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DISSERTATION ABSTRACT

Austin M. Mroz

Doctorate of Philosophy

Department of Chemistry and Biochemistry

June 2022

Title: Revisiting Chemical System Size Using STREUSEL (Surface Topology 
REcovery Using Sampling of the ELectric field): the role of size in atomic, 
molecular, and solid-state properties

Atomic, molecular, and porous material void space shape and size play a 

critical role in chemistry. The most familiar method was formalized by Bondi: the 

van der Waal radii and volume of atoms and molecules. However, the rigid sphere 

approximation of atoms fails to describe highly polarized chemical systems. To 

overcome this challenge, numerous other approaches based on electron density have 

been presented, but these approaches intrinsically struggle to describe the surface 

area and volume of cations. Herein, we revisit the timeless problem of assessing 

sizes of atoms, molecules and porous material void spaces, through examination

of the electric field produced by these chemical systems. In this way, we are able 

to recover chemical volumes and surface areas from simple DFT calculations.

We perform a series of benchmarks to ensure the generality of our approach and 

demonstrate that electric field calculations provide unique insights into quantifying 

sizes of ions and polar molecules. Our method further lays the foundation for the 

development of analytical interaction energies based on assessment of the Coulomb 

potential produced by molecules systems, while providing a rigorous approach

to study size dynamics as a function of chemical environment. Beyond these 

advancements, we demonstrate the advantageous role of electric field-derived size in 

determining the void space characteristics of nanoporous, crystalline materials.
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CHAPTER I

INTRODUCTION

Chemical size is a fundamental property that governs a wealth of chemical

interactions, including steric and non-covalent interactions, (6;7;8;9;10;11;12) enzyme

docking, (13) and electrochemical properties, (14) in addition to the application

performance of porous solids, such as heterogeneous gas storage, (15;16;17), separation

technologies, (18;19) and catalytic activity. (20;21;22;23)

Quantifying chemical system size, however, is convoluted by the definition of

the atomic “surface,” since calculated sizes depend both on the model and chemical

environment. (14;24) For example, conventional size metrics predicated on the familiar

van der Waals radii are not directly applicable for ions in molecular electrolyte

systems because a sum of rigid ionic spheres poorly represents chemical regions of

high polarization. (14) Indeed, alternative size quantification methodologies, both

experimental and theoretical, are necessary.

Size quantification metrics have developed through a synergy of both

experiment and theory, (24) Figure 1. Initial experimental measurements of atomic

size were performed by Meyer in 1870, where he used a relationship between

material density and atomic size, and obtained a periodic trend in atomic

volumes. (25) These values were later refined by Bragg (26) and Pauling (27), who

developed methods for assessing atomic radii through X-ray scattering. Bond then

revisited the radii presented by Pauling and Bragg, and it is Bondi’s work that

underpins and is synonymous with the “van der Waals radii”. (28;29) Batsanov then

expanded the van der Waals radii for elements 1-96 through examination of single

crystal X-ray diffraction, molar volumes and crystal packing. (30) A more modern

approach was taken by Alvarez, (31;32) and Biswas and Ghosh, (33) who extracted
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Figure 1. A timeline featuring the history of the atomic model (navy, top panel),
experimental size quantification methods (periwinkle, middle panel), theoretical size
quantification methods (teal, lower panel), and major milestones in computational
chemistry (purple).

atomic radii using a statistical analyses of online databases. Marrying all of these

approaches is atomic size derived from solid phase experiments and/or molecular

spectroscopic data. This, however, limits the ability to derive accurate atomic

and molecular volumes for environments not represented in empirical data, (24)

posing challenges for size quantifications of molecules with high polarity (34;35;36) and

unusual elongated bonds, (37;38;39) among others. These systems also pose problems

for size metrics that estimate covalent interactions, e.g. Pyykkö radii, (40) for the

same reasoning.
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Independent of precise methodology, all size calculation metrics work to

identify the extent to which a chemical system permeates in space. Indeed, as

illustrated by the variety of methodologies presented above, there are different

ways of defining the surface of a chemical system. The advent of inexpensive

computational developments and hardware advancements has enabled a density

functional theory (DFT)-derived size calculation methods, particularly useful

for emerging exotic molecules. (41) Theory-based size metrics proved an accurate

path towards assessing atomic and molecular volumes of novel chemical systems,

assuming the theory is exact. Such calculations were pioneered by Slater who

employed the maximum radial density of outermost single particle wavefunctions

to define atomic radii. (42;43;44) Further theoretical size quantifications explored

deriving size from potential minima, (45;46;47) gradients of Tomas-Fermi kinetic

energy functional and exchange-correlation energy, (48) electronegativity derived

using DFT, (49) and electronic moment calculations. (50)

Bader (51) first identified the utility of quantum chemical simulation and

computed size at the Hartree-Fock level of theory, in defining the surface of a

chemical system and ultimately calculating the size by defining an electron density

cutoff of 0.002 e bohr−3. This cutoff was further refined by Boyd (52) to be 0.001

e bohr−3 with the justification that any smaller value of electron density would

result in a negligible change in calculated radii. (52) Recently, Rahm and Hoffmann

applied the Boyd cutoff to anions and cations using electron densities obtained

from DFT (24) with a hybrid GGA functional, PBE0 (53;54;55), and a sufficiently large

basis set, ANO-RCC. There, the authors highlight that since DFT is founded on

the Hohenberg-Kohn theorems, which state that the ground state energy of a

many electron system is defined by the distribution of the electron density, (56;57)
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Figure 2. Radii (y-axis) of Mg in two oxidation states (x-axis) for a series of
experimental size methods (CN=coordination number).

DFT itself is an approximation of an exact exchange-correlation functional. Thus,

simply using DFT to compute size presents its own challenges as there are many

available functional types, which differ in their treatment of electron density, and

yield differing resultant properties. (58;59;60) Yet, the key benefit of theory-based

methods makes them attractive, as they are inherently general and may be applied

to both molecules and materials that are not presented in online repositories.

Further, the use of electron density poses problems for modeling cations,

who certainly interact with their surroundings bar beyond their electron cloud

via strong Coulombic interactions. (61) Thus, instead of examining the density of

electrons, this work revisits the size quantification problem through examination

of the electrostatic potential, and associated electric field. This method is, in

principle, robust even for polarized and ionic systems, in addition to enabling

quantification of atomic, molecular, and porous scaffold void size, and possibly even

analytical interaction energies.
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While previous metrics are concerned with the space that a chemical system

resides in – occupied space – this work focuses on the volume that a chemical

system affects – affected space. This is best demonstrated by examining Mg

and Mg2+, Figure 2. Owing to the increased oxidation relative to the neutral

counterpart, cations are expected to possess a smaller occupied space; this is

reflected in published ionic size metrics, (26;62;63;64;65;66;67) which are compiled for Mg,

Figure 2. These metrics are inherently dependent on coordination number, resulting

in several accepted values for Mg, and reveals how close other chemical species may

bond with Mg. Yet, this does not reveal how close chemical species need to be to

be attracted to Mg. Perhaps counter-intuitively, electric field-based sizes increase

with increasing oxidation.

Within neutral atoms, the number of protons is equivalent to the number

of electrons; therefore, the net electric field produced is 0. Ions, however, possess

an inequivalent number of electrons and protons, thus, there exists a net field that

extends beyond the neutral atom – ultimately resulting in a larger affected size.

Thus, the electric field-based size metric presented in this work reveals that Mg2+ is

larger than Mg, Figure 2. In this way, we assess the known long-range interactions

associated with cations. (68;69)

The utility of this methodology is facilitated by the culmination of this

thesis – a post-DFT software termed STREUSEL (Structure Topology REcovery

Using Sampling of the ELectric field). (70) The validity of the approach facilitated by

this software is assessed via several atomic, molecular, and solid-state experiments

detailed in the following chapters.

Chapter 2 presents the background and subsequent derivations leading to

the eventual development of DFT. Chapter 3 outlines the atomic studies used
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to validate this approach, as well as several molecular experiments depicting the

utility of the electric field-based size approach. Chapter 5 outlines the necessity of

electric field-based size in calculating the void space properties of porous scaffold,

namely metal-organic frameworks (MOFs). Chapter 6 expands on the application

of the presented size metric to MOFs, in which the presented size metric is used to

assess the likelihood certain MOF scaffolds will accommodate a variety of redox-

active interstitials. Chapter 7 outlines future applications, developments and

directions for the STREUSEL software package.
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CHAPTER II

DENSITY FUNCTIONAL THEORY: AN OVERVIEW

The history of chemical modeling finds its foundation in the evolution of the

atomic model, Figure 1. While theories concerning the connectivity and shapes of

atoms date back to the 17th century, (71) we begin our discussion with the emergence

of the solid sphere atomic model postulated by John Dalton in 1808 (72) and the

eventual development of quantum mechanics in 1926. Within this time frame,

the scientific foundation of modeling was refined, eventually leading to the vast

computational toolbox available today. The simplified schematic presented in

Figure 3 features the models primarily applied within chemistry, which range in

level of theory.

Figure 3. There exist several tiers of computational practices within theoretical
chemistry. These range in their description of chemical system, and selection
depends on system size, as well as the target properties.

The highest level of theory, ab initio, is derived from quantum mechanics

and rely on varying methods of determining a solution to the Schrödinger Equation
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and provide electronic insights into chemical phenomena. While the most accurate,

quantum mechanics-based methods are largely limited by system size.

Within the context of this thesis, all chemical modeling was performed using

density functional theory (DFT), as implemented in the Vienna Ab Initio Software

Package (VASP), (73;74;75;76) and Gaussian09. (77)

The chapter is organized as follows: We start with the six tenets of quantum

mechanics, followed by a discussion of the many-body Hamiltonian and the pivotal

role of the Born-Oppenheimer Approximation. We then move into a discussion

of the contributions of Tomas, Fermi, and Dirac; followed by the developments

presented by Hartree and Fock, and the role of the Slater Determinant. The

derivation of theory is culminated in a discussion of Kohn-Sham density functional

theory (DFT), which includes a practical discussion of exchange and correlation.

We conclude this chapter with a practical discussion of general calculation

considerations when using electronic structure theory, as well as a discussion of

electronic structure theory applied to the solid-state.

Quantum Mechanics

Several experiments performed in the late 19th and early 20th centuries

revealed the wave-particle duality of matter, leading scientists to eventually develop

the more general theory of quantum mechanics to describe these newly observed

phenomena. The birth of quantum mechanics was spurned by the discovery of

the photon credited to Planck, (78), notion of quantized light from Einstein, (79),

and the subsequent presentation of the atomic model presented by Bohr. (80) The

field was furthered by the introduction of the spin quantum number, (81) and the

development of the de Broglie wavelength, (82), which ultimately supported the

wave-particle duality hypothesis that is critical to modern quantum mechanics.
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These developments enabled Heisenberg (83) and Born (84;85) to present a non-

relativistic theory of quantum mechanics. This was followed by the presentation

of the wave-mechanical description of the atom by Schrödinger, (86) and the

development of the Heisenberg uncertainty principle. (87) These developments

ultimately led to the tenets of quantum mechanics, (88) with which we will begin

our discussion of ab initio computational methods. We will follow the description

presented by McQuarrie: (89)

1. The exact state of any quantum mechanical system is described by its

wavefunction, Ψ(r, t), which is dependent on the positions (r) of the particles

in the system at a specific time (t). While Ψ(r, t) often contains imaginary

components, Ψ∗(r, t)Ψ(r, t) is real and represents the probability a particle

resides in r at t. Thus, by extension, the likelihood of a particle occupying

any region of space is ∫ ∞
−∞

Ψ∗(r, t)Ψ(r, t)dr = 1 (2.1)

2. There exists a quantum mechanical Hermitian operator whose expectation

value is real that describes every experimental observable.

3. Any measurement of an observable described by operator Â will only be

eigenvalues (a) that satisfy

ÂΨ = aΨ (2.2)

Thus, a measurement of a system in eigenstate Â will yields its eigenvalue,

a. The state of a system is not required to be an eigenstate of Â, and can be

expanded to a complete set of eigenvectors of Â,

ÂΨi = aiΨi (2.3)
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as

Ψ =
n∑
i

ciΨi (2.4)

However, if the observable is measured, only one of the eigenvalues (ai)

is observed, the identity of which is described as a probability. Upon

measurement of Ψ that returns an eigenvalue, ai, Ψ collapses to the

corresponding eigenstate (Ψi) associated with ai.

4. The average value of an observable can be calculated using

< A >=

∫ ∞
−∞

Ψ∗ÂΨdτ =< Ψ|Â|Ψ > (2.5)

if the system is in a state that can be described by a normalized

wavefunction.

5. The time-dependent Schrödinger equation

ĤΨ(r, t) = i~
∂Ψ

∂t
(2.6)

describes the evolution of the wavefunction of a system in time.

6. With respect to all coordinates, the total wavefunction (Ψ(r, t)) must be

antisymmetric. Lastly, electron spin is a required coordinate.

There does not exist an exact solution to the Schrödinger equation for

systems larger than the Hydrogen atom. Approximate methods must be used to

obtain solutions; these include perturbation theory and the variational method.

Perturbation Theory. The major assertion of Perturbation Theory

is that the Hamiltonian (Ĥ, operator describing the total energy of a system) may

be split into two components, i) the “unperturbed” Hamiltonian, which can be

solved, and ii) the “perturbed” Hamiltonian, which cannot be solved. Contingent

on a small perturbation, this theory is used to continually refine the “unperturbed”
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Hamiltonian such that the contributions of the “perturbed” Hamiltonian are

realized.

Variational Method. The Variational Method is an analytical

procedure whereby “trial” wavefunctions are continually guessed for the system.

These wavefunctions include a series of variable (“variational”) parameters, which

are iterated until the energy of the trial wavefunction is minimized. This method

is based on the Variational Principle, which states that any energy obtained using

the Variational Method is greater than the true total energy of the system. The

Variational Principle is derived as follows.

Let φ represent the trial wavefunction described by a linear combination of

exact eigenfunctions Ψi

φ =
∑
i

ciΨi (2.7)

Thus, the approximated energy (E) of φ is

E[φ] =

∫
φ∗Ĥφ∫
φ∗φ

(2.8)

Substituting (2.7) into (2.8) yields

E[φ] =

∑
ij c
∗
i cj
∫

Ψ∗i ĤΨj∑
ij c
∗
i cj
∫

Ψ∗iΨj

(2.9)

Recall, Ψj are exact eigenfunctions of Ĥ, thus

ĤΨj = εjΨj (2.10)

Using(2.10), and the considering that eigenfunctions of Ĥ form an orthonormal set,

we find

E[φ] =

∑
i c
∗
i ciεi∑

i c
∗
i ci

(2.11)

Subtracting the exact ground state energy, ε0 from (2.11)

E[φ]− ε0 =

∑
i c
∗
i ci(εi − ε0)∑
i c
∗
i ci

(2.12)
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Since ∑
i c
∗
i ci(εi − ε0)∑
i c
∗
i ci

≥ 0 (2.13)

then

E[φ]− ε0 ≥ 0 (2.14)

E[φ] ≥ ε0 (2.15)

Thus any calculated energy of a trial wavefunction is always greater than or equal

to the exact ground state energy.

The Many-Body Hamiltonian and the Born-Oppenheimer

Approximation

We examine the formulation of the many-body Hamiltonian using the

organization presented by Szabo and Ostlund. (90) The many-body Hamiltonian,

Ĥ, accounts for the kinetic energy of the electrons (T̂e) and the nuclei (T̂n), as well

as the potential energy of electron-electron repulsion (Ûee), nuclei-nuclei repulsion

(Ûnn), and electron-nuclei Coulombic attraction (Ûen)

Ĥ = T̂e + T̂n + Ûe + Ûn + Ûen (2.16)

The kinetic energy terms take the form

T̂n = −
∑
i

~2

2Mi

52
Ri

T̂e = −
∑
i

~2

2me

52
ri

(2.17)

where Mi is the mass of nucleus i, me is the mass of an electron, R represent the

nuclear coordinates, and r represents electronic coordinates. The potential energy
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terms take the form

Ûnn =
1

2

∑
i

∑
j 6=i

ZiZje
2

4πε0|Ri −Rj|

Ûee =
1

2

∑
i

∑
j 6=i

e2

4πε0|ri − rj|

Ûen = −
∑
i

∑
j

Zie
2

4πε0|Ri − rj|

(2.18)

where Zx is the nuclear charge of nuclei x, and e is the elementary charge.

Consider a Hamiltonian that is a function of only two coordinate terms, q1

and q2; then

Ĥ = Ĥ1(q1) + Ĥ2(q2) (2.19)

By extension, the Schrod̈inger equation becomes

ĤΨ(q1, q2) = EΨ(q1, q2) (2.20)

Assuming that Ψ(q1, q2) is separable such that Ψ(q1, q2) = ψ1(q1)ψ2(q2), and ψa(qa)

is an eigenfunction of Ĥa possessing eigenvalue Ea, then

ĤΨ(q1, q2) = (Ĥ1 + Ĥ2)ψ1(q1)ψ2(q2)

= Ĥ1ψ1(q1)ψ2(q2) + Ĥ2ψ1(q1)ψ2(q2)

= E1ψ1(q1)ψ2(q2) + E2ψ1(q1)ψ2(q2)

= (E1 + E2)ψ1(q1)ψ2(q2)

= EΨ(q1, q2)

(2.21)

Therefore, the product of the individual eigenfunctions yields the total

eigenfunction, and the individual eigenvalues are additive.

The many-body Hamiltonian, (2.16), is also a function of two coordinates,

nuclear (R), and coordinates of the electrons (r)

Ĥ(R, r) = T̂e(r) + Ûe(r) + T̂n(R) + Ûn(R) + Ûen(R, r) (2.22)
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Problematically, Ûen(R, r) prevents the separation of the nuclear and electronic

components of the Hamiltonian and subsequently the separation of the

wavefunction.

Thus, we use the Born-Oppenheimer Approximation, which posits that

nuclei are stationary with respect to the reference frame of an electron, due to the

large difference in masses between these two particles. In this way, we examine a

fixed nuclear configuration, which leads to the electronic Schrod̈inger equation

Ĥeψe(R, r) = Eeψe(R, r) (2.23)

where Ĥe = T̂e(r) + Ûee(r) + Ûen(R, r) excludes the nuclear components. The total

energy (Etot) is, thus, described using the original Hamiltonian presented in (2.16),

Ĥψe(R, r)ψN(R) = Etotψe(R, r)ψN(R) (2.24)

Equation 2.24 is afforded only after invoking the Born-Oppenheimer approximation,

which allows us to separate the electronic (ψe(r)) and nuclear (ψN(R)) components

of the wavefunction (Ψ). The electronic wavefunction is solved using

Ĥeψe(R, r) =

{
− 1

2

∑
i

52
i −

∑
n,i

Zn
rni

+
∑
i>j

1

rij

}
ψe(R, r)

= Ee(R)ψe(R, r)

(2.25)

where the summation terms are iterated over electrons (i, j) and nuclei (n,m). The

resulting electronic energy (Ee) is then employed in the nuclear Hamiltonian to

solve for the total system energy (Etot)

ĤNψN(R) =

{
−
∑
n

1

2Mn

52
n +Ee(R) +

∑
n>m

ZnZm
Rnm

}
ψN(R)

= EtotψN(R)

(2.26)

Often commercial electronic structure theory software packages, such as Gaussian90

and VASP, solving the many-electron wavefunction return the total energy at a
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fixed geometry, i.e. Ee, solving only the electronic Schrod̈inger equation. We turn

now to the varying approximations made so that the many-electron wavefunction

may be solved.

Thomas, Fermi, and Dirac

The culmination of contributions from Thomas, Fermi, and Dirac, termed

Thomas-Fermi-Dirac theory, yielded a theory that only depends on the total

electron density (ρ(r)). This simplifies the problem because the density is only a

function of three variables, the (x, y, z,) coordinates. The total energy of a system

(ETF ) is written as

ETF [ρ(r)] = Ak

∫
ρ(r)5/3dr +

∫
ρ(r)vext(r)dr +

1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
drdr′ (2.27)

where the first term is the electronic kinetic energy associated with a system of

non-interacting electrons in a homogeneous gas, the second term is the classic

electrostatic energy of attraction between nuclei and electrons, and the third term

is the electronic Coulombic repulsion term. Thus, to assess the ground state energy

of a system within Thomas-Fermi theory (2.27) is minimized, while keeping the

number of electrons constant.

Defining the energy in terms of the electron density is powerful, yet there

are several disadvantages to the Thomas-Fermi theory; i) this theory does not

predict the bonding of atoms, thus solids and molecules cannot form, ii) the kinetic

energy is a gross approximation, in which small errors have a large impact on

the final computed value, and iii) the description of the Coulombic repulsion is

classical, neglecting the exchange-correlation interaction term. Moreover, owing to

its inability to self-consistently reproduce atomic shell structure, this theory fails.

To mediate the last disadvantage of the Thomas-Fermi approximation,

Dirac proposed an approximation for the exchange-correlation term based on the
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homogeneous electron gas

Exc[ρ(r)] = −3

4

(
3

π

)1/3 ∫
ρ(r)3/4dr (2.28)

The exchange correlation term may then be written in terms of the exchange-

correlation energy(εxc[ρ(r)]), which is dependent on the Seitz radius (rs) and is

defined as

εx[ρ(r)] = −3

4

(
9

4π2

)1/3
1

rs
≈ −0.4582

rs
(2.29)

and the total energy is

ELDA
xc [ρ(r)] =

∫
ρ(r)εxc[ρ(r)]dr (2.30)

The Dirac exchange-correlation term, (2.30), was added to the Thomas-Fermi

theory, (2.27), yet this did not improve the Thomas-Fermi theory. The subsequent

improvement to this theory was the Hartree Approximation, which replaces the

many-electron wavefunction with a product of single-electron wavefunctions.

Hartree, Hartree-Fock, and the Slater Determinant

We turn our attention to solving the electronic wavefuntion (ψe(r)), where

we exclude the nuclear coordinates (R) for the remaining discussion. Thus far we

have neglected the spin component of the electrons; to account for the spin (ω),

we introduce an additional term, x = {r, ω}. The electronic wavefunction is a

function of xN , ψe(x1, x2, ..., xN), where N is the number of electrons in the system.

Including electronic spin accounts for the sixth postulate of quantum mechanics

(the precursor to the Pauli exclusion principle), which posits that a wavefunction

must be interchangeable across coordinates between fermions. This is represented

mathematically

ψe(x1, ..., xx, ..., xy, ..., xN) = −ψe(x1, ..., xy, ..., xx, ..., xN) (2.31)
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The Hartree Approximation is the simplest approximation of electron-

electron interactions. Within this approximation, the true N -electron wavefunction

is replaced by a product of single particle orbitals

Ψ(r1s1, r2s2, ..., rnsn) =
1√
N
ψ1(r1, s1)ψ2(r2s2)...ψn(rnsn) (2.32)

where the single particle orbitals are comprised by a spatial function (φi(ri)) and an

electron spin function (σi(si))

ψi(risi) = φi(ri)σi(si) (2.33)

The electron spin function takes values of α, β, or �, �. Yet (2.33) does not satisfy

(2.31), thus the Hartree Approximation does not consider exchange interactions,

which is otherwise required by the Pauli exclusion principle.

Exchange interactions are accounted for in the Hartree-Fock theory, which

defines the wavefunction as an asymmeterised product of orbitals. Thus, the

Hartree-Fock wavefunction is reminiscent of a linear combination of terms in (2.33).

ΨHF =
1√
N !

[ψ1(r1s1)ψ2(r2s2)...ψN(rNsN)−ψ1(r2s2)ψ2(r1s1)...ψN(rnsn)+ ...] (2.34)

ΨHF can easily be represented using the Slater determinant

ΨHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1s1) ψ1(r2s2) · · · ψ1(rNsN)

ψ2(r1s1) ψ2(r2s2) · · · ψ2(rNsN)

...
...

. . .
...

ψN(r1s1) ψN(r2s2) · · · ψN(rNsN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
The orbitals within ΨHF follow∫

ψ∗i (r)ψi(r)dr = 〈ψi|ψi〉 = δij (2.35)

which is otherwise known as the orthonormal constraint.
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The Hartree-Fock total energy (EHF ) is obtained by taking the expectation

value of the Hamiltonian (Ĥ),

EHF = 〈ΨHF |Ĥ|ΨHF 〉

=
N∑
i

∫
ψ∗i (r)

(
−1

2
∇2 + νext(r)

)
ψi(r)dr

+
1

2

N∑
i

N∑
j

∫ ∫
|ψi(r)|2|ψj(r)|2

|r − r′|
drdr′

− 1

2

N∑
i

N∑
j

∫ ∫
ψ∗i (r)ψi(r)ψ

∗
j (r)ψj(r)

|r − r′|
δsjsidrdr

′

(2.36)

The final term of (2.36) is the exchange energy, and is a product of the Pauli

exclusion principle. To complete (2.36), an ionic repulsion term must also be

included.

Minimizing (2.36) subject to (2.35) yields the Hartree-Fock ground state

energy (EHF
0 ) and is accomplished by taking advantage of the Euler Lagrange

method. The stationary equation given by

δ

(
EHF

0 −
N∑
i

N∑
j

εij (〈ψi|ψj〉 − 1)

)
(2.37)

Importantly, εij represents a Hermitian matrix, and the Hartree-Fock equations are

subsequently represented(
−1

2
∇2 + νext(r) +

N∑
j

∫
|ψj(r′)|2

|r − r′|

)
ψi(r)−

N∑
j

∫
ψi(r

′)ψ∗j (r
′)ψj(r)

|r − r′|
δsisjdr

′ = εiψi(r)

(2.38)

Generally (2.38) are solved using the self-consistent field procedure. ψi(r) of (2.38)

are the ground state orbitals, also known as the self-consistent orbitals. Within

the self-consistent procedure, the set of orbitals is iterated until the energy is

minimized.
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Yet, HF theory involves only one determinant of the electronic wavefunction,

neglecting a large number of atlernative, possible wavefunctions. It is statistically

unlikely that the true wavefunction for the chemical system is contained within

the set of iterative wavefunctions. Beyond this, single determinant is only truly

accurate for a non-interacting set of electrons; thus, an additional interaction

energy term is necessary and is achieved by including the correlation energy (Ec),

where

Ec = E0 − EHF (2.39)

and EHF ≥ E0, according to the variational principle. HF includes correlation

energy by using a linear combination of Slater determinants to account for excited

state configurations. This requires a lot of computing resources, which is feasible

for only small systems.

The Birth of Density Functional Theory

DFT addresses the the disadvantages of HF theory and is founded on the

Hohenberg-Kohn (HK) theorems, (91) which ultimately builds on the Tomas-Fermi

use of electron density (n(r)) to solve the quantum many-body problem. Consider

a system composed of electrons moving under the influence of an external potential

(νext(r)). HK-DFT posits that

1. The total energy of the system is a functional of νext, and, by

extension, n(r). The total energy functional (E[n(r)]) can thus be presented in

terms of νext

E[n(r)] =

∫
n(r)νext(r)dr + F [n(r)]

= 〈Ψ|Ĥ|Ψ〉
(2.40)
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where F [n(r)] is an unknown, univeral functional describing electron density, and Ĥ

is a function of the electronic Ĥ (F̂ ) and the external potential (V̂ext)

Ĥ = F̂ + V̂ext (2.41)

and F̂ relies on the kinetic energy operator (T̂ ) and the interaction operator (V̂ee)

F̂ = T̂ + V̂ee (2.42)

Since F̂ is consistent across all N-electron systems, Ĥ depends solely on the number

of electrons and V̂ext.

We can prove this theorem by reductio ad absurdom.

Consider the case where there are two external potentials (ν1, and ν2) that

yield the same electron density (n0(r)). Thus the Hamiltonian describing each

system (Ĥ1 and Ĥ2) each possessing a ground state wavefunction (Ψ1 and Ψ2).

By the variational principle and (2.40), we can generate an inequality relating the

ground state energies of each system (E0
1 and E0

2)

E0
1 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2|Ψ2〉+ 〈Ψ2|Ĥ1 − Ĥ2|Ψ2〉

= E0
2 +

∫
n0(r)[νext1(r)− νext2(r)]dr

(2.43)

Notably, upon exchanging the subscripts, (2.43) still holds. Let
∫
n0(r)[νextx(r) −

νexty(r)]dr = c. Then

E0
1 < E0

2 + c (2.44)

E0
2 < E0

1 + c (2.45)

Summing (2.44) and (2.45) yields

E0
1 + E0

2 < E0
2 + E0

1 (2.46)
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a direct contradiction. Therefore, the ground state electron density determines

the position of the nuclei within a chemical system, and give rise to the electronic

properties.

2. The electron density that yields the minimized total energy

is the ground state electron density, and may be solved for using the

variational principle. Considering that the electron density gives rise to the

external potential, and the Hamiltonian depends on the external potential and the

number of electrons, then the wavefunction is a functional of the electron density

(Ψ[n(r)]). Subsequently,

F̂ [n(r)] = 〈Ψ|F̂ |Ψ〉 (2.47)

We can then write the total energy functional in a ν-representable form (Eν [n(r))

in terms of another electron density (n′(r))

Eν [n(r)] =

∫
n′(r)νext(r)dr + F̂ [n′(r)] (2.48)

By the variational principle

〈ψ′|F̂ |ψ′〉+ 〈ψ′|V̂ext|ψ′〉 > 〈ψ|F̂ |ψ〉 〈ψ|V̂ext|ψ〉 (2.49)

From (2.47) and (2.47), we arrive at the final representation of the second

Hohenberg-Kohn theorem∫
n′(r)νext(r)dr + F [n′(r)] >

∫
n(r)νext(r)dr + F [n(r)]Eν [n

′(r)] > Eν [n(r)]

(2.50)

The Hohenberg-Kohn theorems, however, do not provide a method of solving the

electron density of a ground state system. Instead, they provide the foundation to

the conventional DFT that is employed today – Kohn-Sham DFT.
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Kohn-Sham Density Functional Theory

The Kohn-Sham (KS) formulation maps the system containing the

interacting electrons onto a fictitious system of non-interacting electrons whose

movement is described by a series of KS single particle potentials (νKS(r)). From

the Hohenberg-Kohn theorems, we may achieve the ground state energy of a system

by minimizing the energy functional, (2.40), while keeping the total number of

electrons constant,

δ

[
F [n(r)] +

∫
νext(r)n(r)dr − µ

(∫
n(r)dr −N

)]
= 0 (2.51)

where µ is

µ =
δF [n(r)]

δn(r)
+ νext(r) (2.52)

By considering a non-interacting system of electrons, the exact kinetic

energy can be calculated directly using the KS formalism.

Similar to HF theory, the KS ground state wavefunction (ΨKS) is a

combination of single-particle orbitals (ψi(ri))

ΨKS =
1√
N !

det [ψ1(r1)ψ2(r2) · · ·ψN(rN)] (2.53)

The unknown, universal functional describing the electron density, F [n(r)], is

composed of three terms

F [n(r)] = Ts[n(r)] + EH [n(r)] + Exc[n(r)] (2.54)

Here, Ts[n(r)] is the kinetic energy of the non-interacting electron gas, EH is the

classical electrostatic energy of the electrons where EH [n(r)] = 1
2

∫ ∫ n(r)n(r′)
|r−r′| drdr

′,

and Exc is the exchange-correlation energy that speaks to the difference between

the non-interacting kinetic energy and the exact kinetic energy, as well as the non-

classical contribution of the electron-electron interactions.
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Expanding (2.52) leads to

µ =
δTs[n(r)]

δn(r)
+ νKS(r) (2.55)

The KS potential, νKS9(r), is a function of the external potential (νext(r)), Hartree

potential (νH(r)), and the exchange-correlation potential (νxc(r))

νKS(r) = νext(r) + νH(r) + νxc(r) (2.56)

where

νH(r) =
δEH [n(r)]

δn(r)
=

∫
n(r′)

|r − r′|
dr′

νxc(r) =
δExc[n(r)]

δn(r)

(2.57)

Similar to HF theory, we obtain the ground state electron density and total energy

by solving for the N 1-electron Schrödinger equations[
−1

2
∇2 + νKS(r)

]
ψi(r) = εiψi(r) (2.58)

where εi is the Lagrange multiplier associated with the orthonormality of the single

particle states, ψi. The electron density (n(r)) is then

n(r) =
N∑
i=1

|ψi(r)|2 (2.59)

and the non-interacting kinetic energy (Ts[n(r)]) is

Ts[n(r)] = −1

2

N∑
i=1

∫
ψ∗i (r)∇2ψi(r)dr (2.60)

Similar to the HF scheme, the Kohn-Sham equations, (2.56) - (2.60), are solved

self-consistently. As opposed to solving one equation for the electron density

directly (as is done in Tomas-Fermi theory), the N one-electron equations must

be solved. This is quite advantageous; when system complexity increases (i.e.

size increases), only the number of equations that must be solved changes. Yet,

KS-DFT is still an approximate method – the exact exchange correlation energy
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(Exc[n(r)]) is not known. The implicit form,

Exc[n(r)] = T [n(r)] + Ts[n(r)] + Eee[n(r)]− EH [n(r)] (2.61)

depends on the exact kinetic energy (T [n(r)]), the KS kinetic energy (Ts[n(r)]),

the exact electron-electron interaction energy (Eee[n(r)]), and the Hartree energy

(EH [n(r)]). Subsequent developments to DFT focus on developing an increasingly

accurate description of this exchange-correlation energy term.

Exchange and Correlation

The Exchange-Correlation Hole. Consider the non-relativistic many-

body electronic Hamiltonian,

Ĥ = T̂ + V̂ext + V̂ee

= −1

2

N∑
i=1

∇2
i +

N∑
i=1

νext(r) +
N∑
i=1

N∑
j>i

1

|r − r′|

(2.62)

which depends on the kinetic energy (T̂ ), the external potential (V̂ext), and the

electron-electron interaction energy (V̂ee). The expectation value of V̂ee takes the

form

〈Ψ|V̂ee|Ψ〉 =
1

2

∫ ∫
P (r, r′)

|r − r′|
dr′dr (2.63)

where Ψ is the normalised antisymmetric ground state wavefunction of the system,

and P (r, r′) is the pair density function,

P (r, r′) = N(N − 1)

∫
· · ·
∫
|ψ(rs, r′s′, r3s3, · · · , rNsN)|2dr3s3 · · · drNsN (2.64)

The pair density function describes the probability that a pair of electrons reside at

points r and r′, respectively. Perhaps more useful, we can write the electron density

as a function of the pair density function,

n(r) =
1

N − 1

∫
P (r, r′)dr′ (2.65)
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Since
∫
n(r)dr = N , ∫ ∫

P (r, r′)dr′dr = N(N − 1) (2.66)

Within the classical description, electrons are not correlated. Thus, the pair density

function takes the form

Pclassical(r, r
′) = n(r)n(r′) (2.67)

Using (2.67) would be incorrect, however, because electrons are subject to

Fermi statistics. We must account for quantum mechanical forces, such as non-

Coulombic interactions and the Pauli exclusion principle. The exchange-correlation

interactions ultimately reduces the electron density at r due to its pair at r′; in this

way, each electron is associated with a volume of decreased electron density (e.g.

hole) surrounding itself. This can be accounted for by including another term in

the pair density function, which becomes

P (r, r′) = n(r)n(r′) + n(r)nxc(r, r
′) (2.68)

where nxc(r, r
′) is the exchange-correlation hole density, containing the quantum

mechanical effects surrounding each electron. Importantly, nxc(r, r
′) must follow the

normalisation condition ∫
nxc(r, r

′)dr′ = −1 (2.69)

which asserts that the hole corresponds with a decrease in electron density and

cancels out the charge of one electron.

Defining Exchange-Correlation. The exact definition of Exc[n(r)] can

be obtained using coupling constant integration. Within this method, a coupling

constant (λ) that describes the relationship between the non-interacting system

and the interacting system in defined. At its core, this term describes the strength

of the electron-electron interactions within the system. The exchange-correlation
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energy is thus

Exc[n(r)] =
1

2

∫
n(r)dr

∫
nxc(r, r

′)

|r − r′|
dr′ (2.70)

where nxc(r, r
′) is the exchange-correlation hole, which is averaged over the coupling

constant-dependent hold (nλxc(r, r
′))

nxc(r, r
′) =

∫ 1

0

nλxc(r, r
′)dλ (2.71)

from which the exchange-correlation energy density (εxc[n(r)]) can be defined

εxc[n(r)] =
1

2

∫
nxc(r, r

′)

|r − r′|
dr′ (2.72)

While this definition holds, we do not know the exact form of nxc(r, r
′), and, thus,

cannot solve the many-body Schrödinger problem. Yet, this method provides the

relationship between the interacting and non-interacting kinetic energies, as well

as the connection between the electron density pivotal to DFT and the many-body

wavefunction with the definition of the exchange-correlation hole.

Importantly, we can show that the magnitude of the exchange-correlation

hole density will always be smaller than the electron density, from (2.69) with the

pair density at zero, leading to

nxc(r, r
′) ≥ −n(r′) (2.73)

An important characteristic of the pair density is that it is symmetric under

coordinate exchange,

P (r, r′) = P (r′, r) (2.74)

In combination with (2.68), we can define

P (r, r′) = n(r)n(r′) + n(r)nxc(r, r
′)

P (r′, r) = n(r′)n(r) + n(r′)nxc(r
′, r)

(2.75)
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using (2.74), it follows that the equations of (2.75) are equivalent

n(r)n(r′) + n(r)nxc(r, r
′) = n(r′)n(r) + n(r′)nxc(r

′, r) (2.76)

solving for nxc(r, r
′) yields

n(r)nxc(r, r
′) = n(r′)n(r) + n(r′)nxc(r

′, r)− n(r)n(r′)

= nxc(r
′, r′)n(r′)

(2.77)

leading to

nxc(r, r
′) = nxc(r

′, r)
n(r′)

n(r)
(2.78)

The exchange and correlation components of the exchange-correlation hole

density are independent,

nxc(r, r
′) = nx(r, r

′) + nc(r, r
′) (2.79)

where the exchange (Fermi) hold (nx(r, r
′)) is

nx(r, r
′) = nxc,λ=0(r, r

′) (2.80)

and the correlation (Coulomb) hole (nc(r, r
′)) is

nc(r, r
′) = nxc,λ=0(r, r

′)− nx(r, r′) (2.81)

Fortunately, the exchange hole may be known exactly using the Hartree-Fock

definition of the exchange correlation energy (Ex),

Ex =
1

2

∫
n(r)dr

∫
nx(r, r

′)

|r − r′|
dr′ (2.82)

where nx(r, r
′) is a fucntion of the spin orbitals (ψj(r, s)),

nx(r, r
′) = − 1

n(r)

∑
s

[
N∑
j

|ψ∗j (rs)ψj(r′s)|

]2
(2.83)

Ultimately resulting in, ∫
nx(r, r

′)dr′ = −1 (2.84)

27



From (2.69) and (2.79) we can assert∫
nc(r, r

′)dr′ = 0 (2.85)

Pair Correlation Function. For simplicity, we can redefine nxc(r, r
′) in

terms of a pair-correlation function (gxc(r, r
′)),

nxc(r, r
′) = n(r′)[gxc(r, r

′)− 1] (2.86)

and

gxc(r, r
′) =

∫ 1

0

gλxc(r, r
′)dλ (2.87)

Thus, far away from electrons, the pair correlation function tends towards unity

and we know that nxc(r, r
′) decreases with increasing r′. For continuity, we can also

show that the pair-correlation function is, in fact, a probability. Let P (r, r′) = 0 of

(2.68), which leads to

0 = n(r)n(r′) + n(r)nxc(r, r
′) (2.88)

Solving for nxc(r, r
′),

nxc(r, r
′) = −n(r)n(r′)

n(r)

= −n(r′)

(2.89)

Expanding (2.86) leads to

nxc(r, r
′) = n(r′)gxc(r, r

′)− n(r′) (2.90)

Thus, from (2.89) we know that when P (r, r′) = 0, then gxc = 0. This essentially

tells us that the probability of an electron at r′ given an electron is located at r is

dictated by gxc(r, r
′).

While a universal model for gxc(r, r
′) is non-existent, we may calculate the

exact pair-correlation function for specific cases. This method is routinely employed

for quantum Monet Carlo techniques.
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Self-Interaction Effects. Another important attribution of the

exchange-correlation hole is that it cancels the self-interacting effects that are

installed by the Hartree term. We can demonstrate this effectively by observing

a 1-electron system, which we can model by setting one of the spin densities to 0

(nβ = 0), which leads to ∫
nα(r)dr =

∫
n(r)dr = 1 (2.91)

Thus, we obtain the exact kinetic and potential energies of the system and

P (r, r′) = 0 due to the lack of electron-electron interactions. Further, gxc(r, r
′) = 0

because there is only one electron in the system; (2.86) thus becomes

nxc(r, r
′) = n(r′)[gxc(r, r

′)− 1]

= −n(r′)

(2.92)

In this way, the exchange-correlation energy cancels the Hartree Energy of the

system, thereby eliminating the self-interaction effects.

We can also define the exchange (νx,α) and correlation (νc,α) potentials,

νx,α([nα(r)]) = −νH([n(r)]) + C1

νc,α([nα(r)]) = 0 + C2

(2.93)

where νH is the Hartree potential, and νx,α and νx,α are only definable up to a

constant, C1, C2, respectively. Most functions are not sufficient, resulting in a sel-

interaction error (ESIE) in the total energy,

ESIE = EH [n(r)] + Exc[nα(r), 0] (2.94)

In this way, the self-interaction error allows us to assess the degree of self-

interaction still present with a given exchange-correlation approximation.

Exchange-Correlation Approximations (i.e. the functionals of

DFT). Functionals are employed that model the exchange-correlation hole to
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varying degrees of accuracy. The general form of an exchange-correlation functional

(Exc[n(r)]) is

Exc[n(r)] =

∫
n(r)εxc(r)dr (2.95)

where εxc is the energy density. Essentially, functionals differ in the way that they

determine εxc(r) surrounding each electron. We will discuss five functional types:

1. Local Density Approximation (LDA) – Within this framework, the true

exchange-correlation energy is approximated locally as the exchange-

correlation energy of a homogeneous electron gas of the same density. This is

because the exchange-correlation energy is known exactly for a homogeneous

electron gas. Thus, LDA only depends on the local density, leading to

ELDA
xc [n(r)] =

∫
n(r)εhomoxc [n(r)]dr (2.96)

where εhomoxc is the energy density of the homogeneous electron gas.

ELDA
xc [n(r)] may be separated into exchange ELDA

x [n(r)] and correlation

ELDA
c [n(r)] contributions. ELDA

x [n(r)] is known, whereas ELDA
c [n(r)] is solved

for in an iterative manner. LDA is known to perform better for solids than

for molecules.

2. Generalized Gradient Approximation (GGA) – GGA is built from the

gradient expansion approximation (GEA), which was originally suggested

by Hohenberg and Kohn as an extension to LDA. Within this approximation,

additional higher order density gradient terms are included in the definition

of the exchange-correlation energy. Yet, first-order GEA does not follow

the non-positivity constraint, where the exact on-top conidtion for a pair of

opposite spin electrons nx(r, r
′) = −n(r), nor does GEA follow the sum rule of
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(2.85). GGA is an expansion of GEA – ultimately solving the aforementioned

challenges with GEA.

Perdew presented a procedure that cuts off the GEA exchange hole in real

space. (92) This remedies the original challenges faced with GEA. The GGA

exchange-correlation energy (EGGA
xc [n(r)]) is commonly written in terms of

the enhancement factor (Fxc[n(r),∇n(r)]), which describes the differences

between the present system and a homogeneous electron gas,

EGGA
xc [n(r)] =

∫
n(r)εhomoxc [n(r)]Fxc[n(r),∇n(r)]dr (2.97)

where Fxc is commonly written as a function of the seitz radius (rs) and the

dimensionless reduced density gradient (s(r)),

s(r) =
|∇n(r)|

2kF (r)n(r)
(2.98)

kF is the Fermi wavevector,

kF = [3π2n(r)]1/3 (2.99)

Fxc(rs, s) takes different forms for each GGA functional. Often GGA

functionals are compared by plotting the enhancement factors for a series

of rs values.

3. meta-GGA (M-GGA) – M-GGA functionals differ from conventional GGA

functionals in that they are composed of additional semi-local terms, such as

additional higher order density gradients and kinetic energy density terms

(τ(r)),

τ(r) =
1

2

occ.∑
i

|∇ψi(r)|2 (2.100)

Integrated τ(r) yields the non-interacting kinetic energy (Ts[n(r)])

Ts[n(r)] =

∫
τ(r)dr (2.101)

31



The general form of the M-GGA exchange-correlation energy is

EMGGA
xc [n(r)] =

∫
f [n(r),∇n(r),∇2n(r), τ(r), µ(r), · · · , γ(r)]dr (2.102)

where µ(r) · · · γ(r) represent additional semi-local quantities. M-GGA

functionals are typically constructed using empirical molecular data, which

introduces an inherent bias.

4. hybrid-GGA (H-GGA) – As their name suggests, H-GGA functionals are

a hybrid of exact Hartree-Fock exchange and conventional GGA. H-GGA

functionals commonly take the general form,

EHGGA
xc = α(EHF

x − EGGA
x ) + EGGA

xc (2.103)

where EHF
x is the Hartree-Fock exchange using Kohn-Sham orbitals, and α

is the exchange mixing coefficient, which is typically fitted semi-empirically.

This was further supported by Becke, CITE THIS who approximated the

adiabatic connection integral for the exact exchange-correlation as

Exc =

∫ 1

0

Uλdλ =
1

2
U0 +

1

2
U1 (2.104)

λ = 0 is the exchange-only limit, thus, λ = 1 is the most local part of the

electron interactions.

5. Non-Local – Fully non-local approximations employ the exact density

functional expression for Exc[n(r)], in addition to describing the exact

exchange-correlation hole using analytical functions. Two examples of fully

non-local approximations are the Average Density Approximation (ADA),

and the Weighted Density Approximation (WDA). The general expression

takes the form

ENL
xc [n(r)] =

1

2

∫
n(r)dr

∫
nmodelxc (r, r′)

|r − r′|
dr (2.105)
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There are both advantages and disadvantages to using fully non-local

approximations. Notably, these functional types do not involve as many

assumptions as their counterparts; in this way they achieve forms that are

closer to the exact functional. While this is powerful, these functionals are

highly computationally intensive, and intractable for many systems.

Table 1 summarizes properties of the discussed exchange-correlation

functional types.

Table 1. Summary of properties embodied by five functional types: local-density
approximation (LDA), generalized gradient approximation (GGA), meta-GGA (M-
GGA), hybrid-GGA (H-GGA), weighted density approximation (WDA).

Property LDA GGA M-GGA H-GGA WDA Exact
non-empirical � �† � −−

Localityα L SL SL NL/SL NL NL
explicit local

exchange hole
� � �

explicit εxc(r) � � �
limr→∞ εxc(r) −e−αr −e−αr −e−αr − 1

2r
− 1

2r
− 1

2r

limr→∞νxc(r) −e−βr −e−βr −e−βr −− − 1
2r

−1
r

HEG limitβ � � � � �
self-interaction

correction
�‡ �

† - GGAs may also be defined semi-empirically
α - Local (L), Semi-Local (SL), Non-Local (NL)
‡ - typically only valid in principle
β - Homogeneous Electron Gas (HEG)

General Calculation Considerations

This section borrows heavily from my published work, (2) in which we discuss

the application of electronic structure theory to metal-organic frameworks (MOFs).

Electronic structure calculations provide insight into chemical systems at

a fidelity that may be evasive with experimentation alone. The reliability and

robustness of the calculations depend not only on the structure and identity of the
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chemical system but also on the functional and basis set. To judge the accuracy

of a model, calculated results are compared with experimental or higher level

computational data (93) (e.g., band gap for electronic properties, bond length/angles

and lattice parameters for structure, or vibrations and formation enthalpies to

investigate stability). (94;95) The interdependence of functional and structure poses

a multifaceted challenge of functional selection to obtain both realistic physical

parameters and electronic wave functions.

By far the most important factor in obtaining reliable computational

data is using reliable atomic coordinates. As such, it is good practice to perform

electronic calculations on structures equilibrated at that level of theory; small

deviations in atomic positions can result in large electronic disparities. (96) Yet, it is

routine to report high-level electronic structure calculations on geometries obtained

using structures equilibrated at lower levels of theory; (97;98) we will later discuss

the implications of doing so, and why it has been so successful. Still, there are

reports of practitioners using experimental crystallographic positions in density

functional theory (DFT) models for large and complex systems when computational

equilibration exceeds the abilities of the computational resources available; this

has proven useful in rationalizing experimental phenomena. (99;100) While none of

these approaches provide the true ground state electronic density associated with

the terminal functional used for the reported the electronic properties, (101) the

models themselves are reproducible and consistently provide useful insights into

the chemistry of both molecules and MOFs alike. (1;97;102)

Although one may become disenchanted with computational approaches

because, at face value, it would appear one could “turn knobs” to recover

essentially any desired result, responsible benchmarking and control studies curtail
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problematic model reductions and parametrizations. In reality, no DFT approach

is perfect because the nature of the functional that recovers the exact density and

energy is unknown and a vast array of functionals and corrective terms exist simply

to account for deficiencies in the mathematical description of electron exchange

and correlation. But it is worth remembering what modelers are trying to achieve;

fundamentally, the primary objectives of an electronic structure model are 2-fold:

(i) be reproducible, such that future studies invoking a published methodology may

build from past results, and (ii) effectively describe the realistic chemical system in

light of the various approximations and additions that were chosen during model

construction. The many knobs thus exist because of the breadth of physics present

in MOFs. For example, it may be necessary to add additional dispersion terms

to recover computational lattice parameters in highly conjugated frameworks

that more closely match experiment and spin-orbit coupling (SOC) may not be

important for tetrahedral Zn(II), but will certainly be needed for tetrahedral

Co(II). (103)

Of course, the basis set also plays a role in the accuracy of computed

properties. Here we will only make a few general remarks but refer the interested

reader to an excellent series of previous works. (104;105;106;107;108) For polar

compounds, and MOFs in particular, it is important to describe the localization

of electrons and their polarization and diffusivity. To do so requires a basis set of

“sufficient size”, which refers to the minimum number of functions necessary to

accurately describe the shape of the electron density. Basis functions themselves

come in many forms, the most intuitive being “atom-centered”, (104;109;110;111)

which construct molecular orbitals or bands from some linear combination of

atomic orbitals. In addition to inclusion of valence orbitals, other functions
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can be added to describe diffuse electron density far from the nuclei (useful for

noncovalent interactions and anions) and electronic polarization (arising from

chemical interactions between atoms with different electronegativities). The most

common basis in solid-state calculations is a series of plane-waves, (73;112) which

simultaneously enable the description of the bonding interactions within the unit

cell while also enabling sampling of long-range interactions beyond the periodic

boundary condition. The basic assumption for the remainder of this Review is

that a sufficiently large basis set has been used to properly account for diffuse and

polarized electron density. (113)

One further assumption for charge analysis and other postprocessing

techniques is a preconverged wave function generated from a self-consistent field

(SCF) routine, (114) i.e., for a given geometry, the electronic component of the

Hamiltonian has reached the minimum value within a certain tolerance. The

following subsection will serve to detail functional and basis set selection when

applying electronic structure theory to MOFs.

Functional Selection. As discussed previously, DFT is founded on the

theorems of Hohenberg and Kohn, which purport that the energy of a chemical

system is a direct function of the ground-state electron density. (91) In practice,

the Kohn-Sham (56) formalism is used to construct the ground-state electron

density of interacting electrons in a static external potential from density functions

describing individual, noninteracting electrons. The main shortcoming of DFT,

however, is that there is no known functional that satisfies the Hohenberg and

Kohn theorem, and hence we are unable to compute the exact energy or ground-

state density of a system. Instead, a range of available functionals exist that vary

in their approximate treatment of the exchange-correlation term of the Hamiltonian
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(where exchange and correlation are purely quantum mechanical effects that can

be thought of as a repulsive and attractive term, respectively); the challenge lies

in identifying which functional provides the best electron density or energy for a

particular chemical system based on the parameters considered during functional

construction and the dominant physics present in the MOF. There is ongoing

dialogue about the relative advantages of employing a functional parametrized to

better approximate the “real” electron density, or “real” energy; however, there is

room in electronic structure modeling for both philosophies. (115)

Within the DFT construct, functionals are divided into broad classes based

on their treatment of the electron density gradient; this hierarchy of electronic

structure approaches is sometimes referred to as Jacob’s ladder, Figure 4. (116;117)

The bottom rung of the ladder begins with the local (spin) density approximation

(LDA, LSDA), which assumes a homogeneous distribution of electrons throughout

the material. LDA functionals therefore are readily applied to metals, i.e., materials

with nonzero density of states (DOS) at the Fermi level (EF ), such as bulk

platinum. Some common LDA functionals include VWN (118) and PZ81. (119)

However, it would be misguided to apply any variation of LDA to the subset of

metallic MOFs (120;121;122;123) (e.g., Ni3(HITP)2),
(124;125) despite their nonzero DOS

at EF . The electron density is not homogeneously distributed throughout the

scaffold; the electron density on the Ni and N are vastly different and the bond

will be improperly described.

Instead, the generalized gradient approximation (GGA) (126;127) and related

methods are applied to systems with varying electron density (e.g., molecules,

MOFs, inorganic clusters, etc.). GGA considers both the electron density and

the gradient of the electron density when recovering energetic values and hence

37



Figure 4. Jacob’s ladder of functionals where accuracy increases with
computational cost. Some common functionals corresponding with each rung are
listed on the right.

enables better descriptions of systems with inhomogeneous charge density, such

as metal-organic hybrids. Familiar “pure” GGA functionals include PBE (54)

and PW91, (127) and these have been widely invoked in both the molecular and

solid-state communities for both structure and derivative electronic property

analysis. (128;129)

Still, the core shortcoming of all standard GGA approaches (and DFT

approaches in general) is their inability to correctly describe both electron exchange

and correlation; (130) a variety of more extravagant GGA methods combining

progressively more complicated mathematics have been implemented in order

to better describe these two key components of electronic structure theory. So-

called meta-GGA functionals (such as M06-L (131) and TPSS (132) historically

invoke both the first and second derivative of the electron density to describe the

system, while hybrid GGA functionals include some amount of exact electron

exchange as computed with the Hartree-Fock exchange functional (HF). The

GGA functional PBE, for example, becomes the hybrid functional PBE0 (133) upon

addition of 25same functional can have a screened potential added, becoming
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HSE06. (134) Conversely, the most ubiquitous hybrid GGA functional, B3LYP, (135)

has components of exchange computed with HF, LDA / VWN, and GGA / B, (136)

in addition to the exchange and correlation computed at the GGA / LYP (53) level.

Given the diverse library of functionals to choose from, it is unsurprising

that both experimentalists and theorists can feel overwhelmed in the early stages

of model construction. Indeed, the most common practice is to invoke a well-

documented functional known to recover the appropriate electron density or

energy for similar chemical systems. With this in mind, hybrid- GGA methods

are widely viewed as the minimum level of theory necessary to describe the

electronic structure of systems where exchange and correlation play a major role

in the electronic structure. This is particularly pertinent in MOFs containing

spin-polarized transition metals, (137) where exchange interactions not only play a

leading role in the energy of the material, but also define the nature of the frontier

orbitals/bands, as well as the band gap of semiconducting materials. In light of

these considerations, by far the most common hybrid functionals used in MOF

modeling are PBE0, HSE06, B3LYP, M06, and variations thereof, (138) despite their

significant increase in computational demand. (139)

Rather than boldly sticking with one functional, systematic functional

analyses may be performed to identify the optimal exchange-correlation treatment

for each material or study. DFT results can benchmarked to quantities derived

from experiment or higher level ab initio calculations such as band gap energy, (140)

ionization potential, (98) lattice parameters, (93) and formation enthalpies. (3) One

study monitored the incorporation of bipyridine dicarboxylate (bipydc) linkers into

UiO-67 (a MOF formally made from biphenyldicarboxylate, bpdc) by comparison

of computed band gap and experimental lattice parameter contraction. There,
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Figure 5. Linear correlation between computed electronic band gap and bipyridine
dicarboylate (bipydc) incorporation in Zr-UiO-67. The HSE06 (top) and PBEsol
(bottom) functionals show qualitatively the same trend, but PBEsol consistently
underestimates the band gap by 1 eV. The gray star represents the extrapolated
value derived from the best fit line to account for a computational limitation. Data
obtained from ref (1). Figure reprinted with permission from ref. (2).

they found excellent agreement between experimental lattice parameters and unit

cells optimized with the PBE functional corrected for solids (PBEsol), Figure 5. (1)

In the same study, the PBEsol (141) yielded consistently smaller band gaps than

HSE06 (HSE06 was routinely greater by 1 eV), but qualitatively comparable

trends in electronic differences as a function of substitution are observed. A similar

conclusion was reached in another study examining a larger selection of MOFs

with an analogous metal and ligand chemistry, Figure 6. (3) The data in Figures

5 and 6 also highlight a common theme in the literature: GGA functionals tend

to underestimate both the experimental and hybrid-computed band gap, and the

addition of exact (HF) exchange is necessary to recover more realistic electronic

band gaps. (142;143;144) In sum, assuming a sufficiently high-fidelity basis set, pure

GGA functionals are the lowest level of theory required to provide a reasonable

electronic description of most MOFs. However, the recovery of experimental

semiconducting properties requires the incorporation of some exact exchange.
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Figure 6. Computed electronic band gaps of HKUST-1, UiO-67, UiO-66, Zn-BTC,
and linker functionalized derivatives. HSE06 systematically predicts larger band
gap energies than PBE, more closely matching the experimental values. Data
obtained from ref (3). Figure reprinted with permission from ref. (2).

Sometimes, however, the disagreement between experiment and theory is

more subtly hidden in poorly described interactions such as long-range dispersion;

the addition of correctional terms can also help empirically tune a DFT output to

match an experimental data set or simply add additional physics that may better

describe the system. These additional Hamiltonian terms were not necessary in the

models presented in this thesis, and, thus, are outside the scope of this discussion.

Electronic structure modeling of extended solids

With the exception of rare amorphous variants, (145;146;147;148;149;150;151)

MOFs are ordered solids. Thus, conventional solid-state modeling techniques

can be applied where MOF crystals possess symmetry operations that enable

the description of the extended material using a repeating unit. This section is

intended to provide a background and some general calculation considerations when
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Figure 7. As size of a chemical system increases toward an infinite solid, the
number of molecular orbitals becomes very large. For high symmetry materials,
the crystallite can be described using a smaller, repeating unit, whose projection
through reciprocal space generates electronic bands. Figure reprinted with
permission from ref. (2).

modeling periodic MOF properties, including their electronic band gaps, electronic

band structures, and DOS, as well as their lattice vibrations. Finally, we discuss

MOFs with imperfections, those that host vacancies and interstitials.

Periodic Models and k-Points. Viewing MOFs as an extended array

of molecules, each component (i.e., the linker and the prenucleated node) contains

a family of molecular orbitals. Upon self-assembly of the MOF these electrons

mix to form new molecular orbitals that expand over larger and larger regions of

space. In principle, one could model a complete MOF crystallite (i.e., a very large

chemical system as a molecule) and obtain the exact electron energetics and spatial

distributions for all possible molecular orbitals in the material. Owing to symmetry,

however, several of the molecular orbitals in the crystallite will be very similar in

energy and centered on the same atoms. These geometric degeneracies enable a

reduction in computational cost by modeling the associated electrons as interacting

periodically in bands, Figure 7.

42



Electronic bands can be thought of as delocalized molecular orbitals whose

energy depends on the extent of electronic interaction in crystallographic directions

within the crystal. Indeed, Bloch’s Theorem purports that for a nondefective

material, the periodicity of the lattice describes the periodicity of the overall wave

function. (152) Information on both the structural and electronic properties of a bulk

sample can therefore be gleaned from a single unit cell (although the approach does

not provide information about the surface chemistry at the grain boundaries of a

crystallite). One way of thinking about the construction of bands in solids is to

first create molecular orbitals for all atoms contained within the computational

cell, then, using harmonics, the electronic interactions with neighboring cells are

computed. (153) By doing so, both the electronic properties of the discrete unit

cell are recovered, as well as the influence of longer ranged (de)localization and

electrostatics, which can only be observed by sampling beyond one computational

cell. (154)

While it is convenient to visualize bands as large delocalized molecular

orbitals in real space, they are often computed in reciprocal space (i.e. k -space)

using Bloch’s theorem paired with a basis set constructed from interfering

planewaves to determine the combinations and populations of electronics bands.

k -space vectors can be loosely thought to sample long-range interactions in the

crystallographic directions defined by the k -vector.

From experimental convention, a crystallographic unit cell (or conventional

cell) contains the smallest chemical representation of a system that exhibits the

same overall symmetry as the pristine lattice. Calculations using this geometry,

composition, and associated lattice parameters will certainly be suitable for direct

calculation of electronic properties, however, some space groups offer symmetry

43



Figure 8. Although the smallest computational cell can save resources, an improper
model may be recovered if a chemical interaction permeates beyond a single
geometric cell. For example, (a) structural distortions are sometimes captured
in temperature independent DFT (the ground state may feature titling of nodes); (4)

and (b) magnetic ordering can be challenging if the unit cell contains an odd
number of coupling metals (for example, the unit cell of Co2Cl2bis(1H-1,2,3-
triazolo[4,5-b],[4,5-i ])dibenzo[1,4]dioxin), (BTDD), contains 3 Co- (II), which do
prefer to order antiferromagnetically (5)). Figure reprinted with permission from
ref. (2).

related primitive cells that contain a smaller repeating crystalline unit of lower

symmetry. (155) Typically, calculations are run on the primitive cell unless the unit

cell is required to capture magnetic ordering or structural deformations that cannot

be described using the smallest repeating unit, some examples of which are shown

in Figure 8.

Every ordered MOF crystallizes into one of 230 unique space groups, (156)

each containing a series of high symmetry k-points. (157) The lowest crystal

symmetry, P1, features no internal symmetry operations, all atoms in the cell
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are unique and must be explicitly computed, and hence there is only one high

symmetry k -point in the first Brillouin zone, Γ. (157) Chemically, the Γ-point is the

equivalent of projecting the molecular orbitals contained within the unit cell in

three dimensions: the electronics of the material are governed by the interactions

captured explicitly within the computational cell rather than their interactions with

neighboring cells. MOFs typically crystallize in high symmetry space groups, (152)

and often feature more than one symmetrically unique k -point that will contribute

to the total energy of the system, and hence should be sampled during the SCF.

Within crystals that feature anisotropic bonding (for example, graphene,

2D MOFs, etc.) certain crystallographic directions contribute more significantly

to the bonding and stabilization of the system than others. In the 2D examples,

the in-plane and out-of-plane interactions will contribute differently and sometimes

seemingly unpredictably to the total energy of the system. It is hence good practice

to sample as many k -points as possible to ensure a more tightly converged total

electronic energy.

The selection of k-points depends on the crystal symmetry, and these k-

points traverse the first Brillouin zone. (158) In practice, the contribution of each

sampled k -point is taken as a weighted average (determined by symmetry) to

recover the total system energy. The position of sampled k -points through the first

Brillouin zone is computed with one of two philosophically dissimilar approaches:

a Γ-centered Monkhorst-Pack, or a non- Γ-centered Monkhorst-Pack k -grid. The

main difference is that the former forces sampling of the Γ, while the latter does

not guarantee that any high symmetry points are sampled. (159) Crystal symmetry

thus helps inform two key computational considerations: (i) the feasibility of

using a computational primitive cell, and (ii) the k -path to explicitly examine how
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electron energies changed in the extended solid. Almost all of these considerations

are enabled in freely available software, and high symmetry points of the first

Brillouin zone can be found in online databases like the Bilbao Crystallographic

Server. (157)

In principle, one would compute the total energy of a system by integrating

over the entire first Brillouin zone or approximating the integration with the

summation of a very large number of k -points. In practice, the total energy is

asymptotically related to the number of k -points and a convergence test is required

to elucidate when a sufficiently dense grid has been invoked. We can distill the key

considerations for k -grid generation and their impact on the material properties

down to the following:

– In Bloch’s theorem, planewave cutoff (i.e., the basis set) and the k -points are

independent. Yet both affect the total energy of the system. Hence, to obtain

converged results, it is good practice to benchmark the k-grid and basis set

separately.

– Generally, sampling additional k -points provides better descriptions of long-

range orbital interactions within a crystal system. Increasing k -grid density

does not always reduce the total energy of the system that depends on the

nature of the bonding and antibonding orbitals. (160) It is therefore difficult to

predict the impact on total energy without first running the calculation.

– Empirically, a k-grid with a density of 25x (lattice parameter)−1 provides

an estimate of the k -point density required for a reasonable sampling of

electronic interactions within the crystal. (155) Computational feasibility of the

resultant grids relies on large lattice parameters, which typically infer large
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numbers of explicitly defined chemical interactions within the unit cell, the

extent of electronic interactions rapidly diminishes in real space, hence why

large crystals often show little dependence on increased k-point density. There

is a trade-off between modeling large systems with many explicit electrons,

versus small systems with many explicit k-points. Moreover, while a reduction

to the primitive cell vastly reduces the Slater determinant’s size, it comes

at the penalty of requiring several additional k -points (which contribute

significantly to the computational time).

– In MOF chemistry, it is common to perform geometric optimizations with a

sufficient k -grid at a lower level of theory, then refine the electronic structure

with a singlepoint energy calculation at a higher level of theory; the size

of the k -grid in either case is determined by MOF symmetry and resource

availability.

– Importantly, there is no formal relationship between lattice parameter and

k-point density; rather, large unit cells often contain sufficient descriptions of

strong interactions, and hence long-range sampling does not overly alter the

energetics of the system. Regardless of whether this is true for all MOFs, this

procedure produces a highly reproducible systematic error in the total energy

of the system that is acceptable in many cases.

– Most MOFs crystallize in high symmetry space groups, and it is good practice

to include all high symmetry kpoints in the computation of the total energy

of the system, and ideally during the optimization routine.

Regardless of how many k -points are selected for the optimization routine,

the material must be geometrically equilibrated (and the SCF must be converged)
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to ensure that the energetics are computed without spurious numerical fluctuation.

A schematic of the general computational approach for solid-state materials is

shown in Figure 9. Assuming that a structure has been optimized, the following

sections discuss the computable properties and utility of using a solid-state model

for MOF systems.

Electronic Band Gap. The ionic lattices of most MOFs feature a

discrete electronic band gap, while some can be described as metallic (classified

as having nonzero DOS at the Fermi level). (161) Within the subgroup of materials

that feature electronic band gaps, their conductive properties depend on numerous

other properties (e.g., the material’s defect chemistry, the mobility of the charges,

the electronic band gap, etc.). Because standard solid-state computations omit

temperature, and without an exhaustive defect analysis, we are unable to assign the

position of the Fermi level. In light of this, MOFs are largely insulating materials,

but we note that they are interchangeably referred to as semiconductors in the

literature. (162;163;164;165)

The fundamental energy gap, Eg, is defined by the lowest energy occupied-

to-unoccupied transition in a system (independent of whether it is symmetry

allowed); (166) its magnitude is the difference in energy between the VBM and

CBM. Because of a derivative discontinuity and other localization errors associated

with the exchange potential in semiconducting systems, GGA functionals

systematically underestimate MOF band gaps. (167;168;169) Empirically, this

systematic underestimation can be improved by incorporating a component of exact

HF exchange into the Hamiltonian. (170;171) However, the computational expense

associated with hybrid functionals (172) prompts the recovery of semiconducting
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Figure 9. General computational approach used to obtain electronic structure
properties from solid-state structures. (a) Beginning with an experimentally
obtained crystal structure, partial occupancies must be resolved. Then, where
applicable, protons must be added to charge balance the cell, in effect establishing
the oxidation state of the metals. Extrinsic solvent may be removed to simulate
the activated MOF. Symmetry can then be enforced and a computational primitive
cell may be available. (b) The structure can then be equilibrated, and higher level
electronic structure properties can be obtained by sampling the first Brillouin zone,
including electronic band structures and corresponding density of states. Figure
reprinted with permission from ref. (2).
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properties from single-point calculations at this level of theory on a structure

obtained using GGA. (173)

MOFs with bands that exhibit different energies as a function of k -space

(i.e., band dispersion) may exhibit an indirect band gap, schematically presented in

Figure 10, where the VBM and CBM occur at different points in reciprocal space.

In such cases, Γ-point sampling is insufficient to capture the dominant electronic

influences. The lowest energy transition in an indirect band gap material requires

the coupling of photon absorption/ emission to a phonon mode in order to conserve

energy and momentum because the wave vector at the top of the valence band

does not match the wave vector at the bottom of the conduction band. (174) Indirect

band gaps thus diminish the intensity but extend the lifetime of formed excitons by

preventing recombination; indirect band gaps are desirable in photoactive solids for

the enhancement of quantum efficiency. (175) Although there are almost no reported

indirectband MOFs, (176;177) the changing band gap energy in reciprocal space is a

phenomenon ripe for exploration.

Certainly, most MOFs feature wide band gaps and highly localized

electronic structures that give rise to flat bands with well-defined orbital

contributions to the frontier states and direct gaps. The localization of electrons

makes MOFs intriguing for photocatalytic applications, (178;179;180;181;182;183) as

it affords one route toward accessing dense populations of high energy electrons

localized on transiently reduced motifs. (184;185) Moreover, electronic structure may

be tuned to desirable bulk properties, facilitated by the inherent modularity of

MOFs.

Although the nature of band edges is material/composition dependent, the

electronic band gap of a MOF can be modified by metathesis and functionalization
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Figure 10. An illustration of the band gap in a semiconductor as a function of
reciprocal space when the CBM and VBM are at the same point in reciprocal space
providing a direct band gap and when they are at different points in reciprocal
space creating an indirect minimum absorption energy. Figure reprinted with
permissions from ref. (2).

of the linker and/or inorganic node. There are four possible frontier orbital

orientations in MOFs, wherein the band edges are defined by (i) ligand-to-ligand,

(ii) ligand-to-metal, (iii) metal-to-ligand, or (iv) metal-to-metal excitations,

ultimately dictated by the material composition. Countless examples of DFT

screenings are reported for band gap modulation via metal (97;186;187;188;189;190;191)

and linker exchange (102;192;193;194;195;196;197;198;199;200) across the gamut of MOFs.

MOF-5, which is a pivotal part of Chapter 5 for example, has been subject to

numerous theoretical studies systematically exchanging components of the inorganic

node (188;191;201;202;203;204) or the linker. (205;206;207;208)

Electronic Band Structures. Electronic band structures are a plot of

electronic energy as a function of k -space (i.e., electron momentum). The shape of

the bands provides tremendous amounts of information about material properties,

including the potential to transport charges, overall material stability and, to the

trained eye, even the composition. Given MOFs are made from discrete molecules,
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it is somewhat unsurprising most feature localized (i.e., flat) electronic bands

that facilitate the use of cluster models. However, through development with a

complement of experiment and theory, there are increasing examples of MOFs

featuring curved (i.e., dispersive) bands and interesting MOF applications that

rely on the description of bulk electronic structure. Thus, this section will discuss

the calculation and implications of MOF electronic band structures.

The electronic band structure is simply constructed by sampling the energy

of electrons at various k -points. The difference in energy between the bottom

and top of the band at two dissimilar k -points is referred to as the bandwidth,

or band dispersion, and is essentially a measure of the “curviness” of the bands.

Higher band dispersion means more mobile charge carriers and also indicates

something about the extent of orbital overlap and long-range interactions in that

crystallographic vector. Because these plots ultimately depict electron momentum,

the second derivative of a band near a high symmetry k -point (sometimes called

special points) yields the effective mass of a charge carrier in that band.

Perhaps it is somewhat intuitive that a highly symmetric crystal would

feature a large degree of electronic degeneracy within the unit cell; it is less

intuitive to imagine how crystal symmetry affects the bulk electronic properties,

i.e., those that extend beyond a single computational cell. As mentioned in the

previous section, the material should be properly equilibrated using all of the high

symmetry k -points in addition to a dense grid between them. Practically, however,

this is often impossible, but also unnecessary; generally flat-banded materials (like

MOFs) can be described with Γ-only sampling because the insulating interface

between the metal and ligand is sufficiently accounted for by explicit orbital

interactions within the computational unit cell. (209;210;211) It is, however, typically
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good practice to sample all labeled high symmetry k-points for the given space

group, (156;212;213) as presented in the Bilbao Crystallographic Server, (157) ensuring

that the total energy has included all important long-range interactions. (214)

Although the chemical connectivity in MOFs is usually highly symmetric,

MOFs themselves have highly anisotropic electron density through the

crystallographic unit cell: there are pores! Thus, it is expected that the electronic

band structures should contain some interesting information, albeit subtle, arising

from the periodic absences of electron density. Indeed, one paradigm in the

conductive MOF literature is whether the charge carriers are more delocalized

through-space or through-bonds. (215;216) The band structure sheds light on this.

Consider two similar scaffolds made from π-stacked triphenylene-based linkers:

in the case of Ln(hexahydroxytriphenylene), the inorganic nodes form continuous

ionic bonds throughout the material, (217) whereas in Ni3(HITP)2 the sheets are

nonbonded. In both cases, the greatest band curvature is found to be centered

on the linker, but associated with the out-of-plane direction. In other words, the

conductivity mode is “through space”. (215;216) The delineation of “through-bond”

or “through space” should not be confused with that between band or hopping

conduction, which are separate mechanisms that can be distinguished by the

presence of an activation energy associated with the conduction. (215;218;219)

Electronic band structure calculations primarily serve to graphically identify

crystallographic directions in which electrons are highly delocalized and strongly

interacting. Such plots contain a significant amount of information when paired

with the crystal structure and a map of the high symmetry kpoints for the MOFs

parent space group. The analysis can be further complimented by quantitative
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analysis of the electronic band dispersion (a concept we have already introduced),

and most importantly, the density of states.

Electronic Band Dispersion. Band dispersion is the difference in

energy of a band between two high symmetry points in reciprocal space. Greater

dispersion is thought to indicate the material may be a better electrical conductor

in that direction. (220) Perhaps a more apt description is to think of dispersion (or

curvature) as an indicator of electron and hole delocalization. In this mindset,

the “effective mass” of a charge carrier can be computed to quantify the extent

of delocalization associated with a band. In doing so, the mass of a free charge

carrier in vacuum, m0, is renormalized to describe its behavior in the periodic

potential of the MOF. The second derivative of a band near a special point or

crossing the Fermi-level yields the effective mass, m∗, of the electron or hole that

would populate that band via

1

m∗
=

1

~
∂2E(k)

∂k2
(2.106)

where ~ is Planck’s constant. (221) In practice, this is readily solved by fitting a

parabola to a series of k-points very near the point of interest. Often, practitioners

will present both “heavy” and “light” effective masses, corresponding to the bands

with the least and most curvature, respectively.

A final consideration in the computation of the electronic band structure

is that while the computed band dispersion is recovered from temperature-

independent DFT, the experimental observation of the band dispersion itself

does depend on temperature. Thus, dispersion energies less than kT (i.e., the

Boltzmann distribution at the operating temperature) are lost by the thermal

smearing of states and can be considered essentially flat; the precision enabled

by DFT may cause the appearance of subtle electronic phenomena, such as an
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indirect band gap, that are inconsequential under realistic thermal conditions. This

particular issue was highlighted in a recent publication, where the authors predict

band dispersion on the order of kT (<30 meV) and attributed the observable bulk

properties of Zn- SURMOF-2 (222) to this dispersion and its indirect band gap.

While it is difficult to imagine a dispersion of this magnitude being a factor at

room temperature, it does highlight that periodic DFT is precise and does enable

high fidelity studies of dissimilar electronic states in materials with subtly changing

energetics.

Density of States. DOS plots are critical to assessing electronic

band parentage, providing information about the type of charge transport that

may exist, be it ligand-to-ligand, metal-to-ligand, ligand-to-metal, or metal-to-

metal fundamental gap. Hence, together with the electronic band structure and

analysis of band dispersion, the DOS paints a comprehensive picture of the MOF’s

anticipated function. The integral of the DOS indicates how many electrons

occupy that energy level, and its parentage informs which atoms/ orbitals are

contributing to that energy level. Often, DOS plots are partitioned into atomic

specific contributions (atom-projected DOS, pDOS) or orbital specific contributions

(orbital-projected DOS), providing tremendous amount of insight into the nature

of the bands in a material, as well as a lens through which the effects of linker

functionalization, compositional substitutions, and interstitial influences may be

assessed. (194) (192;223;224) The DOS is computed for all sampled k -points, enabling

practitioners to examine the DOS at a single k -point, or the sum of them. The

former can be helpful when MOF bands cross one another in k -space and has been

used fruitfully inMOF calculations for systems with large unit cells. (225) In spin

polarized materials, the DOS representation may be further partitioned by spin.
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This knowledge is valuable because the spin bias afforded by the high degree of

spinsplitting is advantageous for spintronic devices that require precise control over

electron dipole orientation. (226)

DOS plots have also been helpful in determining the directionality of charge

transport in conductive MOFs. Charge hopping is likely the mechanism of electron

transport in most MOFs, commonly promoted accessing mixed valency through

either partial redox of the metal/linker or via photoexcitation. (227;228;229;230;231)

In sum, the electronic DOS provides a detailed view of the atomistic

contributions to energy levels, which can be quite complex for large chemical

systems. Information gleaned from these analyses gives modelers the ability

to predict the locality and direction of electron transfer, which are important

in catalytic applications. The DOS also helps classify a material as a metal or

semiconductor/insulator based on the absence or presence of density at the Fermi

level. However, this section only focused on the utility and application of electronic

DOS, which can be identified at a single k -point or summed over the entire kgrid.

A similar sampling and DOS analysis can be performed on vibrational band

structures (i.e., phonon bands), where the DOS then describes the population of

oscillators, a dynamic phenomenon.

Defects. MOFs are largely been treated as pristine, defect-free

extended solids. Indeed, periodic boundary conditions demand crystallinity. This

approximation is deeply rooted in the characterization of MOFs, as evidenced

by the procedures for obtaining the crystal structure, pore volume, and gas

uptake properties, which typically assume a pristine architecture. (232) However,

defect formation is entropically favorable, (233) thus all materials contain defects.

Indeed, significant effort has been invested in minimizing experimental defect
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Figure 11. Node or linker vacancies result in charge balancing ions bound to
the vacant sites (e.g., a proton or formate). Both nodes and linkers can also be
redox active forming structurally bound charge carriers. Figure reprinted with
permissions from ref. (2).

concentrations, (234) but defects can also give rise to highly desirable properties

(including the formation of charge carriers via doping pathways, open metal sites

for catalysis, creating chromophores, (235) etc.), (236) and as such are an emerging

area of interest to the MOF field. (237)

In conventional crystalline materials (e.g., Si) there are three general

types of defects: (i) vacancies, where an atom is missing from the lattice, (ii)

substitutions, where a lattice atom is exchanged for one that does not normally

occupy that lattice site, and (iii) interstitials, where an additional atom is in a

typically unfilled lattice site. (234;238) MOFs regularly exhibit vacancies in the form

of missing nodes or linkers, (239) and substitutions through isoreticular chemistry

or postsynthetic metathesis, Figure 11. (240) Further, MOFs can play host to a

variety of species within their pores, which can be considered interstitials. Each

of these defect types may spawn additional functionality and modularity to the

parent framework, the most catalogued of which is the liberation of active sites for

catalysis via linker vacancies. (241)

Pairs or groups of these lattice point defects yield further terminology:

Frenkel and Schottky defects. A Frenkel defect is essentially a vacancy and
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compensatory interstitial that yield a charge neutral material, while Schottky

defects are defined by multiple vacancies that sum to zero charge. Because MOFs

are ionic, both Frenkel and Schottky defects are common. For example, a combined

node and linker vacancy may be considered a Schottky defect and a linker omission

passivated by an additional formate may be considered a Frenkel defect. Moreover,

exotic Frenkel defects may be installed by including a charge balancing ion within

the pore after the redox of a MOF component (Figure 11); this is uniquely enabled

in MOFs considering they contain large amounts of vacuous space to support the

ions. (242;243;244;245;246)

Because defects are often enthalpically disfavored, and installation is

driven by entropy, there is a concentration limit at which the free energy of the

formation of additional defects becomes positive. The defect concentration limit

depends on the host material, but conventional semiconductors are limited to

only a few percent. (247) Because of their low lattice density and limited electronic

delocalization, MOFs can uniquely exceed these concentrations by at least an order

of magnitude, sustaining very high vacancy populations. (248) For example, MUF-32,

can reversibly reach linker vacancy defect concentrations of 80%. (249) These high

defect concentrations come as a mixed blessing because on one hand we are able

to model them in a crystallographic unit cell and not have to worry about their

effective concentration, but we must worry about the impact of artificial defect

periodicity. Hence, one challenge with pristine models is that they neglect the

electronic impact of defects present in real systems.

Defects are discussed in further detail in the following chapters. Specifically,

vacancies are explored in Chapter 4, and interstitials are discussed in Chapter 5.
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CHAPTER III

CHEMICAL SIZE OF ATOMS

Introduction

Atomic and molecular shape and size play a critical role in chemistry.

The most familiar method was formalized by Bondi: the van der Waal radii and

volume of atoms and molecules. However, the rigid sphere approximation of atoms

fails to describe highly polarized chemical systems. To overcome this challenge,

numerous other approaches based on electron density have been presented, but

these approaches intrinsically struggle to describe the surface area and volume

off cations. Herein, we revisit the timeless problem of assessing sizes of atoms

and molecules, through examination of the electric field produced by atoms and

molecules. In this way, we are able to recover chemical volumes and surface areas

of simple density functional theory (DFT) calculations. We perform a series

of benchmarks to ensure the generality of our approach and demonstrate the

electric field calculations provide unique insights into quantifying sizes of ions

and polar molecules. Our method further lays the foundation for the development

of analytical interaction energies based on assessment of the Coulomb potential

provided by molecular systems, while providing a rigorous approach to study size

dynamics as a function of chemical environment.

Method Description

To begin, we have developed a post-processing DFT software, STREUSEL

(Surface Topology REcovery Using Sampling of the ELectric field), to recover

volumes and surface areas of atoms, molecules, and materials, from their electric

field. Since electric field is defined as the negative gradient of the electrostatic

potential, the electric field embodies the direction of greatest increase in
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electrostatic potential. This is significant because the increased slope of the electric

field enables us to more clearly define the edge of a chemical system in space, while

additionally accounting for the long-range interactions observed with cations.

We define the edge of a chemical system as the point in space where there is

“near-zero” variance in the electric field magnitude. Due to computation efficiency,

DFT calculations return the electrostatic potential values on the order of 10−6

eV (2.306x10−5 kcal mol−1), thus we consider a change of less than 10−5 eV

(2.306x10−5 kcal mol−1) to be the most precise we can obtain. This definition is

justifiable thermodynamicall – a typical van der Waals interaction is on the order of

0.9560-1.912 kcal mol−1. (250;251) out cutoff is significantly smaller and thus able to

assess these weak interactions. Indeed, the utility of “cutoffs” within chemical size

quantification methodologies is not unheard of. (24;51;52)

Volumetric pixel resolution. In order to employ this definition of

size and identify the chemical surface we use the electrostatic potential provided by

DFT at a discrete number of volumetric pixels (voxels). The result of this sampling

procedure is thus dependent on the size of the voxels (i.e. resolution of the

electrostatic potential calculation), at the tradeoff of an exponential relationship

between time-to-volume/surface area solution and voxel resolution.

The electrostatic potential tensors are extracted from the Gaussian

optimization calculations. The dimension of the tensor (number of elements per

side) and the length (in Euclidean space) of each side is variable; the resolution is

best represented as the real space volume that each element in the tensor represents

(holding the total length of the computational box constant). At large (> 0.02

Å3) voxel volume is on the order of the volume of the chemical species, resulting in

artificially large calculated volumes.
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Figure 12. Decreasing the volumetric pixel volume increases the time-to-solution
(dashed curves) exponentially, yet minimizes the accuracy of the calculated
volume (solid curves). Thus, we take the kneepoint of the time curve as the ideal
volumetric pixel volume, 0.008 Å3.

To identify the optimal resolution (maximizing the voxel volume, while

minimizing the time-to-solution) the time-to-solution and calculated volumes were

calculated for four representative models (N2, O2, N, and O), Figure 12.

From these data, we find a voxel volume of Å3 to yield a desirable trad-off

between computation time and volumetric property resolution. This voxel volume

is reasonable, given a typical chemical system is on the order of Å.

Functional Benchmarking

As with all electronic structure methods, the size and shape of molecules

depends on both the functional and basis set used in the model development.

Recently, a systematic assessment of 128 DFT functionals canvassed their

performance for the recovery of total energy, and, separately, electron density. (115)

While that paper revealed a significant energetic and structure dependence on

functional, it did not directly emphasize the functional also changes the shape of

the molecules. Since atomic position is determined by electron density, and electron
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Figure 13. Calculated STREUSEL volumes of H2 and CH4 optimized with each
basis set (x-axis), normalized to the volume obtained from the aug-cc-pVTZ (y-
axis). The normalized volumes represent the precision of each basis set, a metric of
how close the returned electronic structure is to that obtained using aug-cc-pVTZ.
aug-cc-PVTZ is considered sufficiently large – as demonstrated by the convergence
of normalized volumes with larger basis sets (i.e. cc-pVQZ and aug-cc-pVQZ.

density is determined by atomic position (i.e. the self-consistent field and geometry

optimization routine), there is therefore an inherent dependence on functional

selection in our size quantification approach. (252)

To elucidate these dependencies, and arrive at an ideal method to recover

size using STREUSEL, we examine fifteen small, neutral molecules (Br2, C2H2,

CH4, Cl2, CNCl, CO2, F2, H2, H2S, N2, NH3, O2, SO2, CO, and H2O) using forty-

nine functionals and a large basis set, aug-cc-pVTZ. (253) We benchmarked the

basis set to ensure that it was sufficient to describe polarized and diffuse electronic

systems, Figure 13. Each molecules’ size is computed using the geometry obtained

from equilibration using the stated functional. These values are compared to the

geometry, volume, and surface area computed with CCSD-full (254;255;256;257) – which

we use as our reference for the exact solution. (115) We also examined the use of
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Figure 14. Calculated STREUSEL volumes of a series of industrially relevant
small molecules optimizes with each functional (y-axis), normalized to the volumes
obtained from the CCSD-full functional (x-axis). The spread of normalized volumes
represents the precision of each functional, a metric of how close the returned
electronic structure is to that obtained using CCSD-full, which is assumed to yield
the exact geometry. The forty-nine functionals are grouped by functional type
(generalized gradient approximation (GGA), generalized gradient exchange (GGE),
hybrid (H), meta (M), hybrid-meta (HM), and local-density approximation (LDA).
To increase resolution, Ne and F2 are not included in this plot and are discussed
extensively in the main text.
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each functional applied to the structure obtained from the CCSD-full calculation

in order to isolate the impact of structure on functional performance (since it is

becoming increasingly routine to perform geometry optimizations using a low level

functional, and higher fidelity electronic structure single point calculations on these

geometries). Individual molecular volumes are presented, Figure 14

While our approach is limited to the upper rungs of Jacob’s ladder, (2;117)

we canvas eight electronic structure classes (ab initio, generalized gradient

approximation (GGA), generalized gradient exchange (GGE), hybrid-GGA (H-

GGA), hybrid-meta-GGA (HM-GGA), local-density approximation (LDA), meta-

GGA (M-GGA), and range separated functionals. A comprehensive list of studied

functionals is presented, Table 2

Perhaps surprisingly, there appears to be no clear trend in prediction of

electric field-based molecular size as we ascend Jacob’s Ladder, Figure 34, i.e.

higher-level DFT functionals do not necessarily outperform lower level ones,

excluding ab initio methods, which are highly accurate. Yet, GGE, HM-GGA, and

M-GGA functionals appear to systematically underestimate molecular volumes,

while the commonly invoked PBE (GGA) functional performs similarly to other

functionals, such as B97-D, X3LYP, BLYP, B3LYP, and TPSSLYP1W.. With

reference to Ref. (115), out approach offers no opinion on whether the theoretical

method should be selected to provide accurate density, or energy, but rather prefer

functionals that correctly recover geometry closest to that obtained from CCSD-

full.

We compare the ability of two size methodologies (Batsanov expanded set of

atomic van der Waals radii and electric field) to recover small molecule volumes

similar to those obtained using CCSD-full, Figure 33. Here, we plot the mean
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Table 2. A comprehensive list of the representative functionals from each
level of theory (ab initio, generalized gradient exchange (GGE), local-density
approximation (LDA), range separated, generalized gradient approximation (GGA),
hybrid-GGA (H-GGA), hybrid-meta-GGA (HM-GGA), and meta-GGA (M-GGA))
examined in this work.

ab initio GGE LDA

CCSD-full (254;255;256;257) BVWN5 (118;258) Xalpha (56;91;259)

MP3 (260;261) G96VWN5 (118;262) LSDA (56;91;118;259)

MP4 (263;264) OVWN5 (118;265;266) SVWN5 (56;91;118;259)

Range Separated GGA H-GGA

wB97XD (267) PBE (92;268) APFD (269)

CAM-B3LYP (270) B97d (271) B1LYP (53;258;272)

BLYP (53;258;272) B3LYP (53;258;272)

BPBE (54;258;268) B3P86 (258)

BPL (258) BHandH (273)

G96LYP (53;264;272) BHandHLYP (273)

HCTH (274;275;276) HSE06
HFB (258) M06 (138)

LC-wPBE (277;278;279) M11 (280)

PBELYP (53;54;268;272) O3LYP (265;266)

PBEPW91 (54;127;268;281;282) HSE03 (134;139)

SLYP (56;91;259) PBE0 (133;283)

SPBE (56;91;259) SOGGA11 (284)

TPSSLYP1W (53;132;272) X3LYP (53;272;285)

mPWPBE (54;268;286) mPW1PBE (286)

mPW3PBE (286)

HM-GGA M-GGA

B1B95 (258) M06L (131)

BMK (287) M11L (288)

TPSSh (132;289;290) TPSS (132)

VSXC (291)

tHCTH (292)
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Figure 15. Calculated STREUSEL volume of a series of industrially-relevant
small molecules optimized with each functional (y-axis), normalized to the volume
obtained from teh CCSD-full functional (x-axis). The spread of normalized volumes
represents the precision of each functional, a metric of how close the returned
electronic structure is to that obtained using CCSD-full, which is assumed to yield
the exact geometry. The forty-nine ffunctionals are grouped by functional type
(generalized gradient approximation (GGA), generalized gradient exchange (GGE),
hybrid (H), meta (M), hybrid-meta (HM), and local-density approximation (LDA).
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absolute deviation across the small molecule volumes for each functional, where the

volume obtained using the CCSD-full optimized geometry is treated as the chosen

measure of central tendency. This provides a statistical metric of similarity between

the volumes recovered using each functional and CCSD-full for two size metrics.

Owing to the rigid sphere approximation and negligible changes in bond lengths

between functionals, we observe van der Waals volumes are least affected by the

functional geometry. The mean absolute deviation of the electric field-based sizes

is larger than those returned by van der Waals; this ultimately indicates that the

electric field is more sensitive to small changes in geometry.

Indeed, deviations in van der Waals volumes for different functionals, Table

3, arises solely from variations in the resulting geometries (i.e. bond lengths),

as opposed to the varying treatments of the electronics. Therefore, it would be

misleading to present an average difference between STREUSEL and van der Waals

derived volumes; the variability of STREUSEL and van der Waals volumes arises

from diferences in atomic radii, which are exacerbated in polyatomic systems.

Unsurprisingly, differences between van der Waals and STREUSEL computed

volumes or the fifteen industrially relevant molecules are not predictable, Table

3.

With respect to Figure 33, we are guided to favor functionals and ab initio

methods displaying the lowest mean absolute deviation from each functional class,

including: MP3 and MP4 (ab initio); CAM-B3LYP (range separated); BMK (HM-

GGA); BHandH, BHandHLYP, and X3LYP (H-GGA); TPSS and VSXC (M-GGA);

BPL and G96LYP (GGA); BVWN5 (GGE); Xalpha (LDA). Generally, however,

higher level functionals return volumes closer to those obtained from CCSD-full

across the three examined size quantification methodologies.
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Figure 16. The mean absolute deviation (y-axis) of two volume methodologies
(STREUSEL, van der Waals) across all of the studied functionals (x-axis). The
mean absolute deviation is averaged across the mean absolute deviation for
industrially relevant small molecules was calculated assuming the volume obtained
from the CCSD-full optimized geometry as the chosen measure of central tendency.
The mean absolute deviation is a metric of how close the returned electronic
structure is to that obtained using CCSD-full, which is assumed to yield the exact
geometry. The forty-nine functionals are grouped by functional type.
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Table 3. Molecular volumes for the relevant small molecules examined in this study
calculated using the van der Waals (vdW) and the STREUSEL volume calculation
methods.

Molecule vdW volume (Å3) STREUSEL volume (Å3) Difference (%)
Ne 11.25 8.260 26.58
F2 22.03 17.25 21.70
O2 22.97 18.77 18.28

H2O 19.28 23.43 -21.52
N2 23.49 19.69 16.18
CO 26.68 22.81 14.51
NH3 22.68 26.16 -15.34
CH4 28.15 25.08 10.91
Kr 26.52 24.26 8.522
H2 10.49 9.690 7.626

C2H2 34.56 32.30 6.539
CO2 33.21 31.49 5.179
Cl2 39.54 37.50 5.159
SO2 39.02 39.94 -2.358
Br2 47.87 46.99 1.838
H2S 29.43 29.49 -0.2039

Neutral and Neutral Bonded Systems. For illustrative purposes,

we use our general approach to predict the radii for the periodic table of non-

interacting atoms, Figure 35. The atomic radii recovered by STREUSEL are

comparable with those presented by Alvarez, (31;32) Boyd, (52) and Rahm, (24) Figure

36. The related Rahm and Boyd radii from electron density cutoff values show

excellent agreement in relative size trends. The largest disagreement occurs at high

atomic numbers where the diffusivity of electrons is often poorly described due

to partial occupancy of higher energy orbitals, and basis set error. (293) Yet, close

similarity of STREUSEL radii with both Rahm and Boyd radii is unsurprising,

considering the shared dependence on a cutoff value derived from DFT.
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Table 4. Molecular volumes (Å3) comparison between Bader, Boyd, van der Waals
and STREUSEL size quantification methods.

Bader Boyd STREUSEL van der Waals
O2 14.93 17.18 18.81 22.91
N2 17.09 19.66 19.69 23.49

Separately, the empirical dependence of both the Alvarez and Pyykkö radii,

which are self-consistently derived bying empirical and calculated data of atoms

in molecules, . (40) It is, thus, unsurprising that STREUSEL radii are considered

larger than Pyykkö radii, which considers atoms in bonded environments. Further,

unscaled Boyd radii represent the upper bound in accepted atomic radii, deriving

radii from vacuous, neutral atomic calculations. (52) The STREUSEL radii yield

neither the upper, nor lower bounds of accepted atomic radii values, indicating that

our approach is not too farfetched.

The reported van der Waals and Pyykkö radii are consistently lower than

those obtained using STREUSEL, Boyd, Rahm or Alvarez. On average, the

resultant volumes computed with STREUSEL are 5% larger than those obtained

from the conventional van der Waals approach. This may be due, in part, to the

crystallographic basis for the atomic radii, which inherently considers atoms in

bonded environments. van der Waals radii are obtained from crystallographic data

under two assumptions: i) contact distances obtained from X-ray diffraction data

are temperature dependent, and ii) atoms are approximated as spheres. (32)

The difference between van der Waals volumes, the electron density

cutoffs presented by Bader and Boyd, and the electric field cutoff recovered using

STREUSEL is illustrated via a volumetric comparison of O2 and N2, Table 4. We

use the example in part to demonstrate that STREUSEL is yielding comparable

size results to other approaches, but also to emphasize that the approach is
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72



sensitive to composition, geometry, and electronic structure. In this case, the

diatomic molecule geometries were obtained from CCSD-full (254;255;256;257) paired

with the aug-cc-pVTZ (253) basis set, as implemented by Gaussian09. (77) Often

O2 and N2 are considered to be near-equivalent in size, (294;295) posing historical

challenges with size-based separations. (296) While greater difference in volume

between O2 and N2 recovered by electron density-based size metrics is expected

considering the dissimilar bonding and electronic configurations of these two gases,

the STREUSEL and Batsanov approaches obtain values aligning with experimental

trends – they are difficult to separate.

Ionic and Ionic Bonded Systems. The primary shortcoming

of the van der Waals size method is the inability to accurately recover sizes

of polar chemical systems. Indeed, polar molecules are instrumental in

essentially all chemistry, but particularly operative in both electrochemistry

and condensed matter systems, such as ionic liquids, where size plays an

important role in determining many physically relevant properties. (297;298)

Beyond molecular examples, size has also been reported to contribute to charge

mobility in transparent oxides, (299) as well as ion mobility in batteries. For

example, INSERT. Indeed, there are several examples of ionic size metrics in

literature, (24;26;27;62;63;64;65;67) each reporting ionic radii of similar magnitude.
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We present the electric field-derived radii or relevant ions, Figure 23.

Unsurprisingly, the STREUSEL ionic radii are larger than the Shannon-Prewitt

radii – since STREUSEL radii consider free ions (i.e. not associated with a

coordination number). As such, divergence between the Shannon-Prewitt size

metric and STREUSEL relates to the type of size that is addressed by each metric

– Shannon-Prewitt focuses on the space that each ion occupies, while STREUSEL

accesses the space that each ion affects.

Interestingly, the electric field-derived ionic radii are highly dependent on

oxidation state. First row transition metals are presented, Figure 38, for a more

detailed examination of competing factors. From general physics we know that

electric fields are generated by charged particles – in the case of ions, there are two

oppositely charged, interacting particles (protons and electrons), which produce a

net field. As oxidation state is changed, the ratio of protons to electrons changes

(since oxidation state is correlated with this charge ratio) and the field propagates

further/closer to the ion center. Thus, ionic radius increases with increasing

number of protons relative to electrons, demonstrated by STREUSEL in Figure

38.

Yet, the STREUSEL ionic radii are independent of coordination. Indeed,

the size of atoms change depending on the field that they are subjected to; this is

evident from the coordination number specifications on many empirically-derived

ionic radii. (32;62;63;64;67) One of the key aspects of our electric field-derived approach

is the ability to theoretically assess a change in size based on proximity to other

electric fields. For example, the field produced by a Li+ should be larger than Li+

in an ion pair, LiCl, simply because the field is proportional to the charge – they

passicate one another. We can demonstrate that the size of ions depends on atomic
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Figure 20. Comparison of proton count (nprotons)-to-electron count (nelectrons) ratio
(x-axis) for the first row transition metals (y-axis) across a series of oxidation states
(colors) featuring data points correlated with calculated STREUSEL ionic radii
(data point size).
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proximity, through progressive increase in bond length in a series of diatomic

molecules (HF, HCl, HBr, LiF, LiCl, LiBr), Figure 21. Here, the volumes of LiF,

LiCl, and LiBr increase with increasing bond length. interestingly, the volumetric

trend of the dissociated diatomics (Li+ + F− > Li+ Cl− > Li+ + Br−) presents

a size trend in opposition with the periodic table atomic size trends. We find

F− is larger than Cl−, which is larger than Br−, due to the efffective core charge

relationship. This is at odds with the generally accepted metric that Br− is the

largest of the three, which is certainly true from an electron density and bonding

perspective, but orthogonal to the inherent reactivity and affected size of the free

ions themselves. From this perspective, the larger of the three anions is expected to

be the most electronegative, F−. We also present the same series of experiments for

gas phase acidic halides, HF, HCl, and HBr, Figure 21. Generally, as the ions are

separated the size increases to a point. However, in the case of a fully dissociated

H+ and X−, the proton no longer possesses electron density, resulting in a terminal

decrease in size after approximately 3-4 Åseparation. These experiments point to

two key observations; i) that size depends on interatomic proximity, and ii) that

the size of ionic systems deviates form rigid size metrics, simply because of charge

(de)shielding.

The effect of interatomic proximity and charge (de)shielding on chemical

system size is further highlighted by the comparison of electric field-derived

and electron density-derived volumes of a series of geometrically equilibrated

diatomic molecules (HF, HCl, HBr, LiF, LiCl, LiBr), Figure 22. Size dependency

on increasing dipole moment is only exhibited by electric field-based size metrics.

Across the gas phase acidic halides, the increase in dipole moment leads to an

increased deviation between the electric field-derived and electron density-derived
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Figure 21. STREUSEL volumes (y-axis) for a series of six diatomic molecules
were calculated for the optimized structures, and a series of models with expanded
bond lengths (x-axis). Individual ion volumes (i.e. Li+, F−, Cl−, and Br−) were
calculated and summed to obtain the maximum volume for each ionic compound.

volumes; the studied gase phase acidic halides are more similar in size than

conventional metrics purport.

While a similar relationship is exhibited in the Li-based diatomic molecules,

there are additional factors at play. The higher valence-to-core charge of the Li+-

based diatomic molecules introduces competing effects, which results in a larger

field-based size. The increased electronegativity of the F− in this instance is

exacerbated, leading to an amplified electric field-derived size – a phenomenon

that is neglected in the electron density-based size calculations. This is further

demonstrated by the relationship between electric field and electronegativity.

Since STREUSEL assigns size based on the electric field produced by the

atoms, which is determined by the Coulombic charge of the atoms, the higher

valence-to-core charge should yield a larger ield. Indeed, we may derive the

mathematical relationship between electric field (E) and electronegativity (χ̄)
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Figure 22. Comparison of molecular volumes for a series of geometrically
equilibrated diatomic molecules with varying dipole moments. Divergence between
electronic density-based size metrics and STREUSEL depends on the system
polarity and atomic electronegativity.

defined by Rahm as the average energy of the electrons, (300)

χ̄ =
1

n

n∑
i=1

niεi (3.1)

where n is the total number of electrons, εi is the energy of the electrons in the

ith level, and ni is the occupancy of the ith level. We can expand this equation to

describe the electronegativity of a region in space, (χ̄(r)), where the total number

of electrons becomes the number density of electrons within region r (n(r)) and the

summation of energy is the energy density of that region (µE(r)). Thus,

χ̄(r) =
µE(r)

n(r)
(3.2)

from electromagnetics, the energy density in free space is occupied by an electric

field (E) is

µE =
1

2
ε0E

2 (3.3)

where ε0 is the permittivity of free space. Combining (3.2) and (3.3) and taking

advantage of the relationship between charge density (ρ(r)) and number density
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(ρ(r) = qn(r))

E(r) =

√
2ρ(r)χ̄(r)

qε0
(3.4)

thus, E ∝
√
χ̄; as χ̄(r) increases, so does E.

This is further demonstrated by comparing the recovered electron density-

based and electric field-based surfaces for this series of diatomic molecules, Figure

23. Owing to the polarity of these molecules, the recovered surfaces are noticeably

aspherical. From an electronic structure perspective, polarity necessitates the use

of basis sets composed of multiple functions. Moreover, while two molecules may

take up a similar amount of space, the shape may be inherently different. The gas

phase acidic halides specifically demonstrate that the cationic components of these

molecules, which are protons and do not possess electron density, generate a field.

We show that the majority of the space occupied by the gas phase acidic diatomic

molecules is centered over the proton – in direct opposition o the electron density-

based surface.

Ionic Liquids. As a more sophisticated example of the utility of

STREUSEL, we can use our approach to assess sizes of molecules and their

ions. Specifically with regard to molecular ions, for example those found in ionic

liquids, molar volume is a critical parameter which is thought to govern a wealth

of physical properties including density, viscosity, and so forth. (301) However,

the density and molar volume should depend on the size of the ions, which itself

depends on whether they are computed together or separately (see the relationship

presented in Figure 21). This is inpart why the van der Waals approach seems

to be widely employed for ion size estimates, (14) because the method implicitly

accounts for intermolecular attractions. Yet, ions are thought to interact via their

fields, which is neglected by van der Waals.
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Figure 23. The Boyd (periwinkle), Bader (mint), and STREUSEL (charcoal)
surfaces of a series of diatomic molecules. All surfaces are plotted using VESTA.
The Boyd surface is depicted at an isosurface value of 0.00015 eÅ−3. The Bader
surface is depicted at an isosurface value of 0.00030 eÅ−3. The STREUSEL surface
is dipicted at an isosurace value relative to the minimum value of the electric field
surface mapped on the electrostatic potential map.

Table 5. Boyd, Bader, Batsanov and STREUSEL-derived molecular
volume (Å3) comparison for two ionic liquids possessing perhalometallate
anions. The sum of single molecule volumes for the individual constituents
([BMIM ]+, [V Cl4]

−, [CoCl4]
2−) are presented, as well as the fully geometry-

optimized ion pair. The percent difference (%) is presented for each ionic liquid
model. BMIM = 1-butyl-3-methylimidazolium

Batsanov Boyd Bader STREUSEL

[BMIM ]+ + [V Cl4]
− (Å3) 268.6 139.3 124.9 246.7

[BMIM ][V Cl4] (Å3) 217.6 114.8 105.1 247.1
Percent Difference (%) 20.98 18.57 17.22 0.1620

2[BMIM ]+ + [CoCl4]
+ (Å3) 430.2 216.3 159.6 404.2

[BMIM ]2[CoCl4] (Å3) 293.6 173.1 195.2 390.1
Percent Difference (%) 37.75 22.19 20.07 3.550
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Consider recently reported ionic liquids featuring inorganic perhalometallate

anionic constituents, Table 5. (302) The rigid sphere approximation returns larger

volumes than the electron density and electric field-based methods. The Bondi

presentation of the van der Waals radii excludes atoms possessing an atomic

number > 10; (28) thus, the revised van der Waals radii presented by Batsanov (30)

were used for these volume calculations of the ionic liquid constituents. Intuitively,

we would expect anions to be larger in field than their neutral counterparts

(Figure 23), thus, it is slightly unexpected that the van der Waals volumes

are the largest across all studied species. This is likely due to the derivation o

Batsanov radii from experimental contact distances coupled with the spherical

atom approximation. (28;30) Indeed, the electron density of the halides in these

anionic compounds is likely drawn towards the transition metal, which would result

in an efectively smaller volume, yet produces a larger field.

Conclusions

From Figure 21, we are initially inclined to think that as molecules are

pulled apart their volume should increase, Yet, this is not the case for polynuclear

systems (e.g. systems containing more than one molecule) presented in Table 5.

Within polynuclear systems there are two competing phenomena determining

the size of the ions, i) anionic and cationic electric fields interacting, leading to

a decrease in size, and ii) electric fields of the anionic and cationic components

are stabilizing each other, ultimately changing each other’s shape. To explore

this nuance, we further examine two ionic liquid systems, [BMIM ][V Cl4] and

[BMIM ]2[CoCl4], and the corresponding geometries of the equilibrated anionic

([V Cl4]
−, [CoCl4]

2−) and cationic ([BMIM ]+) constituents, Table 5 (here BMIM

denotes 1-butyl-3-methylimidazolium). We present the electron density-derived,
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STREUSEL-derived, and Batsanov-derived volumes for the geometry-optimized

polynuclear system, individual components, and the sum of the individual

components.

As a result of the electron density stabilization, the optimized ionic liquid

systems possess a smaller electron density-derived volume than the summed

volumes of their individual counterparts. While it is not due to electron density-

stabilization, the rigid sphere volumes exhibit a similar trend. In this case, it is

because of the rigid sphere overlap between anionic and cationic constituents of

the polynulear system is accounted for in the fully optimized model. STREUSEL,

on the other hand, returns the contact surface (e.g. the extent to which each

component affects its surroundings) of the ionic components. This is evident from

the significantly smaller percent differences between the sum of single molecule

volumes and fully geometry-optimized ion pairs, Table 5. These results indicate

that the STREUSEL size metric is a viable option for assessing size-dependent ionic

liquid properties using free-ion molecular calculations.

These studies reinforce the notion that there is not an ideal size metric for

all chemical systems; rather, compatibility between size metric and chemical system

is paramount. This is exemplified by Figures 21 and 22, where it is evident that

the electric field, and resultant volume, depends on the proximity of the atoms

within the molecule. When the proximity is changed, bonding changes as well,

increasing the complexity of calculating size and necessitating electronic structure-

based methods. And in order to properly compute the size of molecules, from

Figure 33, we observe an exchange-correlation functional dependence – revealing

that ab initio methods, MP3 and MP4, with a minimum triple-zeta basis set return

geometries closest to CCSD-full. However, the more efficient functionals, B1LYP,
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B3LYP, BHandH, BHandHLYP, and CAM-B3LYP, return geometries of adequate

volume with respect to CCSD-full. It is ultimately the duty of the theorist to select

a suitable functional for their system.
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CHAPTER IV

CHEMICAL SIZE OF PORES

Abstract

Thus far, we have discussed the role of size in terms of the volume of

occupied space. As demonstrated in Chapter 3, this of particular interest

to atomic and molecular studies. Yet, the interactions between molecules and

materials is also dependent on size. Consider the binding sites in pharmacology,

or the role of porous materials in gas separation and storage. Indeed, void space

properties (i.e. pore volumes and surface areas) are pivotal to our fundamental

understanding of these processes and, for example, our abilities to predict ideal

host-guest pairs. Within this chapter we discuss the expansion of the STREUSEL

size calculation methodology to that of void spaces within porous materials, namely

MOFs. Here, we examine the disadvantages of the current computational porous

characterization techniques, and verify the performance of STREUSEL within this

arena.

Introduction

Since their conception, (303) metal-organic frameworks (MOFs) have attracted

practitioners from organic, inorganic, and materials disciplines, (304;305;306) each

with a shared interest in physical properties afforded by mixing multitopic

organic linkers and metal ions or clusters (secondary building units, SBUs,

or nodes). (307;308) The combination of SBUs with the multitude of linkers has

enabled a seemingly infinite landscape of materials with modular properties, (309)

all featuring one commonality: crystallographically ordered void spaces. (310;311)

Porosity in conjunction with functional MOF components catalyzed interest

in these materials as atomically precise pores enable a series of heterogeneous
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gas storage (15;16;17) and separation technologies (18;312) as well as access to

extremely high loadings of catalytically active centers. (20;21;22;23) In more recent

embodiments, exotic electronic structures have been discovered, (120;209;313) providing

a foundation for applications in high surface area electrodes in electrochemical

devices (314;315;316;317;318;319;320;321) and as ordered arrays of qubits for MOF-mediated

quantum computing. (322;323;324) Clearly, their diverse composition and structure

enable a wealth of possible applications.

Many of these applications depend on the accessibility of the pores;

pore topology is largely determined by the shape, size, and composition of

the linkers. (325;326) Of course, the node composition and topology also play a

determining role in the structure, (308;327;328) but there are far fewer synthetic

handles available to modify and create novel inorganic clusters. Thus, the

prediction of MOF properties is well-suited to computation, (329) as we can rapidly

construct a large family of MOFs using only the geometry of the SBUs and a

nearly endless selection of linkers. (330) Indeed, one of the most elegant aspects of

MOF chemistry is the ability to transmetallate (331;332;333;334;335) and geometrically

substitute one linker for another of similar geometry (336;337;338) enabling a broad

gamut of structurally related materials. (339) Such isoreticularity (340;341;342) is a

cornerstone of the field (343;344;345) and has been a key focus for several years with

notable successes (e.g., efficient absorption of water, (173;346;347;348) and as site

isolated catalysts (349;350;351)).

The chemical and physical properties of a MOF are derived from

the identity of its two building blocks: the metal center and organic

linkages. (216;313;352;353) These two components generate the pore, which is the feature

that imparts the macroscale material properties and functionality. (354)
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The pore is thought to provide additional physical influence on properties

such as site adsorptivity, (355) enantioselectivity, (356) and size selectivity (357;358)

as functions of the pore volume, aperture, and composition. In such cases, a

complete description of the pore aperture and/or cage created within may be

necessary to explain intrapore reactivity. Such was the case for a borylation

catalyst incorporated as the linker of a UiO-67-analogue. (359) The heterogenized

system exhibited >99% chemoselectivity toward a monoborylated product, far

exceeding the selectivity of its homogeneous counterpart. (357) Ultimately, this study

concluded that selectivity of their catalytic reaction resulted from pore confinement

restricting access to the diborylated product rather than local sterics or electronic

interactions. (359)

The best structural characteristics describing the pore are the pore

volume and surface area, which can be determined experimentally and

computationally. (353;360) However, the experimental and computational methods use

inert gas molecules to probe pore structure, yielding only the accessible surface area

and neglecting the true pore topology, Figure 24. (232;360) Experimentally, Brunauer-

Emmett-Teller (BET) models are used to derive surface area from adsorption-

desorption isotherms and relies on multilayer surface coverage. (232;352;360) This is

problematic because pore filling and formation of the monolayer and multilayer

occur simultaneously. (232;360) Computational methods mimic experimental methods

using a Grand Canonical Monte Carlo (GCMC) approach, (352;353;361) which is

computationally expensive and relies on a rigid sphere approximations to depict the

void space (362;363;364;365) (which, from Chapter 3, we know are not suitable for highly

ionic materials, such as MOFs). From both the computational and experimental

approaches, it is apparent that pore features with a radius of curvature less than
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Figure 24. Connolly surface area lacks information. van der Waals surface area
does not account for polarized bonds.

that of the gas molecule are neglected. Consequently, the resolution of the SA is

limited by the radius of the chosen gas molecule. (360;366)

We can envision a method to calculate void space properties using

STREUSEL, which would yield values that are independent of a probe gas

molecule. We perform our solid-state DFT calculations using the popular software

VASP; to accommodate this, STREUSEL has added functionalities that enable it

to process VASP output files and calculate void space properties. Thus, we obtain a

more precise image of the pore volume and surface area.

Results and Discussion

Pore Volumes and Surface Areas. Since the logic of the STREUSEL

size determination algorithm discussed in Chapter 3 relies only on the electrostatic

potential obtained from DFT calculations, the presented electric field cutoff holds

for solid-state calculations. To verify our approach we generate electrostatic

potential maps from single-point calculations for the MOFs contained within

the CoRE MOF database, (367) and calculate the STREUSEL pore volumes and

surface areas. (70) In order to verify that the values we obtain from the electric

field are realistic, we compare our calculated pore volumes with those obtained
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Figure 25. There is good agreement between the pore volumes obtained using
Platon and STREUSEL. Both void space calculation metrics are performed using
pristine structures. The solid black line represents the values where Platon =
STREUSEL.

using the PLATON software, which is the industry standard for void space

calculations, (362;363;364;365) Figure 25. Indeed, there is good agreement between

the pore volumes obtained using Platon and those obtained using STREUSEL,

suggesting that the STREUSEL methodology is a valid approach.

With the knowledge that STREUSEL yields realistic pore volumes, we

compare these values with experimental measurements of pore volume and surface

area for a dataset of 100 MOFs, Figures 26 and 27. Unsurprisingly, there is less

agreement between experimental and STREUSEL pore volumes than seen with

the Platon pore volumes, Figure 25; this is likely because the theoretical values
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Figure 26. Comparison of experimental pore volumes and STREUSEL pore
volumes for a series of MOFs. Data points are colored according to the probe
gas molecules used in the experimental measurement. there appears to be no
correlation with the experimental probe gas; this is likely due to unknown
differences in sample preparation and measurement conditions. The full dataset
with corresponding references is presented in Appendix B.

are obtained using pristine models, which is not representative of an experimental

sample. (2) This is further reinforced by the overestimation of surface area by

STREUSEL, Figure 27.Here, we observe that experimental samples are far less

porous than their theoretical counterparts. A similar overestimation of pore volume

is also observed. Indeed, this is expected; the STREUSEL methodology accesses

topological features unobtainable by methods relying on gas probe molecules.

Logically, additional topological features would increase calculated pore volumes

and surface areas relative to experimental measurements.

In addition to the unavoidable presence of defects, (233) experimental

preparation is known to have large impacts on measured void characteristics. (368)

For example, Kaye et al. observed a 1500 m2g−1 decrease in measured surface area
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Figure 27. Comparison of experimental surface areas calculated via BET (green)
and Langmuir (blue) isotherms and STREUSEL surface areas for a series of MOFs.
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for MOF-5 prepared in air vs. air-free. (368) Consider eight published, experimental

surface areas for MOF-5, Figure 28. While each value is valid, the large range in

measured surface areas is likely due to three competing factors: (17;369)

1. Collapsed pores within the samples – This is likely due to the vacuous

conditions that are required by pore volume and surface area measurements.

2. Occluded pores within samples – This is likely due to leftover reagent

molecules that were not fully washed away after synthesis.

3. Linker and/or metal center vacancies – This is due to the entropic favorability

of defect formation.

These factors have predictable effects on measured pore volumes – namely, the

presence of occluded and collapsed pores will result in an artificial decrease in

measured pore volume, while vacancies will result in an artificial increase. Effects

on surface area are far more complex. While collapsed pores will understandably

result in a decreased surface area, the effect of occluded pores notably depends on

the pore aperture:pore surface area ratio. Abstractly, there may exist a topology

whose pore aperture area is larger than the surface area of the chemical motif

within the pore. In this instance, occluded pores would result in an artificially

larger measured surface area. The effect of linker vacancies will be discussed in

detail in the following section. Comfortingly, the STREUSEL surface area falls

within the range of published surface areas for MOF-5.

Imaging Linker Vacancies using the Electric Field. Vacancies

occur as either missing linkers or metal clusters, as well as single atom omissions

from the inorganic clusters. (375) The elucidation of experimental vacancies is

extremely challenging in MOFs and other solids, often requiring a potpourri of
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Ref. (368) (air-free)

Ref. (368) (in air)

Ref. (370)

Ref. (371)

Ref. (372)

Ref. (373)

Ref. (374)

Ref. (306)

Figure 28. Comparison between published Langmuir surface areas for experimental
samples of MOF-5, the Connolly surface area (purple), and the STREUSEL surface
area (green).
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experimental methods (PXRD, EXAFS, NMR, IR, etc.) to extract even an average

defect concentration per node. (376;377;378) As a result, we are still learning about

their formation in extremely well-studied materials and only have a rudimentary

understanding of their formation. (379;380;381;382)

To completely characterize a defect in MOFs, a combined theory and

experimental approach is often required. For example, the identity of anionic

species coordinated to the node at a linker vacancy in UiO-66 and -67 was obtained

by IR and NMR experiments; the catalytic mechanism occurring at active sites

defined by these defects was then studied with an appropriate cluster model to

assess reagent adsorption in the presence and absence of linkers. (383) More advanced

experimental methods, such as diffuse scattering, electron microscopy, transmission

electron microscopy, and electron crystallography, have also been paired with

theory to refine structural motifs of defects. (384) (385)

Periodic models, however, still face challenges for defective systems because

of the cost associated with forming a unit cell sufficiently large enough to mitigate

artificial defect ordering. (386) Furthermore, vacancies are realistically either anionic

or cationic and often compensated by an adventitious counterion, mandating some

charge passivation routine. (387) In experiment, these ions originate from the salts

or solvents used in the synthesis, and these salts can be used to inform model

construction. (388)

Modulators can be used to deliberately install linker vacancies as they

compete with the multitopic linker to bind to the metal node either during

synthesis or postsynthetic modification. (240;377;389) Cluster vacancies may be

targeted by achieving multiple linker vacancies; this causes either an absence of

a linker for the cluster to bind to or the stability of an already bound cluster to
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be compromised. (390) Linker vacancy concentration may be tuned using a variety

of synthetic conditions ranging from modulator concentration and acidity (391)

to solvent selection. (392;393) Selectively altering linker vacancy concentration not

only enables cluster vacancy formation but also affords defect engineering, which

can be used to intentionally alter macroscopic properties. For example, increased

modulator concentration during synthesis correlated to increased gas uptake in

defective UiO-66 due to additional missing linkers, as experimentally demonstrated

by Wu et al. with N2 uptake isotherms. (394)

Most computational defect studies have been performed on the UiO-series

of materials, as they are known to feature high concentrations of defects. Here, we

will use UiO-66 as a model to explore the effects of modulators on calculated pore

volumes and surface areas, Figure 29.
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Figure 29. Three passivated models of UiO-66 are examined in this study; H2O,
Cl−/H2O, F−/H2O, and formate.
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CHAPTER V

COVALENT BRIDGE INTERSTITIALS AS A ROUTE TOWARDS

CONDUCTIVE FRAMEWORKS

Abstract

The high porosity, extended connectivity, and tunability of metal-

organic frameworks (MOFs) makes them ideal candidates for the development of

electrocatalysts, charge storage materials, and chemiresistive sensors. However,

the highly ionic nature of the inorganic-organic interface inhibits the realization of

high electrical conductivity thereby limiting their utility for these applications. In

this project, we explore a retrofitting strategy to post-synthetically install redox-

active interstitials that covalently interconnect MOF linkers as one avenue towards

augmenting the electrical properties of these otherwise insulating frameworks. The

formation of retrofitted organic linkages within a given scaffold is governed by a

statistical distribution of the orientation of linkable units as demonstrated by an

atomic level simulation examining the kinetics of wire formation and the resulting

distribution within an extended unit cell of MOF-5. Periodic DFT calculations

quantify the conductive capacity o the newly formed charge transport pathways.

Examining other common scaffolds, we find that the macroscopic topology of post-

synthetically installed wires (i.e. extended wires vs. conductive loops) formed

through new covalent bonds, and their resultant capacity for electronic conduction,

is dictated by the effect of MOF symmetry on the statistical distribution of linker

orientations. By combining statistical models o wire formation with electronic

structure theory applied to periodic models of the retrofitted MOFs we show that

post-synthetic formation of pseudo-polymeric wires is a promising strategy to instill

electrical conductivity in MOF scaffolds.
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Introduction

Tunable materials design is poised to solve a series of device performance

challenges within the electrochemical device arena. (395;396) One of the material

properties pinnacle to electrochemical device performance is surface area; (397)

increased surface area is responsible for increased number of active sites in

electrocatalysts, (398) increased capacitance in the case of supercapacitors, (399)

increased rate of electrochromic switching, (400;401) and improved performance of

resistivity-based chemical sensors (402) within the energy storage device realm,5

among other benefits. (403;404;405) Currently, the leading class of materials for

high surface area are metal-organic frameworks (MOFs). (15;406) The simple

building block construction (metal nodes connected by organic linkers) further

offers additional routes towards bulk property tuning via post-synthetic

modification (407;408;409;410;411) and retrofitting. (412;413;414) Despite the compositional

diversity of MOFs afforded by the simple construction, the majority of scaffolds

within this class of nanoporous, crystalline materials are insulating. (217;415;416) This

limits their application in the electrochemical industry, which would otherwise

benefit from the large surface areas offered by MOFs. (217;313)

The insulating nature of MOFs can, in part, be attributed to their

construction from redox-inactive organic linkers and closed shell metal

centers. (415;416) Yet, due to the tunable nature of MOFs, redox chemistry may

be promoted within these scaffolds by introducing redox-active components

in several ways; (415;416) i) during synthesis, (417;418) ii) via post-synthetic

modification, (419;420;421;422) or iii) as guest molecules within the pores. (404;423;424;425)

Indeed redox-activity in MOFs has been shown to enhance gas uptake and
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binding, (417), engender electrical conductivity, (402), as well as exhibit reversible

electrochromism. (401)

Of the varying methods of inducing redox activity in MOFs, (416) this work

focuses on installing redox-active covalent bridging motifs between aromatic linkers.

This is similar to the host-guest interaction of HKUST-1 infiltrated with 7,7,8,8-

tetracyanoquinododimethane (TCNQ) (0.07 S cm−1), which yielded a million-

fold increase in electrical conductivity over pristine HKUST-1 (10−8 S cm−1). (423)

TCNQ bridges Cu(II) paddlewheels, enabling improved electronic coupling between

the these dimeric Cu subunits. In this way, Allendorf et al. not only render and

otherwise insulating MOF conductive, but coordination between TCNQ and the

Cu(II) paddlewheels results in a continuous charge transport path throughout the

scaffold.

The TCNQ-Cu(II) paddlewheel coordination complexes within the scaffold

are inherently composed of repeating subunits throughout the material. In this

way, we can consider the TCNQ-Cu(II) subunit chain a monomer within the

scaffold. This not unheard-of in the MOF community. Indeed, MOF-polymer

hybrid materials have been synthesized and are advantageous for a range of

applications, (426;427) including; improving the handling and implementation of

the hybrid material over MOFs, (428) and improved gas storage a separation

capabilities. (429) For instance, tetracyanoquinodimethane (TCNQ) is a tetratopic

redox active molecule that fortuitously can bridge adjacent Cu-paddlewheels in

Cu3(BTC)2. The extent of bridging was shown to cause an increase in electrical

conductivity (6 orders of magnitude, up to 0.07 S cm−1). (423) Comparing periodic

models of the pristine framework and with the TCNQ interstitial showed strong

binding (84 kJ mol−1) and cluster models consisting of two benzoate-capped
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paddlewheels saturated with water molecules and bridged by TCNQ, showed

new conduction band states localized on the TCNQ molecule. (423;430) It was thus

reasoned that thermally promoted charge transfer between the framework and

guest molecule enhanced charge mobility. Later, scanning electron microscopy and

porosimetry supported the bridging arrangement of TCNQ proposed by theory. (431)

Nonnative organic linkers bridging metal sites also impacted charge mobility

in Ni3(HITP)2.
(412) Band structures, calculated using the B3LYP hybrid functional

and the triple-ζ basis set, pob-TZVP, were constructed for different forms of

Ni3(HITP)2 including a variant with layers separated by 4,4’-bipyridine bridging

the nickel sites and pristine Ni3(HITP)2 with the same interlayer spacing as the

bridged derivative. Bulk Ni3(HITP)2 is found to be metallic, but the band gap

widens with increasing interlayer separation, and upon inclusion of the bipyridine

interstitial band dispersion is seen to decrease, effective mass values increase, and

the band gap widens; Ni3(HITP)2 is rendered a semiconductor. The authors note

that square-planar Ni(II) bound to four nitrogen atoms results in filled dz2 orbitals,

which do not readily bond to additional out of plane organic linkers. Potential

energy curves for pyridine coordination to this square planar motif showed the

hypothetical semiconducting structure was unlikely to form, however Cr3(HITP)2

with bridging 4,4’-bipyridine may be an alternative, stable structure.

We present and validate a post-synthetic avenue towards electrically

conductive MOFs by including redox active covalent bridging motifs between

linkers, leading to bonded, redox non-innocent linkers that form a pseudo-polymer

within the scaffold. Electronic properties of MOF-5-covalent-bridge pairs are

assessed using periodic density functional theory (DFT) calculations. Wire

formation pathways are examined using python-driven atomistic simulations.
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Macroscopic wire conformations are investigated using an abstract statistical

model.

Results and Discussion

The tractability of this approach is established using MOF-5 (Zn4O(BDC)3

(BDC = 1,4-benzenedicarboxylate)) (17) for three main reasons: i) the simple 6-

2 connected net, which results in cubic pores that are readily abstracted for the

statistical model, ii) demonstrated propensity for redox reactivity, (420) and iii) prior

evidence of linker crosslinking. (432;433)

Selection of the covalent bridging motif invited two design considerations; i)

Fermi level shift, and ii) geometric constraints. Installation of the covalent bridging

motif introduces additional states, resulting in a shift to the Fermi level; n-type

interstitials shifts the bands up because additional electrons are introduced to the

system, while p-type shifts bands down due to the inclusion of holes. Considering

the mid-gap states, we focus our search on p-type interstitial bridging motifs, whose

downward shift of the bands accommodate the additional states.

Taking into consideration the octahedral configuration of the inorganic

MOF-5 node, we examine covalent bridging motifs that may fit within the 5.21

Åand 9.90 Ågaps, Figure 30. This leads us to a series monomers from redox-

active electrically conductive organic polymers; polyphenylene sulfide (PPS), (434)

polyaniline (PANI), (435;436) poly(p-phenylene vinylene) (PPV), (437) and two

thienothiophene derivatives (TT1 and TT2). (438;439;440) For example, PANI-based

electrode materials boast high specific capacitance (700 F g−1), (436) as well as

several accessible oxidation states. (441) The protonated form of polyaniline is

electrically conductive, (435) featuring values on the order of 2 – 10 S cm−1 for

pressed pellets. (442) Thus, we install the reduced form of PANI in MOF-5. In
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Figure 30. The two examined positions for the covalent bridging motifs are
labelled within the MOF-5 subunit. Five covalent bridging motifs were examined –
polyaniline (PANI), polyphenylene sulfide (PPS), two thienothiophene derivatives
(TT1 and TT2), and poly(p-phenylene vinylene) (PPV). Covalent bridging motif
lengths are displayed.

addition to, Thienothiophene derivative TT1 featuring aromatic caps offer charge

mobilities on the order of 0.1 cm2 (V s)−1. (443)

Three modeling approaches are used to assess the efficacy of each

MOF-bridge pair; i) infinite wire models where we examine the bridging motif

conformation that infinitely spans reciprocal space to obtain the ideal electronic

properties, ii) atomistic simulations of bulk wire formation where we examine the

subtle changes in scaffold geometry upon iterative inclusion of covalent bridges

within a bulk model, and iii) statistical models where we assess the macroscopic

wire topology yielded by each crystallographic configuration.
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Infinite wire models. In order to identify the validity of electrical

conductivity induced by covalently-bridged interstitials, we probe the electronic

structure and properties of the ideal linear wire configuration within the MOF-

5 scaffold for five bridging motifs: polyphenylene sulfide (MOF-5-PPS), poly(p-

phenylene vinylene) (MOF-5-PPV), polyaniline (MOF-5-PANI), and two

thienothiophene derivates (MOF-5-TT1 and MOF-5-TT2). Calculation details

provided in the following subsection. Results are summarized in Table 6.

Calculation Details. Density functional theory (DFT) was used

to evaluate the structural and electronic properties of the pristine MOF-5 and

MOF-5 scaffold with five bridging motifs: polyphenylene sulfide (MOF-5-PPS),

poly(p-phenylene vinylene) (MOF-5-PPV), polyaniline (MOF-5-PANI), and two

thienothiophene derivates (MOF-5-TT1 and MOF-5-TT2).

Structural relaxation of pristine MOF-5 was performed using the PBESol

functional, (141) as implemented in the Vienna ab initio Software Package

(VASP). (73;74;75;76) The wavefunctions of the valence electrons were expanded

with plane-waves with a cutoff of 500.00 eV; core electrons were treated with

the projector augmented wave theory. (2) The total energy was converged within

10−5 eV and forces to 0.005 ev Å−1; the Brillouin-zone was integrated over a well

converged and symmetrized 2x2x2 k -point mesh.

The MOF-5-X (X = PPS, PANI, PPV, TT1, TT2) models were generated

by manually inserting the covalent bridging motifs within the fully-optimized

pristine MOF-5 structure such that they generate an infinite wire across the

periodic boundary conditions. The resulting structures were optimized to the same

criteria described above, and symmetry was not enforced.
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Table 6. Comparison of electronic properties for the infinite wire models listed in
order of decreasing band dispersion (meV).

Model Band Gap (eV) Dispersion (meV) Work Function
MOF-5-PPV 1.26 313.5 -5.26
MOF-5-PANI 1.09 75.5 -4.13
MOF-5-TT1 2.07 69.0 -5.28
MOF-5-TT2 2.02 61.1 -5.15
MOF-5-PPS 1.44 29.6 -5.98

MOF-5 3.50 -6.58

Of the five models, MOF-5-PPV and MOF-5-PANI exhibited the smallest

band gaps, 1.26 eV and 1.09 eV, respectively, and largest band dispersion, 313.5

meV and 75.5 meV, respectively Figure 2. Electronic band structures and density

of states (DOS) for MOF-5-PPS, MOF-5-TT1, and MOF-5-TT2 are presented in

the Supporting Information Figures 31 and 32. The pristine MOF-5 band structure

is aligned to the background potential, (444) while the MOF-5-PPV and MOF-5-

PANI band structures are aligned to the pristine MOF-5 conduction band (CB),

highlighted in gray. Interestingly, the frontier bands of MOF-5-PPV are contributed

by the PPV interstitial, while only the MOF-5-PANI valence band (VB) is located

on the PANI interstitial. This is demonstrated by the atomic cntributions to the

VB in the DOS, Figure 33.

Introducing mid-gap states alters the atomic contribution to the band edges.

For example, MOF-5 VB is localized on the inorganic and organic components

of the scaffold, while the CB is localized solely on the organic linker (BDC). The

band edges of MOF-5-PPV are localized on the PPV interstitial, suggesting charge

transfer would occur within the covalent bridge upon photoexcitation. (189) The

VB of the MOF-5-PANI model is localized on the PPS interstitial, while the CB

is localized on the BDC of the MOF-5 scaffold. This suggests upon photexcitation

charge-transfer would occur between the linker and covalent bridge. (189)
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Figure 31. The Fermi-aligned band structure of pristine MOF-5 features flat bands
with a large band gap (3.50 eV). MOF-5 models featuring polyaniline (MOF-5-
PANI) and polyphenylene sulfide (MOF-5-PPS) interstitials reveal increased band
dispersion and smaller band gaps than their pristine counterpart. Oxidized models
of MOF-5-PANI and MOF-5-PPS are also presented and feature bands that cross
the Fermi level.
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Figure 32. The Fermi-aligned band structure of pristine MOF-5 features flat bands
with a large band gap (3.50 eV). MOF-5 models featuring two thienothiophene
derivatives (MOF-5-TT1, and MOF-5-TT2) reveal increased band dispersion
and smaller band gaps than their pristine counterpart. Spin-polarized electronic
band structures of the oxidized models of MOF-5-TT1 and MOF-5-TT2 are also
presented and feature bands that cross the Fermi level. Spins are separated by
band color within the oxidized models.
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Figure 33. The vacuum-aligned band structure of pristine MOF-5 features flat
bands with a large band gap (3.50 eV). MOF-5 models featuring polyaniline
(MOF-5-PANI) and poly(p-phenylene vinylene) (MOF-5-PPV) interstitials reveal
increased band dispersion and smaller band gaps than their pristine counterpart.
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Upon inclusion of the interstitials, there is an increase in band dispersion (or

band width), indicating more mobile charge carriers, (2) Table 6. Band dispersions

are recovered using temperature-independent DFT calculations; band dispersions

less than kT are considered flat because they are lost to thermal smearing. At

standard-state conditions, kT = 25.7 meV. Thus, the low band dispersion (29.6

meV) of the MOF-5-PPS model, may not be a factor in experimental observables

at room temperature.

The band edges of each model are localized on different components of

the scaffold. Notably, the wired models feature organic VB, while the VB of the

pristine MOF-5 model is localized on the Zn node. Thus, inclusion of the p-type

interstitials bypasses the insulating inorganic node of the MOF scaffold; this has

been shown to be beneficial in photocatalytic systems. (189)

The infinite wire models reveal the ideal electronic properties. Thus, we

use an atomistic simulation examine the necessary, minute conformational changes

upon covalent bridge insertion; in this way, we examine the effect of wire formation

on the MOF-5 scaffold.

Bulk wire formation simulations. Inserting a series of kinetically-

directed covalent bridges within a MOF scaffold breaks the symmetry of the

crystalline framework. (445;446) Moreover, linkers may need to rotate to accommodate

additional covalent bridges, which is difficult to capture within the infinite

wire models – an inherently static picture. We assess the resulting spatial

implications using an atomistic wire formation simulation; code is available

on GitHub. (447) The employed model is comprised of a 3x3x3 supercell of

MOF-5 consisting of dichloroterephthalic acid linkages in two configurations

(2,5-dichloroterephthalic acid, and 3,6-dichloroterephthalic acid). The initial
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Figure 34. Two SH group orientations were sampled to determine the degree of
linker rotational freedom; 1) toward, in which the SH groups of adjacent linkers
point toward each other, and 2) away, in which the Cl groups of adjacent linkers
point away from one another.

conformation of the dichloroterephthalic acid linkers is determined by sampling a

Boltzmann distribution, described in the following subsection.

Determining the degree of linker rotational freedom. The

orientational favorability of the BDC linkers within the pristine MOF-5 scaffold

were determined using periodic DFT calculations. To assess the rotational

restriction between adjacent 1,4-benzenedicarboxylate (BDC) linkers within the

pristine MOF-5 primitive cell, the adjacent BDC linkers were thiolated, yielding

2,5-dithiol-1,4-benzenedicarboxylate linkers. Two models were constructed featuring

the chloro groups pointed toward and away from each other, Figure 34, simulating

the extrema of the rotational positions each linker samples.

Structural relaxation of the chlorinated MOF-5 models were performed using

the PBESol functional,1 as implemented in the Vienna ab initio Software Package

(VASP). (73;74;75;76) The wavefunctions of the valence electrons were expanded
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with plane-waves with a cutoff of 500.00 eV; core electrons were treated with

the projector augmented wave theory. (2) The total energy was converged within

10−5 eV and forces to 0.005 ev Å−1; the Brillouin-zone was integrated over a well

converged and symmetrized 2x2x2 k -point mesh.

The absolute difference between the total energy for each optimized model

(Ediff ) is calculated,

Ediff = |Eaway − Etoward|2 (5.1)

and compared with kT, the Boltzmann distribution at the operating temperature

(0.025 eV at standard state conditions), a viable assessment of the relevance for

energy differences. (2)

In the case of the MOF-5 model, an energy difference of INSERT was

obtained. Since this is less than 0.025 eV, we assume no favorability for linker

orientation, and sample an unbiased random Boltzmann distribution of linker

orientations for the atomistic simulation and general statistical model.

The atomistic wire formation simulation is composed of three iterative

algorithmic steps; i) initialize each linker with a dichloroterephthalic acid

configuration informed by sampling the Boltzmann distribution, ii) freeze the Cl

atoms that are pointed toward each other within the model cell, and iii) reorient

the free dichloroterephthalic acid linkers. These steps are repeated until no

additional wires may be formed. Finally, the covalent bridging motifs are inserted

between connected Cl atoms; the linkers of the MOF-5 scaffolds are rotated to

accommodate the covalent bridging motifs.

Owing to the spatial separation and rotational freedom of the linkers in the

octahedral, 6-2 connected net, we observe a preference for short (< 4 subunits)

linear wires across 100 wire formation simulations, Figure 35a. Only one of the 100

110



Figure 35. a The bulk wire length distribution totaled over 100 simulations. One
run resulted in a wire length of 15 units, “model-15.” b The bulk wire length
distribution for model-15. The MOF-5 depiction of model-15 with the longest
wire highlighted in yellow.

wire formation simulations resulted in a wire that spans the width of the 3x3x3

supercell (“model-15”), Figure 35b. Unsurprisingly, the wire length distribution of

model-15 mirrors that of the 100 simulations. Ultimately, the rotational freedom

and spatial separation of the organic linkages afforded by the 6-2 net topology of

MOF-5 results in only short, linear wires throughout the supercell.

While larger than the infinite wire models, the 3x3x3 model is not sufficient

enough to examine the bulk wire conformation. Thus, we use a generalized

statistical model and algorithm to probe bulk wire conformations within much

larger (e.g. 50x50x50) cells.
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Generalized statistical model. The macroscopic wire morphology is

broadly directed by the rotational freedom of the linkers and the connectivity of

the crystallographic net. To identify the exact implications of these contributing

material features, we designed a statistical model to simulate wire growth and

assess bulk wire conformation. Here, we describe the statistical model via the

MOF-5 wired examples examined in this work; the code used to run the statistical

model is available on GitHub. (447)

MOF-5 is described by a 6-2 connected net; the inorganic node is connected

to six linkers, each of which only connect with two inorganic nodes. This net

is decomposed into a tensor where each tensor element represents a different

component of the MOF topology (i.e. metal, linker, pore), Figure 36a. The linker

orientations are sampled from a weighted Boltzmann distribution. In this way,

the linker orientation is directed by the degree of rotational freedom specific to

the MOF described in the net. The degree of linker rotational freedom is obtained

using the methodology described above.

There are two main algorithmic steps to the wire formation simulation,

Figure 36b; i) sample Boltzmann distribution to determine linker orientations,

ii) identify paths within the model. Importantly, once a linker is determined to

be a part of a wire, it is no longer allowed to rotate – effectively simulating the

presence of a covalent bridge. These two steps are repeated until no further linker

orientation may result in a wire. We ensure that this is the case for a series of

model sizes by plotting the number of unbridged linkers as a function of algorithmic

step, Figure 37; we observe a plateau in unbridged linkers, indicating the model

runs to termination.
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Figure 36. a Net theory is used to translate the crystalline structure of MOF-5
to a tensor. b The tensor elements may then be iterated to represent bulk wire
formation in four distinct steps; 1) the initial tensor is initialized with linker
orientations, 2) paths are then identified, 3) linkers that are not in a wire are
reoriented, steps 1) – 3) are repeated until no linker reorientation will result in a
new wire formation, at this point, 4) the macroscopic connectivity is assessed. For
visual simplicity, we do not show the layers in the third dimension – although our
statistical model does take these into account.
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Figure 37. Unconnected linkers as a function of algorithmic step for a series of
model sizes using the generalized statistical model.

Running a series of simulations on the same net topology reveals

macroscopic wire formation patterns. Unsurprisingly, the 6-2 connected net in

conjunction with no favorable linker orientation features a preference for short,

linear, in-plane wires, Figure 38. Moreover, the wire length distribution of the

general statistical model, Figure 38, is similar to that obtained using the atomistic

wire formation simulation, Figure 35; this is expected considering these two

models are describing the same MOF-5-polymer system. We modified the original

algorithm to simulate PPV covalent bridges (linkers that were 180deg apart were

allowed to bind), Figure 39. Unsurprisingly, the total number of wires decreases,

yet the same distribution is achieved.

Conclusions

The amalgamation of models employed within this study informs us of

three major findings. First, incorporation of p-type, redox-active organic linkers

within the otherwise insulating MOF-5 scaffold yield semi-conducting scaffolds

that turn metallic upon oxidation. Indeed the MOF-5-PPV and MOF-5-PANI

models outperform the other models explored in this study, suggesting they may
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Figure 38. The bulk wire length distribution for a 6-2 net topology allowing
connections between 90deg linkers, totaled over 100 iterations of the general
statistical model.
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Figure 39. The bulk wire length distribution for a 6-2 net topology allowing
connections between 180deg linkers, totaled over 100 iterations of the general
statistical model.
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be promising for experimental synthesis. Yet, the spin polarization observed in

the thienothiophene derivatives is promising for chemical sensing applications. (448)

Second, while the inclusion of covalent bridges breaks symmetry, it does not

sufficiently distort the MOF-5 scaffold enough to prevent wire formation. Thus,

the spatial separation and rotational freedom of the 6-2 net topology is, ultimately,

beneficial to the overall integrity of the MOF scaffold. Third, agreement between

the atomistic simulation and the general statistical model indicates that the

statistical model is a promising route towards scanning diverse topological nets

– enabling efficient identification of net topologies that may yield interesting (i.e.

hoops, helices, etc.) wire conformations.
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Stach, E. A.; Dincă, M. Signature of Metallic Behavior in the Metal–Organic
Frameworks M 3 (Hexaiminobenzene) 2 (M = Ni, Cu). J. Am. Chem. Soc.
2017, 139, 13608–13611.

127



122. Clough, A. J.; Skelton, J. M.; Downes, C. A.; de la Rosa, A. A.; Yoo, J. W.;
Walsh, A.; Melot, B. C.; Marinescu, S. C. Metallic Conductivity in a
Two-Dimensional Cobalt Dithiolene Metal–Organic Framework. Journal of
the American Chemical Society 2017, 139, 10863–10867.

123. Clough, A. J.; Orchanian, N. M.; Skelton, J. M.; Neer, A. J.; Howard, S. A.;
Downes, C. A.; Piper, L. F. J.; Walsh, A.; Melot, B. C.; Marinescu, S. C.
Room Temperature Metallic Conductivity in a Metal–Organic Framework
Induced by Oxidation. J. Am. Chem. Soc. 2019, 141, 16323–16330.

124. Hmadeh, M. et al. New Porous Crystals of Extended Metal-Catecholates.
Chemistry of Materials 2012, 24, 3511–3513.

125. Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.;
Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. High Electrical Conductivity in
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