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DISSERTATION ABSTRACT

Gary Guth

Doctor of Philosophy

Department of Mathematics

June 2023

Title: Ribbons, Satellites, and Exotic Phenomena in Heegaard Floer Homology

We study properties of surfaces embedded in 4-manifolds by way of Heegaard

Floer homology. We begin by showing link Floer homology obstructs concordance

through ribbon homology cobordisms; this extends the work of Zemke and

Daemi-Lidman-Vela–Vick-Wong. In another direction, we consider the effect of

satellite operations on concordances. We show that the map induced by a satellite

concordance is determined by the pattern and the map induced by the original

concordance map. As an application, we produce the first examples of stably exotic

behavior in the four-ball, i.e. we produce exotic disks whose exotic behavior persists

under many 1-handle stabilizations. As a second application, in joint work with

Hayden-Kang-Park, we show that the positive Whitehead doubling pattern is

injective on the class of ĤFK -distinguishable disks in B4: we show that for any

disks D,D′ in B4 which are distinguished by their induced maps on ĤFK , their

positive Whitehead doubles are also distinguished. In particular, Wh+(D) and

Wh+(D′) are exotic.
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CHAPTER I

INTRODUCTION

Four-manifolds and their Surfaces

In this section, we provide a brief overview of four-manifold topology, aiming

to motivate the questions explored in this dissertation. Roughly, a manifold is a

space which, locally, is indistinguishable from our own Euclidean space – objects

like 3-space, the surface of the earth, planes, and donuts. Topology concerns itself

with those features of spaces which are preserved by gentle deformations. To a

topologist, a circle is equivalent to an ellipse, as the circle can simply be stretched

to match the dimensions of the ellipse, or the the ellipse compressed until it forms

a perfect circle. However, the surface of a ball is somehow fundamentally different

from the surface of a donut; no amount of stretching or twisting will create a hole

in the sphere nor close off the hole in the donut.

The notion of gentle deformation is formalized as follows: let X and Y

be two n-dimensional manifolds, and let f be a function from X to Y which

has an inverse. We say that f is a homeomorphism if both f and its inverse

are continuous. If such a map between X and Y exists, we say that X and Y

are homeomorphic. If f and its inverse are smooth as well, we say that f is a

diffeomorphism, and that X and Y are diffeomorphic. A priori, homeomorphism

is a weaker relation than diffeomorphism, yet, in dimensions 1, 2, and 3 these

two relations are equivalent; any two manifolds which are homeomorphic are also

diffeomorphic. In higher dimensions, however, homeomorphic manifolds need not be
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diffeomorphic, and the interplay between these two notions of equivalence continues

to be a central theme in the study of manifolds.

In particular, much of the richness of four-dimensional topology arises from

the stark difference between these two notions of equivalence; four-manifolds X and

Y which are homeomorphic but not diffeomorphic are called exotic. Dimension

four is the smallest dimension in which exotic phenomena can appear. While

exotic manifolds exist in infinitely many dimensions, exotic behavior in dimension

four is especially peculiar. For instance, if n ̸= 4, Euclidean space Rn admits

a unique smooth structure, i.e. any manifold homeomorphic to Rn is, in fact,

diffeomorphic to Rn; on the hand, there are uncountably many smooth four-

manifolds homeomorphic to R4 but not diffeomorphic to it. In any dimension other

than four, the n-dimensional hyper-sphere Sn admits a finite number of smooth

structures, and the exact number of such structures is computable. However, the

number of smooth structures on S4 is completely mysterious.

What is it about dimension four which makes the smooth topology so

complicated? In short, the answer is the way in which surfaces (two dimensional

manifolds) can be embedded in four-manifolds. The question of classifying smooth,

simply connected n-manifolds was revolutionized by Smale, with his proof of the h-

cobordism theorem for n > 4. Two n-manifolds X0, X1 are cobordant if there exists

an (n + 1)-manifold W such that ∂W = X0 ⨿ X1. If the inclusion of Xi ↪→ W

is a homotopy equivalence, we say that W is an h-cobordism. Smale proved that if

two simply connected n-manifolds X and Y , n > 4, can be connected by a simply

connected h-cobordism W , they are, in fact, diffeomorphic.

Any smooth, compact manifold can be constructed from simple pieces called

handles. An n-dimensional k-handle is simply an n-dimensional disk Dk ×Dn−k; n-

2



dimensional k-handles are attached to boundaries of n-manifolds along Sk−1×Dn−k.

An (n + 1)-dimensional cobordism W between X0 and X1 can be decomposed into

handles, so that

W ∼= X0 × [0, 1] ∪H1 ∪H2 ∪ . . . ∪Hn−1,

where Hk is a union of (n + 1)-dimensional k-handles. At times, handles can cancel

in pairs: roughly a k-handle creates a k-dimensional cavity which can potentially

be filled in by a (k + 1)-handle. See Figure 1. Smale argues that if W is an h-

cobordism, any handle decomposition for W can be simplified until all handles

cancel in pairs, leaving a trivial decomposition of W as:

W ∼= X0 × [0, 1].

It then follows that X0
∼= X1, since ∂W ∼= ∂(X × [0, 1]).

FIGURE 1 A three-dimensional 1-handle and a canceling 2-handle. The cocore
{pt} × ∂D2 ⊂ D1 ×D2 of the 1-handle intersects the core ∂D2 × {pt} ⊂ D2 ×D1 of
the 2-handle in a single point, so the two may be canceled.

A pair of handles h1 = Dk × Dn+1−k and h2 = Dk+1 × Dn−k cancel

exactly when the cocore of h1, S1 = {pt} × ∂Dn+1−k ⊂ h1 and the core of h2,

S2 = ∂Dk+1×{pt} ⊂ h2 intersect in a single point. The assumption that W is an h-
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cobordism guarantees that, after perhaps sliding handles over one another, S1 and

S2 will intersect once algebraically. Smale carefully argues that when the dimension

of Xi is at least 5, h1 and h2 can be smoothly deformed until S1 and S2 intersect in

a single point geometrically.

Smale’s proof relies on the “Whitney trick”. Since the algebraic intersection

of S1 and S2 is one, all additional intersection points appear in pairs. A pair of

oppositely oriented intersection points p and q determines a loop γ in W , by

concatenating a path λ1 in S1 from p to q and a path λ2 in S2 from q to p. Since W

is assumed to be simply connected, this loop can be contracted to a point, and this

contraction determines a disk D, with boundary γ. Since X0 and X1 are assumed

to have dimension greater than 4, we can deform this disk until it contains no self-

intersections and is disjoint from S1 and S2. The intersection points p and q can

then be eliminated by pushing S1 along this disk D. For a schematic, see Figure 2.

FIGURE 2 Two surfaces S1 and S2 intersect in a pair of points. This intersection is
eliminated by finding a Whitney disk which can be used push S2 away from S1.

This argument uses the assumption on the dimension in an essential way: in

dimension four, the Whitney disk may intersect itself or the 2- and 3-handles which

we hope to cancel as there are insufficiently many dimensions to eliminate these

intersections.
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However, the groundbreaking work of Freedman showed that Smale’s

program can be carried out in dimension four by dropping the requirement that

Whitney disks be smoothly embedded, and settle for topologically embedded disks

[Fre82]. As a consequence, Freedman proved that h-cobordant four-manifolds

are homeomorphic. Moreover, the homeomorphism type of a four-manifold X is

determined by its intersection form, which is a bilinear form that records the ways

in which embedded surfaces intersect in X. Just a year later, with the advent of

gauge theory, Donaldson proved that the question of classifying smooth, simply

connected four-manifolds was much more complicated [Don83]; many topological

four-manifolds fail to admit smooth structures and those that do admit smooth

structures very often admit infinitely many.

In an essential way, the landscape of four dimensional topology is shaped by

the ways in which surfaces can be embedded in four-manifolds. This thesis aims to

continue to tease out the relations between four-manifolds and their surfaces.

Topology in Dimension 3.5

There is much to be gained by considering the interplay of three and four-

dimensional topology. Every three manifold can be realized as the boundary of

some four-manifold, and much can be deduced about the four-manifold by studying

its boundary. For instance, a theorem of Freedman and Quinn [FQ90] states that

any three manifold Y which has the same integral homology as S3 bounds a unique

contractible four-manifold up to homeomorphism (such a three-manifold is called

an integer homology sphere. The story is quite different smoothly, however, and

many integer homology spheres do not bound smooth contractible manifolds, or

even manifolds with the homology of B4, integer homology balls. Two integer
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homology spheres Y1 and Y2 are homology cobordant if there is a smooth four-

manifold W with ∂W = −Y1 ⨿ Y2 and H∗(W,Yi;Z) = 0 for i ∈ {1, 2}. Integer

homology 3-spheres which bound an integer homology ball are exactly those

three-manifolds which are cobordant to S3. The set of integer homology spheres

modulo homology cobordism forms a group under connected sum, called the three-

dimensional integer homology cobordism group, usually denoted Θ3
Z.

The 3-dimensional homology cobordism group highlights yet again the

peculiar nature of low dimensional topology. The analogous n-dimensional

homology cobordism groups are trivial for n ̸= 3 by work of Kervaire [Ker69].

However, Θ3
Z was proven to be non-trivial by Rokhlin, who exhibited a surjective

homomorphism µ : Θ3
Z → Z/2 [Roh52]. Work of Fintushel-Stern and Furuta showed

that Θ3
Z is infinitely generated [FS85, FS90, Fur90] and recent work of Dai-Hom-

Stoffregen-Truong showed it contains a Z∞ summand [DHST18].

In a similar vein, natural questions about four-space arise when studying knot

theory. We define a knot K to be an embedding of the 1-sphere into a 3-manifold

Y ,

K : S1 ↪→ Y 3.

We say that K is the unknot if K bounds a disk in Y ; moreover, the unknot is

uniquely characterized by this property. However, if we think of Y as the boundary

of a 4-manifold W , we can consider surfaces with boundary K which are allowed to

occupy space in the four-manifold W . By allowing our surfaces to live in four-space,

it is no longer true that the unknot is characterized by bounding a disk. In fact,

many knots in S3 bound disks which are embedded in the four-ball, B4. Such knots

are called slice.
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Some slice disks can be visualized in three-dimensions. For example, consider

the immersed disk in Figure 3. This disk has two ribbon singularities, where the left

band of the surface passes through two separate sheets of this surface. By pushing

small neighborhoods of these arcs where the surface intersects itself into the interior

of the four-ball we can eliminate these singularities, leaving us with an embedded

disk in the four-ball with boundary K.

FIGURE 3 An immersed disk with boundary K. By pushing part of this disk into
the interior of the four-ball, we can remove the ribbon singularities to obtain an
embedded disk.

A generalization of this phenomena is called concordance. Knots K1 and K2

are called concordant if there is an embedded annulus C ⊂ [1, 2] × S3 with the

property that C ∩ {i} × S3 = Ki, for i ∈ {1, 2}. Notice that a knot is slice if

and only if it is concordant to the unknot. The set of knots in S3 modulo smooth

concordance forms a group, C, with respect to connected sums. Much work has

been invested in understanding the structure of this group.

A concordance C is called ribbon if there are no local maxima with respect to

the projection [1, 2] × S3 → [1, 2]. A long standing conjecture of Gordon, which

was recently proved by Agol, posits that the relation of ribbon concordance defines

a partial order on the set of knots in S3 [Ago22, Gor81].
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A homology concordance between knots K1 and K2 in three-manifolds Y1 and

Y2 respectively is a pair (W,C) such that

1. W is a homology cobordism from Y1 to Y2;

2. C is an annulus embedded in W so that C ∩ Yi = ki for i ∈ {1, 2}.

The set of knots in S3 modulo homology concordance forms a group, CZ,

under connected sums, and the set of knots in arbitrary homology spheres modulo

homology concordance also forms a group, denoted ĈZ. There are natural maps

C → CZ → ĈZ.

The first map is surjective, while the second is injective. The kernel of the first

map is quite mysterious; an element of the kernel would be a knot in S3 which is

not slice in B4, but is slice in some other homology 4-ball. No examples of such

knots are known. The cokernel of the second map is also interesting to consider; an

element of the cokernel of this map is a knot in a homology 3-sphere which is not

homology concordant to any knot in S3. The cokernel is highly nontrivial by work

of Levine and Hom-Levine-Lidman and even contains a Z∞ summand by work of

Zhou [Lev16, HLL22, Zho20].

A cobordism W from Y1 to Y2 is called ribbon if it admits a handle

decomposition consisting of 1- and 2-handles (i.e. contains no three handles).

Equivalently, W can be equipped with a Morse function with no critical points

of index three. A homology concordance (W,C) is called simultaneously ribbon if

there is a Morse function f : W → R satisfying:

1. W is ribbon with respect to f (f has no critical points of index three.)
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2. The restriction of f to C is Morse

3. f |C has no critical points of index two.

Recent work of Huber and Friedl-Misev-Zenter shows that ribbon homology

cobordism defines a partial order on the set of irreducible homology spheres

[Hub22, FMZ22]. This and Agol’s work lead to the natural question:

Question 1.2.1. Does simultaneous ribbon homology cobordism define a partial

order on the set of pairs (Y,K) of knots K in homology 3-spheres?

We provide evidence for this in Chapter 3.

Satellite Operations and Exotic Behavior

In Section 1.2, we introduced the smooth concordance group, which was the

set of knots in S3 studied up to smooth concordance equipped with the operation

of connected sum. This equivalence relation can be weakened by considering locally

flat concordances. An embedded surface Σ ⊂ X4 is locally flat if every point x in

Σ contains a neighborhood U such that the pair (U,U ∩ Σ) is homeomorphic to

(R4,R2 × {0}). We will write CTOP for the group of knots in S3 modulo locally flat

concordance under connected sum. The natural map

C → CTOP ,

has a nontrivial kernel, i.e. there are knots in S3 which are not smoothly slice, but

are topologically slice. In fact, by work of Freedman-Quinn [FQ90], any knot K

with trivial Alexander polynomial is topologically slice. Conversely, there are many

examples of knots with trivial Alexander polynomial which are not smoothly slice,

as can be shown using gauge or Floer theory.
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One particularly interesting class of examples arises by studying satellite

knots. Let K be a knot in S3 and let P be a knot in the solid torus. Define the

satellite of K with pattern P in S3 to be the result of removing a neighborhood

of the knot K in S3 and replacing it with the solid torus containing the knot P ,

gluing according to the Seifert framing of K. More succinctly,

(S3, P (K)) = ((S3 − ν(K)) ∪ (S1 ×D2), P ).

The knot K is called the companion knot and P is called the pattern knot.

The Alexander polynomial of a satellite knot is determined by the Alexander

polynomials of the companion and the pattern:

∆P (K) = ∆P (t) ·∆K(t
w).

Here, w is the winding number of P , which is defined as follows: P represents a

class in the first homology of S1 × D2, and therefore [P ] is some multiple of a

generator for H1(S1 ×D2) ∼= Z; define w to be this integer.

Consider the pattern shown in Figure 4. This pattern is called the positive

Whitehead double pattern, P = Wh+. Though Wh+ is nontrivial in S1 × D2, it

becomes unknotted after embedding (S1 × D2,Wh+) ↪→ S3. Therefore, since the

Whitehead doubling pattern has winding number zero, we have that for any knot

K,

∆Wh+(K)(t) = ∆U(t) ·∆K(t
0) = ∆K(1).

The Alexander polynomial for any knot K evaluated at t = 1 is equal to ±1.

Therefore, by Freedman-Quinn, Wh+(K) is topologically slice. In many cases,
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Wh+(K) can be shown not to be smoothly slice. Conjecturally, a knot K is

smoothly slice if and only if Wh+(K) is smoothly slice.

FIGURE 4 The positive Whitehead double pattern in the solid torus.

This example has a nice reformulation. Given a concordance C : K1 → K2,

and a satellite pattern P ⊂ S1 × D2, define the satellite concordance P (C) :

P (K1) → P (K2) as the result of deleting a neighborhood of the concordance from

S3 × [1, 2] and replacing it with (S1 ×D2 × [1, 2]), P × [1, 2]):

(S3 × [1, 2], P (C)) = ((S3 × I − ν(C)) ∪ (S1 ×D2 × [1, 2]), P × [1, 2]).

Therefore, a satellite pattern P determines a well-defined operator on C (or CTOP ),

namely [K] 7→ [P (K)]. As an operator on CTOP , Wh+ is trivial, since after applying

the pattern, all knots become topologically slice. However, its behavior on C is

much more mysterious; the conjecture above can be reformulated by asking whether

the operator Wh+ is injective.

There is a natural four-dimensional analogue of this phenomenon. Suppose D

is a slice disk for a knot K. By puncturing D, we obtain concordance C : U → K.

Given a satellite pattern P , the procedure outlined above produces a concordance

P (C) : P (U) → P (K).
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If the pattern P satisfies the property that P ↪→ S1 × D2 ↪→ S3 is the unknot, we

say that P is an unknotted pattern. In other words, P is unknotted when P (U) =

U . Therefore, the concordance C : U → K gives rise to a concordance

P (C) : U → P (K).

By capping off (S3, U) with (B4, D2), we obtain a slice disk for P (K), which we

will call the satellite of D with pattern P , denoted P (D). For an example, see

Figure 6.

FIGURE 5 The negative Whitehead double of a slice disk for the Stevedore knot.

Extending the work of Freedman-Quinn, Conway-Powell show that if D is a

slice disk for K with the additional property that

π1(B
4 − ν(D)) ∼= Z

then D is unique up to topological isotopy rel boundary [CP21]. Two smooth

embeddings f, g : Σ → X are isotopic if there is a one parameter family of

diffeomorphisms Ht : X → X such that H0 is the identity and H1 ◦ f = g. A

topological isotopy is analogous, replacing the family of diffeomorphisms with a

family of homeomorphisms. We often will identify these embeddings with their
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images and say that Σ0 = f(Σ) and Σ1 = g(Σ) are isotopic (in the appropriate

category). Surfaces Σ0 and Σ1 in X are called exotic if they are topologically

isotopic but not smoothly. In the case in which our surfaces have boundary, we

will consider isotopies which restrict to the identity on the boundaries.

Just as closed 4-manifolds may exhibit exotic behavior, surfaces embedded in

a given four-manifold may be equivalent but not smoothly. In particular, given a

pair of slice disks D1 and D2 for K, the positive Whitehead doubles of D1 and D2

are necessarily topologically isotopic by Conway-Powell, but can often be shown to

be nonisotopic smoothly. In analogy with the case of knots in S3, we conjecture:

Conjecture 1.3.1. Let D1 and D2 be slice disks for K. D1 and D2 are smoothly

isotopic red boundary if and only if Wh+(D1) and Wh+(D2) are smoothly isotopic

red boundary.

As before, this question can be reformulated in terms of satellite operations.

Following [JZ21], let Surf0(K) be the set of isotopy classes of connected, properly

embedded genus-0 surfaces in the four-ball with boundary. An unknotted pattern P

induces a map

P : Surf0(K) → Surf0(P (K)),

in the obvious way, by taking a slice disk for K to the satellite disk for P (K)

determined by the pattern. In this language, we can reframe Conjecture ?? as

asking whether the operator Wh+ is injective. In Chapter 5, in joint work with

Hayden-Kang-Park, we provide evidence for this conjecture (as well as evidence

that much larger families of unknotted satellite operators are injective) by studying

the behavior of invariants coming knot Floer homology.
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Stability of Exotic Behavior

Though exotic behavior abounds in dimension four, it tends to be unstable,

which is to say that exotic behavior tends to vanish after enlarging the objects in

some way. The most famous example is due to Wall.

Theorem 1. [Wal64] Let X0 and X1 be simply connected, oriented exotic 4-

manifolds. Then for sufficiently large k, X0#
k(S2 × S2) and X1#

k(S2 × S2) are

diffeomorphic.

In order to motivate an analogous operation for surfaces, we will sketch a

proof of this argument.

Proof. If X0 and X1 are exotic, they are cobordant through some 5-manifold W ;

we can assume that W has no 1- or 4-handles (else we can do surgery to eliminate

them), meaning W is built entirely from five-dimensional 2- and 3-handles. The 2-

handles are attached along nullhomotopic circles, which has the effect of splitting

off S2×S2 summands on the boundary. Hence, ∂+(X0× I ∪ 2-handles) = X0#
kS2×

S2; a dual argument shows that ∂−(X1 × I ∪ 3-handles) = X0#
kS2 × S2. The result

then follows by observing that ∂+(X0 × I ∪ 2-handles) ∼= ∂−(X1 × I ∪ 3-handles).

Work of Gompf [Gom84] extends Wall’s result to oriented 4-manifolds with

arbitrary fundamental groups. A famous open conjecture states that a single

stabilization is always enough to eliminate such exotic behavior. The operation

of taking a connected sum with S2 × S2 is called a stabilization.

The work of Hosokawa-Kawauchi and Baykur-Sunukjian [HK79, BS16]

shows that exotic surfaces Σ0 and Σ1 contained in a four-manifold X also become

smoothly isotopic after increasing the genus of the two surfaces by attaching

14



“tubes” (or, more precisely, attaching the boundaries of three-dimensional 1-

handles). This operation is also called stabilization (or sometimes, internal

stabilization).

Theorem 2. Let Σ0 and Σ1 be smoothly embedded surfaces in a four-manifold X.

Let Σ̃0 and Σ̃1 be obtained from Σ0 and Σ1 by k internal stabilizations. Then, for

sufficiently large k, Σ̃0 and Σ̃1 are smoothly isotopic.

The proof is nearly identical to the four-manifold case. Since Σ0 and Σ1 are

homologous, they are cobordant through a three-manifold Y in X. Y can be built

from three dimensional 1- and 2-handles, and Σ̃0 and Σ̃1 can be identified both as

the union of Σ0 together with the boundary of the 1-handles and as the union of Σ1

with the boundary of the 2-handles. For this reason, increasing the genus of the two

surfaces is a natural analogue of stabilization in the surface case.

FIGURE 6 A cobordism between Σ0 and Σ1, where the intermediate surface Σ̃ is
visible as Σ0 with a collection of 1-handles attached.
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These examples demonstrate the general principle that exotic behavior is

unstable. One naturally asks how unstable: how many times is it necessary to

stabilize exotic pairs before they become equivalent? A long standing conjecture

states that, in both of these cases, a single stabilization should always be enough

to eliminate the exotic behavior. Much work has been done in providing evidence

for this conjecture; for most known examples, it has been confirmed that a single

stabilization is enough (for example, see [Auc03, AKMR15, BS16, Bay18]) and,

under certain homological conditions, there are cases where the exotic behavior is

known to dissolve under a single stabilization [AKM+17]. However, in Chapter 6,

we provide counterexamples in the case of surfaces with boundary.

Heegaard Floer Homology

The results of this dissertation rely heavily on a collection of invariants

coming from Heegaard Floer homology. Heegaard Floer homology, introduced by

Ozsváth and Szabó [OS04b, OS06, OS04a], is a collection of invariants of three-

and four-manifolds as well as knots and surfaces embedded within them. We

will provide a much more thorough review of the salient aspects of the theory in

Chapter 2, though, for the casual reader, we have included a structural summary of

these invariants here.

Any three-manifold Y can be represented by a combinatorial object called a

Heegaard diagram, H, which consists of a closed surfaces Σ of genus g decorated

with two collections of embedded curves {α1, . . . , αg} and {β1, . . . , βg} with the

property that when Σ is thickened and three-dimensional 2-handles are attached

along the α and β curves the resulting object is homeomorphic to Y − (B3 ⨿B3).
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To this Heegaard diagram H (together with a choice of basepoint on Σ,

Ozsváth-Szabó define a chain complex, CF−(H), which is an F2[U ]-module. There

are several variants:

CF∞(H) = CF−(H)⊗F[U ] F[U,U−1],

CF+(H) = CF∞(H)/CF−(H),

ĈF (H) = CF−(H)/U · CF−(H).

The differential counts certain holomorphic disks in the g-fold symmetric product of

Σ. The homology of this complex is denoted HF ◦(Y ) (◦ ∈ {−,∞,+,̂}), and, up to

canonical isomorphism does not depend on the choices made in the construction of

the complex.

Moreover, these invariants fit into the structure of a topological quantum

field theory (TQFT). A TQFT associates to an n-manifold an algebraic object, and

to a cobordism between n-manifolds, a morphism between objects. (Formally, a

TQFT is a symmetric monoidal functor from a cobordism category to an abelian

category.) In the context of Heegaard Floer homology, a cobordism W from Y1 to

Y2 (together with a graph embedded in W connecting the basepoints), there is an

induced map

FW : HF ◦(Y1) → HF (Y2).

These maps are well behaved: the product cobordism Y × [0, 1] : Y → Y induces

the identity map on HF ◦(Y ), and given a decomposition of W as W1 ∪W2 where

W1 : Y0 → Y1 and W2 : Y1 → Y2, the cobordism maps satisfy a composition law

[OS06, Zem15].
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Given a knot K in a three manifold Y , Ozsváth-Szabó and, independently,

Rasmussen define a complex CFL−(Y,K) [OS04a, Ras03]. We will follow the

conventions of [Zem19d] and view CFL−(Y ) as an F[U, V ]-module. Just as in the

closed 3-manifold case, the chain homotopy type of this complex is an invariant of

the pair (Y,K). Moreover, if W is a cobordism from Y1 to Y2 and Σ is a surface

embedded in W such that Σ ∩W = K1 ∪K2, where Ki ⊂ Yi for i ∈ {1, 2} there is

an associated map

FW,Σ : HFL−(Y1, K1) → HFL(Y2, K2).

This map depends on some additional data; see chapter 2 for more details. The

map FW,Σ is an invariant of the pair (W,Σ) [Zem19d].

Summary of Results

In this section, we provide a brief overview of the layout of this dissertation.

In Chapter 2, we review some background on Heegaard Floer homology. In Chapter

3, we analyze the cobordism maps associated to ribbon homology concordances.

The main theorem is an obstruction to the existence of such cobordisms, building

off of work of [Zem19b, DLVVW19].

Theorem 3. Let (W,F) : (Y0, K0) → (Y1, K1) be a ribbon Z-homology concordance

where F = (C,A) is a surface decorated by A, a pair of parallel arcs. Then the

induced map

FW,F ,s : HFL−(Y0, K0, s|Y0) → HFL−(Y1, K1, s|Y1)

is a split injection.

We will also consider an algebraic reduction of HFL−(Y,K, s), denoted

HFL−(Y,K, s). HFL−(Y,K, s) is a finitely generated F[V ]-module, and therefore
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can be decomposed into a free summand and a torsion summand, which is denoted

HFL−red(Y,K, s).

Definition 1.6.1. Let K be a nullhomologous knot in a 3-manifold Y . Define the

torsion order of K in Y to be the quantity

OrdV (Y,K, s) = min{d ∈ N : V d · HFL−red(Y,K, s) = 0}.

Juhász-Miller-Zemke [JMZ20] use the the torsion order of knots in S3 to

give bounds on many topological invariants of knots, including the fusion number,

the bridge index, and the cobordism distance. We prove an analogue of [JMZ20,

Theorem 1.2] in the ribbon homology cobordism setting.

Theorem 4. Suppose (W,Σ) : (Y0, K0) → (Y1, K1) is a Z-homology link cobordism

such that W is ribbon with respect to a Morse function h : W → R compatible with

Σ. Suppose Σ has m critical points of index 0 and M critical points of index 2 with

respect to h|Σ. Then

OrdV (Y0, K0, s|Y0) ≤ max{M,OrdV (Y1, K1)}+ 2g(Σ).

When W is a product, we also have

OrdV (Y1, K1, s|Y1) ≤ max{m,OrdV (Y0, K0)}+ 2g(Σ).

We use Theorem 4 to prove some results about ribbon cobordisms between

knots in homology cobordant 3-manifolds, and consider some generalizations of the

fusion number in the context of ribbon homology cobordisms.
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In Chapter 4, we make use of bordered Floer homology to show that maps

induced by satellite concordances are determined by the “companion” concordance

and the type-A structure associated to the pattern knot in the solid torus.

Theorem 5. Let C : K → K ′ be a smooth concordance. Then, there exists a map

F : ĈFD(S3 −K) → ĈFD(S3 −K ′) induced by C, such that for any pattern knot

P in the solid torus, the following diagram commutes up to homotopy:

CFA−(HP )⊠ ĈFD(S3 −K) CFK−(KP )

CFA−(HP )⊠ ĈFD(S3 −K ′) CFK−(K ′P ),

id⊠F

≃

FCP

≃

where HP doubly pointed, bordered Heegaard diagram for P ⊂ S1 ×D2, KP and K ′P

are satellites of K and K ′, and CP is the concordance induced by P . The horizontal

arrows are given by the pairing theorem [LOT18].

After proving Theorem 13, we describe a sufficient condition on the

type-A structure of the satellite pattern to determine whether the pattern is

“HFK -injective”; in short, we give a criterion for determining whether a pair

of concordances which are distinguishable by knot Floer homology will remain

distinguishable after applying the satellite.

In Chapter 5, we turn to applications. In particular, we show:

Theorem 6. Let K be a knot in S3 with slice disks D1, D2. If D1 and D2 are

ĤFK-distinguishable, then so are Wh+(D1) and Wh+(D2). Moreover, Wh+(D1)

and Wh+(D2) are an exotic pair.

In fact, the first statement of Theorem 6 holds for many satellite patterns

(positive cables, the Mazur patterns, and generalized doubling patterns). Finally,
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we prove that there exist exotic surfaces in the four-ball with arbitrarily large

stabilization distance.

Theorem 7. For any p, there exists a knot Jp which bounds a pair of exotic disks

Dp and D′p which remains exotic after p− 1 internal stabilizations.

Theorem 7 also (somewhat trivially) gives examples of higher genus surfaces

with arbitrarily large stabilization distance.
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CHAPTER II

BACKGROUND MATERIAL

Heegaard Floer Homology

A Heegaard splitting for a three-manifold Y is a decomposition of Y as

Y = H1 ∪ϕ H2,

where H1 and H2 are handlebodies of genus g (i.e. regular neighborhoods of the

g-fold wedge of circles) and ϕ is an orientation reversing homeomorphism from ∂H1

to ∂H2. Every three-manifold possesses such a decomposition by an application of

Morse theory: simply choose a self-indexing Morse function f : Y → [0, 3] and

define H1 = f−1([0, 3
2
]), H2 = f−1([3

2
, 3]).

The data of a Heegaard splitting can be recorded combinatorially by a

Heegaard diagram. A Heegaard diagram consists of a tuple H = (Σ,ααα,βββ), which

consists of

1. A closed surface Σ of genus g;

2. Two collections of pairwise disjoint, closed curves ααα = {α1, . . . , αg} and βββ =

{β1, . . . , βg} in Σ such that both {αi} and {βi} represent linearly independent

classes in H1(Σ,Z).

The three-manifold Y can be reconstructed from ααα and βββ as follows: thicken Σ to

Σ × [0, 1]; attach thickened disks along the α-curves in Σ × {0} and thickened disks

along the β-curves in Σ × {1}; the homological assumptions on the α- and β-curves
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FIGURE 7 A Heegaard diagram for S1×S2#S1×S2. The α curves are drawn in red
and the β curves are drawn in blue.

guarantee that the resulting three-manifold has boundary S2 ⨿ S2, which can be

filled with three-balls.

Heegaard Floer homology is an invariant of closed 3-manifolds defined by

Ozsváth and Szabó [OS04b]. Given a pointed Heegaard diagram H = (Σ,ααα,βββ, z)

for Y , one considers the symmetric product

Symg(Σ) = Σ×g/Sg,

the quotient of the g-fold product of Σ by the symmetric group. Symg(Σ) is a

smooth manifold, and in fact, inherits a complex structure from Σ. The attaching

curves ααα and βββ determine half-dimensional submanifolds

Tα = α1 × . . .× αg Tβ = β1 × . . .× βg.

CF−(Y, z) is freely generated as an F[U ]-module by intersection points in Tα ∩

Tβ, and the differential counts holomorphic disks connecting intersection points,

weighted by U -powers determined the algebraic intersection of the disk with the

subvariety

Vz = {z} × Symg−1(Σ).
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Let D2 be the unit disk in the complex plane. Let e1 be the arc in ∂D2 with

positive real part and let e2 be the arc in ∂D2 with negative real part. Given

intersection points x,y ∈ Tα ∩ Tβ, a Whitney disk from x to y is a map

ϕ : D2 → Symg(Σ)

such that

1. ϕ(−i) = x and ϕ(i) = y,

2. ϕ(e1) ⊂ Tα and ϕ(e2) ⊂ Tβ.

The set of homotopy classes of Whitney disks from x to y is denoted π2(x,y).

Given ϕ ∈ π2(x,y) and a path of complex structures Js on Symg(Σ), we define

MJs(ϕ) to be the moduli space of Js-holomorphic Whitney disks representing ϕ.

The complex disk D2 has an R-action given by translation, and we define

M̂Js(ϕ) = MJs(ϕ)/R.

The Maslov index of ϕ, µ(ϕ) is the expected dimension of this moduli space.

Ozsváth and Szabó prove that for a generic path of complex structures, if (Σ,ααα,βββ)

is a Heegaard diagram with attaching curves in general position, then for each

ϕ ∈ π2(x,y) with µ(ϕ) = 1, M̂Js(ϕ) is a compact, zero dimensional manifold.

Finally, we can define a differential on CF−(Y, z) as

∂(x) =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),
µ(ϕ)=1

#M̂(ϕ)Unz(ϕ)y.
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One proves that ∂2 = 0 by studying the of the moduli spaces M̂(ϕ) with ϕ ∈

π2(x,w) and µ(ϕ) = 2.

Ozsváth and Szabó prove that the chain homotopy type of CF−(Y, z) does

not depend on the choices made in the construction (the complex structure

and choice of Heegaard splitting) and is therefore a well-defined three-manifold

invariant.

The Heegaard Floer homology groups split over SpinC-structures of the three-

manifold. In [OS04b], Ozsváth and Szabó define a map

sz : Tα ∩ Tβ → SpinC(Y )

by interpreting SpinC-structures on Y as homology classes of non-vanishing vector

fields on Y (in the sense of [Tur97]); once we choose a Morse function inducing our

Heegaard splitting, an intersection point x determines flowlines from the index one

to index two critical points and the basepoint determines a flowline connecting the

index zero and three critical points. Outside a neighborhood of these flowlines, the

gradient vector field is non-vanishing, and this homology class is defined to be the

SpinC-structure associated to the intersection point x. Intersection points which

are connected by a Whitney disk are necessarily in the same SpinC-structure, so we

have that

CF ◦(Y ) =
⊕

s∈SpinC(Y )

CF ◦(Y, s).

Link and Knot Floer Homology

There is a refinement of this invariant for knots and links in three-manifolds.

Several versions of link Floer homology exist in the literature. Knot Floer
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homology is an invariant of knots in 3-manifolds defined by Ozsváth and Szabó

[OS04a] and independently by Rasmussen [Ras03]. The extension to links is due to

Ozsváth and Szabó in [OS08a]. We review the definitions in order to establish the

conventions we will be following.

We can encode the data of a knot in a three-manifold by placing additional

basepoints on our Heegaard diagram. Once again, choose a self-indexing Morse

function f : Y → [0, 3] which induces a Heegaard splitting of Y with one index zero

critical point and index three critical point. A pair of basepoints w and z on the

Heegaard surfaces determines a knot in Y in the following way: there is a unique

flow-line connecting the index zero and three critical points which passes through

w (and similarly for z). The union of these two paths is a knot in Y . Similarly,

we can encode a link in Y by choosing more w and z basepoints on our Heegaard

surface.

Definition 2.2.1. A multi-based link L = (L,w, z) in a 3-manifold Y is an oriented

link L with two collections of basepoints w and z such that each component of L

has at least one w- and one z- basepoint and the basepoints alternate between w

and z as one travels along the link.

The link Floer complexes are constructed by choosing a multi-pointed

Heegaard diagram (Σ,ααα,βββ,w, z) for (Y,L), where ααα = (α1, ..., αg+n−1) and

βββ = (β1, ..., βg+n−1) are the attaching curves, g is the genus of Σ, and n = |w| = |z|.

Denote by Tα and Tβ the half dimensional tori α1× ...×αg+n−1 and β1× ...×βg+n−1

in Symg+n−1(Σ). The link Floer complex splits over SpinC-structures for Y and is

generated by intersection points in Tα∩Tβ. Following [Zem18], we define CFL−(Y, s)

to be the free F2[U, V ]-module generated by intersection points x in Tα ∩ Tβ with

sw(x) = s. As in the three-manifold case, the differential is defined by counting
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holomorphic disks of Maslov index 1, with the U and V variables recording the

algebraic intersections of the disks with the basepoints: let

∂(x) =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),
µ(ϕ)=1

#M̂(ϕ)Unw(ϕ)V nz(ϕ)y,

and extend F2[U, V ]-linearly. Note, CFL−(Y, s) could also have been defined as

generated by intersection points x with sz(x) = s. By [Zem18, Lemma 3.3],

sw(x) − sz(x) = PD[L], where [L] is the fundamental class of the link. Hence,

when the homology class of the link is trivial in H1(Y ;Z), the maps sw and sz

agree, so either choice yields the same complex. However, for links which are not

nullhomologous, the two complexes may differ. For a more general set up, see

[Zem18, Section 3].

Cobordisms and Functoriality

Heegaard Floer homology (as well as knot and link Floer homology) have

the structure of a topological quantum field theory. In short, four-dimensional

cobordisms between three-manifolds induced functorial maps between chain

complexes. Similarly, decorated link cobordisms induce maps between link Floer

complexes. Since we will primarily be interested in surfaces in this thesis, we will

emphasize those maps induced by link cobordisms.

Definition 2.3.1. A decorated link cobordism from (Y0,L0) = (Y0, (L0,w0, z0))

to (Y1,L1) = (Y1, (L1,w1, z1)) is a pair (W,F) = (W, (Σ,A)) with the following

properties:

1. W is an oriented cobordism from Y0 to Y1
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2. Σ is an oriented surface in W with ∂Σ = −L0 ∪ L1

3. A is a properly embedded 1-manifold in Σ, dividing it into subsurfaces Σw

and Σz such that w0,w1 ⊂ Σw and z0, z1 ⊂ Σz.

In [Zem18], it is shown that a decorated link cobordism (W,F) from (Y0,L0)

to (Y1,L1) and a SpinC-structure s on W , give rise to a map

FW,F ,s : CFL−(Y0,L0, s|Y0) → CFL−(Y1,L1, s|Y1),

and these maps are functorial [Zem18, Theorem B] in the following sense:

1. Let (W,F) be the trivial link cobordism, i.e. W = Y ×[0, 1], Σ = L×[0, 1] and

A is a collection of arcs p× [0, 1] where p ⊂ L−(w∪z) and consists of exactly

one point in each component of L− (w ∪ z). Then FW,F ,s = idCFL−(Y,L,s|Y ).

2. If (W,F) can be decomposed into the union of two decorated link cobordisms

(W1,F1) ∪ (W2,F2) and s1 and s2 are SpinC-structures on W1 and W2

respectively which agree on their common boundary, then

FW2,F2,s2 ◦ FW1,F1,s1 ≃
∑

s∈SpinC(W ),
s|Wi

=si

FW,F ,s.

The decorated link cobordism maps are defined as compositions of maps

associated to handle attachments to the embedded surfaces and to the ambient

4-manifold.

In general, it is quite difficult to compute the decorated link cobordism maps.

In some simple cases, however, the link cobordism maps can be computed in terms

of the graph cobordism maps defined in [Zem15].
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Definition 2.3.2. If (Y0,w0) and (Y1,w1) are 3-manifolds with a collection of

basepoints w0 and w1, a ribbon graph cobordism between them is a pair (W,Γ)

such that W is a cobordism from Y0 to Y1 and Γ is a graph embedded in W with

the properties that Γ ∩ Yi = wi, each basepoint wi has valence 1 in Γ, and at each

vertex, the edges of Γ are given a cyclic ordering.

A ribbon graph cobordism (W,Γ) : (Y0,w0) → (Y1,w1) gives rise to two maps:

FA
W,Γ,s, F

B
W,Γ,s : CF

−(Y0,w0, s|Y0) → CF−(Y1,w1, s|Y1).

These two maps satisfy

FA
W,Γ,s ≃ FB

W,Γ,s
,

where Γ is the graph obtained by reversing the cyclic ordering at each of the

vertices. The map FA
W,Γ,s depends on the interaction between the graph and the ααα-

curves while FB
W,Γ,s

depends on the interaction of the graph and the βββ-curves. When

Γ is simply a path, these maps agree with the original cobordism maps defined by

Ozsváth and Szabó [Zem15, Theorem B].

The graph cobordism maps encode the action of Λ∗H1(Y )/Tors on the

Heegaard Floer complexes. Recall that, given a closed loop γ ⊂ Y , the action of

[γ] ∈ H1(Y )/Tors on HF−(Y,w) is induced by a map

Aγ : CF−(Y,w) → CF−(Y,w)

defined bv

Aγ(x) =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),
µ(ϕ)=1

a(γ, ϕ)#M̂(ϕ)Unw(ϕ)y.
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FIGURE 8 The graph Γ realizing the action of a closed curve γ in Y . The cyclic
ordering is indicated by the dashed arrow.

Roughly speaking, the quantity a(γ, ϕ) is the intersection number of γ and the

portion of the boundary of a domain for ϕ which lies on an ααα-curve. This map

satisfies A2
γ ≃ 0 and can be realized by the graph cobordism (Y × [0, 1],Γ), where

the graph Γ is shown in Figure 8.

If (W,F) : (Y0,L0) → (Y1,L1) is a decorated link cobordism and Γ ⊂ Σ is

a ribbon graph, we say that Γ is the ribbon 1-skeleton of Σw if Γ ⊂ W , Γ ∩ Yi =

wi, Σw is a regular neighborhood of Γ in Σ, and the cyclic orders of Γ agree with

the orientation of Σ. A ribbon 1-skeleton of Σz is defined in exactly the same way.

There are natural chain isomorphisms

CFL−(Y,L, s)⊗F2[U,V ] F2[U, V ]/(V − 1) ∼= CF−(Y,w, t)

and

CFL−(Y,L, s)⊗F2[U,V ] F2[U, V ]/(U − 1) ∼= CF−(Y, z, t− PD[L]).
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Under these identifications, a link cobordism map FW,F ,s induces two maps on

CF−(Y ), denoted

FW,F ,s|U=1 and FW,F ,s|V=1.

These maps agree with the maps induced by the graph cobordism maps associated

to the ribbon 1-skeletons of Σ.

Theorem 8. [Zem18, Theorem C] If (W,F) is a decorated link cobordism, and

Γw ⊂ Σw and Γz ⊂ Σz are ribbon 1-skeleta, then

FW,F ,s|U=1 ≃ FA
W,Γz,s−PD[Σ] :

and

FW,F ,s|V=1 ≃ FB
W,Γw,s,

under the identifications above.

For a full discussion on Zemke’s graph TQFT framework, see [Zem15] or, for

an overview, see [Zem19c, Section 9.2].

In the following situation, the decorated link cobordism maps are determined

by the corresponding graph cobordism map. Let F be a closed surface in W :

Y0 → Y1, which is decorated by A, as in Definition 2.3.1. Choose disjoint disks

D0 and D1 in F which each intersect A in a single arc, and perturb F so that it

intersects Yi in Di. Remove each Di, leaving a decorated cobordism F0 between

doubly pointed unknots U1 and U2. Let pi denote the center of the disk Di. Identify

CFL−(Yi,Ui, s) with CF−(Yi, pi, s) ⊗F[W ] F[U, V ], where W acts on F[U, V ] as

UV . Under this identification, a graph cobordism map FW,Γ,s induces a map

CFL−(Y0,U0, s|Y0) → CFL−(Y1,U1, s|Y1), which we write as FW,Γ,s|F2[U,V ]. In this
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case, the link cobordism map induced by (W,F0) : (Y0,U0) → (Y1,U1) is relatively

simple.

Proposition 2.3.3. [Zem19c, Proposition 9.7] Let F = (Σ,A) be a closed

decorated link cobordism, and let (W,F0) be the link cobordism obtained from F

by the procedure outlined above. Define ∆A to be

⟨c1(s),Σ⟩ − [Σ] · [Σ]
2

+
χ(Σw)− χ(Σz)

2
.

Then,

FW,F0,s ≃


V ∆A · FB

W,Γw,s
|F[U,V ] ∆A ≥ 0

U−∆A · FA
W,Γz,s−PD[Σ]|F[U,V ] ∆A ≤ 0,

where Γw and Γz are ribbon 1-skeleta.

It will also be useful to understand how the link cobordism maps change

under surgery operations. If (W,F) is a link cobordism and γ is a closed curve

in A, we can simultaneously do surgery on γ in W and Σ to obtain a new link

cobordism (W (γ),F(γ)), i.e. remove a regular neighborhood of γ ⊂ (W,Σ), which

can can identified with (S1×D3, S1×D1) and replace it with (D2×S2, D2×S0). The

surface obtained by surgery on γ naturally inherits a decoration A(γ), so denote

the new decorated surface F(γ) = (Σ(γ),A(γ)) (see Figure 9). If the curve γ

represents a non-divisible element of H1(W ;Z) then

FW,F ,s ≃ FW (γ),F(γ),s(γ)

by [Zem19a, Proposition 5.4]. The assumption that [γ] is non-divisible guarantees

that there is a is the unique SpinC-structure s(γ) on W (γ) which extends a given
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FIGURE 9 The decorated link cobordisms (S1 × D3,M) (left) and (D2 × S2,M ′)
(right).

SpinC-structure on W −N(γ). An analogous result holds for surgeries on collections

of curves γ1, ..., γn which will be of use in the proof of Theorem ??.

Proposition 2.3.4. Let (W,F) be a link cobordism. Let γ1, ..., γn be closed curves

in A and let (W (γ1, ..., γn),F(γ1, ..., γn)) be the surgered link cobordism. If the

restriction map H1(W − ⨿N(γi)) → H1(⨿∂N(γi)) is surjective, then there is a

unique SpinC-structure s(γ1, ..., γn) extending s|W−⨿N(γi) for each s ∈ SpinC(W ) and

FW,F ,s ≃ FW (γ1,...,γn),F(γ1,...,γn),s(γ1,...,γn).

Finally, recall in [OS06, Proof of Theorem 3.1], Ozsváth and Szabó define an

extended cobordism map:

FW,s : Λ
∗H1(W ;Z)/Tors⊗ CF−(Y0, s|Y0) → CF−(Y1, s|Y1).

A Heegaard triple (Σ,ααα,βββ,γγγ) gives rise to a cobordism Xα,β,γ. Since the natural

map H1(∂Xα,β,γ) → H1(Xα,β,γ) is surjective, a given element h ∈ H1(Xα,β,γ) is in

the image of some (h1, h2, h3) ∈ H1(∂Xα,β,γ) ∼= H1(Yα,β) ⊕ H1(Yβ,γ) ⊕ H1(Yα,γ).
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Then, by utilizing the H1/Tors-action on ∂Xα,β,γ, define a map

Λ∗H1(Xα,β,γ;Z)/Tors⊗ CF−(Yα,β, sα,β)⊗ CF−(Yβ,γ, sβ,γ) → CF−(Yα,γ, sα,γ),

by

Fα,β,γ(h⊗ x⊗ y) = Fα,β,γ((h1 · x)⊗ y) + Fα,β,γ(x⊗ (h2 · y))− h3 · Fα,β,γ(x⊗ y).

This action induces a map on homology. By decomposing W = W1 ∪ W2 ∪ W3

into the 1-, 2-, and 3-handle attachment cobordisms, the extended cobordism map

is defined to be

FW,s(h⊗ x) = FW3,s ◦ FW2,s(h⊗ FW1,s(x)),

This map satisfies a version of the usual SpinC-composition law:

Proposition 2.3.5. [OS06, Proposition 4.20] If W = W1 ∪ W2, and ξ1 ∈

Λ∗H1(W1;Z)/Tors and ξ2 ∈ Λ∗H1(W2;Z)/Tors, then

FW2,s2(ξ2 ⊗ FW1,s1(ξ1 ⊗ ·)) =
∑

s∈SpinC(W ),
s|Wi

=si

FW,s((ξ3 ⊗ ·),

where ξ3 ∈ Λ∗H1(W ;Z)/Tors is the image of ξ1 ⊗ ξ2 under the natural map.

There is an H1(Y ;Z)/Tors-action on multi-pointed Heegaard diagrams as well

[Zem15, Equation 5.2]

Aγ : CFL−(Y,L, s) → CFL−(Y,L, s),
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defined

Aγ(x) =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),
µ(ϕ)=1

a(γ, ϕ)#M̂(ϕ)Unw(ϕ)V nz(ϕ)y.

Using this action, we can define extended link cobordism maps

FW,F ,s : (Λ
∗H1(W )/Tors⊗ F2)⊗ CFL−(Y0,L0, s|Y0) → CFL−(Y1,L1, s|Y1).

in exactly the same way. Note, that since the link Floer TQFT is defined with

coefficients in F2, we need to tensor the exterior algebra generated by H1(Y )/Tors

with F2.

We will make use of an algebraic variant of CFK−, which is usually denoted

CFK−. Define CFK−(Y,K, s) be the F2[U ]-module obtained from CFK−(Y,K, s) by

setting V = 0 with differential

∂(x) =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),
µ(ϕ)=1,
nz(ϕ)=0

#M̂(ϕ)Unw(ϕ)y.

Let HFK−(Y,K, s) be the homology of this complex.

Secondary invariants of a surface

We now recall the definition of the secondary invariant τ of Juhász and Zemke

[JZ21]. Let Σ be a surface in B4 with boundary K = (K,w, z), a doubly based

knot. Decorate Σ by a single arc such that the z-subregion Σz ⊂ S is a bigon. Let

F = (Σ,A) be the resulting decorated surface. Then, there is an induced map

FB4,F : F[U, V ] → CFK−(K,w, z).
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FIGURE 10 A surface Σ with Σz-sub region a bigon.

Definition 2.3.6. [JZ21, Definition 4.4] Let (K,w, z) be a doubly based knot in S3

and let Σ and Σ′ be two disks in B4 with boundary K, decorated as above. Then,

define

τ(Σ,Σ′) = min{n : Un · [FB4,F(1)] = Un · [FB4,F ′(1)] ∈ HFK−(K)}.

Remark 2.3.7. This invariant, τ (and its relatives ν, Vk,Υ), are called “secondary

invariants” because they are defined as surface analogues of existing knot

invariants.

A key result of [JZ21] states this invariant provides a lower bound for the

stabilization distance.

Theorem 9. [JZ21, Theorem 1.1] Let K be in a knot in S3, and let Σ,Σ′ be disks

in B4 with boundary K. Then,

τ(Σ,Σ′) ≤ µ(Σ,Σ′),

where µ(Σ,Σ′) is the stabilization distance between S and S ′.
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Bordered Floer Homology

Before defining the invariants of bordered three-manifolds, we provide a brief

review of the relevant algebraic structures.

Fix a ground ring k of characteristic two. An A∞ algebra A over k is a

graded k -module A equipped with k -linear maps

µi : A
⊗i → A[2− i],

for i ≥ 1 satisfying

∑
i+j=n+1

n−j+1∑
ℓ=1

µi(a1 ⊗ . . .⊗ aℓ−1 ⊗ µj(aℓ ⊗ . . .⊗ aℓ+j−1)⊗ aℓ+j ⊗ . . .⊗ an) = 0,

for n ≥ 1. An A∞ algebra is strictly unital if there is an element 1 ∈ A such that

µ2(a, 1) = µ2(1, a) = a and µi(a1, . . . , ai) = 0 if i ̸= 2 and aj = 1 for some j.

A right A∞ module M over A is a graded k -module M equipped with

operations

mi :M ⊗ A⊗(i−1) →M [2− i],

satisfying ∑
i+j=n+1

mi(mj(x⊗ a1 ⊗ . . .⊗ aj−1)⊗ . . .⊗ an−1)

+
∑

i+j=n+1

n−j∑
ℓ=1

µi(a, a1 ⊗ . . .⊗ aℓ−1 ⊗ µj(aℓ ⊗ . . .⊗ aℓ+j−1)⊗ . . .⊗ an−1) = 0.

We say M is strictly unital if for any x ∈ M , m2(x, 1) = x and mi(x ⊗ a1 ⊗ . . . ⊗

ai−1) = 0 if i > 2 and some aj = 1.
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Let A be a dg algebra and let N be a graded k -module with a map

δ1 : N → (A⊗N)[1],

such that

(µ2 ⊗ IN) ◦ (IA ⊗ δ1) ◦ δ1 + (µ1 ⊗ IN) ◦ δ1 = 0.

The pair (N, δ1) is called a tyep D structure over A. A type D structure

homomorphism is a k -module map f 1 : N1 → A⊗N2 satisfying

(µ2 ⊗ IN2) ◦ (IA ⊗ f 1) ◦ δ2N1
+ (µ2 ⊗ IN2) ◦ (IA ⊗ δ1N2

) ◦ f 1 + (µ1 ⊗ IN2) ◦ f 1 = 0.

The map δ1 can be iterated to define maps

δk : N → (A⊗k ⊗N)[k],

where δ0 = IN and δi = (IA⊗(i−1) ⊗ δ1) ◦ δi−1. Similarly, a type D homomorphism f 1

can be used to define maps

fk : N1 → (A⊗k ⊗N2)[k − 1], fk(x) =
∑

i+j=k−1

(IA⊗(i−1) ⊗ δjN2
) ◦ (IA⊗i ⊗ f 1) ◦ δiN2

.

Given an A∞ module M over A and a type D structure (N, δ1), we define the

k -module M⊠N =M ⊗k N , equipped with differential

∂⊠(x⊗ y) =
∞∑
k=0

(mk+1 ⊗ IN)(x⊗ δk(y)).
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We can represent the differential on the box tensor product graphically as

∂⊠ =
δ

m

.

Given a map of type D structure f 1 : N1 → N2, we define a map IM ⊠ f 1 : M ⊠

N1 → M⊠N2 by

(IM ⊠ f 1)(x⊗ y) =
∞∑
k=1

(mk+1 ⊗ IN2)(x⊗ fk(y)).

Graphically, this map is represented

IM ⊠ f 1 =

δN1

f 1

δN2

m

.

Bordered Floer homology is a package of invariants of 3-manifolds with

parametrized boundary. Bordered Floer homology associates to a surface F a

differential graded algebra A(F ) and to a 3-manifold Y with boundary together

with an identification φ : ∂Y → F a left differential graded module over
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A(−F ), the type D module of Y , denoted ĈFD(Y ) and a right A∞-module over

A(F ), the type A module of Y , denoted ĈFA(Y ). Much like classical Heegaard

Floer homology, the bordered Floer invariants are defined by representing a 3-

manifold with parametrized boundary by a kind of Heegaard diagram and counting

holomorphic disks which, in the bordered case, may asymptotically approach the

boundary.

Bordered Floer homology has a pairing theorem [LOT18, Theorem 1.3], which

recovers the hat-version of the Heegaard Floer homology of the manifold obtained

by gluing bordered manifolds along their common boundary. Given 3-manifolds Y1

and Y2 with ∂Y1 ∼= F ∼= ∂Y2, there is a homotopy equivalence

ĈF (Y1 ∪ Y2) ≃ ĈFA(Y1)⊠A(F ) ĈFD(Y2).

Bordered Floer theory also recovers knot Floer homology [LOT18, Theorem

11.21]. Given a doubly pointed bordered Heegaard diagram (H1, w, z) for

(Y1, ∂F,K) and a bordered Heegaard diagram (H2, z) with ∂Y1 ∼= F ∼= −∂Y2,

then

HFK−(Y1 ∪ Y2, K) ∼= H∗(CFA
−(H1, w, z)⊠A(F ) ĈFD(H2, z)).

Bordered Floer theory, therefore, gives an effective way to study satellites. Let KP

be the satellite of K with pattern P . ĈFD(S3 − K) is determined by CFK−(K)

[LOT18, Chapter 11], HFK−(KP ) can be computed by finding a doubly pointed

bordered Heegaard diagram HP for the pattern P in the solid torus and computing

the box tensor product CFA−(HP )⊠ ĈFD(S3 −K).

The last important result from bordered Floer theory which we will utilize, is

the morphism spaces pairing theorem, which gives a means of recovering classical
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Heegaard Floer homology in terms of the Hom functor rather than the tensor

product functor [LOT11]. If Y1 and Y2 are 3-manifolds with ∂Y1 ∼= F ∼= ∂Y2, then

ĈF (−Y1 ∪ Y2) ≃ MorA(−F )(ĈFD(Y1), ĈFD(Y2)),

where the latter object is the chain complex of A(−F )-linear maps from ĈFD(Y1)

to ĈFD(Y2) equipped with differential

d(φ) = ∂
ĈFD(Y2)

◦ φ+ φ ◦ ∂
ĈFD(Y1)

.

Having concluded the requisite background material, we proceed towards the

proofs of Theorems 3 and 4.
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CHAPTER III

RIBBON HOMOLOGY CONCORDANCES

First Homology Action as Link Cobordism Maps

It is helpful in geometric arguments that the H1/Tors-action can be realized

as a graph cobordism map on CF−. In the same way, it is beneficial to realize the

H1(Y )/Tors-action on CFL− as a link cobordism map. By Theorem 8, Σw and Σz

should be ribbon 1-skeleta of the graph in Figure 8. Our strategy will be to try to

compute the decorated link cobordism map obtained by tubing on a torus whose

longitude is a curve which represents the class in H1(Y )/Tors.

Construct a closed decorated link cobordism F inside of S2 × S1 × [−1, 1] as

follows. Let Σ be the boundary of a tubular neighborhood of {pt} × S1 × {0} ⊂

S2 × S1 × {0}. Let the dividing circles A be two parallel closed curves on the

boundary of Σ obtained by isotoping {pt} × S1 × {0} radially, so that A divides

Σ into Σw and Σz which are both annuli. As in the text preceding Proposition

2.3.3, choose disks D1 and D2 which intersect the same dividing arc {pt} × S1, and

take (W,F0) to be the link cobordism obtained by isotoping F and removing the

disks D1 and D2. See Figure 11. Note that the graph shown in Figure 8 is a ribbon

1-skeleton for both Σw and Σz.

Lemma 3.1.1. For (S2 × S1 × [−1, 1],F0) the link cobordism described above

FS2×S1×[−1,1],F0,s0(θ
+) = θ− and FS2×S1×[−1,1],F0,s0(θ

−) = 0,

where θ+ (θ−) is the generator of CFL−(S2 × S1,U , t0) of higher (lower) grading, s0

is the torsion SpinC-structure on S2 × S1 × [−1, 1] and t0 = s0|S2×S1.
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FIGURE 11 A schematic of the decorated surface in S2 × S1 × {0} described in the
text preceding Lemma 3.1.1.

Proof. By Proposition 2.3.3, FS2×S1×[−1,1],F0,s0 is determined by its reduction to a

graph cobordism map: concretely, if FB
S2×S1×[−1,1],Γw,s is the corresponding graph

map, then

FS2×S1×[−1,1],F0,s0 ≃ V ∆A · FB
S2×S1×[−1,1],Γw,s0

|F2[U,V ]

under the identification of CFL−(Y,U, s0) with CF−(Y,w, s0) ⊗F2[W ] F2[U, V ] as

before. The quantity ∆A, given by

⟨c1(s0), [Σ]⟩ − [Σ] · [Σ]
2

+
χ(Σw)− χ(Σz)

2
,

vanishes, since [Σ] is nullhomologous in S1 × S2, and Σw and Σz are both cylinders.

By construction, FB
S2×S1×[−1,1],Γw,s0

is the graph cobordism shown in Figure 8.

Hence, FB
S2×S1×[−1,1],Γw,s0

is just the map Aγ. It is straightforward to verify that

the action of [{pt} × S1] ∈ H1(S
2 × S1) takes θ+ to θ− and θ− to zero.

We now turn to the case of a nullhomologous knot K embedded in an

arbitrary 3-manifold Y. Let (Y × [−1, 1],FY ) be Morse-trivial, in the sense defined

in Section ??. The idea is to modify FY by by tubing on a torus with a dividing
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FIGURE 12 A schematic of the decorated surface Fγ. In general, K × {0} and γ
might be linked.

arc which represents a class in H1(Y ;Z)/Tors. Let γ ⊂ Y ×{0}− (K×{0}) be such

a curve. Choose a path λ in Y × {0} connecting γ to a point p in K × {0} which

lies on one of the dividing arcs.

Let T be the boundary of a tubular neighborhood of γ in Y × {0}. Decorate

T with two parallel circles isotopic to γ. Tube T and Σ together along λ. Denote

the resulting surface Σγ. Decorate the tube with two parallel arcs, connected to one

of the circles parallel to γ on one end, and to one of the dividing arcs on FY on the

other end. A schematic of this decoration, which is denoted Aγ, is shown in Figure

12.

Lemma 3.1.2. For the decorated surfaces (Y × [−1, 1],FY ) and (Y × [−1, 1],Fγ)

described above, we have that

FY×[−1,1],Fγ ,s(·) ≃ FY×[−1,1],FY ,s([γ]⊗ ·).

Proof. Decompose (Y × [−1, 1],Fγ) as (X,FX) ◦ (Nλ(γ),F) where X = ((Y ×

[−1, 1]) − Nλ(γ)), F = Fγ ∩ Nλ(γ), and FX = Fγ ∩ X. F is a punctured torus

whose decoration is shown in Figure 13. Given a SpinC-structure s on Y × [−1, 1],

its restriction to X is torsion on ∂Nλ(γ), which can be extended by s0, the unique
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SpinC-structure on Nλ(γ). By considering another Mayer-Vietoris sequence, it is

not hard to see that this extension is unique. The composition law then implies

that

FY×[−1,1],Fγ ,s ≃ FX,FX ,s|X ◦ FNλ(γ),F ,s0 .

The map FNλ(γ),F ,s0 associated to the cobordism (Y,K) → (Y ⨿S2×S1, K⨿U)

can be computed as the composition of a 0-handle/birth map, followed by a 1-

handle map, followed by the map FS2×S1×[−1,1],F0,s0 computed above: given an

element x ∈ CFL−(Y,L, s), the 0-handle/birth map simply introduces a pair

of intersection points c+, c− on a genus 0 Heegaard diagram for S3, and takes

x 7→ x ⊗ c+. Attaching a 1-handle, with both feet attached to the new 0-handle

corresponds to the map x ⊗ c+ 7→ x ⊗ θ+ [Zem18, Section 5]. By Lemma 3.1.1,

FS2×S1×[−1,1],F0,s0(x⊗ θ+) = x⊗ θ−. All together then,

FNλ(γ),F ,s0(x) = x⊗ θ−.

On the other hand, consider the cobordism FNλ(γ),D,s0 where D is a disk decorated

with a single arc, followed by the action of [γ]: this can be computed as the

composition of the 0-handle/birth and 1-handle maps followed by the action of

[γ]. Just as before, the 0-handle/birth and 1-handle maps take an intersection point

x to x⊗ θ+ and the action of [γ] takes this element to x× θ−. Hence,

FNλ(γ),F ,s0(x) = [γ] · FNλ(γ),D,s0(x).

See Figure 13 for a comparison of these two cobordism maps.
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FIGURE 13 When the link cobordism map on the right is followed by the action of
γ, it becomes equivalent to the map on the left.

By definition of the extended link cobordism maps, [γ] · FNλ(γ),D,s0(x) =

FNλ(γ),D,s0([γ] ⊗ x). Combining these observations with the composition law for

the extended cobordism maps shows

FY×[−1,1],Fγ ,s(x) ≃ FX,FX ,s|X ◦ FNλ(γ),F ,s0(x)

≃ FX,FX ,s|X ◦ FNλ(γ),D,s0([γ]⊗ x)

≃ FX,FX ,sX (1⊗ FNλ(γ),D,s0([γ]⊗ x))

≃ FY×[−1,1],FY ,s([γ]⊗ x)

as desired.

Note that the choice of path λ did not matter, since the diffeomorphism type

of the neighborhood Nλ(γ) did not depend on λ.

Let (W,F) : (Y0, K0) → (Y1, K1) be a link cobordism which is concordance

Morse-trivial. Decompose W as a composition of handle attachments W3 ◦W2 ◦W1.

Let γ be a curve in W which represents an element of H1(W )/Tors. Homotope the

curve γ so it is contained in the boundary of W1, which is denoted Ỹ = ∂+W1. In
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this dimension and codimension, such a homotopy can be taken to be an isotopy.

Let F̃γ be the decorated surface in Ỹ × [−1, 1] described above which realizes

the action of [γ]. Let (W,Fγ) be the link cobordism (W3,F3) ◦ (W2,F2) ◦ (Ỹ ×

[−1, 1], F̃γ) ◦ (W1,F1), where Fi is F ∩Wi.

Lemma 3.1.3. Let (W,Fγ) be the decorated surface described above. Then,

FW,F ,s([γ]⊗ ·) ≃ FW,Fγ ,s(·).

Proof. We will make use of the decomposition of (W,Fγ) as

(W3,F3) ◦ (W2,F2) ◦ (Ỹ × [−1, 1], F̃γ) ◦ (W1,F1).

FW,Fγ can be computed as the composition:

FW,Fγ ,s(x) ≃ FW3,F3,s|W3
◦ FW2,F2,s|W2

◦ FỸ×[−1,1],Fγ ,s|Ỹ ×[−1,1]
◦ FW1,F1,s|W1

(x).

By Lemma 3.1.2, this map is chain homotopic to

FW3,F3,s|W3
◦ FW2,F2,s|W2

◦ FỸ×[−1,1],FỸ ,s|Ỹ ×[−1,1]
([γ]⊗ FW1,F1,s|W1

(x)).

Since (Ỹ × [−1, 1],FỸ ) is the identity,

FỸ×[−1,1],FỸ ,s|Ỹ ×[−1,1]
([γ]⊗ FW1,F1,s|W1

(x)) = [γ] · FW1,F1,s|W1
(x) + 0,

and hence this map can be rewritten as:

FW3,F3,s|W3
◦ FW2,F2,s|W2

([γ] · FW1,F1,s|W1
(x)).
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But, since γ was chosen as to lie in Ỹ , this is by definition equal to the map

FW,F ,s([γ]⊗ x).

Maps induced by ribbon homology concordances

As is typical in proving results of this kind, our strategy will be to compare

the double of a ribbon Z-homology concordance to a Morse-trivial link cobordism.

Recall that the double of a link cobordism (W,Σ) : (Y0, K0) → (Y1, K1) is the

link cobordism (D(W ), D(Σ)) = (W,Σ) ∪(Y1,K1) (W,Σ), where (W,Σ) is the link

cobordism obtained by turning (W,Σ) around and reversing the orientation.

It will be helpful to have a version of the “sphere tubing” property of the

link cobordism maps [Zem19b, Lemma 3.1], [MZ19, Lemma 4.2]; if (W,F) is a link

cobordism in a homology cobordism and S is a null-homologous 2-sphere embedded

in the complement of the link cobordism, S can be tubed to the embedded surface

without changing the induced map.

Proposition 3.2.1. Let F = (Σ,A) be a decorated link cobordism in a homology

cobordism W , and let S ⊂ W be a smoothly embedded, nullhomologous sphere

disjoint from F . Let F ′ be a decorated cobordism obtained by connecting Σ and S

by a tube whose feet are disjoint from A. Then,

FW,F ,s ≃ FW,F ′,s.

Proof. Factor FW,F ,s and FW,F ′,s through a regular neighborhood N(S) of S. Since

S is nullhomologous, N(S) can be identified with D2 × S2. F ′ intersects N(S) in

a disk D′ and ∂N(S) in an unknot. We can perturb F so it meets N(S) in a disk

D and ∂N(S) in an unknot as well. Let D and D′ be the disks D and D′ decorated
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with a single dividing arc. Since S is nullhomologous, the restriction of a given

s ∈ SpinC(W ) to N(S) will be torsion. By [Zem19b, Lemma 3.1], FN(S),D,s|N(S)
does

not depend on the choice of embedded disk, and so FN(S),D,s|N(S))
≃ FN(S),D′,s|N(S)

.

Moreover, since W is a homology cobordism, the map H2(W ) → H2(∂−W )

is an isomorphism, and, in particular, an injection. It follows from the following

diagram that the map H2(W ) → H2(W −N(S)) is injective as well.

H2(W ) H2(∂−W )

H2(W −N(S))

∼=

Therefore, a given SpinC-structure on W − N(S) will extend over N(S),

and moreover will extend uniquely. By the composition law for the link cobordism

maps,

FW,F ,s ≃ FW−N(S),F−N(S),s|W−N(S)
◦ FN(S),D,s|N(S))

≃ FW−N(S),F−N(S),s|W−N(S)
◦ FN(S),D′,s|N(S))

≃ FW,F ′,s,

as desired.

We will prove Theorem 3 in two steps: we will prove the theorem for link

cobordisms (W,Σ) which are concordance Morse-trivial and then argue that we can

always reduce to this case.

The first step will follow from Proposition 2.3.4. Let (W,F) : (Y0, K0) →

(Y1, K1) be a ribbon Z-homology concordance which is concordance Morse-trivial

and decorated by a pair of parallel arcs. Decompose W = W1 ∪ W2 into the 1-
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and 2-handle cobordisms. A key observation of [DLVVW19] is that the product

cobordism Y0 × [−1, 1] and the double of W can be obtained by two different

surgeries on the same intermediate manifold X = D(W1). X can be described

explicitly as (Y0 × [−1, 1])#n(S1 × S3). It is not hard to see that surgery on S1 × S3

along S1 × {pt} yields S4, and so that Y0 × [−1, 1] can be obtained from surgery

on X is straightforward. That D(W ) can also be obtained by surgery on X follows

from the following lemma.

Lemma 3.2.2. [DLVVW19, Proposition 5.1] Let W : Y0 → Y1 be a cobordism

corresponding to attaching 2-handles along curves γ1, . . . , γn ⊂ Y0. Then, the double

of W can be obtained from Y0 × [−1, 1] by doing surgery on γ1, . . . , γn ⊂ Y0 × {0}.

To apply Proposition 2.3.4, there is a homological condition on the collection

of surgery curves α1, . . . , αn, which must be satisfied, namely the restriction map

H1(X −⨿N(αi)) → H1(⨿∂N(αi)) must be surjective.

Lemma 3.2.3. If α1, . . . , αn ⊂ X are either the attaching curves of the 2-handles

of W or the core curves S1 × {pt} of the S1 × S3 summands, which we denote

γ1, ..., γn and η1, ..., ηn respectively, the restriction map H1(X − ⨿N(αi)) →

H1(⨿∂N(αi)) is surjective.

Proof. Let α1, . . . , αn be either set of curves. Inclusions induce the following

commutative diagram:

H1(X) H1(⨿∂N(αi))

H1(W −⨿N(αi))

The map H1(X − ⨿N(αi)) → H1(⨿∂N(αi)) is surjective if the map

H1(X) → H1(⨿∂N(αi)) is. The curve ηi runs over the ith 1-handle geometrically

50



once, and since W is a Z-homology cobordism, after some handle slides, we can

arrange that the curve γi runs over the ith 1-handle algebraically once. In either

case, this implies that the composition

H1(#n(S1 × S3)) → H1(X) → H1(⨿∂N(αi)),

is an isomorphism. Therefore, the map H1(X) → H1(⨿∂N(αi)) is surjective as

desired.

We can now establish the theorem for the case where (W,Σ) is concordance

Morse-trivial.

Proposition 3.2.4. Suppose (W,F) : (Y0, K0) → (Y1, K1) is a ribbon Z-

homology concordance which is concordance Morse-trivial where F = (C,A) is

the concordance decorated by a pair of parallel arcs. Then, every s ∈ SpinC(W )

has a unique extension D(s) ∈ SpinC(D(W )) and the map induced by the double of

(W,F)

FD(W ),D(F),D(s) : HFL−(Y0, K0, s|Y0) → HFL−(Y0, K0, s|Y0)

is the identity.

Proof. Decompose W as W1 ∪W2 where Wi is the cobordism corresponding to the

attachment of the i-handles, i = 1, 2. Let Ỹ = ∂+W1 which can be identified with

Y0#
n(S1 × S2), where n is the number of 1-handles (and since W is a Z-homology

cobordism, n is also the number of 2-handles). Let X = W1 ∪ W1 be the double

of W1, which is diffeomorphic to (Y0 × [−1, 1])#n(S1 × S3). Define a decorated

surface Fα = (Σα,Aα) in X as follows: Let α1, . . . , αn be a collection of curves in
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X. Isotope each αi so that it is embedded in Ỹ . In Section 3.1, we constructed a

decorated surface Fαi
⊂ Ỹ × [−1, 1] which realized the action of αi. Define Fα to

be the decorated surface obtained stacking these surfaces on top of one another, i.e.

Fα = Fαn ∪· · ·∪Fα1 . Let (X,FX) = (W1,F ∩W1)∪(Ỹ × [−1, 1],Fα)∪(W1,F∩W1).

Let ηi be the curve S1 × {pt} in the ith S1 × S3 summand of X. By taking

αi to be ηi, we obtain a decorated surface Fη in X, with the curves η1, . . . , ηn ⊂ Aη.

Apply Proposition 2.3.4 to see that

FX,Fη ,s ≃ FX(η1,...,ηn),Fη(η1,...,ηn),s(η1,...,ηn).

Doing surgery on X along the curves η1, . . . , ηn yields Y0 × [−1, 1]#nS4 which is,

of course, diffeomorphic to the product Y0 × [−1, 1]. Recall that Fη was defined

by tubing on tori decorated by parallel copies of ηi. Doing surgery on the curves

ηi in these tori yields spheres embedded in the S4 summands (and are therefore

nullhomologous.) Therefore, (Y0 × [−1, 1],Fη(η1, . . . , ηn)) can be built from the

Morse-trivial link cobordism (Y0 × [−1, 1],FY0×[−1,1]) by tubing on a collection of

spheres. By Proposition 3.2.1, the link cobordism map does not detect tubing on

nullhomologous spheres, and hence

FX(η1,...,ηn),Fη(η1,...,ηn),s(η1,...,ηn) ≃ FY0×[−1,1],FY0×[−1,1],s(η1,...,ηn).

By Lemma 3.2.2, D(W ) can be obtained from X by doing surgery on the

attaching curves γ1, . . . , γn of the 2-handles of W . Now take the αi to be the

attaching curves γ1, ..., γn for the 2-handles for W , and consider the decorated

link cobordism Fγ in X which realizes the action of γ1, . . . , γn. Just as above,
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Proposition 2.3.4 shows:

FX,Fγ ,s ≃ FX(γ1,...,γn),Fγ(γ1,...,γn),s(γ1,...,γn) ≃ FD(W ),Fγ(γ1,...,γn),s(γ1,...,γn).

Again, the surface Fγ(γ1, . . . , γn) is obtained by tubing on the spheres that arise by

doing surgery on the tori in Fγ. Here is a geometric argument that these spheres

are nullhomologous in D(W ). The torus Ti corresponding to γi was defined by

isotoping γi into ∂+W1 and taking the boundary of a regular neighborhood of γi

in ∂+W1. Hence, [Ti] = 0 ∈ H2(X). By attaching a thickened disk along a meridian

of γi, we obtain cobordism from Ti to the sphere Si obtained by surgery on γ.

Therefore, [Si] = [Ti] = 0 in H2(X). Since Si is disjoint from γi it also represents

a class in H2(X − N(γi)). X is obtained from X − N(γi) by attaching a 3- and

4-handle, so the relative homology group H1(X,X − N(γi)) = 0, implying the map

induced by inclusion H2(X −N(γi)) → H2(X) is injective. In particular, this means

[Si] is trivial in H2(X −N(γi)), and therefore trivial in H2(X(γi)) as well. Applying

this argument to each γi shows that all spheres Si are nullhomologous in D(W ).

Therefore, we can again apply Proposition 3.2.1 to see that

FD(W ),Fγ(γ1,...,γn),s(γ1,...,γn) ≃ FD(W ),D(F),s(γ1,...,γn),

where D(F) is the decorated cobordism obtained by doubling F . Since (W,F) was

concordance Morse-trivial, (D(W ), D(Σ)) is as well.

Altogether, we have shown that the maps induced by (Y0 × [−1, 1],FY0×[−1,1])

and (D(W ), D(F)) are chain homotopic to the maps induced by the link
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cobordisms (X,Fη) and (X,Fγ) respectively. Hence, we simply need to show that

FX,Fη ,s ≃ FX,Fγ ,s.

By Lemma 3.1.3, we have that

FX,Fη ,s(·) ≃ FX,FX ,s([η1] ∧ · · · ∧ [ηn]⊗ ·)

and

FX,Fγ ,s(·) ≃ FX,FX ,s([γ1] ∧ · · · ∧ [γn]⊗ ·),

where (X,FX) is concordance Morse-trivial. We will show that

FX,FX ,s([η1] ∧ · · · ∧ [ηn]⊗ ·) ≃ FX,FX ,s([γ1] ∧ · · · ∧ [γn]⊗ ·),

This is effectively proven in [DLVVW19, Theorem 4.10], but we will recall

their argument for the convenience of the reader. By [DLVVW19, Proposition 5.1],

[η1] ∧ · · · ∧ [ηn] = [γ1] ∧ · · · ∧ [γn] ∈ (Λ∗H1(X)/Tors/⟨H1(Y0)/Tors⟩)⊗ F2,

where ⟨H1(Y0)/Tors⟩ is the ideal generated by elements of H1(Y0)/Tors. Therefore,

[η1] ∧ · · · ∧ [ηn] and [γ1] ∧ · · · ∧ [γn] differ by an element of Λn(H1(X)/Tors) ∩

⟨H1(Y0)/Tors⟩ ⊗ F2. By the linearity of the link cobordism maps, it suffices to show

that FX,FX ,s(x⊗ ξ) = 0 for any ξ ∈ Λn(H1(X)/Tors) ∩ ⟨H1(Y0)/Tors⟩ ⊗ F2.

Λn(H1(X)/Tors) ∩ ⟨H1(Y0)/Tors⟩ ⊗ F2 is generated by elements of the form

ω ∧
(∧

i∈S[ηi]
)
where ω is a wedge of elements in H1(Y0)/Tors and S is a proper

subset of {1, ..., n}. So, we can take ξ to be of this form. Since S is a proper subset
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of {1, ..., n} there is some ηj which does not appear as a factor of ξ. We can realize

the map FX,FX ,s(ξ ⊗ ·) as a link cobordism map FX,Fξ,s. By our construction of Fξ,

we can assume that Fξ is disjoint from the jth S1 × S3 summand, of which ηj is the

core. Therefore, (X,Fξ) can be decomposed as (X − Tj,Fξ − D) ∪ (Tj,D), where

Tj = (S1 × S3)−D4 is the jth S1 × S3 summand, and D is a disk decorated with a

single dividing arc. Hence, the map FX,Fξ,s factors through FTj ,D,s|Tj .

But, the map FTj ,D,s|Tj is trivial. This map can be computed as the following

composition: first, a 0-handle with a birth disk (which is identified with D) is

born, then a 1-handle is attached with both feet on the 0-handle, with a trivially

embedded annulus followed by 3-handle, again with a trivial annulus. The 1- and

3-handle maps take x to x⊗ θ+ and x⊗ θ+ to zero respectively, where θ+ is the top

graded generator of CFL−(S1 × S2,U , t0).

Therefore, it has been established that

FY0×[−1,1],FY0×[−1,1],s(η1,...,ηn) ≃ FD(W ),D(F),s(γ1,...,γn).

The map on the left is induced by a Morse-trivial link cobordism, and therefore

induces the identity map on HFL−(Y0, K0, t0), where t0 is the restriction of

s(η1, . . . , ηn) to Y0. Spin
C-structures on Y0 extend uniquely over W and D(W )

since they are Z-homology cobordisms. Therefore s(γ1, ..., γn) is the unique SpinC

structure extending s over D(W ). Therefore, for any s ∈ SpinC(W ), the map

FD(W ),D(F),D(s) induces the identity.

Having completed the proof in the case that (W,Σ) is concordance Morse-

trivial we show that we can always reduce to this case. Given any concordance

C ⊂ W , there is a Morse function f on W with the property that f |C has no
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critical points (for instance, simply identify C ∼= S1 × I and extend the projection

S1 × I → I to a Morse function on W .) However, it is not immediately clear

that the extension can be chosen in such a way as to give W the structure of a

ribbon cobordism. The following proposition shows that birth-saddle pairs of a

concordance can be traded for four-dimensional 1- and 2-handle pairs.

Proposition 3.2.5. Let K0 and K1 be ribbon concordant in a homology cobordism

W . Then, there is handle decomposition of the pair (W,Σ) with the property that

W is ribbon and the handle decomposition for Σ is trivial.

Proof. Choose a Morse function on (W,Σ) giving rise to a banded link diagram.

This decomposition of Σ consists of a collection of birth circles U1, ..., Un and bands

B1, ..., Bn, and after some band slides, we can assume the band Bi has one foot on

Ui and the other on K0.

Consider a birth circle Ui. If a band Bj runs through Ui (for j ̸= i), it can

be swum through the band Bi, so we can assume that the only band which runs

through Ui is Bi. Introduce a canceling 1- and 2-handle pair near Ui. Slide all

strands of Bi which run through Ui over the newly introduced 2-handle. Each

strand of Bi which ran through Ui now also runs through the 1-handle we have

added. Now, contract the band Bi until it no longer runs through Ui. In doing so,

we drag along an arc of K0 through Ui, possibly many times. Slide Ui under the

1-handle, unlinking it from K0. The band Bi can be swum past the 2-handle, at

which point, Ui and Bi can be cancelled. See Figure 14. Repeat for all Ui and Bi.

This process has yielded some new ribbon Z-homology concordance (W,Σ) :

(Y0, K
′
0) → (Y1, K

′
1) which is concordance Morse-trivial. It remains to show that

this process has not altered the original knots. By erasing the new 1- and 2-handle

pairs, we obtain the knot K ′0 ⊂ Y0, which is clearly isotopic to K0. On the other
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hand, if we do surgery on the whole diagram, we obtain a knot K ′1 in a surgery

diagram for Y1. To see K ′1 is isotopic to K1, we can slide an arc of K ′1 near where

we canceled the birth circle and band over the black 0-framed surgery curve. Any

arcs which pass through the black 0-framed surgery curve can now be slid over

the red 0-framed surgery curve. Iterating this process, we obtain a knot which

is isotopic to the result of band surgery on the bands B1, ..., Bn in the original

diagram, which is exactly K1.

FIGURE 14 A procedure for trading handles of a concordance for handles of the
ambient manifold.

Proof of Theorem 1. This now follows immediately from the previous propositions.

For any ribbon Z-homology concordance (W,F), the doubled link cobordism

induces the same map as a concordance Morse-trivial link cobordism (D(W ),F ′),

and this map induces the identity map on HFL−(Y0, K0, s|Y0). As s extends

uniquely over D(W ), the composition law implies that FW,F ,s has a left inverse,

namely FW,F ,s. Hence, FW,F ,s is a split injection.
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Torsion and Link Floer Homology

Let CFL−(Y,K, s) be the F2[V ]-module obtained from CFL−(Y,K, s) by

setting U = 0 with differential

∂(x) =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),
µ(ϕ)=1,
nw(ϕ)=0

#M̂(ϕ)V nz(ϕ)y.

Let HFL−(Y,K, s) be the homology of this complex.

A key property of the link Floer TQFT which is utilized in [JMZ20] is the

following.

Lemma 3.3.1. [JMZ20, Lemma 3.1] Let (W,F) be a decorated link cobordism. Let

FV be a link cobordism obtained by adding a tube to the Σz region. Then,

FW,FV ,s ≃ V · FW,F ,s.

Proof. Choose a neighborhood the tube diffeomorphic to the 4-ball. By the

composition law, it suffices to show that

FB4,FV ∩B4 ≃ V · FB4,F ,

where F is a pair of disks which bound a 2-component unlink in ∂B4 decorated by

a dividing arc. FV ∩ B4 is obtained from FB4,F by adding a tube connecting the

two disk with feet in the z-region. This map can be computed as the composition

of two z-band maps. This computation is carried out in [Zem18, Section 8.2], and

the resulting map is multiplication by V .
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With this tool at our disposal, we can prove an analogue of [JMZ20,

Proposition 4.1].

Proposition 3.3.2. Let (W,Σ) : (Y0, K0) → (Y1, K1) be a Z-homology link

cobordism. Let h : W → R be a Morse function compatible with Σ with respect

to which W is ribbon. Suppose that h|Σ has m critical points of index 0, b critical

points of index 1, and M critical points of index 2. Let F be a decoration of Σ such

that Σw is a regular neighborhood of an arc from K0 to K1. Then,

V M · FD(W ),D(F),D(s) ≃ V b−m · idHFL−(Y0,K0,s|Y0 )
.

Proof. The Morse function h induces a movie presentation for (W,Σ).

1. m birth disks appear disjoint from K0, with boundaries U1, . . . , Um.

2. n 4-dimensional 1-handles are attached whose feet are disjoint from Σ.

3. m fusion bands B1, ..., Bn are attached which connect K0 and U1, . . . , Um.

After some band slides, the band Bi has one foot in Ui and the other in K0.

4. b−m additional bands Bm+1, ..., Bb are attached.

5. n four-dimensional 2-handles are attached along curves γ1, . . . , γn.

6. M death disks appear capping off unknotted components U1, . . . , UM in the

link obtained by doing band surgery.

By playing this movie forward, and then again in reverse, we obtain a movie for

(D(W ), D(F)).

Consider the link cobordism which is obtained by deleting steps (5)-(8), i.e.

remove the 2-handles, the deaths, the dual births, and the dual 2-handles. The
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resulting four-manifold X is the double of the cobordism W1 = (Y1 × [0, 1]) ∪

1-handles. The resulting surface is D(F ∩ W1). Let Gγ be the surface obtained

from D(F ∩ W1) by tubing on tori T1, ..., Tn which are the boundaries of regular

neighborhoods of the γi curves in ∂+W1 as in the proof of Proposition 3.2.4.

Surgery on the curves γ1, . . . , γn yields a link cobordism (D(W ),G). The decorated

cobordism G can be obtained from D(F) by attaching M tubes from the deaths

disks to the dual birth disks and tubing on n nullhomologous spheres which are the

result of surgery on the tori Ti. We can arrange for the feet of the tubes to be sit in

the subsurface Σz. Attaching the nullhomologous spheres has no effect on the link

cobordism map, and attaching the tubes has the result of multiplying by V M by

Lemma 3.3.1. Therefore, by Proposition 2.3.4,

FX,Gγ ,t ≃ V M · FD(W ),D(F),D(s),

where t is determined by the fact that t(γ1, . . . , γn) = D(s).

Now consider the cobordism obtained by deleting steps (4)-(9) and again

tubing on the tori corresponding to the γi curves. The ambient four-manifold is still

X, but removing steps (4) and (9) has the effect of removing the bands Bm+1, ..., Bb

and their duals from Gγ. Call this surface Hγ. Since the bands Bm+1, ..., Bb and

their duals form a collection of b − m tubes, another application of Lemma 3.3.1

shows

FX,Gγ ,t ≃ V b−m · FX,Hγ ,t.
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But, surgery on (X,Hγ) along γ1, . . . , γn yields the link cobordism (D(W ),H)

which is the double of a ribbon homology concordance. So by Proposition 3.2.4

FX,Hγ ,t ≃ idCFL−(Y0,K0,s|Y0 )
.

Altogether then, we have that

V M · FD(W ),D(F),D(s) ≃ V b−m · idHFL−(Y0,K0,s|Y0 )
,

as desired.

Proof of Theorem 4. This now follows by an argument identical to that of [JMZ20,

Theorem 1.2].

Unlike the inequality of [JMZ20, Theorem 1.2], this does not give the

symmetric result

OrdV (Y1, K1, s|Y1) ≤ max{m,OrdV (Y0, K0, s|Y0)}+ 2g(Σ),

since W is not ribbon as we have defined it, unless W = Y0 × [0, 1].

Applications

We do have some immediate applications. Theorem 4 gives a clear

relationship between the torsion orders of ribbon homology cobordant knots.

Corollary 3.4.1. Let (W,Σ, s) : (Y0, K0) → (Y1, K1) be a ribbon Z-homology

cobordism, then

OrdV (Y0, K0, s|Y0)−OrdV (Y1, K1, s|Y1) ≤ 2g(Σ).

61



Recall that the fusion number Fus(K) of a ribbon knot K in S3 is the

minimal number of bands in a handle decomposition of ribbon concordance C from

the unknot U to K in S3 × [0, 1]. By [JMZ20], the torsion order of K in S3 provides

a lower bound for the fusion number of K. There are a few possible generalizations

we will consider.

Let K be a knot in a 3-manifold Y . Suppose that that K is ribbon in Y , in

the sense that there is a concordance (Y × [0, 1], C) : (Y × {0}, U) → (Y × {1}, K)

where U is the boundary of a disk in Y and C is an annulus which is ribbon with

respect to the projection Y × [0, 1] → [0, 1].

Definition 3.4.2. We define the fusion number of K in Y , which we denote

FusY (K), to be the minimal number of bands in a ribbon concordance from U

to K in Y × [0, 1].

Corollary 3.4.3. If K is ribbon in Y , then

OrdV (Y,K, s) ≤ FusY (K).

Proof. Let (Y × [0, 1], C) : (Y, U) → (Y,K) be a ribbon concordance with b =

FusY (K) bands (and therefore b local minima as well). Theorem 2 then implies

OrdV (Y,K, s) ≤ max{b,OrdV (Y, U, s)} = b,

since HFL−(Y, U, s) is torsion free.

In another direction, one could also consider ribbon concordances in Z-

homology cobordisms. Given a Z-homology concordance (W,Σ) : (Y0, U) → (Y1, K),

one can always find a Morse function h on W compatible with Σ so that h|Σ is
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ribbon, so we will continue to require that the ambient manifold is ribbon as well.

However, by imposing the condition that the ambient manifold is ribbon, we have

introduced an asymmetry which makes generalizing the fusion number to ribbon

Z-homology concordances somewhat subtle; in S3 × [0, 1], concordances from the

unknot with no local maxima can be turned around and viewed as concordances to

the unknot with no local minima. However, this is clearly not the case for a ribbon

homology concordance (W,Σ) : (Y0, U) → (Y1, K), as W is not ribbon.

Therefore, since ribbon homology link cobordisms to and from the unknot

differ, we can consider both cases: on the one hand, we have ribbon Z-homology

concordances (W,Σ) : (Y ′, U) → (Y,K) (where W is a ribbon Z-homology

cobordism and Σ is an annulus with no local maxima), and on the other, link

cobordisms (W,Σ) : (Y,K) → (Y ′, U) where W is a ribbon Z-homology cobordism

and Σ is an annulus with no local minima.

For the latter notion, Theorem ?? immediately implies the following.

Corollary 3.4.4. Let K be a knot in a 3-manifold Y . If (W,Σ) : (Y,K) → (Y ′, U)

is a link cobordism such that W is a ribbon Z-homology cobordism and Σ is an

annulus with no local minima and b index 1 critical points, then

OrdV (Y,K, s) ≤ b,

for any s ∈ SpinC(Y ).

Let Fus∧(Y,K) be minimal number of bands over all link cobordisms of the

form (W,Σ) : (Y,K) → (Y ′, U) where W is a ribbon Z-homology cobordism and

Σ is an annulus with no local minima. The previous result, of course, implies that

OrdV (Y,K, s) ≤ Fus∧(Y,K).
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Let us now turn to ribbon Z-homology concordances (W,Σ) : (Y, U) →

(Y ′, K). A little care is needed in defining a fusion number in this context, as we

must also take into account the handle decomposition of the ambient manifold, as

the following example illustrates.

FIGURE 15 A concordance from the unknot to K#K with no bands.

Example 3.4.5. Let K be a trefoil, and consider K#K. There is a concordance

from the unknot to K#K in S3×I with a single birth and band. This concordance,

of course, has the minimal number of bands, else K#K would be isotopic to

the unknot. However, this birth-band pair can be eliminated in the homology

cobordism obtained from S3 × [0, 1] obtained by attaching a canceling 1- and 2-

handle pair. Consider the following movie which is shown in Figure 15:

1. t = 0: An unknot U sits in S3.

2. t = 1: A 1-handle is attached away from U . This has the result of doing 0-

surgery on an unknot unlinked with U .

3. t = 3/2: U is isotoped in ∂(S3 × [0, 1] ∪ 1-handle).

4. t = 2: A 2-handle is attached to ∂(S3 × [0, 1] ∪ 1-handle).
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5. t = 5/2: An isotopy in ∂(S3× [0, 1]∪1-handle∪2-handle) pulls the knot K#K

away from the 1- and 2-handle. This can be done by sliding an arc in K and

in K over the 2-handle.

No bands are needed in this example, but OrdV (S
3, K#K) = OrdV (S

3, K) > 0.

Hence, OrdV (S
3, K) cannot possibly be a lower bound on the number of bands

required in such link cobordisms.

This example illustrates that handles of the surface can be traded for handles

in the ambient manifold. In light of these observations, we define Fus∨(Y,K) to

be minimal number of bands plus 2-handles over all ribbon homology concordances

(W,Σ) : (Y ′, U) → (Y,K). However, OrdV (Y,K, s) cannot be a lower bound for

Fus∨(Y,K) by work of Hom-Kang-Park.

Example 3.4.6. Let K be a ribbon knot in S3 with fusion number 1. By [HKP20,

Theorem 1], the torsion order of the (p, 1)-cable of K, which we denote Kp,1, is p.

However, there is a Kirby diagram for the complement of a ribbon disk of Kp,1 with

a single 2-handle and two 1-handles. By replacing one of the dotted unknots with a

unknot U we obtain ribbon Z-homology cobordism from the unknot to Kp,1 with no

bands and one 2-handle. Therefore, Fus∨(S3, Kp,1) = 1, but OrdV (S
3, Kp,1) = p.
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CHAPTER IV

SATELLITE CONCORDANCES

AND BORDERED FLOER HOMOLOGY

The material in this section draws from forthcoming work joint with Hayden-

Kang-Park.

In the section we prove Theorem 13. Let C : K → K ′ be a concordance.

Given a pattern knot P ⊂ S1 ×D2, we obtain a concordance between the satellites

of K and K ′ as follows. Remove a neighborhood of C in S3 × I . The Seifert

framing of K determines an identification φ : ∂ν(K) → S1 × ∂D2. Define the

satellite concordance CP to be (S3 × I − C,∅) ∪φ×id (S
1 ×D2 × I, P × I).

Since it requires no additional effort, we prove Theorem 13 for homology

concordances, i.e. link cobordisms (W,C) : (Y,K) → (Y ′, K ′) where Y and Y ′

are integer homology spheres, C is an annulus, and W is a homology cobordism.

Let (W,C) : (Y,K) → (Y ′, K ′) be a homology concordance. Let F = (C,A)

be the annulus C decorated with a pair of parallel arcs running from K to K ′. This

decorated concordance induces a map CFK−(Y,K) → CFK−(Y ′, K ′), denoted

FW,C , which is defined as a composition of elementary cobordism maps [Zem18].

Choose a Morse function f : W → R on W so that f |C has no critical points and

choose a gradient-like vector field which is tangent to C. This induces a handle

decomposition for (W,C) which only involves four-dimensional handles.

Since the restriction of this Morse function to the surface has no critical

points, this also produces a handle decomposition for the complement of C; the

attaching curves for the handles are already embedded in the complement of K, so

the cobordism W − C is built simply by attaching the same handles to Y −K.
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Proposition 4.0.1. Let (W,C) : (Y,K) → (Y ′, K ′) be a homology concordance.

Then, given a handle decomposition for (W,C) as above, there exists a map FW−C

with the property that for any pattern knot P in the solid torus, the following

diagram commutes up to homotopy:

CFA−(HP )⊠ ĈFD(Y −K) CFK−(Y,KP )

CFA−(HP )⊠ ĈFD(Y ′ −K ′) CFK−(Y ′, K ′P ).

IHP
⊠FW−C

≃

FW,CP

≃

Here, HP is a doubly pointed Heegaard diagram for the knot P in the solid

torus, KP and K ′P are the satellites of K and K ′ with pattern P , (W,CP ) is the

concordance induced by the pattern, and the horizontal homotopy equivalences are

given by the pairing theorem for knot Floer homology [LOT18].

The map FW−C : ĈFD(Y − K) → ĈFD(Y ′ − K ′) will be defined in

the standard way, as a composition of maps corresponding to handle attachments

[OS06].

1- and 3-handle maps:

The maps associated to 1- and 3-handle attachments are simplest to define.

For simplicity, let Y be an integer homology sphere. We will write Y (S0) for the

result of S0-surgery on Y (which is, of course, diffeomorphic to Y#S1 × S2).

Lemma 4.1.1. Let F : CFK−(Y,KP ) → CFK−(Y (S0), K ′P , t0) be the 1-

handle cobordism map. There exists a map F̃ : ĈFD(Y − K) → ĈFD((Y −

K)(S0), t0|(Y−K)(S0)) making the following diagram commute up to homotopy:

CFA−(HP )⊠ ĈFD(Y −K) CFK−(Y,KP )

CFA−(HP )⊠ ĈFD((Y −K)(S0), t0|(Y−K)(S0)) CFK−(Y (S0), KP , t0),

IHP
⊠F̃

≃

F

≃
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where t0 is the torsion SpinC-structure on Y (S0), i.e. c1(t0) = 0.

Proof. Fix a nice Heegaard diagram H = (Σg, α
c
1, . . . , α

c
g−1, β1, . . . , βg) for Y − K.

Choose curves λ and µ in Σ isotopic to a longitude and meridian of K respectively,

which intersect in a single point and avoid the α circles. A bordered Heegaard

diagram HB for Y − K is obtained from H by deleting a neighborhood of p, and

defining αa
1 = λ − p and αa

2 = µ − p to be the α-arcs parametrizing the boundary,

i.e.

HB = (Σ− p, αa
1, α

a
2, α

c
1, . . . , α

c
g−1, β1, . . . , βg).

Let HP be a nice doubly pointed bordered Heegaard diagram for the pattern knot

embedded in the solid torus. A doubly pointed Heegaard diagram HKP
for (Y,KP )

is obtained by gluing HB and HP along their common boundary.

Recall the definition of the 1-handle map F : CFK−(Y,KP ) →

CFK−(Y (S0), K ′P , t0). Choose a pair of points p1 and p2 in HKp away from HP .

Moreover, assume p1 and p2 lie in the same connected component of Σ − (∪iαi) −

(∪iβi) as the basepoint z. Remove neighborhoods of p1 and p2, and attach an

annulus. Add two new curves α0 and β0 which are homologically essential in the

annulus and intersect transversely in a pair of points, which we denote θ+ and θ−.

There are two bigons from θ+ to θ−. The 1-handle map is simply

x 7→ x⊗ θ+.

In exactly the same way, S0-surgery on the bordered Heegaard diagram for Y − K

gives rise to a map F̃ : ĈFD(Y −K) → ĈFD((Y − K)(S0)), t0|(Y−K)(S0)) defined

x′ 7→ x′ ⊗ θ+. Since we chose nice diagrams, the identification of CFA−(HP ) ⊠

ĈFD(Y −K)
≃−→ CFK−(Y,K) is simply the map which takes a pair of intersection
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points in HP and HK and views them as a single intersection point in HP ∪ HK .

Tautologically, then, the desired diagram commutes.

The case of the 3-handles is dual to this case, and follows similarly.

Lemma 4.1.2. Let H : CFK−(Y (S0), KP , t0) → CFK−(Y,K ′P ) be the 3-handle

cobordism map. There exists a map H̃ : ĈFD((Y − K)(S0), t0|(Y−K)(S0)) →

ĈFD(Y −K ′) making the following diagram commute up to homotopy:

CFA−(HP )⊠ ĈFD((Y −K)(S0), t0|(Y−K)(S0)) CFK−(Y (S0), KP , t0)

CFA−(HP )⊠ ĈFD(Y −K ′) CFK−(Y,K ′P ).

IHP
⊠H̃

≃

H

≃

2-handle map:

The 2-handle cobordism is the only interesting case, and follows from the

pairing theorem for triangles [LOT16, Proposition 5.35]. Before we define the 2-

handle cobordism maps on ĈFD, we recall some facts about bordered Heegaard

triple diagrams.

Given a doubly pointed bordered Heegaard diagram Hα,β0 , we obtain

a doubly pointed bordered Heegaard triple diagram Hα,β0,β1 by performing a

Hamiltonian translation on each of the β0-curves. By removing the β0-curves, we

obtain an ordinary doubly pointed bordered Heegaard diagram Hα,β1 . Counting

holomorphic triangles defines a map

m2 : CFA
−(Hα,β0)⊗ CFA−(Hβ0,β1) → CFA−(Hα,β1).
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Taking Θβ0,β1 to be the top graded generator of the homology of ĈF (Hβ0,β1), we

can consider the map

m2(−,Θβ0,β1) : CFA−(Hα,β0) → CFA−(Hα,β1).

We will make use of the fact that this map is homotopic to the map ΨHα,β1←Hα,β0

induced by the isotopy of β0 to β1, and is just the “nearest point map”, taking an

intersection point in α∩β0 to the closest intersection point in α∩β1. For a proof in

the classical case, see [Lip06, Proposition 11.4] or [JTZ21, Lemma 9.7].

FIGURE 16 By pinching along the dotted line, we see a dynamic bigon map is
homotopic to the composition of a monogon map with a triangle map.

Lemma 4.2.1. Let Hα,β0,β1 be a bordered Heegaard triple diagram where the β1-

curves are small Hamiltonian translates of the β0-curves. Let Θβ0,β1 be the top

graded generator of H∗(ĈF (β
0, β1)). Then,

m2(−,Θ) ∼ ΨHα,β1←Hα,β0
.

Moreover, ΨHα,β1←Hα,β0
is the nearest point map.

Proof. The holomorphic polygon maps are defined by counting certain holomorphic

maps

u : (S, ∂S) → (Σ×∆, (α× e0) ∪ (β1 × e1) ∪ . . . ∪ (βn × en),
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where ∆ is a disk with n boundary punctures, and edges labeled e0, . . . , en. If B ∈

π2(x0, . . . , xn; ρ1, . . . , ρm) then denote by MB(x0, . . . , xn; ρ1, . . . , ρm) the moduli

space of embedded holomorphic maps in the homotopy class B with asymptotics

x1, . . . , xn, ρ1, . . . , ρm. The map ΨHα,β1←Hα,β0
is defined by counting bigons with

dynamic boundary conditions, i.e. maps

(S, ∂S) → (Σ× [0, 1]× R, (α× 1× R) ∪
⋃
t

(βt × 0× {t}))

where βt = β0 for t ≤ 0 and βt = β1 for t ≥ 1. By a neck stretching argument,

the moduli space of such maps splits into a product of MB(x, y, z; ρ1, . . . , ρm) and

MA(x; ρ1, . . . , ρm). In other words, ΨHα,β1←Hα,β0
is the composition of the monogon

map θ with the triangle map m2(−,−). See Figure 16.

Claim: θ(1) = Θβ0,β1 . In particular, m2(−, θ(1)) = m2(−,Θβ0,β1), as desired.

If θ(1) was not equal to Θβ0,β1 , then take the standard genus g Heegaard

diagram for S1 × S2 and consider the two maps

m2(−, θ(1)),ΨHα,β1←Hα,β0
: CFA−(Hα,β0) → CFA−(Hα,β0)

from above. The map ΨHα,β1←Hα,β0
is a homotopy equivalence, but is homotopic to

m2(−, θ(1)). If θ(1) were not the highest graded generator, the composition would

be zero, a contradiction.

Finally, as t → 0, and βt approaches β0, holomorphic disks with Maslov index

0 limit to bigons for the pair (α, β0). But, any bigon for (α, β0) with Maslov index

0 must be constant, since the R-action on moduli space of homotopy classes of non-

constant bigons is free, implying the dimension of the moduli space is nonzero.
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We are now ready to define the 2-handle cobordism maps. Let L be a framed

link in Y . Let W (L) be the cobordism corresponding to attaching 2-handles along

L. Let Y (L) be the 3-manifold obtained by surgery on L. As usual, the 2-handle

map is defined by counting holomorphic triangles.

Lemma 4.2.2. Fix a SpinC-structure s on W (L). Let Gs : CFK−(Y,KP , s|Y ) →

CFK−(Y ′, K ′P , s|Y ′) be the 2-handle cobordism map. There exists a map G̃s :

ĈFD(Y − K, s|Y−K) → ĈFD(Y ′ − K ′, s|Y ′−K′) making the following diagram

commute up to homotopy:

CFA−(Hp)⊠ ĈFD(Y −K, s|Y−K) CFK−(Y,KP , s|Y )

CFA−(HP )⊠ ĈFD(Y ′ −K ′, s|Y ′−K′) CFK−(Y ′, K ′P , s|Y ′).

ICFA−(HP )⊠G̃s

≃

Gs

≃

Proof. To define the map for 2-handles, let L be a framed, k-component link in

Y − K, and let B be a bouquet for L. Choose a Heegaard triple diagram Hα,β,β′

which is subordinate to this bouquet in the sense of [OS06] and also admits a

decomposition into two bordered Heegaard diagrams Hα,β,β′

P ∪ Hα,β,β′

B , where Hα,β,β′

P

is the bordered Heegaard triple diagram obtained from HP by adding Hamiltonian

translates of the β-curves. Such a diagram can be produced as follows.

1. Start with a Heegaard diagram H = (Σg, α1, . . . , αg−1, βk+1, . . . , βg) for Y −

K−B. For each β-curve in H, add a β′-curve which is a Hamiltonian translate

so |βi ∩ β′j| = 2δij.

2. Add a collection {β1, ..., βk} which are meridians of the components of L.

Attaching 1- and 2-handles along the α and β curves yields Y −K.

3. For each component of L, add a curve β′i according to its framing. Attaching

1- and 2-handles along the α and β′ curves produces (Y −K)(L) = Y ′ −K ′.
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4. Choose a longitude and meridian of K in Σ disjoint from the α-curves which

intersect in a single point, p. Define arcs αa
1 = λ− p and αa

2 = µ− p.

Altogether, this defines a bordered Heegaard triple diagram

Hα,β,β′

B = (Σg − p, αa
1, α

a
2, α

c
1, . . . , α

c
g−1, β1, . . . , βg, β

′
1, . . . , β

′
g).

By construction, Hα,β,β′

P ∪ Hα,β,β′

B is a Heegaard triple subordinate to our chosen

bouquet B.

For δ, ε ∈ {α, β, β′}, let Hδ,ε
P and Hδ,ε

B be the various standard bordered

Heegaard diagrams associated to these triples. Let Θβ,β′ and Θ be the top

dimensional generators of H∗(ĈF (Hβ,β′

B )) and H∗(ĈF (Hβ,β′

P )) respectively. The

pairing theorem for triangles [LOT16, Proposition 5.35] gives the following

homotopy-commutative square:

CFA−(Hα,β
P )⊠ ĈFD(Hα,β

B ) CFK−(Hα,β
P ∪Hα,β

B )

CFA−(Hα,β′

P )⊠ ĈFD(Hα,β′

B ) CFK−(Hα,β′

P ∪Hα,β′

B ).

m2(−,Θ)⊠m2(−,Θβ,β′ )

≃

m2(−,Θ⊗Θβ,β′ )

≃

The right vertical arrow is by definition the 2-handle cobordism map G on

CFK−. After identifying CFA−(Hα,β
∞ ) with CFA−(Hα,β′

∞ ), the map m2(−,Θ) is the

identity. Define m2(−,Θβ,β′) to be the 2-handle cobordism map G̃s on ĈFD.

Since each handle attaching cobordism map was defined with respect to

a particular Heegaard diagram, the last step is to ensure maps induced by the

Heegaard moves relating two diagrams induce homotopy equivalences which are

compatible with the bordered Floer homology pairing theorem. This is shown by

Hendricks-Lipshitz in [HL19].
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Lemma 4.2.3. [HL19, Lemma 5.6] Suppose H1 and H2 are a pair of bordered

Heegaard diagrams related by a bordered Heegaard move and H0 is another bordered

Heegaard diagram with ∂H0 = −∂Hi, i ∈ {1, 2}. Then, the diagram

CFA−(H1)⊠ ĈFD(H0) CFK−(H1 ∪H0)

CFA−(H2)⊠ ĈFD(H0) CFK−(H2 ∪H0)

≃

≃

commutes up to homotopy. The vertical maps come from the proof of invariance of

bordered and classical Floer homology.

Proof of Proposition 4.0.1: We have a decomposition of W − C into handle-

attachment cobordisms, W1 ∪W2 ∪W3. Define FWC to be the composition

FW−C = H̃ ◦ΨH3←H2 ◦ G̃s ◦ΨH2←H1 ◦ F̃ ,

where ΨHi+1←Hi
i ∈ {1, 2} are the change of diagram homotopy equivalences and

s is the restriction of the unique SpinC-structure on W to W2. By stacking the

diagrams from Lemma 4.1.1, 4.1.2, 4.2.2, and 4.2.3 the result follows.

No Cancelation Lemma

In Chapter 5, we will be interested in distinguishing maps induced by satellite

concordances. Let C and C ′ be two concordances from K0 to K1. Assuming FC ̸=

FC′ , we would like a sufficient condition to guarantee that FP (C) ̸= FP (C′).

Given a concordance C : U → K, Theorem 13 guarantees the existence of a

map

F : ĈFD(S3 − U) → ĈFD(S3 −K),
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with the property that for any satellite pattern P , the map induced by the

concordance P (C) can be computed as

IP ⊠ F : ĈFA(S1 ×D2, P )⊠ ĈFD(S3 − U) → ĈFA(S1 ×D2, P )⊠ ĈFD(S3 −K),

where IP is the identity map on ĈFA(S1 × D2, P ). By definition, the map IP ⊠ F

can be written

IP ⊠ F (x⊗ v) =
∞∑
k=1

(mk+1 ⊗ IP )(x⊗ F k(v)),

or, diagrammatically as

IP ⊠ F =

δN1

F

δN2

m

.

As described in Chapter 11 of [LOT18], a model for CFK−(K) gives rise to

a model for ĈFD(S3 − K): roughly a basis for ĤFK (K) forms a basis for ι0 ·

ĈFD(S3 −K) and the structure of the differential of CFK−(K) determines a basis

for ι1 · ĈFD(S3 −K) as well as the differentials.

Since we will be primarily interested in slice disks, we will restrict ourselves to

unknotted patterns. If P is an unknotted pattern, then

ĈFA(S1 ×D2, P )⊠ ĈFD(S3 − U) ≃ ĈFK(S3, U).
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Therefore, there is some element a in ĈFA(S1 × D2, P ) such that a ⊗ v generates

homology of ĈFK(S3, U), where v is the unique element in ĈFD(S3 − U). On

homology, IP ⊠F is therefore determined by the image of a⊗v. We show that given

some seemingly restrictive assumptions on the structure of ĈFA(S1×D2, P ), IP⊠F

is guaranteed to be nontrivial on homology.

Lemma 4.3.1. Let

F : ĈFD(S3 − U) → ĈFD(S3 −K),

be a morphism of type-D structures which tensors with the identity map of

ĈFA(S1 × D2, λ) to give a nontrivial map, where λ is the knot S1 × {pt} ⊂

S1 × D2. Let a be an element of ĈFA(S1 × D2, P ) such that a ⊗ v generates

the homology of ĈFA(S1 × D2, P ) ⊠ ĈFD(S3 − U) and extend {a} to a basis

for ĈFA(S1 × D2, P ). If the coefficient of a is zero in every A∞ operation

mk(b, ρi1 , . . . , ρik−1
) of ĈFA(S1 × D2, P ) which preserves the filtration, then the

map

IP⊠F : H∗(ĈFA(S
1×D2, P )⊠ĈFD(S3−U)) → H∗(ĈFA(S

1×D2, P )⊠ĈFD(S3−K))

is nontrivial.

Proof. Let x = F (v), where F is the map of type-D structures induced by FC . We

can write

x = 1 · θ +
∑

I∈{1,2,3,12,23,123}

ρIθI ,

for some θI ∈ ĈFD(S3 − K). The term θ must be nontrivial, since we have

assumed that I
ĈFA(S1×D2,λ)

⊠ F has nontrivial image (this follows from the fact
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that ĈFA(S1 × D2, λ) has no nontrivial A∞-operations and so all other terms in

F (x) are annihilated after taking the box tensor product.) (IP ⊠F )(a⊗v) is defined

to be

(IP ⊠ F )(a⊗ v) =
∞∑
k=1

(mk+1 ⊗ IP ) ◦ (a⊗ F k(v))

= a⊗ θ + other terms.

The term a⊗ θ could be canceled if, for some k, F k(v) = ρi1 ⊗ . . .⊗ρik ⊗ θ and there

is an operation of the form mk+1(a, ρi1 , . . . , ρik) in which a appears with nonzero

coefficient. However, we have assumed that no such operations exist.

Moreover, when we pass to homology, there are no relation between a ⊗ θ

and any other elements of H∗(ĈFA(S
1 × D2, P ) ⊠ ĈFD(S3 − K)), since a ⊗ θ

could only appear as a term in the boundary of another element if there were a

filtration preserving operation of the form mk+1(b, ρi1 , . . . , ρik) in which a appeared

with nonzero coefficient. Again, no such operations exist.

Therefore, a ⊗ θ appears as a non-canceling term in the expansion of (IP ⊠

F )(a ⊗ v) ∈ H∗(ĈFA(S
1 × D2, P ) ⊠ ĈFD(S3 − K)), from which it follows that

IP ⊠ F has nontrivial image.
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CHAPTER V

INJECTIVE SATELLITE OPERATORS

The material in this section draws from forthcoming work joint with Hayden-

Kang-Park.

We turn now to applications of Theorem 13. We begin by showing that if

knot Floer homology distinguishes a pair of slice disks, it will also distinguish their

positive Whitehead doubles. Given a slice disk D of K, we denote the induced

element FD(1) in ĤFK(S3, K) by tD.

Theorem 10. Let K be a knot in S3 with slice disks D1, D2. If tD1 ̸= tD2, then

tWh+(D1) ̸= tWh+(D2) as well.

Proof. Let F1, F2 be the type-D morphisms determined by D1 and D2 respectively.

Since tD1 ̸= tD2 , we have that I
ĈFA(S1×D2,λ)

⊠ (F1 + F2) is nontrivial. The type-A

structure for the positive Whitehead double is computed by Levine [Lev12]:

c c′

b b′

a a′

d.

ρ3ρ2ρ1

ρ1

ρ3ρ2ρ1

ρ123
ρ1

ρ12
1+ρ23

ρ2
ρ3

In the diagram above, an arrow of the form x
ρi1 ...ρik−−−−→ y indicates that

mk+1(x, ρi1 , . . . , ρik) = y. Arrows pointing left lower the filtration. A short

computation illustrates that H∗(ĈFA(S
1 ×D2,Wh+)⊠ ĈFD(S3 − U)) = F⟨b⊗ v⟩.
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There is a single arrow into b, but it lowers the filtration level. Therefore, by

Lemma 4.3.1, IWh+ ⊠ (F1 + F2) is nontrivial. Therefore, by Theorem 13, tWh+(D1) ̸=

tWh+(D2).

We now prove that for any slice disks D1 and D2 for K, their positive

Whitehead doubles are topologically isotopic.

A slice disk D is called a Z-disk if the fundamental group of its complement

is isomorphic to Z. By the work of Conway and Powell, any two Z-disks with

common boundary are topologically isotopic rel. boundary [CP21, Theorem 1.2].

We can arrange to work in this situation by choosing appropriate satellite patterns.

Recall that the winding number of a pattern P is the algebraic intersection of P

with a generic meridional disk of the solid torus containing P .

Proposition 5.0.1. If P is a winding number zero pattern with P (U) = U and D

is a slice disk, then the satellite disk P (D) is a Z-disk.

Proof. Choose a tubular neighborhood ν(D) of D. The satellite disk P (D) is

contained in ν(D), so we have a splitting

B4 ∖ P (D) = (B4 ∖ ν(D)) ∪ (ν(D)∖ P (D)).

Since the homeomorphism class of ν(D) ∖ P (D) does not depend on the choice of

D,

ν(D)∖ P (D) ∼= ν(D0)∖ P (D0),

where D0 denotes the trivial slice disk of an unknot U . Since P is unknotted P (D0)

is also a trivial slice disk of P (U) = U so we may take ν(D0) to be the whole of B4.
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Therefore,

ν(D0)∖ P (D0) ∼= B4 ∖D0
∼= D2 × (D2 ∖ {pt}),

implying π1(ν(D)∖ P (D)) ∼= Z.

The fundamental group of the intersection

(B4 ∖ νD) ∩ (νD ∖ P (D)) ∼= S1 ×D2

is also Z, and the natural maps

π1
(
(B4 ∖ νD) ∩ (νD ∖ P (D)

)
→ π1

(
B4 ∖ νD

)
,

π1
(
(B4 ∖ νD) ∩ (νD ∖ P (D)

)
→ π1 (νD ∖ P (D)) ,

are given by the inclusion of a meridional class of π1(B
4 ∖ νD) and the

multiplication map Z ×w(P )−−−−→ Z, respectively, where w(P ) denotes the winding

number of P . Since P has winding number 0 and π1(B
4 ∖ νD) is normally

generated by a meridian of D, we see

π1(B
4 ∖ P (D)) ∼= π1(νD ∖ P (D)) ∼= Z.

Therefore P (D) is a Z-disk.

As the positive Whitehead double pattern satisfies all the hypotheses of

Proposition 5.0.1, we have the following corollary.

Corollary 5.0.2. Let D1 and D2 be any slice disks for K which are distinguished

by their induced maps on ĤFK . Then, Wh+(D1) and Wh+(D2) are exotic disks.
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By considering deform spun disks, in forthcoming work, we prove the

following.

Theorem 11. For any nontrivial knot K, the knot Wh+(K#K#−K#−K) bounds

a pair of exotic disks.
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CHAPTER VI

STABLY EXOTIC SURFACES

In this section, we produce a pair of exotic disks which remain exotic after

many stabilizations.

Theorem 12. For any p, there exists a knot Jp which bounds a pair of exotic disks

Dp and D′p which remains exotic after p− 1 internal stabilizations.

We distinguish our surfaces by comparing their induced maps on knot Floer

homology. Stabilization has a simple effect on the induced map; attaching a tube

simply corresponds to multiplication by U (or V ) [JMZ20, JZ21]. Juhász-Zemke

make use of this fact to define their suite of secondary Heegaard Floer invariants

which provide lower bounds for the stabilization distance of two surfaces. See

Chapter 2 for details.

Recall that the torsion order OrdU(K) of a knot K is the smallest power

of U which annihilates the torsion submodule of HFK−(K). Since a stabilization

corresponds to multiplication by U , any two maps induced by disks with boundary

K become indistinguishable after multiplication by UOrdU (K). Therefore, these lower

bounds cannot be used to show disks bounding knots with torsion order 1 have

large stabilization distance. OrdU(K) is bound above by the fusion number of K,

which is the minimal number of bands occurring in ribbon disk for K [JMZ20].

Therefore, to have any hope in finding disks with large stabilization distance, it is

necessary to work with knots with large fusion number.
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Cabled concordances

Recent work of Hom-Kang-Park [HKP20] and Hom-Lidman-Park [HLP22]

studies how cabling is related to the torsion order and fusion number of a knot.

If K is ribbon with fusion number 1, then the knot Floer homology of the (p, 1)-

cable of K has torsion order p [HKP20, Lemma 3.3]. Cabling has a natural four-

dimensional extension: given a concordance C : K → K ′, there is a cabled

concordance between the cables of K and K ′. In particular, given a ribbon knot K

with fusion number 1, K(p,1) bounds a “cabled” ribbon disk, and has fusion number

p.

The knot J shown in Figure ??, bounds an exotic pair of disks D and D′ by

the work of Hayden [Hay21]. We will refer to these disks as the “positron disks”

since their double branched cover is the positron quark of [AM98].These disks are

distinguished by their induced maps on knot Floer homology [DMS22]. But, J

has fusion number 1, so the two maps become equal after a single stabilization. In

fact, we will show directly that these two disks are smoothly isotopic after a single

stabilization. However, the cabled disks Dp and D′p have fusion number p, and as

we show, have stabilization distance p as well.

We begin by reviewing the two definitions of stabilization distance and

illustrate that the two need not agree. We then review the construction of cabled

concordances and show how this operation can be used to produce disks which are

topologically isotopic. We conclude this section by giving an upper bound on the

stabilization distance of Dp and D′p by explicitly showing they become isotopic after

p stabilizations.
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Two notions of stabilization distance

The most general notion of internal stabilization is due to [JZ21].

Definition 6.2.1. Let Σ be an oriented surface with boundary, smoothly

embedded in a 4-manifold W . Let B be a 4-ball in the interior of W whose

boundary intersects Σ in an n-component unlink L. Moreover, suppose Σ ∩ B

is a collection of disks D1, ..., Dn which can be isotoped into ∂B relative to their

boundaries. Let S0 be a connected genus g surface in B with boundary L. The

surface Σ′ = (Σ − B) ∪L S0 is called the (g, n)-stabilization of Σ along (B, S0). We

call Σ the (g, n)-destabilization of Σ′ along (B, S0). See Figure 17.

FIGURE 17 A (g, n)-stabilization along (B4, S0). The case (g, n) = (2, 2) is shown.

Definition 6.2.2. Let Σ and W be as above, and let Σ′ be a (g, n)-stabilization

of Σ. When (g, n) = (0, 2) and S0 ∪ D1 ∪ D2 bounds a 3-dimensional 1-handle

embedded in W , we say Σ′ is a 1-handle stabilization of Σ.

We will simply write “stabilization” instead of (g, n)-stabilization, and state

explicitly when we mean 1-handle stabilization. We now formally define the two

notions of stabilization distance. For simplicity, we will only define the stabilization

distance for disks.
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Definition 6.2.3. Let Σ and Σ′ be disks in W such that ∂Σ = ∂Σ′ and [Σ] =

[Σ′] ∈ H2(W,∂W ;Z). The 1-handle stabilization distance d(Σ,Σ′) between Σ and

Σ′ is the minimal number k such that Σ and Σ′ become isotopic rel boundary after

each is stabilized k times.

Definition 6.2.4. Let Σ and Σ′ be disks in W such that ∂Σ = ∂Σ′ and [Σ] = [Σ′] ∈

H2(W,∂W ;Z). The stabilization distance µ(Σ,Σ′) between Σ and Σ′ is defined to

be the minimum of

max{g(Σ1), . . . , g(Σk)}

over all sequences of connected surfaces from Σ = Σ1 to Σ′ = Σk in W such that

∂Σi = K for all i and Σi and Σi+1 are related by a stabilization or a destabilization.

Note that necessarily d(Σ,Σ′) ≥ µ(Σ,Σ′). However, as the next example

illustrates, the two notions are distinct.

Example 6.2.5. The knot K = 946 is shown in Figure 19. K bounds an obvious

torus in S3. Moreover, by compressing the two circles which generate the first

homology of this torus, we obtain two slice disks D and D′ with boundary K.

Both disks can be described as banded unlinks with a single band [Swe01, HKM20]

(Figure 19). It is shown in [MP19] that d(D,D′) = 1. This can be seen as follows.

FIGURE 18 Swimming one band through another.

To show that the two disks become isotopic after a single 1-handle

stabilization, it suffices to show that by attaching a tube, the relative positions
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FIGURE 19 An isotopy taking a 1-handle stabilization of D to a 1-handle
stabilization of D′.
A swim move occurs in frame 6. (Continued in Figure 20)

.

of the two bands can be swapped, and then that the tube can be isotoped until it is

once again clearly the result of a 1-handle stabilization.

By strategically attaching a tube, we can slide the right-hand band, b, to the

left (Figure 19.) However, this band slide separates the tube into two bands, v and

v∗. Next, slide v into the position originally occupied by b. Now, we can drag v∗

around K until it once again forms a tube with v by performing swim moves as

necessary to change crossings of v∗ with the diagram for K. See Figure 18 for an

example of a swim move, and see 20 for the remainder of the isotopy taking the

stabilization of D to the stabilization of D′.
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FIGURE 20 The remainder of the isotopy between the stabilizations of D and D′.
Swim moves occur in frames 2 and 4.

Miller-Powell use Alexander modules to show that by taking boundary

connected sums of these disks, they can produce disks with arbitrarily large 1-

handle stabilization distance: d(♮mD, ♮mD′) = m. However, it is clear from Figures

19 and 20, that µ(♮mD, ♮mD′) = 1; no band ever slid over the marked point on

the diagram, so we can take the connected sums at the marked points. Since

the more general stabilization distance allows us to stabilize and destabilize, we

can attaching a single tube in order to isotope the first D summand to D′, then

destabilize, and then repeat the strategy on the next copy of D, until we are left

with ♮mD′.

It is worth noting that even though the obvious ribbon disk for ♮mD has m

bands, we can in some sense “reuse” (stabilize then destabilize) the same tube

m times to make ♮D and ♮D′ isotopic. K has fusion number 1, so necessarily
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OrdU(K) = 1. By the knot Floer homology Künneth formula,

OrdU(#
mK) = OrdU(K) = 1.

This implies that τ(♮mD, ♮mD′) ≤ 1 (see Definition 2.3.6), and therefore τ cannot

detect the large 1-handle stabilization distance of these disks.

Concordances induced by cables

Let C : K → K ′ be a concordance. Given a pattern knot P ⊂ S1 × D2,

we obtain a concordance between the satellites of K and K ′ as follows. Remove a

neighborhood of C in S3× I . The Seifert framing of K determines an identification

φ : ∂ν(K) → S1 × ∂D2. Define the satellite concordance CP to be (S3 × I −

C,∅) ∪φ×id (S
1 ×D2 × I, P × I).

The (p, q)-cable of a knot is a satellite with pattern P = Tp,q, the (p, q)-torus

knot. Since the (p, 1)-torus knot is the unknot, it is clear that if a knot K is slice,

so is its (p, 1)-cable. Moreover, by capping off the (p, 1)-cable of the unknot, we

obtain a cabled disk for K.

By the work of Freedman and Quinn, locally flat proper submanifolds have

topological normal bundles which are unique up to ambient isotopy [FQ90, Section

9.3]. Therefore, by the nature of the construction, topological isotopy is preserved

by the cabling operation. Therefore, since the disks D and D′ which bound

the knot J are topologically isotopic by the work of Conway and Powell [CP21,

Theorem 1.2], this topological isotopy also produces a topological isotopy between

the (p, 1)-cables of D and D′. This gives us:
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Lemma 6.3.1. The cabled disks Dp and D′p which bound Kp are topologically

isotopic.

An upper bound for the stabilization distance

We now turn to the proof that the stabilization distance between Dp and D′p

is at most p.

As a warm up case, consider the disks D and D′ with boundary J . Let b be

the left-hand band which defines D and let b′ be the right-hand band which defines

D′. As in Example 6.2.5, attach a tube v ∪ v∗ to J , so that the band b can be slid

until it becomes isotopic to the band b′. Next, slide the band v into the position

originally occupied by b. We have exchanged the roles of b and b′ at the cost of

tangling the bands v and v∗ which made up the stabilization; it is not clear whether

the resulting surface is isotopic to a stabilization of D′. If can isotope v∗ away from

J ∪ b and back onto v, we will be done.

FIGURE 21 An isotopy of D ∪ (v ∪ v∗).

89



As in Example 6.2.5, we can use the bands b and v to pull v∗ into the correct

position by a sequence of swim moves. Recall that a swim move of v∗ through b

corresponds to pushing v∗ below the critical point for b, and performing an isotopy

of v∗ in S3 − J(b), i.e. in the complement of link obtained by band surgery on b.

Performing the entire isotopy at this level will turn out to be easier to visualize,

especially once we progress to the cabled case.

Push the band v∗ into the interior of B4, (say to radius r = 2/3) below the

critical points for the bands b and v. Here, the level sets of the surface are isotopic

to J(b)(v) = J(b)(b′) (the result of band surgery on both b and b′) which is the

unknot. Moreover, from Figure 21, we see that the band v∗ is attached trivially.

At this point, the diagram is symmetric. Hence, this argument can be

repeated with the disk D′ stabilized with tube u∪ u∗: we isotope u∗ into B4 as well,

until we see u∗ attached to the unknot. U ∪ v∗ and U ∪ u∗ are clearly isotopic, so

by composing the first isotopy with the inverse of the second we obtain the desired

isotopy from D ∪ (v ∪ v∗) to D′ ∪ (u ∪ u∗).

The cabled case is similar.

Proposition 6.4.1. The disks Dp and D′p become isotopic after p 1-handle

stabilizations.

Proof. Figure 22 gives a band presentation for Dp. Let b1, . . . , bp and b′1, . . . , b
′
p be

the bands of Dp and D′p. As in the case p = 1, attach tubes v1 ∪ v∗1, . . . , vp ∪ v∗p in

order to move the band bi into the position of b′i, and then slide vi into the original

position of bi (Figure 22). The result of band surgery on all the bi and vi bands

is again the unknot, and as shown in Figure 23 this unknot is naturally identified

with the (p, 1)-cable of the unknot. Moreover, at this level set, the v∗i bands are

attached trivially. So, just as before, perform the symmetric isotopy of D′p, and

90



FIGURE 22 Part 1 of an isotopy between p-fold stabilizations of Dp and D′p

concatenate to obtain an isotopy between the p-fold stabilizations of Dp and D′p.

A lower bound for the stabilization distance

We now make use of the secondary invariants of Juhász-Zemke to provide a

lower bound on the stabilization distance of the disks Dp and D′p.

The positron disks D and D′ are distinguished by their induced maps on

knot Floer homology. In [DMS22], Dai-Mallick-Stoffregen compute HFK−(J). The

summand which contains the image of this disk has the form F[U ]⟨x⟩ ⊕ F⟨e1, e2⟩.
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FIGURE 23 Part 2 of an isotopy between p-fold stabilizations of Dp and D′p

The formal variable U acts trivially on the F-summands. Using their equivariant

knot Floer homology program, they prove the following.

Theorem 13. Let D and D′ be the exotic positron disks. Then, the maps FD and

FD′ satisfy:

(FD + FD′)(1) = e1 + e2.

As a sanity check, notice that

(FD#T 2 + FD′#T 2)(1) = U(FD + FD′)(1)

= U(e1 + e2)

= 0,

since D and D′ become isotopic after a single stabilization.
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Theorem 14. Let D and D′ be a pair of disks distinguished by their induced maps

on HFK−. Let Dp and D′p denote their (p, 1)-cables. Then, the the stabilization

distance between D and D′ is at least p.

Proof. Let Ap = CFA−(S1 × D2, Cp,1) be the type-A structure associated to

the (p, 1)-cabling pattern. Ap is generated by α, β1, . . . , β2p−2. Since we are only

interested in computing maps CFA−(S1 ×D2, Cp,1)⊠ ĈFD(S3 − U) → CFA−(S1 ×

D2, Cp,1) ⊠ ĈFD(S3 − J) and the homology of CFA−(Hp) ⊠ ĈFD(S3 − U) ≃

CFK−(U) is generated by α ⊗ v, it is enough to consider the A∞-operations

involving α.

m2+i(α,
i︷ ︸︸ ︷

ρ12, . . . , ρ12, ρ1) = β2p−i−2 0 ≤ i ≤ p− 2

m4+i+j(α, ρ3,

j︷ ︸︸ ︷
ρ23, . . . , ρ23, ρ2,

i︷ ︸︸ ︷
ρ12, . . . , ρ12, ρ1) = Upj+i+1βi+1 0 ≤ i ≤ p− 2, 0 ≤ j

m3+i(α, ρ3,

j︷ ︸︸ ︷
ρ23, ..., ρ23, ρ2) = Up(j+1)α, 0 ≤ j.

For the full collection of A∞-operations, see [Pet13, Section 4]. Let F1 and

F2 be the type-D morphisms determined by FD and FD′ . An argument identical

to that of Lemma 4.3.1 shows that, since the only arrows into α are of the form

m3+i(α, ρ3,

j︷ ︸︸ ︷
ρ23, ..., ρ23, ρ2) = Up(j+1)α for 0 ≤ j we must have an element θ ∈

ĈFD(S3 − J) such that α ⊗ θ appears in ICp,1 ⊠ (F1 + F2)(α ⊗ v) which cannot

be cancelled. Moreover, Ukα ⊗ v is nontrivial in homology for k < p. Therefore, we

have that

Uk(ICp,1 ⊠ (F1 + F2)(α⊗ v)) ̸= 0,
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for k < p. Therefore,

p ≤ µ(Dp, D
′
p),

as claimed.

In particular, the (p, 1)-cables of the positron disks have stabilization distance

exactly p.
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APPENDIX

DIRECT COMPUTATIONS

In this section, we illustrate the how Theorem 13 can be used to carry out

explicit computations. Again, let FDp and FD′
p
be the (p, 1)-cables of the exotic

positron disks D and D′. It is more convenient to view these disks as concordances

Cp and C ′p from the unknot. FCp and FC′
p
will be computed in terms of FS3×I−C

and FS3×I−C′ , which as we will see, are determined by FC and FC′ (up to some

indeterminacy).

The complex CFK−(J) consists of a singleton generator x as well as four

boxes.

x

bi ai

ei ci

V

U

V

U

gi fi

ji hi

V

U

V

U

FIGURE 24 The complex CFK−(J), i ∈ {1, 2}.

Generator grU grV
x 0 0
ai 0 0
bi 1 −1
ci −1 1
ei 0 0
fi −1 −1
gi 0 −2
hi −2 0
ji −1 −1

TABLE 1 Bi-gradings of generators of CFK−(J).
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The summands generated by the two boxes generated by {fi, gi, hi, ji} contain

no elements of bigrading (0, 0), and therefore do not intersect the images of the

maps FC and FC′ . For this reason, we will work primarily with the subcomplex of

CFK−(J) generated by {x, ai, bi, ci, ei} to simplify the notation.

[LOT18] gives an algorithm for determining ĈFD(S3 − K) in terms of

CFK−(K). Figure 25 shows how a box and a singleton generator give rise to

summands of ĈFD(S3 − J).

bi ai

ei ci

V

U

V

U

x ⇝

bi y1i ai

y2i y4i x

ei y3i ci

ρ1

ρ2 ρ3

ρ1

ρ12

ρ123

ρ2 ρ3

ρ123

FIGURE 25 On the left is the summand of CFK−(J) containing FD(1) and FD′(1).

On the right is a model for the corresponding summand of ĈFD(S3 − J).

Computing the morphism complex

By Theorem 13, there exists a map F : ĈFD(S3 − J) → ĈFD(S3 − J)

with the property that for any pattern P in the solid torus, ICFA−(P ) ⊠ F computes

the concordance map induced by the pattern. In particular, if we take P to be

the longitudinal unknot in the solid torus, which we denote (T∞, λ) this map also

computes FC (respectively FC′). Since we did not show this map F is unique, we

will try to pin it down by computing the morphism space MorA(T 2)(ĈFD(S3 −

U), ĈFD(S3 − J)) and considering which maps f ∈ MorA(T 2)(ĈFD(S3 −
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U), ĈFD(S3 − J)) have the property that ICFA−(T∞,λ) ⊠ f ≃ FC (respectively

FC′).

We begin by computing the dimension of the homology of the morphism

space MorA(T 2)(ĈFD(S3 − U), ĈFD(S3 − J)).

Lemma A.1.1. The space of homotopy classes of maps from ĈFD(S3 − U) to

ĈFD(S3 − J) is 10 dimensional.

Proof. By [LOT11], there is a homotopy equivalence:

MorA(T 2)(ĈFD(S3 − U), ĈFD(S3 − J)) ≃ ĈF (−(S3 − U) ∪ (S3 − J))

= ĈF (S3
0(J)).

The mapping cone formula [OS08b] shows that HF+(S3
0(J), [0]) is the homology of

the mapping cone H∗(Cone(A+
0

v0+h0−−−→ B+
0 )). We illustrate part of the complex.

bi

ci

(UV )−1ai

(UV )−1xi

ei
xi

aiUbi

V ci

A+
0 B+

0

b̃i

c̃i

(UV )−1ãi

(UV )−1x̃i

ẽi
x̃i

ãi

V c̃i

v0 + h0

The homology of the portion of the complex shown is T +⟨xi⟩ ⊕ T +⟨x̃i⟩ ⊕

F⟨Ubi = V ci⟩, where T + = F[U,U−1]/(U · F[U ]). The homology of the summand
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which is not shown (the remaining two boxes) is F⟨Ugi = V fi⟩. From HF+(S3
0(J)),

ĤF (S3
0(J)) is obtained via the exact triangle

HF+(S3
0(J)) HF+(S3

0(J))

ĤF (S3
0(J)).

U

A straightforward computation shows that ĤF (S3
0(J)) = ker(U)⊕ coker(U) ∼=

F⊕10.

Having computed the dimension of H∗(MorA(T 2)(ĈFD(S3 − U), ĈFD(S3 −

J))), our next task is to find a basis. To simplify the exposition, we introduce some

notation. The summand of CFK−(J) generated by x gives rise to a summand of

ĈFD(S3 − J) generated by an element we will also denote x, with differential

δ1(x) = ρ12x. Call this type-D structure B. The unit boxes in CFK−(J) correspond

to boxes in ĈFD(S3 − J) as in Figure 26. Let C be such a type-D structure.

b y1 a

y2 y4

e y3 c.

ρ1

ρ2 ρ3

ρ1

ρ123

ρ2 ρ3

ρ123

FIGURE 26 The type-D structure C associated to a unit box.

If we ignore the gradings, ĈFD(S3−U) is isomorphic to B, and ĈFD(S3−J)

is isomorphic to B ⊕ C⊕4. Therefore, it suffices to find bases for the homologies of

MorA(T 2)(B,B) and MorA(T 2)(B,C).

The space of homotopy classes of maps B → B has a basis given by:

ϕ = (x 7→ x)
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ψ = (x 7→ ρ12x).

Since H∗(MorA(T 2)(B,B ⊕ C⊕4) is ten dimensional, H∗(MorA(T 2)(B,C)) must be

two dimensional. By inspection, a basis is given by:

g = (x 7→ e+ ρ3y
2 + ρ1y

3)

h = (x 7→ ρ1y
4).

This is confirmed by Zhan’s bordered Floer homology calculator [Zha].

From concordance maps to complement maps

The maps FS3×I−C and FS3×I−C′ satisfy the property that

ICFA−(T∞,λ) ⊠ FS3×I−C ≃ FC

and

ICFA−(T∞,λ) ⊠ FS3×I−C′ ≃ FC′ .

Therefore, to determine these maps, we will compute ICFA−(T∞,λ) ⊠ f for all basis

elements, f , of the morphism space.

CFA−(T∞, λ) is a right A∞-module over A(T 2), whose A∞-operations can be

computed by counting holomorphic disks in the doubly pointed bordered Heegaard

diagram shown in Figure 27.

Let α be the single intersection point in α ∩ β. The only non-trivial A∞-

operations are given by

m3+j(α, ρ3,

j︷ ︸︸ ︷
ρ23, . . . , ρ23, ρ2) = U j+1α.
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FIGURE 27 A doubly pointed bordered Heegaard diagram for the longitudinal
unknot in the solid torus, (T∞, λ).

Call this module A. Since A⊠B has a single generator, α⊗x, the maps IA⊠f

are determined by the image of this element.

Lemma A.2.1. Let ϕ, ψ, g, h be the basis for H∗(MorA(T 2)(B,B ⊕ C)) described

above. Then,

IA ⊠ ϕ = (α⊗ x 7→ α⊗ x)

IA ⊠ ψ = 0

IA ⊠ g = (α⊗ x 7→ α⊗ e)

IA ⊠ h = 0.

Proof. The differentials of C are shown again, as they are needed below.

b y1 a

y2 y4

e y3 c.

ρ1

ρ2 ρ3

ρ1

ρ123

ρ2 ρ3

ρ123

Since many of the differentials on the tensor product are trivial, many terms will be

forced to be zero. In particular, δ1(x) = ρ12x, and since there are no A∞-operations
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involving ρ12, any terms involving δ1(x) will be zero. IA ⊠ ψ is zero for this reason.

We make use of the graphical notion of [LOT18, Chapter 2].

By strict unitality, IA ⊠ φ(α⊗ x) has a single term, α⊗ x.

IA ⊠ ϕ =

α x

ϕ

m

α x

x

1

α

= (α⊗ x 7→ α⊗ x),

To compute IA ⊠ g = IA ⊠ (x 7→ e + ρ3y
2 + ρ1y

3), we first note that,

again, by strict unitality, the only term e could contribute is α ⊗ e. Secondly, any

term contributed by ρ1y
3 will be of the form mℓ(α,

i︷ ︸︸ ︷
ρ12, . . . , ρ12, ρ1, . . .) × ξ. But,

since none of the A∞-operations involve ρ1, any term of this form must be zero.

Therefore, all that remains is to check whether ρ3y
2 contributes any nonzero terms

to IA ⊠ g. A nonzero term could appear, since all the A∞-operations involve ρ3, but

δ1(y2) = 0, so no ρ2 coefficient will appear. Therefore,

IA ⊠ g =

α x

g

m

α e

e

1

α

+

α x

g

m

0 y2

y2

ρ3
+

α x

g

...

m δ1

0 ξ

y3

ρ1 = (α⊗ x 7→ α⊗ e)
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Consider IA ⊠ h = IA ⊠ (x 7→ ρ1y
4). Much like the previous case, ρ1y

4 can

contribute no nonzero terms, since ρ1 does not appear in any of the A∞-operations.

IA ⊠ h =

α v

h

m

α y4

y4

ρ1

0

= (α⊗ v 7→ 0).

This concludes this computation.

We can now turn to the maps FS3×I−C and FS3×I−C′ . Recall from that Dai-

Mallick-Stoffregen show that:

FC(v) + FC′(v) = e1 + e2,

where v is the generator for HFK−(U). A basis for H∗(MorA(T 2)(ĈFD(S3 −

U), ĈFD(S3 − J))) is given by {ϕ, ψ, gi, hi}, where gi and hi are maps from

ĈFD(S3 − U) to the ith box in ĈFD(S3 − J)) which agree with the maps g and h

above. The complex ĈFD(S3 − J) is shown in full in Figure 28.

bi y1i a

y2i y4i

ei y3i ci

ρ1

ρ2 ρ3

ρ1

ρ123

ρ2 ρ3

ρ123

gi z1i fi

z2i z4i

ji z3i hi

ρ1

ρ2 ρ3

ρ1

ρ123

ρ2 ρ3

ρ123

x ρ12

FIGURE 28 The full complex ĈFD(S3 − J).
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Let v be the single generator for ĈFD(S3 − U). By Lemma A.2.1, we can

identify which maps f : ĈFD(S3 − U) → ĈFD(S3 − J) have the property that

IA ⊠ f is homotopic to either FC or FC′ .

Again, FC(v) + FC′(v) = e1 + e2. Since the maps ψ, h1, . . . , h4 satisfy IA ⊠ ψ =

IA ⊠ hi = 0, we cannot immediately rule out the possibility that they appear as

terms in FS3×I−C(v) and FS3×I−C′(v). Therefore, we can deduce that

FS3×I−C + FS3×I−C′ = g1 + g2 + ε1ψ + ε2 ·
4∑

i=1

hi

where εi ∈ {0, 1}. Surprisingly, despite the indeterminacy of these maps, this will

be sufficient information to compute the sum of the maps associated to the cabled

disks.

In summary, we have the following:

Proposition A.2.2. Let C and C ′ be the exotic concordances from the unknot to

J . Then, the maps FS3×I−C and FS3×I−C′ satisfy:

FS3×I−C + FS3×I−C′ = g1 + g2 + ε1ψ + ε2 ·
4∑

i=1

hi

where εi ∈ {0, 1}.

Remark A.2.3. We will see that ϵ2 can be taken to be zero. Once we compute

CFA−(Hp) ⊠ ĈFD(S3 − K), we will see that the terms contributed by hi are in

the wrong grading. However, this fact has no effect on the final result, so we do not

emphasize this.
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From complement maps to cabled concordance maps

Having found our candidates for the maps FS3×I−C and FS3×I−C′ , all that

remains is to compute the tensor products of the candidates with the identity map

for the A∞-module associated to the (p, 1)-cable pattern in the solid torus.

A doubly pointed Heegaard diagram HP for the (p, 1)-cable in the solid torus

is shown in Figure 29. Let Ap = CFA−(Hp). Ap is generated by α, β1, . . . , β2p−2.

FIGURE 29 A doubly pointed bordered Heegaard diagram for the (p, 1)-cable in
the solid torus.

Since we are only interested in computing maps CFA−(Hp) ⊠ ĈFD(S3 − U) →

CFA−(Hp) ⊠ ĈFD(S3 − J) and the homology of CFA−(Hp) ⊠ ĈFD(S3 − U) ≃

CFK−(U) is generated by α ⊗ v, it is enough to consider the A∞-operations

involving α.

m2+i(α,
i︷ ︸︸ ︷

ρ12, . . . , ρ12, ρ1) = β2p−i−2 0 ≤ i ≤ p− 2

m4+i+j(α, ρ3,

j︷ ︸︸ ︷
ρ23, . . . , ρ23, ρ2,

i︷ ︸︸ ︷
ρ12, . . . , ρ12, ρ1) = Upj+i+1βi+1 0 ≤ i ≤ p− 2, 0 ≤ j

m3+i(α, ρ3,

j︷ ︸︸ ︷
ρ23, ..., ρ23, ρ2) = Up(j+1)α, 0 ≤ j.
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For the full collection of A∞-operations, see [Pet13, Section 4]. As before, we

will start by computing IAp ⊠ f for the basis elements of H∗(MorA(T 2)(B,B ⊕ C)),

and then use the fact that ĈFD(S3 − J) is isomorphic to B ⊕ C⊕4 to compute

FS3×I−Cp
and FS3×I−C′

p
.

Lemma A.3.1. Let ϕ, ψ, h, and h be the basis of H∗(MorA(T 2)(B,B ⊕ C)) as

computed in Section A.2. Then,

IAp ⊠ ϕ = (α⊗ x 7→ α⊗ x)

IAp ⊠ ψ = (α⊗ x 7→ 0)

IAp ⊠ g =

(
α⊗ x 7→ α⊗ e+

p−2∑
i=0

β2p−i−2 ⊗ y3

)

IAp ⊠ h =

(
α⊗ x 7→

p−2∑
i=0

β2p−i−2 ⊗ y4

)

Proof. We proceed as in Lemma A.2.1. This computation is slightly more involved,

as there are more A∞-operations.

First, for the map ψ = (x 7→ ϕ12x), it must be that IAp ⊠ ψ = 0. Since

δ1(x) = ρ12x, any term coming from ρ12x will be of the form mk(ρ12, . . . , ρ12), which

must be zero, as there are no A∞-operations only involving ρ12.

For the map ϕ = (x 7→ x), the map IAp ⊠ ϕ has a single term by strict

unitality:

IAp ⊠ ϕ =

α v

f

m

α v

v

1

α

= (α⊗ v 7→ α⊗ v).
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The map h = (x 7→ ρ1y
4) has many nonzero terms, since there are nontrivial

A∞-operations involving ρ12 and ρ1, namely m2+i(α,
i︷ ︸︸ ︷

ρ12, . . . , ρ12, ρ1) = β2p−i−2 for

0 ≤ i ≤ p − 2. But these are the only terms that can appear, since δ1(y4) = 0.

Therefore,

IAp ⊠ h =

α v

δ1

...

g

m

β2p−i−2 y4

v

ρ12 v

ρ12

y4

ρ1

β2p−i−2

=

(
α⊗ v 7→

p−2∑
i=0

β2p−i−2 ⊗ y4

)
.

The map g = (x 7→ e + ρ3y
2 + ρ1y

3) is the most complicated. Once again, by

strict unitality, it must be that α⊗e appears as a term in IB⊠g(α⊗x), and no other

terms will come from e. The differential of y2 is zero, so ρ2y
2 can only contribute

terms of the form m2+i(α,
i︷ ︸︸ ︷

ρ12, . . . , ρ12, ρ2) ⊗ y2, but these are all zero. Finally, the

differential of y3 is ρ2e, and the differential of e is ρ123y
2, so there could potentially

be terms of the form m2+i(α,
i︷ ︸︸ ︷

ρ12, . . . , ρ12, ρ1) ⊗ y3, m3+i(α,
i︷ ︸︸ ︷

ρ12, . . . , ρ12, ρ1, ρ2) ⊗ e

or m4+i(α,
i︷ ︸︸ ︷

ρ12, . . . , ρ12, ρ1, ρ2, ρ123) ⊗ y2, but only the first case introduces non-zero
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terms. Therefore,

IAp ⊠ g =

α v

g

m

α e

e

1

α

+

α v

δ1

...

g

m

β2p−i−2 y3

v

ρ12 v

ρ12

y3

ρ1

β2p−i−2

=

(
α⊗ v 7→ α⊗ e+

p−2∑
i=0

β2p−i−2 ⊗ y3

)
.

This concludes the computation.

In Proposition A.2.2, we found the sum of the maps FS3×I−C and FS3×I−C′ .

By Theorem 13, the maps FCp and FC′
p
induced by the (p, 1)-cables of C and C ′

can be computed as IAp ⊠ FS3×I−C and IAp ⊠ FS3×I−C′ respectively. Lemma A.3.1

can now be applied to give us the candidates for the maps FCp and FC′
p
. As before,

let {ϕ, ψ, gi, hi} be the basis for H∗(MorA(T 2)(ĈFD(S3 − U), ĈFD(S3 − J))) from

Section A.2.

Since

FS3×I−C + FS3×I−C′ = g1 + g2 + ε1ψ + ε2 ·
4∑

i=1

hi

for εi ∈ {0, 1}, from Lemma A.3.1 it follows that

(IAp ⊠ FS3×I−C + IAp ⊠ FS3×I−C′)(α⊗ v) =
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α⊗ (e1 + e2) +

(
2∑

k=1

p−2∑
i=0

β2p−i−2 ⊗ y3k + ε2 · β2p−i−2 ⊗ (y4k + z4k)

)

Summarizing our results, we have the following.

Proposition A.3.2. Let Cp and C ′p be the (p, 1)-cables of the exotic concordances

C and C ′. Let Hp be the doubly pointed bordered Heegaard diagram for the (p, 1)-

cable pattern shown in Figure 29. Then, the maps FCp and FC′
p
satisfy:

(IAp ⊠ FS3×I−C + IAp ⊠ FS3×I−C′)(α⊗ v) =

α⊗ (e1 + e2) +

(
2∑

k=1

p−2∑
i=0

β2p−i−2 ⊗ y3k + ε2 · β2p−i−2 ⊗ (y4k + z4k)

)

where ε is either 0 or 1.
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