer ho-
moloy of the satellite knot P®Y (T, 3) see Figure 3.7. From the picture we
can see that CFK(S3, PG)(T, 5)) has 41 generators. In that figure, we also
indicate two differentials, in light and dark grey, that contribute to 0®. The
dark grey disk gives a differential in CFK(S3 PGV (Ty3)) connecting z X &
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Figure 3.7. pairing diagram showing the trefoil pattern P31 paired with 0
framed trefoil companion

oK

to yo X k. This arises from pairing the type A operation ms(zg, p1) = Yo
and the Type D operation 6(&§;) = p1 ® . The light grey disk represents a
differential from xg [X] & to yo [XI 1 given by pairing the type A operation
ma(xg, p1) = Yo and the type D operation 6(&y) = p1 X pu1.

For convenience we will usually draw pictures of single lifts of a(K') and
B(P) to the universal cover 7 : R? — T? of the torus. Here we choose
a single lift of B(P), call it 3, and a lift of a(K), call it &, so that & is in
pegboard position with respect to a peg at the midpoint of the arc ¢, , of
large enough radius to contain both basepoints w and z. We also require
that & and 3 intersect transversely and there are no pairs of intersections
that are connected by a Whitney disk that does not cross any basepoint.
This is allowed, since intersection Floer homology is an isotopy invariant (a
topic we come back to in the next section). These conditions ensure that
CFK(@, 3) ~ HFK(S%, P(K)), where CFK(&, 8) denotes the intersection
Floer homology of the two curves in R*\{7m~*(w), 77(2)}. See Figure 3.8 for
an example computing }TFT{(S?’, PG)(Ty3)) from a lifted pairing diagram.
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This figure shows that rk(m((s?’, PBI(Ty3))) = 21.
The last bit of information we want to extract from the pairing diagram
is the Alexander grading on I—Tﬁ((Sg’, P(K)). This is achieved by the follow-

ing lemma.

Lemma 3.3.1. [Chel9, Lemma 4.1]
Let x and y be two intersection points between o and 3. Let £ be an arc

on B from x toy, and let d,, . be a straight arc connecting w to z. Then

For example, consider the intersection points labelled x and y in Figure
3.8. These intersection points are connected by an arc of the 5 curve that
is shown in bold in the figure. When we traverse this arc, from z to y along
the orientation of 3, we cross five ¢,, . arcs positively. Then Lemma 3.3.1
implies A(y) — A(z) = 5.

Computing T7(P(K)) from a pairing diagram

In this section, we recall from [Chel9| the precedure for computing 7
from the pairing diagram for (TF\K(P(K )) when P is a (1,1) pattern. Recall
that the Alexander filtration on @T((K ) produces a spectral sequence con-
verging to @(53). The 7 invariant is the minimal Alexander grading of the
cycle that survives to the £ page. In what follows we give a way of com-
puting this spectral sequence in the pairing diagram for C/PT{(S?’, P(K)) for
(1,1) patterns P. First, we recall the following well known lemma that gives
us a way of thinking about passing from one page of the spectral sequence
to the next as cancelling differentials that decrease filtration by the minimal
amount, see [BHL19; Zhal§].

Lemma 3.3.2. [BHL19, Lemma 2.4] Suppose (C,d) is a chain complezx over
Fy freely generated by elements {x;}. Let d(x;,x;) be the coefficient of x; in
d(x;) and suppose d(xy,x;) = 1. Then the complex (C',d") wih generators
{x;]i # k,1} and differential
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d'(z;) = d(x;) + d(z;, x;)d(zy)
is chain homotopy equivalent to (C,d)

Now, suppose (' is a filtered chain complex. The above lemma tells us
how to compute the spectral sequence associated to the filtration in stages.
The FEy term of the spectral sequence is the associated graded C' = @ C;.
Then, we pass from the Fy to the E; page by cancelling the components of d
that do not shift the grading, and arrive at a chain complex (E1,d;), where
the d; differential is defined as in lemma 3.3.2. Continuing in this way, we
pass from the E; page to the E5 page by cancelling the components of the
differential d; that shift grading by one, etc. In this way, the spectral se-
quence collapses when we have reached a chain complex filtered chain homo-
topy equivalent to the original one but whose differential is zero. For more
details, see the discussion after Remark 2.5 in [BHL19].

In the spectral sequence induced by the Alexander filtration on (TPT{(&, B),
the previous discussion shows that passing from one page to the next in this
spectral sequence amounts to cancelling differentials that connect elements
of minimal Alexander filtration difference. We now give an way to see that
cancellation geometrically in the complex (TFT((&, B) In the pairing dia-
gram, differentials are given by Whitney disks that connect two intersection
points and cross the z basepoint, but not the w basepoint and the filtration
difference is the number of z basepoints enclosed. To cancel two generators
connected by such a Whitney disk, we perform an isotopy of the 5 curve
over the disk to a new curve ' thus cancelling those two intersection points
in the diagram, together with possible more if the Whitney disk wasn’t in-
nermost, i.e. it contains arcs of the « curve in its interior. In any case, all
the intersection points cancelled by isotoping away this Whitney disk will
all have the same filtration difference, so it doesn’t matter if we cancel pairs
of generators of minimal filtration difference one at a time or in bulk. Once
this isotopy is performed, we arrive at a new complex, with fewer genera-

tors. To remember the filtration difference after the cancellation, following
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Chen we place small arrows on the 5 curve, called A-bouys, that remember
that an isotopy of a Whitney disk crossing some number of z basepoints was
performed. Then, when we compute filtration differences of the remaining
intersection points in the o and 8’ complex, we count both intersections of
the ' curve with the J,, , arcs and the A-bouys.

It remains to observe that when we cancel two intersection points by
isotoping the curve 5 to [, the differential d’ on the Lagrangian Floer chain
complex C/FT{(d, e ), which is given by counting holomorphic disks with
boundary conditions on & and ', is given by the formula d’(a) = d(a) +
d(a,y)d(x), where d(a,y) is, as above, the coefficient of y in d(a). To see
this, recall that for a generator x of the Lagrangian Floer chain complex,

the differential is given by

d(z) = Y n(z,y)y

Yy
where n(x,y) counts Maslov index 1 holomorophic disks connecting x to y in
the a, 6 complex. Now, suppose that we isotope the curve [ to a new curve
p" where ' results from isotoping 5 over a Whitney disk that crosses the z
basepoint and cancels the intersection points  and y of minimal filtration
difference. Then by [SRS14]|[equation 59|, the new holomorphic disk count in

the a and ' complex is given by

n'(a,b) = n(a,b) + n(a,y)n(zx,b)

Where a,b € a n §'. This implies that d'(a) = d(a) + d(a,y)d(z) for
a € (TFT((&, 3. Indeed, we have

d'(a) = Zn’(a, b)b = Zn(a, b)b + n(a, y)Zn(:c, b)b = d(a) + d(a,y)d(z).

b b

This gives a diagramatic way to run the Alexander filtration spectral se-
quence in a pairing diagram. For example, consider Figures 3.8-3.11. In that
sequence of figures we first see the pairing diagram for }ﬁ?T{(S?’, PGN(Ty3))
in Figure 3.8. In Figure 3.9, we have indicated all of the Whitney disks that
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Figure 3.8. Pairing Figure 3.9. The disks

diagram for shown represent all the
HFK(S3, PG (Ty 3)). differentials that lower
Intersection points filtration degree by
labelled x and y one. Cancelling the
satisfy disks by an isotopy, we
A(y) — A(z) =5 and end up with Figure
A(z) = 0. 3.10

connect two intersection points of filtration difference one. When we can-
cel these disks by isotoping the S curve over these disks, we arrive at Figure
3.10. In that figure, we have indicated the disks that connect intersection
points of minimal filtration difference. Cancelling these, we arrive at Figure
3.11, where we see three intersection points, two of which are connected by a
Whitney disk, shown in the figure in purple. If we cancel these two genera-
tors we arrive at a pairing diagram with one intersection point. The Alexan-
der grading of this intersection point is then 7(P®(Ty3)) by the discussion
above.

A convenient way to package the entire spectral sequence is shown in
Figure 3.12. Here we see all of the disks we cancelled in the spectral se-
quence, and the A bouys that keep track of the Alexander filtration from the

original complex in all of the subsequent pages. Note that if we draw it like
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Figure 3.10. The
result of cancelling the
disks in Figure 3.9.
There are two disks
that connect
generators of

CFK(&, ) of minimal
filtration difference.
Cancelling these disks
we arrive at Figure
3.11

Figure 3.11. The
result of isotoping [’
in Figure 3.10, we
arrive at a complex
with three generators
and one differential
connecting two
generators of minimal
filtration difference

this, we have to cancel all intersection points with filtration difference one
before cancelling any with filtration difference two, etc. We can find the ab-
solute Alexander grading of the generator labelled a (the intersection point
we found to survive the z-basepoint spectral sequence) as follows. By the
symmetry under the elliptic involution, it is easy to see that A(z) = 0. Then
using Lemma 3.3.1 we have A(a) — A(x) = A(a) = 5, so 7(P®Y(Ty3)) = 5

3.4 Trefoil patterns

In this section we will compute 7 of satellite knots with arbitrary com-
panion knot K and pattern P from a family of trefoil patterns that we will
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Figure 3.12. Cancelling all intersection points with filtration difference one
(disk in yellow) and intersection points with filtration difference two (disks
in pink) There are three intersection points remaining.
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now describe.
Introducing the patterns

The (1, 1)-patterns studied in this paper are constructed by isotoping
the £ curve on the doubly pointed bordered Heegaard diagram for the un-
knotted (p, 1)-cable pattern so that we introduce only two extra intersec-
tion points between § and A. To describe the isotopy, consider first the case
p = 3. The unknotted (3, 1)-cable pattern is shown in Figure 3.13. Isotope
the B curve by taking the bottom-most horizontal strand and pushing it
once across the longitude of the solid torus. Once we isotope 3 over the lon-
gitude, we follow the pattern around the meridian until we end up inside the
bigon that contains the z basepoint, without crossing the longitude again.

A intermediate stage of this isotopy is shown in Figure 3.14. If we push the
[ curve over the z basepoint, we arrive at the pattern shown in Figure 3.15,
which we will denote by P,

In general, we take the bottom most horizontal strand of the § curve in
the genus-1 doubly-pointed bordered Heegaard diagram for the (p, 1)-cable
pattern, push it once over the longitude, and then follow the pattern around
the meridian until we end up inside the bygon that contains the z basepoint.
If we push the § curve over the basepoint, we arrive at a (1,1) diagram for a
pattern that we denote P®Y. The lift of the pattern P®") is shown in Fig-
ure 3.19, where we see that it looks like the lift of the (p, 1) -cable pattern
with one extra arm. By construction, since we only crossed the longitude A
once in our isotopy, we increased the number of intersections with the lon-
gitude by two. Therefore rk(HFK(S3, P®V(U))) = 3 for all p > 1. Alter-
natively, pairing this pattern with C/FT)(S:S\U ) (whose immersed curve is a
horizontal line) results in three intersection points and no differentials. As
the rank of knot Floer homology detects the trefoil knot [HW18, Corollary
8], we know that PV (U) has the knot type of the trefoil in S®. As men-
tioned in the introduction, we will call such a pattern P < S! x D? a trefoil

pattern. In the next section we will use the procedure described in section
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Figure 3.13. Doubly
pointed Heegaard
diagram for (3,1)
cable pattern

W

M .

w NN\

Figure 3.15. Doubly
pointed bordered
Heegaard diagram for

the trefoil pattern
PGB

3.3 to prove Theorem 3.1.1.

Figure 3.14. Midway
through the isotopy

Figure 3.16. The
trefoil pattern PG in
the solid torus

T of 0-Framed Satellites With Arbitrary Companions

In the previous section we constructed, for each p > 1, a trefoil pattern
in the solid torus. It follows from [Chel9, Lemma 6.3 that w(P®Y) = p + 1.

The pattern P®Y is shown in the solid torus in Figure 3.16. In this section

we show how to compute 7(P®Y(K)) for K an arbitrary knot in S®. As we



will see, the answer only depends on the values of 7(K) and €(K).

Proof of Theorem 3.1.1. We begin with a discussion of how to determine the
absolute Alexander grading of intersection points representing generators of
HAFK(S?, P®Y(K)) in the pairing diagrams in Figures 3.19 and 3.20. For
example, in Figure 3.19 we see a lift of the 8 curve to the universal cover.
The dotted portions of the 8 curve represents that the § curve crosses p — 3
columns that are not drawn, and the [ curve is completely horizontal. If we
focus in on one row, for example the row in Figure 3.19, we can
determine the relative Alexander grading of all the intersection points by
Lemma 3.3.1. We then determine the relative Alexander grading of all the
other generators by noting that by [Chel9, Lemma 6.3], if  and 2’ are inter-
section points that occur on arcs of the [ curve that differ by a meridional
deck transformation (shifting the picture in the universal cover down a row),
then their Alexander grading difference is w(P), where w(P) denotes the
winding number of the pattern. For example in Figure 3.19 the intersection
points x and 2’ lie on arcs of the 8 curve that are related by a meridional
deck transformation. It is easy to see that A(x) — A(z') = p+ 1 = w(P).
Now, to determine the absolute Alexander grading, note that the conju-
gation symmetry of knot Floer homology is witnessed in the pairing dia-
gram by the hyperelliptic involution. That is, if we rotate the entire picture
by 7, and exchange the z and w basepoints, we will get the same complex.
Therefore, if any intersection is fixed under this involution then it must have
Alexander grading zero. In particular, we can see that the intersection that
is fixed will occur along the arc of the g curve in Figure 3.19 that contains
the point labelled z. Since all intersections along this arc will have Alexan-
der grading zero by Lemma 3.3.1 it is enough to compute Alexander grading
relative to any intersection between «(K) and f that lies on this arc. From
now on, we assume that this has been done and the Alexander gradings that
appear in Figure 3.19 are absolute and not relative.

Now, we turn to discuss how we determine which intersection point sur-
vives the z basepoint Alexander grading spectral sequence. By an isotopy
of the 8 curve only crossing z basepoints, we can isotope [ to the light blue
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curve in Figures 3.19 and 3.20 in the far right of the diagram. From this ob-
servation, we see that there is a choice of cancelling disks in the pairing dia-
gram so that when we run the spectral sequence, the last remaining intersec-
tion point lies in the far right column of the pairing diagram. This choice of
cancelling disks echos the choice made in the example shown in Figure 3.12
above. Next, recall that the immersed curve oK), for a general knot K,
consists of two kinds of components. There is the essential curve component
Yo with no non-trivial local systems which wraps around the longitude of the
torus and there are (potentially) other components that are immersed with
local systems which all lie in a neighborhood of the meridian. Since 8 can be
isotoped away from a neighborhood of the meridian by crossing only z base-
points, the intersection point that survives the Alexander filtration spectral
sequence is an intersection between the essential component 7, and S(P).
Therefore, since the essential curve component has the form described in
Lemma 3.2.2 and depends only on the values of 7(K) and €(K), it remains
to analyse the following cases to determine the absolute Alexander grading
of the generator that survives.

7(K) > 0,e(K) = 1: In this case, the part of the essential component of the

immersed curve for K coming from the unstable chain slopes upward for
27(K) rows and turns down at the top and up at the bottom. See Figure
3.17 for an example when p = 3 and K = 753 and Figure 3.19 for the
general case, where in that figure, we pay attention to the piece of the es-
sential component that is and we only draw the portion of the essen-
tial component of a(K') that carries the intersecion that survives the spec-
tral sequence. In this case we see that the surviving intersection point is the
one labelled a in Figure 3.19. To compute what this Alexander grading is,
we use Lemma 3.3.1. When we follow the § curve from the generator with
Alexander grading 0, labelled x in the figure, we travel down 7(K) rows and
then cross one extra d,, . arc. The 7(K) rows results in a change in Alexan-
der filtration by w(P)7(K) = (p + 1)7(K), and crossing one more d,, . arc

gives the result:
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Figure 3.17. The lift

of the trefoil pattern Figure 3.18. The lift
PG shown in Figure of the trefoil pattern
3.15 paired with the P; shown in Figure
right handed trefoil. 3.15 paired with the
We have left handed trefoil. We
T(P(g’l)(TQ’:g)) = find T(P(g’l)(TZ_g)) =
Aly) = 5. Aly) = 0.

T(PPY(K)) = (p+ 1)7(K) + 1.

For example, in Figure 3.17, we saw earlier that 7(P®Y(Ty3)) = 5.

7(K) > 0,e(K) = —1: In this case, that part of the essential component of

the immersed curve for K slopes upward for 27(K) rows, but it turns down
at the bottom and up at the top. See Figure 3.19, where we pay attention

to the portion of the essential component of the immersed curve in the
bottom right that turns down and contains the intersection point labelled b.
Since b is the only intersection point remaining after isotoping /3 to the light
blue curve, we see that A(b) = 7(P®Y(K)). Using Figure 3.19, we see that
this intersection point occurs exactly 7(K)+ 1 rows below the generator with

Alexander grading zero. Using Lemma 3.3.1, we see that
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Figure 3.19. The general case with 7(K) > 0 and €(K) = +1. ¢(K) =1 is
shown as a dotted arc, and ¢(K) = —1 is shown as a arc
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T((PPV)(K)) = (p + 1)(r(K) + 1)

T(K) < 0,e(K) = 1: In this case, the essential component of the immersed

curve « slopes downward for 27(K) rows, and turns up at the top and down
at the bottom, see Figure 3.20 where in the case ¢(K) = 1, we focus on the

portion of the essential component of a(K) in the upper right, which
contains the intersection point labeled a. Just as in the previous cases we see
that a survives the z basepoint spectral sequence and we find the Alexander
grading of a by counting how may rows above the generator with Alexander
grading zero this intersection point lies. From Figure 3.20 we see that the
intersection point y lives exactly 7(K) rows above the intersection point x
with A(z) = 0. Therefore, by Lemma 3.3.1 A(y) = w(P)7(K). Then, we see
that A(a) — A(y) = 1, so we have

Afa) = T(P(p’l)(K)) =(p+ 1)7(K)+ 1.

7(K) < 0,e(K) = —1: This case is similar to the previous cases. Here the

relevant portion of the v immersed curve slopes downward and turns down
at the top and up at the bottom, see Figure 3.20 paying attention to the
dotted portion of the curve in the upper right. The intersection point la-
belled b is the one that survives the z-basepoint spectral sequence. We count
the number of rows above the central row that this intersection point occurs

to compute A(b). The result is

T(PPY(K)) = (p+ 1)(r(K) + 1).

For an example, consider Figure 3.18. We see that the intersection point
that survives the z basepoint spectral sequence lies on both the bold portion
of the av curve and the bold portion of the g curve. It is easy to see from the
picture that 7(P®Y (T, _3)) = 0, since travelling along the bold potion of the
B curve, we do not cross any d,, . arcs.
€(K) = 0: In this case, we also have 7(K) = 0. Hence the essential curve

component is horizontal. Therefore, the intersection point that survives the
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Figure 3.20. The general case with 7(K) < 0 and €(K) = £1. ¢(K) = —1 is

shown as a dotted arc and ¢(K) = 1 is shown as a arc
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z basepoint spectral sequence has Alexander grading 1, which is the same as

7(T23) as expected. O
3.5 Three Genus and Fiberedness

In this section we will prove theorem 3.1.5 from the introduction. Recall
that the knot Floer homology detects both the three-genus and the fibered-
ness of a knot K < 5% in the following sense. The genus of a knot is the
largest Alexander grading supporting non-zero Floer homology by [OS04a].
Further, the knot is fibered if and only if the knot Floer homology is one di-
mensional in this top Alexander grading by [Juh08c].

Recall from [HMSO08| that, for a non-trivial companion knot, the satel-
lite knot P(K) is fibered if and only in the companion knot K is fibered in
S3 and the pattern is fibered in the solid torus. Therefore, to prove theorem
3.1.5, it is enough to show that P®V(Ty3) is fibered. Furthermore, for a non

trivial knot K, we have the classical genus of a satellite formula

9(P(K)) = [w(P)|g(K) + g(P). (3.5)
So, to compute g(P) it is enough to compute g(P(T%3)).
Proof of Lemma 3.1.3. We will make use of the pairing diagram in Figure

3.21 which computes HFK(S%, P®)(T}5)). In the diagram, we see that the

generator a has the largest Alexander grading of any intersection point, and
we compute using Lemma 3.3.1 that A(a) = p + 2. Hence g(P®Y(Ty3)) =
p + 2. Then using equation 3.5 we have

p+2=g(PP(Ty3)) = (p+ 1)g(Tas) + g(P) =p+ 1+ g(P),

which implies that g(P) = 1.

With Lemma 3.1.3 in hand, we can prove that the for all p > 1, pat-

terns P®Y) are fibered.
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Proof of Theorem 3.1.5. Since knot Floer homology detects fibered knots,
and a satellite knot is fibered if and only if the pattern and comanion are
fibered, to show that the pattern P®Y is fibered it is enough to show that
rk(I—Tﬁ((Sg’, P®Y(Ty3),p +2)) = 1forallp > 1. To this end, consider
the pairing diagram for HFK(S3, P®)(Ty,)). By the proof of Lemma 3.1.3,
we know that a has the largest Alexander grading of any intersection point.
To show that PPV (K) is fibered, we will show that for any other intersec-
tion point x in the pairing diagram, we have A(x) < A(a). To this end,
note that the Alexander grading is weakly decreasing as we travel up the
pairing diagram on the § curve. It follows from lemma 3.3.1 that A(a) —
A(b) = 1 and that A(x) < A(b) for any other intersection point z. Therefore
ITI?’T{(SS, PPV (Ty3), p+ 2) is one dimensional for all p > 1, and so the satel-
lite knot P(p’l)(TQ,g) is fibered for all p > 1. Since a satellite knot with non
trivial companion is fibered if and only if both the pattern is fibered and the
companion is fibered [HMS08], it follows that P is a fibered pattern. ]

Recall from the introduction that fibered knots have unique minimal
genus Seifert surfaces. Hence, for a fibered pattern P and a fibered knot
K, the satellite knot P(K) also has a unique minimal genus Seifert sur-
face. Given this, one might wonder when the operation of taking a satel-
lite of a non-trivial knot can increase or decrease the number of non-isotopic
Seifert surfaces in the knot complement. In this direction, we prove Proposi-
tions 3.1.6 and 3.1.7 from the introduction, which imply that for knots with
small rank knot Floer homology in the top Alexander grading the process
of taking a satellite with a fibered pattern preserves the property of having
a unique minimal genus Seifert surface as well as the property of having a

depth at most one codimension one taut folitation of the complement.

Proof of Proposition 3.1.6. Suppose K is a knot with rk(H/FT((SE’, K,9(K))) <
4 and P is a fibered pattern. Then by [Juh08a, Theorem 2.3] it follows that
K has a unique minimal genus Seifert surface up to isotopy. By equation

3.2 we have rk(H/ﬁ((SB, P(K),g(P(K)))) < 4. Hence P(K) also has a

unique minimal genus Seifert surface by [Juh08a][Theorem 2.3|. Repeating
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Figure 3.21. The pairing diagram computing H/PT{(S3, PPO(Ty3))
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the above argument, we see that P(K) has a unique minimal genus Seifert

surface up to isotopy for all i > 1. n

Proof of Proposition 3.1.7. Suppose K is a knot with rk(IfFT{(S?), K,g9(K))) =

3. So a4k, the coefficient of (t/+¢79) in the symmetrised Alexander polyno-
mial for K, is equal to X(ITF\K(S?’, K, g(K))) so is non zero. It follows from
[Juh08c, Theorem 1.8] that S*\v(K) has a depth < 1 taut foliation trans-

verse to 0(v(K)). Then, equation 3.2 implies that rk(H/ﬁ((5’3, P(K),9(P(K)))) =
3, and 80 ay(p(K)) = Y(HFK(S3, P(K), g(P(K)))) # 0, where ag(p(r)) is the
analogous coefficient of the Alexnader polynomial for P(K). So S*\P(K)

has a depth < 1 taut foliation transverse to dv(K) again by [Juh08c, Theo-

rem 1.8|. This argument can be repeated to show that S\ P*(K) also has a

depth < 1 taut foliation transverse to dv(P*(K)) for all i > 1. O

3.6 Next to top Alexander grading

In this section we prove Theorem 3.1.10 from the introduction. First,
we recall the notion of right and left veering monodromy following [BNS22|.
Suppose that ¥ is a surface with non-empty boundary and a and b are two
properly embedded arcs in . We say that a is to the right of b at p, de-
noted a >, b if p is a common endpoint of both arcs and either a is isotopic
to b rel boundary, or after isotoping a rel boundary so that it intersects b
minimally, a is to the right of b in a neighborhood of p. Now, suppose that
¢ : X — X is a homeomorphism of ¥ which restricts to the identity on a

boundary component B of ¥. Then we say that ¢ is right veering at B if

¢(a) =p a

for every properly embedded arc a ¢ ¥ and every p € da n B. A map ¢ is
called right veering if it is right veering at every boundary component of .
We call a map ¢ left veering if its inverse is right veering.

Recall from Theorem 3.1.8 that, for a fibered knot, we can detect when

the monodromy of a fibration is right or left veering by computing the next
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knot with thin knot K with
r(K) = g(K) (K| < g(K)

to top Alexander graded piece of the knot floer homology to be one dimen-

sional.
Lemma 3.6.1. If K is a fibered knot with 7(K) = +g(K), then
rk(HFK (5%, PP (K), g(PPV(K)) — 1)) = 1.

Proof. Since K is a fibered knot with 7(K) = +¢(K), we must have e(K) =
sgn(7(K)) and the essential curve component has the form described in
Lemma 3.2.2. Since the knot is fibered, there are no other components of the
immersed curve that pass through at height —g(K), so the red arcs shown
in Figure 3.22 are representative of what the immersed curve of a general
fibered knot with 7(K) = +g(K) looks like near the bottom row of the
lifted pairing diagram. As we showed in the proof of Theorem 3.1.1, the
knot P®V(K) has one dimensional Floer homology in the top most Alexan-
der grading, and the intersection point labelled a carries this Alexander
grading. Continuing with this reasoning we have that A(b) = g(P®Y(K))—1
by Lemma 3.3.1, since starting from a, we encounter one ¢, ., arc before we
reach the intersection point labelled b. Now, no other intersections between
the 8 curve and «(K') occur before we reach another ¢, . arc while travers-
ing 8 up the diagram. Since the Alexander grading is weakly decreasing as
we travel up the g curve, it follows that b is the unique intersection point
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with Alexander grading g(P®V(K))—1, hence I—Tﬁ((Sg’, PPY(K), g(PPY(K))—

1) is one dimensional, as desired. O

Lemma 3.6.2. Suppose K is a fibered thin knot with |7(K)| < g(K). Then
rk(AFK(S?, P®D(K), g(P®Y(K)) — 1) = 1

Proof. First, recall from [Pet13| that CFK* has a simultaneously vertically
and horizontally simplified basis with repect to which it decomposes as a
direct sum of a staircase summand and boxes, and all horizontal and ver-
tical differentials have length one. In this case the immersed curve a(K)
consists of the essential component together with figure eight components,
as shown in figure 3.23. Since |7(K)| < ¢(K), the essential component

of the immersed curve doesn’t pass through at height +¢(K’) and the por-
tion that does consists of a single figure eight component, as shown in Fig-
ure 3.23. We know that the intersection point a represents the sole gener-
ator with Alexander grading g(P®"(K)), and the generator b has Alexan-
der grading g(P®Y(K)) — 1. Similar to the proof of Lemma 3.6.1, we see
from the diagram that any other intersection point has Alexander grading
< g(P®Y(K)) — 1. Therefore b is the sole intersection point with Alexan-
der grading g(P®V(K)) — 1 so HFK(S3, P®D(K), g(P®D(K)) — 1) is one

dimensional, as desired. .

Proof of Theorem 3.1.10. 1f K is any fibered knot such that 7(K) = +¢(K),
then Lemma 3.6.1 implies that P®Y(K) has left or right veering monodromy.
If K is any fibered thin knot such that |7(K)| < ¢(K), then Lemma 3.6.2
implies that P®V(K) has left or right veering monodromy. O

Finally, we prove Proposition 3.1.12 from the introduction.

Proof of Proposition 3.1.12. Suppose K is a non-trivial fibered thin knot

with |7(K)| < g(K). By Theorem 3.1.10, the fibered knot P®(K) has

right or left veering monodromy. Therefore, by [BNS22, Corollary 1.7] to

show that P (K) is not thin it is enough to show for each p > 1 that

I7(PPY(K)| < g(PPY(K)). By Corollary 3.1.4 we know that g(P®V(K)) =
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(p+ 1)g(K) + 1. In the case ¢(K) = 0, Theorem 3.1.1 implies 7(P®Y(K)) =
1< (p+1Dg(K)+1=g(PPY(K)), since g(K) > 0. In the case e¢(K) = 1,
Theorem 3.1.1 implies |7(P®Y(K))| < (p+ 1)|7(K)| +1 < (p + 1)g(K) +
1 = g(P®Y(K)), where the strict inequality is by assumption. In the case
¢(K) = —1 we have that —g < 7(K) < g. Then |[7(P®Y(K))| = (p +
DIr(E) +1] < (p + Dg(K) < (p + Dg(K) + 1 = g(POI(K)). 0
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3.7 n-Twisted Satellites with Generalized Mazur Patterns

In this section, we study the immersed curve pairing theorem in the
case that the knot complement has framing n, or equivalently when we add
full twists around the meridian to the pattern knots. We compute the genus
and determine the fiberedness and the Heegaard Floer concordance invari-
ants 7 and e of satellite knots with arbitrary companions K and patterns
from a family of knots in the solid torus, which we denote Q%’, shown in
Figure 3.24. Here j € Z-¢ is the winding number of the pattern, n € Z is
the number of full twists around the meridian, and 7 € Z~y denotes the num-
ber of full twists added to the clasp region in the box labelled 7 in Figure
3.24. We refer to the patterns Q% as n-twisted generalized Mazur patterns,
since Qg’l is the Mazur pattern and Qf)’l is a generalized Mazur pattern in
analogy with the generalized Whitehead doubles of [Trul6| (See recent work
of [PX24] for a similar family of patterns also called generalized Mazur pat-
terns). Given a knot K, the satellite knot with n-twisted generalized Mazur
pattern Q%7 (K) can either be viewed as a O-twisted satellite with pattern
Q% or as an n-twisted satellite with pattern ng . In this paper, we mostly
adopt the latter perspective.

In |[Lev16]|, Levine computed 7 and € of O-twisted satellites with Mazur
pattern and arbitrary companions by explicitly determining the bordered bi-
module C/FD\A(XQ) associated to the complement of the Mazur pattern in
the solid torus and using the bordered pairing theorem of [LOT18|. Levine
used this to compute 7 and € of O-twisted satellites with Mazur pattern.
More recently, in [CH23|, Chen and Hanselman showed that the UV = 0
quotient of the full knot Floer complex of satellite knots with (1, 1)-patterns
can be computed using the immersed curve pairing theorem. They then re-
covered, in a more direct way, Levine’s computation of 7 and € of O-twisted
satellites with Mazur pattern [CH23, Theorem 6.9].

One consequence of Levine’s computation of € of satellites with Mazur
pattern is that the Mazur pattern does not act surjectively on the smooth

concordance group. Levine then used this to construct a knot in the bound-
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Figure 3.24. The pattern Q. In the box labelled i, there are i full twists on
two strands as shown in the box on the bottom left. In the box labelled n
insert n full twists on j 4+ 2 strands

ary of a contractible 4-manifold that does not bound a PL disk there or
in any other contractible 4-manifold with the same boundary, answering a
question of Kirby and Akbulut [Lev16, Theorem 1.2].

In this work, we extend these computations to determine 7 and € of n-
twisted satellites with patterns Q*/. As a special case of our work, we show
that 7 of an n-twisted satellite knot with Mazur pattern and companion K
depends only on the value of n relative to 27(K), which echos the computa-
tions of 7 of n-twisted Whitehead doubles [Hed07|. Interestingly this is not
the case for 7 of satellites with patterns Q% with winding number j > 1,
where we show that the value of 7 depends linearly on n and quadratically
on j. Further, we show that for any companion knot K, €(Q%(K)) # —1.
This shows that for alli > 0, j > 0 and n € Z the patterns Q% do not act
surjectively on the smooth concordance group. See [PX24| for another family
of patterns that have a similar property.

In another direction, we extend recent computations of Petkova and
Wong in [PW21], where they showed that the genus and fiberedness of the
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n-twisted Mazur pattern in the solid torus can be determined from the bor-
dered type A structure @(S I x D% Q%), using the bordered pairing the-
orem and classical results about the genus and fiberedness of satellites knots
[Sch53; HMS08|. We expand on these computations and give closed formu-
las for the genus of n-twisted satellite knots with patterns Q% and arbitrary
companions, and we determine for which 7, j and n the pattern knots Q%J
are fibered in the solid torus. We also show that for any non-trivial compan-
ion K the satellite knot Q% (K) is not Floer thin.

Statement of Results

Recall that for the n-twisted satellite knot P,(K) with non-trivial com-
panion knot K, we have [Sch53]

9(Pu(K)) = [w(P)|g(K) + g(Pn), (3.6)

where w(P,) = (P, n ({pt} x D?)) is the winding number of the pattern and
g(P,) is the genus of a relative Seifert surface for P,. A consequence of this
formula is that to determine g(P,(K)) for an arbitrary non-trivial compan-
ion knot K, it is enough to determine g(P,(7%3)). We use this observation
together with the fact that knot Floer homology detects the genus of knots

in S® to prove the following:

Theorem 3.7.1. For K be a non-trivial knot in S3, j € Z-g, i € Z=o and

nez
J(g+1)

JjG+1)
2

n+1 n=0

Jg(K) +

Jg(K) +

9(Q7(K)) =
In|+(1—3j) n<0

Equation 3.6, and so the proof of Theorem 3.7.1, requires the compan-

ion knot to be non-trivial. However, a similar computation gives g(Q% (U)):
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Theorem 3.7.2. For j € Z~q, i € Z=o and n € Z
iG+1)

2 n+1 n >0

Q(Qi{j(U))Z 0 n=>0
(i1

J(j; )|n]+1—j n <0

Note that when 7 = 1 and ¢ = 0 Theorem 3.7.1 and Theorem 3.7.2
recover [PW21, Theorem 1.0.5]

Recall from [HMS08| that a satellite knot P,(K) is fibered if and only
if the companion knot K is fibered in S? and the pattern knot P, is fibered
in S' x D?. This implies that to show that a satellite knot P,(K) is fibered,
it is enough to show that the satellite knot P,(T33) is fibered. Since a knot
K < 83 with g(K) = g is fibered in S? if and only if rank(}ﬁ?{(S?’, K.,q)) =
1 [Ni07; JuhO8b], we see that to determine if a pattern P, is fibered it is
enough to compute the top Alexander graded piece of the knot Floer ho-
mology of P,(Tz3). For P = Q% in Lemma 3.9.2 we compute the rank of
the top Alexander graded piece of the knot Floer homology of Q% (T53) and

show

Theorem 3.7.3. Let K be a non-trivial fibered knot in S®. Then the satel-
lite knot Q% (K) is fibered if and only if either j > 2,1 = 0 andn # 0 or
7=1,i=0andn # —1,0.

Note that the case j = 1 and @ = 0 of Theorem 3.7.3 recovers [PW21,
Theorem 1.0.6]. The proof of Theorem 3.7.3 actually shows that for any
companion knot K, the rank of HFK(S3, Qi(K), g(Q1(K))) is greater than
or equal to ¢ + 1.

Recall that a knot is called Floer thin if all the generators of the knot
Floer homology are supported in the same § grading, where (x) = M(z) —
A(x). We show

Theorem 3.7.4. For any non-trivial companion knot K, the satellite knots
Q% (K) are not Floer thin.

We also consider the case when the companion knot is trivial.
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Theorem 3.7.5. For K = U the satellite knots Q%7 (U) are Floer thin if and
only if j =1 andn = —1.

Note that Theorems 3.7.4 and 3.7.5, in the case + = 0 and j = 1, recover
[PW21, Theorem 1.01].
In [OS03b] and [Hom14| two smooth concordance invariants of knots derived
from the UV = 0 quotient of the full knot Floer complex CFK® are intro-
duced, called 7(K) and €(K). These invariants have proved fruitful in the
study of the knot concordance group [Hed07; Hom14; Lev16|. We give an
explicit computation of 7 and € of satellite knots with arbitrary companion
knots K and patterns Q4.

Theorem 3.7.6. If K is a knot in S* with e(K) = —1, then for all i > 0,
j=1landnelZ

QP (K)) = () + 1) + 1Y

If K is a knot in S® with e(K) = 1, then for alli >0, j > 1 andne Z

n.

R - jT(K)+@n+1 n < 27(K)
T(Q(K)) = Jr(K) + j( = 1)n
2

If K is a knot in S® with e(K) = 0, then for alli >0, 7> 1 andne Z

G-
T(Q (K)) = j(jQ_ 1)

n = 27(K)

n=0

n+75 n<0

Theorem 3.7.7. For any knot K and for anyi > 0, 5 > 1 and n € Z, we
have €(Q4(K)) € {0,1}.

The invariant € is a concordance invariant, and takes values in {0, 1, —1}.
If we let Cg denote the rational homology knot concordance group (for the

definition see |Lev16]) then an immediate Corollary of Theorem 3.7.7 is

Corollary 3.7.8. Foralli = 0,7 > 1 andn € Z, the satellite operators
Q% : Cg — Cq are not surjective.
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As mentioned above, this shows that when we add full twists to the
clasp region of the Mazur pattern (by increasing the parameter i) and when
we add meridian twists to the Mazur pattern (by changing the framing n)
we get a bi-infinite family of winding number 1 patterns that do not act sur-
jectively on the smooth (or @Q-homology) concordance group and thus gives
infinitely many examples of knots in homology spheres that do not bound
PL disks in any contractible 4-manifold. See the recent work of [PX24]| for
another infinite family of winding number 1 unknot patterns with the same
property. Our construction also gives many patterns of arbitrarily large
winding number and various knot types in S? that also are not surjective
satellite operators, and in particular shows that for these patterns, the im-
age of the concordance invariant € is not sensitive to twisting the pattern or

changing the framing of the pattern knot complement.
3.8 Background

In this section we review some concepts from the immersed curve refor-
mulation of bordered Floer homology and the bordered pairing theorem for
(1,1)-patterns. We assume the reader is familiar with the various flavors of
knot Floer homology and the work of [LOT18]. We quickly review the neces-
sary background to state the immersed curve reformulation of the bordered
invariants and bordered pairing theorem from [Chel9; CH23; HRW22|. In
Section 3.8 we introduce some notation and prove a structure theorem for
the immersed curve associated to an n framed knot complement. Then in
Section 3.8 we discuss (1, 1)-patterns and the work of [Chel9] with an eye
towards extracting the UV = 0 quotient of the knot Floer complex from the
pairing diagram as in [CH23|, and then in Section 3.8 we discuss the specific

family of (1,1)-patterns that gives rise to the patterns knots Q™.
Immersed Curves for n-Framed Knot Complements

Note that the pair (S3, B,(K)) can be obtained by gluing S* — v(K)
with framing n to (S x D?, P) or by gluing S® — v(K) with framing 0 to
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the pair (! x D2, P,). We want to study the pairing CFD(S3 — v(K), n)
CFA(S! x D2, P) which computes CFK(S3, P,,(K)) from the perspective of
immersed curves. With this goal in mind, we want to understand the essen-
tial component of the immersed curve associated to an n-framed knot com-
plement. This lemma is a generalization of Lemma 3.2.2 to the case when

the framing of the knot complement is arbitrary.

Definition 3.8.1 ([HRW22; HRW17; HW19|). Given a knot K < S3, let
a(K,n) denote the immersed multi-curve representing the type D structure

CFD(S3 — v(K),n).

As in [HW19, Proposition 2| we single out a special component of the
immersed multi-curve «( K, n), denoted 7y and called the essential compo-
nent of the immersed curve (See also [HRW22, pp 43-44]). As mentioned
there, if we lift the curve to R? and consider the vertical axes Z x R, then

the essential component is the only component of the immersed curve that
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crosses from {i} x R to {i + 1} x R and in the case when the framing n = 0,
this potion of the essential component of the immersed curve component has
slope 27(K) (That is is spans 27(K) rows) and it either turns up, down or
continues straight after passing through {i + 1} x Rif ¢(K) = —1,10r 0
respectively. We extend these observations to a structure theorem for a por-

tion of 7o of n framed knot complements.

Lemma 3.8.2. Suppose 7(K) =0 and e(K) = 1. If n < 27(K), then the es-
sential component of the immersed curve has slope 217(K)—n and turns down
immediately after passing through {i + 1} x R, see Figure 3.27. If n = 27(K),
then the essential component of the immersed curve has slope 21(K) —n and

turns down immediately after crossing through {i + 1} x R, see Figure 3.28.

Proof. When ¢(K) = 1, by [Hom14] there is a reduced horizontally sim-
plified basis so that the vertically distinguished generator &, of CFK™ (K)

is an element of this horizontally simplified basis and occurs at the end of

a horizontal arrow (symmetrically the horizontally distinguished generator
no occurs at the end of a vertical arrow). If 7(K) = 0 then the algorithm
from [LOT18, Theorem 11.26] shows that the type D structure contains the
portion shown in Figure 3.25, where the dotted arrow is replaced by the ap-
propriate unstable chain.

Then the algorithm in [HRW17, Sections 2.3-2.4| shows that the essen-
tial component of the immersed curve lifted to the cover R*\7~!(z) has the
form shown. In Figure 3.27 and 3.28 we see the resulting curves for n <
27(K) and n > 27(K) respectively and indicate how the curves are built
from the type D structure. Intersections with the vertical lines in the fig-
ure correspond to generators of LOC/PTD(SS — v(K),n) and the intersections
with the horizontal lines correspond to generators of 01@(53 —v(K),n). If
d(z) = pr®y + - -, then there is an arc p; from x to y, as described in the
figures. O]

Similarly, we can show
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Lemma 3.8.3. Suppose 7(K) = 0 and e(K) = —1. If n = 27(K), then the
essential component of the immersed curve has slope 27(K) —n and turns up
after crossing through {i + 1} x R, see Figure 3.29. If n < 27(K), then the
essential component of the immersed curve has slope 27(K) —n and turns up

after crossing through {i + 1} x R, see Figure 3.30.

The statements about the form of the essential component of the im-
mersed curve in the case 7(K) < 0 are similar. In summary, the essential
component of the immersed curve has slope 27(K) — n and turns up, down

or continues straight depending on whether ¢(K) = —1,1 or 0.
(1,1)-Unknot Patterns

In this section, we review some notation and results about (1,1) un-
knot patterns. In the case that the (1,1) pattern knot P is an unknot pat-
tern, meaning that P(U) ~ U, Chen showed that the 5 curve for the genus
1 doubly-pointed Heegaard diagram for P can be encoded by two integers
(r,s), where ged(2r —1,s+41) = 1 [Chel9, Theorem 5.1|. In this parametriza-
tion, r denotes the number of rainbows and s denotes the number of stripes
(see [Chel9, Figure 15]). The pattern described by the pair (7, s) corresponds
to the two bridge link b(2|s| + 4|r|,e(r)(2|r| — 1)) [Chel9, Theorem 5.4].

For example, see Figure 3.31 where we have drawn the doubly pointed
Bordered Heegaard diagram for the unknot pattern described by the pair
(r,s) = (4,2), and Figure 3.32 where we have drawn the same genus 1
bordered Heegaard diagram with the pattern knot that it determines. In
general, the knot determined by the (1, 1) unknot pattern given by the pair
(r,s) has a presentation with r — 1 rainbow arcs and s + 1 stripes, see Figure
3.38.

As above, let C/FT((a, B, z,w) denote the intersection Floer homology
of the two curves a and 8 in T?\{z,w} as described in [Chel9, Theorem
1.2]. The generators of ﬁ(a, B, z,w) are the intersection points of the two
curves, and the differential counts embedded bigons with left boundary on

the 5 curve and right boundary on the « curve. As proved in [CH23|, we
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Figure 3.31. The (1,1) determined by the
pattern determined by (1,1) pattern with 3
the pair (r,s) = (4,2) curve the blue curve

Figure 3.32. The knot
in green in S' x D?

can recover the UV = 0 quotient of the full knot Floer complex by consid-
ering disks that contain either z or w basepoints (but not both) and label
them by V and U respectively. The component of the differential induced by
counting bigons crossing the z basepoint will be called wvertical differentials
and denoted 0", and those crossing the w basepoint horizontal differentials
and denoted o".

Now, if 7 : R2 — T2 denotes the universal cover of the torus, let 3 be
a connected component of 7!(3) in R?\(7'{z,w}) and let a(K,n) be a lift
of a(K,n) to R?, as in Figures 3.27-3.30. Then by [Chel9, Proof of Theorem
1.2] C/F\K(&,B,W_l(z),ﬂ_l(w)) ~ C/F—‘T{(a,ﬁ,z,w). Indeed, it is easy to see
that there is a correspondence at the level of generators, and it is similarly
straightforward to see that differentials on both sides agree. See Figures
3.33, 3.35, and 3.36. Throughout we work with the lifted pairing diagram.
We assume that the intersection between the two curves is reduced, mean-
ing that the only bigons contributing to the differential are the bigons that

cross either the z or the w basepoint, this is easily obtained by an isotopy of
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Figure 3.33. The lifted pairing diagram for (TPT{(&(TQQ,, 0), 8, w, 2)

a(K,n) across the Whitney disks that don’t contain a basepoint. With these
conventions, the following is proved in [Chel9, Theorem 1.2 and Lemma 4.1]
and |[CH23, Theorem 6.1]:

Theorem 3.8.4. For P a (1,1) pattern, AFK(S3, P,(K)) = CFK(a&(K, n), B(P))
and moreover CFKpyy1/0v (9%, Po(K)) = (ﬁ((d([{, n), B, z,w), o, ).
Furthermore, given two intersection points x and y between &(K,n) and

B(P), Aly) — A(x) = Llyy - Ow., where Ly, is an arc on the § curve that

goes from x toy and A denotes the Alexander grading of generators of the

knot Floer homology.

See Figure 3.33 for an example, where we have drawn the lifted pair-
ing diagram for the satellite knot Q8’3 (T23). In that figure, we have labelled
some intersection points, and drawn the d,, ., arcs. Theorem 3.8.4 implies
that the intersection points are in bijection with the generators of the knot
Floer homology ILTFT{(S:S, 0% (Ty3)). Moreover, by taking an arc along the
B curve from c to a, for example, we see that A(a) — A(c) = —1. The knot
Floer homology has a symmetry given by H/FT{(S3, K, A) ~ IfFT{(S?’, K,—A),
and we can see this symmetry in the pairing diagram by rotating the whole
picture by 7 and exchanging the w and z basepoints. It follows that A(c) =

0 and we can always upgrade the relative Alexander grading given by Theo-
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Figure 3.34. The piece of the complex CFKgpyvyuv (S, Q8’3(T273)) that
contains the intersection point d with A(d) = 7(Qy*(Th3)) and d + h
generates HF (S3).

rem 3.8.4 to an absolute Alexander grading. In Figure 3.33 we find A(b) = 3,
Ae) = A(d) =4 and A(f) = 3.

Another consequence of Theorem 3.8.4 is that since we can recover the
UV = 0 quotient of the full knot Floer complex, we can compute both 7
and e of satellite knots with (1, 1)-patterns. We return to this in Section 3.11
later, but we remark here that by counting disks that cross only the z base-
point in Figure 3.33, the intersection points d, g, and h form a subcomplex
of (TFT(( 0%(Ty3)) such that the cycle d + h generates }/IF(S?’) (obtained by
setting V' = 1 in the above subcomplex). This cycle can be extended to a
vertically simplified basis of CFK™(Qy*(Tb3)) in the sense of [Hom14, Sec-
tion 2|. Moreover, the intersection points i and j satisfy 0"(i + j) = d + h,
so the distinguished element of the vertically simplified basis is in the im-
age of the horizontal differential and this implies [Hom14, Section 3| that
€(Qy*(To3)) = 1. Further, it is easy to see that the intersection point d
satisfies A(d) = 7(QV°(K)). See Figure 3.34, where we have indicated a
portion of the complex over F[U, V]/UV. Note that the above argument
only involved intersection points between the unstable portion of the curve
a(T33,0) in the first column and the g curve. We return to this observation

in section 3.11, where we see that this holds in general for the patterns given
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by the 5 curve §(i, 7).

The pairing diagrams and their lifts become more complicated when we
consider knots with non-zero framing since the unstable chain gets longer
for most values of n, which we need for computing the knot Floer homology
of satellites with n-twisted patterns. For example, see Figures 3.35 and 3.36
where we have the pairing diagram for Q%3(Th5) and Q%*(Th3). In those
figures, the intersection point ¢ satisfies A(¢) = 0 and we have indicated

some of the Alexander gradings of intersection points.
The Curves B(i,7)

In this section we introduce the specific (1, 1)-patterns that give rise to

the pattern knots Q% shown in Figure 3.24.

Definition 3.8.5. Let §(i,7) denote the B curve for the (1,1) pattern which
in the parameterization of [Chel9] is given by (r,s) = (2 + 7+ 2(j + 1), J).

The doubly pointed bordered Heegaard diagram associated with (3(i, )
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Figure 3.37. The (1,1) pattern that determines the pattern knot Q%.
Figure 3.31 shows the case i = 0 and j = 2

is shown in Figure 3.37, and from that description it is easy to see that knot
determined by the (1, 1) pattern with 5 curve (i, j) is shown in Figure 3.38.
In that figure there are r — 1 =1+ j + 2i(1 + j) = (2i + 1)(1 + j) rainbows
and s + 1 = j + 1 stripes. Each pair of strands represents 7 + 1 parallel
strands, as indicated, and there are 2i(j + 1) of them. If we pull the (2i +
1)(1 + j) rainbows from the left side of the figure around the orange arc, we
end up with Figure 3.39. In that figure the bold line represents j consecutive
strands. We isotope the j strands by pulling i the bold piece of the knot,
and end up at Figure 3.40. Here there are j strands winding around the hole
of the torus and 2i¢ + 1 rainbows. It is straightforward to verify that this is
the knot Qf’ shown in Figure 3.24.
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Figure 3.38. The knot in S* x D? determined by the (1,1) pattern with

In order to understand the pairing diagram for C/ﬁ((o?(K ), B(i,5)) we
make some observations about the lifted 3 curve B (7,7). When i = 0 the
curve (0, ) is determined by the pair (r,s) = (2 + j,7). In this case, it is
easy to see that the lift 3(0,) has the form shown in Figure 3.41 top row.
Indeed, each “wave” contributes one to the count of rainbows, and there are
J + 1 “waves”, and there is one extra rainbow at the left end. Said another
way, the lifted 3 curve 3(0, j) is obtained from £(0,j — 1) by the finger move
shown in Figure 3.41 and this isotopy introduces one more rainbow and one
more stripe to B(O,j —1).

Next we claim that the transition from 3(0,5) to 5(1,7) corresponds to

“twisting up” each wave, which is shown in Figure 3.43. Indeed, here we see
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Figure 3.40. Isotope the j
consecutive strands that

Figure 3.39. The knot are bold in Figure 3.39 to
from Figure 3.38 after an obtain this knot, which is
isotopy g

o

Figure 3.41. The isotopy that produces (0,7 + 1) from (0, ).
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Figure 3.43. twist up

Figure 3.42. The curve the curve 3(0,j) to get
B(0,7) for the knot the curve 5(1,j) for
Q7 the knot Q'

Figure 3.45. The
Figure 3.44. The collapsed (1, 7) curve

collapsed 3 (0, ) curve for the knot Q"7
for the knot Q%7

that twisting up adds an extra 2 rainbows for each wave region, and thus
2(7 + 1) new rainbows in total. In general, B(i,j) is obtained from £(0, j)
by twisting up each wave region i times, and we see that this corresponds to
adding 2(j + 1)i new rainbows, and no new stripes, to the lifted 8 curve.

For convenience we label the arcs of the 3 curves between lifts of the
dw,» arcs by relative Alexander gradings that an intersection between oK, n)
and (3(i,j) on that arc would carry if there were intersections on that arc. It
is straightforward to see that these Alexander grading labels increase as we
move from right to left and bottom to top along the lift B (i,7). Moreover,
from the description of twisting up and [Chel9, Lemma 4.1| the following

lemma is immediate (see Figures 3.42-3.43).
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Lemma 3.8.6. For any knot K and for any i > 0, we have
{AHFK(S®, Qi (K), A) # 0} = {A: HFK(S®, Q% (K), A) # 0}

In order to simplify arguments and pictures in the next section, we in-

troduce a modified version of the lifted § curve, called the collapsed [ curve.

Definition 3.8.7. Let B(i,j) denote the curve B(z’,j) after collapsing the
lifts of the arcs 0, . to a single point

See Figure 3.44 and 3.45 where we draw B(0, j) and B(1, j) together

with the Alexander gradings of arcs. The following lemma is immediate.

Lemma 3.8.8. As an F-vector space, pairing with the collapsed B curve is
the same as pairing with the 3 curve: ﬁ(d([(, n), B(i,j)) = @T{(d(K, n),B(i,j))
and moreover, we can recover the Alexander grading of any intersection

point in the collapsed pairing diagram.

Although twisting up does not change the set of Alexander gradings la-
belling arcs of the [ curves by Lemma 3.8.6, twisting up does change the
number of arcs of the collapsed [ curve that are labelled with a fixed Alexan-

der grading. We will return to this observation in section 3.9 (see Lemma
3.9.2).

3.9 Three-Dimensional Invariants

In this section we compute the genus of the patterns Q%/, determine the
set of triples (4, j,n) so that the pattern Q% is fibered in the solid torus, and
show that whenever K is a non-trivial companion the satellite knots Q% (K)

are not Floer thin.
Three-Genus and n-twisted Satellites

In this section we use Theorem 3.8.4 and the collapsed pairing diagram
for n-framed satellite knots to prove Theorems 3.7.1 and 3.7.2 from the in-
troduction. Recall that our strategy is to determine g(Q% (Ty3)) directly
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from the pairing diagram and deduce the forumla for a general non-trivial
companion from Equation 3.6. An immediate Corollary of Theorem 3.7.1 is

a computation of the genus of the n-twisted pattern knot Q% in S* x D2

Corollary 3.9.1. Forn € Z, i € Z=q and j € Z~y, the pattern knot Q%I in
St x D? has genus
iG+1) 1 n>0

|+

9(Q7) = == ,
1—-7 n<0

Proof. Equation 3.6 shows that

Q(Qi{j) = Q(Qf{j(Tz,:s)) - jg(T2,3> = 9(@?(772,3)) —J

To prove Theorems 3.7.1 and 3.7.2, we will make use of the collapsed
pairing diagram. Note first that since g(K) = max{A : @(53, K, A) #
0}, Lemma 3.8.6 implies that g(Q%/ (K)) = ¢(Q%(K)), so it is enough to
consider the case 7 = 0.

In Figures 3.46-3.48, we see the top half of the lifted pairing diagram
C/F‘T<(C~Y(T273, n), 5(0,7)). The other half is determined by the symmetry of
the pairing diagram coming from the symmetry of knot Floer homology. We
work with the collapsed pairing diagram to simplify the pictures, since we
are not interested in any of the differentials and only in the Alexander grad-
ings in this section. Note that by [Chel9, Lemma 6.3|, the Alexander grad-
ing of intersection points of a(Ty3) and 3(0,5) increase by —w(Q%) = j
as we go up one row in the pairing diagram, so to determine the largest
Alexander grading of an intersection point in the pairing diagram, it is enough
to determine the number of rows between the central intersection point ¢

(with A(c) = 0) and the top of the pairing diagram.

Proof of Theorem 3.7.1. As mentioned, by Lemma 3.8.6, it is enough to
determine the genus in the case ¢ = 0, and by Equation 3.6 it is enough

to compute g(Q%(Ty3)). To this end, consider first the case n > 0. It is
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a(K,n)

a(K,—n)

Figure 3.46. The pairing diagram for Q% when j is odd and n > 0
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easy to see that the intersection point labelled a in Figures 3.46-3.48 has
the largest Alexander grading. Indeed, the Alexander gradings increase by
j for each row we go up in the pairing diagram and the Alexander gradings
labelling each arc in the collapsed pairing diagram increase by one for each
column we go over from right to left in the pairing diagram. To determine
A(a), note that there are a total of 2(j + 2) + (n — 2)(j + 1) lifts of the
curve 3(0, j) needed to account for all the intersections between a (75 3,n)
and ((0, 7). Indeed there are (j + 2) lifts of the CFK* (T3 3) region (which
occupies 2 rows) and there are (j + 1) lifts of the unstable region, which
spans n — 2 rows. There are then three cases to distinguish. If j is odd, then
there are an even number of rows and the central intersection point occurs
between these rows. Moreover, since there are an odd number of CFK™ (75 3)
regions, by symmetry of the pairing diagram the central intersection point
occurs in the middle of the central CFK® region of the curve. See Figure
3.46. If j is even, then there are an odd number of lifts of the unstable re-
gion and so the central intersection point occurs somewhere along the un-
stable region. If n is even or odd, then the number of rows is either even or
odd. If n is even, we are in the situation pictured in Figure 3.48 and if n
is odd, we are in the situation pictured in Figure 3.47. In any case, to de-
termine A(a) it is enough to count the number of rows between the central
intersection point ¢ and the intersection point labelled b. In all the cases the
number of rows are indicated in the figure. We describe the case j even and
n odd in detail and leave the rest to the reader.

In Figure 3.47 the central intersection point ¢ occurs on the central lift

of the unstable chain. There are

rows between that intersection point

and the intersection point labelled d in Figure 3.47. Then, there are J

n
rows between the interesction point d and the intersection point e, and n + 1

rows between e and b. Therefore,

A(b)—A(c)=j<n;l+‘%n+n+l>.

Then it is straightforward to verify that A(a) — A(b) = ‘% + 1. Simplifying,
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a(K,—n)

i [ / [
| | Vo | |
\ I i I
[ |
Vo ) I )
I
i

Figure 3.47. The general pairing diagram for j even and n odd

we see that when n > 0

9(Qi (Ths)) = Ala) = j + 2

This finished the proof in the case n = 0. When n < 0, Figures 3.46-3.48

show both the curve (K, n) and the curve o(K, —n) and we can see that

the difference ¢(Q",(Th3)) — g(Q4/(Ths)) = j. For example in Figure 3.47,

the intersection point with the largest Alexander grading in the pairing with

a(K, —n) is labelled a’: A(a’) = g(Q¥(K)). Then A(a)—A(a') = ly 40w =

iG+1)
2

j. Therefore when n < 0, we have g(Q%(Ty3)) = j + n|+1—-5 O
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a(K,—n)

Figure 3.48. The general pairing diagram for j even and n even

Proof of Theorem 3.7.2. The computation of the genus when the compan-
ion knot is the unknot is similar to the proof of Theorem 3.7.1 and left to
the reader (see Case 0 in the proof of Theorem 3.7.6 for the relevant pairing

diagram). O
Fiberedness

In this section we prove Theorem 3.7.3. By [HMS08| a necessary con-

dition for a satellite to be fibered is for the companion to be fibered and to
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Figure 3.50. The
pairing diagram for
Q?L’j (T273> when

n < —1. The
Figure 3.49. The lifted Alexander grading
pairing diagram for labels of the 3 arcs are
HFK(QY (Ths)) as in Figure 3.51

determine the fiberedness of any satellite Q%/(K) with fibered companion, it
is enough to determine if the satellite knot Q%7 (T53) is fibered.

Now, recall that a knot K in S? is fibered if and only if HFK(S3, K, g(K))
has rank one [Ni07; JuhO8b]. In the previous section we determined that
largest Alexander grading, so the genus, of any satellite knot with pattern
Q% and companion K. In this section, we will determine the rank of the
knot Floer homology of Q% (T, 3) in Alexander grading g(Q%/(Ty3)). Us-

ing this, we will show when this has rank one. In the following, let g =

9(Q3 (T23))
Lemma 3.9.2.
2(i+1) ifn=0andj=>1
dim(HFK(S®, Q% (Tos),9)) = < 2(i +1) ifn=—1 and j =1
(i+1) else

Proof. We will first determine the rank of HFK(S, Q% (Ty3), g) then we will
see how the rank changes when we increase ¢ by twisting up the g curve.
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Figure 3.51. The general pairing diagram showing intersection points with
largest possible Alexander grading when ¢ = 0 and n = —1. For each
increase in i, there is one more arc in the top right with Alexander grading
label g, and one more arc in the second to top row and second to right
column with label g — 1+ 7

137



Suppose first that n = 0, In this case there are two intersection points in
the top row of the pairing diagram that contribute to ITF\K(SS, Qg’j(TQ,g), 9),
shown in Figure 3.49 and labelled a; and as. Direct inspection shows that
there are no other intersection points in this Alexander grading. Therefore
dim(HFK(S?, Q)7 (T2,3))) = 2.

Suppose now that n < 0. We first deal with the case n < —1. The
pairing diagram for this case is shown in Figure 3.50. In that figure we see
that there is one intersection point with Alexander grading g(Q%7 (T 3))
labelled a in the top row of that figure. Inspection of the pairing diagram
shows that all the intersection points in the lower rows of the pairing dia-
gram all carry Alexander gradings < ¢ regardless of the value of j. Hence
dim(AFK (5%, Q% (Ty3),g)) = 1 when n < —1 and j > 1.

The pairing diagram for the case n = —1 is shown in 3.51. In that fig-
ure, we see that there is one intersection point in Alexander grading ¢ in the
top row of the pairing diagram, labelled a. All other arcs of the 8 curve in
this row (and thus all other intersection points in this row) carry an Alexan-
der grading label < g. Consider the next to top row of the pairing diagram.
The largest possible Alexander grading is the Alexander grading of the inter-
section point labelled b, which is ¢ — 7 + 1. This is always strictly less than
g unless j = 1. Further, regardless of the value of j, all other intersection
points carry an Alexander grading < g — 1. So in the case that n = —1, we
see that dim(HFK(S3, Q%}(Tys3), ¢)) = 2 and dim(HFK(S3, Q% (Ty5), 9)) = 1
when j > 1.

The case that n > 1 is similar. In that case we see that for all 7 > 1 and
n > 1, tk(HFK(S3, Q% (Ty3), g)) = 1.

This proves the theorem in the case ¢ = 0. To deal with the cases 7 > 0,
recall that the lifted curve 5(i, j) is obtained from the lifted curve 5(i — 1, )
by twisting up, as shown in Figure 3.43. We see in Figures 3.52 and 3.53
that for each intersection point of é&(Ths,n) with 5(i — 1,7) in Alexander
grading g, there is one more intersection point of &(733,n) with B(i,7) in

that same Alexander grading. The theorem follows. O]

With Lemma 3.9.2 in hand, we can prove Theorem 3.7.3 from the intro-
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Figure 3.53. The top

Figure 3.52. The top left of the pairing

left of the pairing diagram when n > 0

diagram when n > 0 and ¢ = 3. The

and ¢ = 2. The intersection points

intersection points connected by a spiral

connected by a spiral are in the same

are in Alexander Alexander grading

grading g = ¢(Q}/ (K)) 9=9(Q; (K))
duction.

Proof of Theorem 3.7.5. By [HMS08], the pattern knot Q% is fibered in

St x D? if and only if the satellite knot Q47 (T3 3) is fibered in S®. By the
computation in lemma 3.9.2 and the fact that a knot in S® is fibered if and
only if rank(HFK(S3, K, g(K))) = 1 [Ni07], we see that the pattern knot Qi
is fibered for j > 2 if and only if i = 0 and n # 0 and when j = 1 Q%' is
fibred if and only if i = 0 and n # 0, —1. m

3.10 Thickness and unknotting number of generalized Mazur satellites with

non-trivial companions

In this section we give lower bounds on the thickness and torsion order
for n-twisted satellites with patterns Q% and arbitrary non-trivial compan-
ions. Recall that a knot K is called Floer thin if for all pairs of generators
z and y of HFK(S3, K) M(z) — A(z) = M(y) — Aly). Equivalently, if we
define the é-grading as 6(x) = M (x) — A(z) a knot is thin if the ¢ grading
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T

Figure 3.54. Ilustration of two intersection points in the pairing diagram
with a length 7 + 1 vertical differential between them. The red arc is a
portion of a(K,n) that exhibits the genus detection of knot Floer homology

is constant for all generators. This concept was introduced in [MOOS8|, where
they showed that all quasi-alternating knots have thin knot Floer homology.
Suppose that there is a length k vertical arrow between two distinct
generators x and y of the knot Floer homology. Then A(y) = A(z) — k and
M(y) = M(z) — 1. In this case, if we consider the collapsed § grading we see
that §(x) = M(z) — A(x) and 0(y) = M(z) — 1 — (A(x) — k) = 0(z) + k — 1.
So if k > 1, these two generators are supported in distinct § gradings, and so

the knot K is not Floer homologically thin.

Theorem 3.10.1. Suppose that K s a non-trivial companion knot. Then
the satellite knots Q4 (K) are not thin.

The proof of Theorem 3.10.1 relies on the observation that, since knot
Floer homology detects the genus of knots, if a knot K is non-trivial there
is always a portion of the immersed curve in each column that exhibits this.
We are only interested in the portion of the immersed curve in the second

column of the pairing diagram which is shown in figure 3.54.

Proof. Suppose K is a non-trivial companion knot. Then the curve a(K, n)
contains a portion as shown in Figure 3.54 by the genus detection of knot

Floer homology. We see that there are two intersection points, denoted x
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Figure 3.56. The pairing C/F‘T{(a(U, —1),8(,7))

and y, that are connected by a length j + 1 vertical differential. Hence the
knot Q% (K) is not Floer thin. O

Next, we investigate what happens when the companion knot K is the
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unknot. In that case, since Qé’j (U) ~ U, it is clear that the O-twisted satel-

lite is Floer thin. In all other cases, we prove the following

Theorem 3.10.2. The satellite knot Q%I(U) is not Floer thin unless n = —1
and j = 1.

Note that Theorems 3.10.1 and 3.10.2 in the case j = 1 recover [PW21,
Theorem 1.01].

Proof. Since K = U, the pairing diagram C/F\K(oz(U, n), B(i, 7)) has the form
shown in Figures 3.55 and 3.56. Figure 3.55 shows the case when n < —1
and Figure 3.56 shows the case when n = —1. The case when n > 0 is sim-
ilar and left ot the reader. In the case n < —1 inspecting Figure 3.55 we
see that there is a length j + 1 vertical differential between the intersection
points labelled x and y. In the case n = —1, Figure 3.56 shows that there is
a length j vertical differential between the intersection points labelled = and
y. Inspection of the pairing diagram shows that these are the longest pos-
sible vertical differentials in the complex C/FT(F[U,V] v (S?,Q% (U)). There-
fore, when n < —1, the satellite knot Q%’(U) is never thin and when n = —1,
the satellite knot Q%/(U) is thin if and only if j = 1. O

The V -torsion order of a knot, Ordy (K) is the smallest integer k with
the property that V*(Tors(HFKg,,(S% K))) = 0. The proofs of Theo-
rem 3.10.1 and 3.10.2, in addition to determining when the satellite knots

Q% (K) are not thin, also gives a lower bound on the torsion order of Q% (K):

Corollary 3.10.3. When K s non-trivial, or when K = U andn # —1
Ordy (QW(K)) = j+ 1. When K = U and n = —1 then Ordy (Q™ (U)) = j.

Proof. The proof of theorem 3.10.1 and 3.10.2 shows that the chain omplex
gCFK™(Q%(K)) has a length j + 1 vertical differential in the case K is non-

trivial or K = U and n # —1, or a length j vertical differential in the case
K =Uandn = —1. O

Since the torsion order is a lower bound for the unknotting number of a
knot [AE20] the following Corollary is immediate. This verifies a conjecture
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of Hom, Lidman and Park in the case that the pattern knot is an n-twisted

generalized Mazur pattern [HLP22, Conjecture 1.10].

Corollary 3.10.4. The satellite knots Q% (K) with non-trivial companions
have unknotting number at least j + 1 = w(Q%) + 1.

3.11 Heegaard Floer Concordance Invariants and Twisting

In this section we determine the dependence of the invariants 7 and € on
the parameters 7, 7 and the twisting parameter n. First, we will determine
the invariants 7(Q% (K)) and €(Q%’(K)) in terms of 7(K), ¢(K), j and n,
and then we will show that 7(Q%/(K)) and €(Q%/(K)) are independent of
1 € L.

Recall that by Theorem 3.8.4, the complex CFKgpy,y1/0v (5%, Q% (K))
can be extracted from the pairing diagram by considering disks that cover
either the z or w basepoint and do not cover both. Let CFKpp1(S?, Q%7 (K))
denote the complex obtained by only counting disks that cross the z-basepoint
(so the U = 0 quotient of CFKgpvy0v(S?, Qu?(K))). Theorem 3.8.4 shows
that this complex is isomorphic to gCFK™(S?, Q%/(K)) and so has homol-
ogy isomorphic to HFK™ (5%, Q% (K)) as an F[V] module. The structure
theorem for HFK™ implies that it has a single free F[V] summand, and the
generator of this summand has Alexander grading 7(Q%’(K)) by [OSTO08,
Appendix A]. Therefore, to determine the value of 7 of satellites with arbi-
trary companions, arbitrary framings and patterns Q%’, we will use Theo-
rem 3.8.4 to identify a collection of intersection points, so generators of the
complex CFKppvy/ov (5%, Q%7 (K)), that form a subcomplex with respect
to the vertical z-basepoint differentials (when we set U = 0) and generate
the F[V] free part of the homology of HFK™ (5%, Q%7 (K)). Setting V = 1 in
this complex gives @(53) and so, said another way, we identify a cycle in
HFK(S3,Q%9(K)) that, in the V-filtration, survives in HF(S5?).

We will see in the pairing diagram that the form of this subcomplex is
completely determined by the piece of the essential component of & (K, n)

in the first column of the lifted pairing diagram corresponding to Lemmas
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3.8.2 and 3.8.3. Once we identify the cycle that generates the F[V]-free part
of the homology (so survives in the spectral sequence to ﬁF(S %)), it can be
extended to be the distinguished element of some vertically simplified basis,
as in [Hom14, Section2.3]. Then it is possible to determine ¢(Q%/(K)) from
the horizontal (w-basepoint crossing) differentials. By [Hom14, Definition 3.4
and Lemma 3.2] ¢(K) = 1, —1 or 0 depending on whether the distinguished
element of the vertically simplified basis has a horizontal differential into it,
out of it, or neither respectively.

As in Lemmas 3.8.2 and 3.8.3, we distinguish multiples cases for the
essential component of &(K,n) depending on 7(K), ¢(K), and n. In each
case the form of the pairing diagram, and thus the subcomplex carrying the
F[V] free part of the homology, changes. Moreover, the Alexander grading
labels of the arcs of the 3 curve relative to the central intersection point of
the pairing diagram also change. As in the proof of Theorem 3.7.1, there are
also multiple sub-cases depending on whether j and n are even or odd. We
mostly draw the pairing diagram in the case j is odd, since the pictures are
slightly simpler. We analyze the case j even and n odd in Figure 3.70, and

leave the rest of the cases where j is even to the reader.

Proof of Theorem 3.7.6. The proof is divided into many cases, first by the
value of €(K), then into whether 7(K) is positive or negative, and then into
various cases of whether or not n > 27(K) or n < 27(K). The pictures look
slightly different when, for example 7(K) > 0 and either n < 0 < 27(K) or
0 < n < 27(K), so we separately analyze those cases as well.

Case 0 ¢(K) = 0: In this case it follows that 7(K) = 0 [Hom14|, and
the essential component of the immersed curve a(K,n) is the same as the
immersed curve for the n-framed unknot complement, and so 7(Q% (K)) =
7(Q%(U)). The case n = 0 is clear, since Q5’ (U) ~ U. We indicate the
pairing diagrams for the cases n < 0 and n > 0 in Figures 3.57 and 3.58.

In the case that n < 0, the intersection points labelled {a;};™" form a sub-

complex of CFKppy1(S?, Q%7(U)) with respect to the vertical differentials

that contains an F[V'] free part. Setting V' = 1 in the above subcomplex,

we see that the cycle Y] ag;41 generates @(33). Note that the intersection
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Figure 3.57. Figure 3.58.
€(K)=7(K)=0and €(K)=7(K)=0and
n <0 n >0

points by; 1 satisfy 0"(Dlbgis1) = U Dl a1, so that e(Q%(U)) = 1 by
[Hom14, Section 3|. Recall that A(D] ag+1) = max{A(az+1)}, and from
this it is easy to see that 7(Q%/(U)) = A(a1). Then, A(a1) = lea, * Ouw.z
where £, is the arc of the lifted 5 curve from ¢ to a by [Chel9, Lemma
4.1]. Now as remarked the Alexander grading labels of arcs of the § curve

change by —j for each row we go down in the pairing diagram, so we see

that A(a) = 7(QU(U)) = —j (j%w - 1) S0,

In the case that n > 0, The intersection points {a;} form a subcomplex
of CFKppy1(5?, Q% (U)) that contains an F[V]-free part, and we see that
the cycle a; generates Ifﬁ?(SS). Directly from Figure 3.58 we see that the
intersection point b satisfies 0"(b) = UZ2ay so €(Q%(U)) = 1. Furthermore,
we have that A(a;) = 7(Q%(U)) = .7(.77_1

Case 1 ¢(K) = 1: In the case ¢(K) = 1, we first distinguish between
the cases 7(K) positive and negative and then distinguish further between

various sub-cases depending on the value of n relative to 7(K).
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Figure 3.59. The
pairing diagram when
T(K)=0,¢(K)=1
and n = 27(K) and j
odd

Figure 3.60. The
pairing diagram when
T(K)>0¢K)=1
and n < 0 < 27(K)
and j odd
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Figure 3.61. Case 7(K) > 0, e(K) =1 and 0 < n < 27(K) with j odd
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Figure 5.62.

Subcomplex carrying Figure 3.63.

the cycle that Subcomplex carrying
generates HF (S?) cycle that generates
together with HF(S?) and horizontal
horizontal differentials differentials from

from Figures 3.70 and Figures 3.60, 3.61, and
3.71 3.64

Case 1l.1a 7(K) > 0 and n > 27(K): This case is shown in Figure
3.59. In that figure, the intersection points labelled {a;}:™/" form a sub-
complex that contains the F[V]-free part of CFKgpy(S?, Q%7(K)) and it is
easy to see that the intersection point labelled as,,,1 generates I-/II*“(S?’), ob-
tained by setting V' = 1 in the above sub-complex. Then, the intersection
point as,, .1 is a distinguished element of some vertically simplified basis of
CFK™(K). Since the intersection point labelled b satisfies 0"(b) = U2agm 1,
the cycle as,,41 is a boundary with respect to the horizontal differential, so
it follows from [Hom14, Section 3| that ¢(Q%/(K)) = 1. It remains to deter-
mine 7(Q% (K)) = A(agm+1). By symmetry of the pairing diagram, we see
that the intersection point ¢ satisfies A(c) = 0, and then by [Chel9, Lemma

4.1] Alagm+1) = Alagms1) — Ale) = £ - 0. Now, to determine the

C,a2m+1
quantity lcq,,.,, - 0w We see in Figure 3.59 that the arc (., ,, traverses
T(K) + I " rows up the pairing diagram, and the Alexander grading

changes by j for each row we go up in the pairing diagram. Therefore

Alasmss) — J (T<K> v 1n) = jr(ze) +

Case 1.1b 7(K) > 0 and n < 0 < 27(K): This case is shown in Figure
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3.60. In the pairing diagram, we can see that the subcomplex generated by

the intersection points {a;};7" together with the vertical differentials car-

ries the F[V]-free part of the HFK™ (53, Q%I (K)). This subcomplex is shown
in Figure 3.62 together with the horizontal differentials, and that the cycle
D G2k41 Survives in Iﬁ?(S 3). Then this cycle forms the distinguished el-
ement of some vertically simplified basis. Further, we see that for each k,
M(bagks1) = Uaggi1, so we have O"(37"  bori1) = U D-, agkr1. Therefore
€(Q%(K)) = 1. Now, it remains to determine A(a;) = 7(Q%(K)). By sym-
metry, A(c) =0 and

Alr) = Aar) = A@C) = Loy e = —j <T(K) + L] - 2T(K>> i,

since the Alexander grading changed by —j for each row we go down in the

pairing diagram. Simplifying, we see that

7(Qy7 (K)) = jr(K) +

Case 1.1c 7(K) > 0 and 0 < n < 27(K): This case is shown in Figure
3.61. The analysis here is exactly as in the previous case. The subcomplex
{ay} carries the F[V]-free part of the homology HFK™ (53, Q% (K)), and the
cycle D" agy1q survives in @(53), so can be taken to be the distinguished
elements of a vertically simplified basis. Further, we have "(3)"  bop11) =
Ut azkt1, so just like in the previous case it follows that e(Q%7(K)) = 1
It remains to determine A(a,): Counting the number of rows between a; and

¢ in the pairing diagram, we find that

F(QU(K)) = Alar)— A(e) = j <T<K> i n) 1K) +

This ends the analysis of the case ¢(K) = 1 and 7(K) non-negative.
Next, we move on to the case €(K) = 1 and 7(K) non-positive.

Case 1.2a 7(K) <0, ¢(K) =1 and n < 27(K)

In this case, the pairing diagram is shown in Figure 3.64. The intersec-
tion points labelled {a;};™;" generate the free part of CFKgp(Q%(K)),
the cycle Y/, agk41 is the cycle that survives in @(53), and 7(Q%(K)) =
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2|7(K)

Figure 3.64. 7(K) <0
e(K) =1 and Figure 3.65. 7(K) <0
n < 27(K) e(K)=1landn=>0

A(ay). The intersection points {bay1}7, satisfy 0" (3L, bak+1) = U Do Gokr1,
s0 €(Q%(K)) = 1. Exactly in the previous cases, we find that

T(QY(K)) = A(ay) = —j (—T(K) i ; 1|ny) +1=j7(K) + =Y,y

Case 1.2b 7(K) < 0, ¢(K) = 1 and n > 0 > 27(K) In this case, the
pairing diagram has the form shown in Figure 3.65. In this case the F[V]
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Figure 3.66.

Subcomplex carrying Figure 3.67.

the cycle that Subcomplex carrying
generates HF (S?) cycle that generates
corresponding to the HF(S?) and horizontal
cases in Figures 3.59, differentials from

3.65, and 3.68 Figures 3.69 and 3.72

free part of the homology is generated by the intersection points {ak}ZZf L

Further, the intersection point a; generated ﬁF(Sz”). Just as above, the in-
tersection point b satisfies 0"(b) = U?a; and hence ¢(Q%(K)) = 1. Further-
more A(a;) = 7(Q%(K)). Inspecting the pairing diagram we find that

JG—=1)
2

Alar) — A(c) — (T(m Ny - 1n) _jr(K) +

n

Case 1.2¢ 7(K) <0, ¢(K) = 1 and 0 > n > 27(K) The pairing dia-
gram for this case is shown in Figure 3.68. The intersection points {ak}izg !
generate the free part of the homology, and the intersection point a; gener-
ates T (53). In the pairing diagram, the intersection point labelled b satis-
fied 0"(b) = U?ay, so €(Q%(K)) = 1. Further, we compute
i —1)

2

QUIE) = Aler) = =3 (1) + L5l ) = gty + 20

That finishes the cases where €(K) = 1.

Case 2 ¢(K) = —1: As in the case €(K) = 1, we distinguish between
various sub-cases depending on the sign of 7(K) and the value of n relative
to 27(K)

Case 2.1a 7(K) >0, ¢(K) = —1 and n < 0 < 27(K)
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(K]

Figure 3.68. The
pairing diagram when
T(K)<0¢K)=1
and 0 > n > 27(K)

152

Figure 3.69. The
pairing diagram when
T(K)>0¢K)=-1
and n < 0 < 27(K)
and j odd



This case is shown in Figure 3.69. The intersection points {a;}:"" gen-

erate a subcomplex with respect to the vertical differentials and carries the
F[V]-free part of the homology of CFKpp(S?, Q%7 (K)). Setting V' = 1
we see that the cycle D"  as11 generates }/IF(S3). The intersection points
{bars1}io satisty 0"(X4Lo bari1) = U(g azkir), s0 (@) (K)) = 1. We
determine 7(Q%(K)) = A(a;) from the pairing diagram and find

Ala) = —j <T(K) + L o]~ 27(K) - 1) = jr(m) + 1)+ ULy

Note: The case 7(K) > 0, €(K) = —1 and 0 < n < 27(K) is similar and
left to the reader.

Case 2.1b 7(K) > 0, ¢(K) = —1 and n > 27(K)

This case is shown in Figure 3.71. In this case subcomplex generated
by the intersection points {a;} generate the F[V]-free part of the homology.
We see that the intersection point labelled a; generates IfITT(S?’) and that
o"(b) = Uay. Therefore e(Q%/(K)) = 1. Now, it is easy to see from the
pairing diagram that A(a;) = A(as), and

G =1
2

F(QU(K)) = Alay) = j (T<K> N At 1) — (K + 1) + n

Case 2.2a7(K) < 0,¢(K) = —land n > 0 > 27(K) This case
is shown in Figure 3.70 where the intersection points {a;} form a subcom-
plex that carries the F[V]-free part of the homology, and the cycle agy,+1
generates Iﬁ‘(Si)’). Considering disks that cross the w-basepoint, we see
that 0"(b) = Udgme1 and so €(Q%(K)) = 1. It remains to determine
7(Q% (K)) = A(agms+1. This is similar to the previous cases, but we point
out what happens in the case when j is even and n is odd. In this case the
central intersection point ¢ with A(c) = 0 is shown in Figure 3.70. Since j is
even, the central intersection point occurs along the unstable chain, as in the

proof of Theorem 3.7.1. Just as in the previous cases, we find that

N |,

A(agmﬂ)—A(c):j( —T(K)+(%—2>H+H+QT(K)+1)+

2
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Figure 3.70. Case 7(K) <0, ¢(K) = —1 and n > 0 > 27(K) with j even

154

T 2r(K) + 1




Simplifying, we see that

iG—=1

7(Qu?(K)) = Alaams) = j(r(K) +1) + ==

n.

Case 7(K) <0 ¢(K) =—1and 0 > n > 27(K)
This case is similar to the previous cases and is left to the reader.
Case 7(K) < 0 ¢(K) = —1 and n < 27(K) The pairing diagram for
this case is shown in Figure 3.72. In that figure we see that the intersection
points labelled {ay} generate the free part of the homology of C/ﬁ(F[V](S 5 Q% (K))
and when we set V' = 1 the cycle >," j as11 generates I-/II?(S?’). The in-
tersection points {bax1} are such that 0"(3, baxy1) = U D aoki1, SO
€(Q%(K)) = 1. It remains to determine 7(Q% (K)) = A(a1). Inspecting
the pairing diagram, we find that

QU (K)) = j(T(K) + 1) +

Lemma 3.11.1. For any j € Z-o, n € Z and i € Z=y,

T(Q) (K)) = 7(Qy(K))

Proof. Inspection of the pairing diagram shows that the intersection points
that form a subcomplex of CFKgpy(S?, Q47 (K)) that generates the F[V]
free part of the homology is independent of . That is, twisting up the
curve does not change the subcomplex under consideration and as remarked
before, does not change the Alexander gradings of the previously existing
intersection points. See Figures 3.73 and 3.74. In particular in all cases the
cycle that survives to @(S 3) and the Alexander grading of that cycle is in-
dependent of i. O

Lemma 3.11.2. For any j € Z-o, n € Z and i € Z>y,
€(Q (K)) = e(Q,7 (K)).
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Figure 3.71. The
pairing diagram when

7(K)>0¢e(K)=—1 Figure 3.72. 7(K) <0
and n > 27(K) and j €(K) =—1 and
odd n < 27(K)

Proof. There are a few cases depending on the shape of essentail component
of the curve a(K, n), but the proof is essentially local in nature so we only
indicate the local modification to the complex. Consider the case when the
intersection point with Alexander grading 7(Q% (K)) and the vertical sub-
complex nearby this intersection point has the form shown in figures 3.75
and 3.76. For example this covers the cases when 7(K) > 0 and €(K) = 1
and n < 27(K) and 7(K) < 0, ¢ = 1 and n < 27(K). When we twist the
B curve up once, notice that there are now two intersection points b and v’

with a horizontal differential to a. However, this does not change the com-

156



Figure 3.73. The Figure 3.74. The

subcomplex that subcomplex that
carries the F[V]-free carries the F[V]-free
part of the homology part of the homology
before twisting after twisting

putation of €, since we can perform a change of basis, letting by = b and

by = b+ V. Then 0"(b;) = a and 0"(by) = 0. We see from figures 3.77 and
3.78 that this pattern continues for each addition twist we add to the lifted

[ curve.
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Figure 3.75. A
horizontal differential
to the intersection
point that survives the

sp\ectral sequence to
HF(S?) when i = 1

a

Figure 3.77. A
horizontal differential
to the intersection
point that survives the

spectral sequence to
HF(S?3) when i > 1
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Figure 3.76. Another
horizontal differential
to the intersection
point that survives the

sp\ectral sequence to
HF(S?) when ¢ = 1

a

Figure 3.78. Another
horizontal differential
to the intersection
point that survives the

Sp\ectral sequence to
HF(S?3) when ¢ > 1



CHAPTER 4

KHOVANOV STABLE HOMOTOPY TYPE AND RIBBON
CONCORDANCE

4.1 Introduction

This chapter contains previously published material. In 2014, Lipshitz
and Sarkar introduced a stable homotopy refinement of Khovanov homol-
ogy [LS14a]. For each fixed j it takes the form of a suspension spectrum X7.
The cohomology H*(X7) of this spectrum is isomorphic to the Khovanov ho-
mology Kh*?. In subsequent work (e.g. [LS14c|) they used this refinement
to define stable cohomology operations on Khovanov homology. This lead to
a refinement of Rasmussen’s s-invariant for each nontrivial cohomology oper-
ation, and in particular for the Steenrod squares [LS14c|. In this short note
we offer a solution to the following question posed in Lipshitz-Sarkar [LS18,
Question 3|: Are there prime knots with arbitrarily high Steenrod squares on

their Khovanov homology? Explicitly, we prove the following theorem:

Theorem 4.1.1. Given any n, there exists a prime knot P, so that the op-
eration
W O ~itn,j
Sq" :Kh " (P,) - Kh " (P,)

is nontrivial for some (i, 7). Here Kh denotes reduced Khovanov homology.

Corollary 4.1.2. Given any n, there exists a prime knot P, so that the op-
eration

Sq™ : Kh'/(P,) — Kh'*™(P,)
is nontrivial, on unreduced Khovanov homology, for some (i,j).

In fact a stronger version of Theorem 4.1.1 is true:

Theorem 4.1.3. Given any n, there exists a hyperbolic knot H, so that the
operation

~ i+n,]

Sq" : Kh'”(H,) —» Kh' ™ (H,)

is nontrivial for some (i,7). Here Kh denotes reduced Khovanov homology.
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Theorem 4.1.4. Given any n, there exists a prime satellite knot S, so that
the operation
~i,j ~ i+n,j
Sq” : KL (S,) — Kh' 7 (S,)
is nontrivial for some (i,7). Here Kh denotes reduced Khovanov homology.

Our technique for proving all of the above theorems is to find a ribbon con-
cordance from any given knot K to a prime, hyperbolic or satellite knot,
then appeal to the following generalization to reduced Khovanov homology
of a theorem of Wilson and Levine-Zemke (for the original statement see
[Will2; LZ19| or Theorem 4.2.2 below).

Theorem 4.1.5. Suppose C' is a ribbon concordance between knots K and
K'. Then the induced map F¢ : Ir{\fl(K) — K\B(K,) is injective.

Recall that any prime knot K is either a hyperbolic knot, a satellite
knot, or a torus knot. With this in mind, Theorems 4.1.1—4.1.4 suggest the
following question: .
Question: For any given n, is there a torus knot 7T}, so that Sq™ : f(\ldrlw(Tn) —
Kh (T},) is nontrivial for some (4, j)?

The organization of the chapter is the following. In Section 4.2, we review
the results of Wilson and Levine and Zemke [Will2; LZ19| showing that rib-
bon concordances induce split injections on Khovanov homology. In Section
4.3, we prove the analogue of this theorem for reduced Khovanov homology.
In Section 4.4, we show that any knot is ribbon concordant to a prime knot,
following the arguments in [Lic81; KL79|. In Section 4.5, we collect various
results about the naturality of Steenrod squares with respect to births, Rei-
demeister moves and saddle maps and the behavior of the Khovanov stable
homotopy type under connected sums. In Section 4.6 we show that the non-
triviality of Steenrod squares on composite knots constructed by Lipshitz-
Sarkar [LLS15, Corollary 1.4] and [LS18, Corollary 3.1] propagates to the
nontriviality of Steenrod squares on the Khovanov homology of prime knots.
In Section 4.7 we prove Theorem 4.1.3 using results of Silver and Whitten
[SWO05]. In Section 4.8 we prove Theorem 4.1.4 using results of Livingston
[Liv81].
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4.2  Khovanov Homology and Ribbon Concordances

In this section we review the behavior of Khovanov homology under rib-
bon concordances. Unless explicitly stated otherwise, throughout this paper
we write Kh(K) to mean Kh(K;TFy).

Definition 4.2.1. let K, and K, be links in S®. A concordance from K, to
K is a smoothly embedded cylinder in [0,1] x S with boundary —({0} x
Ky) u ({1} x Ky). A concordance C' is said to be ribbon if C' has only index
0 and 1 critical points with respect to the projection [0,1] x S* — [0, 1].

Throughout this paper, we will use the notation C to denote the ribbon

concordance C' upside-down.

Theorem 4.2.2. [Wil12; LZ19] If C is a ribbon concordance from Ky to
K1, then the induced map

Kh(C) : Kh(Ky) — Kh(K;)

is injective, with left inverse Kh(C). In particular, for any bigrading (i, 7)
the group Kh'’(K,) is a direct summand of the group Kh™ ().

The proof of this theorem involves decomposing the cobordism D :=
C o C as the disjoint union of the identity cobordism (a cylinder) and sphere
components joined to the cylinder by tubes (formed from the ribbons and
their duals). For details, see [LZ19] or [Will2]. In the next section, we present
an analogue of Theorem 4.2.2 for reduced Khovanov homology, after review-

ing the necessary definitions.
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4.3 'The Base-point action and Reduced Khovanov Homology

We begin with the definition of the base-point action on Khovanov ho-

mology. For grading conventions, see [Shul4].

Definition 4.3.1. Fiz a diagram of the knot K and pick a base-point g € K
not on any of the crossings. Then we make the Khovanov complex Cyy,(K)

of K into a module over Fo| X|/X? as follows. Generators of the chain groups
are complete resolutions of K and a choice of 1 or X for each component of
the complete resolution. Multiplication by X is zero if the generator labels

the circle containing q with an X and if the generator labels the circle con-
taining q by 1 it changes the label of the circle to X. With our grading con-
ventions (see [Shulj]), multiplication by X has bidegree (0,—2). That is

X : Kh"/(K) — Kh"/"?(K).

Definition 4.3.2. Let F be the Fo[ X|/X? module Fy where X acts trivially.
Then define

5Kh<K> = CKh<K) ®]F2[X]/X2 F.
The homology of the complex éKh(K ) is called reduced Khovanov ho-
mology and denoted K\fl(K)

Theorem 4.3.3. [Shulj, Corollaries 3.2.B and 3.2.C| The action of X on
Cxn(K) commutes with the Khovanov differential, so induces a map (also

called X ) on homology. Further,

1. The following sequence is exact:

S KRP(K) S K'Y (K) S Kh A (K) S

2. The reduced Khovanov homology over Fy is isomorphic to the kernel
of X (which is the image of X by part 1), and we have the direct sum

decomposition
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. ~ij—1 ~ i+l
Khi/(K) =~ Kb (K)@Kh”" (K).
With these preliminaries in mind, we prove Theorem 4.1.5 from the in-

troduction.

Proof of Theorem 4.1.5. By Theorem 4.2.2 we know that the map F :
Kh(Ky) — Kh(K;) is a split injection with left inverse F. By Theorem
4.3.3, for a € {0, 1},

Kh(k,) = Ker(X : Kh(K,) — Kh(K,)) = Im(X : Kh(K,) — Kh(K,)).

Therefore, it is enough to show that the map F¢ is a Fo[ X]/X? module
map. Indeed, then Fg|ke maps Ker(X : Kh(Ky) — Kh(Kp)) to Ker(X :
Kh(K;) — Kh(K;)) and Fg|ke maps Ker(X : Kh(K;) — Kh(K})) to
Ker(X : Kh(Ky) — Kh(K)j)). Further, Fg|ker © Folker = id|ker- Therefore
Folker 18 a split injection.

Now, any cobordism can be decomposed into births (0-handles) and saddle
moves (1-handle attachments) and deaths (2-handles). So, to show that the
maps induced on Khovanov homology by cobordisms respect the X action,

it suffices to verify the following.

1. Births and deaths respect the module structure with respect to a base-

point not on the circle dying or being born.

2. The isomorphisms of Khovanov homology associated to Reidemeister

moves respect the module structure.

3. The maps associated with saddles respect the module structure.

Item 1 is clear from the definition of the X action, provided we chose
a base-point on the original knot diagram, away from where the births and
deaths occur.
Item 2 follows from Proposition 2.2 of Hedden-Ni [HN13|. Evidently, the ho-

motopy equivalences induced from Reidemeister moves commute with the
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X action if the Reidemeister moves does not involve a strand moving across
a base-point. Therefore it suffices to show that moving a strand across the
base-point does not change the action of X on homology. This follows by
writing down an explicit chain homotopy between the different base-point
actions associated with choosing two marked points, on the same compo-
nent, on opposite sides of a crossing. These homotopy equivalences appear in
[HN13, Lemma 2.3|.

Item 3 reduces to a local calculation in a complete resolution. Either
the saddle cobordism merges two components, or splits one component into
two. In either case, it is easy to check that the maps involved commute with
the X action. O]

4.4 Knots and Prime Tangles

The main theorem of this section is the following:

Theorem 4.4.1. [Lic81; KL79] Any knot is ribbon concordant to a prime
knot.

The proof of this theorem is standard and is well explained elsewhere
in the literature. We include a review of the techniques used in the proof
for the convenience of the reader and to introduce some notation. We begin
with a definition and a convention |[Lic81; KL79; Ble82|.

Definition 4.4.2. A (4-ended) tangle with no closed components is an em-
bedding of [0,1] L [0,1] into B* so that {0,1} U {0,1} map to S? = dB3. We
specify a tangle by a diagram, see Figure 4.3. We denote such a tangle by
(B,T) or just T. A tangle (B, T) is prime if both of the following conditions
hold:

1. Any 2-sphere embedded in B that intersects the knot transversely at
two points bounds on one side a three ball A so that A n'T is homeo-
morphic to the standard ball arc pair (D? x [0,1],0 x [0,1]).
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(70 _J&: =)
S OmO

Figure 4.1. T\ +, T Figure 4.2. (T +,T») + Cl

2. (B,T) is not a rational tangle. Equivalently, (B,T) does not contain

any separating disks.

One motivation for the name prime tangle and illustration of their use

is indicated by the following:

Theorem 4.4.3. [Lic81, Lemmas 1, 2] The sum of two prime tangles is a

prime knot. The partial sum of two prime tangles is a prime tangle.

For the proof, see [Lic81|. In this paper, we use the notation +, for the
partial sum of two tangles and the notation T} + 75 for the sum of two tan-
gles. These operations depend on a choice of which endpoints are identified.
In the present work, the operations +, and + mean the operations in Fig-
ures 4.1 and 4.2 respectively. For our purposes, we make this explicit as fol-
lows. Let NW, NE, SW, SE denote the northwest, northeast, etc corners of
the diagram of a tangle 7. Then T} +,7> means the tangle formed by joining
the NE and SE corners of T7 to the NW and SW corners of 15 respectively
by unknotted arcs. Further, T} + T5 means the tangle formed from 7} and 75
by joining the N E corner of 17 with the SE corner of T3, the SE corner of T}
with the NE corner of 15, etc. See Figure 4.2, which shows (11 +, T3) + Cl.
Note that, even though we use the + sign to denote the tangle sum opera-

tion, it is usually not commutative.

Lemma 4.4.4 (See [KL79], [Ble82|). For any nontrivial knot K in S* there
is an embedded S* meeting K transversely in four points separating S® into
two three balls A and B so that
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1. (A, An K) is a trivial two-stranded tangle (so homeomorphic, as pairs,

o (D? x I, {(~1/2,0)} x T U {(1/2,0)} x 1)), and
2. (B,B n K) is a prime tangle.
Lemma 4.4.5. The clasp tangle Cl is a prime tangle.

Proof. Since each of the individual strings that compose the clasp tangle
are unknotted, condition 1 in the definition of a prime tangle is automati-
cally satisfied. We just need to verify that the clasp is not a rational tangle.
Suppose for the sake of contradiction that it is. Recall that a knot built out
of two rational tangles is a two-bridge knot. It is a classical fact (originally
proved by Schubert, see J. Schultens [Sch03] for a modern proof) that the
bridge number of a knot, b(K), satisfies b(K#K') = b(K) + b(K') — 1.
Further, the only knot with bridge number 1 is the unknot. These two facts
together imply that two-bridge knots are prime. However, the numerator

closure of the clasp tangle is clearly a connected sum 3;#m(3;). O

Figure 4.4. The numerator closure of

Figure 4.3. The clasp tangle C the clasp tangle

Proof of Theorem 4.4.1. Since any knot can be decomposed as a connected

sum of prime knots, and connected sum is compatible with concordance, it

suffices to prove the result for a knot K = K;# K, where K; are prime. By

Lemma 4.4.4, we can find two disjoint three balls By and B, so that T; =

B; n K; is a prime tangle and (S\B;) n K; is an untangle. Now, consider

Ty 4, T5. This tangle is prime by Theorem 4.4.3. The denominator closure
166



of the resulting tangle is K #K5. The tangle sum (7} +, T%) + Cl is then

a prime knot by Theorem 4.4.3. The ribbon concordance, shown in Figure

4.7—Figure 4.10, between K #K, and (T +, T5) + Cl establishes the result.
O

’ (n]_(n)

Figure 4.5. Denominator closure of  Fligure 4.6. Denominator closure of
the clasp tangle 15+, 15

4.5 Steenrod Operations and Stable Homotopy Type

In this section we review, in bare bones fashion, the necessary facts
about Khovanov stable homotopy type needed in establishing Theorem 4.1.1.

We begin with a theorem, which explains how the Khovanov stable ho-
motopy type behaves under the operation of connected sum. Throughout

this section, let L denote a link of one or more components.

Theorem 4.5.1. [LLS15, Theorem 2]

XNI](h(Ll#LQ) ~ \/ Xle (Ll) AN XNjQ(LQ).
Ji+j2=j
Next, we recall the precise naturality statement enjoyed by stable coho-

mology operations.

Theorem 4.5.2. [LS14b, Theorem 4] Let S be a smooth cobordism in [0, 1]x
S3 from Ly to Ly, and let Fg : Kh**(Ly) — Kh***™X)(Ly) be the map asso-
ciated to S. Let « : ﬁ*(,F) — }N[*Jr”(-;]F) be a stable cohomology operation.

Then the following diagram commutes up to sign:
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Kh"/(Ly;F) —2—— Kh'™™/(L;F)

Fg lFS

KLt +x(S) (Ly; F) —2 K +nd+x(S) (Ly; TF).

Then, for a a stable cohomology operation, the following diagram com-

mutes:

Kh(U u K;Fy) ——*—— Kh(U u K;F,)

=| E

Fo[ X]/X2 @ Kh(K;Fy) 122% Fo[X]/X? @ Kh(K;F,)

2l |m

Kh(K; F,) a » Kh(K;Fs).

The bottom square commutes by Theorem 9, since the X action on Kh can
also be viewed as induced from a merge cobordism U 1y K — K where the
unknot is placed near the basepoint. The top square commutes since the
Khovanov spectrum of the unknot is homotopy equivalent to a wedge of two
S%s in grading —1 and 1. This homotopy equivalence induces the map in co-
homology that identifies Fo[X]/X? ® Kh(K;Fy) with Kh(K;F,) @ Kh(K;Fy)
with appropriate grading shifts.

Commutativity of the above diagram is the statement that any stable
cohomology operation is a map of Fy[ X]/X? modules. It follows that the
analogous diagram to the one in Theorem 4.5.2, with Khovanov homology

replaced by reduced Khovanov homology commutes, commutes.

Lemma 4.5.3. /[LLS15, Corollary 1.4] For any n there is a knot K, so that

the operations

~ i+n,]

Sq" : Kb (K,) — Kb ™ (K,,)

and

Sq" : Kh'/(K,,) — Kh'*"™/(K,)
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are nontrivial, for some (i,j).

For the proof, see [LLS15, Proof of Corollary 1.4, Page 67|. They find,
for the knot K = 157;,5-, a class « € Ir(\flil’O(K;IFz) so that Sq'(a) # 0 €
I/{\floyo(K;IFg) and Sq’(a) = 0 for i > 1. Then, letting K,, = K#K# ---#K,
the Cartan formula and Theorem 4.5.1 give the result.

Since the knot K, in the above theorem is the knot K connect summed with
itself n times, we can view K, as the denominator closure of the partial tan-

gle sum K +, --- 4, K (see Figure 4.7).
s el
o0 o=

Figure 4.8. K1# K5 1 Unknot after

Figure 4.7. K4 K, 1 Unknot isotopy

— S

N |
5 \oE

Figure 4.9. Another isotopy.

Figure 4.10. The result of adding a
band; the final stage of the ribbon
concordance between K;# K, and the
prime knot (77 +, T3) + C1 .
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4.6 Proof of Theorem 1

In this section, we collect the results from the previous sections together

to construct a proof of Theorem 4.1.1.

Proof of Theorem 1. By Lemma 4.4.4, the knot K from the proof of Lemma
4.5.3 can be decomposed as a prime tangle 75 and an untangle 77, so that
the denominator closure of T3 is K (this is “K with ears"; see [Ble82]). Then,
the knot K,, = K# ---#K is the denominator closure of the (prime) tan-
gle Ty +, Ty +, - - - +, T5, where recall 4+, denotes the partial sum of tan-
gles. Consider the ribbon concordance C' given in Theorem 4.4.1, from K, to
P, = (Ty+, Ty +p - - +, 1») + Cl. This is illustrated, for n = 2, in Figure
4.7—Figure 4.10 by replacing T by 715 in the figures. By Theorem 4.4.3 and
Lemma 4.4.5, P, is a prime knot.

By Theorem 4.1.5, the map

Fe : Kh(K,) — Kh(P,)

is injective with left inverse given by Fz where C is the concordance C upside-
down. Therefore I,(\B(Pn) = ﬁ(Kn) @ G for some complement G. Theorem
4.5.2 implies that the following commutes (note that the Euler characteristic

of any concordance is 0):x

Kh"(k,) = R0 (k)

o | |e

Kn (P 2 KL (P).

This immediately implies Theorem 4.1.1, since the vertical maps are

injective. [
Next, we prove Corollary 4.1.2 from the introduction.

Proof of Corollary 1. This proof follows closely the proof of [LLS15, Corol-
lary 1.4]|. There is a long exact sequence in Khovanov homology induced
from the cofiber sequence:
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XiY(P,) — XI(P,) — XI*(P,).

The long exact sequence takes the form:

~ i j+1

> Kh''(P,) - Kh(P,) & Kh

~ i+1,j+1

(P,) — Kh

ij—1

(Py) — -+

Since over the field F := Z/27Z the Khovanov homology of any knot K
YK F) @KL (K;T) of the shifted
reduced homology, the map m above is surjective. So, there is a class v €
Kh™™!'(P,) so that 7(y) = 3, where the class 3 is as in the proof of Theorem

4.1.1. Naturality of the Steenrod squares establishes the result. [

oy
is isomorphic to the direct sum Kh”

Remark 1: The above proof applies to any stable homotopy refinement of
Khovanov homology that satisfies the analogue of Theorems 4.5.1 and 4.5.2.
The idea of the proof also offers an obstruction to ribbon concordance be-
tween two knots. If P and () are knots with a ribbon concordance between
them, the Khovanov homology of P is a summand of the Khovanov homol-
ogy of () with the same stable cohomology operations as the Khovanov ho-
mology of Q).

As an illustration of the above remark, we have the following lemma. To
state it, we recall that in [Seel2], Seed constructed pairs of links L and L’ so
that Kh(L;Z) ~ Kh(L';Z) but the invariants Xky(L) and Xkn(L') are not

stably homotopy equivalent. Then, the following lemma is immediate.

Lemma 4.6.1. For each of Seed’s pairs of knots, there is no ribbon concor-

dance between them.
4.7 Hyperbolic Knots and Invertible Concordances

In this section we prove that there are hyperbolic knots with arbitrarily
high Steenrod operations on their reduced Khovanov homology. The main
theorem of this section, Theorem 4.1.3 from the introduction, is a direct con-

sequence of the following that appears in [SW05, Theorem 2.2(iv)]:
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Theorem 4.7.1. Given any knot K < S® there is a hyperbolic knot H and a

ribbon concordance from K to H.

The proof of Theorem 4.1.3 now is the same as the proof of Theorem
4.1.1 in Section 4.6. Following the notation of Section 4.6, and letting C' de-
note the composite ribbon concordance from K, to H,, the following com-
mutes:

~ —n,0

Kh "k, =2 KK,

o | |re

—n,0

Kh " (H) S R0 (H,).

Remark 2: It was pointed out to us by Danny Ruberman that there is a
stronger result possible. In Kawauchi [Kaw89], it is shown that for any knot
K there is an invertible concordance from K to a hyperbolic knot. This al-
lows the propagation of Steenrod Squares without the injectivity results of

Wilson or Levine-Zemke. See also [Kim00].
4.8 Satellite Knots

In this section, we show how results from [Liv81| imply Theorem 4.1.4.

Proof of Theorem 4.1.4. The reader is referred to [Liv81] for details of Liv-
ingston’s construction. Glancing at Figure 2 of [Liv81] shows that there is a
ribbon concordance from the unknot to a non-trivial knot K’ contained in
the solid torus S! x D?. Now, consider the knot K,, discussed in section 4.6
and the satellite S,, formed from K’ as pattern and K, as companion. Liv-
ingston shows that S, is prime. The ribbon concordance from the unknot to
K’ gives a ribbon concordance from K, to S,. The remainder of the proof

goes through exactly as in the proof of Theorems 4.1.1 and 4.1.3. O
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