
Swan: A Framework to Bootstrap Trust in Network Data 

Science

by

ABDUARRAHEEM ELFANDI

A thesis accepted and approved in partial fulfillment of the  

requirements for the degree of 

Master of Science  

in Computer Science

Thesis Committee: 

Ram Durairajan, Chair 

Michal Young, Member 

University of Oregon 

Winter 2024



© 2024 Abduarraheem Elfandi 
This work is openly licensed via CC BY 4.0

iii



THESIS ABSTRACT

Abduarraheem Elfandi

Master of Science in Computer Science

Title: SWAN: A Framework to Bootstrap Trust in Network Data Science

Two significant challenges must be overcome before machine learning models 

can be deployed in an operational setting: the ability to achieve trust within and 

across enclaves which includes addressing data privacy concerns. In this thesis,

we propose SWAN, a framework to tackle these challenges by allowing data to

be labeled at scale, achieving trust within an enclave by providing insight into 

black-box machine learning models through a hybrid explainability technique which 

is done by utilizing the combination of global and local interpretability techniques. 

Furthermore, the framework allows for collaboration across enclaves while 

maintaining data privacy requirements.

This thesis includes unpublished co-authored material by Ramakrishnan 

Durairajan and Walter Willinger.

iv



ACKNOWLEDGEMENTS

I would like to thank the co-authors Ramakrishnan Durairajan and

Walter Willinger for their collaboration in this thesis. I also would like to thank

Ramakrishnan Durairajan for patiently guiding me and supporting me throughout

the past year-and-a-half. Additionally, I would like to thank Professor Michal

Young for providing very insightful feedback. Finally, I would like to thank my

family for their continuous support throughout the years.

v



TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 1

II. MOTIVATION AND PRIOR EFFORTS . . . . . . . . . . . . . . 5

2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Availability of labeled data . . . . . . . . . . . . . . . . 5

2.1.2. Privacy . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3. Interpretability . . . . . . . . . . . . . . . . . . . . . 6

2.2. Limitations of Prior Efforts . . . . . . . . . . . . . . . . . . . 7

III. DESIGN AND IMPLEMENTATION . . . . . . . . . . . . . . . . 9

3.1. Overview of SWAN . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1. Design Details . . . . . . . . . . . . . . . . . . . . . 9

3.1.2. User Interface . . . . . . . . . . . . . . . . . . . . . 9

3.1.3. Labeling function . . . . . . . . . . . . . . . . . . . . 10

3.1.4. EMERGE Pipeline . . . . . . . . . . . . . . . . . . . 10

3.1.5. Interpretability . . . . . . . . . . . . . . . . . . . . . 11

3.2. Implementation . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1. Web Service . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2. DEEP as a service REST API . . . . . . . . . . . . . . 12

3.2.3. Hybrid Explainability . . . . . . . . . . . . . . . . . . 13

IV. EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1. Evaluation of collaboration . . . . . . . . . . . . . . . . . . . 17

4.1.1. Datasets Used . . . . . . . . . . . . . . . . . . . . . 17

4.1.2. Experiments and hyperparameter tuning . . . . . . . . . . 17

vi



Chapter Page

4.1.3. Case 1 Results: Combination of labeling
functions that are based on one feature . . . . . . . . . . 18

4.1.4. Case 2 Results: Combination of labeling
functions that are based on two features . . . . . . . . . . 19

4.2. Evaluation of Hybrid Explainability . . . . . . . . . . . . . . . 19

4.2.1. Illustrative use case 1 . . . . . . . . . . . . . . . . . . 19

4.2.2. Illustrative use case 2 . . . . . . . . . . . . . . . . . . 20

4.2.3. Results for use case 1 . . . . . . . . . . . . . . . . . . 20

4.2.4. Results for use case 2 . . . . . . . . . . . . . . . . . . 22

V. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . 31

VI. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 32

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



LIST OF FIGURES

Figure Page

1. Pipeline of SWAN that includes the EMERGE [13] pipeline. . . . . . . 16

2. Example Mean labeling function. . . . . . . . . . . . . . . . . . . 16

3. Initial LSTM model for congestion detection on a link
(top left), decision-tree-based model explainable model
derived using ARISE [12] (top right), the explainable model
corrected using majority voting mechanism (bottom left),
and lastly the explainable model with step 2-3 applied
(bottom right). . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4. Decision tree generated from Trustee. . . . . . . . . . . . . . . . . 28

5. Rearranged tree where the nodes are the features and the
edges are the rules. . . . . . . . . . . . . . . . . . . . . . . . . 29

6. Rearranged tree after integrating nodes. . . . . . . . . . . . . . . . 30

viii



LIST OF TABLES

Table Page

1. Case 1: The LF and classifier F1 scores of the labeling
functions that are based on one feature from the CAIDA
Ark dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2. Case 2: The LF and classifier F1 scores of the labeling
functions that are based on two features from the CAIDA
Ark dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3. Case 1: The LF and classifier F1 scores of the labeling
functions that are based on one feature from the RIPE
Atlas project dataset . . . . . . . . . . . . . . . . . . . . . . . 26

4. Case 2: The LF and classifier F1 scores of the labeling
functions that are based on two features from the RIPE
Atlas project dataset . . . . . . . . . . . . . . . . . . . . . . . 27

5. Evaluation metrics for the four models depicted in Figure 3. . . . . . . 28

6. Evaluation metrics for the three models depicted in Figure 4,
Figure 5, and Figure 6. . . . . . . . . . . . . . . . . . . . . . . 29

ix



CHAPTER I

INTRODUCTION

Ensuring the success of ML4Nets—defined as the application of artificial

intelligence (AI) and machine learning (ML) techniques to address real-world

network security and performance problems—in practice hinges on convincing

network operators to deploy ML4Nets solutions in their production networks.

This, in turn, requires that network operators can trust these solutions and have

means to assess their safety. Here, following [15], we say “a network operator

has trust in a ML model” iff “the operator is comfortable with relinquishing

control to the model.” Moreover, referring to [6], by “assessing the safety of ML

solutions”, we mean “studying the problem of accidents, defined as unintended and

harmful behavior that may emerge from poor design of real-world ML solutions.”

Unfortunately, due to the black-box nature of many of the currently considered ML

models, today’s network operators lack the means to reason about the decisions and

predictions made by these models. These models’ inability to provide explanations

for their decision-making engenders distrust, prevents network operators from

understanding the models’ safety, and explains the operators’ overall reluctance

to using ML4Nets solutions in practice [12].

To address these issues, Explainable AI (XAI) has emerged as a field of

study aimed at enhancing the comprehensibility of learning models and their

decision-making processes (e.g., see the surveys [8, 5, 7]). At a high level, XAI

encompasses two categories of techniques. The first category consists of global

explainability techniques that leverage approximations in the form of explainable

models to provide an overall explanation of a given black-box model and typically

entail a tradeoff between the complexity (e.g., size) of the explainable model, its

1



accuracy (e.g., number of input instances it explains), and the computational effort

its generation requires, In theory, using such explainable approximation models,

operators can reason about a given black-box model’s decision-making (i.e., how

and why the model arrives at a specific decision and not at some other decision)

and gain confidence in the overall reliability of its decisions and predictions (i.e.,

when the model works or when and why the model does not work). The second

category is composed of local explainability techniques that are typically designed to

provide explanations for individual instances that a trained model is given as input.

Local techniques employ concepts such as feature importance scores, attention

mechanisms, and rule-based explanations, and applying them at scale (number of

instances) requires being aware of their per-instance computational complexity.

These local techniques are useful vehicles for operators to reason about a given

model’s specific decisions or predictions and to assess the safety of a given ML4Nets

solution in corner case scenarios (i.e., understanding the potential consequences of

certain incorrect decisions for a given input instance).

While these techniques have been successfully applied in a number

of different application domains (e.g., computer vision [9] and autonomous

vehicles [1, 3]), their suitability and effectiveness in the networking domain to

address network performance and security problems of practical interest have

attracted little to no attention to date, mainly because of data-related issues

that are specific to networking [13, 10, 12]. Most critical among these issues are

a general paucity of (labeled) data, the high volume and velocity of network data

collected from real-world production networks, the one-off nature of existing data

collection efforts, and important privacy and security concerns associated with

collecting network data from operational networks. Furthermore, faced with a

2



growing number available explainability techniques, network researchers and

operators alike are largely left in the dark about how to apply the latest techniques

so as to simultaneously satisfy the dual requirements of network operators—gaining

trust in ML4Nets solutions (by means of having a broad understanding of the

solution’s global behavior) and being able to assess the solutions’ safety (by means

of providing specific, case-by-case, local explanations that can be scrutinized with

respect to the impact of the associated decisions and predictions). Finally, meeting

both of these requirements concurrently also necessitates systems innovations

that are aimed at striking a balance between the indiscriminate use of resource-

intensive local explainability techniques and the selective application of efficient but

inaccurate approximation models supplied by global explainability techniques.

The second challenge stems from data-privacy issues considering the nature

of networking data containing sensitive information. The nature of networking

data causes data owners to impose privacy requirements making it difficult to

collaborate across different enclaves. Recent efforts have made progress on each

one of the these capabilities individually. For example, Yin et al. [20] developed a

Generative Adversarial Network (GAN)-based to share synthetic datasets across

different enclaves. Knofczynski et al. [12] proposed a local interpretability technique

for bootstrapping trust into trained ML models based on network data. Although

these individual efforts are commendable, a solution to simultaneously address the

aforementioned factors remains an open problem.

In this thesis, we propose to tackle two challenges, ensuring that the ML

models can trusted within enclaves (i.e., operational network) and across different

enclaves by creating SWAN, a framework that operators and researchers can use a

pipeline in which different enclaves can share metadata, and benefit from datasets

3



that exist outside of their own enclaves while ensuring data privacy. Additionally, it

enables reasoning with decisions made by the trained black-box model using hybrid

explainability techniques that combine global (i.e., insights about overall working

on the model) and local (i.e., insights into specific predictions) explainability

methods.

The code source code of SWAN is available here: https://gitlab.com/

onrg/swan.

4



CHAPTER II

MOTIVATION AND PRIOR EFFORTS

In this section, we describe our motivation and limitations of prior efforts.

2.1 Motivation

The motivation behind this work comes from two important factors (1)

maintaining privacy across different operators in different enclaves, and (2)

explaining the black-box nature of ML models that plays a significant role in the

application of machine learning for network performance and security problems.

2.1.1 Availability of labeled data. The lack of labeled data in

the Network Data Science domain arises from the lack of defined and generally

accepted features for describing various events in the data. This problem is made

more complicated due to how the data is collected from different locations and

during other conditions along with different information. To label this data, only an

operator who is familiar with this data can label it.

Recent efforts have proposed solutions to the lack of labeled data by using

weak-supervision-based learning. This is can done by having an operator provide

ground truth labels. The amount of labels an operator can label is limited, hence

weak supervision uses a finite amount of ground truth labels and generates noisy

labels for the rest of the dataset. This can be done by using data programming

methods such as the usage of labeling functions to label data. Operators can create

labeling functions that divide the data into different categories.

Prior frameworks such as NoMoNoise [17], and EMERGE [13] use weak

supervision learning to label networking data. NoMoNoise denoises internet delay

measurements with the usage of weak supervision learning along with what Snorkel

[18] offers. To swiftly and seamlessly eliminate and potentially correct noise data,

5



NoMoNoise is able to generate measurement noise labels. Furthermore, EMERGE

is another weak supervised learning framework that extends on the ideas from

NoMoNoise. EMERGE uses a generative model to produce weak labels on the

data. These labels are then used to train a classifier discriminative model such as

LSTM where to see the quality of the data.

2.1.2 Privacy. Due to the nature of networking data containing

sensitive information, it is quite difficult for researchers to collaborate with different

groups. One solution is to share machine learning models. With the data they

have available, two groups can train their own ML models and then share the

final model. Beyond sharing datasets and ML models there is not a framework

that allows researchers and operators who don’t own data to benefit from existing

datasets while maintaining the owner of the data demands on privacy requirements.

Because different groups are unable to give away the dataset information used

for training ML models, or model predictions, as a result, these privacy concerns

are a hindrance to research groups working together to use ML in the networking

domain.

While sharing ML models would seem like an ideal way for different groups

to collaborate with one another, ML models have no way of safeguarding the

privacy of the data. This is due to multiple different types of attacks that ML

models are vulnerable to. Typically, adversaries take advantage of these flaws to

gain information about the data that was used to train the model. Depending

on the information gathered from these attacks adversaries may be able to create

datasets that reflect a realistic representation of the classes in the dataset.

2.1.3 Interpretability. Network operators in the networking

domain face trust issues due to the black-box nature of ML models. Network

6



operators frequently require interpretability in the ML models they want to use

since the decision made matters, allowing them to understand and support the

decisions made by the models. Because of the explainability provided, network

operators may make correct decisions based on the outputs of the ML model. This

interpretability can come in two forms (1) local interpretability and (2) global

interpretability. The former aims to provide insight into why the model made

a particular prediction for a specific input, focusing on individual data points

or instances. Local interpretability offers precise and detailed explanations for

individual predictions but it does not provide the overall behavior of the model.

On the other hand, the latter, global interpretability aims to provide insight

into the model’s behavior across the datasets or a significant portion of it along

with analyzing the dataset’s patterns, trends, and feature importance. As global

interpretability deals with complicated models and attempts to summarize them

into an easy-to-understand format, this process can be error-prone and may not

accurately convey the model’s behavior. Using the combination of both local and

global interpretability we create a hybrid interpretability that provides the global

context while also using local interpretability to provide error-free results.

2.2 Limitations of Prior Efforts

Prior efforts have two main shortcomings: (1) provide collaboration in a

privacy-preserving fashion, and (2) the interpretability of ML models.

Although there have been prior efforts [13], [12] that attempt to democratize

the use of ML to label networking data by providing low-cost and high-quality

methods with the usage of data programming and multi-task learning techniques.

Prior efforts such as EMERGE [13] assume that networking data is present

and focus on allowing collaboration by providing at a large scale high-quality and

7



low-cost, labeled data by building on the concept of weak supervision-based data

labeling methods. EMERGE specifically leverages traceroute data from the CAIDA

Ark project that spans one day to label data in a programmable manner. This

process is done in multiple steps, where the data is analyzed to create thresholds

to differentiate between noisy and non-noisy data. Afterward, the data is split and

a small portion is labeled. To evaluate the label quality generated by EMERGE,

discriminative models are trained using probabilistic training labels. Instead of

sharing raw data and machine learning models to allow for collaboration, EMERGE

allows metadata to be shared (e.g. labeling functions) to maintain privacy. The

EMERGE framework addresses one of the two shortcomings but it does not provide

any way to begin reasoning with the decisions that the model makes.

Similarly, ARISE [12] provides a multi-task weak supervision framework.

ARISE applies various learning techniques including multitask learning and meta-

learning to improve information exchange between tasks and shorten overall

training time. It labels network data at scale using weak supervision-based data

programming. ARISE provides local interpretability to understand the decisions

that the model is making based on the data. ARISE is built upon multiple different

components such as an interface that network operators can use to translate their

understanding of the data to “a programmatic representation” by using labeling

functions. Another component of ARISE allows unlabeled data to be inputted and

used with labeling functions to generate weak labels. ARISE then uses the weakly

labeled data to train a classification model which is done in different sub-tasks.

One of the main issues of this framework is that it does not address anything in

regard to collaboration and maintaining privacy among collaborators.

8



CHAPTER III

DESIGN AND IMPLEMENTATION

The hybrid explainability technique described in this chapter (3.2.3) was

written by the co-authors Ramakrishnan Durairajan and Walter Willinger while I

implemented the hybrid explainability technique.

In this section, we describe the design and implementation of SWAN.

3.1 Overview of SWAN

Designing and implementing SWAN is the primary goal of this work.

SWAN is a novel framework that provides a technique to label network data in a

scalable and cost-effective fashion by utilizing prior efforts [13], a pipeline in which

network operators and researchers can share metadata and not share any sensitive

data or ML model, and lastly provides a method to show the decisions made by

trained ML models and how they compare to a domain expert along with how the

trained ML model operates.

3.1.1 Design Details. The architecture of SWAN can be seen in

Figure 1. Below, we list and provide a description for each of the modules.

3.1.2 User Interface. One of the key contributions of SWAN, is

to provide a way for researchers and network operators to translate their domain

knowledge and allow collaboration between different groups. In order to accomplish

this, we have created an interface that is exposed to researchers and operators that

may be in different groups to use by providing programs in this case a labeling

function using Python. This interface exposes the EMERGE pipeline which can use

the labeling functions provided to generate labels for that dataset. This interface

also allows users (researchers and operators) to fine-tune the hyperparameters

for the generative and discriminative models along with the ability to specify

9



what dataset (e.g CAIDA & RIPE) they would like to train their model on.

Furthermore, the interface allows users to view other users’ submissions along

with how their labeling functions perform. Using this information different groups

can decide if they would like to train a model by using a combination of labeling

functions provided by them and by others and how they perform in comparison.

3.1.3 Labeling function. In order to provide weak labels for

unlabeled networking datasets that are used in ML model training, users

(researchers & network operators) can create labeling functions as in Figure

2. This labeling function in Figure 2 implements a rule, that classifies data as

good (1) or bad (0) if the RTT value is less than or equal to the mean. While

labeling functions can be customized for a particular enclave, they can also include

statistical or general thresholds that allow them to be used for different networks.

Labeling functions can also be built in such a way that allows them to be more

general across different datasets by taking into account different factors. Using

this approach allows for more scalability by using the same labeling functions

throughout different datasets.

3.1.4 EMERGE Pipeline. EMERGE [13] is a weak supervised

learning framework that builds on NoMoNoise. The EMERGE pipeline provides

a method to produce weak labels on the data, this is based on the NoMoNoise [17]

module. This is done by using the given labeling functions that have been acquired

from the user interface module. Using the weak labels produced and the Snorkel

[18] library a generative model is produced. The generative model provides the

probabilities values of the weak labels generated. To be more specific it assigns

probability values to each RTT value which indicates how confident the model is

10



assigning a particular label to a given RTT value. The labels that are generated are

then used to train the discriminative model (e.g LSTM).

3.1.5 Interpretability. Another key contribution that is provided

in this framework is the ability to reason with decisions regarding the model by

ensuring that the ML model is interpretable globally and locally. This done by

providing a hybrid interpretability framework where we can view explanations for

each data point and reason about why it was classified correctly or incorrectly.

3.2 Implementation

In this section, we describe the implementation of SWAN, which allows

different entities to collaborate with each other while maintaining privacy. The

framework shown in Figure 1 is built using three Docker containers: (1) a container

that contains the Flask application; (2) a container for the DEEP as a Service

(DEEPaaS) REST API to expose the model; (3) a container that contains the

reverse proxy that is used, in this case, Nginx.

3.2.1 Web Service. Using the Flask micro web framework we present

an endpoint that different entities can access to collaborate with each other. The

Flask application presents users with a dashboard where new users can create an

account to access the service. When a user creates their account their username

and password are stored in a database (e.g. MongoDB). Upon signing in the user is

presented with the ability to share their labeling functions, and select between two

datasets (e.g. CAIDA and RIPE) to use for the generative to produce the labels

which are used on the discriminative model. Along with that, a user can specify the

hyperparameters for both generative and discriminative models.

A user can submit their labeling functions by providing a Python file that

contains the functions. Furthermore, users can specify what labeling functions

11



they would like to use from the submitted file. We provide a template file that

contains different labeling functions for users to understand how they should write

their own labeling functions that they can share. Upon submission, we check if the

provided file type is a Python file and if the specified labeling functions exist. If

any of the conditions are not met or any error occurs that will be reported to the

user. Otherwise, if all the inputs are valid we store all the submission information

in our database and we make a call to the DEEPaaS REST API to train the model.

Users can then view all their submissions with a drop-down menu to check if the

training is currently running or completed and view the results. Users can view

the results as a plot of F1 scores of all labeling functions that they have submitted

which makes it easier to compare labeling functions.

To allow for collaboration between different users, a user can see if other

registered users have shared their labeling functions. They can combine them with

their own labeling functions to see how well they perform by checking the F1 score

returned. Along with that, a user can compare how all of the labeling functions

they have submitted perform, in comparison to what other users submitted, and

how both sets of labeling functions perform when they are combined.

3.2.2 DEEP as a service REST API. Using DEEPaaS [16] a

REST API is run in front of the model which can then be accessed using an HTTP

request. DeepaaS provides a Swagger UI for this API. This allows you to visualize

and interact with the API and the underlying model. In this work, the model that

we expose is a portion of the EMERGE pipeline which is the module that extends

ideas from the NoMoNoise [17] framework.

The two main endpoints that we expose to the user are the POST training

request and the GET status of training. The former is used when a user submits

12



their labeling function or combines their labeling function with another user. When

that POST request is sent a response is given back that contains the Universal

Unique Identifier (UUID). The UUID is used to uniquely identify each training

request. The latter leverages the UUID to provide users with the training status

of the model using labeling functions that they have submitted. There are four

possible statuses which are: (1) running, (2) error, (3) completed, (4) canceled.

Users at any time can get the status to see if the training has been completed and

view the results.

3.2.3 Hybrid Explainability. In this work, we present a novel hybrid

explainability technique that is specifically designed to simultaneously satisfy

network operators’ dual requirements for deploying ML4Nets solutions—being

able to trust these solutions and to assess their safety. At the core of this novel

technique is the following three-step approach:

Step 1: Enhancing Explainable Model Accuracy. This step focuses

on addressing accuracy issues that stem from using post-hoc global explainability

techniques. These techniques include recently developed methods such as

Trustee [11] or ARISE [12] and typically generate explainable models in the form

of decision trees that approximate a given black-box models. Because of their

approximate nature, the generation of such decision trees entails a complexity-

accuracy tradeoff whereby high-accuracy decision trees necessitate large-sized

(i.e., high-complexity) tree structures. To navigate this tradeoff, we incorporate

computationally intensive yet highly accurate local explainability techniques in

an opportunistic manner. Specifically, we enhance the explainability of certain

branches of the approximate decision-tree model only if it results in improved

accuracy. We determine this improvement through a straightforward majority

13



voting mechanism that is aimed at resolving uncertainties or inconsistencies

stemming from the fusion of global and local explainability techniques. This

step essentially acts as a “model distillation” process, simplifying complex

interpretations generated by various techniques and consolidating them into a

more concise explanation. Moreover, the employed voting mechanism prevents

unnecessary computational overhead when multiple techniques are in agreement.

Step 2: Handling Exceptional Cases. In this step, we address situations

where global techniques fail to provide an explanations or don’t produce a

meaningful explanation. Such situations are common for training data collected

from operational networks [13, 12], but network operators nevertheless want to

be able to reason about a black-box models’ decision-making process when faced

with such “corner cases.” For each data point in the test data that cannot be

explained by any of the branches of the decision tree generated in Step 1, we apply

the same majority voting mechanism used earlier, but this time exclusively with

findings derived from applying local explainability techniques. This approach saves

computational resources by only applying local techniques to only a subset of the

test data (i.e., corner cases). It also avoids unnecessary resource overhead when

there is consensus among the employed local techniques. At the end of this step, we

compile a comprehensive list of corner cases, complete with rule-based explanations,

potentially adding new branches to the decision tree generated in Step 1.

Step 3: Expanding the Global Decision Tree. The final step involves

integrating the new branches that emerge from the corner cases considered in Step

2 into the global decision tree constructed in Step 1. The goal is to expand this tree

while ensuring that both the existing and new branches are integrated cohesively.

In efffect, this step serves as an “explanation summarization” process, where

14



interpretations are harmonized to facilitate engendering trust, assessing safety, and

guaranteeing computational efficiency. To determine the proper placement of each

of the corner cases into the already existing decision tree, we start by examining

the nodes of the decision tree where the conditions of the new branches (i.e., corner

cases) align with the those in the existing decision tree. We then check if any

existing nodes can accommodate the new branches with some modifications. If so,

we update the nodes of the decision tree to incorporate the rules from the corner

cases. Otherwise, we create new nodes in the decision tree. These new nodes are

added as child nodes to existing parent nodes in the decision tree, ensuring that

the conditions of the new nodes are compatible with the rules of their parent nodes

and that they lead to the intended outcomes. After applying this process to each

considered corner case, we review the entire new set of branches to maintain the

order of traversal. In operational networks, these trees have to be updated on an

ongoing basis by means of real-world feedback and new training data to enhance

their accuracy.

15



Figure 1. Pipeline of SWAN that includes the EMERGE [13] pipeline.

Figure 2. Example Mean labeling function.

16



CHAPTER IV

EVALUATION

The illustrative use case 1 and results for use case 1 that are provided in 4.2

were written by the co-authors Ramakrishnan Durairajan and Walter Willinger. I

conducted all the experiments in addition to writing the results that were found

when applying Steps 2-3 of the hybrid explainability technique.

4.1 Evaluation of collaboration

The following describes the steps for conducting the experiments along with

the findings of how collaboration across different enclaves with the usage of sharing

and combining labeling functions can result in benefits.

4.1.1 Datasets Used. The datasets used in our experiments we

use CAIDA Ark [2] dataset which contains traceroute and RIPE Atlas project

[4] dataset which contains ping measurements. The CAIDA Ark project dataset

contains over 1 million traceroutes, and extracts around 75,359 round-trip time

(RTT) measurements among 28 source and destination (SD) pairs [2] that are

collected over a one-day period. Each source and destination pair contains 2,000

to 4,000 measurements, where the average number of measurements is 2692 for

each source and destination pair. Along with that, we use a portion of RIPE

Atlas [4] project ping dataset and use 2.5 million latency measurements that are

split into 100 time series with numerous sources to numerous destinations. Every

measurement contains IP addresses for the source and destination, the average

RTT, along with timestamps.

4.1.2 Experiments and hyperparameter tuning. We analyze

each SD dataset in order to determine a threshold value that is used to label that

RTT value as normal or noise. Due to our data being imbalanced where there

17



are few noisy data we create random values that are greater than the threshold

value, and add them into the original data. By doing this, we make sure that our

classifier has sufficient normal and noisy samples to gain information. Since noisy

RTT measurements in our dataset can be regarded as outliers we consider outlier

detection methods such as Local Outlier Factor (LOF), Elliptic Envelope (EE),

and Overly-Robust Covariance Estimation (ORCE). We split our data into 80%

training set, 10% validation set, and 10% test set. Our training set will serve as our

unlabeled data while the validation and test sets will serve as our labeled data. We

use our generative model to create probabilistic training labels that are then used

in our discriminative model (LSTM) which is our end-classifier. The LSTM model

is trained using the training set and evaluated it on the validation and test set. The

LSTM model hyperparameters are fine-tuned by trying different values of epochs,

learning rate, batch size, and LSTM units.

4.1.3 Case 1 Results: Combination of labeling functions that

are based on one feature. We present the F1 score of the labeling functions

along with the classifier’s F1 in Table 1 and 3. The feature that we consider is

the Round Trip Time (RTT) value. The LF F1 evaluates the labels generated

directly from the labeling functions compared to the ground truth labels, while

the classifier F1 scores evaluate the classifier trained using the training set along

with the probabilistic labels corresponding with the ground truth labels. In Table

1 we can see that some of the end-classifier model achieved a higher F1 score than

the labeling functions F1 scores. Labeling functions may introduce noise or errors

in their predictions due to being one-sided. By training a classifier on the noisy

labeled data the model can learn to distinguish between noisy and good data,

which can generalize and reduce the impact of noisy labeling functions. On the

18



other hand, taking a look at Table 3 none of the Classifier F1 scores out perform

the LF F1 scores. This could be due to the Classifier overfitting the training data

or failing to generalize well to the test data.

4.1.4 Case 2 Results: Combination of labeling functions that

are based on two features. In this experiment, we analyze the effects of

labeling function combinations based on two features. The two features that we

consider are the Round Trip Time (RTT) value and the jitter. The RTT and

jitter have a correlation coefficient of 0.526 and 0.629 for both the CAIDA and

RIPE data set respectively and is viewed as moderate. In Tables 2 and 4 we

provide the individual and combined F1 scores of the labeling functions based on

the two features. We consider different outlier detection methods when we build

our labeling functions. In both Tables 2 and 4 we see that both the LF and the

Classifier F1 scores are quite low. This could be due to the low number of true

positives, which affects the precision and recall which in the process results in a

low F1 score. Due to some of the labeling functions being skewed that can make

one of the labeling functions irrelevant. Additionally, the low LF and Classifier

F1 scores could be due to the labeling functions not being suitable with the jitter

feature. This could come from the design of the labeling functions which may not

adequately account for the variability of the jitter feature.

4.2 Evaluation of Hybrid Explainability

4.2.1 Illustrative use case 1. To illustrate the practicality of

our proposed hybrid explainability technique, we evaluate in the following the

effectiveness of the above-described steps (3.2.3) in the context of ARISE, a

previously-published weak-supervision-based framework for labeling different

network datasets in an automated fashion and at scale [12]. In short, ARISE

19



leverages network operators’ domain knowledge in the form of labeling functions

to programmatically label network datasets and uses multi-task learning to

enable concurrent learning of network classification tasks (e.g., congestion vs.

non-congestion). Its workflow (see Appendix C in [12] for details) requires to

first create a noisy generative model and then train a predictive LSTM model.

We choose ARISE because of its ability to produce a decision tree that enables

operators to reason about the labeling decisions made by ARISE. Here we show

how to embellish this decision tree by applying Steps 1-3 of our proposed hybrid

explainability technique.

4.2.2 Illustrative use case 2. Additionally, we illustrate the

practicality of the proposed hybrid explainability technique using Trustee [11], a

framework that provides insight into black-box learning models. To summarize,

Trustee is a framework that extracts decision tree explanations from black-box

ML models and verifies the model’s trustworthiness. The workflow of Trustee

requires a black-box model and the dataset used to train the model as input

which then outputs a decision tree explanation. Specifically, we focus on one

Trustee application for an intrusion detection system that is trained using CIC-

IDS-2017 [19] dataset. We show how the decision tree is modified using our hybrid

explainability technique.

4.2.3 Results for use case 1. For our evaluation, we use CAIDA’s

Ark dataset, which comprises over 1.2 million round-trip time (RTT) measurements

between 28 source-destination pairs collected over the course of a day [2]. Using

this dataset, we trained a predictive LSTM model by utilizing the labeling function

that classifies a data point as “experiencing congestion” if the RTT value falls

within the range of [1.2 times β, 1.5 times α], where α and β represent the RTT

20



values corresponding to the 75th and 25th percentiles, respectively. Our data

partitioning scheme allocates 80% of the data for training, 10% for validation,

and 10% for testing for each link. Additionally, we randomly selected 1000

measurements from a single source-destination pair and manually labeled them

with many false negatives to create a dataset for evaluating the decision tree

generated by ARISE.

Figure 3. Initial LSTM model for congestion detection on a link (top left), decision-
tree-based model explainable model derived using ARISE [12] (top right), the
explainable model corrected using majority voting mechanism (bottom left), and
lastly the explainable model with step 2-3 applied (bottom right).

Figure 3 shows four key outcomes, along with the percentage of times

the data points were labeled as congested (“VOTE”) or not (“NORMAL”). On

the top left, we show the LSTM model created by ARISE. At the top right, we

show the decision tree generated through ARISE’s task-specific explainability

capability. On the bottom left, we show the explainable model with our integrated

majority voting mechanism. At the bottom right we show the application of

Steps 2-3 after applying majority voting. Table 5 complements Figure 3 and lists

the model evaluation metrics. In particular, the LSTM model achieves a good

balance between precision (0.816) and recall (0.964), with an F1 score of 0.884

21



and an accuracy of 0.881. This indicates that the LSTM model performs well

in labeling data points as congested or not can while minimizing false positives.

The task-specific explainable model achieves perfect precision (1.000) but has a

lower recall (0.645), resulting in an F1 score of 0.784 and an accuracy of 0.833.

However, combining this explainable model with our majority voting mechanisms

yields predictions with improved recall (0.998) and adequate precision (0.826),

resulting in an impressive F1 score of 0.904 and a high accuracy of 0.900. These

preliminary findings indicate that including a simple majority voting mechanism

can produce a more balanced and accurate classification, addressing the accuracy

issues of post-hoc global explainability techniques. Furthermore, given that the

task-specific decision tree model’s accuracy of 83% and our sample size of 1000 for

model evaluation, the voting scheme effectively diminishes the number of “corner

cases” from 17% (i.e., 170 corner cases) to 10% (i.e., 100 corner cases). Applying

Steps 2-3 results in a perfect precision (1.000) and a decent recall (0.989), with in

an improved F1 score of 0.994 and a high accuracy of 0.995. Considering the 10%

corner cases after the application of majority voting, applying the rest of the steps

2-3 further diminishes the number of corner cases from 100 to 4.

4.2.4 Results for use case 2. Furthermore, we use the CIC-IDS-2017

[19] dataset, which includes 13 different attacks, including DDoS, Heartbleed, SQL

injection, and it also includes benign traffic. The dataset also contains 78 network

traffic features such as flow duration, total forward packets. Using this dataset, we

train a multi-class Random Forest Classifier to label the data points. The data is

partitioned in such a way where 75% of the data is allocated for training and 25%

is for testing, where the training data is balanced using Random Over Sampler

[14]. A decision tree explanation is extracted using Trustee with the Top-k Pruning

22



method with k = 10. Additionally, we select 1000 random data points from this

dataset to evaluate the decision tree generated by Trustee.

Figures 4-6 shows the decision trees generated along with how they are

modified using Steps 1-3. Figure 4 shows the decision tree explanation of a Random

Forest classifier, extracted using Trustee with top-k pruning method of k = 10.

In Figure 5, we see the rearranged tree where the features are present in the

nodes, and the edges coming out of a node are the rules. In Figure 6, we show the

rearranged tree with our integrated rules which are highlighted. Table 6 provides

the model evaluation metrics that reflect Figures 4, 5, and 6 for first, second, and

third row respectively. The Trustee model achieves a precision of 0.850, a recall

of 0.833, an F1 score of 0.821, and an accuracy of 0.829. This suggests that the

Trustee model performs well in labeling data points. The rearranged tree model

achieves a precision of 0.508 a recall of 0.552, an F1 score of 0.546, and an accuracy

of 0.519990. Similarly, the rearranged tree with rules integrated achieves a precision

of 0.508 a recall of 0.552, an F1 score of 0.546, and an accuracy of 0.519.

23



Table 1. Case 1: The LF and classifier F1 scores of the labeling functions that are
based on one feature from the CAIDA Ark dataset

LF 1 LF 2 LF 3 LF 4 LF F1 Classifier F1
LF Mean - - - 0.646117 0.478532
LF Elliptic - - - 0.727858 0.637661
LF LOF - - - 0.904137 0.609691
LF Mean 2SD - - - 0.790268 0.638784
LF Mean LF Elliptic - - 0.727858 0.696371
LF Mean LF LOF - - 0.904137 0.703294
LF Elliptic LF LOF - - 0.904137 0.803738
LF Mean 2SD LF Elliptic - - 0.790434 0.691973
LF Mean 2SD LF LOF - - 0.904137 0.709458
LF Mean LF Elliptic LF LOF - 0.727858 0.776400
LF Mean 2SD LF Elliptic LF LOF - 0.790434 0.789703
LF Mean LF Mean 2SD LF Elliptic LF LOF 0.790434 0.702802
LF Mean SD - - - 0.766566 0.585658
LF ORCE - - - 0.701705 0.609254
LF LOF LF Mean SD - - 0.904137 0.805841
LF LOF LF ORCE - - 0.904137 0.775798
LF Mean SD LF ORCE - - 0.767457 0.623670
LF LOF LF Mean SD LF ORCE - 0.767457 0.763401

24



T
ab

le
2.

C
as
e
2:

T
h
e
L
F
an

d
cl
as
si
fi
er

F
1
sc
or
es

of
th
e
la
b
el
in
g
fu
n
ct
io
n
s
th
at

ar
e
b
as
ed

on
tw

o
fe
at
u
re
s
fr
om

th
e

C
A
ID

A
A
rk

d
at
as
et

L
F
1

L
F
2

L
F
3

L
F
4

L
F
F
1

C
la
ss
ifi
er

F
1

L
F
M
ea
n
S
D

L
F
J
it
te
r
M
ea
n
S
D

-
-

0.
02
06
93

0.
39
17
74

L
F
M
ea
n
S
D

L
F
J
it
te
r
O
R
C
E

-
-

0.
02
10
53

0.
46
44
57

L
F
M
ea
n
S
D

L
F
J
it
te
r
L
O
F

-
-

0.
02
80
86

0.
36
97
20

L
F
O
R
C
E

L
F
J
it
te
r
O
R
C
E

-
-

0.
01
74
47

0.
40
20
51

L
F
O
R
C
E

L
F
J
it
te
r
M
ea
n
S
D

-
-

0.
01
70
84

0.
30
04
87

L
F
O
R
C
E

L
F
J
it
te
r
L
O
F

-
-

0.
02
54
53

0.
32
55
36

L
F
L
O
F

L
F
J
it
te
r
L
O
F

-
-

0.
02
80
62

0.
55
32
64

L
F
L
O
F

L
F
J
it
te
r
M
ea
n
S
D

-
-

0.
02
36
11

0.
45
13
79

L
F
L
O
F

L
F
J
it
te
r
O
R
C
E

-
-

0.
02
39
72

0.
50
33
57

L
F
M
ea
n

L
F
J
it
te
r
M
ea
n

-
-

0.
01
50
31

0.
47
11
21

L
F
M
ea
n

L
F
J
it
te
r
E
ll
ip
ti
c

-
-

0.
01
60
58

0.
37
99
40

L
F
M
ea
n

L
F
J
it
te
r
L
O
F

-
-

0.
02
44
51

0.
31
67
91

L
F
E
ll
ip
ti
c

L
F
J
it
te
r
E
ll
ip
ti
c

-
-

0.
01
81
07

0.
41
86
50

L
F
E
ll
ip
ti
c

L
F
J
it
te
r
M
ea
n

-
-

0.
01
72
58

0.
40
76
29

L
F
E
ll
ip
ti
c

L
F
J
it
te
r
L
O
F

-
-

0.
02
53
54

0.
38
27
12

L
F
L
O
F

L
F
J
it
te
r
M
ea
n

-
-

0.
02
34
38

0.
47
28
40

L
F
L
O
F

L
F
J
it
te
r
E
ll
ip
ti
c

-
-

0.
02
42
88

0.
46
73
67

L
F
J
it
te
r
M
ea
n

-
-

-
0.
02
43
90

0.
11
08
58

L
F
J
it
te
r
E
ll
ip
ti
c

-
-

-
0.
02
61
97

0.
21
23
14

L
F
J
it
te
r
L
O
F

-
-

-
0.
16
38
81

0.
20
85
78

L
F
J
it
te
r
M
ea
n
S
D

-
-

-
0.
02
15
42

0.
17
95
22

L
F
J
it
te
r
O
R
C
E

-
-

-
0.
02
56
58

0.
15
11
04

L
F
J
it
te
r
M
ea
n

L
F
J
it
te
r
E
ll
ip
ti
c

-
-

0.
02
61
97

0.
14
20
08

L
F
J
it
te
r
M
ea
n

L
F
J
it
te
r
L
O
F

-
-

0.
16
38
81

0.
17
44
44

L
F
J
it
te
r
E
ll
ip
ti
c

L
F
J
it
te
r
L
O
F

-
-

0.
16
38
81

0.
19
21
29

L
F
J
it
te
r
M
ea
n
2S

D
L
F
J
it
te
r
E
ll
ip
ti
c

-
-

0.
02
27
96

0.
18
27
02

L
F
J
it
te
r
M
ea
n
2S

D
L
F
J
it
te
r
L
O
F

-
-

0.
16
38
81

0.
20
45
39

L
F
J
it
te
r
M
ea
n

L
F
J
it
te
r
E
ll
ip
ti
c

L
F
J
it
te
r
L
O
F

-
0.
02
61
97

0.
20
39
47

L
F
J
it
te
r
M
ea
n
2S

D
L
F
J
it
te
r
E
ll
ip
ti
c

L
F
J
it
te
r
L
O
F

-
0.
02
27
96

0.
19
55
09

L
F
J
it
te
r
M
ea
n

L
F
J
it
te
r
M
ea
n
2S

D
L
F
J
it
te
r
E
ll
ip
ti
c

L
F
J
it
te
r
L
O
F

0.
02
27
96

0.
28
27
79

25



Table 3. Case 1: The LF and classifier F1 scores of the labeling functions that are
based on one feature from the RIPE Atlas project dataset

LF 1 LF 2 LF 3 LF 4 LF F1 Classifier F1
LF Elliptic LF LOF - - 0.750853 0.623192
LF Elliptic - - - 0.745049 0.527499
LF LOF - - - 0.750853 0.494363
LF Mean 2SD LF Elliptic LF LOF - 0.745106 0.598503
LF Mean 2SD LF Elliptic - - 0.745112 0.658453
LF Mean 2SD LF LOF - - 0.750859 0.637811
LF Mean 2SD - - - 0.729346 0.580166
LF Mean LF Elliptic LF LOF - 0.745049 0.677733
LF Mean LF Elliptic - - 0.745049 0.530618
LF Mean LF LOF - - 0.750853 0.528895
LF Mean LF Mean 2SD LF Elliptic LF LOF 0.745106 0.654784
LF Mean - - - 0.522303 0.335037
LF Mean SD - - - 0.687104 0.533501
LF ORCE - - - 0.709759 0.642847
LF LOF LF Mean SD - - 0.750853 0.607644
LF LOF LF ORCE - - 0.750853 0.621174
LF Mean SD LF ORCE - - 0.710082 0.704314
LF LOF LF Mean SD LF ORCE - 0.710082 0.704617

26



T
ab

le
4.

C
as
e
2:

T
h
e
L
F
an

d
cl
as
si
fi
er

F
1
sc
or
es

of
th
e
la
b
el
in
g
fu
n
ct
io
n
s
th
at

ar
e
b
as
ed

on
tw

o
fe
at
u
re
s
fr
om

th
e
R
IP

E
A
tl
as

p
ro
je
ct

d
at
as
et

L
F
1

L
F
2

L
F
3

L
F
4

L
F
F
1

C
la
ss
ifi
er

F
1

L
F
J
it
te
r
M
ea
n

-
-

-
0.
00
52
45

0.
11
87
57

L
F
J
it
te
r
E
ll
ip
ti
c

-
-

-
0.
05
06
94

0.
13
88
30

L
F
J
it
te
r
L
O
F

-
-

-
0.
05
52
45

0.
10
19
06

L
F
J
it
te
r
M
ea
n
S
D

-
-

-
0.
02
45
18

0.
16
74
59

L
F
J
it
te
r
O
R
C
E

-
-

-
0.
03
27
72

0.
13
56
28

L
F
J
it
te
r
M
ea
n

L
F
J
it
te
r
E
ll
ip
ti
c

-
-

0.
00
52
45

0.
11
91
09

L
F
J
it
te
r
M
ea
n

L
F
J
it
te
r
L
O
F

-
-

0.
00
52
45

0.
06
84
15

L
F
J
it
te
r
E
ll
ip
ti
c

L
F
J
it
te
r
L
O
F

-
-

0.
05
05
91

0.
08
34
15

L
F
M
ea
n

L
F
J
it
te
r
M
ea
n

-
-

0.
00
00
00

0.
13
83
55

L
F
E
ll
ip
ti
c

L
F
J
it
te
r
L
O
F

-
-

0.
00
00
00

0.
23
58
59

L
F
L
O
F

L
F
J
it
te
r
L
O
F

-
-

0.
00
00
00

0.
21
65
48

L
F
L
O
F

L
F
J
it
te
r
M
ea
n

-
-

0.
00
00
00

0.
23
62
49

L
F
O
R
C
E

L
F
J
it
te
r
M
ea
n
S
D

-
-

0.
00
00
00

0.
24
15
76

L
F
M
ea
n

L
F
J
it
te
r
E
ll
ip
ti
c

-
-

0.
00
00
00

0.
20
35
14

L
F
M
ea
n

L
F
J
it
te
r
L
O
F

-
-

0.
00
00
00

0.
13
32
25

L
F
E
ll
ip
ti
c

L
F
J
it
te
r
E
ll
ip
ti
c

-
-

0.
00
00
00

0.
25
06
73

L
F
E
ll
ip
ti
c

L
F
J
it
te
r
M
ea
n

-
-

0.
00
00
00

0.
25
65
57

L
F
L
O
F

L
F
J
it
te
r
E
ll
ip
ti
c

-
-

0.
00
00
00

0.
22
82
74

L
F
M
ea
n
S
D

L
F
J
it
te
r
M
ea
n
S
D

-
-

0.
00
00
00

0.
19
02
05

L
F
M
ea
n
S
D

L
F
J
it
te
r
O
R
C
E

-
-

0.
00
00
00

0.
21
13
60

L
F
M
ea
n
S
D

L
F
J
it
te
r
L
O
F

-
-

0.
00
00
00

0.
19
89
85

L
F
O
R
C
E

L
F
J
it
te
r
O
R
C
E

-
-

0.
00
00
00

0.
19
27
74

L
F
O
R
C
E

L
F
J
it
te
r
L
O
F

-
-

0.
00
00
00

0.
17
03
00

L
F
L
O
F

L
F
J
it
te
r
M
ea
n
S
D

-
-

0.
00
00
00

0.
21
80
73

L
F
L
O
F

L
F
J
it
te
r
O
R
C
E

-
-

0.
00
00
00

0.
24
11
87

L
F
J
it
te
r
M
ea
n
2S

D
L
F
J
it
te
r
E
ll
ip
ti
c

-
-

0.
04
41
24

0.
11
68
75

L
F
J
it
te
r
M
ea
n
2S

D
L
F
J
it
te
r
L
O
F

-
-

0.
04
40
99

0.
11
30
31

L
F
J
it
te
r
M
ea
n

L
F
J
it
te
r
E
ll
ip
ti
c

L
F
J
it
te
r
L
O
F

-
0.
00
52
45

0.
12
28
60

L
F
J
it
te
r
M
ea
n
2S

D
L
F
J
it
te
r
E
ll
ip
ti
c

L
F
J
it
te
r
L
O
F

-
0.
04
40
99

0.
09
68
42

L
F
J
it
te
r
M
ea
n

L
F
J
it
te
r
M
ea
n
2S

D
L
F
J
it
te
r
E
ll
ip
ti
c

L
F
J
it
te
r
L
O
F

0.
00
52
45

0.
11
75
25

27



Precision Recall Accuracy F1 score
LSTM model 0.816216 0.963830 0.881000 0.883902
Task-specific

explainable model
1.000000 0.644681 0.833000 0.783959

After majority
voting

0.825704 0.997872 0.900000 0.903661

Other steps 1.000000 0.989362 0.995000 0.994652

Table 5. Evaluation metrics for the four models depicted in Figure 3.

Destination Port <= 21.5

FTP-Patator

True

Destination Port <= 22.5

False

SSH-Patator

True

Subflow Bwd Bytes <= 1615968.0

False

Destination Port <= 443.5

True

Heartbleed

False

min_seg_size_forward <= 22.0

True

Destination Port <= 444.5

False

Fwd Packet Length Max <= 21.5

True

Bwd Packets/s <= 0.117706298828125

False

Subflow Fwd Bytes <= 19.0

True

BENIGN

False

BENIGN

True

DDoS

False

Active Min <= 5117.5

True

Fwd IAT Min <= 588.5

False

Fwd IAT Min <= 48.5

True

DoS Slowhttptest

False

DoS Hulk

True

Flow IAT Std <= 533788.5625

False

DoS GoldenEye

True

Max Packet Length <= 249.0

False

Bwd Packets/s <= 0.04266357421875

True

DoS Slowhttptest

False

DoS slowloris

True

DoS Slowhttptest

False

Bwd IAT Total <= 5114942.0

True

Web Attack XSS

False

Flow Bytes/s <= 950.5467834472656

True

Subflow Bwd Packets <= 8.5

False

Init_Win_bytes_backward <= 237.0

True

BENIGN

False

Init_Win_bytes_backward <= 229.5

True

Web Attack Brute Force

False

BENIGN

True

Init_Win_bytes_forward <= 256.0

False

Web Attack Sql Injection

True

Web Attack Sql Injection

False

DoS GoldenEye

True

BENIGN

False

Infiltration

True

Init_Win_bytes_backward <= 55.0

False

Flow IAT Std <= 0.7637625932693481

True

Bot

False

PortScan

True

Bot

False

Figure 4. Decision tree generated from Trustee.

28



Destination Port

FTP-Patator

<= 21.5

SSH-Patator

<= 22.5

Subflow Bwd Bytes

> 22.5

min_seg_size_forward

<= 443.5

Init_Win_bytes_backward

> 444.5

Infiltration

<= 444.5

Heartbleed

> 1615968.0

Bwd Packets/s

> 22.0

Fwd Packet Length Max

<= 22.0

DoS Slowhttptest

> 0.04266357421875

DoS slowloris

<= 0.04266357421875

Active Min

<= 0.117706298828125

Fwd IAT Min

> 0.117706298828125

DoS Slowhttptest

> 5117.5 <= 5117.5

Flow IAT Std

> 48.5

DoS Hulk

<= 48.5

Bwd IAT Total

<= 588.5

Web Attack XSS

> 588.5

Bot

> 0.7637625932693481

PortScan

<= 0.7637625932693481

Max Packet Length

> 533788.5625

DoS GoldenEye

<= 533788.5625

DoS Slowhttptest

> 249.0

Subflow Bwd Packets

> 5114942.0

Flow Bytes/s

<= 5114942.0

BENIGN

> 8.5

DoS GoldenEye

<= 8.5

BENIGN

> 950.5467834472656 <= 950.5467834472656

<= 55.0

Bot

> 55.0

BENIGN

<= 229.5

Init_Win_bytes_forward

> 229.5

Web Attack Brute Force

> 237.0

Web Attack Sql Injection

> 256.0

Web Attack Sql Injection

<= 256.0

BENIGN

> 21.5

Subflow Fwd Bytes

<= 21.5

DDoS

> 19.0

BENIGN

<= 19.0

Figure 5. Rearranged tree where the nodes are the features and the edges are the
rules.

Precision Recall Accuracy F1 score
Trustee Model 0.850444 0.833162 0.829000 0.821656

Rearranged Tree 0.508045 0.552451 0.546000 0.519990
After integrating

rules
0.508045 0.552451 0.546000 0.519990

Table 6. Evaluation metrics for the three models depicted in Figure 4, Figure 5,
and Figure 6.

29



Destination Port

FTP-Patator

<= 21.5

SSH-Patator

<= 22.5

Subflow Bwd Bytes

> 22.5

min_seg_size_forward

Destination Port <= 80.0 <= 443.5

Init_Win_bytes_backward

> 444.5

Infiltration

<= 444.5

Heartbleed

> 1615968.0

Bwd Packets/s

min_seg_size_forward > 20.0 > 22.0

Fwd Packet Length Max

<= 22.0 min_seg_size_forward <= 32.0

DoS Slowhttptest

> 0.04266357421875

DoS slowloris

<= 0.04266357421875

Active Min

<= 0.117706298828125

Fwd IAT Min

> 0.117706298828125

DoS Slowhttptest

> 5117.5 <= 5117.5

Flow IAT Std

> 48.5

DoS Hulk

<= 48.5

Bwd IAT Total

<= 588.5

Web Attack XSS

> 588.5

Bot

> 0.7637625932693481

PortScan

<= 0.7637625932693481

Max Packet Length

> 533788.5625

DoS GoldenEye

<= 533788.5625

DoS Slowhttptest

> 249.0

Subflow Bwd Packets

> 5114942.0

Flow Bytes/s

<= 5114942.0

BENIGN

> 8.5

DoS GoldenEye

<= 8.5

BENIGN

> 950.5467834472656 <= 950.5467834472656

<= 55.0

Bot

> 55.0

Init_Win_bytes_forward

> 229.5

BENIGN

<= 229.5

BENIGN

Init_Win_bytes_backward <= 235.0

Web Attack Brute Force

> 237.0

Web Attack Sql Injection

> 256.0

Web Attack Sql Injection

<= 256.0

BENIGN

> 21.5

Subflow Fwd Bytes

<= 21.5 Fwd Packet Length Max <= 447.0

DDoS

> 19.0

BENIGN

<= 19.0

Figure 6. Rearranged tree after integrating nodes.

30



CHAPTER V

DISCUSSION

The decrease in accuracy in the rearranged tree models in comparison to the

original decision tree model by Trustee suggests that there are limitations due to

the tree rearrangement. The decrease in accuracy is due to factors such as (1) data

property consistency and (2) the impact of the tree rearrangement. A potential

reason for the decrease in accuracy could be because of the inconsistency of data

properties across trees. The Trustee generated decision tree is able to catch the

properties of the data and lead to variations in decision boundaries. On the other

hand, the challenge of rearranging a tree is that it may not be able to accurately

capture the patterns that were present in the data. The impact of rearranging the

decision tree by reordering features and integrating rules can change the decision

boundaries and decision-making process that was present in the original tree.

31



CHAPTER VI

CONCLUSION

In this thesis, we address the issues of achieving trust within and across

enclaves by building SWAN a framework that provides hybrid explainability of

the decisions made by the black-box machine learning model, and the ability to

collaborate between different groups by using a pipeline that allows for network

operators and researchers to share metadata. We evaluate our framework across

different datasets with the combination of different labeling functions which are

based on one and or two features. We then evaluate our hybrid explainability

technique by considering two use cases, where we can see the effectiveness and

limitations of the hybrid explainability technique.

6.1 Future Work

In future work, we plan to deploy this framework in an operational setting.

Additionally, we plan to explore methods that ensure consistency in data properties

across various decision trees. Furthermore, another approach that may be taken

is to explore methods for modifying the data in regard to the tree rearrangements

made.

32



REFERENCES CITED

[1] ARGOVERSE. https://www.argoverse.org/.

[2] CAIDA Ark Datasets. www.caida.org/projects/ark/topo_datasets.xml.

[3] nuScenes. https://www.nuscenes.org/.

[4] RIPE Atlas. https://atlas.ripe.net, 2018.

[5] Amina Adadi and Mohammed Berrada. Peeking Inside the Black-box: A Survey
on eXplainable Artificial Intelligence (XAI). IEEE access, 6:52138–52160,
2018.

[6] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman,
and Dan Mané. Concrete Problems in AI Safety. arXiv preprint
arXiv:1606.06565, 2016.

[7] Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez, Javier Del Ser, Adrien
Bennetot, Siham Tabik, Alberto Barbado, Salvador Garćıa, Sergio
Gil-López, Daniel Molina, Richard Benjamins, et al. Explainable Artificial
Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges
toward Responsible AI. Information fusion, 58:82–115, 2020.

[8] Arun Das and Paul Rad. Opportunities and Challenges in eXplainable Artificial
Intelligence (XAI): A Survey. arXiv preprint arXiv:2006.11371, 2020.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A Large-scale Hierarchical Image Database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[10] Arpit Gupta, Chris Mac-Stoker, and Walter Willinger. An Effort to
Democratize Networking Research in the Era of AI/ML. In Proceedings of
the 18th ACM Workshop on Hot Topics in Networks, pages 93–100, 2019.

[11] Arthur S Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A Ferreira, Arpit
Gupta, and Lisandro Z Granville. AI/ML for Network Security: The
Emperor has No Clothes. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 1537–1551,
2022.

[12] Jared Knofczynski, Ramakrishnan Durairajan, and Walter Willinger. ARISE: A
Multitask Weak Supervision Framework for Network Measurements. IEEE
Journal on Selected Areas in Communications, 40(8):2456–2473, 2022.

33



[13] Yukhe Lavinia, Ramakrishnan Durairajan, Reza Rejaie, and Walter Willinger.
Challenges in Using ML for Networking Research: How to Label If You
Must. In Proceedings of ACM SIGCOMM Workshop on Network Meets AI
ML, 2020.

[14] Guillaume Lemâıtre, Fernando Nogueira, and Christos K. Aridas.
Imbalanced-learn: A python toolbox to tackle the curse of imbalanced
datasets in machine learning. Journal of Machine Learning Research,
18(17):1–5, 2017.

[15] Zachary C Lipton. The Mythos of Model Interpretability: In Machine Learning,
the Concept of Interpretability is both Important and Slippery. Queue,
16(3):31–57, 2018.

[16] Álvaro López Garćıa, Jesús Marco De Lucas, Marica Antonacci, Wolfgang
Zu Castell, Mario David, Marcus Hardt, Lara Lloret Iglesias, Germán Moltó,
Marcin Plociennik, Viet Tran, Andy S. Alic, Miguel Caballer, Isabel Campos
Plasencia, Alessandro Costantini, Stefan Dlugolinsky, Doina Cristina Duma,
Giacinto Donvito, Jorge Gomes, Ignacio Heredia Cacha, Keiichi Ito,
Valentin Y. Kozlov, Giang Nguyen, Pablo Orviz Fernández, Zděnek Šustr,
and Pawel Wolniewicz. A cloud-based framework for machine learning
workloads and applications. IEEE Access, 8:18681–18692, 2020.

[17] Anirudh Muthukumar and Ramakrishnan Durairajan. Denoising internet delay
measurements using weak supervision. In 2019 18th IEEE International
Conference On Machine Learning And Applications (ICMLA), pages
479–484, 2019.

[18] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré . Snorkel. Proceedings of the VLDB Endowment,
11(3):269–282, nov 2017.

[19] Iman Sharafaldin., Arash Habibi Lashkari., and Ali A. Ghorbani. Toward
generating a new intrusion detection dataset and intrusion traffic
characterization. In Proceedings of the 4th International Conference on
Information Systems Security and Privacy - ICISSP, pages 108–116.
INSTICC, SciTePress, 2018.

[20] Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. Practical
gan-based synthetic ip header trace generation using netshare. In
Proceedings of the ACM SIGCOMM 2022 Conference, pages 458–472, 2022.

34


	 Introduction 
	 Motivation and Prior Efforts 
	Motivation
	Availability of labeled data
	Privacy
	Interpretability

	Limitations of Prior Efforts

	 Design and Implementation 
	Overview of SWAN
	Design Details
	User Interface
	Labeling function
	EMERGE Pipeline
	Interpretability

	Implementation
	Web Service
	DEEP as a service REST API
	Hybrid Explainability


	 Evaluation 
	Evaluation of collaboration
	Datasets Used
	Experiments and hyperparameter tuning
	Case 1 Results: Combination of labeling functions that are based on one feature
	Case 2 Results: Combination of labeling functions that are based on two features

	Evaluation of Hybrid Explainability
	Illustrative use case 1
	Illustrative use case 2
	Results for use case 1
	Results for use case 2


	 Discussion 
	 Conclusion 
	Future Work

	REFERENCES CITED



