
Essays on Monetary Transmission and Banking

by

Giorgi Nikolaishvili

A dissertation accepted and approved in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Economics

Dissertation Committee:

Jeremy Piger, Chair

David Evans, Core Member

George Evans, Core Member

Jose Carreno, Core Member

Youchang Wu, Institutional Representative

University of Oregon

Spring 2024



© 2024 Giorgi Nikolaishvili
All rights reserved.

2



DISSERTATION ABSTRACT

Giorgi Nikolaishvili

Doctor of Philosophy in Economics

Title: Essays on Monetary Transmission and Banking

The commercial banking sector in the United States comprises numerous

small, local (community) banks primarily focused on lending to small borrowers in

their respective local economies, alongside a smaller group of large, geographically-

diversified (non-community) banks that cater to larger borrowers. On average,

the lending practices and business models of these two types of banks different

substantially. In this dissertation, I analyze the macroeconomic implications of

the lending practices of community banks, along with the geographical factors

driving their performance dynamics, using a novel method of impulse response

function decomposition and existing high-dimensional time-series econometric

methodologies, respectively. In brief, I find that the extent of national comovement

in community bank performance has increased in recent decades, and that

community bank lending plays a significant role in the transmission of monetary

policy despite the decline in the presence of community banks relative to that of

their noncommunity counterparts.

The second chapter makes a methodological contribution, which informs the

analysis of the role of community bank lending in monetary policy transmission

in the third chapter. In this chapter, I formulate the concept of a pass-through

impulse response function (PT-IRF), which captures the contribution of any given

subsystem of a greater dynamical system to the net effect of the propagation of a

structural shock. I also describe methods of empirically estimating and performing
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inference on PT-IRFs using vector autoregressions and local projections. Finally,

I demonstrate the applicability of PT-IRFs by estimating and empirically testing

the effect of a monetary policy shock on unemployment through changes in bank

lending in a small autoregressive model.

The third chapter examines how heterogeneity in lending practices across

community and noncommunity banks influences the transmission of monetary

policy to the real economy. Using PT-IRFs, I quantify the contributions of

community versus noncommunity bank lending to the dynamic effect of a monetary

policy shock on output. My findings show that noncommunity bank lending

amplifies the contractionary effects of a monetary tightening in the short run,

whereas community bank lending has a stronger amplificatory contribution in

the medium run. These results suggest that a continued decline in the relative

presence of community banks may lead to a subsequent decline in the persistence of

monetary transmission. Furthermore, the adverse impact of a monetary tightening

on spending must concentrate more persistently among small businesses and

agricultural producers in remote rural areas, since these borrower segments tend

to heavily rely on community bank lending as a source of funds.

The fourth chapter studies the comovement in community bank profitability

dynamics at three different geographical levels. I use a hierarchical dynamic factor

model to extract posterior distributions of national, regional, and state-level latent

drivers of quarterly fluctuations in state-average community bank return-on-

equity series for all 50 US states. The results show a decrease in the intensity of

idiosyncratic performance dynamics since the global financial crisis, along with a

near-uniform increase in national comovement. This finding implies an increase
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in the exposure of the community banking sector to systemic risk, suggesting a

potential increase in fragility during future financial crises.
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CHAPTER I

INTRODUCTION

The commercial banking sector in the United States is currently composed

of approximately 4,500 active banks holding $23T in combined assets. Although the

number of commercial banks has been steadily declining over the past few decades,

as seen in Figure 1, the U.S. remains an outlier relative to other countries with

respect to the size of its banking sector in numbers.

Figure 1. The composition of the total number of Federal Deposit Insurance
Corporation (FDIC)-insured commercial banks in the U.S. by bank type.
Source: FDIC Statistics on Depository Institutions.

As shown above, nearly 90% of all U.S. commercial banks today are

classified as community banks, which may be informally described as locally owned

and operated financial intermediaries that largely focus on serving the needs of
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their local credit markets.1 The remaining noncommunity banks tend to be either

larger, more geographically diversified, or some combination of both.

Despite the gradual decline in the number of banks, community banks

continue to dominate the sector in numbers. On the other hand, the combined

share of noncommunity bank assets and net loans has increased noticeably during

the same time frame, as illustrated in Figures 2 and 3, respectively. However, the

diminished relative presence of community banks does not necessarily indicate

their decline – they continue to thrive as “specialists” within their respective local

economies.

Figure 2. The level and composition of FDIC-insured commercial bank assets
in the U.S. over time by bank type. Source: FDIC Statistics on Depository
Institutions.

1The Federal Deposit Insurance Corporation (FDIC) provides a formal definition of a
community bank that eliminates all banks that have no loans or core deposits, have foreign assets
accounting for ≥10% of total assets, and have more than 50% of assets in certain specialty banks,
and includes all remaining banks that have total assets of less than $1B, and have total assets over
$1B but meet specific criteria such as loan-to-assets >33%, core deposits to assets >50%, fewer
than 75 offices, and restricted geographical presence.
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Figure 3. The level and composition of FDIC-insured commercial bank lending
in the U.S. over time by bank type. Source: FDIC Statistics on Depository
Institutions.

Community banks prioritize relationship lending, offering loans that

require local knowledge, personalized attention, individual analysis, and ongoing

administration. They distinguish themselves from noncommunity banks by building

and maintaining personal relationships, and specializing in monitoring local

economic conditions. Unlike their competitors, the vast majority of community

banks operate within a single state, and most have only one branch, as evidenced

by Figures 4 and 5, respectively. Geographic concentration allows community

banks to be more agile in their decision making, as opposed to the more rigid

centralized organization of noncommunity banks. It also contributes to their ability

to gather and process “soft information” on their borrowers and local markets.

This enables community banks to more accurately identify creditworthy borrowers,
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revealed by their record of achieving greater loan repayment success rates than

their noncommunity counterparts (Peirce, Robinson, & Stratmann, 2014).

Figure 4. Percentage of FDIC-insured banks with offices across more than one state
by bank type. Source: FDIC Statistics on Depository Institutions.

For these reasons, community banks play an essential role in the US

economy as a critical source of financing for small businesses and agricultural

producers, as well as households in remote areas (Hanauer, Lytle, Summers, &

Ziadeh, 2021; Lux & Greene, 2015). These borrower segments may otherwise

have limited access to credit as a result of information asymmetries that prevent

noncommunity banks from issuing loans to their respective borrower segments due

to a lack of knowledge and/or confidence. For example, despite issuing only 15% of

all bank loans, community banks are responsible for 30% of commercial real estate

loans, 36% of small business loans, and 70% of agricultural loans across the U.S. as

of 2019. As an additional example, community banks based in rural areas and small
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Figure 5. Average number of domestic offices across FDIC-insured banks by bank
type. Source: FDIC Statistics on Depository Institutions.

metropolitan regions held 67% of all commercial real estate loans in those areas

(FDIC, 2020).

Small businesses employ nearly half of the private sector workforce

and generate just under half of aggregate economic activity. Banks provide

approximately 44% of small business financing, compared to 22% from online

lenders and 6% from credit unions. The 36% of total small business loans issued

by community banks is double their share of the total of all loans issued by

banks. Furthermore, the size of individual loans issued to small businesses differs

significantly across community and noncommunity banks. Noncommunity banks

tend to originate and hold more loans under $100,000, whereas community banks

hold a more significant share of loans between $250,000 and $1M, focusing on larger

loans that require greater interaction and analysis to build a relationship between
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the bank and the borrower. On the other hand, the majority of loans issued by

community banks are for amounts greater than $1M (FDIC, 2020).

By better understanding the nature of the community banking sector,

policymakers can develop effective strategies to support these institutions in order

to promote stable economic growth. Particularly, the above insights raise the

following two questions that I address in this dissertation:

1. To what extent do community bank lending practices contribute to

the transmission of monetary policy to real output relative to those of

noncommunity banks? As currently understood by the macro-finance

literature, changes in interest rates caused by central bank policy affect the

supply and demand of bank loans, which in turn affect output by either

expanding or contracting firms’ and households’ access to credit. Given

the considerable differences in community versus noncommunity bank

business models, there is reason to expect heterogeneity in the extent to

which monetary policy affects output via changes in community versus

noncommunity bank lending. For instance, since community banks lend

primarily to small borrowers while noncommunity banks target larger

borrowers, ceteris paribus a contraction in community bank credit due

to monetary tightening may have a more severe contractionary effect on

spending by the former due to a lack of alternative sources of funding.

Understanding such transmission heterogeneity is crucial in gauging the role

of the composition of the banking sector in the nature of the dynamic effect

of monetary policy on output, which is especially pertinent in the case of a

consistently-evolving bank sector composition.
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2. How have recent changes in the regulatory and macroeconomic landscapes

affected the exposure of community banks to systemic risk? In other words,

how has community bank interconnectedness evolved in the past few decades?

In addition to providing credit to vulnerable borrower segments, community

banks have proven themselves to be reliable credit providers during adverse

macroeconomic conditions. This has most recently been revealed in the wakes

of the global financial crisis and the COVID-19 pandemic (Hassan, Karim,

Lawrence, & Risfandy, 2022). Furthermore, there is evidence suggesting

that community banks’ limited geographical scope generally dampens the

transmission of global and remote credit shocks to their respective markets

(Petach, Weiler, & Conroy, 2021). However, there is no evidence pointing

to the notion that community bank stability and idiosyncrasy has been

consistent in the past, or expected to be so in the future. Therefore, it would

be valuable to quantify the comovement in community bank performance as a

way of gauging their exposure to systemic risk.

To make tackling the first question possible, Chapter II develops a novel

empirical methodology called that quasi-decomposes vector autoregression-based

impulse response functions, with the purpose of measuring the contributions

of the various channels through which a given shock propagates within the

specified dynamic model of interest. Chapter III then leverages the method

developed in Chapter II to quantify and compare the contributions of community

versus noncommunity bank lending to the transmission of monetary policy

shocks. I combine macroeconomic and bank-level loan data to estimate a factor-

augmented vector autoregression to measure the responses of community versus

non-community bank lending to a monetary policy shock, and the subsequent
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response of output growth. I find that contractionary monetary policy shocks have

a negative effect on output growth via both community and noncommunity bank

lending, with the former playing a larger role in the medium run and the latter in

the short run.

An examination of the second question is presented in Chapter IV, in which

I estimate a Bayesian hierarchical dynamic factor model using a panel of state-level

community bank profitability series to gauge the extent to which community bank

performance is driven by common vs. idiosyncratic factors at different geographical

levels. My current findings show that community bank performance has become

significantly more interconnected at the country-level, while also experiencing a

decrease in state-level idiosyncrasy since the crisis.

Related Literature. Despite their ubiquity, the interaction of the

community banking sector with the macroeconomy has received relatively little

attention from researchers and policymakers alike. Particularly, peer-reviewed

literature on community banking is presently quite scarcev – the following is a non-

exhaustive overview.

Works such as Yeager (2004), Emmons, Gilbert, and Yeager (2004), Meslier,

Morgan, Samolyk, and Tarazi (2016), Estes (2014), and Swanson and Zanzalari

(2021) pursue a similar interest of identifying the contributions and importance of

risk diversification for community banks. Yeager (2004) explores whether decrease

in the number of community banks in the US is a result of their preference for

geographic diversification as a way of gaining more robustness in the face of local

economic shocks. The study finds that community banks withstand local economic

shocks well, and therefore geographic diversification must not play a part in driving

consolidation in the US community banking sector. Emmons et al. (2004) find that
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risk-adjusted return for community banks increases along with their size, which

they interpret as evidence of idiosyncratic risk dominating local market risk in

the community banking sector. Meslier et al. (2016) find that for small banks,

intrastate diversification increases risk-adjusted returns and decreases default risk.

Estes (2014) studies the relationship between community bank performance and

a variety of portfolio diversification strategies, and finds that diversification may

improve risk-adjusted performance. Swanson and Zanzalari (2021) explore the

question of whether local labor markets impact bank profitability. Their study

finds that an increase in the local market unemployment rate decreases bank

profitability, with the additional (counter-intuitive) insight that the impact of local

market conditions on profitability is less severe for small banks relative to large

banks.

The remaining literature studies evolution of various characteristics of, and

causes of heterogeneity within, the community banking sector. DePrince, Ford, and

Morris (2011) explore the determinants of interstate heterogeneity in community

bank profitability, and find significant relationships between variation in state-

average return on assets and each state’s economic, demographic, and market

structure characteristics. Feng and Zhang (2012) find that relative to large banks,

community banks had experienced significantly lower productivity growth and

lower levels of returns to scale over the 1997-2006 period. Fang and Yeager (2020)

study the ability of community banks to withstand severe and prolonged periods

of credit losses. They find that community banks had become less sensitive to

such adverse circumstances after the global financial crisis relative to the pre-crisis

era. Rice and Rose (2016) find that community banks exposed to the government-
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sponsored enterprises Fannie Mae and Freddie Mac saw slower loan growth post-

crisis than their unexposed peers.
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CHAPTER II

PASS-THROUGH IMPULSE RESPONSE FUNCTIONS

2.1 Introduction

Often in macroeconomics we are interested in studying the dynamic effects

of a particular shock on the economy, for which we default to impulse response

functions (IRFs) as the tool of choice (Ramey, 2016). Given a dynamical process,

an IRF captures the effect of a disturbance on the system over some specified time

horizon. Empirical estimates of IRFs allow for the quantification of, and inference

on, the effects of various economic shocks of interest on the macroeconomy – two

common approaches to estimating IRFs include local projections (Jordà, 2005)

and vector autoregressions (J. H. Stock & Watson, 2016). However, despite their

ubiquity in the study of shock propagation, IRFs offer little insight into the nature

of the channels contributing to the transmission of a shock through a system.

For this reason, Sims and Zha (2006) develop a method of quantifying

the contribution of any secondary variable to the dynamic effect of an economic

shock on an endogenous variable. Their approach involves holding the secondary

“medium” variable constant over a set horizon by simulating a path of its

respective structural shock(s) accordingly in the face of a shock of interest.

The most prominent example of an application of the Sims-Zha methodology is

presented in Bernanke, Gertler, and Watson (1997), in which the authors quantify

the contribution of the systematic portion of monetary policy to the effect of oil

price shocks on key macroeconomic variables. Other applications can be found in

Kilian and Lewis (2011) and Bachmann and Sims (2012), and a recent refinement

of the Sims-Zha approach can be found in McKay and Wolf (2023).
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In a similar vein, I formulate a new target statistic, to which I henceforth

refer as a pass-through impulse response function (PT-IRF), which allows for the

quantification of specific transmission channels of a shock within a dynamical

system. Given a dynamical system expressed in the form of a VAR, a PT-IRF

captures the effect of a structural shock k on an endogenous variable i through

some other “medium” variable j, or a set of endogenous variables. Conveniently,

PT-IRFs can be estimated using the same information and procedures required

to estimate IRFs in the context of VARs, which holds true for inference as well.

As explained later in the text, the PT-IRF approach to measuring transmission

channels differs fundamentally from Sims-Zha methodology, since the former hinges

on the Granger causality of the medium to quantify transmission while the latter

relies on keeping the medium fixed over time. In other words, the two approaches

interpret the notion of a contribution to dynamic shock propagation differently.

However, in terms of the practical comparison between the two methods, it is worth

mentioning that PT-IRFs do not require the identification of multiple structural

shocks while also offering straight-forward ways of conducting inference.

The VAR case, general formulation, and estimation procedures for PT-IRFs

are detailed in Section 2 of this paper. Among other applications, PT-IRFs may

be used to estimate, quantify, and conduct inference on various channels of the

monetary transmission mechanism. Modern literature on the monetary mechanism

has yet to reach an agreement on the roles of various transmission channels with

respect to their contributions to the effects of monetary policy. For example, the

literature on the credit channel, pioneered by Bernanke and Blinder (1992), remains

inconclusive on the existence and nature of the bank lending channel. In Section

3 of this paper, I illustrate the potential of PT-IRFs in this area of research by
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estimating the pass-through of monetary policy shocks through bank lending in a

low-dimensional macroeconomic VAR. This illustrative application is then further

expanded upon in a more sophisticated analysis of monetary transmission via bank

lending presented in Chapter III. In the final section, I conclude the paper with a

brief discussion of additional potential applications of PT-IRFs.

2.2 Methodology

In this section I define the concept of a PT-IRF starting with the simple

case of a linear VAR(1), proceeding to the more general case of a linear VAR(p),

and finally generalizing to a stationary Markov process. I also describe how existing

methods for estimating VAR IRFs can be used to produce point-estimates and

confidence intervals for PT-IRFs.

2.2.1 Linear VAR(1). Consider the following VAR(1) process:

Yt+1 = α + AYt +Bεt+1 , (2.1)

where Yt = (y1t, . . . , yNt)
′ is a vector of N endogenous variables, εt = (ε1t, . . . , εKt)

′

is a vector of K structural shocks, α is an intercept vector, and A ∈ RN×N and B ∈

RN×K are the lag coefficient and contemporaneous impact matrices, respectively.

Our goal is to interpret the given linear VAR(1) as a directed weighted graph

through which shock impulses travel over time, use this alternative interpretation

of a linear VAR(1) to reinterpret the familiar IRF, and finally define the PT-IRF

within the given context.

Firstly, notice that the ik-th entry of B represents the contemporaneous

effect of the k-th structural shock on the i-th endogenous variable. Refer to Figure

6 for an illustration of the special case of a 3-dimensional VAR(1).

Next, notice that Aij represents the one-period-ahead effect of the j-th

variable on the i-th variable. If we think of A as the adjacency matrix in the
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Figure 6. Contemporaneous effects of a structural shock εk on a 3-dimensional
VAR as a weighted directed graph. Note: Notice that for each Bik, i indexes the
affected variable, while k indexes the shock of origin.

context of a directed weighted graph, where each endogenous variable at a given

point in time is a vertex, then Aij may also be interpreted as the intensity of

the travel path of a signal from variable j at time t to variable i at time t + 1.

Once again, for an illustration of the above in the special case of a 3-dimensional

VAR(1), refer to Figure 7.

Figure 7. One-period-ahead effects of a change in the variable yj of a 3-dimensional
VAR as a weighted directed graph. Note: Notice that for each Aij, i indexes the
next period’s destination variable, while j indexes the variable of origin.
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Lastly, we can simply put the above interpretations of B and A together

to formulate a VAR(1) as a directed weighted graph, which allows us to trace the

propagation of a shock through the system and assess its impact on some variable

of interest at a future point in time. Each possible path of a given shock εk has

a corresponding weight equal to the product of the weights of each of its edges,

determined by the contemporaneous impact and lag coefficient matrices. An IRF

is simply the sum of the weights of all paths that ultimately reach a destination

node corresponding to a variable of interest yi at a given horizon h. Refer to Figure

13 for an illustration of the one-period-ahead propagation of a shock through a 3-

dimensional VAR(1).

A PT-IRF is the sum of weights associated with the subset of the above-

mentioned paths that pass at least once through some medium of interest yj – if

a given path never passes through yj, then it is irrelevant in gauging the role of yj

as a medium for a shock in the system. For example, the one-period-ahead pass-

through response of yi with respect to y1 as a medium to some shock εk in the case

illustrated by Figure 13 is equal to Ai1B1k – the weight of the only path that allows

for the shock to pass through y1 at least once before reaching its destination. If

we were interested in the union of y1 and y2 as a medium for εk, then the PT-IR

would be Ai1B1k + Ai2B2k – the sum of the weights of the two paths that allow the

shock to pass through either y1 or y2 at least once before reaching its destination.

The same logic can be extended to h-period-ahead impulse responses, with h being

strictly greater than 1.

It can be shown that in the case of a VAR(1), the h-period-ahead impulse

response (IR) with respect to some vector of shocks ε may be expressed as

IR(h, ε) = AhB ε . (2.2)
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Figure 8. The propagation of an impulse originating at the k-th shock with the i-th
variable as its destination, one period ahead. Note: The one-period-ahead impulse
response of yi with respect to a unit shock to εk equals the sum of the weights of all
three paths leading to yit+1: Ai1B1k + Ai2B2k + Ai3B3k.

It can also be shown that for h > 0, the corresponding pass-through impulse

response (PT-IR) with pass-through/medium variable yj is algebraically equivalent

to

PT-IR(h, j, ε) ≡
(
Ah − Ãh

)
B ε , (2.3)

where Ã is identical to A across all but the j-th column, which is set equal to the

zero vector. In the case that h = 0, the PT-IR always equals to zero due to the fact

that contemporaneous pass-through of any given shock occurs purely through the

impact matrix:

PT-IR(0, j, ε) ≡ 0 . (2.4)

The above equations completely define the PT-IRF in the context of a VAR(1).
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2.2.2 Linear VAR(p). Consider the following VAR(p) process:

Yt = α + A(L)Yt +Bεt , (2.5)

where all familiar objects are defined as before, and A(L) is a lag polynomial of the

form

A(L) =

p∑
i=1

AiL
i , (2.6)

such that each Ai is a lag coefficient matrix corresponding to Yt−i. Suppose we

aim to derive PT-IR(h, j, ε) for this system. The goal is once again to sum the

weights associated only with those paths that originate at the shock of interest,

pass through yj at least once over the given horizon, and end at the response

variable of interest h periods ahead.

Suppose we represent a linear VAR(p) in state-space form as a VAR(1)

with companion matrix Φ and augmented contemporaneous impact matrix

Γ =

[
B′ 0

]′
. Then for h ≥ 0 the corresponding PT-IR with pass-through/medium

variable yj may be expressed as

PT-IR(h, j, ε) ≡
(
Φh − Φ̃h

)
Γ ε , (2.7)

where Φ̃ is the companion matrix of a modified version of the process described in

Eq. (2.5) with the i-th lag coefficient matrix restricted to equaling

Ãi ≡
[
a⃗1 . . . a⃗j−1 0⃗ a⃗j+1 . . . a⃗N

]
, (2.8)

where a⃗m denotes the m-th column of Ai. Notice that Φ̃h Γ ε captures the impulse

response of a shock for a restricted version of the given linear VAR(p) in which the

Granger causality of the j-th endogenous variable is completely removed (Kilian

& Lütkepohl, 2017) – all paths passing through the j-th variable are assigned a

weight of zero. Therefore, PT-IR(·) sums the weights of only those paths that pass
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through the j-th variable, which can be interpreted as the impulse response of the

system attributable to the Granger-causality of the j-th endogenous variable.

2.2.3 General Formulation. Let Yt = (y1t, . . . , yNt)
′ ∈ RN and εt =

(ε1t, . . . , εKt)
′ ∈ RK such that Yt is determined by the stationary Markov process

Yt = G(εt, Yt−1; θ) , (2.9)

where t ∈ N+ denotes time, G : RK × RN → RN is a mapping conditioned on

a set of parameters θ, and εt is a vector of zero-mean i.i.d. shocks. We may define

the h-step impulse response of the given system with respect to some shock vector

ε ∈ RK as the following difference between two forecasts ∀h ∈ N:

IR(t, h, ε) ≡ E [Yt+h | εt = ε, Yt−1, θ]− E [Yt+h | εt = 0, Yt−1, θ] , (2.10)

where the conditional expectation operator E[· | ·] represents the best mean squared

error predictor. The pass-through impulse response of the system with respect to

the same shock is once again defined as

PT-IR(t, h, j, ε) ≡ IR(t, h, ε)− ĨR(t, h, j, ε) , (2.11)

where ĨR denotes an object similar to that in Eq. (2.10), but applied to a

transformed version of the process expressed in Eq. (2.9) in which the Granger

causality of the j-th variable in the system is removed. More specifically, we may

define

ĨR(t, h, j, ε) ≡ E
[
Ỹt+h | εt = ε, Yt−1, θ

]
− E

[
Ỹt+h | εt = 0, Yt−1, θ

]
, (2.12)

where Ỹt ≡ G(εt, ĨjYt−1; θ), such that Ĩj is the identity matrix with the j-th

diagonal entry set equal to zero. In other words, Ỹt is generated by the same

process as Yt, but with the influence of the lags of the j-th variable removed from

the data generating process (DGP).
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Notice that Ĩj removes the Granger causality of the j-th variable in the

system, thus allowing for ĨR(·) to isolate the impulse response to a shock without

accounting for its transmission through yjt. Therefore, subtracting ĨR(·) from IR(·)

yields the impulse response associated with the transmission of a shock through yjt.

2.3 Estimation and Inference

Similarly to an IRF, a PT-IRF may be estimated by first estimating VAR

parameters, and then using all relevant parameter estimates from this first step

to generate the PT-IRF by a nonlinear mapping. Confidence intervals for a PT-

IRF may be obtained by carrying out a simulation procedure of choice to generate

IRF distributions (confidence intervals via bootstrapping in the frequentist case,

or credible sets via sampling in the Bayesian case) such that an accompanying PT-

IRF is generated using the same set of estimated VAR parameters at each step.

All statistical properties of IRF estimators simply carry over to the estimation of

PT-IRFs, since PT-IRFs are deterministic mappings of VAR parameters. It is also

possible to incorporate local projections bootstrap methods in the same manner as

Montiel Olea and Plagborg-Møller (2019) and Montiel Olea and Plagborg-Møller

(2021) for the purpose of conducting inference on VAR-estimated PT-IRFs.

2.4 Illustrative Application

In this section, I apply PT-IRFs to study monetary transmission. J. Stock

and Watson (2001) estimate a simple recursively-identified three-dimensional

VAR(4) to generate impulse response functions representing the effect of a one-time

monetary policy shock on unemployment. Their model contains quarterly series on

US inflation, unemployment, and the federal funds rate over the period of 1960:I-

2000:IV. I introduce an additional variable to their model, which I treat as medium

of interest for the transmission of monetary policy shocks through the system. I
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estimate a PT-IRF to gauge the strength of the bank lending channel (BLC) in the

monetary transmission mechanism.

Early literature on the BLC, such as Bernanke and Gertler (1995), define it

as the effect of monetary policy on output through changes in the supply of bank

loans. In other words, a monetary shock affects bank lending, which subsequently

affects output. I add a commercial and industrial (C&I) loan growth rate series to

the J. Stock and Watson (2001) VAR as the last variable in the recursive ordering,

and use it as a pass-through medium in estimating the PT-IRF of unemployment

to a monetary policy shock. The resulting IRF and PT-IRF are presented in Figure

9, which suggests that bank lending acts as a substantial channel for monetary

transmission. Furthermore, the shape of the PT-IRF matches the theory behind the

BLC – a one-time contractionary policy shock is associated with a temporary rise

in unemployment through a decrease in the growth of the supply of bank loans.
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Figure 9. The IRF (dash-dotted line) and PT-IRF (solid line) of unemployment
with respect to an interest rate shock, with bank lending as a pass-through
medium. Gray bands represent 95% confidence intervals for the PT-IRF.
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2.5 Concluding Remarks

PT-IRFs can be a useful tool for measuring the pass-through channels of

various economic shocks. Although my application in this paper involves a linear

VAR, PT-IRFs can easily be estimated for nonlinear VARs as well. Furthermore,

the ability of PT-IRFs to accommodate multiple pass-through media allows for the

estimation of multi-dimensional transmission channels – for example, in the case

of the BLC, we could have simultaneously included multiple bank loan type series

as pass-through media. In the following chapter, I apply PT-IRFs to estimate the

transmission of monetary policy to output via community vs. noncommunity bank

lending.
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CHAPTER III

COMMERCIAL BANK HETEROGENEITY AND THE TRANSMISSION OF

MONETARY POLICY THROUGH BANK LENDING

3.1 Introduction

Does bank lending facilitate the transmission of monetary policy? If so, to

what extent does it contribute to the impact of monetary policy shocks on output?

Since the seminal work by Bernanke and Blinder (1988), there has been much

debate regarding these fundamental questions in the monetary policy literature.

For instance, Dave, Dressler, and Zhang (2013) and Drechsler, Savov, and Schnabl

(2017) show evidence in favor of an active channel of monetary transmission

through bank lending in the United States, while Romer and Romer (1990) and

Ashcraft (2006) cast doubt upon its current existence at the aggregate level. These

studies yield alternative conclusions, but cannot refute each other directly. A

primary reason for this discord stems from an absence of consistent methodological

frameworks for the measurement of channels of monetary transmission. Moreover,

the aggregate role of bank heterogeneity in monetary transmission through bank

lending is ambiguous. Considering the ever-evolving composition of the U.S.

commercial banking sector, this presents limitations to policy optimization.

In this paper, I employ a flexible reduced-form empirical approach with

minimal identification assumptions, leveraging granular panel data to quantify and

estimate the nature of aggregate monetary transmission through bank lending. To

estimate the effect of bank lending on the transmission of monetary policy shocks,

I combine bank-level loan data with a standard set of aggregate macroeconomic

series. I use the data to estimate a factor-augmented vector autoregression

(FAVAR) with externally identified monetary policy shocks introduced in Bu,
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Rogers, and Wu (2021). I then estimate and conduct inference on pass-through

impulse response functions (PT-IRFs) – a novel class of IRFs that characterizes

the dynamic response of output to monetary policy shocks via bank lending. I

categorize the U.S. commercial banking sector into community and noncommunity

banks, and examine how variation in their respective lending volumes facilitates the

dynamic influence of monetary policy shocks on output. My findings reveal that

the transmission of unanticipated monetary policy shocks through bank lending

occurs through changes in both community and noncommunity bank lending, such

that the latter has a greater effect in the short run, whereas the former drives the

persistence of monetary transmission into the medium run.

A key methodological contribution of this paper is the use of PT-IRFs to

estimate and quantify monetary policy transmission through bank lending directly.

This lending channel of monetary transmission can be described as the effect

of monetary policy on output growth via changes in the supply of bank loans,

expressed as a two-step causal chain: (1) a change in monetary policy affects

the quantity of bank loans, and (2) the change in the quantity of bank loans

affects output growth. Previous literature has studied each of these components

individually.1 For example, Dave et al. (2013) analyzes the effect of monetary

policy shocks on the quantity of bank loans, while Peek and Rosengren (2000),

Peek, Rosengren, and Tootell (2003), Driscoll (2004), and Ashcraft (2006) test

whether shocks to bank loan supply impact output. The common practice is to

conclude that if either of these relationships is insignificant, then bank lending

1My analysis does not separate the contributions of the bank lending and balance sheet
channels in the transmission of monetary policy via bank lending. In other words, similar to Dave
et al. (2013), I do not distinguish between changes in bank loan supply and demand caused by
monetary policy shocks. The identification challenges of separating these two channels is described
in Bernanke and Blinder (1992), Bernanke and Gertler (1995), and Kashyap and Stein (2000).
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plays no role in the transmission of monetary policy to the real economy. However,

separately estimating these relationships cannot directly quantify or test the nature

of monetary transmission via bank lending – the shocks to bank lending in this

setting are endogenous by definition. Therefore, an understanding of the effect

of exogenous shocks to lending on output provides limited insight regarding the

transmission of monetary shocks to output via lending. I demonstrate that the PT-

IRF can estimate impulse responses that simultaneously capture both components

of the above-mentioned two-step causal chain, allowing for the direct quantification

and inference on the dynamic nature of monetary transmission through bank

lending.

Another benefit of my empirical approach is that it is effectively agnostic to

the different mechanistic views of monetary transmission through bank lending.

The last few decades have seen the emergence of a variety of views on the true

mechanism underlying the bank lending channel (BLC), which is the elusive

supply-side subchannel of the more general lending channel. The conventional

formulation argues that the BLC operates through reserve requirements, which

create binding liquidity constraints for commercial banks, forcing responses in bank

loan supply in the face of monetary policy shocks (Bernanke & Gertler, 1995; Black

& Rosen, 2007; den Haan, Sumner, & Yamashiro, 2007; Kashyap & Stein, 1994).

An alternative perspective is that the BLC operates through the effect of monetary

policy on banks’ external finance premia, which either limits or enhances the ability

of banks to issue new loans (Disyatat, 2011). A more recent formulation offered

by Drechsler et al. (2017) argues that monetary policy affects the supply of bank

loans through changes in the quantity of deposits available to commercial banks as

a source of funding.
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This work contributes to the literature by analyzing the role of bank

business model heterogeneity in the monetary transmission mechanism. The

U.S. commercial banking sector is remarkably large and diverse, with over 5,000

active banks holding just under $25T in combined assets. Furthermore, banks

are heterogeneous across multiple dimensions, such as capitalization, size, asset

allocation, and exposure to systemic risk. The BLC literature has attempted to

capture the role of heterogeneity in bank behavior by explicitly controlling for

some of these dimensions. Kashyap and Stein (1995), Kashyap and Stein (2000),

and Kishan and Opiela (2000) find that smaller, less liquid, and less capitalized

banks are more sensitive to monetary policy shocks, respectively. Dave et al.

(2013) confirms that smaller banks tend to be more sensitive to monetary policy.

Bluedorn, Bowdler, and Koch (2017) find that belonging to a bank holding

company, and not bank size, is what determines the insensitivity of banks to

monetary shocks. Altavilla, Canova, and Ciccarelli (2020) studies banks in the

European Union to find that the capital ratio, exposure to domestic sovereign

debt, the share of non-performing loans and the stability of the funding structure

of a bank contribute to the heterogeneity in monetary pass-through to bank loan

supply.

I argue that a key determinant of bank behavior neglected by the above

literature is the business model, driven largely by the geographical scope of service

provision. The vast majority of banks in the U.S. have historically been community

banks, as evidenced by Figure 1. Community bank activity is often limited to local

economies, with their business model geared towards relationship-building and the

provision of traditional banking services to local firms and households (Nguyen &

Barth, 2020) – unlike their geographically-diversified noncommunity counterparts.
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The most common approach to controlling for bank heterogeneity in the existing

literature is to group them by size. However, such grouping may be problematic

due to the equal split between community banks and noncommunity banks in the

mid-range of the bank size distribution. There is crucial heterogeneity within this

group that remains unaccounted for without partitioning banks according to their

business model. Furthermore, as evidenced by Figure 1, the composition of the U.S.

banking sector has changed drastically since the early 1990s as a result of consistent

consolidation. The evolving composition of the commercial banking sector may

have implications for the magnitude and delays in the effects of monetary policy

changes. Understanding the role of bank heterogeneity across the business model

dimension can be crucial in anticipating changes in the behavior of monetary

transmission.

Over the sample period from 1994 to 2019, I find that community bank

lending enables contractionary monetary policy shocks to negatively impact output

growth. In other words, the pass-through of monetary policy to the real economy

through bank lending occurs partially through community bank lending. This

finding suggests that bank relationship lending still matters, perhaps even to a

greater extent than argued by Fields, Fraser, Berry, and Byers (2006). Moreover,

given that community banks lend to small local borrowers (FDIC, 2020), this result

may also have distributional implications. Specifically, an unanticipated monetary

tightening may have a contractionary effect on output in the medium run via a

persistent decline in small business activity caused by limited funding opportunities

for such borrowers.

The remainder of this paper is organized as follows. Section 2 presents the

empirical approach to estimating the nature of monetary transmission through
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bank lending. Section 3 describes the results and their implications. Section 4

concludes the paper.

3.2 Econometric Approach

In this section, I describe the construction of the FAVAR using bank-

level loan data, aggregate economic series, and an externally-identified proxy for

monetary policy shocks. I also explain how I estimate the model, and use it to

generate PT-IRFs in order to gauge the contribution of community, noncommunity,

and joint bank lending to the transmission of monetary policy shocks to output

growth.

In short, the FAVAR is constructed around a standard monetary VAR with

variables capturing quarterly variation in monetary policy, output, inflation, and

credit conditions in financial markets. In addition to these aggregate variables, the

VAR is augmented with bank lending factors that separately capture comovement

in the growth of lending volume of all banks, community banks, and noncommunity

banks, respectively. The hierarchical nature of these factors, which are estimated

using a large panel of bank lending series, ensures that I isolate latent forces driving

group-specific fluctuations in community and noncommunity bank lending behavior.

In other words, controlling for comovement across all banks guarantees that the

model captures bank type heterogeneity through the group-specific factors. The

hierarchical lending factors are estimated using a recursive principal components

estimator, beyond which the estimated factors are treated as observables during

the estimation of the VAR using least squares. The externally-identified monetary

policy shock series is included in the VAR as an endogenous variable without any

restrictions on its lag coefficients (similar to the approach taken in Auerbach and

Gorodnichenko (2012) to identify news shocks), and its corresponding innovation
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is further recursively internally-identified. Finally, PT-IRFs point estimates

are generated directly as mappings of the lag coefficient and contemporaneous

impact matrix estimates from the previous step. Confidence intervals on the PT-

IRFs are obtained using a wild bootstrap (Gonçalves & Kilian, 2004, 2007), such

that at each iteration of the bootstrap, the newly-estimated lag coefficients and

contemporaneous impact loadings produce a new draw of a PT-IRF of interest. I

elaborate on each step in this process in the remainder of this section.

3.2.1 Data. I use a combination of quarterly bank-level loan data, a small

set of aggregate macroeconomic series, and externally-identified monetary policy

shock series developed by Bu et al. (2021). The sample runs from Q1 of 1995 until

Q4 of 2019, constrained by the start of the monetary policy shock series and the

beginning of COVID-19. The cleaning procedure for bank loan series, obtained

from the FDIC Statistics on Depository Institutions (SDI) database, is described by

the following steps:

1. For each FDIC-insured commercial bank that has existed in the U.S.

throughout the duration of my sample, I obtain a quarterly series of net loans

and leases at the bank level. Net loans and leases equals to loans and lease

financing receivables, net of unearned income and the allowance for loan and

lease losses. For the remainder of this text, I refer to net loans and leases as

“total lending” or simply “lending” interchangeably;

2. I create a balanced panel of bank lending series by discarding data associated

with banks with at least one missing observation – in other words, I maintain

data only for those banks that have been operational throughout the full

sample period;
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3. I partition the panel by bank type, yielding two separate sub-panels of bank-

level data – one for community bank lending, and another for noncommunity

bank lending.

4. Each of the series across the two sub-panels are transformed into growth rates

and seasonally adjusted simply by partialling out variation attributable to

seasonal dummies in a linear regression model.

The cleaned bank-level data is used to estimate bank lending factors and their

loadings in the factor structure of the FAVAR.

The following macroeconomic series, used in the VAR portion of the

FAVAR, are obtained from the Federal Reserve Economic Data (FRED) database:

1. Real Gross Domestic Product (GDPC1): Baseline proxy for output.

2. GDP Deflator (GDPDEF): Baseline proxy for inflation.

3. Industrial Production (INDPRO): Alternative proxy for output, often used

in monetary VARs with monthly data.

4. Consumer Price Index (CPIAUCSL – Consumer Price Index for All Urban

Consumers: All Items in U.S. City Average): Alternative proxy for inflation,

also frequently used in monthly monetary VARs.

An additional aggregate indicator included in the VAR is the excess bond premium

(EBP). The EBP is the average corporate bond spread that is purged from the

impact of default compensation. It is one of two components of the credit spread

indicator introduced by Gilchrist and Zakraǰsek (2012), often referred to as the GZ

spread. The EBP is interpreted as an indicator of the capacity of intermediaries to

extend loans, or more generally the overall credit supply conditions in the economy.
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It aggregates high-quality forward-looking information about the economy –

therefore, it improves the reliability and forecasting performance of small-scale

VARs (Caldara & Herbst, 2019). Modern monetary VARs often contain the EBP as

an endogenous variable to reflect credit market conditions. I follow this convention

in the literature due to the desirable properties of the EBP described above.

Furthermore, Bu et al. (2021) include the EBP in their monthly VARs with which

they test the validity of their monetary policy shock measure – by including the

EBP in my model, I am able to more closely replicate their setting.

The final key data series used in this study is the monetary policy shock

measure. For the purposes of my analysis, I defer to the Bu-Rogers-Wu (BRW)

monetary policy shock measure identified by Bu et al. (2021). I aggregate their

provided shock series to the quarterly frequency, as shown in Figure 10. I use the

BRW shock instead of others in the literature, such as Romer and Romer (2004),

Nakamura and Steinsson (2018), and others mentioned in Ramey (2016), since

it is specifically tailored to account for both conventional and unconventional

monetary policy over the course of my sample period, which is plagued with a

variety of monetary policy regime changes and a long zero lower bound (ZLB)

period following the 2007-08 financial crisis.

3.2.2 Model. I estimate a FAVAR that applies a hierarchical factor structure

to the bank loan growth rates series in my sample and a shared VAR structure to

the corresponding bank lending factors, macroeconomic series, and the monetary

policy shock series. The hierarchical factor structure captures factors driving

common variation among the growth of bank loans between and across community

and noncommunity banks – in other words, it simultaneously contains factors

representing common sources of variation among all banks, along with a separate
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Figure 10. Quarterly BRW shock.

set of factors capturing bank type-specific variation. The VAR yields the dynamic

relationship between these bank lending factors, macroeconomic series, and

monetary policy. Although the bank lending factors themselves do not have an

intuitive interpretation, their impulse responses to various shocks to the observed

series in the VAR can be used in conjunction with their corresponding factor

loadings to generate bank-specific impulse responses. For example, the FAVAR

allows us to estimate bank-specific lending responses to a contractionary monetary

policy shock.

The factor structure applied to the loan growth rate series x of each bank i

is as follows:

xit = αi + ΓiFt + ΛiF
j
t + uit , (3.1)

where t indexes time, j ∈ {community bank, noncommunity bank} indexes bank

type, F is a vector of lending growth factors common to all banks, F j is a vector

of lending growth factors common only to banks of type j, u is an idiosyncratic

disturbance term, α is an intercept coefficient, and Γ and Λ are vectors containing
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factor loadings. Note that the factors are unobservable. In words, the growth

rate of lending at bank i at time t is assumed to be an affine function of a set of

factors representing the comovement in lending across all banks, Ft, a set of factors

capturing the comovement in lending across all community or noncommunity banks

(depending on the category to which bank i belongs), F j
t , and an idiosyncratic

term capturing dynamics specific to the given bank, uit. Eq. (3.1) can be used to

estimate the factor loadings, along with the factors themselves. The hierarchical or

multi-level structure of the factors allows me to directly separate common variation

across all banks from community and noncommunity bank-specific variation.

The VAR may be expressed as follows:

Zt = γ +Ψ(L)Zt−1 +Bvt , (3.2)

where

Zt ≡



BRWt

log(GDPt)

log(GDPDt)

EBPt

Ft

FN
t

FC
t



,

such that BRW, GDP, GDPD, CP, and EBP denote the cumulative BRW shock

series, gross domestic product, GDP deflator, commodity price index, and excess

bond premium, respectively; FN represents the vector of noncommunity bank

lending factors; FC represents the vector of community bank lending factors; Ψ(L)

is a lag matrix polynomial; v ∼ N(0, I) is a vector of structural shocks; and B is a
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recursively identified contemporanous impact matrix. Refer to Figure 11 for a plot

of the cumulative BRW shock.

Figure 11. Quarterly cumulative BRW shock.

Together, Eqs. (3.1) and (3.2) describe the FAVAR in state space form – Eq.

(3.1) acts as the transition equation, and Eq. (3.2) as the measurement equation.

For completeness, the full model is expressed below:

Xt = α + ΓFt + ΛNFN
t + ΛCFC

t + ut , ut ∼ N(0,Σu) , (3.3)

Zt = γ +Ψ(L)Zt−1 +Bvt , vt ∼ N(0, I) , (3.4)

where Xt is the data matrix containing all bank loan growth rate series.

3.2.3 Monetary Policy Surprise Identification. The VAR in Eq. (3.2)

includes the monetary policy shock as an endogenous variable. The cumulative

BRW shock series is ordered first in the VAR, so that all variables in the system

respond contemporaneously to its innovation identified recursively – this is a

standard in the VARX literature (Auerbach & Gorodnichenko, 2012; Kilian, 2009).

This specification often has zero restrictions imposed on all of the lag coefficients in
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the equation for the externally identified shock (Jarociński & Karadi, 2020; Kilian,

2009). In the baseline model, I do not impose these restrictions – however, I show

that that an alternatively-specified restricted VAR produces largely the same IRFs

and PT-IRFs as the baseline VAR. As an additional robustness test, I estimate

the baseline model using industrial production (IP) and the consumer price index

(CPI) as proxies for aggregate output and prices, respectively, instead of GDP and

the GDP Deflator. Once again, the nature of these additional results qualitatively

matches that of the IRFs and PT-IRFs produced using the baseline model.

Alternative approaches in the literature use externally-identified shocks as

instruments in VARs or in local projections – this approach is sometimes called a

proxy VAR model. Plagborg-Møller and Wolf (2021) show that, under regularity

conditions, VARX and proxy VAR modeling approaches yield asymptotically

equivalent impulse responses up to a constant scaling factor. For more comparisons

of these two methodologies, refer to J. Stock and Watson (2018), Plagborg-Møller

and Wolf (2021), Caldara and Herbst (2019), and Paul (2020). I defer to the

VARX approach in this paper due to the ease of inference associated with this

methodology, particularly in extending it to PT-IRFs.

3.2.4 Factor Estimation. The factors of the described FAVAR are

estimated using a principal components approach that combines the hierarchical

structure of the Bayesian procedure outlined in L. Jackson, Kose, and Owyang

(2015) with the frequentist two-step procedure described in Boivin, Giannoni,

and Mihov (2009) (also used by Dave et al. (2013)). Other common approaches to

estimating factors in hierarchical models include the Bayesian estimator described

in C.-j. Kim and Nelson (1998), which relies on the posterior distribution of

the factors developed by Carter and Kohn (1994), and an alternative Bayesian
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estimator described in Otrok and Whiteman (1998) (and applied in Kose, Otrok,

and Whiteman (2003) and Kose, Otrok, and Whiteman (2008)) which constructs a

different method of sampling from the posterior of the factors. The pros and cons

of all three of the above estimators are discussed in L. Jackson et al. (2015). The

main reason for choosing the principal components approach in this study is due

to the size of the bank-level dataset – a key disadvantage of the above-mentioned

Bayesian methods preventing me from using them is that they are significantly

slower, despite being useful for conducting inference on the factor distributions.

The factor estimation procedure is as follows:

1. Randomly select the same number of community banks as there are

noncommunity banks in the sample, and discard the rest. This reduction

in the data matrix serves the purpose of estimating the common bank

lending factor on an equal number of community and noncommunity banks –

otherwise, if the sample is unbalanced, the estimated factor may be capturing

group-specific comovement rather than common sources of variation across all

banks.

2. Normalize all bank-specific data series by de-meaning and dividing each series

by its own standard deviation – this ensures that each series (bank) holds

equal weight in the computation of the principal component. For each of

the three variable blocks (asset growth rate, change in ROA, and lending

growth rate), group the normalized community and noncommunity bank

series into a single data block and use it to estimate common bank size,

profitability, and lending factors by computing the corresponding first few

principal components;
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3. For each of the three normalized bank data blocks, partial out the variation

attributable to their corresponding common factors from each series by

subtracting the factor estimate multiplied by the corresponding coefficient

estimates from the series. Once again, separate each normalized data block

into community and noncommunity sub-blocks, then use each sub-block to

estimate community and noncommunity bank size, profitability, and lending

factors by computing the corresponding first few principal components;

4. Normalize all common bank and bank type-specific factors with respect to

their corresponding means and standard deviations – this is done to improve

the ease of interpretability of bank responses to factor variation;

5. Regress each series in the normalized bank type-specific data blocks

associated with each of the three bank variables on their corresponding set

of two factors. This final step yields coefficient estimates that represent bank-

specific sensitivities to the variation in the relevant bank factors across all

series and factors;

6. Repeat steps 2-5 until some form of convergence is achieved in the factor and

coefficient estimates, but modify step 1 by partialing out the most recent

estimate of the variation attributable to the type-specific factors from each

corresponding series.

Figure 12 presents the estimated (1) common, (2) community, and (3)

noncommunity bank lending factors. Recall that the first category refers to

principal components that load on all standardized bank loan growth series in

the sample, while the second and third load only on their respective community

and noncommunity bank sub-groups. The set of common bank lending factors
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capture common variation in bank loan growth across the set of all banks in the

sample, while the community and noncommunity bank lending factors capture

the remaining comovement specific to community and noncommunity banks,

respectively. Note that the estimation procedure makes sure that the different

categories of factors capture orthogonal variation, despite loading on some of the

same series. In words – the community and noncommunity bank lending factors

are independent of each other, given that all common variation across the set of all

banks in the sample is successfully absorbed by the common bank lending factors.

For each of these three categories of bank lending factors – common,

community, and noncommunity – I estimate two factors, corresponding to the first

two principal components. Table 1 shows the distribution of the joint explanatory

power associated only with the common bank lending factors across all community

and noncommunity bank loan growth series in my sample. In other words, the

table shows the distribution of R2 coefficients obtained by regressing the individual

standardized bank loan growth rate series on the two common bank lending factors.

Table 1 also shows the distribution of the joint explanatory power associated with

the common and corresponding group-specific bank lending factors across all

community and noncommunity banks. In this table, I shows the distribution of

R2 coefficients obtained by regressing each of the standardized (non)community

bank loan series on the common and (non)community bank lending factors.

According to the results presented in these tables, the group-specific lending factors

approximately double the explanatory power of the factor structure of the FAVAR,

as captured by the R2 coefficient – therefore, their inclusion is warranted. Despite

the inclusion of all of the lending factors in the factor structure, it seems that bank

lending is largely idiosyncratic at the bank-level – this matches the results in Dave
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et al. (2013). Regardless, the factors can help identify common responses in lending

behavior among U.S. commercial banks to monetary policy shocks.

The interpretation of the time variation in the factor estimates is not the

focus of the paper – rather, the factors are used for the purposes of dimension

reduction. However, a few items of note include the following: (1) In Figure 12a,

the first principle component captures a gradual decline in bank loan growth after

the 2008 recession, followed by a slow recovery. The second principle component

captures a similar post-crisis dip that recovers much quicker. (2) A comparison

between the community bank factors in Figure 12b with the noncommunity bank

factors in Figure 12c shows a much sharper response to the crisis by noncommunity

banks, as evidenced by outlying drop in the second principle component in

2008, and the temporary decline in the first principle component post-2008. The

comovement among community banks is more difficult to interpret once the

common bank lending factors are partialed out, however, as evidenced by the

community bank lending factors.

Bank Type 10% 25% 50% 75% 90%

Community 0.04 0.07 0.12 0.22 0.31
(0.007) (0.021) (0.064) (0.125) (0.228)

Noncommunity 0.02 0.05 0.09 0.16 0.27
(0.005) (0.017) (0.047) (0.098) (0.171)

Table 1. R2 percentiles obtained by regressing individual bank loan growth series
on the common bank lending factors, along with their corresponding type-specific
factors. In parentheses, I show the R2 percentiles associated with regressing only on
the common factors.
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(a) Common bank loan growth factors.

(b) Community bank loan growth factors.

(c) Noncommunity bank loan growth factors.

Figure 12. Bank lending factor timeplots. The solid and dashed lines represented
the first and second principal components of their corresponding panels of bank
loan growth rate series, respectively.
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3.2.5 VAR Estimation. The estimated factors are treated as observable

series, and included in the transition equation of the FAVAR, which is essentially

a VAR. The parameters of the VAR are estimated using least squares. The VAR

estimates are then used to construct IRFs and PT-IRFs with bootstrapped

confidence intervals. The recursive identification scheme used to obtain the IRFs

and PT-IRFs is a simple recursive ordering of the shocks, with the BRW policy

shock ordered first so that it can potentially affect all variables in the system

contemporaneously. Practically, in my application, this scheme is exploited only

for the identification of monetary policy innovations – my analysis does not rely on

the clean identification of the remaining “structural” shocks in vt.

Specifying and estimating VARs in levels has become common practice in

the literature – recent examples include Bu et al. (2021); Görtz, Tsoukalas, and

Zanetti (2022), among many others. This deviates from the past common practice

of differencing and/or otherwise transforming seemingly integrated variables to

achieve stationarity before estimating the VAR. However, VARs expressed in levels

produced unbiased estimates of smooth functions of the model parameters. More

importantly, Gospodinov, Herrera, and Pesavento (2013) show that structural IR

estimators based on the levels specification have consistently and significantly lower

MSE than those based on pretested models. For these reasons, I choose to specify

my base model in levels. However, it is worth noting that the the results obtained

using this specification are robust to transformations of the macroeconomic

indicators to growth rates, with the latter specification having wider confidence

intervals and more persistent impulse responses. The growth rate specification

results are available upon request.
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3.2.6 PT-IRF Illustration. In this section, I once again briefly explain

the intuition behind PT-IRFs in a simple setting that emulates the context of this

study. Consider the following VAR(1) process:
Yt+1

Nt+1

Ct+1

 =


ϕY Y ϕY N ϕY C

ϕNY ϕNN ϕNC

ϕCY ϕCN ϕCC



Yt

Nt

Ct

+


bY

bN

bC

mt+1 (3.5)

where Y , N , and C denote output, noncommunity bank lending, and community

bank lending as the endogenous variables of the system, respectively, and m

denotes a monetary policy shock. We may represent the dynamics of the system

dictated by the above VAR(1) as a directed weighted graph – this representation

can be used to motivate IRFs, and naturally extend them to PT-IRFs.

Notice that ϕij represents the one-period-ahead impact of a change in the

j-th variable on the i-th variable. In the context of a directed weighted graph,

we may think of each endogenous variable at a given point in time as a vertex,

and ϕij as the intensity of the travel path of a signal from variable j at time t

to variable i at time t + 1. Also notice that bi represents the contemporaneous

impact of a change in m on variable i. Therefore, we may think of the set of all bi

as composing an adjacency matrix in the context of a directed weighted graph that

determines the intensity of arrival of a signal through the monetary policy shock

for all endogenous variables in the system. A visual representation of this mapping

of the given VAR(1) to a graph is presented in Figure 13 – a monetary shock that

arrives at time t must first pass through all of the variables in the system before

reaching a given destination at time t+ 1.

Suppose we are interested in gauging the one-period-ahead effect of a

monetary policy shock on output. Figure 13 shows us that there are three distinct
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Figure 13. A graph-based illustration of the propagation of an impulse originating
at m with destination Y one period ahead in the system determined by Eq. (3.5).

paths through which m ultimately affects Y – (i) a path through Y ; (ii) a path

through noncommunity bank lending, N ; (iii) a path through community bank

lending, C. The contribution of each path to the overall effect of mt on Yt+1 is the

product of the weights of its corresponding edges: (i) ϕY Y bY ; (ii) ϕY NbN ; and (iii)

ϕY CbC , respectively. Summing these contributions, or path weights, yields the one-

period-ahead response of Y with respect to an impulse from m:

δYt+1

δmt

=
δYt+1

δYt

δYt
mt

+
δYt+1

δNt

δNt

mt

+
δYt+1

δNt

δNt

mt

= ϕY Y bY + ϕY NbN + ϕY CbC . (3.6)

Extending this framework for gauging the effects of an impulse in a VAR(1) to

longer horizons gives us an IRF.

Now, suppose instead that we are interested in gauging the one-period-

ahead contribution of community bank lending to the transmission of a monetary

policy shock to output. Clearly, two of the three paths shown in Figure 13 – the
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ones passing through Y and N – are irrelevant to community bank lending, and do

not reflect its influence on the transmission of m. Therefore, we may subtract the

contributions/weights of these paths from the overall impulse response expressed

in Eq. (3.6) to obtain the contribution of C to the one-period-ahead effect of m

on Y : ϕY CbC – the weight of the only path passing through C. Extending this

framework to longer horizons is precisely a PT-IRF that conditions on community

bank lending as a medium of transmission for monetary policy shocks to output.

3.2.7 PT-IRF Application. The FAVAR can be used to generate PT-IRFs

that allow for the assessment of the effect of a contractionary monetary policy

shock on output growth via its transmission through bank lending. Specifically,

once the VAR specified in Eq. (3.4) is estimated, I use the PT-IRF approach to

estimate the dynamic response of the GDP to a positive shock to the BRW series,

while conditioning on different combinations of the bank lending factors in Ft, F
C
t ,

and FN
t as media for the transmission of the shock.

Let us represent the linear VAR(p) expressed in Eq. (3.4) as a VAR(1)

with companion matrix Φ and augmented contemporaneous impact matrix Γ =[
B′ 0

]′
:

Zt = θ + ΦZt−1 + Γvt . (3.7)

Then for h ≥ 0 the corresponding PT-IR to a monetary policy shock v with pass-

through medium variable zj (the j-th component of vector Z – let us suppose this

is one of the bank lending factors) may be expressed as

PT-IR(h, j, ε) ≡
(
Φh − Φ̃h

)
Γ v , (3.8)
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where Φ̃ is the companion matrix of a modified version of the process described in

Eq. (3.4) with the i-th lag coefficient matrix restricted to equaling

Ψ̃i ≡
[
a⃗1 . . . a⃗j−1 0⃗ a⃗j+1 . . . a⃗N

]
, (3.9)

where a⃗m denotes the m-th column of Ψi. Notice that Φ̃h Γ ε captures the impulse

response to the shock for a restricted version of the given linear VAR(p) in which

the Granger causality of the j-th endogenous variable is completely removed (Kilian

& Lütkepohl, 2017) – all paths passing through the j-th variable are assigned a

weight of zero. Therefore, PT-IR(·) sums the weights of only those paths that pass

through the j-th variable, which can be interpreted as the impulse response of the

system attributable to the Granger-causality of the j-th endogenous variable.

The above framework can be extended to allow for multiple pass-through

media. In the next section, I present the pass-through impulse responses of the

GDP to a contractionary monetary policy shock separately via (1) all bank lending

factors, (2) only common and community bank lending factors, as well as (3) only

common and noncommunity bank lending factors. We may interpret the first

PT-IRF described above as measuring the combined transmission of monetary

policy to output via (all) bank lending. The second and third PT-IRFs may be

interpreted as measuring the transmission of monetary policy to output separately

via community and noncommunity bank lending, respectively.

It is also possible to easily conduct inference on differences between PT-IRFs

with different media. Suppose that for some dependent variable i, we would like to

compare PT-IR(h, i, j, ε) to PT-IR(h, i, j′, ε) to assess whether j plays a bigger role

in the transmission of the shock ε to i than does j′. We can define a new object

∆PT-IR(h, i, j, j′, ε) ≡ PT-IR(h, i, j, ε) − PT-IR(h, i, j′, ε), which is also a nonlinear

mapping of the reduced form parameters of the state equation of the FAVAR. We
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can then estimate confidence intervals for the ∆PT-IR object the same way as we

do for IRFs and PT-IRFs, using the wild bootstrap, for a given level of statistical

significance. If for a range of h the confidence intervals of this object is above 0,

that implies j plays a greater role in the transmission of shock ε to variable i than

does j′. I apply ∆PT-IR by comparing the transmission of monetary policy shocks

to output via community versus noncommunity bank lending.

3.3 Results

The baseline FAVAR produces the following key results: (i) Output

responds negatively to a contractionary monetary policy shock through the set

of all bank lending factors as the medium of transmission – this confirms the

traditional understanding of the role of bank lending in the monetary transmission

mechanism; (ii) Output responds negatively to a contractionary monetary policy

shock through the set of factors that load on community bank lending series –

this demonstrates that community banks contribute to the overall transmission

of monetary policy through bank lending; (iii) Output responds negatively to

a contractionary monetary policy shock through the set factors that load on

noncommunity bank lending – less surprisingly, this evidences the significance of

noncommunity bank lending in monetary transmission; (iv) Finally, conducting

inference on the difference between the monetary PT-IRs conditional on community

versus noncommunity bank lending shows evidence of community bank lending

having a greater (in magnitude) effect in the short run, whereas noncommunity

bank lending plays a more significant role in monetary transmission in the medium

run.

These results are echoed by the alternative model, which uses IP and

CPI as proxies for output and inflation instead of GDP and the GDP Deflator.
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Furthermore, both models confirm that unexpected monetary policy shocks are

identified correctly – macroeconomic indicators respond as expected (mimicking the

monthly VAR results in Bu et al. (2021)), and the distribution of individual bank

loan responses lies mostly below zero for the entire 10-year post-shock period. I

begin by discussing the aggregate and bank-level impulse responses in the following

two subsections, after which I return to the discussion of PT-IRFs and evidence of

heterogeneous pass-through via community versus noncommunity bank lending.

3.3.1 Aggregate IRFs. Figure 14 shows the dynamic responses of

all variables in the VAR as a result of a one standard deviation shock to the

cumulative BRW series. The BRW series itself quite rapidly converges back

to zero, whereas the GDP and the deflator respond with a delay – the former

remains significantly below zero for a period of approximately five years post-

shock, whereas the latter persists for the entire 10-year period of examination. The

EBP also behaves in the expected manner, as documented in Bu et al. (2021). The

responses of the individual factors are uninformative – however, it is worth noting

that they all converge back to zero with time. The shapes and directions of these

impulse responses are closely matched by those of the model with zero restrictions,

presented in Figure A.5, as well as the models with alternative measures of

macroeconomic variables and monetary policy shock, presented in Figures A.11 and

??, respectively. Furthermore, these impulse responses are statistically significant at

comparable horizons.

3.3.2 Bank-Level Loan IRFs. Figure 15 shows the effects of a one

standard deviation contractionary monetary policy shock on individual bank

lending separately for community and noncommunity banks. The two impulse

response distribution plots imply that, on average, both community and
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Figure 14. Impulse responses of all variables in the VAR to a one standard
deviation positive (contractionary) monetary policy shock via bank lending.
Solid black lines represent point estimates. Gray bands represent 90% confidence
intervals generated using the wild bootstrap with 1,000 runs.
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noncommunity banks tighten lending over the course of a 10-year horizon as a

result of a contractionary shock, although the median of both groups converges

back to its original level by the end of the period. In the first two years after

the shock however, the distribution of responses for both groups centers at

approximately zero, with minor positive deviations. This type of delay in loan

volume contraction may potentially be caused by the rate of loan commitment

draw-downs outpacing the slowdown in loan issuance in some of the banks, as

described in Ivashina and Scharfstein (2010).

The same behavior can be seen in the bank-level loan impulse responses

generated using the model with alternative measures of output and inflation,

presented in Figure A.12, as well as the specification with an alternative policy

shock series, presented in Figure A.18. The VAR with zero restrictions yields

similar delayed declines in loan volume across both community and noncommunity

banks, but without convergence back to a zero-centered distribution for the former

group, as shown in Figure A.6. Overall, the distributions of these responses across

all three models further confirm that the monetary policy shock is correctly

identified, since a delayed contraction in bank lending is precisely what has been

documented in a wide range of existing studies in the literature (Drechsler et al.,

2017; Kashyap, Rajan, & Stein, 2002; Kashyap & Stein, 1994, 1995, 2000).

3.3.3 PT-IRFs. Figure 16 shows plots of the PT-IRFs associated with the

pass-through of a one standard deviation contractionary monetary policy shocks

to GDP via combined, community, and noncommunity bank lending. Figures

A.2, A.3, and A.4 each present PT-IRFs conditioned on combined, community,

and noncommunity bank lending, respectively, for all endogenous variables in the

model. The same figure for the zero-restricted VAR is presented in Figures A.8,
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(a) Distribution of community bank lending volume responses

(b) Distribution of noncommunity bank lending volume responses

Figure 15. Bank-specific responses in loan quantity (cumulative loan growth rate)
to a one standard deviation positive (contractionary) monetary policy shock.
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A.9, and A.10. Equivalent displays for the model with alternative measures of

macroeconomic indicators and monetary policy shocks are presented in Figures

A.14, A.15, and A.16 and Figures A.20, A.21, and A.22, respectively.

The PT-IRF presented in Figure 16a is conditioned on all bank lending

factors in the model as media of transmission. I interpret this object as capturing

the transmission of monetary policy through bank lending of all types. It shows

that a monetary tightening has a negative expected effect on output that persists

for at least six years, although only approximately the first four years are

significant with 90% confidence. The same kind of behavior is displayed by the

equivalent PT-IRF generated using the alternative model specification, presented in

Figure A.14.

Figure 16b is conditioned only on factors that load on the community bank

lending series – the common and community bank lending factors – as media of

transmission for the contractionary monetary shock. I interpret this object as

capturing the overall transmission of monetary policy through community bank

lending. It shows that a monetary tightening has a negative, delayed expected

effect on output that persists quite strongly before beginning to converge back to

zero at around the fifth year. For this PT-IRF, the effect is statistically significant

as far as the fifth year after the shock. The same kind of behavior is displayed

by the equivalent PT-IRF generated using the alternative model specification,

presented in Figure A.15.

Finally, Figure 16c is conditioned on factors that load on the noncommunity

bank lending series – the common and noncommunity bank lending factors – as

media of transmission for the contractionary monetary shock. This object captures

the transmission of monetary policy via noncommunity bank lending. The shape
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(a) Medium: Combined bank lending

(b) Medium: Community bank lending

(c) Medium: Noncommunity bank lending

Figure 16. PT-IRs of GDP to a one standard deviation positive (contractionary)
monetary policy shock via bank lending. Solid black lines represent point estimates.
Gray bands represent 90% confidence intervals generated using the wild bootstrap
with 1,000 runs. The dotted lines represent the net effect of the monetary shock on
GDP. The dashed line in Fig 10b represents the point estimates of noncommunity
bank lending PT-IRs, included for easy comparison.67



and magnitude of this PT-IRF match that of the combined bank lending PT-IRF

quite closely. However, its confidence interval crosses zero at a faster rate, and

covers a larger portion above zero by the end of the six-year horizon – implying

less persistence in the response compared to the combined PT-IRF. As with the

previous PT-IRFs, this behavior is matched by the equivalent PT-IRF generated

using the alternative model, presented in Figure A.16.

These PT-IRFs suggest that community bank lending plays a larger role in

the transmission of monetary policy in the medium run, and noncommunity bank

lending operates more strongly in the short run. As discussed in the methodology

section on PT-IRFs, this hypothesis can be tested more directly using inference on

∆PT-IR objects. I present the results of that analysis in the next subsection.

3.3.4 Heterogeneity in Monetary Transmission. Recall that it is

possible to conduct inference on differences between PT-IRFs with different media.

Let J = {F, FC} represent the set of common and community bank lending factors,

which I use to estimate PT-IR(h,GDP, J, ε) – the transmission of monetary policy

to output via community bank lending. On the other hand, let J ′ = {F, FNC}

represent the set of common and noncommunity bank lending factors, which I use

to estimate PT-IR(h,GDP, J ′, ε) – the transmission of monetary policy to output

via noncommunity bank lending. I define a new object

∆PT-IR(h, i, J, J ′, ε) ≡ PT-IR(h, i, J, ε)− PT-IR(h, i, J ′, ε) , (3.10)

which captures the difference between the two PT-IRFs. I obtain point estimates

and confidence intervals for ∆PT-IR using the wild bootstrap, for a 90% level of

statistical significance. The resulting ∆PT-IRs are presented in Figure 17 for both

the baseline and alternative model specifications.
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Across both models, I find that the estimated ∆PT-IR is above zero in the

short run, and below zero in the medium run. Considering that both PT-IRFs

being compared are shown to be negative in the specified time frame, this implies

that the magnitude of monetary transmission via noncommunity bank lending is

greater than through community bank lending in the short run, while the opposite

is true in the medium run. The short run results are statistically significant with

90% confidence across all model specifications. Refer to the final rows of Figures

A.1, A.13, A.7, and A.19 for an alternative formulation of this test, where PT-IRFs

that condition on only the group-specific lending factors are compared – the results

match the ones presented in this section.

3.4 Conclusion

I use a factor-augmented vector autoregression (FAVAR) with bank

lending factors and externally identified monetary policy shocks to estimate pass-

through impulse response functions (PT-IRFs), which characterize the dynamic

response of output growth to monetary policy shocks via changes in community,

noncommunity, and combined bank lending. For robustness, I carry out the

analysis using three alternative model specifications – a baseline model, a model

with exclusion restrictions enforce the exogeneity of the monetary policy shock

series, and an additional model which uses alternative proxies for output and

inflation. I find that across all of these model specifications, there is evidence of

the following outcomes as a response to a contractionary monetary policy shock:

(i) negative short and medium run monetary transmission via joint bank lending;

(ii) negative short run transmission via noncommunity bank lending; (iii) negative

medium run transmission via community bank lending. Direct inference on the

difference between monetary transmission via community versus noncommunity
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bank lending also shows evidence of heterogeneity in the short run, with some

evidence of heterogeneity in the medium run.

These results suggest that monetary transmission via bank lending occurs

mainly through resulting changes in noncommunity bank lending in the short run,

while changes in community bank lending drive the persistence of the response

of output to monetary shocks into the medium run. Therefore, the evolving

(a) Baseline model

(b) Alternative model

Figure 17. Differences between the PT-IRs of (a) GDP and (b) IP, conditional
on community versus noncommunity bank lending factors as the media for
transmission, with respect to a one standard deviation positive (contractionary)
monetary policy shock via bank lending. Solid black lines represent point estimates.
Gray bands represent 90% confidence intervals generated using the wild bootstrap
with 1,000 runs.
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composition of the U.S. commercial banking sector may have implications for the

magnitude and delays in the effects of monetary policy changes. Understanding the

role of bank heterogeneity across the business model dimension can be crucial in

anticipating changes in the behavior of monetary transmission. This study provides

a step in that direction.
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CHAPTER IV

THE EVOLUTION OF COMMUNITY BANK INTERCONNECTEDNESS

4.1 Introduction

The total market share of community banks in the US banking sector

has experienced a steady decline over the past few decades. Despite the gradual

drop in size, mainly due to consolidation, community banks support economic

growth and stability through the provision of loans to small local borrowers. For

example, community banks have historically played a significant role in providing

services to rural communities – as of June, 2020, community bank branches

held approximately 2/3 of total rural deposits in the US (Hanauer et al., 2021).

Furthermore, community banks are major credit providers to agricultural and

commercial borrowers in their respective local markets (Lux & Greene, 2015).

Community banks have also proven themselves to be reliable credit providers

during adverse macroeconomic conditions – most recently during the global

financial crisis and the COVID-19 pandemic (Hassan et al., 2022). And unlike their

larger geographically-diversified counterparts, there is evidence that community

banks’ specialization in local markets limits the transmission of global and remote

credit shocks to their respective markets (Petach et al., 2021).

After the global financial crisis, the focus of researchers and policymakers

on the interconnectedness of large banks formed the consensus that the potential

exposure of community banks to common risk factors does not present a threat

to the financial system (U.S. Treasury Department, 2017). Policymakers targeted

large banks as the main contributors to the housing bubble, market crash, and

the subsequent recession. For this reason, post-crisis regulatory reforms, most

notably the Dodd-Frank Wall Street Reform and Consumer Protection Act, were
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largely aimed at constraining the involvement of large banks in risky activities.

A key focus of these regulatory changes was the alleviation of the extent of

interconnectedness and exposure to systemic risk among large banks (Yellen,

2013). A further revelation of the belief that community banks cannot contribute

to systemic risk manifested in the exemption of community bank holding companies

from certain regulatory capital requirements. In fact, post-crisis sentiment on the

supposed adverse effects of Dodd-Frank on the competitiveness of community banks

led to the de-regulation of the community banking sector through the Economic

Growth, Regulatory Relief, and Consumer Protection Act (EGRRCPA), passed

by Congress in 2018 (Kress & Turk, 2020). I aim to fill a gap in the academic and

policy literature by investigating the notion that community banks lack exposure to

systemic risk.

In this study I find that state-level community bank performance in the

United States has been co-moving less idiosyncratically at the state level and

more similarly at the national level since the global financial crisis, relative to the

pre-crisis era. This development implies a fundamental and arguably undesirable

deviation of the community banking sector from its traditional role in the US

financial system. Stronger national comovement of community bank performance is

consistent with greater national interconnectedness of community banks, as well as

a potential increase in common exposure to macrofinancial shocks.1 In other words,

the relative decrease in (state-level) idiosyncrasy may result in a future financial

crisis having a more intensely adverse and uniform effect on the community

1Stronger national comovement may also be evidence of a persistent post-crisis increase in
the magnitude of macrofinancial shocks. Despite this likely being true for the intra-crisis period,
existing indicators of financial market volatility, such as the Chicago Board Options Exchange
Volatility Index (CBOE VIX), point to a reversion to pre-crisis shock magnitudes after the end of
the crisis.
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banking sector. This is precisely the small bank equivalent to the concept of “too-

big-to-fail”, aptly named “too-many-to-fail” – an increase in the exposure of many

small banks to the same sources of risk may lead to their mass failure in the event

of a large adverse shock, with devastating effects on the financial system. This

effectively bridges the gap between the risk profiles of community banks and large

banks, thus shrinking the risk diversification opportunity choice set of depositors.

These changes may be a result of either the various post-crisis regulatory policy

changes in the banking sector, a push toward more nationally and/or globally

diversified asset portfolio allocations by the community banks themselves, or

perhaps some deeper structural change caused directly by the financial crisis.

My findings contribute to our understanding of the manner in which the

US community banking sector has been evolving in recent decades, as well as the

trajectory it may adopt for the near future. Once again, I identify an increase in

the extent to which community bank performance co-moves across the country,

along with a decrease in the extent of state-level idiosyncrasy. I obtain this insight

by capturing dynamic and cross-sectional co-variation across a balanced panel of

state-average community bank return-on-equity (ROE) series using a hierarchical

dynamic factor model (HDFM), estimated using a Bayesian approach. A careful

analysis of national and regional variance decompositions of the country- and

region-level factors across pre-crisis, intra-crisis, and post-crisis subsamples shows

a near-uniform decrease in state idiosyncrasy for both intra- and post-crisis

subsamples relative to the pre-crisis subsample, and a near-uniform increase in

national comovement for both intra- and post-crisis subsamples relative to the pre-

crisis subsample.
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The remainder of this paper is structured as follows: Section 2 is a review

of the existing literature on systemic risk in the banking sector, community banks,

and HDFMs; Section 3 describes the data and the structure of the HDFM; Section

4 presents and analyzes the results; Section 5 provides an interpretation of the

results along with a discussion of their implications.

4.2 Related Literature

In this section I review the existing literature associated with the domain

and methodology of this study. I partition the literature into groups of studies on

the following topics: (1) the causes and effects of the interconnectedness of banks,

as well as the nature of systemic risk associated with such interconnectedness;

(2) the application of hierarchical dynamic factor modeling in macroeconomics.

This study contributes to all of the above strands of literature in the analysis of

community bank interconnectedness using hierarchical dynamic factor modeling.

4.2.1 Bank Interconnectedness and Systemic Risk. The level of bank

interconnectedness can be used to gauge the presence of systemic risk in the

banking system. Systemic risk may arise due to exposure to common factors –

for example, Caccioli, Shrestha, Moore, and Farmer (2014) find that overlapping

portfolios of financial institutions may lead to contagion. For a comprehensive

coverage of literature on systemic risk, some of which touches on the manifestation

of systemic risk in banking systems, refer to M. Jackson and Pernoud (2021).

Interdependencies among financial institutions may also amplify and create

channels for local shocks to propagate within the entire financial system (Eisenberg

& Noe, 2001). For example, Elsadek Mahmoudi (2021) shows how a local credit

shock induced by hurricane Katrina has affected real and credit markets in distant

regions in the United States. More notably, Acemoglu, Ozdaglar, and Tahbaz-
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salehi (2015) generalizes the results of Eisenberg and Noe (2001) to find that

while a densely connected network of financial institutions likely supports financial

stability, it may also lead to more severe propagation of large shocks. Similarly,

Gai, Haldane, and Kapadia (2011) find that greater complexity and concentration

in a financial network make such systems more fragile to shocks.

I contribute to this line of literature by identifying the dynamic

interconnectedness of a large set of small banks across multiple geographical levels

using a reduced form approach with minimal structural assumptions. Dynamic

interconnectedness is measured by observing the extent of dynamic comovement

among a set of bank-specific or aggregated financial bank data using variance

decompositions of a given set of series – the greater the variance contribution of a

dynamic factor at a certain geographical level (country, region, state, etc.), then the

greater the dynamic comovement, and therefore the greater the interconnectedness

among banks at that geographical level. Relative to existing methods of measuring

bank interconnectedness, my approach is arguably more flexible and intuitive

due to its atheoretical dimension-reducing nature, while also capturing complex

dynamic relationships with clear policy implications. Kapinos, Kishor, and Ma

(2020) develop a measure of the dynamic interlinkages among a small set of bank

holding corporations using a similar approach. They use a dynamic factor model

with time-varying parameters and stochastic volatility in the style of Del Negro and

Otrok (2011) to decompose a balanced panel dataset of the return-on-assets (ROA)

and net chargeoffs (NCO) series of 86 US bank holding companies as a linear

combination of a common factor and a unit-specific idiosyncratic disturbance terms.

Unlike this study, Kapinos et al. (2020) do not account for potential geographical

factor hierarchies.
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4.2.2 Hierarchical Dynamic Factor Models. Dynamic factor models

(DFMs) have been in use as a method of atheoretically capturing business cycle

dynamics since Sargent and Sims (1977). DFMs allow to capture the comovement

of a large set of series by modeling the underlying data-generating process (DGP)

as being driven by a vector of common autoregressive latent factors. Refer to Doz

and Fuleky (2020) for an overview of fundamental DFM estimation approaches,

and to J. H. Stock and Watson (2016) for an excellent survey of the use of DFMs

in macroeconomics. A discussion of DFM identification is presented in Bai and

Wang (2012). Multi-level/hierarchical dynamic factor models (HDFMs) are a

type of DFM that partitions series into groups across multiple levels, and assigns

a latent dynamic factor to each group. Moench, Ng, and Potter (2013) presents a

general description of an HDFM. Kose et al. (2003) applies an HDFM to a large

panel of country-level data to estimate world, region, and country-specific factors

representing business cycle fluctuations. Kose et al. (2008) similary applies an

HDFM to G-7 country series to estimate common and country-specific business

cycle factors.

4.3 Model

In the following two subsections I describe the data used in the study, along

with the specification of the HDFM applied to the data, respectively. For details on

the estimation of the HDFM, refer to Appendix B.

4.3.1 Data. The dataset used in this study is a balanced panel of 50 series,

with each representing the state-average community bank return on equity (ROE)

of a state in the United States. Each series has 115 observations, running from Q4

of 1992 up to Q2 of 2021. The series are constructed using raw bank-level quarterly

call report data provided publicly by the Statistics on Depository Institutions (SDI)
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database maintained by the Federal Deposit Insurance Corporation (FDIC). The

following procedure is carried out to generate the final state-level dataset used in

this study, in the given order:

1. Select net income and equity variables for each quarter;

2. Generate a new ROE variable defined as

ROE =
Net income

Equity
;

3. Filter for community banks (SDI database contains a binary categorization

variable that classifies each observation as belonging to a community bank

when true);

4. Match the community banks by each quarter with corresponding geographical

variables – particularly, each community bank must be assigned to a US state

and the corresponding FDIC supervisory region under which the given state

falls (the following 6 regional FDIC offices oversee the entirety of the United

States: Atlanta, Chicago, Dallas, Kansas City, New York, San Francisco);

5. Group ROE by state for each quarter, and compute state-average ROE;

6. Combine quarterly data into a single dataset containing a balanced panel of

50 state-average community bank ROE series;

7. Seasonally adjust each series with seasonal-trend (STL) decomposition using

locally estimated scatter plot smoothing (LOESS) (Cleveland, Cleveland,

McRae, & Terpenning, 1990).2 Refer to Fig. 18 for randomly-selected

timeplots comparing raw and seasonally-adjusted state-average ROE series.

2Effectively, the average deviation from the full-sample average of the quarter corresponding to
each observation is subtracted from the observed value.
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Figure 18. This graph presents a timeplot of normalized level state-average ROE
series for one state in each FDIC supervisory region (in orange), along with its
seasonally adjusted equivalent (in blue). The supervisory region corresponding to
each state is written in parentheses next to their respective subplot labels.

Note that the number of community banks implicitly contained in the final

dataset does not stay constant over time – some banks do not survive over the

course of the entire sample period, while others are established after the initial

sample period. Therefore, the variation in the finalized series is partially driven by

young, failing, and ultimately-consolidated community banks. Alternatively, I could

have constructed the final state-level dataset by initially filtering out such banks

from the raw bank-level data, but this would have yielded a biased picture of actual

performance of the community banking of each state at each given point in time.

Refer to Fig. 19 for timeplots of the total number of US community banks, and the

number of community banks by state over the sample period.
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Figure 19. The top plot in this figure represents the total number of community
banks in the US over the full sample period. The bottom plot represents the total
number of community banks by state over time (each series represents one of 50 US
states).
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4.3.2 HDFM. The i-th series in the dataset, expressed as yi for i ∈

{1, . . . , I} with I = 50, is treated as being generated by an affine combination

of a country-wide factor, fUS, and a corresponding region-wide factor, f ri , in the

following manner:

yit = β0i + β1i f
US
t + β2i f

ri
t + εit , (4.1)

where βi = (β0i, β1i, β2i) are coefficient hyperparameters, and εi is the idiosyncratic

disturbance process specific to the i-th state. Notice that the country-wide factor,

fUS, applies to all series. There exist a total of R = 6 FDIC supervisory regions,

f r, such that state i belongs to only one corresponding region ri ∈ {1, . . . , R}.

All latent factors and idiosyncratic disturbance terms are modeled as

following autoregressive processes. The country factor may be expressed as the

following order-p autoregressive process:

fUS
t = ψUS

1 fUS
t−1 + . . .+ ψUS

p fUS
t−p + vUS

t , (4.2)

where ψUS = (ψUS
1 , . . . , ψUS

p ) are lag coefficient hyperparameters, and vUS
t ∈

i.i.d.N(0, σ2
US) is an innovation term. The r-ith regional factor may similarly be

expressed as the following order-q autoregressive process:

f r
t = ψr

1 f
r
t−1 + . . .+ ψr

q f
r
t−q + vrt , (4.3)

where ψr = (ψr
1, . . . , ψ

r
q) are lag coefficient hyperparameters, and vrt ∈ i.i.d.N(0, σ2

r)

is an innovation term. Lastly, the state-specific idiosyncratic disturbances may also

be expressed as the following order-k autoregressive process:

εit = ϕi
1 εit−1 + . . .+ ϕi

k εit−k + uit , (4.4)

where ϕi = (ϕi
1, . . . , ϕ

i
k) are lag coefficient hyperparameters, and uit ∈ i.i.d.N(0, σ2

i )

is an innovation term.
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The above-specified model has the following restrictions. Firstly, it is

assumed that σ2
US = σ2

r = 1. This restriction allows us to simultaneously identify

the magnitude of the factors and their β coefficients in Eq. (4.1), both of which

are otherwise unidentified. Secondly, it is assumed that β11 > 0, which enforces

a positive relationship between the country factor and the first series in dataset.

This assumption is necessary to identify the direction of fUS, which may otherwise

be mirrored along with the β1i coefficients to yield an identical unconditional

distribution. In addition, it is assumed that β2i > 0 for the first i in each level-2

state region groups for the same reason of identifying the direction of the regional

factors. Lastly, it is assumed that p = q = k = 3 – in other words, all latent

factors and idiosyncratic disturbance processes have the same lag order of 3.3

This completes the specification of the HDFM assumed to be generating the state-

average ROE series.

To be able to apply the Kim-Nelson estimator, we must express the

given HDFM in state-space form. Let β0 =

[
β01 β02 . . . β0I

]′
be an I × 1

matrix containing the intercept terms of all series in the dataset. Also, let β1 =[
β11 β12 . . . β1I

]′
be an I × 1 matrix containing the national factor loadings of

all series in the dataset. Let R be an I × R matrix containing the regional factor

loadings of all series in the dataset, such that Rij = 0 if the j-th regional factor

does not correspond to state i, and Rij = βi2 otherwise. Lastly, we define the vector

St ≡
[
fUS
t f 1

t . . . fR
t ε1t . . . εIt

]
of length L = 1+R+I. Given these objects,

3The lag specification of the model is chosen to be parsimonious, while also including enough
parameters to account for complex dynamics in quarterly data. While it is possible to test for
the optimal number of lags for each of the latent processes using model selection criteria, I have
chosen to instead default to the standard approach taken in the literature of simply setting the lag
orders of each of the latent processes equal to the same reasonable lag order given the frequency
of the data. As examples of this, refer to Kose et al. (2003), Kose et al. (2008), and other HDFM
studies mentioned in the literature review section.
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we may express the measurement equation of the state-space form of the HDFM as



y1t

y2t
...

yIt


=

[
β0 β1 R I 0(1+Lp)×(1+Lp)

]


1

St

St−1

...

St−p


. (4.5)

If we denote the state vector as βt, then we may express the state equation as

βt = F βt−1 + wt , (4.6)

where F is a companion matrix and wt contains i.i.d. disturbance terms. The

second moment matrix of wt may be expressed as the following (1 + Lp)× (1 + Lp)

matrix:

E(wtw
′
t) = Q =



0 0 0 . . . 0

... I1+R 0
...

...

... 0(1+R)×(1+R) Σ
...

...

... . . . 0((L−1)p)×((L−1)p)
...

...


, (4.7)

where

Σ =



σ2
1 0 0 . . . 0

0 σ2
2 0 . . . 0

...
. . . 0

0 . . . σ2
I


. (4.8)

4.4 Results

In this section I present and describe the quantitative results obtained by

estimating the HDFM. I first present the unconditional posterior distributions of all

latent dynamic factors. Then I analyze relevant subsample variance decompositions

of all observable series with respect to the national factor and idiosyncratic
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disturbance estimates, and follow up with a similar analysis of the variance

contributions of each of the regional factors toward series in their respective

regions. I find that the dynamics of the national factor, as evidence by the plot

of the unconditional posterior distribution of the national factor, seem to accurately

match the major historical developments in the banking sector over the course of

the last four decades. And although the regional factor estimates are more difficult

to decipher, they too seem to show plausible changes over the same time period.

I also show using full-sample variance decompositions that over the entire sample

period, regional factors have had very limited contributions to the variation in

state-average community bank ROE – the majority of the variation in all series

is attributable either to state-specific idiosyncrasy or the national factor. Most

importantly, comparisons of variance decompositions of pre-, intra-, and post-

global financial crisis subsamples demonstrate that the role of the national factor

in driving state-average community bank ROE dynamics has grown since the crisis,

while the extent state-specific idiosyncrasy has fallen.

4.4.1 Factor Estimates. Let us observe the nature of the estimated

US national latent dynamic factor. Refer to Fig. 20 for a plot of the posterior

distribution of the national factor. Firstly, it is worth noting that the confidence

bands around the median of the distribution remain relatively tight throughout

the full sample period, which implies that the national factor is estimated with

precision. More intuitively, we may say that given the priors and the accuracy of

the data, the national factor is unlikely to “look” significantly different from the

median of the posterior distribution presented in Fig. 20. Secondly, notice that the

path of the median seems to accurately match the 21st century developments in

the US banking sector. Starting at around the year 2007 the factor begins to drop,
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and reaches a trough a few years later, after which it begins to trend upward quite

monotonously until the present time.

Figure 20. This graph presents a timeplot of the estimated unconditional
distribution of the US national latent dynamic factor over the full sample period.
The solid red line represents the median of the distribution at each given point
in time, while the dashed blue lines represent the 5th and 95th percentiles of the
distribution – in other words, the dashed blue lines represent 90% confidence bands
around the median.

Furthermore, although the direction of the variation in the latent factors

has no clear meaning without knowledge of the directions of the factor loadings,

in the given case the interpretation is both clear and consistent since the factor

loadings on the national factor with respect to each of the state-average ROE

series overwhelmingly have posterior distributions situated convincingly above

zero, with all of their point estimates and posterior medians being strictly positive.

Therefore, a drop in the national factor may directly be interpreted as a nation-

wide downward force on the state-average profitability of community banks across

the United States. This implies that the behavior of the median of the posterior

distribution of the national factor matches the downfall of the US banking sector
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during the global financial crisis, and the subsequent post-crisis nation-wide

recovery. Furthermore, the relatively small pre-crisis variation of the factor above

its mean also reflects uneventfulness of the period and the consistently favorable

conditions in the banking sector during the Great Moderation.

Unlike the national factor, interpreting the posterior distributions of the

regional factors presented in Fig. B.1 is more challenging due to the difficulty of

identifying FDIC’s supervisory region-specific historical events and policy changes

in the community banking sector. However, we may still make some stylistic

observations regarding the behavior of these posterior distributions. For example,

a quality shared by all of the regional factors is the presence of either a sharp

“uptick” or “downtick” during the crisis period. Once again, the direction of these

changes is not very informative – even with the posterior distributions of these

factor loadings it is difficult to make a clear observation about the effects of the

factors. Unlike those of the national factor, the regional factor loadings seem to be

more inconsistent in their directions across states. Another notable property of the

posterior distributions is that they are wider than that of the national factor – this

implies less precision, likely caused by the smaller set of data used to estimate the

regional factors.

4.4.2 Full Sample Variance Decompositions. Variance decomposition

plots allows us to gauge the extent to which the national and regional factors

drive the variation in each of their corresponding state-average ROE series. In

Fig. 21, I present a full-sample variance decomposition for all 50 states, from

which we may draw a number of conclusion regarding the significance of the roles

played by the latent dynamic factors. Firstly, it is apparent that the national

factor is a major contributor to the state-average ROE variation for a considerable
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portion of the states. Secondly, many of the state-average ROE series vary quite

idiosyncratically. Thirdly, the regional factors seem to play a minor role in

contributing to the variation in all of the states’ respective series. Lastly, there

is noticeable heterogeneity in the roles of the national factor and state-specific

idiosyncrasies across the set of all states – in other words, the majority of the

variation in some states may confidently be attributed to the national factor, while

the variation in others is overwhelmingly idiosyncratic. Therefore, it is difficult to

make qualitative statements regarding the magnitude of the role of the national

factor – some states co-move with the rest of the country to significantly lesser

degree than others across the full sample period.

Figure 21. This graph presents the variance decomposition of each of the state-
average ROE series in the dataset with respect to the three non-intercept
independent variables: (1) the national factor, (2) a corresponding regional factor,
and (3) the corresponding state-specific idiosyncratic disturbance process. In other
words, the graph shows the percentage of the total variance of each observable
series that may be attributed to each of its possible contributing drivers. The state
index orders states by their national factor contribution in decreasing order.
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A similar graph is presented in Fig. B.2, which groups full-sample variance

decompositions of each of the state-average ROE series by region. Such grouping

allows us to better observe any potential group-specific heterogeneity in full-sample

variance contributions by the national and regional factors, as well as state-specific

idiosyncrasies. Note that although the HDFM does not explicitly account for such

level-2 (regional) variance decomposition dependencies, it also makes no restrictions

that may prevent the emergence of such patterns. I make the following observations

about the regionally-grouped full-sample variance decompositions presented in Fig.

B.2: Firstly, there seem to be no clear group-based tendencies in the variation

contribution of the national factor, although some regions (e.g. Dallas) seem to

have lower average national factor contributions, while others (e.g. Chicago) seem

to have consistently higher average national factor contributions. Secondly, the

NYC region seems to have consistently grater contributions to its state-average

ROE series from its respective regional factor than do the rest. Lastly, there exist

no apparent regional group-based patterns in the variation contributions of the

state-specific idiosyncratic processes. Therefore, I conclude that there are no

notable and/or accountable region-specific tendencies in the full-sample variance

decompositions across the six FDIC supervisory regions.

4.4.3 Subsample Variance Decompositions. Figs. B.3-B.8 present the

pre-, intra-, and post-global financial crisis variance contributions of the Atlanta,

Chicago, Dallas, Kansas City, New York City, and San Francisco region factors,

respectively, to each of their corresponding state-average community bank ROE

series. The contribution of the corresponding regional factors for the majority

of the states in the Atlanta, Kansas City, and New York City, and San Francisco

regions sees a decrease post-crisis relative to the pre-crisis period. The same cannot
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be said for the rest of the regions, however, which seem to have no other noticeable

temporal patterns. Another noteworthy insight from these subsample regional

variance decompositions is that the New York City factor seems to influence

its corresponding states more strongly throughout the full sample period than

any of the other regional factors. Furthermore, it is the only region in which

the intra-crisis variance contribution of the regional factor is noticeably greater

for most of the related states than its pre- and post-crisis contribution. These

properties perhaps reflect the notably strong presence and influence of large

financial institutions in the region relative to others.

I present the most striking results of this study in Figs. 22 and 23. I begin

by accounting for the results shown in Fig. 22, which compares the contribution

of the national factor to the variation in all 50 state-average ROE series across

the pre-, intra-, and post-global financial crisis subsamples. The first plot in Fig.

22 compares the pre-crisis and crisis periods, with the former lasting until Q4

of 2006, and the latter starting at Q1 of 2007 and lasting until Q4 of 2009. It

is clear that the variance contribution of the national factor saw a significant

near-uniform increase during the crisis, relative to the pre-crisis period. Only

2 of the 50 states show a decrease in the variance contribution of the national

factor. This result implies that state-average community bank ROE series co-

moved more strongly at the national level during the approximate time interval

associated with the global financial crisis up until that point since the beginning

of the sample period. The second plot in Fig. 22 compares the pre-crisis and post-

crisis periods, with the latter starting at Q1 of 2010 and lasting until the end of the

sample period at Q2 of 2021. Once again, the variance contribution of the national

factor seems to have seen a significant near-uniform increase after the crisis, relative
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to the pre-crisis period. Only 3 of the 50 states show a decrease in the variance

contribution of the national factor after the crisis. This result implies that state-

average community bank ROE series co-moved more strongly at the national level

since the approximate end of the global financial crisis period than it did before its

approximate beginning. In summary, the results presented in Fig. 22 demonstrate

that the extent of national comovement among the state-average community bank

ROEs has increased nearly uniformly since the start of the global financial crisis.

Next I describe the results shown in Fig. 23, which compares the

contribution of the state-specific idiosyncratic disturbance processes to the variation

in all 50 of their corresponding state-average ROE series across the pre-, intra-,

and post-global financial crisis subsamples. The first plot in Fig. 23 compares the

pre-crisis and crisis periods. It is apparent that the variance contribution of the

state-specific idiosyncratic processes saw a significant near-uniform decrease during

the crisis, relative to the pre-crisis period. Only 4 of the 50 states show an increase

in state-specific idiosyncrasy. This result implies that state-average community

bank ROE series varied more idiosyncratically during the global financial crisis up

until its occurrence since the beginning of the sample period. The second plot in

Fig. 23 compares the pre-crisis and post-crisis periods. Once again, the variance

contribution of the state-specific idiosyncratic processes saw a significant near-

uniform decrease after the end of the crisis, relative to the pre-crisis period. Only

5 of the 50 states show a increase in state-specific idiosyncrasy. This result implies

that state-average community bank ROE series varied more idiosyncratically since

the end of the global financial crisis period than it did before its beginning. In

summary, the results presented in Fig. 23 demonstrate that the extent of state-

specific dynamic idiosyncrasy among the state-average community bank ROEs
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has decreased nearly uniformly since the start of the global financial crisis. Notice

that this result does not deliver the same information as that given by Fig. 22,

but rather complements it – the latter does not consider the potential changes in

regional comovement, while the former accounts for changes in the sum of national

and regional comovement.

In Fig. 20 it is apparent that much of the variation in the national factor is

contained in the post-crisis subsample is contained between the very beginning of

said subsample and Q1 of 2013. This may leave the reader questioning whether the

shown increase in the variance contribution of the national factor is attributable

solely to this period of high national factor volatility, after which it returns to

its pre-crisis contribution level. However, it is also true that the state-average

ROE series generally show the same type of behavior – most of them exhibit a

considerable drop during the crisis period, followed by a slow convergence back

to their pre-crisis levels. The significant determinant of the source of the post-crisis

increase in variance contribution is the relative behaviors of the national factor and

the state-average ROE series. To dispel such doubts, I repeat the same variance

decomposition analysis by defining the post-crisis period as beginning in Q1 of

2013, and present the results in Figs. B.9 and B.10. Although to a lesser extent,

this alternative analysis yields the same type of results as the original analysis.

This implies that the ratio of post- and pre-crisis average volatility of innovations

to the national factor is consistently greater than that of the majority of state-

specific disturbance processes. In other words, the increased national comovement

of state-average community bank ROEs seems to be a persistent phenomenon.

91



Figure 22. This graph plots the percent variance contribution made by the US
national factor toward each of the state-average ROE series in the dataset. The
first facet compares the variance contributions made by the national factor during
the pre- vs. intra-crisis periods, while the second facet compares that of pre- vs.
post-crisis periods. The state index orders states by their pre-crisis national factor
contribution in decreasing order.
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Figure 23. This graph plots the percent variance contribution made toward each
of the state-average ROE series in the dataset by their respective idiosyncratic
disturbance processes. The first facet compares the variance contributions during
the pre- vs. intra-crisis periods, while the second facet compares that of pre- vs.
post-crisis periods. The state index orders states by their pre-crisis national factor
contribution in decreasing order.
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4.5 Conclusion

In this study I estimate a multi-level/hierarchical dynamic factor model

using a balanced panel of 50 state-average community bank return-on-equity

series to measure national and region-level comovement, as well as state-specific

idiosyncrasy, in community bank profitability at the state level. My analysis

shows historical evidence of the following: (1) strong country-level dynamic

comovement in community bank profitability in the United States; (2) weak

regional comovement in community bank profitability; (3) significant state-

specific idiosyncratic dynamics to community bank profitability; (4) the extent

of national comovement has increased almost uniformly across all states since

the global financial crisis, while the extent of state-specific idiosyncrasy has

decreased. These empirical findings may be interpreted as showing an increase

in the interconnectedness of community banks across the United States since the

crisis, which implies an intensification in their exposure to common macrofinancial

shocks. The increased interconnectedness implies greater systemic risk, which in

turn increases the likelihood of bank contagion, thus leading to greater negative

effects on community banks in the United States in the event of another financial

crisis. Based on the historical role of the community banking sector as a group of

locally-specialized financial intermediates intended to be less sensitive to adverse

macroeconomic shocks (as opposed to large banks), these results seem to shed light

on an undesirable trajectory of the evolution of the sector.

An alternative interpretation of the increase in national comovement and

decrease in the state-specific idiosyncrasy of community bank profitability, as

evidenced by Figs. 22 and 23, respectively, is an increase in the underlying country-

level volatility of the banking sector rather than its interconnectedness. I offer a
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non-rigorous explanation of why this interpretation is likely invalid through a brief

discussion in the introductory section of this paper, but I reiterate it here. The

underlying volatilities (the magnitudes of structural shocks) of the US banking

sector are believed to have increased during the crisis, but reverted back to their

normal levels after the end of the crisis (Duffie, 2018; H. Kim, Batten, & Ryu,

2020; Sykes, 2018). Furthermore, it is unlikely that the community banking sector

underwent a drastically different experience relative to the rest of the banking

sector around this time period. For this reason, the increase in comovement is

most probably the result of an increase in the structural interconnectedness of

community banks across the country. In future works I plan to further explore

the validity of this alternative interpretation more rigorously by performing a

similar analysis with time-varying parameters (utilizing the approach developed

by Del Negro and Otrok (2011)). This method of analysis will allow me to check

whether the increased national comovement is the result of a relative increase in the

national factor loadings or an increase in its innovation volatility, where the former

confirms my original interpretation and the former is evidence of the alternative

interpretation.

The increased interconnectedness of the US community banking sector

may be the result of a variety of changes that occurred during and immediately

after the global financial crisis. Although this study points toward the emergence

of this phenomenon, it does little to identify the mechanisms that led to such

a development. One likely possibility is the increased interconnectedness being

caused by the convergence in the asset portfolio allocations of community banks

in an effort to diversify idiosyncratic risk. I believe that testing this hypothesis is a
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fruitful avenue for future studies, among other reasonable hypotheses as to why the

community banking sector in the US has become more interconnected.
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APPENDIX A

CHAPTER III APPENDIX

A.1 Baseline Model IRFs & PT-IRFs

The baseline model is expressed as

Xt = α + ΓFt + ΛNFN
t + ΛCFC

t + ut , ut ∼ N(0,Σu) ,

Zt = γ +Ψ(L)Zt−1 +Bvt , vt ∼ N(0, I) ,

where Xt is the data matrix containing all bank loan growth rate series and

Zt ≡



BRWt

log(GDPt)

log(GDPDt)

EBPt

Ft

FN
t

FC
t



,

such that BRW, GDP, GDPD, and EBP denote the cumulative BRW shock series,

gross domestic product, GDP deflator, and excess bond premium, respectively;

FN represents the vector of noncommunity bank lending factors; FC represents

the vector of community bank lending factors; Ψ(L) is a lag matrix polynomial;

v ∼ N(0, I) is a vector of structural shocks; and B is a recursively identified

contemporanous impact matrix.
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Figure A.1. PT-IRs of GDP in response to a one standard deviation positive
(contractionary) monetary policy shock via all relevant combinations of bank
lending factors. Solid black lines represent point estimates. Gray bands represent
90% confidence intervals generated using the wild bootstrap with 1,000 runs.
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Figure A.2. PT-IRs of all variables in the VAR to a one standard deviation positive
(contractionary) monetary policy shock via all bank lending factors. Solid black
lines represent point estimates. Gray bands represent 90% confidence intervals
generated using the wild bootstrap with 1,000 runs.
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Figure A.3. PT-IRs of all variables in the VAR to a one standard deviation positive
(contractionary) monetary policy shock via common and community bank lending
factors. Solid black lines represent point estimates. Gray bands represent 90%
confidence intervals generated using the wild bootstrap with 1,000 runs.
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Figure A.4. PT-IRs of all variables in the VAR to a one standard deviation positive
(contractionary) monetary policy shock via common and noncommunity bank
lending factors. Solid black lines represent point estimates. Gray bands represent
90% confidence intervals generated using the wild bootstrap with 1,000 runs.
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A.2 Robustness: Policy Shock Exogeneity Restriction

The alternative model is expressed as

Xt = α + ΓFt + ΛNFN
t + ΛCFC

t + ut , ut ∼ N(0,Σu) ,

Zt = γ +Ψ(L)Zt−1 +Bvt , vt ∼ N(0, I) ,

where Xt is the data matrix containing all bank loan growth rate series and

Zt ≡



BRWt

log(GDPt)

log(GDPDt)

EBPt

Ft

FN
t

FC
t



,

such that BRW, GDP, GDPD, and EBP denote the raw (non-cumulative) BRW

shock series, gross domestic product, GDP deflator, and excess bond premium,

respectively; FN represents the vector of noncommunity bank lending factors; FC

represents the vector of community bank lending factors; Ψ(L) is a lag matrix

polynomial; v ∼ N(0, I) is a vector of structural shocks; and B is a recursively

identified contemporanous impact matrix.

This alternative specification deviates from the baseline model in that the

lag coefficients of all variables in the equation for the monetary policy shock series

are restricted to zero.
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Figure A.5. Impulse responses of all variables in the VAR to a one standard
deviation positive (contractionary) monetary policy shock via bank lending.
Solid black lines represent point estimates. Gray bands represent 90% confidence
intervals generated using the wild bootstrap with 1,000 runs.
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(a) Distribution of community bank lending volume responses

(b) Distribution of noncommunity bank lending volume responses

Figure A.6. Bank-specific responses in loan quantity to a one standard deviation
positive (contractionary) monetary policy shock.
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Figure A.7. PT-IRs of IP in response to a one standard deviation positive
(contractionary) monetary policy shock via all relevant combinations of bank
lending factors. Solid black lines represent point estimates. Gray bands represent
90% confidence intervals generated using the wild bootstrap with 1,000 runs.
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Figure A.8. PT-IRs of all variables in the VAR to a one standard deviation positive
(contractionary) monetary policy shock via all bank lending factors. Solid black
lines represent point estimates. Gray bands represent 90% confidence intervals
generated using the wild bootstrap with 1,000 runs.
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Figure A.9. PT-IRs of all variables in the VAR to a one standard deviation positive
(contractionary) monetary policy shock via common and community bank lending
factors. Solid black lines represent point estimates. Gray bands represent 90%
confidence intervals generated using the wild bootstrap with 1,000 runs.
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Figure A.10. PT-IRs of all variables in the VAR to a one standard deviation
positive (contractionary) monetary policy shock via common and noncommunity
bank lending factors. Solid black lines represent point estimates. Gray bands
represent 90% confidence intervals generated using the wild bootstrap with 1,000
runs.
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A.3 Robustness: Alternative Variables

The alternative model is expressed as

Xt = α + ΓFt + ΛNFN
t + ΛCFC

t + ut , ut ∼ N(0,Σu) ,

Zt = γ +Ψ(L)Zt−1 +Bvt , vt ∼ N(0, I) ,

where Xt is the data matrix containing all bank loan growth rate series and

Zt ≡



BRWt

log(IPt)

log(CPIt)

EBPt

Ft

FN
t

FC
t



,

such that BRW, IP, CPI, and EBP denote the cumulative BRW shock series,

industrial production, consumer price index, and excess bond premium,

respectively; FN represents the vector of noncommunity bank lending factors;

FC represents the vector of community bank lending factors; Ψ(L) is a lag matrix

polynomial; v ∼ N(0, I) is a vector of structural shocks; and B is a recursively

identified contemporanous impact matrix.
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Figure A.11. Impulse responses of all variables in the VAR to a one standard
deviation positive (contractionary) monetary policy shock via bank lending.
Solid black lines represent point estimates. Gray bands represent 90% confidence
intervals generated using the wild bootstrap with 1,000 runs.
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(a) Distribution of community bank lending volume responses

(b) Distribution of noncommunity bank lending volume responses

Figure A.12. Bank-specific responses in loan quantity to a one standard deviation
positive (contractionary) monetary policy shock.
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Figure A.13. PT-IRs of IP in response to a one standard deviation positive
(contractionary) monetary policy shock via all relevant combinations of bank
lending factors. Solid black lines represent point estimates. Gray bands represent
90% confidence intervals generated using the wild bootstrap with 1,000 runs.
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Figure A.14. PT-IRs of all variables in the VAR to a one standard deviation
positive (contractionary) monetary policy shock via all bank lending factors.
Solid black lines represent point estimates. Gray bands represent 90% confidence
intervals generated using the wild bootstrap with 1,000 runs.

113



Figure A.15. PT-IRs of all variables in the VAR to a one standard deviation
positive (contractionary) monetary policy shock via common and community bank
lending factors. Solid black lines represent point estimates. Gray bands represent
90% confidence intervals generated using the wild bootstrap with 1,000 runs.
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Figure A.16. PT-IRs of all variables in the VAR to a one standard deviation
positive (contractionary) monetary policy shock via common and noncommunity
bank lending factors. Solid black lines represent point estimates. Gray bands
represent 90% confidence intervals generated using the wild bootstrap with 1,000
runs.
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A.4 Robustness: Alternative Monetary Policy Shock

The alternative model is expressed as

Xt = α + ΓFt + ΛNFN
t + ΛCFC

t + ut , ut ∼ N(0,Σu) ,

Zt = γ +Ψ(L)Zt−1 +Bvt , vt ∼ N(0, I) ,

where Xt is the data matrix containing all bank loan growth rate series and

Zt ≡



JKt

log(GDPt)

log(GDPDt)

EBPt

Ft

FN
t

FC
t



,

such that JK, GDP, GDPD, and EBP denote the raw cumulative JK shock series,

gross domestic product, GDP deflator, and excess bond premium, respectively;

FN represents the vector of noncommunity bank lending factors; FC represents

the vector of community bank lending factors; Ψ(L) is a lag matrix polynomial;

v ∼ N(0, I) is a vector of structural shocks; and B is a recursively identified

contemporanous impact matrix.
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Figure A.17. Impulse responses of all variables in the VAR to a one standard
deviation positive (contractionary) monetary policy shock via bank lending.
Solid black lines represent point estimates. Gray bands represent 90% confidence
intervals generated using the wild bootstrap with 1,000 runs.
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(a) Distribution of community bank lending volume responses

(b) Distribution of noncommunity bank lending volume responses

Figure A.18. Bank-specific responses in loan quantity to a one standard deviation
positive (contractionary) monetary policy shock.
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Figure A.19. PT-IRs of IP in response to a one standard deviation positive
(contractionary) monetary policy shock via all relevant combinations of bank
lending factors. Solid black lines represent point estimates. Gray bands represent
90% confidence intervals generated using the wild bootstrap with 1,000 runs.
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Figure A.20. PT-IRs of all variables in the VAR to a one standard deviation
positive (contractionary) monetary policy shock via all bank lending factors.
Solid black lines represent point estimates. Gray bands represent 90% confidence
intervals generated using the wild bootstrap with 1,000 runs.
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Figure A.21. PT-IRs of all variables in the VAR to a one standard deviation
positive (contractionary) monetary policy shock via common and community bank
lending factors. Solid black lines represent point estimates. Gray bands represent
90% confidence intervals generated using the wild bootstrap with 1,000 runs.
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Figure A.22. PT-IRs of all variables in the VAR to a one standard deviation
positive (contractionary) monetary policy shock via common and noncommunity
bank lending factors. Solid black lines represent point estimates. Gray bands
represent 90% confidence intervals generated using the wild bootstrap with 1,000
runs.
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APPENDIX B

CHAPTER IV APPENDIX

B.1 Estimation Methodology

The HDFM hyperparameters and latent factors are estimated by iteratively

drawing samples from their respective conditional posterior distributions using the

following sampling procedure:

1. Initialize the latent factors, (fUS)0 and (f r)0 for r = 1, . . . , R, by computing

them using the PCA approach discussed in L. Jackson et al. (2015), and

initialize hyperparameters by setting all regression coefficients to 0 and

innovation variances to 1;

2. Draw βj from p(β |ϕj−1, (σ2)j−1, factorsj−1) for each i-th observable series;

3. Draw ϕj from p(ϕ | βj, (σ2)j−1, factorsj−1) for each i-th observable series;

4. Draw (σ2)j from p(σ2 | βj, ϕj, factorsj−1) for each i-th observable series;

5. Draw (fUS)j from p(fUS | βj, ϕj, (σ2)j, regional factorsj−1);

6. Draw (f r)j for r = 1, . . . , R from p(fUS | βj, ϕj, (σ2)j, (fUS)j).

7. Repeat until j = J = 5, 000, and discard the first M = 1, 000 draws to

guarantee convergence to a stationary distribution.1

1The choice of sample size and number of burn-in periods is the result of experimenting with
the given data and estimator, rather than being a function of rigorous convergence criteria. I have
visually observed the convergence properties of all parameter and factor distributions conditional
on a set of different initialization conditions, and in all cases the MCMC seems to converge in
under 100 periods. Initializing the factors using PCA seems to be most efficient in achieving
convergence. Therefore, the choice of 1000 burn-in periods guarantees convergence in the context
of this study.
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Once the above Markov Chain Monte Carlo (MCMC) procedure is executed, the

outcome will yield large samples of the unconditional posterior distributions of

model hyperparameters and latent factors that may then be used for inference. The

following subsections describe the specifics of how the above-mentioned posterior

conditional distributions are constructed and utilized.

B.1.1 Drawing Hyperparameters. To draw the model hyperparameters, I

refer to the methodology developed by Chib (1993), and subsequently applied in a

context similar to that of this study by C.-J. Kim and Nelson (1999). We begin by

expressing Eqs. (4.1) and (4.4) for any given i ∈ {1, . . . , I} in stacked form as

Y = Xβ + e , (B.1)

and

e = Eϕ+ u , (B.2)

respectively, such that the columns of X represent an intercept and observations of

relevant latent factors. Let e∗ = Y −Xβ, so that

e∗ = E∗ϕ+ u . (B.3)

Furthermore, let Y ∗ = Φ(L)Y and X∗ = Φ(L)X be quasi-differenced versions

of Y and X with respect to the lag polynomial corresponding to that of the

autoregressive disturbance process, so that

Y ∗ = X∗β + u , (B.4)

The constructed objects e∗, E∗, Y ∗, and X∗ are later used to construct conditional

posterior distributions for the model hyperparameters used in the Gibbs sampler.

We begin by constructing the conditional posterior distribution for the β

coefficients given the ϕ and σ2 parameters. The coefficient prior may be expressed
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as

β |ϕ, σ2 ∼ N(b0, A0) , (B.5)

where b0 and A0 are observed moment priors. It follows that the coefficient

posterior may be expressed in the following manner:

β |ϕ, σ2, Y ∼ N(b1, A1) , (B.6)

where

b1 =
(
A−1

0 + σ−2X∗′X∗
)−1 (

A−1
0 b0 + σ−2X∗′Y ∗

)
, (B.7)

and

A1 =
(
A−1

0 + σ−2X∗′X∗
)−1

. (B.8)

At each iteration of the sampler, a new β is drawn for each series i = 1, . . . , I

conditional on previous draws of ϕ and σ2. If the direction restrictions on the

national and regional factor loadings do not satisfy the restrictions imposed on

the model (described in Section 3.2), then a given draw is discarded and a new

one draw is made. If the direction restrictions are persistently violated, then after

100 such unsatisfactory draws the corresponding factor observations are mirrored

around 0, and the above process is repeated until all restrictions are satisfied.

Next, we construct the conditional posterior distribution for ϕ given

observations of the β and σ2 parameters. The idiosyncratic disturbance

autoregressive coefficient prior may be expressed as

ϕ | β, σ2 ∼ N(c0, B0) , (B.9)

where c0 and B0 represent our prior beliefs about the first two moments of ϕ.

Therefore, the conditional posterior of σ2 may be expressed in the following
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manner:

ϕ | β, σ2, Y ∼ N(c1, B1)I[s(ϕ)] , (B.10)

where

c1 =
(
B−1

0 + σ−2E∗′E∗
)−1 (

B−1
0 c0 + σ−2E∗′e∗

)
, (B.11)

and

B1 =
(
B−1

0 + σ−2E∗′E∗
)−1

. (B.12)

The indicator function I[s(ϕ)] keeps only those draws of ϕ that represent

covariance-stationary autoregressive processes (roots of the lag polynomial ϕ(L) are

outside of the unit circle). In the computational implementation of the estimator,

ϕ is drawn repeatedly at each iteration of the sampler until desired stationary is

achieved.

Lastly, I construct the conditional posterior distribution for σ2 given

observations of the β and ϕ parameters. The innovation variance prior may be

expressed as

σ2 | β ∼ IG

(
υ0
2
,
δ0
2

)
, (B.13)

where υ0 and δ0 are observed and represent our beliefs about the distribution of

σ2. The innovation variance conditional posterior distribution corresponding to any

given observed series i ∈ {1, . . . , I} may be expressed in the following manner:

σ2 | β, Y ∼ IG

(
υ1
2
,
δ1
2

)
, (B.14)

where

υ1 = υ0 + T (B.15)
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and

δ1 = δ0 + (Y ∗ −X∗β)′ (Y ∗ −X∗β) . (B.16)

Since there are no restrictions on the innovation variance parameters, a draw from

the above posterior distribution is accepted by default.

B.1.2 Drawing Level-1 (National) Factor. The estimation of the national

factor must be based on the variation in the data without the influence of the

regional factors. For this reason, we define zit as being the variation in the i-th

observable series attributable only to the national factor and the idiosyncratic

disturbance term:

zit ≡ yit − β2if
ri
t . (B.17)

We are able to partial out the variation in f ri
t in zit due to the fact that we are

conditioning on the regional factors and model hyperparameters to generate the

posterior conditional distribution of the national factor, and may therefore treat all

else as observed. Once zt = (z1t, . . . , zIt) is computed, we may apply the Kalman

filter to it to generate the posterior conditional distribution described by

βT | z̃T ∼ N
(
βT |T , PT |T

)
(B.18)

and

βt | z̃t , βt+1 ∼ N
(
βt | t,βt+1 , Pt | t,βt+1

)
, (B.19)

for t = T − 1, T − 2, . . . , 1, where

βT |T = E(βT | z̃T ) , (B.20)

PT |T = Cov(βT | z̃T ) , (B.21)

βt | t,βt+1 = E(βt | z̃t, βt+1 = E(βt | βt | t, βt+1) , (B.22)

Pt | t,βt+1 = Cov(βt | z̃t, βt+1) = Cov(βt | βt | t, βt+1) , (B.23)
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such that z̃t represents the history of z up until period t. Note that the state-space

formulation of the model used for the Kalman filter here is a more parsimonious

one than, and nested in, the specification given in Section 3.2. More specifically,

the given state-space formulation used in the generation of the conditional posterior

distribution for the national factor need not contain any regional factor-related

components due to the regional factors being treated as observed.

B.1.3 Drawing Level-2 (Regional) Factors. The regional factors are

treated similarly to the national factor. First, we must partial out the variation

attributable to the national factor from all of the series corresponding to a given

regional factor. Then, we express the subset of the HDFM specifying the random

DGP determining the variation in the given series in state-space form, such that all

components related to all other series and the national factor are excluded due to

being treated as observed. Lastly, we input the Kalman filter-generated objects into

the same posterior distribution specified in Section 4.2 in order to make draws of

each of the regional factors.
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B.2 Figures

Figure B.1. Each of the facets in the given graph presents a timeplot of the
estimated unconditional distribution of the corresponding regional latent dynamic
factor over the full sample period. The solid red line represents the median of the
distribution at each given point in time, while the dashed blue lines represent the
5th and 95th percentiles of the distribution – in other words, the dashed blue lines
represent 90% confidence bands around the median.
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Figure B.2. Each of the facets in the given graph presents the variance
decomposition of each of the state-average ROE series for a given region with
respect to the three non-intercept independent variables: (1) the national factor (in
blue), (2) a corresponding regional factor (in orange), and (3) the corresponding
state-specific idiosyncratic disturbance process (in green). In other words, the graph
shows the percentage of the total variance of each observable series in each region
that may be attributed to each of its possible contributing drivers.
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Figure B.3. This graph plots the percent variance contribution made by the
Atlanta regional factor toward each of the state-average ROE series in the Atlanta
region across the pre-, intra-, and post-crisis subsample periods.
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Figure B.4. This graph plots the percent variance contribution made by the
Chicago regional factor toward each of the state-average ROE series in the Chicago
region across the pre-, intra-, and post-crisis subsample periods.
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Figure B.5. This graph plots the percent variance contribution made by the Dallas
regional factor toward each of the state-average ROE series in the Dallas region
across the pre-, intra-, and post-crisis subsample periods.
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Figure B.6. This graph plots the percent variance contribution made by the Kansas
City regional factor toward each of the state-average ROE series in the Kansas City
region across the pre-, intra-, and post-crisis subsample periods.
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Figure B.7. This graph plots the percent variance contribution made by the New
York City regional factor toward each of the state-average ROE series in the New
York City region across the pre-, intra-, and post-crisis subsample periods.
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Figure B.8. This graph plots the percent variance contribution made by the San
Francisco regional factor toward each of the state-average ROE series in the San
Francisco region across the pre-, intra-, and post-crisis subsample periods.
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Figure B.9. This graph plots the percent variance contribution made by the US
national factor toward each of the state-average ROE series in the dataset. In other
words, the graph shows the percentage of the total variance of each observable
series that may be attributed to the US national factor. The first facet compares
the variance contributions made by the national factor during the pre- vs. intra-
crisis periods, while the second facet compares that of pre- vs. post-crisis periods.
The state index orders states by their pre-crisis national factor contribution in
decreasing order.
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Figure B.10. This graph plots the percent variance contribution made toward each
of the state-average ROE series in the dataset by their respective idiosyncratic
disturbance processes. In other words, the graph shows the percentage of the total
variance of each observable series that may be attributed to their corresponding
idiosyncratic disturbance processes. The first facet compares the variance
contributions during the pre- vs. intra-crisis periods, while the second facet
compares that of pre- vs. post-crisis periods. The state index orders states by
their pre-crisis national factor contribution in decreasing order.
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