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DISSERTATION ABSTRACT

AARON KILGALLON

Doctor of Philosophy

Department of Physics

September 2022

Title: A Search for Emerging Jets in the Dijet Invariant Mass Spectrum Using 139
fb−1 of Proton-Proton Collision Data at a Center-of-Mass Energy of 13 TeV With
the ATLAS Detector

A search for emerging jets in the dijet topology is presented here using

139 fb−1 of
√
s = 13 TeV Run 2 ATLAS proton-proton collision data. Emerging

jets constitute a class of dark jet models that have long-lived hadronization

components, resulting in unique signatures within particle detectors. These jet

signatures are the result of phenomenological considerations of self-interacting

dark matter. These models provide an explanation for the baryon-antibaryon

asymmetry as well as a well-motivated dark matter candidate particle, which make

them particularly compelling. Due to the unusual nature of these jets containing

high displaced track and displaced vertex multiplicities that vary significantly on

the dark sector parameters, machine learning techniques such as unsupervised

classification are ideal in the search for these types of models. A Classification

Without Labels method known as the CWoLa method was used to extract limits
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on heavy Beyond the Standard Model vector boson Z’ particles that produce pairs

of emerging jets in the large-R dijet topology. Limits were set on the cross-sections

of these signatures and exclude Z’ particles decaying to emerging jets from 10 fb to

2 fb between masses of 1.3 TeV and 4.0 TeV. Production of Z’ particles with masses

up to 3.1 TeV and a fixed 20 GeV width were excluded for dark sector couplings

down to 0.015. Future considerations for emerging jets analyses are shown in the

context of dedicated emerging jets triggers that were designed for use at ATLAS in

Run 3.

This dissertation contains previously published and unpublished material and

is not an official ATLAS result.
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CHAPTER I

INTRODUCTION

1.1. Analysis Motivation

Despite the successes of the Standard Model (SM) [15] of particle physics in

providing an excellent model and explanation for interactions of visible matter

over a large energy scale, a number of unknowns in physics prompt the need

for a more comprehensive model of the natural world. However, the nature and

phenomenology of dark matter, the baryon / anti-baryon asymmetry seen in the

Universe, and recent tensions in Standard Model measurements [16, 17] point to

a large scope of unexplored particles that have yet to be directly measured. A

number of searches are ongoing with the ATLAS experiment at the Large Hadron

Collider (LHC) for these undiscovered particles; the theoretical phenomenology

of their interactions range from Super-Symmetric models to those of exotic dark

sectors that have couplings to SM particles.

Indirect evidence for dark matter makes searches for dark matter particles

promising avenues of discovery for new physics, and a direct particle discovery

would provide a massive boost in understanding of the likely interconnected

problems currently observed in the Universe at a wide variety of energy scales.

The dark matter hypothesis is a potential resolution for a generic set of energy

density over-measurements in the Universe that we currently have no confirmed

explanation for. Dark matter composes more than 80% of the matter density

and more than 20% of the total observed energy density observed in the Universe

[18]. It has no observed coupling with the photon and so it cannot be observed
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directly in astronomical observations, but it does interact gravitationally and so

its existence can be inferred from large-scale observations of galaxies and galaxy

structures.

Dark matter has been traditionally considered in the context of Weakly

Interacting Massive Particles (WIMPs) that are a relic from the Big Bang era

[19], and while WIMP models are well-considered in the context of large-scale

galactic structure, observations at smaller galaxy-sized scales tend to point towards

models of self-interacting dark matter. The self-interacting aspect of these models

is due to the wide mass hierarchy and gauge structure of the proposed dark

sector where dark particles have strong couplings to each other, as compared

to the isolated and inert particles seen in other WIMP-like models. The set of

dark models that encompass these types of self-interacting dark sectors can also

naturally incorporate an explanation for the baryon / anti-baryon asymmetry in

the Universe when a portal from the dark sector to the visible matter sector is

considered and when the energy scale of dark matter is similar to that of visible

matter.

These two general ideas synergize into a unique topology of events that could

be observed in proton-proton collisions at the LHC. Known as “emerging jets,”

this topology involves the creation of either a pair of bifundamental scalars from

gluon fusion that decay into 4 fundamental particles that shower to form both

dark and visible jets, or the production of a vector boson Z’ that decays to pairs

of dark quarks that hadronize within the dark sector to form pairs of dark jets.

The small sector-to-sector coupling between the dark and visible sectors can cause

dark jets to eventually manifest as visible jets, and the small coupling to the SM,

in tandem with the similar energy scale between the two sectors, can make dark
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mesons long-lived on a wide range of lifetime scales [20]. Therefore, as the progress

of the dark shower continues from the production point, this small coupling from

the GeV (giga electronvolts) to TeV (tera electronvolts) mass hierarchy in the

dark sector creates a cascade of emerging energy from the dark particle decays,

producing a set of secondary vertices and displaced tracks. This is known as

an emerging jet, and its unexplored dijet topology will be investigated in this

analysis. Figure 1.1 is a diagram showing pairs of emerging jets in the tracking

and calorimeter regions of a particle detector.

FIGURE 1.1. A schematic of pair production of jets from a pair of dark quarks
that emerge within a detector [1].

The theory of these dark decays is well-motivated in the context of the many

large-scale issues associated with dark matter. If the similarity between the energy

density of dark matter and visible matter is not a coincidence, then the baryon

/ anti-baryon asymmetry that’s seen in both the visible and dark sectors could
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be due to the same fundamental asymmetry if there is a portal between these

sectors. This requires the dark energy scale to be on the order of the visible sector

(1 GeV - 10 GeV) if the number of dark and SM baryons produced during the Big

Bang are the same. The TeV scale of the fundamental fields in the dark sector, in

combination with this dark sector energy scale and the small SM coupling, ensures

that dark mesons in the theory have long lifetimes. The emergent SM particles

from decays of these dark meson are therefore produced at macroscopic (> 1 mm)

distances from their production point [1].

Dark jet topologies have been explored in the general dark jet searches that

have been ongoing at the LHC [21, 22], however, the unique topology produced by

the long lifetimes of the dark mesons provides an interesting search case. Rather

than relying on model-motivated jet substructure cuts or other specific event

attributes, a combination of an invariant mass dijet search with a model-agnostic

unsupervised machine learning technique allows a much more involved search for

these dark jets with emerging qualities, with less model dependence and enhanced

signal sensitivity. This thesis presents a first look at emerging jet signatures in the

dijet topology as observed by the ATLAS detector at the LHC using 139 fb−1 of

Run 2 data.
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CHAPTER II

THEORY

2.1. The Dark Matter Problem and Opportunities for Discovery

There is overwhelming evidence for the existence of an abundance of

gravitationally-interacting unseen matter in the Universe. Evidence ranging

from rotation curves of galaxies, lensing effects, and the well-fitting nature of

inflationary models containing dark matter all strongly point to an overabundance

of matter that is not directly observable astronomically. The overall structure and

effects of dark matter can be indirectly observed, but a specific particle detection

and measurement would provide the jumping-off point to understanding the realm

of dark particles that are currently unexplored. There is potential for these effects

to be due to some other models such as modified gravity [23], however the focus on

this analysis is the search for detector-observable models.

Models that explain dark matter vary significantly in their phenomenology

and origin of the measured energy densities of visible and invisible matter in the

Universe. Standard cosmological models assume the existence of dark matter

as Cold Dark Matter (CDM) with some now-frozen relic density that is residual

from earlier phases of the universe. These CDM models generally contain Weakly-

Interacting Massive Particles (WIMPs); they are stable due to properties of their

respective theories and match the frozen relic abundance.

The CDM assumption generally fits well within the standard cosmological

model called ΛCDM [24], however, recent phenomenological studies indicate that

dark matter might [25] have a self-interacting component. The overall density of
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galaxy clusters and large-scale structure appear to be consistent with the ΛCDM

model. N-body simulations of galaxy clustering [25] show good agreement between

large-scale clusters simulated with CDM dark matter candidates and dark matter

candidates that have a self-interacting component. However, discrepancies are

noted between these classes of models in the central halo (envelope) densities of

matter in galaxies, dwarf spheroid densities, and smaller-scale core substructure in

galaxies.

Known as the core-cusp problem [26], simulations of galaxy structure

formation indicate disparate core and halo densities from what is observed in

a large range of dark parameter space. N-body simulations show a relatively

over-dense core with rapidly dropping densities in the halo, however, observed

low-mass galaxy rotational curves tend to be consistent with flat dark matter

density profiles. In simulations incorporating dark matter with a self-interacting

cross-section, this discrepancy can be resolved by this theory in the range up to a

cross-section (interaction probability) per mass ratio of σ/m < 1 cm2/g. This is

comparable to the baryonic interaction cross-section - for protons interacting at

10 GeV, the proton-proton cross section is σ/m ≈ 0.023 cm2/g.

Additionally, the smaller-scale structures of galaxy clusters are significantly

different from the structures seen in simulations. The observed density of dwarf

galaxies and similar smaller-scale structures are several orders of magnitude

smaller than those predicted by CDM models [27]. This seems to occur in a

range of different star-forming regions, indicating that internal pressures such

as outgassing from star-forming regions may not provide a good explanation for

the structure-smearing effect seen in observations. In simulation with dark self-

interactions in the range of σ/m ≈ 0.1 cm2/g, both these smaller-scale structures
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and the core density profiles appear to agree with observational constraints. In

order for kinetic energy from the core star-forming region to be flatly distributed,

the average interaction rate Γ(r) ≈ ρ(r) · (σ/m) vrms(r) must not exceed the age of

the structure, and so the center-of-mass velocity of the collisions is accounted for in

these cross-section per mass ratio estimates.

The number of baryons and anti-baryons produced during the Big Bang

are expected to be equal due to symmetries of Standard Model interactions.

However, the existence of the universe as we know it implies that some unknown

mechanism produced a slight asymmetry in the annihilation of early baryon/anti-

baryon pairs, leaving the visible matter as we see it now. No complete known

dark-baryon / dark-anti-baryon annihilation is seen due to the actual existence

of dark matter, so if equal dark baryon / dark-anti-baryon amounts were produced

during the Big Bang, an additional dark asymmetry must exist. If the unknown

asymmetry that produced the matter / anti-matter misbalance can be attributed

to some physics involving a self-interacting dark sector, then an interaction at

the same energy scale in the dark sector can explain the dark-matter asymmetry

due to the bifundamental interactions in the portal between the sectors. To be

consistent with the N-body simulated small-scale structure, the cross-section per

mass ratios must satisfy σ/m ≈ 0.1 cm2/g. However, the dark baryon cross-

section must be estimated from recent limits from direct detection experiments,

and the mass depends on the dark sector model of choice. With the estimate that

the upper limit of the dark matter cross-section is on the order of 1 b (1 barn =

1×10−34 cm2) [28] and if the dark sector baryon energy scale is similar to that of

QCD (O(5 GeV)), then σ/m = 0.112 cm2/g.
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A recent set of phenomenology papers [1, 20] explore the unique model and

phenomenology of self-interacting dark matter in the context of a hidden valley

of dark particles. The gauge structure and properties of the confined dark sector

were presented by the authors, and the phenomenology of the 4-jet and 2-jet final

states were investigated for the LHC experiments. The gauge bosons associated

with this hidden valley would be produced in proton-proton collisions due to this

portal from the dark sector to the SM, and detection of these expected bosons at

the mass scale of hundreds of GeV to several TeV is possible by reconstructing

their resulting byproducts that are called “emerging jets.”

2.2. Standard Model

The Standard Model is a remarkably accurate Quantum Field Theory that

describes the nature and interactions of all known fundamental particles in the

Universe up to the TeV energy scale. Built on generations of successive sets

of experimental data and theoretical investigations, it has proven itself in its

naturalness and predictive ability over orders of magnitudes in energy scales and

cross-sections. With the sequence of particle discoveries made over the last 50

years and new theories to describe their interactions, it is a combined effort of

many physicists to build this remarkable theory. It is a union of the ElectroWeak

theory of Glashow, Weinberg, and Salam [29, 30] with the theory of the strong

interaction [31]. The ElectroWeak aspect of this theory merges the interactions

of photons and electrons in Quantum Electrodynamics (QED) with the dynamics

of the Weak force. The incorporation of Quantum Chromodynamics within this

theoretical framework brought the strong force and its color dynamics in to

explain the structure and interactions of baryons such as the proton. The Higgs
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mechanism and subsequent prediction and discovery of the Higgs boson gave the

framework an explanation for the mass of the elementary particles. Finally, the ad-

hoc incorporation of neutrino masses gave an explanation to flavor-mixing in the

neutrino sector, and many further years of work have been spent constraining the

various parameters of the SM couplings.

The forces in the Universe are mediated by Gauge bosons (photons, Z and

W bosons, and gluons). The couplings of Gauge bosons define the type and

strength of the forces that they correspond to, which are the electromagnetic,

weak, and strong forces, however, the gravitational force is not incorporated into

the SM. Matter seen in everyday life, such as protons and electrons, primarily

interact via electroweak interactions. Nuclear forces are mediated by the weak and

strong nuclear forces, and large-scale structure of the Universe is dictated by the

gravitational force. The discrepancies from the Standard Model are seen at large

scale variations such as Universe-ranging energy inconsistencies in matter densities

and subatomic scale anomalies in measured flavor interactions. The wide range of

these discrepancies point to not just a misunderstanding of one aspect or sector

of interactions, but to a fundamentally-needed reshaping of our understanding of

particle physics.

The elementary particles in the standard model are the 12 primary fermions

(spin 1/2 particles), the 5 gauge bosons (spin 1 particles), and the scalar Higgs

boson (a spin 0 scalar). The 6 fermions that are associated with the electroweak

interaction are the electron, muon, tau, electron-neutrino, muon-neutrino, and

tau-neutrino, and the 6 fermions associated with the strong force are the up,

down, charm, strange, bottom, and top quarks. Each of these has their own

corresponding anti-particle that carries the opposite quantum numbers. The
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electroweak interactions are mediated by the photon, the Z boson, and the W+/−

bosons, and a hypothetical graviton boson might mediate the gravitational force.

The discovery of the Higgs boson in 2012 effectively completed the theory, as

the Higgs mechanism provides an elegant explanation for how elementary particles

attain mass [32, 33]. The Higgs boson provides the mechanism that gives particles

their mass via interaction with the Higgs field; this is a symmetry violation called

the Higgs mechanism. A considerable validation of the model was made by the

discovery of the Higgs boson by the ATLAS and CMS collaborations at the LHC,

with validation of the predicted interactions of this boson within the Standard

Model and a measured mass of 125 GeV [34, 35].

The strong force is, appropriately, the strongest of the forces. At a distance

scale of the radius of the proton, ≈ 1 × 10−15 m, it has a strength of αs ≈ 1. The

weak nuclear force mediates nuclear decay and fusion and has a greatly reduced

strength, with an effective strength of ≈ 1 × 10−6 and an effective range of ≈ 1 ×

10−17 m. The electromagnetic force is mediated by the photon, with a strength of

αEM ≈ 1/137.

With the exception of gravity, these fields were combined into a gauge-

invariant quantum field theory that has been consistently verified across a large

set of energy scales and interaction channels. The gauge invariance manifests the

set of gauge bosons that mediate the four “distinct” forces (the Electromagnetic,

Weak, Strong, and Gravitational forces) in the Universe, and the renormalizable

quality of the Standard Model ensure that perturbative calculations can be done to

accurately predict the probabilities of these mediated interactions.

The gauge structure of the Standard Model is
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GSM = SU(3)× SU(2)× U(1), (2.1)

where SU(3) dictates the gauge structure of QCD, which is described by the set of

interactions of 3 colors mediated by 8 gluons. SU(2)× U(1) is the combined gauge

field theory describing the electroweak interactions that is spontaneously broken

by the Higgs mechanism. At a high enough energy scale, QED and the Weak

interactions combine under this structure. U(1) describes the Electromagnetic

force mediated by a single spin-1 boson with U(1) invariance, the photon.

FIGURE 2.1. The Standard Model [2] of particle physics, showing all fundamental
particles in the model.

Particles in this Quantum Field Theory are described as fluctuations in

fields, and scalars are represented as fundamental fields with the spin-0 property.

Fermions are represented by spin 1/2 fields, usually denoted by χ (x), and vector

bosons are spin-1 fields denoted as Aµ (x).
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Nature requires certain symmetries to produce gauge bosons in gauge theory.

A local invariance of the Lagrangian density (L) of the theory inherently produces

gauge fields that manifest with a certain set of interactions. These interactions are

restricted by certain conditions such as whether they carry the charge relevant for

each interaction, and relevant conservation laws must also be followed.

The Weak force involves interactions of particles containing two types of

quantum numbers, weak isospin (T) and weak hypercharge (YW ). Fermions in

the SM have either right or left-handed chirality, which indicates whether their

spins align or anti-align with the vector of their momentum. T = 0 for right-handed

particles and T = 1/2 for left-handed particles.

The relationship between EM charge, Weak hypercharge, and weak isospin

is Q = T3 + YW/2, with T3 the third component of weak isospin. Neither the Z

nor the W bosons carry Weak hypercharge, but as the W boson carries EM charge,

any interaction involving the W boson must inherently change T3, indicating a

change of flavor. As the Z boson doesn’t carry EM charge or T3, a much wider set

of interactions is possible for the Z boson, for example the allowed couplings to

particle/anti-particle pairs of the same flavor.

2.3. QCD

The SU(3) component of the Standard Model is formed by the set of

interactions that mediate the strong force via color charges. Three colors are

specified, known as red, blue, and green, and the color charge is carried by gauge

bosons called gluons. Due to a property called color confinement [36], no free

particles can contain a net color charge, so stable hadrons must contain no net

color. Baryons are an overall zero-color state with three quarks and any number
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of quark-antiquark pairs and of gluons. Gluons are the massless, neutral, and

bicolored carriers of this color; they carry one unit of color charge and one unit

of anti-color charge.

The representation of the gauge group can be reduced to a set of basis

vectors (generators) that do not commute due to the non-Abelian nature of the

group. The eight generators of the group correspond to the eight gluons seen in

nature, and the generators can be expressed mathematically as the Gell-Mann

matrices [31], Ta = 1
2
λa, a = 1, ..., 8.

The QCD Lagrangian therefore contains the set of couplings between fields of

color-interacting particles, the 6 fermions (anti-fermions) from the 3 generations of

quarks, and the gluon interactions. As the gluons carry color charge themselves,

they have their own gluon coupling, and so the radiative processes of a gluon

splitting can be difficult to compute in a showering process, especially in the non-

perturbative regime.

The QCD Lagrangian can be written as

LQCD = −1

4
Ga
µνG

a,µν +
6∑
q=1

ψ̄q (iγµDµ −mq)ψq, (2.2)

with Dµ = ∂µ + igs
λa
2
Ga
µ the covariant derivative containing the fermion and gauge

field interactions, and Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν with fabc the commutators

of the Gell-Mann matrices ifabc Tc = [Ta, Tb]. This contains up to quartic terms of

the gluon self-interacting, which is responsible for the color confinement properties

consistently observed in a variety of hadronic experiments.
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2.4. Hidden Valley Models

As motivated in Section 1.1, a natural extension to the SM gauge group

involving a copy of QCD constrained in its own dark sector can provide an

explanation for dark matter. This extension that is specified with a set number

of dark flavors Nd adds to the set of gauge fields:

GSM × SU (Nd) . (2.3)

This extension is confined in the same manner as QCD, and the lightest baryon,

the dark matter candidate, is stable due to conservation of a quantum number

called “dark baryon number.” The mesons do not carry this quantum number and

are therefore allowed to decay within the available phase space.

Naturalness arguments point to the number of dark colors (Nd) being

consistent between the SM and any hidden sector that has QCD couplings;

therefore we consider models with Nd = 3 [1]. The connection of this dark sector

to the visible sector is formed by interactions of two bosons, the complex scalar Xd

and the vector boson Zµ
d (referred to as a Z’ from here on). These bifundamental

particles carry both QCD colors and dark colors, thereby acting as a portal

between the two sectors. The number of dark flavors ndf is set to seven to be

consistent with arguments made by Schwaller et. el. - the number of dark flavors

can be different from that of QCD, but must lie in the range 2≤ndf < 4 ·Nd. This

requirement is set to ensure that the sector behaved similarly as QCD; at above

this 4 · Nd threshold, the behavior of the dark sector is no longer asymptotically

free.
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FIGURE 2.2. Graphical representation of the interface between the dark sector
and the SM [1]. The dark energy scale ΛD is roughly at the same energy scale as
that of QCD.

The phenomenology of the analysis is concerned with only the hadronic

production and dijet decays of the Z’. The Z’ is assumed to be leptophobic (not

coupling to either SM leptons or dark leptons) as flavor violations would otherwise

by seen in the Standard Model measurements, so only the hadronic couplings to

the SM and the dark sector are considered. The most simple extension to the

Standard Model Lagrangian (LSM) involving just dark quark (Qd) and Z’ hadronic

interactions can therefore be written as [1, 37],

L ⊃LSM

+ Q̄di (D −mdi)Qdi −
1

4
Gµν
d Gµν,d

+
1

2
M2Z

′µZ
′

µ + Z
′µ
(
gq q̄γµq + gdQ̄γµQ

)
.

The dark quarks are Dirac fermions and interact with the dark mediators with

strength gd, and the bifundamental Z’ boson also has a small coupling to the

SM with strength gq. G
µν
d are the dark gluon field tensors, and the couplings of
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the dark fermions to the dark gauge fields are contained within their respective

covariant derivatives. The set of terms in this Lagrangian define the field density

of kinetic energy, the mass energy from self-interactions, gauge-field coupling, and

cross interactions between the various fields in the theory. The vector boson Z’

is assumed to couple vectorially to SM and dark quarks with coupling strengths

gq and gd respectively; it is this coupling to the SM that leads to the visible final

state of the hadronization byproducts.

Similarly to the QCD sector, the dark quarks can form quasi-stable dark

mesons. In the simple dark sector structure considered for this analysis, only

dark pions, dark quarks, and dark rhos were allowed to be formed in addition

to the dark gluons. The Hidden Valley implementation in Pythia contains a set

of partner particles to the SM quarks. These particles, named Ud, Dd, Cd, Sd,

Bd, and Td, are implemented in the sector as generically-name Fd particles and

are charged under both the SM and dark colors. These decay to both sectors to

a fermion f via Fd → f qd, with the qd a heavy Hidden Valley particle in the

fundamental representation of dark color [38]. Additional quantum numbers such

as charge and SM color are carried by the SM fermion. An additional production

mechanism for qd particles is found from the interaction Z ′ → qd qd, which is

the channel considered in this analysis and is specified directly in the Pythia

configuration. The production of qd particles is possible through gluon-gluon fusion

via pairs of Fd particles, but this analysis is unlikely to be particularly sensitive to

this signal due to its topology.

The authors of the Hidden Valley module assert that the coupling strength

in the dark sector is relatively arbitrary [38]. Practically, it is difficult to separate

effects from the mass hierarchy from effects related to the dark sector coupling αd
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and to its running. While the running of the coupling as a function of the energy

scale was not implemented in the Hidden Valley initially due to this argument, it

was later added to the sector in the Pythia 8.240 release. In the implementation,

dark pseudoscalar mesons πd,0, π
±
d are produced and dark vector bosons ρd,0, ρ

±
d

also couple during the hadronization. The dark scalar mesons have higher mass

than the pions and are therefore ignored within the hadronization due to their

subdominant production [39]. The emission of a dark gluon from a dark quark

qd → qd gd is allowed, in addition to the coupling gd → gd gd, which are necessary

for the dark jet production.

The dark pion and dark rho couplings were set manually in the production.

The neutral dark pion was allowed to decay to pairs of down quarks with 100%

branching ratio, and the neutral dark rho was given a 99% coupling to dark

neutral pions. The remaining 1% was given to the coupling to a down quark pair

to emulate the emerging aspect of the decays. The charged analog particles were

given identical couplings but only to their charged dark sector analogs.

The hadronization continues in this Hidden Valley sector to first order until

the dark mesons emerge into the visible sector due to their small coupling to the

down quark. This can occur via a number of diagrams such as the Z ′ interaction

or via a Yukawa coupling with a dark scalar Xd, although only the Z’ interaction

is considered in this analysis. The same symmetry-breaking mechanism that

produces the SM baryon asymmetry is assumed to produce the DM asymmetry,

so similar mass scales O (1− 10 GeV) are assigned to the dark sector energy scale

in the model, which is how the dark pions are long-lived. The dark particles in the

model are assumed to be on the order of 5 GeV as the dark matter mass density is

known to be approximately 5× the visible matter density [18], so the mass of the
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lightest baryons in the model must be on the order of 5× the mass of the proton

if the baryon and the dark baryon abundances are approximately equal. This, in

combination with the TeV scales for the dark mediators Xd and Zd constraining

their coupling to the SM, forces the dark mesons to have long lifetimes due to their

small couplings and limited phase space available for decays due to the similar

energy scales between the QCD and dark sectors. This creates the “emerging”

aspect of the resulting jet, where the dark mesons will decay with exponentially-

decreasing probability with the mean decay distance d = γβcτ , where γ is the

standard Lorentz factor γ = 1/
√

1− β2 and β is the particle velocity relative to

the speed of light β = v/c.

Lower limits on the dark pion lifetime are set by experimental constraints;

QCD lifetimes from the decay of B-hadrons limit analysis sensitivity below several

hundred µm. Upper limits are set by Big-Bang Nucleosynthesis constraints, where

the lifetime of the produced dark particles must be less than approximately 1

second [1]. It is within the experimental bounds of this lifetime range that this

analysis aims to search within, with proper decay distances in the range 1 mm

< cτ < 100 mm.

The lifetimes of the dark pions can be computed analytically as [37],

cτ = 80 mm× 1

g2
dg

2
q

×
(

2 GeV

fπd

)2(
100 MeV

mq

)2(
2 GeV

mπd

)(
MZ′

1 TeV

)4

(2.4)

where gd and gq are the couplings of the dark quarks and SM quarks to the Z’,

fπd is a constant that is assumed to be on the same scale as the dark energy

scale, and mq, mπd , and MZ′ are the masses of the dark quark, dark pion, and

Z’, respectively. For an αs coupling of 0.1, an energy scale of 10 GeV, a quark
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mass of 5 MeV, dark quark mass of 10 GeV, and Z’ mass of 1 TeV, the cτ is

approximately 3.6 m. These macroscopic decay lengths are significantly dependent

on the couplings, the flavor of SM quark that the decay is associated with, and

the mass of the Z’. Rather than varying the couplings and flavors of interactions, a

highly simplified version of this model is considered where the dark pion lifetimes

and Z’ masses are set independently within an acceptable grid.

The dark baryon contribution to the jet is expected to be on the order

of 10% when 3 dark colors are incorporated into the dark model [1], which is

roughly the same fraction as that of QCD. These will escape the detector, but the

loss in energy is roughly on the same scale as the Jet Energy Resolution (JER).

This detector energy resolution will be discussed in further detail in Chapter

III. So while the lifetime of the dark mesons is small enough to allow the decay

byproducts to decay mostly within the detector volume, significant experimental

sensitivity due to missing energy (MET) is not lost at reasonable lifetimes.

The five dark sector models considered in this analysis span the space

of potential dark sector parameters that Schwaller, Stolarski, and Weiler [1]

considered. These benchmark models, called Models A - E (Table 2.1), and the

dark pion lifetimes were sampled 7 times over these dark sector models to produce

5× 7 = 35 total models for each Z’ truth mass. The dark sector meson mass

range is motivated by the reconstruction capabilities of the ATLAS detector.

However, the dark sector lifetimes are theory-motivated, and the Z’ mass range

is limited at the lower end (1.3 TeV) by data-acquisition threshold inefficiencies

in the detector and at the upper end (4 TeV) by the analysis method. The lower

end of the dark meson mass range (0.8 GeV) is motivated by the reconstruction

capabilities of the tracker to reconstruct decays of this sort as a clean secondary
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vertex. This is a relic of the adaptation of the existing 4-jet emerging jet analysis

to this search, where greatly enhanced QCD background jet rejection is expected

from secondary vertex counting. This lower range may need to be reconsidered for

future analyses in the context of soft-bomb-like signatures, which are signatures

containing a large multiplicity of very soft and relatively isotropically-decaying

dark particles which do not produce a traditional jet signature after they decay

into low-pT SM particles. The upper end (40 GeV) represents a unique signature

that is the limit of the emerging jets phenomelogy; this signature has most of the

jet energy contained within a single dark meson. It is expected that an analysis

such as the ongoing displaced jets ATLAS analysis will cover this region of the

dark sector parameters with greater efficacy.

Model A Model B Model C Model D Model E

Λd 10 GeV 4 GeV 20 GeV 40 GeV 1.6 GeV
mρd 20 GeV 8 GeV 40 GeV 80 GeV 3.2 GeV
mπd 5 GeV 2 GeV 10 GeV 20 GeV 0.8 GeV

TABLE 2.1. The dark models (A - E) considered by this analysis.

2.5. Parton Distribution Functions

The proton is a conglomerate sea of particles that are contained by the

strong force. Three on-shell particles are considered the standard composition

of the proton: two up quarks (q = +2
3
) and one down quark (q = -1

3
). However,

more than half of the momentum of the proton is carried by various intermittent

particles that include transient quark pairs and gluons.

The primary channel of consideration for this analysis is a leading-order s-

channel interaction ff̄ → Z ′d → QQ̄ that forms from interactions of on- and

off-shell fermion pairs within the colliding protons. Therefore, the simulations
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that produce the signal samples needed for this analysis incorporate these PDFs

into their simulations of the parton kinematics in the hard-scatter interaction.

The kinematics of the resultant Z’ are dependent on the carried parton momenta

and the recoil of the proton remnants, and the resulting probability of the given

hard-scatter (known as the matrix element) is calculated by a convolution of these

PDFs over the cross-section of the interaction. The probability of finding a parton

of a particular flavor i at an energy scale µ with a momentum fraction x of the

proton p is incorporated into the PDF, fi/p (x, µ2).

2.6. Vector Boson Interactions

BSM vector bosons are generally produced close to their truth mass (on-

shell); the probability of this depends on the flavors and energy scales of the

production partons. With the assumption that the flavor conservation in the SM

extends to the dark sector, standard processes that would produce a Z’ involve

pairs of fermions within the protons, such as uū→ Z ′ or dd̄→ Z ′.

FIGURE 2.3. Feynman diagram of Z’ production from a down/anti-down quark
pair interaction. The dark quarks (Qd) will hadronize in the dark sector and
emerge in a detector due to their small coupling to the Standard Model.
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The approximated Z’ width in these hidden valley interactions was computed

from perturbative calculations by Schwaller et. al. [37] and is

Γ
(
Z ′ → XX̄

)
≈ Nng2

dMZ′

24π
, (2.5)

for a vectorial coupling of a generic particle X. This assumes a minimal

contribution to the width from SM decays. With a Z’ mass of 1 TeV, an assumed

equality between the number of QCD and dark colors (N = 7), three flavors of

dark quarks (n = 3), and a branching ratio to each quark flavor of 1/7, this width

corresponds to approximately 10 GeV.

The model’s full SU(3) dark sector is simplified into a phenomenological

model that can reproduce a dark jet to first order. Z ′ bosons naturally have a

coupling to dark quarks and are assumed to have couplings to SM quarks. This

coupling is set to a very small number (0.001 in the nominal sample generation) -

it is this small coupling that allows the jet to emerge. The dark quarks hadronize

in the dark sector at a rate that is dependent on the αS coupling, which is also

dependent on the coupling that is set in the model.

Pythia is a well-known program in high-energy physics that is designed

to produce Monte-Carlo simulated Standard Model and signal events [40]. The

various Standard Model matrix elements can be computed by the program

to a set order, and signal matrix elements needed in the signal generation are

approximated by the computation of a set number of Feynman diagrams in

the interaction. The program simulates the incoming beam effects, the parton

kinematics via the PDFs, the hard scatter interaction via the Feynman diagrams

specified in the production, and the final-state hadronization. The beam and

parton simulation is a critical part of the program, and the matrix elements for
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a simplified Hidden Valley of dark interactions can approximate dark or emerging

jet processes.

Hadronization in both the Standard Model and the dark sector is computed

first in the perturbative regime. However, the hadronization at energy scales

closer to the dark energy scale is estimated via the Lund string model [41, 42]

for dark scalars, dark vector bosons, dark mesons, and dark gluons. Dark baryon

production is not included in the model, although this is estimated to contribute

a maximum of 10% to the jet energy. The Lund string model is a description

of the hadronization process that’s consistent with lattice simulations and is

consistently used as an accurate model of jet formation. The color gauge fields

are constrained along tubes that propagate between pairs of colored particles. The

energy density of the tubes increase as the separation increases, and at some point

the stored energy is higher than the hadronization energy scale, and the string

splits. The further cascade of color-charged particles progresses until the energy

of the interactions is close to the energy scale of the group. The running of the

coupling approaches ≈ 1 at these low energies and the non-pertubative dynamics

continue until the final-state Hidden Valley bound states have completed their

hadronization. Eventually, these quasi-stable states decay to the Standard Model

and emerge within the detector.
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FIGURE 2.4. A graphical representation of how color confinement produces jets
[3] in the non-perturbative regime of the Lund string model. A back-to-back pair
of colored quarks separate in the center-of-mass frame and radiates gluons and
pairs of quarks / anti-quarks - this process continues until around the energy scale
of QCD. The attractive forces between the pair narrow the color flux into a tube
and the stored energy increases linearly with the separation. At energies above
the QCD energy scale, this tube splits into sets of hadrons that continue their own
hadronization process until the average energy is below the energy scale of QCD.

The dynamics of these hidden valley sectors are incorporated in Pythia 8, but

a limited set of dark sector interactions are considered as a simplified model. A

dark quark Qd is given a simplified set of couplings to dark pions and dark rhos.

The dark pions are defined with the model’s cτ and are given a small coupling

to down quarks in the Standard Model. To allow the dark showers to progress

kinematically, the dark quarks are given a mass of 2× the dark pion mass. To be

consistent with the SM, the dark rhos have a mass of 4 × the dark pion mass. The

6 dark particles considered in this simplified model of dark showers are in Table

2.2.

The events were generated within this limited fragmentation model for the

grid of mass hierarchies and dark meson lifetimes. Variations on the dark sector

mass hierarchy are used as systematics on the signal MC, resulting in systematic

changes to the signal efficiencies, acceptances, and overall limits obtained.

24



Particle PDG Id Mass cτ

Z’ 4900023 1500-5000 GeV -
gv 4900021 0 -

Dark Quark (Qd) 4900101 2·md -
Dark Pion (πd) 4900111 md 1-100 mm
Dark Rho (ρd) 4900113 4·md -

Off-diagonal Dark Pion 4900211 md 1-100 mm
Off-diagonal Dark Rho 4900213 4·md -

TABLE 2.2. The dark sector particles considered in these simplified dark shower
models. Similarly to their analogous particles in the visible sector, dark gluson gv,
Z’ bosons, dark quarks Qd, and the dark rho particles decay almost immediately
after production.

The cross-section measurements for these signals are dependent on the Z ′

coupling [37] and are estimated by Pythia by convolving the cross sections with

the PDF distributions. The variation of these cross section measurements on the

dark sector model were within the statistical uncertainty of the Pythia output;

the hard-scatter cross section is expected to be independent of the hard sector

hadronization at leading order. The decay cross-section of the leptophobic Z’ then

becomes a convolution over the parton PDFs (fi(x1) and fi(x2)) and the available

phase-space for this decay [37],

σ
(
pp→ Z ′ → QdQ̄d

)
=
∑
i=u,d

∫
dx1fi (x1)

∫
dx2fi (x2)×

g2
dg

2
q

72π

(
x1x2s

(x1x2s−M2
Z′)2 + Γ2M2

Z′

)
.

(2.6)

The cross-sections from Pythia were extracted from the output event

generation using the A14 tune of the NNPDF23LO PDF set, and they are listed

at a fixed coupling of gd = 0.001 in Table 2.2.
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MZ′ [GeV ] gq σ [fb]
1500 0.001 1.714× 100 ± 7.809× 10−3

2000 0.001 3.425× 10−1 ± 1.448× 10−3

3000 0.001 3.398× 10−2 ± 1.049× 10−4

4000 0.001 7.613× 10−3 ± 1.837× 10−5

5000 0.001 2.776× 10−3 ± 5.375× 10−6

TABLE 2.3. The estimated cross sections from Pythia for each generated signal
mass.
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CHAPTER III

DETECTOR AND ACCELERATOR

The complexity in design and operation of the Large Hadron Collider (LHC)

cannot be understated. As the world’s most powerful accelerator, with four main

experiments and numerous smaller experiments in the complex, it requires the

effort of thousands of physicists and engineers to design and operate the machine

as well as to analyze the enormous amount of data that is collected.

3.1. Accelerator

The LHC is a 27 km circumference particle accelerator that spans part of the

French and Swiss border near Geneva. It is operated by CERN and is capable of

performing proton-proton and heavy ion collisions at a number of collision points

along the ring. The accelerator ring is located 100 meters underground to greatly

reduce the background from cosmic rays, as well as to eliminate radiation leakage

in populated areas. The accelerator collides its accelerants at four main points

located at four main experiments around the ring by focusing the two beams using

powerful superconducting quadrupole magnets.

The maximum center-of-mass (CoM) energy of the accelerator design is 14

TeV, and the accelerator has been approaching this design limit over the run years.

The CoM energies were
√
s = 8 TeV during Run 1 (2010 - 2012),

√
s = 13 TeV

during Run 2 (2015 - 2018), and anticipated to be
√
s = 13.6 TeV during Run 3

(2022 onward to 2025). This corresponds to a velocity of 99.996% of the speed of

light for the colliding protons, increasing the sensitivity of the machine to high-

mass exotic particles, Higgs bosons, and rare SM processes.
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To probe the high-energy regime of these potential exotic particles, as well

as to allow greater sensitivity to the recently discovered Higgs particle, protons

are a good candidate for the beam particles at the LHC. They are stable and

relatively massive, which greatly decreases the power drain of the accelerator due

to synchrotron radiation at these energy scales. The rate of synchrotron radiation

is proportional to 1/m4 for a given particle of mass m, reducing the energy costs

for the accelerator; however, this does increase the needed circumference of the

beam ring with the same magnet technology. Lepton beams require smaller

accelerator rings with less-powerful magnets, but lose substantially more energy

due to radiation. While hadron (protons, anti-protons, etc.) accelerators allow for

the probe of much higher energy scales than an electron accelerator, this comes

at the cost of very contaminated and complex energy deposits in the detector

due to elastic and inelastic pileup collisions. Pileup are the extra energy deposits

from additional uninteresting collisions at the interaction point as well as energy

deposits from beam effects. Each time a proton bunch crosses another bunch, any

number of pairs of protons can produce an inelastic scattering. The typical number

of proton pairs interacting per crossing at the LHC is between 15 and 60, as Figure

3.4 shows. This requires complex tagging algorithms to select objects associated to

the hard scatter in each event, and the energy calibrations of the detector need to

correct for these pileup energy deposits.

The proton beams are formed and clustered into bunches by the preliminary

accelerators in the complex. First, hydrogen atoms are ionized by being passed

through an electric field; this ionizes the atoms and allows the field to collect the

resultant ions. These protons are then accelerated to 50 MeV through a linear

series of magnets called LINAC2 [43]. The electromagnets in the series rapidly
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oscillate their fields in a manner where the protons are attracted to the forward

direction and repulsed from the back of the magnetic series. The protons then

travel to the next magnet in the sequence where the same oscillation occurs,

producing an incremental acceleration with each magnetic cycle.

These accelerated protons are then fed into the Proton Synchrotron Booster

which gives a preliminary boost of the protons to a CoM energy of 1.4 GeV.

They are then fed into the Proton Synchroton (PS) and then the Super Proton

Synchrotron (SPS) rings. These accelerators are recycled from older programs

and used as injection rings for the main accelerator. The final CoM energy of the

protons before injection into the main ring is
√
s = 540 GeV after an acceleration

to 25 GeV by the Proton Synchrotron.

The bunching of protons into clusters (bunches) is a critical aspect of the

accelerator design. The timing separation between sequential bunches was reduced

down to 25 nanoseconds (ns) in Run 2 from a spacing of 50 ns in Run 1. To

accomplish this, 72 sequential radio frequency cycles of the PS are driven from

the PS ring into the SPS ring by a kicker magnet system within a time of 200 ns.

The SPS then uses another kicker system with a timing of 800 ns to inject the

proton bunches into the main ring. The timing ratio of these injections mean that

72× 4 = 288 bunches are injected into the main ring, but the timing separation

requires each grouping of 72 bunches to be separated by 8 empty (200 ns /

25 ns) bunch spacings, and each group of 288 are separated by 32 empty bunch

spacings (800 ns / 25 ns). The 2800 maximum total bunches are filled out with the

exception of 100 empty bunches that are designed to synchronize with the abort

system in the event of a beam dump. This operational configuration was used until
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mid 2017, after which the bunch configuration was simplified to a sequence of 32

bunches followed by 8 empty bunches [44].

The main accelerator ring is then used to accelerate the protons up to their

final CoM energy. The ring is composed of 1232 dipole magnets spaced around the

beamline. These provide the Lorentz force to keep the protons contained inside

the beampipe as well as the acceleration needed to bring the proton energies from

450 GeV up to 6.5 TeV. This smears the beams though, so quadrupole magnets

placed before the collision points focus the beams from a width of 0.2 mm down

to 16 nm. Due to the extremely high fields required, powerful superconducting

magnets are needed, and liquid Helium-4 is used to keep them at 2 K to utilize

their superconducting capabilities to produce a maximum field of 8.3 Tesla (T).

The beams intersect at four collision points along the circumference which

correspond to the locations of the four main experiments at the LHC, ATLAS [6],

CMS [45], ALICE [46], and LHCb [47]. The accelerator complex is shown in Fig.

3.1. ATLAS and CMS are general-purpose detectors, whereas LHCb focuses on

B-physics and ALICE focuses on heavy ion physics during the dedicated heavy-ion

data-taking periods of the LHC.

The field strength needed by the magnets is derived by first considering the

effects of the Lorentz force law on protons moving through the ring,

~F = q~v × ~B, (3.1)

with charge q, velocity vector ~v, and magnetic field ~B. When the velocity is

perpendicular to the field, this simplifies to

R =
|~p|
qB
≈ Ebeam

qB
. (3.2)
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FIGURE 3.1. The CERN accelerator complex, showing the four main experiments
on the ring, the linear accelerators and booster rings, and various smaller
experiment [4].

For protons, this reduces to Ebeam[TeV] = 0.3 · B · R, when B in is units

of Tesla. For a 27 km circumference ring with radius 4.3 km at a CoM energy

of 14 TeV, this corresponds to a minimal field strength of 8.33 T needed for the

magnets.

3.2. Detector

ATLAS is a general-purpose particle detector designed for comprehensive

particle detection at near-total volume coverage. The symmetric and cylindrical

detector spans the 4π polar angle surrounding the transverse region from the
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beamline, and pseudorapidity (η = − ln tan (θ/2)) coverage for the calorimeter

extends up to |η|= 5.0.

FIGURE 3.2. The ATLAS Detector layout showing the detector’s critical
subdetectors and magnet systems. Human figures are shown on the left to
demonstrate the scale of the detector.

Figure 3.3 illustrates the coordinate systems used at ATLAS, showing the

cartesian and cylindrical coordinates used in object geometric and kinematic

labeling.

FIGURE 3.3. The ATLAS Coordinate systems.

The kinematic coordinate system at ATLAS uses the variable rapidity (y)
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y = 2 · ln E + pz
E − pz

≈ 2 · ln
(

tan

(
θ

2

))
= η, (3.3)

where y simplifies to η in the case of massless objects or when |p| >> m. η is

generally preferred to y as geometric measurements have better resolution than

kinematic measurements at ATLAS. In addition, differences in η are invariant to

boosts up or down the beampipe, so distance measures using this difference are

invariant across the detector for relatively massless objects. One such example is

the distance measure ∆R, which characterizes the 2D separation of two objects,

∆R =

√
(∆η)2 + (∆φ)2, (3.4)

where for two objects with (η0, φ0) and (η1, φ1), ∆η = η0 − η1 and ∆φ = φ0 − φ1.

The major detector components consist of the Inner Detector (ID), the

Electromagnetic Calorimeter (ECAL), the Hadronic Calorimeter (HCAL), and

the Muon Spectrometer (MS), as well as the associated magnet systems for each.

An overview of the detector layout is shown in Figure 3.2; this image also shows

the impressive scale of the detector, which weighs over 7000 tons.

A range of pileup (exteranous proton-proton collisions in a typical bunch

crossing) conditions were present during the data-taking process in Run 2. At

maximum design luminosity, approximately 1000 charged particles are expected to

be produced within the tracking volume for each event, requiring a precise tracker

in a radiation-proof inner detector.

During a bunch crossing, the vast majority of protons in a bunch will not

interact with other protons in the opposing collision bunch. The beam focusing

defines the resolution of the beamspot in the transverse direction, and the
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bunch crossing is spread over a defined range along the beamline (z) to allow for

discrimination between the primary collision in the event and the uninteresting

pileup vertices. This greatly increases the physics capabilities of the machine, as

soft inelastic interactions of the protons are not interesting relative to hard scatter

events that have the capability of producing rare Standard Model (SM) processes

and Beyond the Standard Model (BSM) signatures. The rate of these background

events in the bunch collisions, known as pileup, depend on the beam focusing and

the proton density in the bunch. After the initial injection of the 100+ billion

protons into the accelerator, the density of the bunch starts to decrease. Proton-

proton collisions reduce the number of protons available in subsequent crossings,

and protons are also knocked out by beam effects. This reduces the amount of

pileup in the events towards the end of a standard injection run, which presents

the opportunity for lower threshold triggers to run during this lower-luminosity

environment.

Cross-sections in most particle experiments are listed in unit of barns (1 b

= 1×10−28 m2) and overall integrated (time-summed) luminosity is listed in the

inverse units, so the product of the cross-section and luminosity gives a number of

expected events for that production channel over that given period of integrated

data-taking,

Lb × σpp = 1→ Lb =
1

σpp
. (3.5)

For N1 and N2 protons in each bunch of the bunch crossing, this instantaneous

luminosity becomes
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Lb =
N1N2

σpp
. (3.6)

The rate of pileup events affects the total luminosity captured by the

experiment. These N1 and N2 protons circulate around the ring many times

per second, so replacing this with an average approximation over the circulation

frequency f and average number of interactions per bunch crossing 〈µ〉 gives

Lb =
〈µ〉f
σpp

. (3.7)

For Nb bunches within the ring, the instantaneous luminosity becomes

Lint = Nb
〈µ〉f
σpp

. (3.8)

With a circular frequency of 11246 Hz, a peak µ of around 80 collisions per bunch

crossing, a proton-proton cross-section of 68 millibarns, and a 32 filled / 8 empty

bunch structure, the peak instantaneous luminosity becomes approximately Lint =

2 ×10−34 cm−2 s−1. The pileup profiles for the 4 data-taking years in Run 2 are

shown in Figure 3.4.

3.3. Inner Detector

The Inner Detector of ATLAS is composed of a series of tracking layers that

are designed to detect and compute the kinematics of charged particles coming

from the collision point. The silicon technologies in the ID utilize ionization energy

loss from the motion of charged particles through the material to measure their

curvature and interaction point (IP) position. The detector lies within an axial

magnetic field of strength 2 T produced by a thin superconducting solenoidal
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FIGURE 3.4. Average ATLAS µ profiles during data-taking years in Run 2 [5].

magnet; this field produces the curvature of the charged particles’ tracks that is

needed for momenta measurements.

The layout of the ID is shown in Figure 3.5, which shows the Pixel, SCT,

and TRT subdetectors [6]. The ID is immersed inside an axial field produced by a

5.3 m long and 2.5 m diameter solenoidal magnet. The silicon layers in the ID span

a range of |η| < 2.5 and are arranged coincentrically in the barrel region (|η| < 1.7)

and in disks surrounding the beamline up to the maximum η acceptance (1.7 <

|η| < 2.5).

3.3.1. Track and Vertex Reconstruction

The curvature of a charged particle in a magnetic field is dependent on

the particle’s charge, mass, momentum, and the strength of the field. Charged

particles in an perpendicular field follow a helical path, with the orientation of the

path dependent on the charge of the particle.
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FIGURE 3.5. The ATLAS Inner Detector showing the various tracking layers and
technologies used for charged particle identification [6].

Charged particle tracks are defined by 6 independent quantities that

represent the particles’ kinematics relative to either the relevant primary or

secondary vertex in the event, (q/p, θ, φ, d0, z0,m).

The trajectory of charged particles moving through the ID’s magnetic field

are curved by the Lorentz force law; the geometric location and curvature of

the measured hit positions within the ID are used to construct the origin and

kinematics of the charged particle producing this curved track. Analytic functional

forms are fit to the layer hits and used to measure the track parameters such as

the track’s η and φ, which is critical for the ∆R association of the track to its

corresponding jet.

The variable q/p is the ratio of the track’s charge to its momentum, both

of which are determined by the curvature of the track in the magnetic field. The

curvature direction defines the charge, and for a particle of given mass m, the
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track has a defined curvature within the measured magnetic field. θ is the polar

angle of the track’s initial vector relative to the beamline, and φ is the azimuthal

angle of the track’s initial vector. d0 and z0 are positional variables indicating the

location of the track’s perigee relative to a given vertex. d0 is the signed quantity

indicating the shortest distance between the track and the vertex in the azimuthal

plane (x-y plane). Similarily, z0 is the signed quantity indicating the perigee in the

polar plane (r-z plane). A schematic of this coordinate system is shown in Figure

3.6.

FIGURE 3.6. The track reconstruction geometry at ATLAS. Relative to a defined
vertex, geometric descriptions of the closest approach and the kinematics are
reduced to 6 variables [7]

.

For every bunch crossing, 10 - 60 pairs of protons (on average) interact and

produce a set of charged and neutral particles that can be associated back to

their interaction points. The pointing of neutral particles such as photons is very
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uncertain, so precise measurements of the tracks are relied on to locate the x, y,

and z locations of these IPs. The interaction of interest, the hard-scatter event,

is associated to a vertex by requiring at least two tracks with pT> 500 MeV that

originate from this vertex, and the vertex with the highest scalar sum of track

pT measurements associated to it is labeled the event’s Primary Vertex (PV).

PV← max
∑

tracks

pTtrack (pTtrack > 400 MeV) (3.9)

3.3.2. IBL

The Insertable B Layer (IBL) is the first set of tracking layer that charged

particles coming from the IP will interact with. This subdetector consists of a

series of silicon pixel sensors located 32.5 mm from the beamline. This layer was

added in 2016 and was designed to improve tracking sensitivity in the ID, allowing

for better primary and secondary vertexing resolution. The resolution of the pixels

in this layer is 50µm× 250µm, adding an additional 12 million readout channels

to the ID hardware.

A charged particle passing through a silicon pixel at a sufficient momentum

is likely to produce least one electron-hole pair within the material. An applied

voltage attracts the electrons towards electronics that register the electron

accumulation as an energy hit within that pixel. This amplified electron signal

that’s collected is used to define an ionization energy deposit if this energy

deposit is well-measured and sufficiently above noise fluctuations. The sensor

detects an ionization hit if the accumulated charge passes defined “time-over-

threshold” (TOT) thresholds that are calibrated to ensure consistent performance
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of the pixels over the detector. The addition of this layer increases the d0 and z0

resolution of the ID by 40% [48].

3.3.3. Pixel Detector

The next three layers comprise the Pixel detector [49], which is a high-

resolution set of tracking layers. The coverage of the pixel detector spans up to

|η|= 2.5, and its coverage is composed of a central barrel (|η|< 1.7) and an endcap

region (1.7≤ |η|< 2.5. This subdetector is composed of a series of silicon pixels

of size 40µm× 500µm arranged in three layers. The first layer starts 50.5 mm

from the beamline and the last layer extends out to 122.5 mm. The high granular

resolution of the subdetector, especially in the φ coordinate, allows precision

measurements of the curvature of the tracks that produce sufficient numbers of

hits in the ID. The 92 million channels in the Pixel detector are fed to the readout

system that stores the hit information if the event passes a trigger.

The high 3D spatial resolution of these layers are utilized in b-tagging, where

it is necessary to have precision tracks that point to the secondary vertex created

by long-lived B-hadrons in a jet.

3.3.4. SCT

The Semiconductor Tracker (SCT) is subdetector containing the next series

of tracking layers [50]. The barrel region (|η|< 1.4) is composed of 4 layers of

silicon strips arranged orthogonally to each other. This gives resolution along the

two measured coordinates - along φ for each hit radius, and similarly for each z

position. The forward regions (1.4≤ |η|< 2.5) are covered by 9 disks with a similar

orthogonal orientation of the strips.
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This subdetector has slightly worse spatial resolution than the preceding

layers due to the use of coarse strips instead of pixels, however, most tracks are

well separated at that distance from the IP. So the 200µm track resolution in this

subdetector is sufficient for proper track reconstruction and provides a similar

contribution to the track’s momentum resolution as the precision layers closer

to the IP. This subdetector adds an addition 6.3 million channels to the detector

hardware readout.

3.3.5. TRT

The Transition Radiation Tracker (TRT) is a series of straw tubes filled

with an argon and xenon gas mixture [51]. The 300,000 4 mm diameter tubes

fill a substantial volume of the inner detector. The tubes act as cathodes and a

wire running through the center of each tube acts as an anode, so the presence of

charged particles produced in that volume induces a voltage through the tube that

can be amplified and read out. Transition radiation is created by the boundaries

between the layers in the tube structure, as well as the transitions from the

gases inside and surrounding the tubes themselves. This radiation interacts with

electrons in the tube’s gas and accumulates them towards the readout electronics.

The induced voltage in the tube gives the geometric location of the hit in the

φ coordinate. They are arranged parallel to the beamline in the barrel region and

in rings surrounding the beamline in the forward regions, meaning that they only

provide r -φ geometric hit locations. However, charged particle reconstruction is

significantly enhanced by the addition of these high-radius hits, so the dramatically

worse spatial resolution in this region complements the momentum measurements

of the tracks, rather than relying on a costly set of silicon layers. The geometric
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resolution is 130µm in this region, although the large number of high-radius

hits results in a roughly equal momentum resolution between the SCT and TRT

regions.

3.4. Electromagnetic Calorimeter

The ID is intended to measure charged particles’ properties while inducing a

minimal effect on the kinematics of the particle itself. However, the calorimeter’s

purpose is to induce interactions from incoming particles to measure their energy.

An electromagnetic or hadronic interaction with the incident particle will produce

additional byproducts; these daughter particles will continue to cascade through

the calorimeter layers. As each subsequent interaction produces additional

interactions at a lower energy scale, the cascade will eventually complete its

showering. The number of interaction lengths in the calorimeter is designed to

ensure that little-to-no energy is lost out of the calorimeter. At some high energies,

a sizable portion of the energy punches through all the detector layers, but this is

accounted for by the jet calibration sequence. Other missing energy in the event

is usually associated with low electromagnetic and hadronic cross-section SM

particles - in particular the high SM background by neutrinos that pass readily

through the detector.

The Liquid Argon Calorimeter (LAr) is the first detector in the calorimeter

system [52]. It is designed to induce showering processes for electromagetically-

interacting particles via Brehmsstrahlung with the highly dense liquid argon

contained within the detector. Layers of absorbing lead allow greater absorption

of the incoming energy by inducing more electromagnetic interactions, thereby

greatly reducing the volume of cryogenically cooled liquid argon needed. LAr
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is stable and relatively radiation-proof, allowing the detector resolution to stay

constant over the lifetime of the detector.

LAr is composed of two half barrels, each with length 3.2 m, inner radius

2.8 m, and outer radius 4.0 m. It is designed with 3 main layers, with the highest

granularity in the first layer to allow photon identification. The granularity

decreases to the second layer and further on to the third layer. The final layer’s

purpose is to provide an energy measurement to correct for energy leakage due to

punch-through [11].

The LAr system resides in the region of |η|< 3.2 and is composed of a barrel

calorimeter with coverage up to |η|< 1.475 and two endcap wheels completing

the remaining coverage. The granularity of this detector is η dependent and is

the most granular in the first layers of the central region with cell dimensions

of 0.003× 0.1 in η - φ space. This granularity in the region of the ID allows for

precision electron energy measurements as the particle track can be reliably

extrapolated to the corresponding calorimeter cell hit. Less precision in the

showering shape is needed, so the granularity of the second and third layers are

0.025× 0.025 and 0.05× 0.025.

The energy resolution of calorimeter systems can be approximated by the

functional form

σE
E

=
a√
E
⊕ b

E
⊕ c. (3.10)

The variable a parameterizes the energy resolution component that is caused

by sampling errors. The b variable term parameterizes the resolution due to

electronic noise, and c is a constant term associated to the innate resolution of

the technology. In the case of the ATLAS LAr calorimeter, the noise contribution
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is insignificant and the total resolution can be parameterized by Equation 3.11,

which is the design resolution of the detector [53]

σE
E

=
10%√
E/GeV

⊕ 0.7%. (3.11)

FIGURE 3.7. Electromagnetic interaction lengths as a function of η for the
electromagnetic calorimeter system [6].

3.5. Hadronic Calorimeter

Interactions in the ECAL rely on Bremsstrahlung interactions with electron

clouds within the detector material, whereas measurements of interactions in the

HCAL rely on hadronic interactions with high-mass nuclei in the detector.

The HCAL sytem is composed of several sampling calorimeters with varying

resolution and detector technologies. The barrel region has the highest design

energy resolution and is composed of a scintillator tiles with steel absorbers in

the region |η|< 1.7. LAr calorimeters comprise the region 1.7< |η|< 3.2 and also

the forward regions 3.2< |η|< 4.9 near the beamline.

The HCAL barrel region has an inner radius of 2.28 m, an outer radius of

4.25 m, and is 5.8 m long. It is composed of three layers with interaction lengths λ0

of 1.5, 4.1 and 1.8. The material budget decreases slightly in the forward region,
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where the three layers have λ0 values of 1.5, 2.5, and 3.3. The material budget for

each of these regions is shown in Figure 3.8.

The layering of these tiles is accordion-shaped to allow relatively seamless

transition between the modules and the central and forward regions. The central

region is composed of 64 modules that contain samplers with resolution ∆η ×

∆φ= 0.1× 0.1 for the first two layers and 0.2× 0.1 for the last layer [54].

The LAr technology is incorporated in the forward regions to allow for

radiation hardening against the significant amount of pileup seen in those regions.

FIGURE 3.8. Hadronic interaction lengths as a function of η for the hadronic
calorimeter system [6].

3.6. Muon Spectrometer

The MS is a tracking system that surrounds the calorimeter systems and is

designed to precisely measure muon charges and momenta. Muons pass through

the calorimeter systems with little energy loss due to the mass dependence of

Bremsstrahlung processes. Muons can produce tracks in the ID, but their heavy

mass induces very little curvature in the tracks, making the track pT resolution
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worse in that region. The high radius of the tracking layers in the MS creates an

extension to the tracking system that is used for precision muon detection and

measurement.

The MS is formed of a series of layered tracking technologies. The tracking

measurements are done with high-precision tracking chambers that are composed

of monitored drift tubes (MDTs) and cathode strip chambers (CSCs), with the

triggering enabled by resistive plate chambers (RPCs) and thin gap chambers

(TGCs). These systems are immersed in a ≈ 2 T magnetic field that is provided

by barrel and end-cap air-core torroidal superconducting magnets.

3.7. Trigger System

With a bunch crossing rate of 40 MHz, approximately 1 billion proton-

proton collisions occur per second at peak luminosity. The full raw detector

information can be stored in 1.6 MB, so a disk-writing capability of 64 TB/s would

be required to store all the data taken at the detector. As this is not possible with

the currently available resources, a complex data acquisition system is needed to

reduce this to a manageable rate.

The ATLAS trigger system, shown in Figure 3.9, is a sequence of hardware

and software decisions used to record events usable for physics studies. The Level-

1 (L1) system is a hardware-level set of trigger decisions used to reduce the raw

trigger rate from 40 MHz to 100 kHz. These events are then sent to the High Level

Trigger (HLT) system, which further reduces the data to a manageable rate of

roughly 1 kHz. The trigger system is sensitive to a variety of objects at both L1

and HLT levels, such as muons, photons, and jets. The triggers can be prescaled,
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meaning that a fraction of events are randomly discarded to reduce the output

rate, or they can be unprescaled.

At L1, events are characterized by processors searching for energy deposits

that are selected algorithmically for certain signatures. The L1Calo system

will reconstruct calorimeter energy deposits and tag them using simple jet

reconstruction algorithms. For example, a simple jet-finding algorithm is computed

on topoclusters by considering calorimeter energy deposits in square 0.4× 0.4

regions and summing them. Other systems, such as the photon trigger, look at

isolated energy deposits within a small number of topoclusters that deposit most

of their energy in the ECAL; these are indicative of a photon signature [55]. The

regions surrounding these L1 objects are lumped into Regions of Interest (RoIs)

and are passed to the next steps of the trigger system.

These hardware decisions and RoIs are passed to the Central Trigger

Processor (CTP). This processor collects decisions and ROIs from the preceding

systems and computes general event trigger decisions based on kinematics, trigger

object separation, and multiplicities of the various L1 objects fed to it. The

decisions incorporate the subdetector timing information to ensure that decisions

from the trigger system are consistent with the collision timing. These decisions

are made within 2.5µs and objects for events that pass a trigger in the menu have

their ROIs sent to the HLT system.

At the HLT trigger system, the ROIs are fed to a series of reconstruction

algorithms that reconstruct the physics objects for each event within 300 ms.

Software-level trigger decisions on these physics objects (referred to as “online”

trigger objects) are made based on an HLT trigger menu which is run on a CPU

farm with 40k cores. Approximately 1 kHz of the events passing these HLT
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decisions are fed from the detector read-out system to permanent storage on disk.

Later reprocessing on these raw events converts them to calibrated and further

defined physics objects (referred to as “offline” reconstructed objects).

FIGURE 3.9. A flowchart representing the data flow of events through the data-
acquisition system at the ATLAS detector. [8]

3.8. Data Reconstruction

A variety of data streams exist at ATLAS with applications that range

from detector monitoring to the stream containing the critical physics data. The

“physics Main” stream is the general stream at ATLAS; this stream contains event

that are output from the Physics trigger menu that are suited for general physics

analysis. Other monitoring streams such as the monitoring stream outputs a small

fraction of events to enable monitoring of detector conditions and the software
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reconstruction. The Enhanced Bias stream is used to determine the average pileup

and detector conditions by using minimally-biased triggers to select low-energy

events that characterize an average event in the detector.

The data in the physics Main stream are stored in RAW output format in

preparation for reconstruction. Events are reconstructed by being passing through

a series of algorithms sequenced by the ATLAS central software, Athena [56]. The

detector objects such as the ID hits and the calorimeter energy deposits are sorted

from the RAW file and the physics object reconstruction begins. For Run 2 data,

tracks are reconstructed algorithmically from ID hits, and tracks that have |d0|

values greater than 10 mm are discarded. However, in the special DAOD RPVLL

stream reconstruction applied to a filtered set of data for the 4-jet emerging jets

analysis in Run 2, this range is extended out to 300 mm. In Run 3, this restriction

will be lifted at both the trigger level and at the reconstruction level, so high d0

tracks and high-radius displaced vertices will be reconstructed and available for the

analysis. However, in the dataset available for this analysis, this information is not

available and unfortunately cannot be used as a background discriminant. The use

of this track reconstruction in the trigger will be discussed further in Chapter V.

3.9. Jets

Byproducts of standard hard-scattered quarks or gluons will undergo QCD

hadronization, and the stable resultant particles will interact with the detector,

unless they are particularly long-lived. Jets tend to consist of approximately

60% hadrons, with the majority of these being charged mesons such as pions

which interact with the ID and then shower in the calorimeter. A smaller fraction

(roughly 10%) are baryons such as protons and neutrons or mesons such as KS or
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KL particles. Neutral pions will immediately decay into photons; in combination

with additional photons from Final State Radiation (FSR) during hadronization,

these constitute approximately 30% of the jet energy.

Energy deposits in the calorimeter can be clustered into jets with a variety of

algorithms that vary in their resolution, choice of physics objects in the clustering,

and clustering radius. The simplest jet algorithm will simply sum energy in a

square surrounding the jet seed. This algorithm is used at the hardware level in

the ATLAS trigger system; energy deposits in the calorimeter are formed into

topoclusters and the topoclusters surrounding a 0.4× 0.4 area from the jet seed

are summed to form the jet. A slightly more complex algorithm would sum the

energy in a cone of defined radius around the seed, however this increases the

computational difficulty.

The final jets reconstructed at the HLT and offline levels in ATLAS use

algorithms that are colinear and infrared (IR) safe. Due to the stochastic nature

of jet fragmentation, jets can vary wildly in their clustering properties. Splittings

of high-pT incident particles and emissions of soft gluons during the hadronization

can change the substructure, and colinear and IR safe algorithms are designed to

be insensitive to these random processes within jets [57].

Topocluster energy reconstruction starts from the definition of the seed

locations. Seeds are formed from cells that contain energy deposits that are greater

than 4σ from the noise baseline, where σ is the standard deviation of the expected

noise thresholds. Neighboring cells are then added to the topocluster sum if the

energy deposit within the cell exceeds 2σ, and the process continues until there are

no more cells within the topocluster region to add.
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Calorimeter-only jets (EMTopo jets) use these topocluster energy deposits

as inputs to the clustering algorithm. However, the pT precision of the tracker

motivates the use of tracks as inputs to the jet reconstruction. Tracks extrapolated

to the topoclusters can provide a more accurate measurement of the contribution

of the particles’ momenta than the topocluster measurement. In the Particle-

Flow (PFlow) algorithm, tracks associated to topocluster energy deposits are

used within the clustering. If a track from the PV is associated to one or more

topoclusters and the momentum measurement of the topoclusters is sufficiently

close to the track’s pT, the associated topocluster(s) are removed and the track’s

kinematics is used in lieu of the topocluster(s). For emerging jet signals that are

of interest here, the multiplicity of displaced tracks in the signature discourage

the use of this algorithm, as a significant fraction of the energy in a signal jet will

not be associated to a well-measured track. However, due to resource limitation

in the TDAQ system, the Run 3 emerging jets trigger will be required to use

this algorithm at the trigger level. Appendix A.1 and Chapter V contain further

discussion of the trigger and the reconstruction’s effects on the signal.

The large-R jets used in this analysis utilize the anti-Kt algorithm [10], and

are reconstructed with a radius of 1.0 in η-φ space on the EM-scale topocluster

energies (EMTopo). To reduce pileup and hadronization dependence of jet energy,

Kt-reconstructed topoclusters that form each jet are discarded from the clustering

if they contain less than 5% of the jet’s total energy. These jets are referred to as

trimmed anti-Kt R=1.0 LC jets, and they are designed to be highly resilient to the

substantial pileup contributions that can be seen in large-R jets. The effects of this

trimming relative to the standard pileup subtraction method are shown in Figure

3.10.
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FIGURE 3.10. Trigger efficiency curves showing the effect of trimming on the
large-R trigger turn on points. The effect of standard pileup subtraction methods
is shown for reference [9].

3.9.1. Anti-Kt Algorithm

The Anti-Kt algorithm belongs to a class of jet reconstruction algorithms

that include the Kt, Cambridge-Aachen, and Anti-Kt algorithms [10]. These

algorithms utilize a subjet weighting scheme to recluster subjets in a self-consistent

method. The variables considered within this algorithm are:

dij = min
(
k2p
ti , k

2p
tj

) ∆2
ij

R2
for i 6= j (3.12)

di,i = k2p
ti (3.13)

where ∆2
ij = (yi − yj)2 + (φi − φj)2 is the rapidity-φ distance between a pair

of subjets and kti is the transverse momentum of the ith subjet. The variable p is

the exponent that defines the algorithm type: p= 1 for the Kt algorithm, p= 0 for

the Cambridge-Aachen algorithm, and p=−1 for the anti-Kt algorithm.
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The algorithm first computes dij and dii for each pair of subjets and

finds the minimum over all the sets of dij and dii. If a minimum dij exists, the

corresponding ith and jth subjets are combined in energy and position and replace

the original pair of subjets and all the dii,ij variables are recomputed. If the

minimum is one of the dii, this subjet is considered a fully reconstructed jet and

is removed from the list of subjets.

The algorithm is designed to cluster the soft radiation around an energetic

energy deposit into a full jet. The highest kt subjets will cluster first and

incorporate the surrounding radiation into a roughly conical collection of energy.

This algorithm also handles situations with isolated splashes of energy in the

detector; isolated subjets with no other weighted kt within the jet radius will

be considered full jets. This is shown in Figure 3.11 where the highest pT subjet

generally resides in the center of the jet, with soft radiation within the jet radius

typically clustered close to the hardest subprocess. It handles overlaps in energy

deposits by associating overlap energy to the high-pT neighboring jet.

Standard jet algorithms that are IR safe are preferred, meaning that they are

invariant to any additional emission of radiation during the fragmentation process.

The hardest subprocess in the jet region will tend to form the seed of a jet, with

additional soft radiation in the jet radius tending to be clustered alongside the

hardest subprocesses. This makes the measured jet energy relatively invariant to

the hadronization process or model for the jet, as changes to coupling parameters

such as αs will generally change the contribution of soft radiation, which will be

absorbed by the Kt algorithms.

Typical QCD-originated jets can be readily clustered within R = 0.4 jets,

so this is the typical jet radius used at ATLAS at 13 TeV. However, many
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FIGURE 3.11. A demonstration of the Anti-Kt algorithm for a simulated event
that shows the typical clustering of energy deposits for R=1.0 jets [10].

boosted topologies produce much larger jets and the typical jet radius for the

reconstruction of a top quark is R = 1.0. As Figure 4.7 shows, emerging jet

signatures can contain large amount of soft and wide radiation, making the R = 1.0

algorithm optimal for this analysis. The same jet radius was used by the original

ATLAS CWoLa analysis [58] that is a precursor to this analysis. That previous

search was searching for heavy boosted decays producing a pair of R = 1.0 jets;

further details on this will be discussed in Chapter IV.

Truth jets are reclustered from final-state truth particles, and represent a

collection of the final states of a hadronization process. Truth jets are used in the

context of the emerging jet signal generation, and are simply formed via anti-Kt

reclustering of the Pythia final-state particles, with the final-state label determined

by the particle’s stored barcode that is produced during the generation. Standard

truth jets are clustered with a radius of R = 0.4.
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3.10. Jet Calibration

Jet calibration is an intricate process designed to shift the energy scale of the

jets in the data to be consistent with the overall energy scale of the MC and to

increase the pT resolution of the jets. The data and simulated events are known

to have quite differing responses in the detector, and so these energy scales must

be calibrated to be consistent, in addition to correcting energy measurements from

problematic regions of the detector. Jets are reconstructed with a baseline energy

scale that is defined algorithmically, potentially followed by trimming, and then

followed by a defined set of calibration steps.

The calibration steps depend on the jet algorithm and radius that are used

in the reconstruction. Energy resolution is a critical component of R = 0.4 jets, and

so effort is made to increase the energy resolution using pileup residual corrections

and sequential calibrations for high-pT jets. Mass resolution is a critical aspect of

large-R jets as large-R jets are typically used to reconstruct heavy objects such

as top quarks, W-bosons, and other boosted objects that have a crucial measured

mass component.

The first calibration step for R = 0.4 jets start at the electromagnetic scale,

so energy measurements in the topoclusters are made consistent with the energy

that would be seen in the ECAL. Jets are origin-corrected to have η values that

are consistent with the location of the PV in the event, instead of the online

definition - at the center of the detector. This improves the η resolution of the

calibrated jets as the momentum vector of the jet more closely aligns with truth

particles from the PV. A pileup correction is then applied to the jets that corrects

the jet’s response to the in- and out-of-time pileup environments from the various

data-taking conditions. The overall jet energy scale (JES) is then corrected to be
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consistent with MC events to ensure that energy measurements are meaningful for

physics analysis. The higher-order response of the detector to jets with different

track multiplicity and substructures is then corrected in the Global Sequential

Calibration (GSC) step. Then, data-driven in-situ methods are applied to correct

the varying response as a function of pT and η, in addition to correcting effects

from troublesome regions in the detector.

In the case of the large-R jets utilized in this analysis, they are set to a

baseline energy scale at the hadronic energy scale using a local weighting scheme

called LCW [11]. The previously mentioned η correction is applied and is followed

by the JES calibration step. In a very similar vein to the JES calibration, the jet

masses are also corrected in the Jet Mass Scale (JMS) calibration step [59]. Insitu

methods utilizing the balance of a large-R jet to a well-measured set of small-R

jets, a well-measured photon, or a well-reconstructed Z→ µ+µ− decay correct the

JES and JMS of the barrel region. An η-intercalibration then corrects the forward

region JES and JMS relative to the barrel region.

3.10.1. Pileup Correction

Pileup contributes a relatively isotropic distribution of energy to the detector

on average. Therefore, to reduce the expected pileup count (µ) and event Number

of Primary Vertices (NPV) dependence of the subsequent calibration steps, an

average pileup correction is derived and applied to R = 0.4 jets. The first step is an

area-based correction that removes the median contribution of in and out-of-time

pileup contributions to the jet pT that distort the true jet energy.

parea
T = ρ× A (3.14)
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The computation of the median ρ energy contribution must be sensitive

to low pT contributions from soft particles in the event. Therefore, the pileup

contribution is computed from R = 0.4 Kt reconstructed jets within the |η|< 2.5

domain. The Kt algorithm is more sensitive to soft radiation further from the jet

seed, and ρ is derived from the median energy deposit within these jet areas.

The area A is computed by ghost track association. Many ghost tracks with

infinitesimal pT are randomly added to the jet cone and are clustered along with

the topoclusters used in the clustering algorithm. The small pT values do not

affect the clustering or jet measurement itself, but the average fraction of clustered

ghosts over the total associated jet cone area becomes the jet area.

This area correction is only derived from jets within the central detector

and is insensitive to effects that are dependent on NPV. The contributions to

the jet energy from in and out-of-time pileup can be approximated by examining

differences between truth and reconstructed jet pT measurements as a function

of NPV and µ, thereby representing effects of both in and out-of-time pileup

contributions. The second step of the pileup correction corrects these contributions

using MC simulation of hard-scatter QCD events to estimate the jet exposure

to pileup. Truth and reconstructed jets are matched with a ∆R< 0.3 and the

reconstructed pT difference between the truth and reconstructed jets is measured

as a function of ηdet, the central detector η. The difference is histogrammed as a

function of µ and NPV and a functional form is fit to the difference, allowing for a

sequential removal of the pileup dependence.

The correction uses this measured functional form in the calculation across

both NPV and µ,
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α (ηdeta) =
∂pT

∂NPV
(ηdet) (3.15)

β (ηdet) =
∂pT
∂µ

(ηdet) (3.16)

The total correction from this calibration step starts from the EM-scale

reconstructed jet, subtracts the average pileup contribution over the jet, then

applies the ρ correction in sequence.

presidualT = α× (NPV − 1) + β × µ. (3.17)

The corrected jet pT then becomes

pcorrT = precoT − pareaT − presidualT = precoT − ρ× A− α× (NPV − 1)− β × µ. (3.18)

This calibration was performed on Run 2 ATLAS data and is shown in

Figure 3.12.

3.10.2. JES Correction

The stable components of MC truth jets have a well-defined response in

the simulated detector, and so the four-momenta of simulated reconstructed jets

can be corrected on average to match the true energy distributions seen in the

calorimeters. This relies on having a fairly accurate detector model to use in the

simulation, however mismodeling of the detector can be corrected for in the in-situ

methods described in the following sections.
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FIGURE 3.12. A demonstration of the pileup correction as applied to
reconstructed jets matched to truth jets with pT = 25 GeV [11] as a function of
(a) NPV and (b) 〈µ〉.

Simulated reconstructed jets are matched and corrected to their

corresponding truth jets within a radius cut of ∆R < 0.3 (∆R < 0.6 for large-

R jets). Events are classified into various bins of Etruth and ηdet. The distributions

of Ereco/Etruth are formed for each bin; the means of Gaussian fits to the cores of

these distributions indicate the average energy scale to be corrected to. The actual

response of Ereco at each Etruth and ηdet bin is derived from a numerical matrix

inversion, and the overall correction factor is the inverse of this response and is

applied to each jet [11].

The η correction is an additional correction applied to the JES after the

energy correction. A similar approach is applied as in the energy correction.

Jets are placed into a series of Etruth and ηdet bins, and an average response is

determined from the ηdet/ηtruth distributions. This is a smaller-order correction

to the energy vector of the jets, but helps increase the jet energy and reconstructed

invariant mass resolution.
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3.10.3. Jet Mass Scale Correction

The Jet Mass Scale (JMS) correction is a set of correction factors derived as

a function of η and the mass that is applied to the uncalibrated jet’s mass. They

are derived in an identical manner to the JES factors, only binned and applied

to the jet mass instead of the jet pT. MC samples are examined to determine the

ratio of the truth to the reconstructed jet mass, and the ratio becomes a response

factor that can be inverted to derive a calibration factor for the data. This method

is validated by examining the jet mass shape in tt (top/anti-top quark event) data.

The JMS mass resolution can be seen in Figure 3.13.

3.10.4. GSC Correction

The Global Sequential Calibration (GSC) corrects higher-order jet energy

from pT-dependent and parton-level effects [11]. Jets from different initiating

partons have varying responses in the detector. Jets originating from the

hadronization of a quark tend to have a lower multiplicity of tracks associated

to the jet, and these tracks tend to have higher pT distributions. Gluon initiated

jets tend to have a wider and softer set of energy deposits that do not penetrate as

far into the detector.

Since this series of sequential calibrations utilizes energy deposits in various

detector layers to account for the penetration depth of the energy deposits, it is

natural to consider the effect of high pT jets that have significant missing energy

in the context of this calibration step. High pT jets can stochastically have a

significant fraction of their true energy lost out of the detector due to punch-

through of the energy through all the calorimeter layers. This energy will be
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visible as a set of energy deposits in the muon system geometrically close to the

energy deposits of these high pT jets.

Similarly to the previous procedure, a series of calibration curves that correct

the data to the MC energy scale were derived. These corrections are functions of

the energy fractions in the first layer of the HCAL, to account for higher pT effects

from, in particular, high pT quark-initiated jets. Variables such as the number of

jet-associated tracks and the number of topoclusters are also incorporated into

the correct to account for the quark/gluon jet differences. These derived response

curves sequentially account for detector response differences to these various

hadronization and punch-through effects.

3.10.5. In-Situ Corrections

The η-intercalibration is an in-situ calibration method that is applied to jets

after the GSC stage. This method is a data-driven method to perform a higher-

order correction to the JES to account for problematic regions of the detector and

to correct the overall scale differences between the forward and central regions.

Transition regions in the detector such as shifts between regions of different

granularities or detector technologies create both symmetric and asymmetric

response differences for jet measurements. The η dependence of these response

difference will not be captured by the JES correction step, and so this higher-order

correction is applied afterwards.

Well measured dijet events have a back-to-back pair of jets that have

minimal contributions from pileup jets or out-of-cone radiation from leading jets in

the event. To leading order in QCD, these events are expected to be pT balanced

at the truth level and also at the reconstruction level, if the events are well-
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measured and calibrated properly. This is utilized in the intercalibration; a shift

in the average pT balance of these dijet events is attributed to detector-level

miscalibrations from previous calibration steps and is corrected for in probe bins

of η and pT. Events are selected from data and from MC QCD events that have

leading and subleading jets that are back-to-back in φ with a |∆φ| > 2.4 cut.

To reduce asymmetries in the dijet pair caused by third jets in the events, the

third jet is required to have no more than 40% of the average pT of the leading

and subleading jets. To reduce the effect of pileup contamination of the event-

level asymmetry, the Jet Vertex Tagger (JVT) is applied with a “Tight” threshold

to reject jets that are not from the PV in the event. This is a hybrid machine-

learning method that tags R = 0.4 jets as originating from the PV or from pileup

vertices using jet and jet-associated tracks, however, this is not derived for R = 1.0

jets. Events are then sorted into their respective calibration bins of pT and η with

event performance trigger selections which ensure that events are selected with at

least a 99%-efficient trigger.

The pT asymmetry within each of these bins is computed, where the

asymmetry of two jets is defined as

A =
pT,0 − pT,1
pT,avg

. (3.19)

These distributions are computed for every pair of bins and reflect the asymmetry

shift for every probe bin relative to every other reference bin. Gaussian fits to the

core of these asymmetry distributions determine the mean of this asymmetry

shift for that particular set of bins, and well-fitting distributions are taken as

appropriate bins to use in the calibration. In the traditional “central” method,

events in the barrel (|η| ≤ 0.8) region are considered well measured due to the
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flat response of the JES in this barrel region, and events in the forward (|η| ¿ 0.8)

barrel region are corrected relative to the central region. However, this method

is statistics-limited and a matrix method was developed midway through Run 2.

In this method, every probe bin is defined relative to every other reference bin

in the detector. An overall calibration loss function is defined via product of the

asymmetry matrix of the bins and parameterized response factors in a similar bin

matrix. The product of these matrices is minimized via matrix inversion and the

simultaneous set of response coefficient equations corresponding to the correction

factors for each bin are solved for.

The ratio of these response coefficients of the MC and the data then become

the calibration factors needed to push the data’s JES scale to that of the MC’s

for each bin. Spline fits are then applied to the calibration factors to smooth the

detector response and to allow interpolation for any jet pT and η.

An additional in-situ method using the event asymmetry of either a

Z+γ event or a Z→µµ event provides a higher-order correction to the eta-

intercalibration. Barrel-region photons are precisely calibrated, so the absolute

JES of the recoil jet can be determined, and an overall correction factor can be

derived. Similarly, a recoil jet off a dimuon pair can have its absolute energy scale

corrected for [60].

The combination of these calibration methods gives very precise Jet Energy

Resolution (JER) for jet measurements, in particular at low pT. For R = 0.4 jets,

the final jet energy resolution at 300 GeV is roughly 6% [61], and for R = 1.0 jets,

it is roughly 12% at 400 GeV [12]. Figure 3.13 shows precision of the JES and JMS

corrections for R = 1.0 jets
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FIGURE 3.13. In-situ methods such as γ+jet measurements are used to validate
the previous calibration steps [12]. The JES response is shown to be calibrated
within 2%, and the JMS response is consistent within error bounds.

FIGURE 3.14. Calculated JER for R = 1.0 jets after application of the JES and
JMS calibrations [12]. An analytic fit to the MC JER was used in the systematic
evaluation for this analysis - f(pT) =

√
a2/p2

T + b2/pT + c2 with a=5.018×10−4,
b=1.092, and c=-2.090×10−2.

3.11. Dijets

This analysis focuses on the dijet topology, where balanced pairs of jets are

expected to lie relatively back-to-back in the transverse plane. An example of one

such event is shown in Figure 3.15.
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FIGURE 3.15. A high-mass dijet data event with mjj = 3.91 TeV illustrating a
back-to-back jet pair originating from a single vertex with 5 reconstructed pileup
vertices. [13]

During trigger development, the resulting jets from simulated Hidden Valley

samples were examined for their ability to properly reconstruct Z’s that were

generated with mass 600 GeV. It was found that R = 0.4 jets that are standard

for properly reconstructing QCD jets are insufficient for containing most of the

energy of these dark jets, as Figure 4.7 shows. The total invariant mass loss away

from the truth Z’ mass was reduced from up to 40% with the R = 0.4 jets to 10%

with the R = 1.0 reconstruction. This motivated both the trigger strategy and the

analysis methodology to focus on pairs of large-R jet events.

The next chapter shows the analysis method wherein these physics objects

that were reconstructed from the detector are analyzed for the presence of signal.

A set of cuts and machine-learning taggers separate out the signal-like events and

the resulting invariant mass spectra are then analyzed statistically. The Search
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Phase and Limit-setting phases are detailed, indicating the level to which this

analysis can conclude on the presence of signal (Search Phase), and the cross-

section limits that can be placed on excluded signal (Limit-Setting Phase).
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CHAPTER IV

ANALYSIS

4.1. Dijet Bump Hunt Searches

Searches for exotic particles within the dijet and multijet spectra can be

hampered by the statistical dominance of QCD events, even after the application

of optimized cuts designed to reduce the background contamination and enhance

the signal sensitivity. However, the dominance of these background events can

be taken advantage of by providing a background-rich set of data for training

autoencoders or machine-learning classifiers, and these analyses can use aspects

of the background dominance to utilize data-driven background estimates that

rely on significant statistics in the data set. This analysis takes advantage of both

methods using a modified weak classification method - a modified Classification

Without Labels (CWoLa) method.

4.2. Data-Driven Background Estimate

Due to the predominance of these QCD events, the dijet invariant mass

spectrum fits well to a series of analytic functional forms. The smooth response

of QCD cross-sections with PDFs, with a relatively smooth jet calibration, can

make these spectra fit to a variety of power-law functions, and the global or local

applicability of these fit functions depends dramatically on the luminosity. The

relatively small width of any resonances compared to the overall acceptable fit

range of the spectrum means that these resonances will appear as a small bump in

the invariant mass (mjj) spectrum. The invariant mass in natural units is
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m2
jj = (E1 + E2)2 − |~p1 + ~p2|2 , (4.1)

but in collider experiments is usually computed as

m2
jj = 2 · p1 · p2 (1− cos θ), (4.2)

where θ is the angle between the momenta vectors. Depending on the analysis, the

masses of reconstructed objects can be small enough to be insignificant, in which

case the invariant mass becomes

m2
jj = 2 · pT1 · pT2 (cosh(η1 − η2)− cos(φ1 − φ2)) . (4.3)

The analytic functions that are fit to invariant mass spectra have varied

in their functional form, number of fit parameters, and range of applicability to

increasing luminosities. Care needs to be taken that the choice of fit function

does not under- or over-fit the data, that the range of the fit does not obscure

any signal, or that the fit itself is not significantly affected by the presence of

detectable signal.

At small enough luminosities, these analytic functions typically fit globally

across the entire range of the spectrum. However, with an increase in statistics

in the spectrum, either by an increase in luminosity or a reduction in the lower

mjj limit of the data, these fit functions can fit within a narrower range of the

spectrum due to the decreased statistical uncertainty no longer masking higher-

order effects on the JES. The Sliding Window Fit (SWiFt) method was developed

to accommodate this.
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Most power-law functions that do not globally fit to the dijet spectra will

fit appropriately within some narrower range in mjj. So in the SWiFt method,

to derive a background estimate for each mjj bin, a chosen functional form is fit

to the bin of interest and the previous and subsequent N bins. N varies on the

choice of fit function and the statistics within the spectrum itself, but is generally

chosen to be as large as possible without under-fitting the data. An evaluation

of the χ2/ndf can indicate if either under or overfitting occurred in the fit. A

visualization of this is shown in Figure 4.1. At the lower end of the spectrum, the

background fit is more uncertain as it can only fit the upper N/2 bins from the

central bin. As the window slides down the center of the spectrum, the background

fits the previous and following N/2 bins. At the high edge of the spectrum, only

the previous N/2 bins can be fit.
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FIGURE 4.1. A visual demonstration of the SWiFt fitting mechanism for a given
window width [14].

4.3. CWoLa Method

The CWoLa method is a Weak Classification Machine Learning method

that is used to reject uninteresting events from the background-dominated mjj

spectrum and to enhance the signal contribution to the spectrum. The method

relies on classification theorems regarding optimal classifiers for mixed samples

[62]. Given two samples, both of which are dominated by background-type

events, in the presence of signal, one of the mixed samples might contain different

distributions in the feature space considered. Any classifier that learns the optimal
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classification of these mixed samples is the optimal classifier for distinguishing

individual signal events from background events [58].

Figure 4.2 demonstrates the classification procedure, where neural networks

are trained to classify events from the central signal bin (labeled as ‘1’ events)

from events in the sidebands (labeled as ‘0’ events). The same window width

is then evaluated for the next signal bin, thereby sliding the window down the

spectrum.

FIGURE 4.2. Visual demonstration of the CWoLa method combined with a
SWiFt fit.

The advantages of this are apparent as a specified signal model is not

required and generic signals with enhancement in physics-motivated feature space

can be searched for. The decision on the set of features to train the classifier

remains a choice that is motivated by the physics of interest. However, the

classifier will be naturally invariant to the signal model, making this method ideal

for discovery when there is a large parameter space to search.
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This method has been used previously at ATLAS in one preparatory analysis

[58], hereafter referred to as the “original CWoLa (ATLAS) analysis”. This

analysis searched for heavy pairs of large-R jets produced by a heavy resonance.

This analysis was intended to validate the use of unsupervised learning at ATLAS,

and so the input feature space that was used just contained the leading and

subleading jet masses. In practice, as long as the response of the networks across

the input feature space is relatively invariant across mjj, the feature set can be

expanded by the physics motivation of the analysis. This method could potentially

be extended as a deep learning problem, where the entire jet image (calorimeter

image) is processed with a Convolutional Neural Network and the associated tracks

are processed with Recurrent Neural Networks (RNNs). However, a more thorough

analysis method would be required to ensure this doesn’t induce bumps in the

spectra.

4.3.1. Feature Space

The authors of the original ATLAS CWoLa analysis [58] intended for

their analysis to be a proof-of-concept of the application of this method in dijet

searches, and so the only features trained on were the leading and subleading

jet masses in the event. This analysis searched for heavy LLP decays of the type

A → B + C with an agnostic approach to the coupling mechanics or byproducts,

with the exception of the assumption of central s-channel production of heavy

jets. However, the jet masses of emerging jet signals will have similar jet mass

spectra as in QCD as the initiator quarks have O(1 - 10 GeV) masses. In addition,

the overall jet mass spectrum is very model dependent due to the wide hierarchy of

particle masses in the dark sector decays, as shown in Section 4.9. So the feature
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space was expanded by a number of variables that are motivated by the physics of

these events.

– The leading and subleading jet masses.

– The leading and subleading jet promptTrackFrac (defined in Equation 4.4).

– The number of jets in the event.

– |y∗| =
∣∣y0−y1

2

∣∣ using the leading and subleading jets.

– |∆φ| = |φ0 − φ1| is the φ separation between the leading and subleading jets.

The macroscopic lifetimes of the dark pions in the dark showers produce

a set of displaced tracks with high |d0| values. These non-prompt tracks can be

associated to their resulting jet and used as a measure of the prompt and non-

prompt components of the jet. A new jet variable called promptTrackFrac (PTF)

is therefore introduced,

promptTrackFrac =
1

pT jet

∑
i∈tracks

pTi
(
|d0| < 2.5 σd0,i (pTi)

)
. (4.4)

Here, σd0 is the resolution of the track d0 measurement, and is very dependent

on the track properties. The 2.5 multiplicative factor was determined to be

the optimal factor via signal studies on R-Hadron LLP samples; more details

on this are in Appendix A.1. The track measurement error has a series of

complex dependencies that are interrelated with the ID efficiency, the track’s

pT and other kinematics, and the PV / beamspot uncertainty. However, a

generalized parameterization of this significance is applied in this analysis to be

consistent with the events that will be selected by the Run 3 emerging jets trigger.
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However, a more complex parameterization would include higher-order terms

in the power-law series used to parameterize σd0 , or an individualized track-by-

track computation would take the beamspot (and therefore the PV) geometric

uncertainties into account. This track-based uncertainty treatment is available

at the offline level in ATLAS, but to be consistent with the trigger selection, the

analytical fit is currently preferred.

The chosen functional form of σd0 was determined via a study of Z bosons

in “Enhanced Bias” data. Enhanced bias data is a separate data stream [8] in

ATLAS that is used to characterize standard bunch-crossings and pileup effects

within the detector, in addition to its used in the calibration of low-pT objects.

The stream uses a set of minimally-biased and highly-prescaled hit triggers to

select events just above the detection threshold of the detector. These so-called

“spacepoint” triggers search for a minimal energy-producing jet in the event or

a minimal threshold of energy that’s detected in the pixel system. This stream

is ideal for these sorts of performance studies requiring low-pT reconstructed Z

bosons with a standard pileup environment.

FIGURE 4.3. A Feynman diagram of the Z boson + photon process used to
determine the associated track d0 distributions from QCD ISR jets.
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To ensure minimal contamination from pileup tracks on the σd0

measurements, recoil jets off an s-channel produced Z boson (shown in Figure

4.3) were used to derive the d0 resolution. The selected events were required to

have two opposite-sign muons with |η|< 2.4 and 70<mjj < 110 GeV. A recoil jet

with |∆φ (Z, jet) |> 2.0 was required to have at least 50% of the Z boson’s pT.

Tracks were selected within a ∆R < 0.6 region from the jet and required to have

pT > 1 GeV and |PVz − z0| < 10 mm. The d0 distributions of these tracks were

binned in track pT in bins of width 0.5 GeV, and Gaussians were fit to the central

peaks of the d0 distributions to determine the width of the d0 distributions.

A power-law function was fit to the d0 resolution histogram for tracks

with 1.0 GeV≤ pT < 8 GeV, as shown in Figure 4.4, and defines the resolution

function used in the PTF variable’s definition. The functional fit was σd0 =

0.0436 / pT [GeV] + 0.0195, with the resolution function σd0 defined in mm.

FIGURE 4.4. The d0 resolution function from Z boson recoil jet studies and its
analytical functional fit.
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The PTF variable was originally designed for use as an LLP selector, so its

sensitivity was tested on R-Hadron samples with lifetimes 0.1 ns and 10 ns, and

the optimal multiplicative factor found was 2.5. PTF was later determined to

be an ideal variable of choice for separating emerging jets signals from the QCD

background. Figure 4.5 demonstrates PTF values for a variety of signal samples

shown relative to the background-dominated data. A clear separation exists

between these distributions, allowing both simple cut-based and machine learning

methods to enhance signal sensitivity in the analysis. Further information on the

derivation of this variable can be found in Appendix A.1.

For this analysis, the PTF definition was modified slightly from the original

studies. The ∆R association was changed to a radius of 1.0 to match the radius of

the large-R jets, and the track association z0 cut was changed to |PVz− z0| < 8 mm

to be consistent with the configuration used in the Run 3 emerging jets triggers.

These triggers and their configurations are elaborated on more in Chapter V.
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FIGURE 4.5. Z’ samples with mass 1500 GeV and data leading jet PTF
distributions for a variety of lifetimes and dark models. The data are scaled by
an appropriate factor to fit the plotting scale.

The event variable |y∗| is used in a variety of dijet analyses searching for

s-channel resonances. Most bump-hunt searches consider resonances such as

BSM Z’ particles with vector or scalar s-channel resonances over the t-channel

dominated QCD background. The |y∗| distribution peaks at high values for t-

channel QCD processes and at low values for s-channel processes. The authors

of the original ATALS CWoLa paper [58] estimated that the signal fraction of

most heavy resonances in the search region were enhanced by at least a factor of

5 by this cut. This is demonstrated in Figure 4.6, where the peak of each QCD

channel’s cross section for an incoming parton is at high |y∗| values.
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FIGURE 4.6. QCD y∗ distributions for a given interacting parton at an energy
scale s. Forward scattering cross-sections tend to dominate in QCD due to its t-
channel predominance.

The inclusion of |∆φ| as an input feature was intended to account for events

with hard radiation away from the leading or subleading jets. Effects from this

third-jet radiation are likely correlated with the number of jets, but will add

additional information into the NN that is correlated with how clustered jets are

along the back-to-back axis of the Z’ decay’s byproducts.

The number of jets in the event was used as a feature as it has been shown

to be a good discriminant in model-dependent machine-learning methods used

in the ongoing ATLAS 4-jet emerging jet analysis. QCD events tend to contain

smaller numbers of jets than dark jet events; at a pT scale of 100 - 200 GeV, the

small-R jet multiplicity is generally 4 or 5. Emerging jet models tend to have

a large tail in the number-of-jets distribution as the wide decays tend to have

substantial out-of-cone radiation. However, this effect is likely to be somewhat

diminished in this analysis as R = 1.0 jets are used instead of the standard R = 0.4
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jets. This is demonstrated in Figure 4.7 where most of the decay energy tends to

be captured by R = 1.0 jets and where R = 0.4 poorly reconstruct the Z’.

FIGURE 4.7. Invariant mass distributions for R=0.4 jets (top) and R=1.0
jets (bottom) for a variety of 600 GeV Z’ samples and low-pT simulated QCD
background (labeled as JZ2). Significant model and lifetime dependence is seen;
this illustrates that at high dark meson lifetimes, the signal follows the background
distribution due to the missing energy in the events.

Events passing the previously listed cuts were sorted into an mjj histogram

with binning that is consistent with the jet resolution. Then, events in each bin

and its sliding window were trained on to classify the events in the signal bin from

events in the sidebands using the input features. A cutoff threshold was defined
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by examining the neural network output scores for events in the sideband regions,

and the top 10% or 1% quantile becomes the threshold that was extrapolated to

the signal bin. The events with scores exceeding that threshold as evaluated by

the trained neural network on the test events in that signal bin were selected and

placed in a filtered histogram, and the BumpHunter algorithm was run on the

spectra after the background fits.

4.4. Monte Carlo Events

The analysis method employed in this analysis can determine limits on

generic signals, particularly Gaussian-shaped signals with a defined width and

strength. However, knowledge of how the emerging jet signatures appear within

the detector is critical for extracting the signal efficiency of these processes and

for extracting fiducial cross-section limits. To model the effects on these signals,

emerging jet Z’ events were simulated with Pythia 8.245 using the Hidden-Valley

module. The simplified model’s structure is specified in Chapter II, and the Pythia

configuration is shown in Appendix A. The PDF set used to simulate the nominal

samples used in this analysis was the NNPDF 2.3 LO set from the NNPDF

collaboration [63].

The subsequent decay of the Z’ into pairs of dark quarks is dependent on

the properties of the dark sector, where the coupling is set by the model and the

decay is further constrained by the kinematic phase space available to the dark

quark pair. The perturbative hadronization in the dark sector is performed by

Leading Order (LO) calculations in the Hidden Valley model of the cross-sections

and kinematics in the dark color sector. The small coupling to the Standard Model

down quark creates the long-lived nature of the dark pions and defines the Z’
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cross-sections. The lifetime specifies the emerging aspect of the dark jets such as

the displaced vertices and tracks that are produced after their hadronization has

completed.

The authors of the emerging jets phenomenology paper [37] calculated

approximations to the width of the Z’ decay - Γ(MZ′) ≈ MZ′/100. This

corresponds to a width of roughly 15 - 40 GeV in the mass range considered in this

analysis. The width was set to 20 GeV in the sample generation to be consistent

with these approximations. After simulation of the generated events was complete,

including the hadronization, events were filtered to those with two anti-Kt R = 0.4

truth jets in the central detector region with (|η|< 2.4) and pT > 125 GeV. As

detector simulation and reconstruction of events is resource-intensive, this filter

was set to remove events that are not likely to be reconstructed within the

detector or readily used in the analysis. The Pythia configuration and software

tags used in the Athena sample generation process are listed in Appendix A.1.

The response of the detector to the generated particles in these events was

simulated using GEANT4 [64]. This program uses the estimated detector model

to simulate the response of each region of the detector to the generated truth

particles produced by Pythia. An alternate and less resource-intensive program,

the ATLAS Fast (AF2) simulation program was found to be insufficient for the

modeling of the signal samples as it uses parameterized jet modeling and doesn’t

take the lifetime of BSM truth particles into account during the simulation.

The samples were then run through the standard ATLAS reconstruction

software, Athena [56]. Athena digitizes the simulated detector hits, overlays

simulated pileup onto the events with the data-appropriate pileup (µ)

distributions, and then outputs a software-readable file containing all the
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reconstructable objects from the detector, including large-R jets, tracks, tagged

electrons and photons, b-tagged jets, and muons. The overlaid pileup distributions

were generated using Pythia with the A3 tune of the NNPDF 2.3 LO PDF. These

samples were then reduced by the application of a derivation filter called EXOT3.

Derivation filters reduce the file size through a removal of unneeded objects,

apply the needed trigger decisions, and apply event-level vetoes. The cuts in the

EXOT3 derivation are pT > 120 GeV, m> 30 GeV applied at the trigger level to

the leading and subleading jets in the event, and application of all available single

and multi-jet unprescaled large-R triggers. Figures 4.8 - 4.10 are virtual displays of

some of these simulated and reconstructed signal events using visualization tools

incorporated within Athena.

FIGURE 4.8. A 1500 GeV Z’, cτ = 1 mm, Model A event showing the leading
central jet in the event and tracks with pT greater than 2 GeV, showing the lack of
reconstructed tracks associated to the leading jet in the event.
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FIGURE 4.9. A 1500 GeV Z’, cτ = 5 mm lifetime, Model B event. Top left -
beampipe-transverse view of the event with pT> 50 GeV (R = 1.0) jets and
pT> 2 GeV tracks. Top right - same as the left plot but showing all tracks
associated to the PV. Bottom row, oblique projections showing calorimeter energy
deposits, jets, and all the tracks in the event.
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FIGURE 4.10. A 1500 GeV Z’, cτ = 10 mm, Model B event with pT > 50 GeV
(R = 1.0) jets. Right and bottom plots - oblique and beamline transverse plots
with pT > 2 GeV tracks associated to the PV.

4.5. Data Selection

Data were taken from Run 2 of the LHC as recorded in the “physics Main”

stream of ATLAS. Events were filtered to remove events that were not taken

during stable data-taking periods, such as those during unstable beam conditions

or during detector issues. The list of acceptable data-taking periods are listed in

Good Run Lists (GRLs), and the applied GRLs are shown in Appendix A.1.

These events lie in a range of data-taking conditions, such as during different

pileup conditions, trigger menu settings, and bunch-crossing configurations. Events

were selected that passed the lowest unprescaled single-jet hardware trigger,

known as L1 J100. The L1 trigger system performs square clustering on the

coarse topocluster calorimeter trigger-tower segments, and events not meeting the
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pT cutoff of 100 GeV (at the L1 energy scale) are discarded. These events represent

a large fraction of the total number of events triggered by ATLAS at L1.

Events were then filtered into the EXOT3 derivation format. The EXOT3

derivation is a filtered set of events and physics objects for specific analysis use,

particularly for high jet-mass events with decays to large-R jets. This derivation of

the data required “an OR combination of single large-R jet and HT triggers”, as

well as “at least two online jets with mass > 30 GeV and pT> 100 GeV, or two jets

with pT> 1 TeV.”

The leading jet masses for the MC are plotted in Figure 4.17. Data with

reconstructed large-R (R = 1.0) jets are known to be efficient above a jet mass cut

of 35 GeV due to the studies shown in Section 4.5.1. The jet mass distribution for

QCD jets is known to peak close to 0 GeV, so this cut reduces a large quantity of

background with little hit to signal efficiency.

The efficiencies of these signal samples after passing through the DAOD

step are listed in Appendix A. The table shows some reduction in signal selection

(30% - 60%), however these cuts are very efficient in removing background events;

the background-dominated data had a selection efficiency of 0.177% after these

analysis-level cuts. The fraction of events passing the sequential pT and η cuts, jet

mass cuts, |y∗| cut, and PTF cuts are 14.8%, 6.9%, 4.2%, and 0.177% respectively.

To ensure that the truth-level cuts in the generation were not significantly

affecting the efficiencies at the reconstruction level, the ntuple-level efficiencies

were determined for one signal sample (2000 GeV, cτ = 1 mm, Model A) without

the presence of any truth-level cuts. From the 1k events originally generated, 755

passed the analysis-level (DAOD+cleaning+event-level) cuts, and 738 passed the
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truth-level cuts for R = 1.0, while 694 passed based on cuts on the R = 0.4 truth

jets.

4.5.1. Trigger selection

The trigger menu changed significantly over the run-taking and varied over

the data-taking years to account for the expected pileup distributions in each

year. The primary triggers implemented for each year are listed in Table 4.1,

which represent the entirety of the unprescaled primary large-R dijet triggers that

collected data during this period of time. The backup triggers are not listed but

have insignificant luminosities and vary significantly on the pileup profile. Events

were filtered into the final selection using these triggers, and the efficiency point for

the highest-pT threshold trigger was used to derive a conservative measurement for

the mjj efficiency point for all the Run 2 data.

Year Lowest Unprescaled Online pT Offline mjj

Triggers Cut Cut
2015 HLT_j360_a10_lcw_sub_L1J100 360 GeV 1.3 TeV
2016 HLT_j420_a10_lcw_L1J100 420 GeV 1.3 TeV
2017 HLT_j460_a10_lcw_subjes_L1J100 460 GeV 1.3 TeV

HLT_j480_a10_lcw_subjes_L1J100 480 GeV 1.3 TeV
HLT_j460_a10t_lcw_jes_L1J100 460 GeV 1.3 TeV
HLT_j480_a10t_lcw_jes_L1J100 480 GeV 1.3 TeV

2018 HLT_j480_a10t_lcw_jes_L1J100 480 GeV 1.3 TeV

TABLE 4.1. The lowest pT unprescaled primary large-R jet triggers operating
during Run 2 data-taking periods.

Due to differences between reconstruction at the trigger level and offline

calibrated scale, the mass and pT cuts that are placed online are not fully efficient

offline at their specified online thresholds. Therefore, to apply an appropriate

set of cuts to ensure that the data is efficiently selected from the output stream,
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trigger efficiency plots were created. The efficiency of events selected by the probe

trigger relative to a lower-threshold reference trigger were plotted as a function

of the variable of interest, after appropriate cuts and calibration steps have been

applied.

Events are generally required to be at least 99% efficient in mjj in order

to appropriately apply a background fit, although this threshold is luminosity

dependent as higher luminosities increase the analysis’ sensitivity to these trigger

effects. Since the derivation specifies an online mass cut, the efficiency of the probe

triggers used through the data-taking years was plotted, and the mass cut was

chosen at the point where the trigger is 99% efficient.

An example of this method is shown in Figure 4.11 for the variable pT, from

which the mjj efficiency point is estimated. A conservative estimate is to assume

that the mjj turn on point is twice the pT turn on point, although in practice it

can be slightly lower than this. To ensure that the selected jet mass cut (35 GeV)

is trigger efficient, trigger efficiency plots were created as a function of the jet

mass. Events were required, at the offline level, to have jet cuts of pT > 500 GeV,

|η|< 2.0, and m> 35 GeV, in addition to the event-level cut |y∗|< 0.6.
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FIGURE 4.11. Offline pT trigger efficiency plot for HLT j460 a10 lcw subjes L1J100
triggered events relative to HLT j390 a10t lcw jes L1J100 events for 2018 Period
K data. Events are fully efficient down to the mjj = 1300 GeV cut with the
conservative assumption of the mjj turn on point equaling 2× the pT turn on
point. This trigger is the highest pT threshold trigger for the unprescaled primary
triggers, so the mjj efficiency point here is applicable to the other primary triggers
in the dataset selection.

FIGURE 4.12. Leading offline jet mass trigger efficiency plot for
HLT j460 a10t lcw jes L1J100 triggered event relative to HLT j260 L1J75 events
for 2018 Period K data. Triggered events are shown here to be fully efficient down
to the 35 GeV offline mass cut.
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Selection Search Region Cut Validation Region Cut

Trigger Unprescaled R = 1.0 Jet Triggers -
Offline Jet pT0 > 500 GeV -
Offline Jet pT1 > 200 GeV -

Online Jet pT0 , pT1 > 125 GeV -
Offline Jet |η0|, |η1| < 2.0 -

Offline m0, m1 > 35 GeV and < 300 GeV -
Online m0, m1 > 30 GeV -

|y ∗ | < 0.6 -
PTF0,PTF1 < 0.3 ≥ 0.3 and < 0.5

mjj > 1300 GeV -

TABLE 4.2. Search and Validation region cuts applied to the data. The Validation
region cuts are identical unless specified otherwise.

Due to trial-and-error experimentation during training, it was found that

the NNs tended to learn to prioritize information about the highest jet-mass

events, and were not necessarily selected due to their low PTF values. To reduce

the effect of these spuriously-selected high-mass events, a tighter set of PTF and

jet-mass cuts were applied; the jet masses were constrained to 35≤m< 300 GeV

and the PTF cuts were reduced to PTF< 0.3. This greatly improved the training

stability and signal selection of the networks, and the PTF cut greatly reduced

the overall training time due to the reduced number of events. This did come at

the expense of statistics available in the tail-end of the spectra, where the method

had issues extrapolating from the quantile NN score cuts in the sidebands to the

signal region. This pushed the upper mass bound of the limits down to 4088 GeV

and 3629 GeV for the spectra with the 10% and 1% neural network score cuts,

respectively.
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4.6. Bump Hunt Analyses

The general analysis procedure is: events matching the analysis cuts were

filtered into datasets to form the spectra and training sets after the calibration

sequence is applied. For each mjj bin, events in the neighboring 4 bins on each

side were used for the sideband training. The spectrum was filtered into separate

spectra for events that pass each quantile cut over the sliding windows. The

SWiFt method was then applied to the NN filtered mjj spectra for background

estimation using fits with a window width of 13 bins. The set of functions used

to fit to the spectrum are the three parameter dijet function and the UA1 fit

function, with the dijet function taking the form

f

(
x =

mjj√
s

)
= p0 x

p1 (1− x)−p2−p3 ln(x)−p4 ln(x)2 . (4.5)

The three parameter function is Equation 4.5 with p3 = p4 = 0. In dijet (R = 0.4

jet) searches, the window width that is used for the fit is generally 11 - 25× the jet

mjj resolution, but it is adjusted to ensure that the function does not overfit or is

under-constrained given the degrees of freedom available to the fit. The binning

was chosen to be consistent with other dijet searches at ATLAS [14], where the

binning also matches the mjj resolution. The evolution of the binning starts at

around 30 GeV in width for the first bins at around 1 TeV and increases to over

100 GeV at the 5 TeV scale, and is listed in Appendix A.1. The UA1 function is

shown in Section 4.13 and was used as a fit systematic in the Search and Limit-

Setting procedures.

A resonance within the data will appear as a bump in the mjj spectrum

that must be evaluated in a statistical manner. The BumpHunter algorithm
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paper [65] elaborates on this algorithm that was developed to evaluate spectra

for localized resonances. A large number of pseudoexperiments are formed to

test the background hypothesis against the data. In each pseudoexperiment,

the background estimate is Poisson-fluctuated, the starting fit parameters are

varied, the fit function is varied, and a local test statistic is evaluated for each

possible signal interval along the spectrum. The interval widths are allowed to

vary from 2 to 5 maximum bins and define the range of potential bumps that

can be statistically evaluated by the algorithm. The local p-value is evaluated

in each interval by computing the Poisson probability of the data given that

pseudoexperiment’s fluctuated background estimate. A global test-statistic (t) is

then computed by taking the minimum of the local p-values: t=− log (pmin,intervals)

over all the evaluated intervals. The overall distribution of these test statistics

is formed and also evaluated on the data, and the fraction of pseudoexperiments

lying below the data’s global test-statistic value is the overall spectrum’s global

p-value.

The interpretation of the global p-value is that any similar cut-based method

used to rule out the null hypothesis would be incorrect at the p-value’s level. For

example, a p-value of 0.7 indicates that any attempt to refute the null hypothesis

with an alternate model, using the same test statistic, would be incorrect 70% of

the time. Therefore, the 0.01 cut that was placed on the p-value for the discovery

threshold in this analysis is a 99% indicator of the likelihood that an alternate

model (possibly a signal plus background model) exists that is more consistent

with the data.
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4.7. Neural Networks

In similar fashion to the behavior of neurons within biological systems,

artificial neural networks (NNs) are a series of layered and weighted nodal

decisions that are trained to match a desired output. While vastly less complex

than biological systems such as the brain, artificial neural networks are seeing

rapidly increasing use in many modern applications, and their complexity

and use are widely varying in application. They are used to solve a variety of

problems - common examples include reading handwritten digits and image

classification. Traditionally in particle physics, NNs are applied to separate events

by their background-like or signal-like qualities to provide a relatively accurate

classification. Other applications in particle physics include the use of Recurrent

Neural Networks (RNNs) to tag jets as b-quark initiated jets, the use of NNs in jet

calibration, and the use of NNs to classify complex event types that have difficult-

to-distinguish final-state topologies.

Preprocessed data are fed through the series of layers within a NN, with

normalization and weighting applied to the computed information that’s fed

forward to each layer. The final layer’s outputs are a set of numbers for each

output layer; these can give classification probabilities if the model act as a multi-

feature classifier. The action of this normalization, the individual and group

weighting of nodes in the layer, the learning algorithm, and the structure of the

network affects the overall accuracy and response of the network to its inputs. The

output of these neural networks in the case of a binary classification problem is

generally a set of numbers in the range from 0 to 1, with “1” indicating events

with the most signal-like qualities, and the network can then define a probability

of a particular output belonging to a particular class.
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The features that are fed into a NN are generally preprocessed in advance

for accuracy and numerical stability of the model. Normalization of the input

data features and expected outputs in the general range of [−1, 1] is preferred to

increase stability of the trained NN to both outlier events and overtraining. In

this analysis, event features were normalized by the subtraction and division of the

feature distributions’ approximate means. Further details on this normalization

are in Appendix A.1. This approximately centered the distributions at the central

values and normalized the features to their minima and maxima.

To allow for comparable results between this analysis and the original

CWoLa analysis [58], a similar NN structure was chosen, 7× 64× 32× 8× 2. The

input feature space was increased to 7 input variables from the 2 (jet masses) that

were previously used, but the same number and dimension of hidden layers was

chosen, with 64 nodes in the first hidden layer, 32 nodes in the second hidden

layer, and 8 nodes in the last hidden layer. A dropout layer between the first

and second hidden layers in the network was set with a dropout fraction of 10%.

If a network becomes too reliant on the information provided by a small subset

of nodes, it can learn a model that’s applicable only to the training data and

can be not transferable to the test or other similar data. This is referred to as

overtraining. By applying a dropout layer, a fraction of the nodes are dropped

randomly from the model during the training and the learned model is more

generalizable to additional data such as the validation data. A diagram of the

network is shown in Figure 4.13. The output has two classification nodes, and the

activation function is a softmax function to approximate the probability of each

output being from either output class. The softmax function is a generalization
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of the logistic function that allows the output values to represent approximated

normalized probabilities of each output class. Analytically, it can be expressed as,

s(zi) = ezi/
K∑
j=1

ezj (4.6)

for each nodal output zi.

FIGURE 4.13. A visualization of the network architecture used for this analysis.
Note that the dropout layer is not shown.

Networks were implemented in the Tensorflow framework [66] using the

Keras backend [67]. Optimizer parameters were chosen to be consistent with the

previous CWoLa analysis; the learning rate for the networks was 1 × 10−3 and the

networks were trained for a maximum of 1000 epochs on a GPU. To help prevent

overtraining, a scheduler reduced the learning rate by 0.25% for each epoch after

the first 100. 20% of the input events were randomly selected as the validation set,

and output plots of the AUC and the the validation loss were used to check for
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over- and under-training. The loss function defines the overall inaccuracy of the

network, and the learning algorithm attempts to minimize the overall loss function

on the training data. The weighted Binary Cross-Entropy loss function [68] was

used; it is a well-used loss function for binary classification problems. The analytic

form of this loss function (with no event or class weighting) is

L( ~y ) = − 1

N

N∑
i=1

yi · log (p(yi)) + (1− yi) · log (1− p(yi)) , (4.7)

with the true class label yi (for binary separation problems, this is 0 or 1) and

p(yi) is the evaluated probability of that label given the model, all for N evaluated

events. As the training problem is highly imbalanced, with up to a factor of

10× more sideband events than signal region events, class weighting was used to

prevent the trained models from getting stuck in a local minimum, such as the

situation where a false positive classification of all events as sideband events is the

most optimal model configuration. The class weighting applied to this loss function

effectively changes the representation of the number of events in each classification.

For example, the class weighting of the signal region events ws, with population Ns

is

ws =
1∑

iwi(yi = 1)

∑Ns

i wi
2

, (4.8)

for event i′s weight wi. With this weighting scheme, the value of the loss function

becomes meaningful; for a properly reweighted set of signal and sidebands with

identical distributions, if the relevant NN is unable to differentiate the mixed

samples, then the loss should approach ln (2) = 0.693.

The AdaM (Adaptive Moment) optimizer [69] was used to minimize this

loss function due to its prevalent use in similar binary classification problems,
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including the original CWoLa analysis. This algorithm uses a momentum term

in the adaptation of the model parameters to help prevent the loss function from

getting stuck in a local minimum. The network parameters are adjusted for each

step of the algorithm proportionally to the first derivative of the loss function

and inversely proportional to the second derivative, and the momentum has been

shown to ensure quick and effective minimization of loss functions [70] across a

variety of machine learning applications. Additional AdaM optimizer settings that

are set are β1 = 0.8, β2 = 0.99, ε= 1 × 10−8 , and r= 0.0025, which correspond to

the exponential constant of the first and second moment calculations, a divisor for

numerical stability, and the learning rate decay constant, respectively. The batch

size was set to 1% of the total training events to be consistent with the original

analysis. In addition to the class weighting, individual sample weights were applied

to each event that were trained on. When signal events are injected into various

sidebands, they have a weight that depends on their estimated cross-section, the

number of events in the signal sample, and the overall strength of the injection -

this appropriately weights the events to their expected cross-sections. The event

weighting we for signal events is therefore

we = σfid · S / N, (4.9)

for N generated events with a fiducial cross section of σfid at a signal strength of S.

When the weighting of a particular event was well over unity, training instability

was found to be problematic, as highly weighted events in smaller training batches

have large effects on the computed loss function’s gradients. So, in the case that

a signal event’s weight was above 2, the weightings were replaced with 1’s and
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the signal events were over-sampled many times to match the expected signal

contribution for that particular weighting.

Outputs from the NN can have spurious values if the hyperparameters of the

network allow the node weightings to change dramatically, or when the inputs have

spurious values away from the normalized ranges from the training set. To reduce

sensitivity to this effect and ensure that information fed into the next layer is

appropriately normalized, each layer’s outputs can be passed through an activation

layer. Activation layers map output distributions to values generally between -1

and 1 by use of an analytical function. The choice of activation functions depends

on the use case of the NN; some examples are the tanh function, the sigmoid

function, and the rectified linear function.

The sigmoid function is the first layer’s activation function; this allows the

networks to be less sensitive to outlier features that might be overprominent in the

training after the width-normalized preprocessing. The suppression of the outliers

is due to the exponential powers in the sigmoid function. The three hidden layers

in the network have the leaky rectified linear (ReLU) function applied in sequence.

The use of these ReLU functions is a way to introduce non-linear effects into NNs

and their use is standard for many binary classification problems in the data

science field. ReLU is effectively a filter on information that suppresses negative

layer information at each layer in the network; this information leads to a zeroed

output and a negligible effect on the model’s training gradients. The discontinuity

and wider range of feature space that can be omitted from the NN’s learning

greatly improve the accuracy and resistance to overtraining, and introduces non-

linearities into the model [71]. The leaky ReLU function allows for negative layer
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information to still exert an influence on the NN’s training, albeit with a user-set

reduced scale (α = 0.3) for negative contributions. The function is defined as,

ReLUL(x) = {x for x >= 0; α · x for x < 0}. (4.10)

To account for situations where the network’s initialization state was a

local minimum that the solver could not adapt to, five independent networks

were trained for each signal bin. The samples were randomly shuffled before the

sample’s training and test set split. The network with the minimum loss function

was chosen as the network implemented within the analysis for each particular bin.

Since the highly-imbalanced nature of the datasets prevent the accuracy

metric from being particularly useful, the Area Under the Curve is considered. It

is the area under the true positive and true negative score ROC curve, and should

reach 1.0 for perfect classification. Some examples of the training loss and AUC

values from particular sidebands are shown in Figure 4.14.
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FIGURE 4.14. Sideband 8’s (upper row) and 14’s (lower row) evolution of
the AUC (left) and loss function (right) over the training epochs. A small
amount overfitting is demonstrated by these networks, however generalized
hyperparameters that prevented overfitting for every bin were difficult to find.

4.8. CWoLa Method Validation

The efficacy of the CWoLa method in selecting signals of interest was

determined via signal injection studies. The CWoLa method can act in two general

capacities for enhancing the signal sensitivity - as an autoencoder and as a mixed

classifier. Signal events are not guaranteed to be evaluated as “signal-like” by the

trained networks, however their NN scores are not necessarily consistent with

the “background-like” score distributions in each sideband. Therefore, the NNs

can act as autoencoders as the more variate signal scores are more likely to lie in

the upper 10% / 1% quantile of signal region scores. Of course, the signal events
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can be enhanced by the central intent of the CWoLa method - to enhance the

signal-like component of events in the signal regions as compared to events in

the sidebands. The performance of the CWoLa method as an autoencoder can be

tested by examining the signal efficiency of selection of injected signal for NNs that

were trained without the presence of injected signal. The CWoLa performance as

a signal classifier can be tested by examining the selection efficiency for NNs that

were trained with signal injected at a variety of cross-section strengths.

One unfortunate quirk of the CWoLa method is that if few signal events

appear in the signal region and if many appear in the sideband regions, the

network learns to anti-tag signal events. This results in an all-or-nothing type

enhancement of signal in this method; the signal sensitivity is sharply pointed

towards the peak of the signal distribution and tends to select fewer signal events

closer to the tails of the signal distributions. This greatly reduces the overall signal

width, which is shown in Table 4.5.

The original CWoLa analysis used a different bin configuration for the

construction of their signal regions and sidebands. Wide (1 - 2x signal width)

regions were selected for the signal region, which often corresponded to regions

of 5 - 10 bins. The same-sized neighboring regions were selected as the sidebands.

To determine the effects of the single-bin choice for the signal region in this

analysis, the signal region was varied by increasing numbers of bins in the plus

and minus directions. The signal efficiency for each signal region selection was

evaluated for an injected signal with the signal region width varying from 1 to 7

total bins. A dependency of the overall signal efficiency was found on the number

of bins, but this test case illustrates that the peak signal sensitivity is greatest

when 1 bin is selected as the signal region. This is likely due to the fact that this
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signal region definition contains the highest proportional fraction of signal, and

the classifiers learn to distinguish these mixed samples more readily. This effect is

illustrated in Figure 4.15.

FIGURE 4.15. Effects from varying the signal region width used in training. The
injected signal was a 2000 GeV Z’ with cτ=1 mm and Model A. The signal peak
at around bin 15 is enhanced the most by the 1 bin signal region. The spuriously-
selected events in the high mass bins away from the peak are likely selected due to
the autoencoder effect of this method.

4.9. Signal Evaluation

The 175 signal points that were generated for this analysis and in

preparation for future Run 3 analyses are composed of exotic Z’ particles produced

with masses 1500, 2000, 3000, 4000, and 5000 GeV. Models A - E were used in the

generation and the dark pion lifetimes were generated with cτ in the set of (1, 2, 5,

10, 25, 50, and 100 mm). These signal samples were reconstructed with an overlay

of simulated pileup samples pulled from a probability distribution that mimics the

pileup distributions for each of 2015+2016, 2017, and 2018 (referred to as mc16a,
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mc16d, and mc16e campaigns). The identical EXOT3 derivation filter was applied

to both these samples and to the data.

FIGURE 4.16. Invariant mass distributions of the signal samples sorted into 5
different lifetime sets. Models A-E are shown at each defined lifetime. The overall
number of signal events are defined by the signal cross section which is a function
of the Z’ quark coupling gq, which is set to 0.001 for these signal samples. The
data are scaled to fit the plot’s scale.
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FIGURE 4.17. Leading jet mass distributions for 5 different signal lifetimes.
Models A-E are shown at each defined lifetime for production during Run 2. The
data distributions are scaled to show on the same plot.
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FIGURE 4.18. Leading PTF distributions for 6 different signal lifetimes. Models
A-E are shown at each defined lifetime, and the data are scaled to fit the plot.

The training revealed that the neural networks tend to discriminate the

signal regions from the sidebands primarily from the jet mass information. The

signal efficiencies tended to peak at regions of high leading and subleading jet

mass, and the networks did not readily learn to use the PTF variable appropriately

with just the derivation and the analysis cuts, such as the |y∗| cut. The NN
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selection efficiencies also tended to peak in regions of high PTF, indicating that

spurious events with unusually high PTF values tended to bias the NN learning.

To reduce both of these effects, a PTF< 0.3 cut and the jet mass cuts were

placed on the leading and subleading jets in the events. The signal sample PTF

distributions tend to reach a maximum at 0.3, as shown in Figure 4.18. Therefore,

a tighter PTF cut was not applied in order to prevent dependence of the limits on

the sample lifetime, in addition to ensuring that there were reasonable statistics

available to fit the mjj spectra in the higher mass bins.

4.9.1. Signal Injection Studies

To test the learning capabilities of the trained networks, signal events were

injected into the data spectrum at varying strengths and the efficiencies of the

neural networks selections were evaluated. The overall cross-sections of the signal

spectra are quark-coupling dependent, but to avoid regenerating the signal samples

at each strength, the spectra were weighted by their respective strengths before

injection. The samples were generated at a quark coupling of 0.001, but events

were injected with strengths in the range (1x, 10x, 100x, 1000x). The efficiencies

listed in Table 4.3 reflect the signal efficiencies without factoring in the effects of

the derivation and analysis cut inefficiencies from the reconstruction and analysis.
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Inj. Mass Inj. cτ Inj. Model Strength Selection with 10% NN Cut

2000 GeV 1 mm A 0x 9.1 %
2000 GeV 1 mm A 20x 15.1 %
2000 GeV 1 mm A 200x 36.8 %
2000 GeV 1 mm A 2000x 42.1 %
2000 GeV 1 mm A 20000x 47.6 %

3000 GeV 10 mm B 0x 23.9 %
3000 GeV 10 mm B 20x 22.8 %
3000 GeV 10 mm B 200x 26.3 %
3000 GeV 10 mm B 2000x 37.1 %
3000 GeV 10 mm B 20000x 39.1 %

TABLE 4.3. Global signal selection efficiencies for a range of signal injection
strengths.

The 3 TeV signal samples starts at a selection efficiency of 23.9% when

no signal is injected, indicating that there is a correlation between the events

naturally in the data that are selected by the NNs and the injected signal. The

NNs’ predominance in selecting events with high jet masses is likely the cause of

this autoencoder-like effect. The 2 TeV signal starts at an approximately random

selection (10%) and increases to 47.6 % at the highest injected signal strength,

which is likely the fraction of the peak that is not rejected due to the anti-tagging

effect. If there is no enhancement in signal efficiency due to the response of the

NNs, the signal significance, S/
√
B, is expected to decrease by 10/

√
10 = 3.2 if

signal is randomly selected. Therefore, at the point where a signal efficiency more

than 32% at a NN score of 10%, the baseline signal efficiency is improved relative

to a random selection. Similarly, at the NN cut of 1%, 100/
√

100 = 10, indicating

that the signal significance is boosted once a signal efficiency of 10% is achieved.

The injections were performed on search spectrum data at varying strengths,

and the global signal selection efficiencies are listed in Figures 4.34 and 4.33.

The NN selection efficiencies and resulting signal sensitivities for 1500 GeV (cτ
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= 1 mm) injected samples for individual bins are shown in Figures 4.23 - 4.31.

They illustrate the significant model dependencies in the NN performances. The

anti-tagging quality of the CWoLa method is also demonstrated, where both the

significance and efficiencies of the NN selection are worse than random selection in

the tails far from the location of the signal peaks.

The background fits get skewed by the presence of localized signal above a

certain injection threshold, and the discovery potential is limited by the maximum

injected signal that can be statistically detected. This is demonstrated in Figures

4.19 and 4.20, although these plots illustrate injections done with approximately

29 fb−1 of data and a limited set of trigger decisions considered. The discovery

threshold lied between an injection strength of 2000x and 20000x at a 10% NN

score cut and between 10x and 100x at a 1% NN score cut.

In addition, the anti-tagging effect of these NNs resulted in an overall

reduction in the signal widths. This manifested in the analysis as a reduction in

the Gaussian widths for the determined limits. They resulted in a reduction of

the signal width from 12 - 18% to 5 - 10%, as can be seen in Tables 4.4 and 4.5 and

Figures 4.23 - 4.32. In these figures, the dashed lines indicate the “break-even”

point - the point where the signal sensitivity is enhanced relative to a random

selection.
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FIGURE 4.19. Signal injections (2000 GeV Z’, cτ = 1 mm, Model A) done at 2000x
and 20000x strength relative to the cross-sections defined from gd = 0.001. The
BumpHunter p-values for these injections were 0.77 and 0.0 for these spectra after
application of the 10% NN score cut.

FIGURE 4.20. Signal injections (2000 GeV Z’, cτ = 1 mm, Model A) done at
10x and 100x strength relative to the cross-sections defined from gd = 0.001 after
application of the 1% NN score cut.
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FIGURE 4.21. Selection efficiencies as a function of leading and subleading jet
mass and leading jet promptTrackFrac distributions for data and an injected
1500 GeV Z’ signal. The trained neural networks tended to learn information
about high jet mass events and preferred to use these mass variables as a
discriminant.

Z ′m Model Width Z ′m Model Width

1500 A 18% 3000 A 13%
B 18% B 13%
C 18% C 13%
D 17% D 14%
E 15% E 12%

2000 A 19% 4000 A 11%
B 18% B 10%
C 18% C 11%
D 19% D 10%
E 13% E 10%

TABLE 4.4. Unfiltered signal widths from Gaussian fits to cτ = 1 mm samples.
Models B and E have mass hierarchies closest to QCD and therefore generally have
smaller widths.
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Z ′m Model Width Z ′m Model Width

1500 A 5.6% 2000 A 6.9%
B 7.8% B 6.9%
C 5.6% C 7.8%
D n/a D 8.0%
E 7.0% E 5.6%

TABLE 4.5. Signal widths from Gaussian fits to cτ = 1 mm samples after
application of the trained NNs.

FIGURE 4.22. Selected signal events and Gaussian fits from a 2000 GeV Z’
injected with signal strength 50 after application of a 10% NN score cut.
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FIGURE 4.23. Signal injections (1500 GeV Z’, Model A) done at 50x (2σ
fluctuations in peak bin), 100x, and 200x strength relative to the cross-sections
defined from gd = 0.001. The top and bottom plots correspond to cτ=1 mm and
cτ=2 mm samples respectively.

FIGURE 4.24. NN Signal efficiencies and Signal Significances for 1% NN score cut
criteria on (1500 GeV Z’, Model A, cτ = 2 mm). Large enhancements in the signal
sensitivity are seen relative to the 10% NN score cuts.
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FIGURE 4.25. Signal injections (1500 GeV Z’, Model B) done at 50x (2σ
fluctuations in peak bin), 100x, and 200x strength relative to the cross sections
defined from gd = 0.001. The top and bottom plots correspond to cτ = 1 mm and
cτ = 2 mm samples respectively.

FIGURE 4.26. NN Signal efficiencies and Signal Significances for 1% NN score cut
criteria on (1500 GeV Z’, Model B, cτ = 2 mm). Large enhancements in the signal
sensitivity are seen relative to the 10% NN score cuts.
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FIGURE 4.27. Signal injections (1500 GeV Z’, Model C) done at 50x (2σ
fluctuations in peak bin), 100x, and 200x strength relative to the cross sections
defined from gd = 0.001. The top and bottom plots correspond to cτ = 1 mm and
cτ = 2 mm samples respectively.

FIGURE 4.28. NN Signal efficiencies and Signal Significances for 1% NN score cut
criteria on (1500 GeV Z’, Model C, cτ = 2 mm). Large enhancements in the signal
sensitivity are seen relative to the 10% NN score cuts.
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FIGURE 4.29. Signal injections (1500 GeV Z’, Model D) done at 50x
(corresponding to 2σ fluctuations in peak bin), 100x, and 200x strength relative
to the cross sections defined from gd = 0.001. The top and bottom plots correspond
to cτ = 1 mm and cτ = 2 mm samples respectively.

FIGURE 4.30. NN Signal efficiencies and Signal Significances for 1% NN score cut
criteria on (1500 GeV Z’, Model D, cτ = 2 mm). Large enhancements in the signal
sensitivity are seen relative to the 10% NN score cuts.
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FIGURE 4.31. Signal injections (1500 GeV Z’, Model E) done at 50x (2σ
fluctuations in peak bin), 100x, and 200x strength relative to the cross sections
defined by gd = 0.001. The top and bottom plots correspond to cτ = 1 mm and
cτ = 2 mm samples respectively.

FIGURE 4.32. NN Signal efficiencies and Signal Significances for 1% NN score cut
criteria on (1500 GeV Z’, Model E, cτ = 2 mm). Large enhancements in the signal
sensitivity are seen relative to the 10% NN score cuts.
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FIGURE 4.33. Global signal selection efficiencies for 3000 GeV (cτ = 1 mm)
samples by NNs in overall spectrum as a function of injected signal strength
(efficiencies after 10% NN score quantile cut.) The overall signal efficiency is not
necessarily the target metric of interest in bump hunt searches, but do indicate the
general trend of the NN performance.

FIGURE 4.34. Global signal selection efficiencies after a 1% NN score quantile
cut for 1500 GeV (cτ = 1 mm) samples by NNs in overall spectra as a function of
injected signal strength.

4.10. Signal Search Phase

The goal of the Search Phase of this analysis was to determine the

probability that the observed data was consistent with statistical fluctuations from

the smoothed background model. So given a smooth and analytic function that
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is fit to a given window, variations from the background estimate at the probe

(central) bin are expected to be due to statistical fluctuations from a Poissonian

distribution in the presence of no signal.

The BumpHunter program [65] is a toolkit designed to search for these

bumps in a given spectrum. The program handles two important aspects of a dijet

analysis that are difficult to account for, combined up or down fluctuations and the

“look elsewhere” effect. Poissonian fluctuations over the interpolated background

estimate are expected, however these fluctuations must be correlated under the

assumption of the presence of a signal, which will fluctuate the spectrum upwards

within the signal width. For example, six bin-sequential upward fluctuations in the

spectrum are far more signal-like than the same-sized fluctuations alternating in

sign. Therefore, any probability computation must use the sign of the fluctuation

as a measure of the signal-likeness. BumpHunter accounts for this by combining

bins within a combination width in sets of pseudoexperiments; this accounts for

correlations in these fluctuations.

In addition, in any statistical measure involving a large number of counting

experiments (i.e. a bump-hunt search with a large number of bins), a certain

fraction of the pseudoexperiments (bins) will fluctuate at a statistically significant

amount. For example, in a counting experiment where the threshold for discovery

is a 5% probable deviation from the background estimate, a discovery will be

made, on average, in 1 out of 20 bins. BumpHunter accounts for this “look

elsewhere” effect by performing an additional number of pseudoexperiments on

the spectrum itself. It estimates the fraction of times that a given statistical

fluctuation would produce a discovery at any other bin location in the spectrum

and utilizes this fraction in the p-value calculation. Pairs of bins are alternated for
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each psuedoexperiment; this accounts for situations where a random fluctuation

might align in one local region with other fluctuations and induce a bump.

BumpHunter computes probability values by looking at the set of

pseudoexperiments that are performed. Each bin is fluctuated by a Poisson

distribution relative to the background estimate and the test statistic is

computed. The p-value is the probability that, given the background estimate,

the BumpHunter test statistic will be greater than or equal to the test statistic

computed from the actual data. The statistical basis of this method is based on

a theorem that shows that the Type-I error (probability to wrongly reject the

null hypothesis / background estimate) is α if a well-defined test statistic has a

discovery threshold of α on its p-value [65]. In the case of this analysis, the p-value

criteria for discovery is set to 0.01 based on long-standing arguments from the

BumpHunter developers. The interpretation of this number is that an alternate

hypothesis other than the null hypothesis would have a 99% chance of fitting the

model better, and since signal plus background models are inclusive in that set of

hypothetical models, the presence of signal in the evaluated data can not be ruled

out by this criteria.

4.11. Validation Region Studies

To validate the methodology applied in the analysis, NNs were trained

and evaluated on a Validation region spectrum. Any “signal” discovery in this

Validation region would be attributable to an issue within the applicability or the

implementation of the CWoLa method within the analysis, or potentially due to

another issue such as spurious bumps induced by miscalibration. The signal-sparse

and background-enriched region that was selected for the Validation region was
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defined where both jets in the events satisfy 0.3 ≤ PTF0,1 < 0.5. An alternate

Validation region was tested that used an inversion of the |y∗| cut, |y∗| > 0.6,

however this region was severely affected by trigger inefficiencies up to 1550 GeV.

The selected Validation region contains events more kinematically similar to the

Search region events, with a selection that resulting in similar numbers of events to

the Search region, in order to validate this method for a similar luminosity.

Following the plan for the Search Phase in the Search region, a data set

was formed using the cuts specified in the Validation region column in Table 5.1.

Events were sorted into the same bins as the Search region, and NNs were trained

to separate the events from the signal bin from those in the sidebands. The Search

Phase was performed with BumpHunter searching for significant bumps in the

resulting spectra.

The results from BumpHunter indicate that the application of these NNs

does not seem to induce spurious bumps in the spectrum. The BumpHunter

p-values for the 10% and 1% spectra were 0.91 and 0.69 respectively, and the

results are shown in Figures 4.35 and 4.36. The conclusion drawn from these

Validation region studies is that detector-level issues or the CWoLa method did

not causing spurious bumps at the luminosities that were considered. In addition,

the methodology of extrapolating the NN score quantile from the sidebands to the

signal region does not seem to produce any spurious signal as long as sufficient

statistics are available for the training and evaluation. In the upper regions of

the spectra, the training statistics are O(100) applied to O(10) events in each

signal bin, forcing the potential upper mass limits of this analysis to below 4

TeV. Appropriate spectra fits could not be done above 4 TeV due to the statistical
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fluctuations caused by the statistics-poor extrapolation of the NN score quantiles

to the signal regions.

FIGURE 4.35. BumpHunter outputs from application to the 10% NN score cut
Validation region spectrum. The upper plot indicates the formed spectrum and
the maximal BumpHunter bump region, its tomography plot is shown on the
bottom right, and the distribution of the BumpHunter test statistic is shown
on the bottom right. Bumphunter evaluates the p-value for a range of intervals
across the spectrum and uses the range with the minimal p-value as the maximum
discovery region; these intervals are shown in the tomography plot.
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FIGURE 4.36. BumpHunter outputs from application to the 1% NN score cut
Validation region spectrum. The upper plot indicates the formed spectrum and the
maximal BumpHunter bump region, its tomography plot is shown on the bottom
left, and the distribution of the BumpHunter test statistic is shown on the bottom
right.

4.12. Limit-Setting Phase

Given the lack of indication of excesses or bumps in the spectrum, the limit-

setting phase follows. The general question asked in this phase is “Given that

no signal was observed, to what cross-sections can we place limits on the signal

model?” This is a complex procedure involving the many facets and variations
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possible in the analysis. For example, small changes in the JES can affect the

signal shapes observed, modifying the overall sensitivity to a bump of that sort,

and thereby affecting the final limits obtained.

The Bayesian Analysis Toolkit (BAT) is a high-energy physics framework

designed to evaluate model limits [72]. The BAT evaluates injected signals of

defined or approximated signal shapes and evaluates the maximum injection

strength before discovery is possible. The posterior distributions of the signal

cross-sections are estimated using a Monte-Carlo sampling method; this method

assesses the signal strength given an injection with plus and minus 1σ variations

from the systematics. The final limits obtained from the toolkit are uncorrected

cross section that do not incorporate model and analysis considerations such as the

signal branching ratio BR, total selection efficiency ε, and acceptance to produce

the fiducial cross-section σfid. The relationship between these variables is

σBAT = BR · ε · σfid. (4.11)

A determination of the final cross-section limits must therefore incorporate

the branching ratio and signal efficiency. For the assumption of a leptophobic

Z’ with decays purely to dark quark pairs, the Branching Ratio (BR) is 1.0. The

signal efficiency is more complicated, as a series of truth-level, derivation-level, and

analysis-level inefficiencies are aspects of this analysis that must be incorporated.

The truth-level inefficiencies arise from truth-level filters that are placed on

generated events to ensure that the produced events are likely to be resolved in

the detector. These truth-level cuts are listed in Section 4.4, but are not easily

reinterpretable by theorists, and so the final cross-sections can be more difficult to

interpret. So, a fiducial cross-section σfid was defined that incorporated the initial
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truth-level filters, and theorists can then define final-state efficiencies and fiducial

cross-sections to compare to these cross-section limits.

The injected signals were Gaussian signals that varied in their injected mass,

width, and amplitude. The largest number of injected events pulled from these

signal shapes becomes the observed limit for that particular signal. The systematic

parameters in the signal model, such as the JES and JER contributions, all

contribute to the posterior probability of each tested signal point. A Markov-

Chain Monte-Carlo (MCMC) algorithm [73] is used to define the central value

of the observed limit at each mass point, and the uncertainties on that observed

limit can be obtained by extraction of the CLs of each measured point. These

observed and expected limits, however, are not the fiducial cross-section limits.

The overall efficiencies of the signal selection and NN selection can be used to

correct for the analysis procedure to extract fiducial limits on the emerging jets

production process.

At the truth level, the fiducial cross-section is the product of the truth filter

efficiencies, the production cross-section, and the Branching Ratio (BR) to the

channel of interest.

σfid = εtruth · σprod · BR. (4.12)

At the analysis level, the BAT cross-section limits σBAT are a product of the

analysis efficiencies, the NN selection efficiencies, the derivation efficiencies, and

the fiducial cross-sections. ALso, the leptophobic assumption of the model ensures

that the BR can be set to 1.0 in the limit inference.

σBAT = εanalysis · εNN · εderiv · σfid. (4.13)
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So the measured limits can be corrected to match the fiducial production by the

correction,

σfid =
σBAT

εderiv · εanalysis · εNN

. (4.14)

The BAT also produces expected limits that are used to give context to the

observed limits. The expected limits are calculated by Poisson fluctuating the

smooth background estimate in a number of pseudoexperiments. The ensemble

of the Poisson-fluctuated spectra that can be generated without triggering the p-

value discovery threshold becomes the expected limits, and 1σ and 2σ error bands

can be determined from this procedure. Plots of the various efficiencies used in this

analysis to convert the BAT limits to a fiducial cross-section are shown in Figures

4.37 - 4.38.
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FIGURE 4.37. Signal efficiencies from application of the derivation-level cuts, the
analysis cuts, and the NN selection for different lifetime samples. The envelope of
the five model variations defines the error bands of the total efficiency and is an
approximation of the hadronization systematic.
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FIGURE 4.38. Signal efficiencies from application of the derivation-level cuts, the
analysis cuts, and the NN selection for Model A - E samples. The envelope of the
five model variations defines the error bands of the total efficiency. This can also
be interpreted as an approximation of the effects of lifetime and width variance
of the models on the limits, although this is beyond the scope of the analysis
presented here.
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4.13. Systematics

A number of systematics in this analysis affect the overall resulting limits

and p-values. Uncertainties in measured quantities are affected by variances due

to statistical fluctuations, but other effects ranging from the calibration procedure

needed to reconstruct jets, the fitting procedure needed for a background estimate,

and the hadronization model used during the signal generation can have large

effects and must be accounted for in determining the final limits.

In any calibration procedure, uncertainties on the calibration method and the

applied cuts are varied in order to determine their systematic effects on the final

measurable quantities. There are a number JES systematics considered in analyses

that affect the invariant mass that is reconstructed from the jets in the event. The

standard JES variations for jet systematics in these analyses use variations of plus

and minus 1σ, and so the BAT toolkit will vary the JES as applied to the signal

shapes, shifting the spectra up and down from their nominal peak position [11]

by a percentage that’s defined by the JES uncertainty. For this analysis, the JES

uncertainty was conservatively set to 2%.

The overall calibration affects the pT resolution and the JES in a manner

that will shift and smear the Gaussian injected signals. Figure 3.14 shows the

uncertainty bands on the JER measurements, which hit a maximum of 2% close

to the low edge of the pT distribution. So convservatively, the JER systematic can

be approximated by a shift in the JER analytical function by 2%.

The fit type systematic approximates the variation in the background

estimate due to the choice of fit function. The standard procedure for dijet

searches is to use a different class of fit function as the systematic variation of
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the background estimate. To be consistent with previous dijet analyses, the UA1

function was chosen as the functional form for this alternate fit function.

f(x) = p0 · x−p1 · ln (p2 / x) · ln
(
p3 / x

2
)

(4.15)

The fit error systematic defines the uncertainty on the background fit. If

a local fitter is used, marginally different background estimates can be formed

depending on the fitting algorithm and the starting point of the fit parameters.

The BAT accounts for this effect by performing fit pseudoexperiments to

determine the effect of varying starting parameters by the fitting algorithm on

the overall limits.

The luminosity uncertainty indicates the total uncertainty of the integrated

luminosity observed by the detector [74]. The luminosity calibration procedure

started with a baseline luminosity that was measured in low-luminosity detector

conditions using van der Meer scans [75]. These beam scans are intended to

measure the beam cross section and maximum visible luminosity using forward

detectors such as LUCID [76]. The overall uncertainty of the Run 2 luminosity

measurement is 1.7% after corrections to the baseline luminosity measurement are

made to account for pileup conditions.

The hadronization model affects the overall width of the Gaussian signal

shapes, as well as the signal strength. So the spread of observed limits for a variety

of signal widths becomes a measure of the hadronization uncertainty on the BAT

limits. The fiducial cross-sections are estimated by dividing by the analysis’ total

signal efficiency, and the envelope of the signal efficiencies approximates the effects

of the hadronization systematic on the final fiducial limits. Therefore, the final
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fiducial limits shown in Figures 4.41 - 4.42 have the hadronization systematic

incorporated into the bands of the plotted limits for each dark model.

4.14. Results

The Search Phase evaluated the spectrum to determine if there were any

statistically significant bumps using BumpHunter. The spectra were extracted

with the application of the NNs with 10% and 1% cuts on the NN scores, and

BumpHunter was applied to the resulting spectra with ranges 1300 < mjj <

4088 GeV for the 10% cut spectrum and 1300 < mjj < 3628 GeV for the 1%

cut spectrum. The limited range is due to the statistics available above each

corresponding cut after implementation of the NNs and analysis cuts, and the

spectra and BumpHunter statistical plots are available in Figures 4.39 and 4.40.

The standard evaluation for p-values that is used in ATLAS dijet searches

uses a threshold of 0.01 before evidence of a discovery can be determined. In the

event that a below-threshold p-value is found, a series of cross-checks of the data

reconstruction, calibration, and the fitting procedure would be done to check for

any source that can explain a spurious bump in the spectrum. In the event that

an experiment- or methodology-based explanation cannot be found for the excess

causing this p-value, this is considered evidence of an unexplained spurious signal

and more exhaustive checks would be required to understand why these simple

analytical functions cannot fit the spectra. However, the p-values of these fits were

0.90 and 0.92 indicating that there is good confidence in no observed excesses in

the spectra.

These computed p-values were obtained from a SWiFt-like fit to the data

with a window width of 13 bins with the 3-parameter fit function, with 10000
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pseudoexperiments performed by BumpHunter. The fit systematic uncertainties

were evaluated with 1000 BumpHunter pseudoexperiments.

FIGURE 4.39. The three parameter analytical function fit to the spectrum after
the 10% NN score cut. The BumpHunter p-value score for this spectrum was
0.90 for the nominal background, but the final value after inclusion of the fit
systematics was 0.917 ± 0.009. The BumpHunter tomography plot is shown in
the bottom plot, indicating the local p-value intervals in the algorithm. The bump
of maximum local significance was between 1998 GeV and 2251 GeV with local
significance 2.37932. The global fit parameters were [7.84855×10−11, -21.1505, -
12.4406] with the SWiFt fit χ2/ndf = 0.711501.
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FIGURE 4.40. The three parameter analytical function fit to the spectrum
after the 1% NN score cut. The BumpHunter p-value score for the nominal
spectrum was 0.918, and after inclusion of systematics, the evaluated p-value
was 0.887 ± 0.01. The BumpHunter tomography plot is shown in the bottom plot,
indicating the local p-value intervals in the algorithm. The bump of maximum
local significance was between 1451 GeV and 1573 GeV with local significance
1.41454. The global fit parameters were [4.3384×10−21, -51.8578, -21.5426] with
the SWiFt fit χ2/ndf=0.483154.

The limits obtained from this analysis are presented for the spectrum with

a 10% NN score cut in Figure 4.41 and for the spectrum with a 1% NN score

cut in Figure 4.42. The observed limits and expected limits were scaled by the

signal efficiency to get the fiducial cross-sections as shown. The signal fiducial
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cross-sections were excluded from approximately 20 fb at 1300 GeV down to 2 fb at

3000 GeV by the 10% NN score cut spectrum, and the signal fiducial cross-sections

were excluded from 10 fb at 1400 GeV down to 2 fb at 3000 GeV by the 1% NN

score cut spectrum.

This analysis was designed to provide model-independent limits on these

processes at a fixed width and at fixed lifetimes, to make it possible to evaluate

the limits for a variety of models. The black line on the fiducial cross-section

limit plots in Figures 4.41 and 4.42 indicate the Z’ production cross-sections as

a function of the truth Z’ mass with a gq coupling of 0.015. This indicates that

Z’ production with masses between 1.3 TeV and 3.1 TeV can be excluded for dark

sector couplings down to gq = 0.015. The dark sector coupling gd was set to 1 - gq

in this estimate to ensure that gd is greater than gq. The value does not have a

significant effect on the branching ratio or on the model curve shown in Figures

4.41 and 4.42 until the coupling to dark hadrons approaches that of the SM.

The Z’ width was set to the fixed 20 GeV width implemented within the nominal

Monte-Carlo production.

With the Z’ width set to 20 GeV, the dark quark couplings are 0.2, still at

least an order of magnitude above the SM coupling. This gives essentially the

same solid curve as in Figures 4.41 and 4.42. Reasonable lifetimes can be found

by allowing a wider width of the Z’ to allow dark sector couplings on the order of

gd = 1.0. In that case, for a 2 TeV Z’ with dark sector confinement scales at around

40 GeV, a strong coupling from the SM to the dark sector with strength O(10)

produces O(10 mm) lifetimes, within the detector acceptance region. Note that

if the Z’ is the only interaction contributing to the dark pion lifetime, then the

resulting lifetimes could be longer than 10 mm. This effect is fixed by the manual
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setting of the Z’ width to 20 GeV and the setting of the dark pion decay distance

to 1 mm.

The O(10 mm) lifetimes in some of the parameter space considered here

require an additional coupling of the dark sector to the standard model, for

example from a heavy scalar Xd particle which can induce dark pion decays via

a Yukawa coupling [1]. Also, in this work, the effects on the analysis presented

here of longer lived dark hadrons with cτ > 100 cm have not been studied. In this

case, detailed detector Monte-Carlo studies are needed for the range of possible

dark hadron lifetimes and are beyond the scope of this work. In cases where the

dark hadrons are so long-lived that they escape the detector, the ATLAS mono-jet

and mono-photon searches apply, but would become relevant for Z’ particles with

masses less than 2 TeV and SM couplings less than 0.25 [77].

O(1.0) couplings in both sectors at the 500 GeV mass scale readily produce

dark pion lifetimes at around O(10 mm), so the detailed Run 3 opportunities

shown in Chapter V present a good pathway to exploring a larger range of the

dark sector parameter space.
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FIGURE 4.41. (left) Gaussian BAT limits on Z’ production from the 10% NN score
cut spectrum. (right) Fiducial cross-section limit estimates after signal efficiency
corrections. 1 and 2 sigma bands on the expected limits are shown. The black line
indicates the fiducial cross-section for Z’ production with a gq coupling of 0.015.

134



FIGURE 4.42. (left) Gaussian BAT limits on Z’ production from the 1% NN score
cut spectrum. (right) Fiducial cross-section limit estimates after signal efficiency
corrections. 1 and 2 sigma bands on the expected limits are shown. The black line
indicates the fiducial cross-section for Z’ production with a gq coupling of 0.015.
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The limits obtained by this analysis are very comparable to the limits

obtained by the previous ATLAS CWoLa analysis. Although a different signal

case was considered, similar data with similar cuts were evaluated, although the

original analysis was less inclined to provide additional variables in the models

such as the tracking variables used here. This analysis obtained very competitive

limits using both the 10% and the 1% NN score spectra; the 95% CL exclusion

limits obtained by the original analysis with a 10% cut were on the order of 1 - 20

fb, with significant dependence on the chosen models for the 3 TeV and 5 TeV

signals considered. The limits obtained here are all competitive at those mass

scales, where they range from 2 - 5 fb at 3 and 4 TeV.

Significant statistical effects were seen in the 1% spectrum by the original

CWoLa analysis, but competitive limits exist in the 1 - 5 fb range at 3 and 5 TeV.

This analysis achieved emerging jets cross section limits on the order of 2 - 3 fb at

that scale, which indicates the strength of this analysis method, especially applied

with track-based discriminating variables such as PTF.
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CHAPTER V

FUTURE STUDIES

5.1. Run 3 Emerging Jets Triggers

A specialized set of triggers were developed for the purpose of triggering on

emerging jets signatures during ATLAS Run 3 operations. These target the dijet

and dijet-plus-photon emerging jet signatures that are potentially detectable by

triggering on low-PTF events, allowing the potential mass and cross-section limits

to be enhanced in future analyses.

Type Dijet
Chain HLT j200 0eta180 emergingPTF0p08dR1p2 a10sd

cssk pf jes ftf preselj200 L1J100
|η| Range < 1.8
PTF Cut < 0.08

PFlow Threshold 200 GeV
EMTopo Threshold 200 GeV

L1 Seed L1J100
Rate 8.9 Hz

Type Dijet+photon
Chain HLT g45 tight icaloloose 2j55 0eta200 emergingPTF0p1dR0p4

pf ftf L1EM22VHI
η Range < 2.0
PTF Cut < 0.1

PFlow Threshold 2 × 55 GeV
EMTopo Threshold n/a

L1 Seed L1EM22VHI
Rate 11.4 Hz

TABLE 5.1. HLT-level cuts applied for each emerging jet trigger topology.

Substantial improvements to ATLAS computing has allowed tracking to be

run at the HLT level at much more competitive jet pT scales, allowing for greatly
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enhanced trigger efficiencies for signatures that have a substantial track-based

component to their signatures [78]. For jet chains at ATLAS, tracking can only

be run on events that have a leading jet with pT greater than 200 GeV, which is is

due to the CPU resources available for the software trigger, at the time of writing.

This threshold is placed on the EMTopo jets (the standard jets used that utilize

ECAL-scaled energy deposits) before tracking is run. The online PTF variable

can therefore by computed on the jet Region of Interest after Fast Track Finding

(FTF) is run in the trigger, and an HLT-level selection on events with low PTF

values can be made at much lower mass scales than were ever possible. Due to

the greater precision of the Particle-Flow (PFlow) jet algorithm in reconstructing

jet energy, the PTF selection trigger algorithm will be applied to the PFlow jets

available above 200 GeV, once the fast tracking has been applied to the event. This

chain will be seeded on the unprescaled L1 J100 Level-1 jet trigger, which has an

L1 rate of 3.6 kHz at µ= 50.

The efficiencies of these chains with and without tracking resource

restrictions are shown in Figure 5.1. Above the 600 GeV mass point, this trigger

algorithm has relatively competitive signal efficiencies for several generated

emerging jet models and for a baseline BSM Higgs decay. The expected trigger

rate for this chain is 8.9 Hz at µ= 50 with a PTF< 0.08 cut.

The unfortunate situation where an EMTopo jet is a preselection before an

algorithm running on a PFlow jet will likely introduce some trigger inefficiencies

at the lower-mass region, pushing potential mass limits higher than desired. In

addition, these EMTopo and PFlow thresholds are close to the turn on of the L1

trigger system, which lies between 200 and 220 GeV, depending on the η selection.
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For the dijet+γ signature, a trigger chain was developed that performs the

PTF calculation on the two leading jets in the event. In the event that the photon

passes the jet pT cut, the photon may be reconstructed as one of the leading or

subleading jets in the event. By applying the PTF algorithm to the two leading

objects in the event, this ensures that the trigger is not just selecting events with

a leading unconverted photon that mimics a non-prompt jet. The trigger is seeded

on the unprescaled EM22VHI L1 trigger that has an expected average L1 rate

of 2 kHz in Run 3 conditions. The HLT chain itself is expected to have a rate of

11.4 Hz.

FIGURE 5.1. Emerging jet trigger signal efficiencies with and without jet
preselection applied for a j175 seeded trigger with a 225 GeV preselection.
Efficiencies are computed for baseline low-mass Z’ models and one baseline H→ss
sample (the decay of a 600 GeV BSM Higgs into two 150 GeV scalars with a
cτ = 3.3 m.).

These triggers are intended to probe two general mass ranges. The single-

jet trigger was designed to target invariant mass ranges above 500 - 600 GeV, and

the dijet+photon trigger was designed to target mass ranges down to 200 - 250
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GeV. The actual efficiency points will need to be determined after data-taking has

commenced, as sufficient luminosity will need to be taken by low-pT performance

triggers before these can be calculated.

FIGURE 5.2. Trigger efficiency plots for the 200 GeV seeded emerging jets trigger
chain determined via the trigger simulated in BSM Higgs to LLP scalar (1 TeV
→ 475 GeV) signal events. These indicate that the trigger will be fully efficient
in pT at approximately 250 GeV, as compared to over 500 GeV for a standard
unprescaled large-R jet trigger. The trigger curve is scaled to the fraction that
pass the PTF cut to allow a plateau at 1.0.

140



FIGURE 5.3. Invariant mass distributions and invariant mass resolution for
600 GeV Z’ samples with lifetimes 1 mm (top) and 10 mm (bottom). The
PFlow algorithm has a definite lifetime dependence that affects the number of
reconstructed tracks associated to the jet, making the non-prompt jet appear like a
photon to the algorithm at sufficient lifetimes.

An additional consideration for the single-jet trigger is from the

implementation of new Level-1 hardware trigger systems at ATLAS. The global

Feature EXtractor (gFEX) is a hardware trigger that is designed to provide

an event-wise large-R jet trigger system to the detector. Part of the Phase-I

hardware upgrade, It is composed of three FPGA systems that input coarse

0.2× 0.2 calorimeter regions and compute R = 1.0 Level-1 jets in each FPGA’s

corresponding detector region. The overall event is reconstructed from these

three regions in an additional FPGA and global event decisions are made at the

hardware level. Dark jet signatures such as emerging jets are expected to be
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very efficiently selected at Level-1 due to this system, particularly due to the flat

pileup/noise energy subtraction applied in the reconstruction, which enhances

sensitivity to soft and wide energy deposits. The development and evaluation of

these emerging jet triggers with the use gFEX was not possible due to the lack of a

gFEX trigger simulation in Athena at the time of the development. However, this

system is likely a future promising candidate as a hardware seed for the developed

emerging jet triggers.
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CHAPTER VI

CONCLUSION

This analysis placed competitive cross-section limits on emerging jets

production from exotic dark sector Z’s. These limits were evaluated down to 10 fb

at masses of 1300 GeV and to 2 fb at 3000 GeV. Production of Z’ particles with

masses up to 3.1 TeV were excluded for gq dark sector couplings down to 0.015.

A novel machine-learning technique using unsupervised learning was utilized to

enhance potential signal sensitivities by over 10× relative to cut-based analyses,

and this method is shown to be a powerful tool for the probe of these dark jet

signal types.

Despite the lack of discovery of emerging signals in the dijet topology at

invariant masses greater than 1.3 TeV, exciting physics opportunities for discovery

are available in much lower mass and cross-section regimes. The computing

and detector upgrades at ATLAS will open a realm of track-jet exotic particle

triggers for discovery. Dark jets, LLPs, and boosted soft exotic decays will all be

enhanced in discovery potential through the use of specialized jet-track triggers.

The discovery potential and limits of emerging jets, in particular, will be greatly

enhanced in Run 3 with the utilization of the specialized emerging jets triggers

in the dijet and dijet+photon channels. Mass sensitivity down to 550 GeV are

expected for the single-jet emerging jets trigger, and the dijet+photon triggered

data are expected to allow good sensitivity for Z’ bosons down to 250 GeV.

These new trigger chains have also been proven to be very efficient for the

selection of LLP signatures that include BSM Higgs decays to LLP heavy scalars

and long-lived R-Hadrons. A future analysis will require a dedicated analysis of
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the scope of the data with respect to the correlated trigger inefficiencies due to

the overlap of the L1, EMTopo HLT jet, and PFlow HLT jet thresholds, but the

extremely competitive mass limits allow for a significant probe of a range of model

spaces.
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APPENDIX

APPENDIX1

A.1. Appendix A

Scaling factors were applied to the data for NN training and evaluation.

These were applied to reweight the signal to the appropriate injection cross-

section, and they were also applied to weight events in the sidebands to be

identical to those in the signal region bins.

Before training, the m0, m1, PTF0, PTF1, ∆φ, y∗, and number-of-jets

distributions were scaled by the respective factors: 150 GeV, 150 GeV, 0.15, 0.15,

1.5, 0.3, 5. The corresponding event features were subtracted by these means and

divided by these means to make an approximate scaling between -1 and 1.

The chosen binning was based on resolution bins found by previous dijet

searches such as the high-mass dijet search and the ATLAS trigger-level analysis:

1049, 1093, 1139, 1186, 1235, 1286, 1339, 1394, 1451, 1511, 1573, 1637, 1704, 1773,

1845, 1920, 1998, 2079, 2163, 2251, 2342, 2437, 2536, 2639, 2746, 2857, 2973, 3094,

3220, 3351, 3487, 3629, 3776, 3929, 4088, 4254, 4427, 4607, 4794, 4989, 5191 GeV

A.1.1. Trigger Studies

To optimize the PTF definition, its selection on R-Hadron samples was

studied. R-Hadrons are the supersymmetric equivalent to glue-balls; they are

neutral balls of gluinos constrained by the model of choice. Two R-Hadron

samples were considered, one with lifetime 10 ns and one with 0.1 ns. These

R-Hadron samples were configured with a small mass difference between the
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R-Hadron pairs produced and the Neutralinos in the event. Neutralinos are

neutral supersymmetric (SUSY) particles that are predicted to be the lightest

supersymmetric particle (LSP) in SUSY theory, therefore they are the canonical

dark matter candidate. The small mass splitting between these samples produces

the long-lived properties of these R-Hadrons. The resulting low-pT byproducts of

this decay will be displaced and well-selected by the PTF algorithm.

FIGURE A.1. Various jet and jet-track selections on R-Hadron samples with 0.1 ns
(left) and 10 ns (right) lifetimes. The timing selection refers to a selection on the
offline jet timing, the d0 selection refers to a selection with a cut on the highest d0

track associated to the jet, and the inverse pT cut is the PTF algorithm applied
with varying cofactors in front of the resolution function.

The emerging jets trigger is therefore expected to have good sensitivity to

these signal types.

A.1.2. GRLs and Configurations

GRLs used in data selection:

data15_13TeV.periodAllYear_HEAD_

DQDefects-00-02-02_PHYS_StandardGRL_All_Good_25ns

data16_13TeV.periodAllYear_DetStatus-v89-pro21-01_DQDefects-

00-02-04_PHYS_StandardGRL_All_Good_25ns
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data17_13TeV.periodAllYear_HEAD_

Unknown_PHYS_StandardGRL_All_Good_25ns_ Triggerno17e33prim

data18_13TeV.periodAllYear_HEAD_Unknown_

PHYS_StandardGRL_All_Good_25ns_ Triggerno17e33prim

A.1.3. Pythia Model Generation

The software tags used for the generation are the following: Event

Generation: e8381 Event Simulation: s3126 Event Reconstruction: r9364 (mc16a)

r10201 (mc16d) r10724 (mc16e) Derivation Production: p4432

The overlaid pileup samples were: mc16_13TeV.361239.Pythia8EvtGen_

A3NNPDF23LO_minbias_inelastic_high.simul.HITS.e4981_s3087_s3111

mc16_13TeV.361238.Pythia8EvtGen_A3NNPDF23LO

_minbias_inelastic_low.simul.HITS.e4981_s3087_s3111

The following is the configuration used within Athena for the event

generation.

###########################################################

# Emerging Jets Event Generation

# Pythia 8: Zd --> Qd Qd_bar --> 2EJ

# contact: Aaron Kilgallon (aaron.joseph.kilgallon@cern.ch)

#==========================================================

evgenConfig.description = "emerging jets from pair-produced dark quarks"

evgenConfig.keywords = ["exotic", "hiddenValley", "4jet"]

evgenConfig.process = "p p --> Zd --> Qd Qd_bar --> 2EJ"

evgenConfig.contact = ["aaron.joseph.kilgallon@cern.ch"]
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include("Pythia8_i/Pythia8_A14_NNPDF23LO_EvtGen_Common.py")

# set sample / model parameters automatically based on jo name

print("ARGS: ", runArgs.jobConfig[0])

print("JO ARGS: ", jofile.rstrip(’.py’).split(’_’))

m_Xd = float(jofile.rstrip(’.py’).split(’_’)[3])

ctau_pi_d = float(jofile.rstrip(’.py’).split(’_’)[4])

print("SCALAR MEDIATOR MASS: %f " % m_Xd)

print("DARK PION LIFETIME: %f " % ctau_pi_d)

mod = jofile.rstrip(’.py’).split(’_’)[2]

print("MODEL: %s " % mod)

if mod == "ModelA":

m_pi_d = 5.0

elif mod == "ModelB":

m_pi_d = 2.0

elif mod == "ModelC":

m_pi_d = 10.0

elif mod == "ModelD":

m_pi_d = 20.0

elif mod == "ModelE":

m_pi_d = 0.8

print("DARK PION MASS: %f " % m_pi_d)

print("DARK RHO MASS: %f " % (m_pi_d*4))
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print("LAMBDA / DARK QUARK MASS: %f " % (m_pi_d*2))

print("PT MIN FSR: %f " % (m_pi_d*2*1.1))

# show 5 events for testing

genSeq.Pythia8.Commands += ["Next:numberShowEvent = 1"]

## OVERRIDE STANDARD ATLAS TAU0 LIMIT ##

genSeq.Pythia8.Commands += ["ParticleDecays:limitTau0 = off"]

# settings for dark sector

genSeq.Pythia8.Commands += ["HiddenValley:spinFV = 0",

"HiddenValley:Ngauge = 3",

# n dark QCD colors

"HiddenValley:alphaFSR = 0.7"]

# dark coupling

# Model settings

genSeq.Pythia8.Commands += ["4900101:m0 = " + str(m_pi_d*2),

# qd mass

"4900111:m0 = " + str(m_pi_d),

# pi_d mass

"4900113:m0 = " + str(m_pi_d*4),

# rho_d mass

"4900211:m0 = " + str(m_pi_d),

# pi_d off-diag

"4900213:m0 = " + str(m_pi_d*4),

# rhod offdiag
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"HiddenValley:Lambda = " + str(m_pi_d*2),

"HiddenValley:pTminFSR = "

+ str(m_pi_d*2*1.1)]

# pT cutoff for dark shower

# dark pion lifetime

genSeq.Pythia8.Commands += ["4900111:tau0 = " + str(ctau_pi_d)]

# pi_d lifetime -- variable

# off-diagonal dark pion lifetime

genSeq.Pythia8.Commands += ["4900211:tau0 = " + str(ctau_pi_d)]

# non-model dependent settings

genSeq.Pythia8.Commands += ["PartonLevel:MPI = on",

"PartonLevel:ISR = on"]

# emerging jet event processes

genSeq.Pythia8.Commands += ["HiddenValley:ffbar2Zv = on"]

genSeq.Pythia8.Commands += ["4900023:m0 = " + str(m_Xd)]

genSeq.Pythia8.Commands += ["4900023:tau0 = 1E-20",

"4900023:mWidth=10",

"4900023:isResonance = on",

"4900023:mayDecay = on",

"4900023:0:bRatio = 1",

"4900023:0:meMode = 102"]

genSeq.Pythia8.Commands += ["4900023:onMode = off",

"4900023:offIfAny 1 2 3 4 5 6 -1 -2 -3 -4 -5
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-6 7 8 9 10 11 12 13 14 15 16 -7 -8 -9 -10

-11 -12 -13 -14 -15 -16",

"4900023:onIfAny 4900101 -4900101",

"4900023:oneChannel 1 0.999 102 4900101

-4900101",

"4900023:addChannel 1 0.001 102 1 -1"]

# dark meson decays

genSeq.Pythia8.Commands += ["4900111:0:all on 1.0 102 1 -1",

\newline # dark pion to down quarks

"4900113:0:all on 0.999 102 4900111 4900111",

# dark vector to dark pions 99.9%

"4900113:addchannel on 0.001 102 1 -1"]

# dark vector to down quarks 0.1%

# dark meson off-diagonal decays

genSeq.Pythia8.Commands += ["4900211:oneChannel on 1.0 91 1 -1",

# dark pion to down quarks

"4900213:oneChannel on 0.999 102 4900211

4900211",

# dark vector to dark pions 99.9%

"4900213:addchannel on 0.001 102 1 -1"]

# dark vector to down quarks 0.1%

# dark QCD coupling (alphaHV) running

genSeq.Pythia8.Commands += ["HiddenValley:alphaOrder = 1",

"HiddenValley:nFlav = 7"]
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# HV parton shower settings

genSeq.Pythia8.Commands += ["HiddenValley:FSR = on",

"HiddenValley:fragment = on"]

genSeq.Pythia8.Commands += ["Main:timesAllowErrors = 500"]

genSeq.Pythia8.Commands += ["ProcessLevel:all = on",

"ProcessLevel:resonanceDecays = on",

"PartonLevel:all = on",

"PartonLevel:ISR = on",

"HadronLevel:all = on",

"PhaseSpace:useBreitWigners = on"]

# workarounds for TestHepMC

testSeq.TestHepMC.MaxVtxDisp=5000000.

testSeq.TestHepMC.MaxTransVtxDisp = 5000000.

## JET FILTERING ##

include ("GeneratorFilters/FindJets.py")

CreateJets(prefiltSeq, 0.4)

if not hasattr( filtSeq, "TruthJetFilter" ):
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from GeneratorFilters.GeneratorFiltersConf import TruthJetFilter

filtSeq += TruthJetFilter()

pass

filtSeq.TruthJetFilter.TruthJetContainer = "AntiKt4TruthJets"

filtSeq.TruthJetFilter.Njet = 2

filtSeq.TruthJetFilter.NjetMinPt = 125*GeV

filtSeq.TruthJetFilter.NjetMaxEta = 2.4

A.2. Appendix B

The following are the full set of signal sample efficiencies.
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Z ′m cτ Model DAOD Analysis Eff. 10% NN Eff. 1% NN
[GeV] [mm]

1500.0 1.0 A 96.4 29.2 23.6 8.0
1500.0 1.0 B 96.1 23.1 26.2 15.0
1500.0 1.0 C 96.2 35.1 21.6 2.4
1500.0 1.0 D 96.3 35.6 15.3 0.6
1500.0 1.0 E 96.4 25.1 36.1 19.3
1500.0 2.0 A 96.3 32.5 34.9 16.6
1500.0 2.0 B 96.1 26.9 40.4 21.9
1500.0 2.0 C 96.4 38.9 33.6 16.7
1500.0 2.0 D 96.3 39.7 32.6 6.0
1500.0 2.0 E 96.2 29.2 36.0 25.1
1500.0 5.0 A 96.3 34.4 43.2 27.0
1500.0 5.0 B 96.3 28.6 45.9 27.5
1500.0 5.0 C 96.5 40.0 41.2 22.8
1500.0 5.0 D 96.3 42.9 42.0 9.4
1500.0 5.0 E 96.3 29.5 29.1 16.4
1500.0 10.0 A 96.1 32.8 46.2 27.4
1500.0 10.0 B 95.9 26.4 33.1 23.6
1500.0 10.0 C 96.1 39.7 39.0 26.2
1500.0 10.0 D 96.1 43.8 50.1 24.5
1500.0 10.0 E 95.6 25.7 29.4 3.8
1500.0 25.0 A 95.8 29.2 39.3 21.6
1500.0 25.0 B 95.2 19.6 14.1 1.1
1500.0 25.0 C 95.9 37.8 48.2 26.0
1500.0 25.0 D 95.3 44.2 46.6 20.0
1500.0 25.0 E 95.9 16.4 5.9 1.2
1500.0 50.0 A 94.3 22.5 20.9 4.8
1500.0 50.0 B 93.9 12.5 4.9 0.3
1500.0 50.0 C 93.9 34.5 48.9 27.2
1500.0 50.0 D 93.6 43.1 55.1 30.7
1500.0 50.0 E 95.4 7.3 2.9 0.0
1500.0 100.0 A 91.9 13.3 4.5 0.8
1500.0 100.0 B 92.8 4.9 8.3 1.7
1500.0 100.0 C 90.9 25.6 19.3 5.7
1500.0 100.0 D 88.9 38.2 43.6 13.7
1500.0 100.0 E 94.7 1.5 16.7 0.0

TABLE A.1. Signal efficiencies for 1.5 TeV samples.

154



Z ′m cτ Model DAOD Analysis Eff. 10% NN Eff. 1% NN
[GeV] [mm]

2000.0 1.0 A 95.9 31.3 35.9 12.3
2000.0 1.0 B 96.2 26.7 36.3 16.8
2000.0 1.0 C 96.3 35.3 33.7 18.3
2000.0 1.0 D 96.0 35.7 30.7 11.3
2000.0 1.0 E 96.0 28.0 48.3 24.3
2000.0 2.0 A 96.0 34.0 44.5 22.7
2000.0 2.0 B 96.3 30.4 45.9 23.8
2000.0 2.0 C 96.1 38.9 44.7 21.9
2000.0 2.0 D 95.9 39.8 42.9 19.2
2000.0 2.0 E 95.8 31.2 48.1 24.1
2000.0 5.0 A 95.5 35.2 48.1 23.7
2000.0 5.0 B 96.1 31.0 44.8 23.2
2000.0 5.0 C 95.9 40.6 55.3 22.4
2000.0 5.0 D 95.8 42.2 48.9 23.1
2000.0 5.0 E 95.9 31.0 37.8 14.3
2000.0 10.0 A 95.8 33.9 53.3 26.2
2000.0 10.0 B 95.7 28.1 35.8 23.0
2000.0 10.0 C 96.2 40.2 51.7 21.3
2000.0 10.0 D 95.9 42.9 51.1 23.2
2000.0 10.0 E 95.5 27.9 31.3 7.0
2000.0 25.0 A 95.0 30.1 44.1 16.2
2000.0 25.0 B 94.9 21.8 15.7 2.3
2000.0 25.0 C 95.4 38.3 50.3 23.0
2000.0 25.0 D 95.3 42.8 45.2 28.0
2000.0 25.0 E 95.1 20.1 12.7 1.4
2000.0 50.0 A 92.4 25.3 17.0 2.8
2000.0 50.0 B 94.5 16.3 2.3 0.3
2000.0 50.0 C 94.1 34.9 38.2 13.5
2000.0 50.0 D 94.4 41.9 49.4 26.9
2000.0 50.0 E 95.0 12.6 2.9 0.4
2000.0 100.0 A 91.7 17.3 11.3 2.5
2000.0 100.0 B 92.8 8.4 6.5 0.8
2000.0 100.0 C 90.1 28.4 17.7 3.0
2000.0 100.0 D 89.5 38.3 36.3 21.4
2000.0 100.0 E 93.3 3.9 12.7 1.8

TABLE A.2. Signal efficiencies for 2 TeV samples.
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Z ′m cτ Model DAOD Analysis Eff. 10% NN Eff. 1% NN
[GeV] [mm]

3000.0 1.0 A 96.4 29.2 38.0 7.6
3000.0 1.0 B 95.4 25.2 45.7 10.7
3000.0 1.0 C 95.7 29.7 41.1 7.7
3000.0 1.0 D 95.7 29.5 44.4 8.2
3000.0 1.0 E 95.6 26.8 48.4 7.2
3000.0 2.0 A 95.9 31.0 43.0 6.3
3000.0 2.0 B 95.3 27.3 45.8 7.4
3000.0 2.0 C 95.7 32.1 45.6 7.5
3000.0 2.0 D 95.8 31.8 46.1 7.2
3000.0 5.0 A 95.8 31.0 48.6 8.3
3000.0 5.0 B 95.2 26.7 42.9 7.0
3000.0 5.0 C 96.0 33.1 46.0 6.8
3000.0 5.0 D 95.9 33.6 47.3 7.5
3000.0 5.0 E 95.8 27.3 38.9 6.7
3000.0 10.0 A 95.7 31.4 47.5 14.9
3000.0 10.0 B 95.1 25.2 39.8 5.3
3000.0 10.0 C 96.1 32.7 51.8 9.8
3000.0 10.0 D 95.8 33.7 49.9 7.5
3000.0 25.0 A 94.1 28.3 30.4 8.1
3000.0 25.0 B 94.3 22.4 22.2 5.9
3000.0 25.0 C 95.5 31.7 39.9 11.9
3000.0 25.0 D 94.7 34.1 50.6 7.3
3000.0 25.0 E 95.4 21.0 23.2 4.9
3000.0 50.0 A 93.1 24.7 18.7 4.7
3000.0 50.0 B 93.3 18.5 14.0 5.0
3000.0 50.0 C 93.1 31.0 34.6 10.8
3000.0 50.0 D 93.6 33.3 41.7 8.6
3000.0 50.0 E 95.0 16.1 7.3 1.6
3000.0 100.0 A 90.8 20.7 9.7 1.5
3000.0 100.0 B 91.5 12.9 6.6 1.2
3000.0 100.0 C 89.8 27.8 17.3 1.6
3000.0 100.0 D 88.9 31.7 29.5 5.4
3000.0 100.0 E 94.0 8.0 11.0 1.3

TABLE A.3. Signal efficiencies for 3 TeV samples.
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Z ′m cτ Model DAOD Analysis Eff. 10% NN Eff. 1% NN
[GeV] [mm]

4000.0 1.0 A 95.8 21.5 29.2 4.6
4000.0 1.0 B 95.9 21.1 32.8 5.9
4000.0 1.0 C 96.0 22.3 31.7 5.9
4000.0 1.0 D 95.8 23.5 33.2 6.0
4000.0 1.0 E 95.9 22.0 32.4 6.0
4000.0 2.0 A 95.6 22.9 27.6 4.2
4000.0 2.0 B 96.0 22.2 35.0 5.3
4000.0 2.0 C 96.6 24.3 37.6 6.1
4000.0 2.0 D 96.2 24.7 37.1 6.2
4000.0 2.0 E 96.0 22.6 34.9 6.0
4000.0 5.0 A 95.7 22.9 34.4 6.2
4000.0 5.0 B 96.0 21.9 35.7 7.1
4000.0 5.0 C 96.2 24.7 27.6 3.6
4000.0 5.0 D 95.9 26.1 30.7 4.2
4000.0 5.0 E 95.8 22.6 29.8 5.9
4000.0 10.0 A 95.7 21.8 40.0 9.3
4000.0 10.0 B 95.7 20.5 39.6 12.7
4000.0 10.0 C 96.3 24.3 28.8 3.6
4000.0 10.0 D 96.0 26.2 23.7 3.2
4000.0 10.0 E 95.4 21.7 35.1 7.2
4000.0 25.0 A 94.7 20.9 32.3 8.0
4000.0 25.0 B 95.0 18.9 27.7 6.3
4000.0 25.0 C 95.5 23.6 33.7 7.2
4000.0 25.0 D 95.4 26.0 29.6 4.6
4000.0 25.0 E 95.3 19.1 20.4 4.9
4000.0 50.0 A 93.4 19.8 35.0 11.1
4000.0 50.0 B 93.6 17.3 16.8 4.4
4000.0 50.0 C 93.8 23.2 27.9 6.0
4000.0 50.0 D 93.8 26.4 29.7 5.5
4000.0 50.0 E 94.4 16.7 11.0 0.9
4000.0 100.0 A 91.1 17.6 11.8 2.0
4000.0 100.0 B 92.5 13.2 14.5 1.5
4000.0 100.0 C 90.7 21.8 26.9 5.1
4000.0 100.0 D 88.4 26.0 25.3 6.9
4000.0 100.0 E 94.1 10.4 8.8 0.5

TABLE A.4. Signal efficiencies for 4 TeV samples.
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