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DISSERTATION ABSTRACT

Mohammad Eshghi

Doctor of Philosophy

Department of Geography

June 2022

Title: Semantic Segmentation of Satellite Imagery Using Positive and Unlabeled
Learning

The recent advances of deep learning in computer vision field have

revolutionized digital image processing. The adoption of vision-based deep learning

models in remote sensing has been promising. However, despite their success in

remote sensing image processing, deep learning models suffer from labeled data

scarcity, which is defined as the lack of large scale labeled datasets. This drawback

is important to pay attention to since manually labeling data is labor-intensive and

time-consuming. In addition, in many applications, the only information of interest

is the presence of the application-specific landcover or object within an image, and

thus it is not reasonable to spend extra time and cost to fully label the rest of an

image. Therefore, remote sensing image processing benefits greatly from positive

and unlabeled learning, which is a more general setting of semi-supervised learning

and addresses the availability of only a few labeled examples of the presence of the

application-specific event in a dataset.

This dissertation investigates the possibility of leveraging transfer learning

and ensemble learning frameworks in a positive and unlabeled learning setting for

semantic segmentation of satellite imagery. First, I create positive and unlabeled

satellite imagery datasets from an available binary positive and negative dataset
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to be used for model development. Next, I develop a deep homogenous transfer

positive and unlabeled learning which utilizes two distinct positive and negative

as well as positive and unlabeled satellite imagery datasets acquired by a same

satellite sensor (i.e. similar domain images). Building upon this, I extend the

homogenous aspect of the developed model to the heterogeneous case. In doing

so, the developed model will be able to not only learn from similar domain satellite

images and non-satellite images but also to leverage satellite images from dissimilar

domains. In the next stage, I develop a deep ensemble positive and unlabeled

learning model in order to incorporate the advantages of multiple different models

for a same task. Then, I investigate the possibility of a mixture of the proposed

models in transfer learning and ensemble learning frameworks for PU learning.

Finally, I conclude this dissertation by discussing the possible next steps for future

works.
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CHAPTER I

INTRODUCTION

Remotely-sensed (RS) imagery is among the most valuable geographically

referenced spatial big data that provides a unique opportunity for understanding

earth’s surface (Miller & Goodchild, 2015; S. Wang et al., 2015). Such an

opportunity is of great importance in different scientific domains including but

not limited to geography, ecology, epidemiology, social sciences, and emergency

management (S. Wang et al., 2015). In these scientific domains, it is crucial to

have access to and to be able to process the most recent imageries in order to

extract the necessary information. This requires frequent image acquisition and

automatic image processing. In terms of image acquisition, the production rate of

RS imagery has exploded in recent years due to increase in the number of satellites

and advances in drone imagery. On the other hand, with regards to automatic

image processing,the recent advances in deep learning in computer vision have

revolutionized digital image processing. For example, as a result of the success

of convolutional neural networks in different vision tasks such as object detection

(Girshick, Donahue, Darrell, & Malik, 2015; Redmon, Divvala, Girshick, & Farhadi,

2016) and semantic segmentation (Long, Shelhamer, & Darrell, 2015; Noh, Hong,

& Han, 2015; Ronneberger, Fischer, & Brox, 2015a), the interest in deep learning

models has greatly increased within the remote sensing research community

(X. X. Zhu et al., 2017).

Semantic segmentation task (also known as pixel-based classification in

remote sensing research community) refers to assigning a label (of a landcover

type or an object) to every pixel within an image (Kemker, Salvaggio, & Kanan,

2018). Semantic segmentation of RS imagery usually requires labeled datasets

1



with samples that are representative of all landcover types within the area in

order to train a classifier (W. Li, Guo, & Elkan, 2010), whereas only one specific

class of landcover types (or a specific class of objects) might be of interest

(Foody, Mathur, Sanchez-Hernandez, & Boyd, 2006). For example, landcover

classes such as agricultural lands may not be of interest when the objective is

to identify the manmade structures such as roads or buildings, and vice versa

(Foody et al., 2006; W. Li et al., 2010). In such cases, the intrinsically labor-

intensive and time-consuming approach of creating a set of representative training

samples can be avoided. However, this results in unsuitability of the widely-used

supervised learning framework, and thus alternative approaches, such as positive

and unlabeled learning framework, should be taken.

Positive and unlabeled (PU) learning is a more general setting of semi-

supervised learning, in which a binary classifier is learned based on a set of

(limited) labeled data for the positive class only (i.e. the class of interest) and a

very large amount of unlabeled data containing both positive and negative classes

(Bekker & Davis, 2020). Despite its significance, little attention has been paid to

PU learning within the remote sensing literature, whereas machine learning and

deep learning for remote sensing have a rich literature—for more details on machine

learning and deep learning in remote sensing, see Maulik and Chakraborty (2017)

and Y. Li, Zhang, Xue, Jiang, and Shen (2018).

1.1 Dissertation Scope & Contributions

In this dissertation, I investigate the potentials of deep learning-based PU

learning for semantic segmentation of satellite imagery. The contributions of this

dissertation can be categorized into two major learning frameworks: (i) Transfer

Positive and Unlabeled Learning, and (ii) Ensemble Positive and Unlabeled

2



Learning. The following pages present the two research questions and an overview

of the main contributions of this dissertation.

RQ1. How can Transfer Learning be incorporated in the context of positive

and unlabeled learning for semantic segmentation of satellite imagery?

RQ2. How can Ensemble Learning be incorporated in the context of positive

and unlabeled learning for semantic segmentation of satellite imagery?

1.1.1 Deep Transfer Positive and Unlabeled Learning. Transfer

learning (TL) is the idea of transferring the informative knowledge from one

domain (i.e. a source domain) to another (i.e. a target domain) (Torrey & Shavlik,

2010). TL is suitable when learning from the source domain with large amount of

labeled data can be informative to find a model using the limited labeled data in

the target domain, which can do better compared to models trained only by the

limited labeled data in the target domain (Karbalayghareh, Qian, & Dougherty,

2018)–for example, the limited labeled data in the target domain could be the

case for PU data (J. Chen & Liu, 2014). Although Transfer PU learning has been

studied outside of remote sensing literature to some extent (J. Chen & Liu, 2014;

Mignone & Pio, 2018), no study has been found (especially with a deep learning-

based approach) for semantic segmentation of RS imagery.

TL can be categorized into homogeneous and heterogeneous TL. In

homogeneous TL, the source domain and target domain have the same feature

space XS = XT . Heterogeneous TL, however, is considered when the source

domain and target domain have different feature spaces XS ̸= XT (Bashath et

al., 2022a). I consider homogeneous TL for situations when a model is developed

on a set of satellite images from a geographic location, and then it is used on
3



images from the same geographic location. The problem here is that the spectral

signature of objects is not exactly the same–i.e. different marginal distributions,

PS(X) ̸= PT (X), but same feature spaces, XS = XT . I propose a solution

which focuses on both shared feature spaces and shared parameters in a deep

learning-based framework. Next, I consider heterogenous TL for situations when

a model is developed on a set of general image datasets (like ImageNet) or satellite

images from a geographic location for a learning task, and it is used on satellite

images or satellite images from another geographic location. In this case, since

the two domains are related (i.e. both are images) transferring information is still

possible. I extend my proposed model for homogeneous case to heterogenous case,

in which the goal is to close the gap between feature spaces of the source and target

domains.

1.1.2 Deep Ensemble Positive and Unlabeled Learning.

Ensemble learning (EL) is essentially a methodological framework based on a

voting mechanism, in which the predictive power of multiple different learning

algorithms is fused in order to achieve a better predictive performance through

the collective voting–as opposed to any of the participating learning algorithms

individually (Dong, Yu, Cao, Shi, & Ma, 2020a; Sagi & Rokach, 2018a). In remote

sensing, research has shown the robustness of ensemble classifiers rather than a

single method strategy (e.g. X. Huang & Zhang, 2012a). However, little research

has focused on the ensemble PU learning in remote sensing leaving a gap in this

area of research. R. Liu et al. (2018) is among the few research targeting the

ensemble PU learning for RS imagery. Therefore, this dissertation investigates

deep ensemble learning frameworks in a PU learning setting. Building upon this,
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I propose a deep ensemble PU learning that benefits from both ensemble and PU

worlds for semantic segmentation of RS imageries.

1.2 Dissertation Outline

The remainder of this dissertation is organized as follows. I provide an

overview of studies related to (i) PU learning, (ii) TL, and (iii) EL, in general,

and with a focus on remote sensing literature, in particular, in Chapter II. Next,

in Chapter III, I introduce the datasets used in this dissertation as well as the

PU dataset that I create on top of one of these datasets. Chapter IV presents

my approach for homogenous and heterogeneous transfer PU learning. Then, I

present the proposed ensemble PU learning in Chapter V. Finally, I conclude and

summarize my contributions and further discuss the opportunities for future work

in Chapter VI.
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CHAPTER II

LITERATURE REVIEW

In this chapter, I review the recent research in positive and unlabeled (PU)

learning and other learning frameworks that are used as the base for developing

my methodologies. The literature review is categorized into three sections: (i) PU

Learning, (ii) Transfer Learning, and (iii) Ensemble Learning.

2.1 Positive and Unlabeled Learning

PU learning is a more general setting of both semi-supervised learning and

one-class classification, in which a binary classifier is learned based on a limited

set of labeled data from only one class and a very large amount of unlabeled

data containing examples from both positive and negative classes. Therefore, PU

learning is considered for situations where the data for negative class is either

absent or distributed too diversely (X. Chen, Gong, & Yang, 2021; M. Du Plessis,

Niu, & Sugiyama, 2015). As shown in Fig. 1, PU learning differs from semi-

supervised learning because it uses only labeled examples from positive class. It

also differs from one-class classification since it utilizes unlabeled data examples

(Bekker & Davis, 2020). It should be mentioned that the negative and unlabeled

(NU) learning task is applied when the labeled data belongs to the negative class,

and thus NU learning is essentially the same as PU learning (Hammoudeh &

Lowd, 2020; Niu, du Plessis, Sakai, Ma, & Sugiyama, 2016). The significance of PU

learning is due to its high number of applications (X. Chen et al., 2021). However,

PU learning is challenging due to the difficulty in model selection, model building,

and model assessment (W. Li, 2013).
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Figure 1. From left to right: fully-labeled binary data and classifier, one-class
labeled data and classifier, partially-labeled binary data and unlabeled data and
semi-supervised classifier, and positive and unlabeled data and classifier. Blue
points are positive data, red points are negative data; and bright colors are labeled
data and pale colors are unlabeled data.

In binary classification, a classifier is trained using a set of training examples

of form {x, y} where x is a set of attributes/predictors/variables and y is the class

label; usually y = 1 refers to class positive and y = 0 refers to class negative. In PU

learning, however, the training data set contains examples of form {x, y, s} where x

and y are the same as the binary case. The new element here is s which is used to

denote whether the example is labeled (s = 1) or not (s = 0). In situations with PU

data, the binary loss functions are not valid anymore resulting in the emergence of

different PU learning algorithms.

Categories of PU learning algorithms include: two-step techniques, biased

learning models, and learning with incorporation of the positive class prior (Bekker

& Davis, 2020; Jaskie & Spanias, 2019). The two-step techniques assume that

positive data are very similar and are different from negative data. Therefore,

by identifying reliable negative samples from unlabeled data at the first step, a

supervised or semi-supervised learning model can be trained in the second step by

utilizing positive, reliable negative, and the rest of the unlabeled samples (Bekker

& Davis, 2020). For example, Dhurandhar and Gurumoorthy (2020) propose

an approach in which, using an unsupervised framework and independent from

classifiers, they identify and weigh positive and negative examples from unlabeled
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examples. B. Liu, Lee, Yu, and Li (2002) employ a spy technique in which, first,

they put a subset of randomly selected positive examples into the unlabeled set.

Then, they determine a probability threshold to identify negative examples from

the unlabeled data. P. Yang, Liu, and Yang (2017) propose an adaptive sampling

approach for identifying reliable negative data from the unlabeled data. They

first consider all unlabeled data as negative data. Then, using a predictive model

trained on positive and negative (PN) data, the negative class probability for

unlabeled data is calculated. The probabilities for all unlabeled data belonging

to positive or negative classes are calculated iteratively by repeating the last two

steps, which, at the end, results in one or more robust negative dataset(s) based on

likelihood threshold. The two-step strategy has a drawback: identifying negative

samples is not always reliable and cannot always be accurate, thus such situations

result in poor performances.

In biased techniques, the unlabeled data are considered noisy samples of

the negative class. For example, Biased-SVM considers a modified cost function to

address the noisy data (Jaskie & Spanias, 2019; B. Liu, Dai, Li, Lee, & Yu, 2003).

W. S. Lee and Liu (2003) perform weighted logistic regression in which positive

samples have larger weights in comparison to the negative samples (Bekker &

Davis, 2020). H. Shi, Pan, Yang, and Gong (2018) solve PU learning by focusing

on risk minimization. They propose a decomposition technique for the loss function

in order to model the noisy negative labels. They show that estimations of the

negative class centroid can reduce the adverse effect caused by noisy negative

labels. To improve this further, Gong et al. (2019) propose a kernelized version

of the algorithm proposed by H. Shi et al. (2018) in order to address the non-linear

classifiers/decision boundaries. All in all, the performance of biased techniques
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depends on the number of positive samples within the unlabeled set. In situations

where a large number of unlabeled data belong to the positive class, negative

unlabeled data adds too much uncertainty to the learning process, which results

in poor performances.

PU models that incorporate a class prior are probabilistic approaches that

rely on an estimation of the ratio of the positive instances in a population. Such

estimation requires an assumption on labeling mechanism, one of the most popular

being Selected Completely At Random (SCAR) (Bekker & Davis, 2020). In SCAR,

it is assumed that the labeled data are uniformly selected from the positive data

resulting in possibility of using traditional classifiers (Bekker & Davis, 2020; Elkan

& Noto, 2008). For example, Elkan and Noto (2008) first train a non-traditional

classifier on PU data to estimate the weights (i.e. the label frequency or class

prior) of examples on a validation set. Then, they convert the non-traditional

classifier to a traditional classifier using the found weights. Recent research has

been trying to relax the SCAR assumption and consider less restrictive assumptions

on labeled data. For example, Bekker, Robberechts, and Davis (2019) relax the

SCAR assumption to the less restrictive Selected At Random (SAR) assumption

that considers non-uniform labeling mechanisms. The SCAR assumption also relies

on availability of the class prior on which research (i.e. M. C. Du Plessis, Niu, &

Sugiyama, 2016; Jain, Delano, Sharma, & Radivojac, 2020; Łazęcka, Mielniczuk,

& Teisseyre, 2021; Perini, Vercruyssen, & Davis, 2020) has demonstrated how to

estimate the class prior from data. On the other hand, in some cases (C. Zhang,

Hou, & Zhang, 2020), the goal is to learn a model without pre-estimating the class

prior (in an isolated step).
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A further advancement in class prior-based category is to find suitable risk

estimators for PU learning. The approaches in this category aim to apply distinct

loss functions that satisfy specific conditions to PU risk estimators. For example,

M. C. Du Plessis, Niu, and Sugiyama (2014) propose a cost-sensitive learning

between positive data and unlabeled data which results in using non-convex loss

functions, such as the ramp loss, in order to avoid the systematic estimation bias.

The cost-sensitive classifier does depend on the class prior probability estimation

unless the unlabeled data contains mostly positive examples. As an improvement

on the work by M. C. Du Plessis et al. (2014), M. Du Plessis et al. (2015) propose

a convex PU loss called double hinge loss that considers an ordinary convex loss

function for unlabeled samples and a composite loss function for positive samples.

Their loss function performs as accurate as the non-convex ramp loss while (i) it

can still cancel the systematic estimation bias, (ii) it causes estimators to converge

to the optimal solutions at the optimal parametric rate, and (iii) it has a much

lower computational burden. As an improvement on this approach, Kiryo, Niu,

Du Plessis, and Sugiyama (2017) propose a non-negative risk estimator for PU

learning, which modifies the lower-bound of the double hinge loss. In comparison

to the unbiased risk estimators, the non-negative risk estimator will not produce

negative empirical risks in case of learning flexible models such as deep neural

networks. The non-negative risk estimator is more robust against overfitting, and,

thus, it can be used on deep neural networks even when positive data are limited.

Building on non-negative risk estimator, X. Chen, Liu, Tu, Cao, and Yang (2018)

propose a manifold non-negative risk estimator by adding a manifold regularizer to

the non-negative risk estimator.
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Following on deep learning-based models, H. Chen, Liu, Wang, Zhao, and

Wu (2020) propose a general variational principle for PU learning which introduces

a loss function which can be efficiently calculated without involving class prior

estimation. Na et al. (2020) propose a generative PU learning based on variational

auto encoders called VAE-PU that does not rely on SCAR assumption. The

proposed deep generative model is used to virtually generate unobserved data of

PU data in order to satisfy the risk function requirement resulted from SCAR-

independence condition. Guo et al. (2020) propose PUGAN which is based on

deep Generative Adversarial Networks (GANs), in which the assumption is that

the data produced by the generator should be considered as unlabeled rather

than negative, and, thus, the problem in GAN models become a PU learning

rather than a standard PN learning. Hou, Chaib-Draa, Li, and Zhao (2017)

propose GenPU in which GAN framework is used to identify both positive and

negative data distributions. Hu et al. (2021) propose a GAN-based model called

PAN in which they develop a new objective function based on Kullback–Leibler

divergence in order to address the problem with GAN which is that it focuses

disproportionately on the positive class (which in the case of GANs is the real

data). Zheng, Yuan, Wu, Li, and Lu (2019) propose a one-class GAN for fraud

detection with only benign users as training data. The generator searches for the

probability distribution of the malicious users, and the discriminator attempts

to distinguish between the generated malicious examples from the generator and

the benign examples from training data. Chiaroni, Rahal, Hueber, and Dufaux

(2018) apply GANs to learn the distribution of the negative class by generating

fake images, the distribution of which is closer to the distribution of negative class

within the unlabeled dataset. Then, a supervised convolutional neural network
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(CNN) classifier is trained on the positive and fake generated negative samples.

Finally, in comparison to most PU research focusing on classification, Y. Yang,

Liang, and Carin (2020) propose the object detection problem as a PU problem due

to the challenging nature of collecting complete labels for object detection because

of the large number of instances, which makes this task more difficult than simply a

classification task. They utilize the Faster-RCNN architecture (Ren, He, Girshick,

& Sun, 2015) with NNPU loss function adopted from Kiryo et al. (2017).

Finally, Niu et al. (2016) compare PU learning to PN learning and

demonstrate that, under certain conditions, PU learning can perform as well as

PN learning. They establish risk bounds of risk minimizers in cases of PN and PU

data in order to investigate settings in which PU could outperform PN learning.

They estimate error bounds of the risk minimizers and discover that the PU bound

could be tighter than the PN bound under some assumptions such as Rademacher

complexity of the decision function being bound by a constant as well as the size

of the dataset. The aforementioned situation of the error band is proved in both

finite-sample and asymptotic cases in which, the size of unlabeled data should

increase at a rate faster than the increase in the sizes of positive and negative data.

Their results are independent of the specific forms of the function class and/or data

distribution. However, they still rely on availability of the class-prior probability.

• Positive and Unlabeled Learning in Remote Sensing. Remote

sensing classification is a complex process and requires consideration of many

factors, including selection of training samples and suitable classification approaches

(Lu & Weng, 2007). With regards to the type of classification approach, there

are three general categories: (i) pixel-, (ii) sub-pixel-, and (iii) object-based

methods. Pixel-based semantic segmentation algorithms assign a label to every
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pixel in an image (Kemker et al., 2018), for which supervised learning has been

traditionally used (Dey, Zhang, & Zhong, 2010; W. Li et al., 2010). A crucial step

in the supervised approach is to collect representative training samples for all

landcover types in the image to ensure the success of training a classifier (W. Li,

2013; Tuia, Persello, & Bruzzone, 2016). If the goal is to identify only a specific

class of landcover types, such as urban regions vs non-urban regions (W. Li et

al., 2010), then it is not reasonable to collect negative data in a representative

way since the negative class is too diverse (M. Du Plessis et al., 2015). Therefore,

many researchers have started investigating PU learning classifiers for semantic

segmentation of RS imagery, including both active and passive imageries.

PU learning in remote sensing research originates from ecological niche

modeling for when the only available data is information about the presence of the

specie-of-interest. One-class classifiers such as one-class Support Vector Machine

(SVM) (Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001) and Maximum

Entropy (MaxEnt) models (Phillips, Anderson, & Schapire, 2006) are the most

used approaches for one-class species distribution modeling (W. Li, Guo, & Elkan,

2011). These methods are adopted for species distribution extraction, such as

different types of vegetation, using semantic segmentation of RS imageries (Rapinel

& Hubert-Moy, 2021). For example, X. Liu, Liu, Gong, Lin, and Lv (2017) study

the effectiveness of different one-class classification methods to detect invasive

plants. In addition, one-class classifiers are used for other tasks such as single-land-

cover detection (W. Li & Guo, 2010), building detection (Krupiński, Lewiński, &

Malinowski, 2019; W. Yang, Yin, Song, Liu, & Xu, 2013), mapping forced labor

(McDonald et al., 2021), and flood masks (Brill, Schlaffer, Martinis, Schröter, &

Kreibich, 2021). Therefore, because of their extensive adoption, these methods
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are extensively analyzed for one-class classification of RS imagery, demonstrating

that even the best performers among these methods still functions poorly in many

cases (Mack & Waske, 2017). Although other flavors of one-class classification,

such as sparse representation (Y. Chen, Nasrabadi, & Tran, 2012; Ran, Zhang,

Li, & Du, 2016; Song, Li, & Jia, 2020; Song, Li, Li, & Plaza, 2016), are studied

with competitive performances to other methods in their category, there are a few

important challenges regarding training an accurate one-class classification model,

including (i) when the size of and/or the number of the training image(s) is large,

and (ii) when the number of positive data examples is small (Mack et al., 2016).

In order to take advantage of the unlabeled data, based on the idea

introduced by Elkan and Noto (2008), W. Li et al. (2010) propose a PU learning

which includes training a classifier on PU data based on the SCAR assumption,

followed by dividing the classifier by the constant probability that a positive

example is labeled to achieve the final desired classifier. An advantage of their

proposed model is the possibility of its implementation with neural networks. Their

model appears to be superior to Biased SVM, Gaussian domain descriptor, one-

class SVM (W. Li et al., 2010) as well as to binary classifiers such as SVMs and

maximum likelihood classifiers (Deng, Li, Liu, Guo, & Newsam, 2018). Therefore,

their proposed model is used for many applications including extraction of built-

up areas (Djerriri, Benyelles, Attaf, & Cheriguene, 2019; Xia, Yokoya, & Adriano,

2021), RS images’ time series analysis (Desloires, Ienco, Botrel, & Ranc, 2022),

and crop mapping (L. Zhao et al., 2019). B. Liu, Zhu, Wang, Liu, and Yu (2011)

have also demonstrated the success of the model by Elkan and Noto (2008) for

passive SAR imageries. C. Zhu, Liu, Yu, Liu, and Yu (2012) point out that the

PU model by Elkan and Noto (2008) is very sensitive to the precision of estimating
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the positive class frequency, which could be low when few positive data are present.

Therefore, they try to mitigate this issue by implementing a two-step approach:

(i) unreliable positive and reliable negative examples are identified using the Spy

detection method by B. Liu et al. (2002)—these examples are assigned different

weights calculated by the method in Elkan and Noto (2008), and, then, (ii) these

examples are used along with the (reliable) positive examples, and their respective

weights to train a binary classifier. Finally, Gui, Xu, Wang, Yang, and Pu (2020)

propose a two-step PU learning approach for extracting built-up areas from

PolSAR imageries.

The possibility of using PU learning in a deep learning framework is

important in remote sensing research. Xia and Yokoya (2021) investigate a self-

paced PU learning for identifying and assessing damage to buildings. Their

approach includes a two-step PU learning and a three-part loss function, one of

which is a hybrid loss function of cross-entropy supervised loss and the unbiased

risk estimator introduced by M. Du Plessis et al. (2015). Jian, Chen, and Cheng

(2021) investigate the method proposed in Zheng et al. (2019) for change detection

in time series RS imageries. Finally, Lei et al. (2021) propose a deep learning-

based PU learning which takes advantage of CNNs and PU loss function by

Kiryo et al. (2017). They make up the PU data from PN data for a training set,

but keep the PN data for test set. The positive data is created very carefully

to ensure zero noise. In addition, they create a subset of unlabeled data/pixels

within an image, which could be due to the architecture style they choose.

In this case, the architecture is a point-wise classification rather than a full

segmentation architecture, which may slow the prediction time. Finally, Santara

et al. (2019) explore PU learning for hyperspectral imageries using NNPU-based
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risk minimization by Kiryo et al. (2017), and a one-versus-all classification based on

a two-step PU learning approach.

2.2 Transfer Learning

Transfer learning (TL) is the idea of transferring informative knowledge from

one domain (i.e. source domain) to another domain (i.e. target domain) (Fig. 2).

TL is suitable when learning from source domain with large amount of labeled data

can inform the target domain model with limited labeled data—which performs

better relative to training from scratch in the target domain with limited label

(Torrey & Shavlik, 2010). PU data domain is an example of limited data domain

(Mignone & Pio, 2018). Transferring informative knowledge among domains is all

the more important when a domain may not have enough information from labeled

data, but, when domains combined do have enough information to construct a

representative model—examples for this in PU learning are Mignone and Pio (2018)

and B. Liu et al. (2022). Therefore, the key with TL is the ability to transfer only

the beneficial part of the knowledge learned in the source domain to the target

domain (Day & Khoshgoftaar, 2017).

Figure 2. Transfer Learning is a framework for reusability of the extracted
knowledge in a large-data source domain to train a model in a limited-data target
domain
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Concepts in TL include domain and its corresponding task(s). A domain

is defined by the feature space, X, and marginal probability distribution over the

feature space, P (X). Given a domain, a task is defined by the label space, Y , and

a predictive function, f(·) = P (Y |X), that provides a prediction for the label

of a given data example (e.g. pixel) (Tan et al., 2018). Since TL is a family of

different strategies and is not referring to a specific methodology (Bashath et al.,

2022b), TL categorization has evolved to include two approaches, homogeneous

and heterogeneous (Weiss, Khoshgoftaar, & Wang, 2016). TL is considered

homogeneous when the data in the source and target domains have a same feature

space (XS = XT ) and labels (YS = YT ). As a note, if XS = XT but the feature

distributions are different (PS(X) ̸= PT (X)), it is called domain adaptation (DA).

On the other hand, TL is defined as heterogeneous when the data in the source and

target domains have nonequivalent (and non-overlapping) feature spaces (XS ̸= XT )

with possible nonequivalent labels (YS ̸= YT ) (Day & Khoshgoftaar, 2017).

Homogeneous TL can be categorized into instance-, feature- (symmetric or

asymmetric), parameter-, relational-informational-, and hybrid-based techniques

(Weiss et al., 2016), some of which are of interest in my dissertation. In instance-

based techniques, the data samples in the source domain are reweighed to be

directly used in the target domain—e.g. Asgarian et al. (2018). Feature-based

techniques target the gap between the marginal and conditional distributions of the

source and target domains, and try to close the gap using asymmetric or symmetric

feature transformation. Parameter-based techniques try to share model parameters

between source and target domain. For example, Oquab, Bottou, Laptev, and

Sivic (2014) investigate the idea of transferring image representations learned in a

CNN-based model trained on a source domain to be re-used in a model on a target
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domain. Finally, hybrid-based techniques transfer knowledge using both instances

and shared parameters (Weiss et al., 2016). On the other hand, in heterogeneous

TL, since the problem is the difference in feature spaces, only feature-based

techniques are considered for heterogeneous TL (Day & Khoshgoftaar, 2017).

DA has gained a lot of attention as well. For example, Ganin and Lempitsky

(2015) propose an approach that trains deep architectures on labeled data in the

source domain and unlabeled data in the target domain. Their architecture uses

a deep feature extractor that is connected to a deep label predictor for the source

domain data and a deep domain predictor that performs the unsupervised DA on

both source and target domain data. Therefore, the latter ensures the extraction

of domain-invariant features. Universal training (i.e. shared encoders/feature

extractors) can focus on either one domain or multiple domains—for example

Nam, Lee, Park, Yoon, and Yoo (2021), Ouali, Hudelot, and Tami (2020), Kim

and Kim (2020), Z. Wang et al. (2020), Kalluri, Varma, Chandraker, and Jawahar

(2019), and Hoffman, Wang, Yu, and Darrell (2016). In addition, there are GAN-

based approaches to DA such as Musto and Zinelli (2020) that are used for

translating source domain images to target domain images using GAN—it should

be noted that GAN-based translation approaches are widely used in remote-sensing

literature.

The potential for leveraging the advantages of TL and DA in PU learning

is huge. However, research in PU learning mostly focuses on the knowledge of

single domain for learning a classifier; not enough work has focused on utilizing

TL for PU learning (B. Liu et al., 2022). Among the few, for example, B. Liu

et al. (2022) propose a mix of transfer and ensemble learning framework for PU

learning. They take a parameter-based approach, in which SVM parameters and
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regularization terms are shared between source and target domains. Meng, Xie,

and Sun (2021) take an instance-based approach, in which they use a PU learning

model to identify examples that are close to target domain to be used later with

the data in the target domain with a gradient boost decision tree model. As a

limitation of their work, they show that negative transfer (i.e. when TL does

not improve and even worsen the quality of learning) can occur in case of multi-

source tasks. Mignone, Pio, D’Elia, and Ceci (2020) study a setting in which both

source and target domains have PU data. They propose an approach in which,

first, the unlabeled data are converted to weighted labeled data in each of source

and target domains separately, and they then use a parametric-based approach

to create a new classification model based on different models trained separately

in each of the source and target domains. Bhat and Culotta (2017) use a feature-

based approach for document classification, in which they reweigh the features’

importances based on information extracted from a base document classifier on PU

data. Hammoudeh and Lowd (2020) investigate the PU learning under covariate

shift where the distribution of positive data shifts in the test data in comparison

to the training data (as opposed to a fully-labeled source domain and PU target

domain setting). Loghmani, Vincze, and Tommasi (2020) convert the open-set

DA problem to a PU problem. In other words, instead of a source domain with

label space YS and a target domain with label space YT such that YS ⊂ YT ,

they consider the source data as positive and the target data as unlabeled, which

violates the SCAR assumption. Therefore, they use a mix of an autoencoder loss

(as the domain agnostic discriminative loss of choice) and the NNPU loss by Kiryo

et al. (2017) in order to avoid the unreliable predictions that occur in deep neural

networks when NNPU with logarithmic loss is used with the unlabeled samples
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belonging to a different domain. Finally, Sonntag, Behrens, and Schmidt-Thieme

(2022) investigate PU-DA where source domain is completely labeled and the

target domain has PU data. They propose a two-step approach, in which reliable

positive and negative pseudo-labels are selected in the target domain using a PU

loss on target domain and a classic loss on the source domain. They then train a

supervised classifier on the target domain.

• Transfer Learning in Remote Sensing. TL in remote sensing

literature has gained a lot of attention. M. Zou and Zhong (2018) investigate a

parameter-based TL in which model parameter values (i.e. weights) from a pre-

trained model on an open image dataset such as ImageNet (Russakovsky et al.,

2015) are used to for fine-tuning a model in the target domain (i.e. the domain

of interest). They do this by either adjustmenting of all weights or reusing them,

depending on whether the size of the training data in the target domain is large

enough or not, respectively. A. X. Wang, Tran, Desai, Lobell, and Ermon (2018)

also show the success of using a pre-trained model on images of one geographic

location to be used and fine-tuned on images of another geographic location. X. He,

Chen, and Ghamisi (2019) use a fully connected layer (as the start point of their

model) in order to convert hyperspectral images with more than three channels into

three channel data, which will then use pre-trained model weights on ImageNet

for the rest of the model. Wurm, Stark, Zhu, Weigand, and Taubenböck (2019)

take advantage of transferring pre-trained fully convolutional networks for mapping

slums in various satellite images. Other examples of such TL approach are Najjar,

Kaneko, and Miyanaga (2017) and Z. Zhou et al. (2021). Their success in using

pre-trained model parameters is due to the similarities in low-level features of the

two domains (M. Zou & Zhong, 2018). However, different studies such as Xie,
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Jean, Burke, Lobell, and Ermon (2016) have been able to get the same benefits

using data rich proxy labels for cases in which the two learning tasks are not very

related (Ghosh, Jia, & Kumar, 2021). All in all, although this type of parameter-

based approach results in model improvement, as opposed to training a model from

scratch, better results could be obtain from a feature-based approach or a hybrid of

both.

The spectral shifts among the feature distributions of RS images of different

geographic locations can cause the model trained on one geographic location to fail

when used in a rather different geographic location. Therefore, in order to have

a model that is robust to shift among the datasets, remote sensing turns to DA

methods (Tuia et al., 2016). DA can be done in an unsupervised or semi-supervised

approach: with unsupervised DA, the two unlabeled domains must match, while

semi-supervised DA assumes that the source domain contains fully labeled data and

the target domain contains a set of unlabeled data (Tuia et al., 2016).

Tasar, Happy, Tarabalka, and Alliez (2020b) address the domain shift

between train and test datasets. In their approach, they use a generative

adversarial style-transfer network to create fake images that have the style of

test images. These fake images are used to fine-tune a model trained with the

training data. Tasar, Tarabalka, Giros, Alliez, and Clerc (2020) address the multi-

source DA. They use a generative adversarial style-transfer network to remove the

marginal gap between each source domain and the target domain, which results

in all the data having similar marginal distributions. Then, a model is trained

on the transformed source data and used for prediction on the data in the target

domain. There are many other style-transfer approaches such as Ji, Wang, and Luo

(2020), Tasar, Giros, Tarabalka, Alliez, and Clerc (2020), L. Shi, Wang, Pan, and
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Shi (2020), D. Zhao, Li, Yuan, and Shi (2021), Tasar, Happy, Tarabalka, and Alliez

(2020a), Y. Zhang et al. (2019), and M.-Y. Liu, Breuel, and Kautz (2017). Finally,

in their transformation-based DA, Chakraborty and Roy (2020) adopt a hierarchy

of different approaches, including stacked auto-encoder neural network and fuzzy

theory.

Lucas, Pelletier, Schmidt, Webb, and Petitjean (2021) address the semi-

supervised DA in which some labeled samples are available in the target domain.

Their proposed model is first trained on a source domain, and then trained on

the target domain using a source-regularized loss function that shrinks the model

weights estimations with respect to those learned on the source domain. To

alleviate the fails in general unsupervised DA methods on RS imagery due to its

difference with other datasets, such as urban scene/driving datasets, Iqbal and

Ali (2020) propose a weakly-supervised DA for built-up region segmentation, in

which they assume the availability of weak-labels that are image level labels in the

target domain with pixel-level unlabeled images. They guide the adaptation in the

segmentation model by the use of image classification for the weak-labels during the

training process.

2.3 Ensemble Learning

Ensemble learning (EL) is a methodological framework, with the goal of

establishing a better predictive performance by training and combining multiple

learners each one of which, individually, may not produce as strong of predictive

performance (Dong, Yu, Cao, Shi, & Ma, 2020b)—if the individual learning models

are of same type, this approach is known as homogeneous EL, or heterogeneous

EL otherwise (Ganaie, Hu, et al., 2021). The fundamental idea of EL is based on

the voting mechanism implemented using different strategies including decreasing
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variance (bagging), decreasing bias (boosting), or ideally both (stacking) (Z.-

H. Zhou, 2021). A primary tenet behind EL is to avoid inductive bias by allowing

a better search in the hypothesis space or even extending it such that the

generalization performance is improved by avoiding a single poor learner and/or

a model hypothesis space that does not properly approximate the ground truth

hypothesis (Z.-H. Zhou, 2021). Although EL is very successful in machine learning

research, it faces new challenges with incorporation of deep neural networks due to

their huge increase in training time and space (Y. Yang, Lv, & Chen, 2021). Efforts

to address these challenges resulted in the emergence of deep EL that combines the

advantages of both deep learning and EL (Ganaie et al., 2021).

Deep EL algorithms can be categorized into three main approaches: (i)

extracting features from deep learning models and using them as input to other

traditional classifiers, (ii) having an ensemble of the output of the individual

learners that are deep learning models, and (iii) training end-to-end deep learning

architectures that incorporate EL principles (Y. Yang et al., 2021). Some of these

deep EL categories utilize the traditional EL approaches such as bagging, boosting,

and stacking, and are mostly accompanied with a TL approach—for example, Doshi

and Yilmaz (2020) propose an ensemble model for object detection task.

For the first category of deep EL algorithms, Korzh, Joaristi, and Serra

(2018) propose a four-step deep transfer ensemble learning for classification task.

They first fine-tune each of multiple CNNs with different architectures, and then

they fine-tune an ensemble of these models, which include the initial weights

identified from the previous step. Finally, they use the ensemble of the CNNs as

a feature extractor for another classifier such as SVMs. Although, their approach
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could be considered in the second category of deep EL algorithms too, their

approach has more overlap with the first category.

For the second category of deep EL algorithms, Kandaswamy, Silva,

Alexandre, and Santos (2015) propose an approach to reduce the impact of layer

selection in TL by an ensemble of multiple different-style transfer for generic

features that are previously learned. Kumar, Kim, Lyndon, Fulham, and Feng

(2016) propose the ensemble of CNNs, in which they first fine-tune the pre-trained

CNNs on a large dataset of natural images, and then they apply the fine-tuned

CNNs as either a feature extractor for a SVM classifier or a classifier for medical

image classification. As mentioned, their approach investigates the first category of

deep EL algorithms as well (i.e. CNNs as feature extractors for SVM classifiers).

Finally, for the third category of deep EL algorithms, Devassy and Antony

(2021) propose a mix of transfer and ensemble learning, in which they use pre-

trained models to create intermediate feature maps to be concatenated and fed to

a set of dense layers with a binary classification output—the pre-trained weights

and layers are freezen in the EL stage. Yu et al. (2021) propose a CNN-based EL

for image dehazing, in which two subnetworks are used, one for capturing global

image representation using TL, and the other subnetwork for capturing domain-

specific representation. These two subnetworks create two feature-maps that are

then concatenated and inserted into the rest of the main network for purpose of

outputting dehazed images. Bousselham et al. (2021) propose an end-to-end deep

EL for semantic segmentation that avoids the heavy cost of multi-stage training of

ensembles of deep networks. In order to do this, they take advantage of multiple

independent decoders, each of which gets trained on one of the multi-scale features

set produced by a feature pyramid network approach.
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Some other approaches in deep EL that do not fit into the aforementioned

categorization are also worth mentioning. Nozza, Fersini, and Messina (2016)

demonstrate the positive effect of EL through different ensemble methods such

as simple-voting on reducing the cross-domain generalization error that occurs in

domain adaptation. Nigam, Huang, and Ramanan (2018) investigate the possibility

of an ensemble of models learned from dataset that differ in scene structure,

viewpoints, and objects statistics in order to transfer knowledge from multi diverse

domains to the target domain.

In terms of EL for PU learning, P. Yang, Humphrey, James, Yang, and

Jothi (2016) propose an ensemble of PU learning models in order to alleviate the

class imbalance within the dataset. They first, for each classifier, create a balanced

training set by randomly subsampling from the unlabeled set. Then, they train

SVM classifiers using a biased PU approach. They use a correction factor approach

(Elkan & Noto, 2008) to reduce the prediction bias on the unlabeled data by

considering all of them as negative. This bias is further reduced by an ensemble

of each of these SVM models that are used to produce the final prediction.

Nguyen, Li, and Ng (2012) apply an ensemble of classifiers for PU problem in time

series classification. Claesen, De Smet, Suykens, and De Moor (2015) propose a

bagging-base ensemble of a variation of SVM models for PU learning. In their

approach: (i) the variability between different models is increased by resampling

from both positive and unlabeled data, which results in more robustness against

false positives, and (ii) the relative misclassification penalty between positive and

unlabeled examples is controlled by introducing an extra degree of freedom in the

model. Basile, Di Mauro, Esposito, Ferilli, and Vergari (2019) propose a general

probabilistic generative approach to PU learning, in which the goal is to find
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reliable negative examples that are in the lowest density regions of the positive class

distribution. They next create a mixture of generative models using the adoption

of bagging ensemble from the discriminative framework. P. Yang, Li, Chua, Kwoh,

and Ng (2014) propose a two-step PU learning approach in which, after identifying

the reliable negative examples, both positive and reliable negative examples are

used to assign weights to unlabeled data. The assigned weights represent the

likelihood of the unlabeled data belonging to either positive or negative class.

Finally, an ensemble of classifiers are used for the final prediction. Jowkar and

Mansoori (2016) propose a two-step PU learning approach in which the second

step consists of a graph-based ensemble of three weighted classifiers.

• Ensemble Learning in Remote Sensing. In remote sensing,

researchers have demonstrated the robustness of ensemble classifiers over a single

method strategy—for example, Benediktsson, Chanussot, and Fauvel (2007),

X. Huang and Zhang (2012b), and Rahman, Smith, and Timms (2013). X. He

and Chen (2020) take advantage of TL by reusing pre-trained models in order to

alleviate limited train data in the target domain. Then, they use a classifier-level

ensemble of multiple different fine-tuned models. Since their approach considers

target domain of hyperspectral images, and the pre-trained models come from

domains with three channels, they randomly select three channels of hyperspectral

images for the fine-tuning process. In a different vein, some researchers have

focused away from a random selection of channels from hyperspectral images,

and have proposed different approaches that take advantage of all available

channels within hyperspectral images. For example, X. He et al. (2019) propose

a fully connected layer added to the beginning of the three-channel compatible

networks’ architectures to map the multi-channel hyperspectral images onto
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three channels input for such networks. Korzh et al. (2018) propose a four-step

approach for an ensemble of pre-trained CNNs. First, they fine-tune each CNN

separately; then, they construct an ensemble of these fine-tuned networks. Their

approach results in improved EL performance in two ways: (i) using the ensemble

of models, themselves, as either the final classifier or the feature extractor, then

fed into another model as the final classifier, and (ii) fine-tuning the ensemble of

models using joint loss function. Fan, Xu, and Zhang (2021) propose a classifier-

level bagging-based ensemble for classifying house damage. Jamali et al. (2021)

investigate the use of two different deep EL approaches for complex wetland

classification: (i) majority voting classifier-level ensemble, and (ii) feature-level

ensemble of multiple deep networks to be fed into a final classifier. They show that

the latter results in improved predictive performance. Iyer, Sriram, and Lal (2021)

utilize an ensemble of deep learning models, in which they calculate the mean of

the probability scores of each model output per class, and, then make a prediction

based on the maximum of the averaged probability values.

Plazas, Ramos-Pollán, and Martínez (2021) propose a classifier-level

ensemble-based semi-supervised deep learning approach which iteratively labels

those unlabeled data with high confidence predictions. Gu et al. (2022) propose

an ensemble semi-supervised learning in which, first, supervised deep CNNs

classifiers are trained on labelled data to be used as feature extractor. Then, in the

second stage, unlabeled data are exposed to a self-learning process, which exploits

pseudo-labelling continuously in order to improve the model. For self-learning,

the fine-tuned models in the first step are used to produce different feature maps

to increase the diversification among the learners in the ensemble module. The

ensemble framework uses cross-checking mechanism among the classifiers such that
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their disagreement is minimized. This way, the ensemble components are trained

together as opposed to traditional separate training strategy.

Although research has shown promising results of ensemble classifiers in

remote sensing, little research has focused on the ensemble PU learning in remote

sensing leaving a gap in this area of research. In one of the few examples, R. Liu

et al. (2018) investigate EL for PU learning. Three ensemble methods (majority

vote, weighted average, and weighted vote combination rules) are compared with

different stand-alone one-class classification and PU learning methods. They show

the superiority of weighted average and weighted vote ensembles over other models

for classifying the urban areas from RS imagery. Wu, Qiu, Jia, and Liu (2020)

investigate the bagging-based approach to PU learning using decision tree method

for generating a landslide susceptibility map. Finally, X. Liu, Liu, Datta, Frey, and

Koch (2020) propose a weighted voting ensemble of three one-class classification

models for mapping invasive plants.

The literature reviewed in this chapter, covered PU, Transfer, and Ensemble

learning paradigms. The goal of these paradigms of learning models is to alleviate

the labeled data scarcity in many real-world applications, including vision-based

applications. Although each of these methods are studied extensively, in general,

and are introduced and used in remote sensing, in particular, the potentials of

the combined advantages of these methods have not been researched much. Such

research is still in its infancy with a few research demonstrating promising results

in different leaning tasks. Therefore, the goal of this dissertation is to investigate

such potentials for semantic segmentation task. More specifically, I investigate two

of the possible avenues that are Transfer PU learning and Ensemble PU learning
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for semantic segmentation of RS imagery where labeled data scarcity is a burden on

developing learning models.

29



CHAPTER III

DATASETS

Several non-remotely-sensed and remotely-sensed imageries and their derived

positive and unlabeled variation datasets were used in this dissertation research.

All of the datasets are online and freely available. In the sections below, I briefly

describe each of these datasets: (i) the standard open image dataset ImageNet, (ii)

Massachusetts Buildings Dataset, and (iii) Inria Aerial Image Buildings Dataset, in

that order.

3.1 Standard Open Image Datasets

ImageNet, ILSVRC image dataset (Russakovsky et al., 2015), is used as

the standard open image dataset for this dissertation. The ImageNet consists

of 1281167 train images, 50000 validation images and 100000 test images for

1000 object classes—see Fig. 3 for sample images. Although this dataset is not

directly used for training the models in this dissertation, it is indirectly used by

incorporating the pre-generated parameters/weights of models pre-trained on them

(as the starting point or warm start) for some of my models and baselines.

3.2 Massachusetts Buildings Dataset

The Massachusetts buildings dataset (Mnih, 2013) is a high resolution

dataset with a spatial resolution of 1.0 meter. This dataset consists of a single

source covering almost 340 km2 in total of mostly urban and suburban areas of

various sizes of buildings. The reference map consists of labels for each image that

shows pixels that either do or don’t belong to buildings—most of the labels are

30



derived automatically with the test and validation sets being manually corrected for

better performance assessments.

The dataset consists of 151 images of size 1500 × 1500 including 137 images

for the train set, 4 images for the validation set and 10 images for the test set.

Images are converted into patches of size 256 × 256—if not enough pixels are

available at the edges of an images, enough pixels are created with the mirroring

technique (from OpenCV library) of the patch’s edges in order to create a 256× 256

patch. This process results in 5436 total image patches including 4932 images

for the train set, 144 images for validation set and 360 images for test set—see

Fig. 4a for a sample image with some of its corresponding derived patches. Finally,

in order to avoid the class imbalance problem (since it is out of the scope of this

dissertation), a patch selection is performed based on the criterion that, within each

patch, at least 25% of the pixels must belong to the class building. It should be

noted that an upper bound for the positive class is not needed since class imbalance

in favor of the class of interest is not problematic. Therefore, the final dataset

consists of a total of 3559 image patches including 3201 images for the train set,

Figure 3. Sample images from ImageNet-ILSVRC dataset (Russakovsky et al.,
2015).
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83 images for validation set and 275 images for test set—see Fig. 4b for a sample

of final patches. Table 1 represents a summary of the dataset characteristics before

and after pre-processing. Finally, the dataset is standardized using equation 3.1,

where c ∈ C refers to a specific channel at the time and µc and σc are the mean

and the standard deviation for that specific channel calculated over the entire train

set.

x̂c =
xc − µc

σc
(3.1)

Table 1. Massachusetts Buildings Dataset Characteristics

Dataset Total Images Training Images Validation Images Testing Images Image Size Resolution (m/p)

Original 151 137 4 10 1500× 1500 1.0

Processed 3559 3201 83 275 256× 256 1.0
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Figure 4. (a) Left and right columns show images and their corresponding labels,
respectively. From top to bottom: a sample from Massachusetts buildings dataset
(Mnih, 2013) and samples from its derived patches, one from the middle, and the
rest from top-left, top-right, bottom-left, and bottom-right corners, respectively,
showing the mirroring effect when not enough pixels are available for patch
creation. (b) Selected final patches: images and their corresponding labels in the
left and right columns.
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3.3 Inria Aerial Image Dataset

The Inria Aerial Image Labeling Dataset (Maggiori et al., 2017) consists of

public domain aerial orthorectified RGB-color imagery with a spatial resolution

of 0.3 meter. The images cover dissimilar urban settlements for different

geographic locations such as cities and towns with different building densities. The

dataset covers a total of 810 km2, 405 km2 in each of train and test sets. Due to

unavailability of reference maps for the test set, the available original train set is

used to create my train, validation, and test sets with proportions of 70%, 15%,

and 15% of the original train set for this dissertation. The reference map consists of

public domain official building footprints with labels for each pixel either belonging

or not belonging to buldings.

The dataset consists of 180 images of size 5000 × 5000. As with the

Massachusetts buildings dataset, images are converted into patches of size 256× 256

with the same policy that if not enough pixels are available at the edges of an

images, enough pixels are created with mirroring technique in order to have a

256× 256 patch. This process results in 72000 total image patches of size 256× 256.

Then, again, in order to avoid the class imbalance problem, a patch selection is

performed based on the criterion that, within each patch, at least 25% of the

pixels must belong to the class building. Therefore, the final dataset consists

of a total of 18702 image patches. Thus, with the 70%, 15%, and 15% portion

strategy, the train set, validation set, and test set have respectively 13092, 2805,

and 2805 images. See Table 2 and Fig. 5 for, respectively, a summary of the dataset

characteristics (before and after pre-processing) and a sample image with some of

its corresponding derived patches (before and after pre-processing). Finally, the

dataset is standardized in the same manner as for Massachusetts buildings dataset.
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Figure 5. (a) Left and right columns show images and their corresponding labels,
respectively. From top to bottom: a sample from Inria Aerial Image Dataset
(Maggiori et al., 2017) and samples from its derived patches, one from the middle,
and the rest from top-left, top-right, bottom-left, and bottom-right corners,
respectively, showing the mirroring effect when not enough pixels are available
for patch creation. (b) Selected final patches: images and their corresponding labels
in the left and right columns.
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Table 2. Inria Aerial Image Dataset Characteristics

Dataset Total Images Training Images Validation Images Testing Images Image Size Resolution (m/p)

Original 180 – – – 5000× 5000 0.3

Processed 18702 13092 2805 2805 256× 256 0.3

3.3.1 Positive and Unlabeled Dataset. A bottleneck for developing

models on domains with limited or no labeled data (such as positive and unlabeled

(PU) learning problem) is the validation of the model itself since there are no fully-

labeled samples available for such validation (Tuia et al., 2016). Although research

such as W. Li and Guo (2013) has been trying to develop performance metrics on

naturally PU data for PU model evaluation and assessment, commonly acceptable

and used performance metrics are still those developed for positive and negative

(PN) data. Therefore, for this dissertation, I create PU train data on top of the

PN train data from Inria Aerial Image dataset. In doing so, PU data are used for

model development, and PN data are used for model evaluation and assessment.

I use the pre-processed data that I created above from Inria Aerial Image

dataset to create the PU data. I choose these data owing to the fact that the

data do not suffer from a class-imbalance problem, which could lead to generating

suboptimal classifiers due to the heavy influence of the majority class in comparison

to the influence of minority class on model training (Chawla, Japkowicz, &

Kotcz, 2004). Although there is research such as X. Chen et al. (2021) that

investigates the class-imbalance problem in PU learning, it is out of the scope

of this dissertation, and, thus, the PU dataset is created in a way that avoids

such problem (as shown in Fig. 6). The process for creating the PU data involves

applying a moving window of the size of 32 × 32 and stride 32 that scans the label
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maps corresponding to each image within the train set. At each location of the

moving window, the pixels that belong to the positive class are changed randomly

to unlabeled, with some probability (which, in this case, is 0.5). Therefore, since

there is complete randomness and no selection bias, it is safe to say that the

created data follow the Selected Completely At Random (SCAR) assumption. It

could be argued that the chosen size for the moving window may introduce a bias,

and, thus, the SCAR assumption may not be met; however, the counter argument

is that the moving window’s size is random and chosen independently from the

positive class characteristics, arguably still fulfilling the SCAR assumption. Fig. 7

shows some samples of PU train data resulting from the PU data making process.

Figure 6. PU data is created using a moving window over labels corresponding to
each image within the train set. At each location of the moving window pixels that
belong to the positive class are changed to unlabeled with complete randomness
(i.e. no selection bias).
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Figure 7. Left and right columns show images and their corresponding PU labels
created by the moving window strategy.
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Next, I repeat the aforementioned procedure in order to create different

PU train datasets with different levels of missing labels from the positive class.

Therefore, the probability with which the pixels of positive class that are under the

moving window are converted to unlabeled pixels is changed to 0.6, 0.7, 0.8, and 0.9

for a total of four additional cases. Thus, there are five totally different PU train

dataset from Inria Aerial Image dataset that are named PU5, PU6, PU7, PU8, and

PU9, all of which satisfy the SCAR assumption. See Fig. 8. In other words, PU9

means that the probability that a pixel that belongs to the positive class is labeled

is 1− 0.9 = 0.1 = p(s = 1|y = 1).

Figure 8. Different PU train datasets created from Inria Aerial Image dataset with
different missing probabilities for the positive class, all of which satisfying the
SCAR assumption—graphs in black, blue, green, yellow, red, and orange show the
distribution of the positive class and of the positive data in PU5, PU6, PU7, PU8,
and PU9 datasets, respectively.

3.3.1.1 Homogeneous Case. As mentioned in the previous

chapter, the spectral shifts among the feature distributions of remotely-sensed

images of different geographic locations can cause the model trained on one

geographic location to fail when used in a different geographic location (Tuia et

al., 2016). This failure can be considered as the heterogeneous case of transfer

learning/domain adaptation. However, if the training and testing (or future

inference) happens at the same geographic location, then the homogeneous transfer
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learning/domain adaptation is the case. Since this dissertation investigates both

homogeneous and heterogeneous transfer learning/domain adaptation and the

PU dataset created so far is for heterogeneous case, here, I explain the dataset

that is created for homogeneous case. The Inria Aerial Image dataset includes

different geographic locations (i.e. cities). So, I selected image patches and their

corresponding label maps for one of the cities—in this case Chicago with 6855

patches. Next, I randomly selected a subset of the patches containing half of the

patches with PN labels with the 85% and 15% portion strategy for train and

validation sets. Then, the other half is used for creating PU data with the 70%,

15%, and 15% portion strategy for train, validation, and test sets. This results in

2914 and 514 images for train and validation sets in the PN data, and 2399, 514,

and 514 images for train, validation, and test sets in the PU data, respectively. Like

the previous case, this selection process resulted in PU5, PU6, PU7, PU8, and PU9

datasets, each of which represent a different level of missing labels from the positive

class.

All of the datasets described above will be used in the following two chapters

in which I develop learning models that address the research questions of this

dissertation.
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CHAPTER IV

DEEP TRANSFER POSITIVE AND UNLABELED LEARNING

The large quantities of frequently-acquired multi-temporal and multi-source

remotely-sensed (RS) imageries provide great opportunities for real-time earth

monitoring (Tuia et al., 2016). However, such monitoring requires automatic image

processing for which supervised learning models have shown success, though with

the downside of relying on availability of fully-labeled data for model training. In

addition, there is no guarantee that models trained on images from one geographic

location will perform well on images from another geographic location due to

distribution shifts within the RS imageries between the two geographic locations

that arise from differences in acquisition techniques, atmospheric conditions, objects

of interest, and so forth (Tuia et al., 2016). There are two lines of research that

address these issues: (i) transfer learning (TL) and (ii) positive and unlabeled

(PU) learning. TL and one of its specific variations, domain adaptation (DA),

leverage the benefits of multi-temporal and multi-source aspects of RS imageries.

On the other hand, the goal in PU learning is to alleviate the labeled data scarcity,

especially when creating a fully-labeled data may not be fundamentally justified

due to the interest in only one specific landcover class or object (W. Li et al.,

2010). Both TL/DA (D. Zhao et al., 2021) and PU learning (Deng et al., 2018)

have shown promising results in semantic segmentation of RS imageries and are

of great importance for (close-to) real-time predictions on newly acquired RS

imageries. However, researchers have not yet attempted to combine these two

approaches, especially in the context of RS imageries. Therefore, in this chapter,

I investigate the possibility of hybrid methodologies that benefit from both TL/DA

and PU learning. Specifically, I start with the simpler scenario that is homogeneous
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TL/DA and PU learning. Then, I discuss the advantages and disadvantages of such

scenario. Next, I relax the homogeneous assumption for the proposed model such

that it can handle the heterogeneous case. Finally, I discuss the limitations and

opportunities for further improvements.

4.1 Background

Deep learning models have been successful in many computer vision tasks,

including one of the most important of them, semantic segmentation. Such success

is mainly due to the supervised learning approach that depends on collecting large

amount of dense pixel-wise labels (Mittal, Tatarchenko, & Brox, 2019). However,

the high cost of collecting labeled data has resulted in researchers shifting focus to

other promising areas, such as semi-supervised learning, weakly-supervised learning,

and unsupervised and semi-supervised domain adaptation.

4.1.1 Semi-supervised Learning. Semi-supervised learning (SSL)

focuses on target domain (i.e. the domain of interest) and tries to alleviate the

labeled data scarcity by learning a generalized model applied to a large amount of

unlabeled data and a few limited labeled data. French, Aila, Laine, Mackiewicz,

and Finlayson (2019) investigate the consistency regularization technique for semi-

supervised semantic segmentation. The idea behind consistency regularization is

that the trained model should generate consistent predictions for inputs of the

same unlabeled image under different perturbations. They show that incorporating

augmentation techniques such as CutOut (DeVries & Taylor, 2017) and CutMix

(Yun et al., 2019) (with CutMix showing the superior results) improve the

performance of semi-supervised semantic segmentation. The learning approach

is further improved by French and Mackiewicz (2021) who incorporate color
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augmentation. Finally, Olsson, Tranheden, Pinto, and Svensson (2021) propose the

ClassMix augmentation technique in which two unlabeled images are used to create

a new augmented image based on superimposing part of one image on to the other

image with the help of object boundaries mask extracted from network’s prediction

segmentations. In addition, the corresponding prediction segmentations for each

of the two input unlabeled images are also augmented to create the corresponding

label map for the augmented output image.

Souly, Spampinato, and Shah (2017) use generative adversarial networks

(GANs) for SSL such that the generator creates additional training data while

the discriminator is a segmentation network with an additional class to count for

the fake class, which is produced by the generator. The three-part loss function

takes into account a standard generative adversarial network GAN loss for the

image produced by the generator, a loss for unlabeled data, and a standard cross-

entropy loss for the labeled data. Hung, Tsai, Liou, Lin, and Yang (2018) propose

an adversarial network-based semi-supervised semantic segmentation. Their method

consists of a segmentation network and an adversarial discriminator in which

they alternate the typical GAN discriminators to a fully convolutional network

(FCN)-based discriminator for distinguishing the ground truth segmentation

distribution from the predicted probability maps by the segmentation network.

The discriminator is the key for the semi-supervised setting since it provides

predicted labels as pseudo labels for unlabeled data to be used for the training of

the segmentation network. Similarly, Mittal et al. (2019) propose a model in which

the generator is the segmentation network and the discriminator distinguishes the

ground truth segmentation maps from the generated ones. However, in addition

to the GAN branch, they add a multi-label classifier as the second branch based
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on a modified Mean Teacher (Tarvainen & Valpola, 2017), which is responsible for

filtering the segmentation network’s false positive predictions. Alonso, Sabater,

Ferstl, Montesano, and Murillo (2021) propose a teacher-student model with

a memory bank that contains relevant and high-quality feature vectors from

labeled data. The teacher network creates pseudo-labels for unlabeled data to

be used along with labeled data information from labeled data for training the

student network. The key element in their approach is the memory bank and

its corresponding contrastive learning loss that enforces the output features from

the student network to be similar to the ones from the teacher network’s memory

bank. Ke, Qiu, Li, Yan, and Lau (2020) propose a general framework for pixel-

wise SSL tasks that can be applied to a wide range of pixel-wise tasks without

structural adaptation. Their model utilizes two (segmentation) models with

different initializations to form perturbations between them, and a flaw detector

network that checks the differences among models’ outputs and ground-truth where

in the corresponding losses, for unlabeled data, the terms for such differences are

assumed to be zero.

Though, while SSL has been successful, it still requires some fully-labeled

images to capture the complete semantics within an image of a complete scene

or object. RS imageries are large; fully labeling one encumbers the same labeling

burdens. And small patches of such images may not contain complete semantics

of objects/classes. In addition, the negative class, in case of RS imageries, is too

diverse such that being interested in only one class for prediction makes labeling far

more undesirable. Finally, and most importantly, SSL does not address the more

challenging problem of distribution shifts among RS images, a problem that makes

deploying the trained models for inference much more difficult.
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4.1.2 Weakly-supervised Learning. Weakly-supervised approaches

assume availability of zero labeled data and take into account auxiliary information

instead, one of the most studied ones being the image-level class labels (Ahn &

Kwak, 2018; Z. Huang, Wang, Wang, Liu, & Wang, 2018; J. Lee, Kim, Lee, Lee,

& Yoon, 2019). For example, Ahn and Kwak (2018) assume the availability of

image-level class labels. First, they generate pixel-level segmentation labels for

training images given their image-level class labels. Then, they train a semantic

segmentation network using the generated segmentation labels. Other non-

image-level-based weakly-supervised methods are also proposed. For example,

Papandreou, Chen, Murphy, and Yuille (2015) adopt an approach in which either

bounding boxes of semantic object in an image or image-level labels are available.

D. Lin, Dai, Jia, He, and Sun (2016) take advantage of scribble-based image labels

that are easier and faster to generate. They propose a two-part model in which a

graphical model creates fully labeled images by exploring the unmarked pixels using

the propagated information from scribbles, and a FCN that is trained using the

generated labels from the graphical model and provides semantic prediction for the

graphical model.

While researchers have achieved some success, there are two problems with

weakly-supervised approaches. First, the need for auxiliary information is too

vague for the diverse information represented in RS images (or even their image

patches). In addition, such auxiliary information is still too difficult to generate

since RS imageries cover a large geographic location. Creating auxiliary information

requires going through so many different small image patches which, although it

does not represent as much work as creating dense pixel-level information, still

takes considerable time and energy. Second, although weakly-supervised approaches
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incorporate weakly labeled examples in addition to pixel-level labels, they do “not

exploit the unlabeled data to extract additional training signal” (Ouali et al., 2020,

p. 2).

4.1.3 Semi-supervised Domain Adaptation. Semi-supervised

domain adaptation (SSDA) tries to reduce the data distribution shift between

source and target domains using fully labeled source data and partially limited

labeled target data. SSDA is mainly focused on image classification with different

approaches, including consistency training of different forms such as entropy

minimization (Berthelot et al., 2019), pseudo-labeling (Sohn et al., 2020),

divergence-based consistency (Gong, Wang, & Liu, 2021), and adaptive consistency

(Abuduweili, Li, Shi, Xu, & Dou, 2021). However, semantic segmentation task is

more challenging and it requires methods originally developed for it rather than

adjusting image classification methods for it (S. Chen, Jia, He, Shi, & Liu, 2021).

There are approaches that use Image-to-Image translation techniques in

order to reduce the feature discrepancy between source and target images. For

example, Musto and Zinelli (2020) propose a mixture of pixel-level and feature-

level domain alignments in a generative adversarial (e.g. GAN) framework for

translating source images to target style. These kind of methods either are

done stand alone before the segmentation process or are co-trained with the

segmentation network. For the former, it is an extra step and burden for fast

training, and for the latter, it adds extra computation burdens. However, there

is research that takes advantage of adversarial learning in a different way. For

example, Z. Wang et al. (2020) propose an adversarial approach with shared

feature generator strategy. In addition to the cross-entropy loss for the labeled

data, they introduce two adversarial losses for cross domain feature alignment: (i)
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a global adaptation using a GAN-based discriminator trying to distinguish the

input feature maps of the source and target domains, and (ii) a semantic-level

adaptation on both source and target data. S. Chen et al. (2021) denotes that

such approach is unstable in training due to co-occurrence of adversarial training

and weak supervision. They also claim that the full potential of labeled data from

the two domains are not utilized; therefore they propose region-level and sample-

level data mixing methods applied to source and target labeled data to reduce

the data distribution gap. Two complementary teacher models are considered

for training on the mixed data, where each of them is fed with data from one of

the mixing methods. Then, an ensemble of these two pre-trained domain-mixed

teachers is used as the teacher network for the student network in the knowledge

distillation pipeline that includes cross-entropy loss for target labeled data and

Kullback–Leibler (KL)-divergence loss for unlabeled data and its corresponding

pseudo labels from the mixed teacher network. Finally, they use a self-training

component to train the teachers for further improvement using the generated

pseudo labels by the student network.

Finally, the idea of shared networks, specifically sharing feature generators

(i.e. encoders) has been receiving attention due to their potential of decreasing the

deployment costs in favor of real-time inference. In addition, Kalluri et al. (2019)

propose a universal segmentation framework that shares an encoder among different

domains, where each has its own decoder; thus, their model can handle label space

discrepancy. In addition, to addressing feature alignment among domains, they

propose a pixel-level entropy regularization as a separate module for propagating

information among labeled and unlabeled images within all domains. Ouali et

al. (2020) also propose an approach based on shared encoders between labeled
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and unlabeled images within a domain and among domains. They claim that,

for semantic segmentation, it is easier to capture the low density regions in the

hidden representations rather than the input images, and, thus, they perform

a cross-consistency training technique based on the resiliency of the model (i.e.

the shared encoder and main decoder) to the perturbations on the generated

features of unlabeled images by the shared encoder. Auxiliary decoders are used

to help propagate such resiliency of the shared encoder and main decoder using

an unsupervised loss calculated on the output of the main and auxiliary decoders.

The shared encoder and main decoder are further trained using the labeled images.

They also show that this SSL technique can be expanded to SSDA by an alternate-

training approach among domains using domain-specific main and auxiliary

decoders while the shared encoder remains unique across domains.

Although, in comparison to SSL, SSDA addresses the problem of

distribution shifts that happens often among RS imageries, it still requires some

fully labeled images that may not be easily available in case of RS imageries.

4.1.4 Unsupervised Domain Adaptation. Unsupervised domain

adaptation (UDA) tries to reduce the data distribution shift between source

and target domains using fully labeled source data and unlabeled target data

(as opposed to partial labels considered in SSDA). The approaches in UDA can

be broadly categorized into (i) adversarial learning by either transferring the

style of labeled source data to target domain (Hoffman et al., 2018) or adding a

discriminator network to a segmentation network for improving the segmentation

network (Luo, Zheng, Guan, Yu, & Yang, 2019), (ii) self-training (i.e. pseudo

labeling) (Y. Zou, Yu, Kumar, & Wang, 2018), (iii) consistency training (Melas-

Kyriazi & Manrai, 2021), and (iv) a mix of some or all of them (Y.-C. Chen, Lin,
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Yang, & Huang, 2019; Y. Li, Yuan, & Vasconcelos, 2019), which is usually the case

in recent models. For example, Vu, Jain, Bucher, Cord, and Pérez (2019) address

the gap between data distributions using two entropy minimization approaches

on pixel-wise predictions: (i) a direct MinEnt entropy minimization and (ii) an

adversarial AdvEnt entropy minimization. Pan, Shin, Rameau, Lee, and Kweon

(2020) adopt the adversarial AdvEnt entropy minimization approach to address

the inter-domain adaptation, while they propose an intra-domain adaptation using

image-level mean predicted entropy maps for target domain images to classify them

into easy and hard subdomains. Then, they use the pseudo labels from the easy

subdomain to adapt the segmentation network from the easy to hard subdomain.

However, to capture the domain gaps among predicted labels within pixels, Yan

et al. (2021) propose a pixel-level intra-domain adaptation as an alternative to

image-level intra-domain adaptation. Saito, Watanabe, Ushiku, and Harada (2018)

propose an adversarial approach in which the best discriminative features are

learned through an alternative-training of a shared generator and two classifiers.

Truong et al. (2021) propose a generalized form of the Adversarial Entropy

Minimization, Bijective Maximum Likelihood, that does not take into account pixel

independence and incorporates a bijective mapping network (learned using the label

set of the source domain) for calculating the loss on unlabeled target data.

Research in UDA has achieved notable success in semantic image

segmentation. However, “the domain gap cannot be fully alleviated due to the lack

of strong supervision in the target domain” (S. Chen et al., 2021, p. 2). Also, the

successful adversarial approaches are computationally expensive, are not stable

during training time, and are challenging with respect to hyperparameters (Melas-

Kyriazi & Manrai, 2021), which makes training the models challenging.
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4.1.5 The motivation behind this work. Although collecting dense

pixel-wise fully-labeled images is not preferable in RS research, it is justifiable to

collect some limited labeled pixels for the landcover class of interest. Such partially

labeled pixels within images can be generated with quick eyeballing and skimming

of RS imageries in comparison to the difficult process of creating dense pixel-wise

labels either through field investigation or visual interpretation. Therefore, with

such labeled data situation, the aforementioned techniques are not quite applicable.

However, they provide a reasonable foundation that can be assembled along with

ideas from PU research to provide a seamless PU method that takes advantage of

RS imageries across domains. Considering this, I start with the naive homogeneous

assumption for model development and show that such assumption is practically

hard to meet. Therefore, I move on to the heterogeneous case and its practicality

in RS imageries. The rest of this chapter is organized into multiple sections, each

of which covers both homogeneous and heterogeneous cases. In § 4.2, I discuss

the baselines, against which I evaluate my model. Next, I present the proposed

approach for PU domain adaptation in § 4.3. In § 4.4, I examine the results, and,

finally, I summarize and discuss future work in § 4.5.

4.2 Baselines

There is a dearth of research on positive and unlabeled domain adaptation

(PUDA), making it hard to consider good baselines. A few different studies Lei

et al. (2021); Loghmani et al. (2020); Sonntag et al. (2022) implicitly or explicitly

address the problem of PUDA. However, none of these research papers are suitable

to be considered for a baseline here, and I explain why in the following page.

Lei et al. (2021) do not explicitly target PUDA. However, they consider

multi-modality (including different times and locations) in the RS imageries
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they use. With the way of defining train and test datasets, one can consider this

approach as PUDA. Still, there are some major problems with their approach that

make it hard to use it as a baseline. Their model consists of a feature extractor and

fully connected classification heads. Therefore, it introduces high computation and

time cost because of the point-wise predictions. The positive (and negative) labeled

data are selected very carefully using field investigation and interpretation, which

negates the promises of PU learning for removing heavy costs of labeling the data.

In addition, such cherry-picked labeled data makes it hard to leverage more images

for training, which can be seen based on the very limited number of pixels that are

used in their experiments. Next, they select a limited number of unlabeled data,

and my interpretation is that they do so to avoid the class imbalance problem.

However, in such way, they do not take advantage of all of the available unlabeled

data in the images. Finally, their novelty seems to come from their use of NNPU

loss (Kiryo et al., 2017). Therefore, I define one of my baselines to be a more

general case of Lei et al. (2021) that addresses such issues while using the NNPU

loss as they did.

Loghmani et al. (2020) formulate the PUDA such that the source data are

considered as positive and the target data as unlabeled. Therefore, they completely

ignore the available labels in target domain, which makes it UDA-like. However,

their approach is open set DA, which is different from (closed set) UDA. Therefore,

since the open set DA assumption that they consider is not applicable in the cases

considered in this dissertation, instead of their approach, I consider a state-of-the-

art UDA as a baseline.

Sonntag et al. (2022) address PUDA by integrating UDA and PU learning

for image classification. Although this research is the closest to what is done in
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this chapter, there are still problems, which prevent it from being considered as a

baseline. First, they assume a same feature space for source and target domains.

While this does not hold the method for the homogeneous case, it is definitely

problematic for the heterogeneous case. What is more important is that their

approach is geared towards image classification. The major element in their

model is the candidate set that is constituted during learning phase in step-1 that

identifies reliable positive and negative examples for a supervised learning in step-

2. The creation of the candidate set may be feasible for image classification with

tens’ of thousands images at most (like the size of the datasets that they used).

However, the creation of such a candidate set is not practically possible for pixels in

semantic segmentation. Even if it were possible, the step-2 of the approach will be

similar to the method used by Lei et al. (2021), which introduces the difficulties

that were mentioned before. For example, the positive and negative pixels will

be distributed sparsely in a salt-and-pepper manner preventing the supervised

model in step-2 to capture global and local relationships for semantic segmentation.

Therefore, following the same approach as Sonntag et al. (2022), I consider PU

learning and UDA, with different settings that will be discussed later, as baselines

for my proposed model.

The above research is not suitable to be considered as the baselines due to

the mentioned reasons. Next, I discuss the baselines that I use for my proposed

model.

4.2.1 Homogeneous case. I consider three different baselines for

this setting: (i) PU learning on target-only data with and without transferring pre-

trained weights from ImageNet, (ii) training a model in a supervised manner using

fully-labeled source data, and, then, fine-tuning it in a PU learning manner on PU

52



target data. The supervised section is considered with and without transferring

pre-trained weights from ImageNet, and (iii) the model that I propose when there

is no PU loss meaning that target data is considered as unlabeled. The reason for

the last baseline is to show that power of the proposed model in comparison to

the other two baselines, and that how PU data in target domain can help improve

the model’s performance. Showing the potentials of the proposed model and

incapability of the PU baseline for the heterogeneous case, I use a UDA model as

the baseline in the heterogeneous case as it is explained below.

4.2.2 Heterogeneous case. I consider one of the state-of-the-art

models in UDA, PixMatch (Melas-Kyriazi & Manrai, 2021). The reason behind

choosing PixMatch is its great performance as well as a comprehensive performance

comparison that its authors did with all the competitive and state-of-the-art models

at the time of the PixMatch paper. There are several perturbation settings, such

as Fourier and CutMix, in PixMatch model, which are considered as different

baselines. In addition, I adopt the network architecture and backbone from the

PixMatch model for the proposed model in order to have a further and more fair

comparison of the two models. Finally, it should be mentioned that only a UDA

model as the baseline is sufficient since the proposed model is already compared

against the NNPU-based baselines in the homogenous setting.

4.3 Methodologies

Source and target domains provide two different sets of images. The

source domain DS = {(xs, ys)}s∈S contains nS images of form xs with their

corresponding fully-labeled ground truth semantic maps of form ys. The target

domain DT = {(xt, yt)}t∈T contains nT images of form xt with their corresponding
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PU semantic maps of form yt = ytp ∪ ytu where ytu contains pixels that come

from both positive and negative classes. The ratio of labeled-positive to unlabeled

data is controlled in 5 different datasets PU5-9 as described in Chapter III. In all

settings, the models are trained on train and validation sets and evaluated on the

test set. In the following pages, I present the proposed PUDA approach starting

with the homogeneous case, and then moving on to the heterogeneous case.

4.3.1 Homogeneous case. The assumption here is that if the two

source and target domains contain images from the same geographic location and

acquired by the same sensors, then their feature space should be the same, but

with different feature distributions due to differences in acquisition times and

atmospheric effects. At the core of the proposed approach is the shared feature

generator (i.e. encoder) idea that is used by researchers such as Kalluri et al.

(2019), Ouali et al. (2020), and Z. Wang et al. (2020). As shown in Fig. 9 and

equation 4.1, the model consists of a supervised learning module, a self-training

learning module, and a PU learning module. For the proposed model, UNET

is chosen as the semantic segmentation architecture with VGG16 as its encoder

backbone. In the following section, I start with reviewing the UNET architecture

and the VGG16 encoder backbone and the proposed model architecture; then,

I discuss each of the aforementioned learning modules. Finally, I mention the

performance metrics used for models’ assessment and evaluation: accuracy, IoU,

and F1-score.

LhomogeneousS = Lsupervised

LhomogeneousT = λpuLTpu + λpseudoLTpseudo

(4.1)
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Figure 9. Homogeneous transfer positive and unlabeled learning architecture.

4.3.1.1 Model architecture: UNET. Unet, by Ronneberger, Fischer,

and Brox (2015b), is a segmentation network that was originally developed for

Biomedical images. The Unet architecture consists of two modules, a contracting

module and an expansive module. The contracting module (i.e. encoder or feature

extractor) consists of a stack of convolutional, batch-normalization, activation, and

max-pooling layers. The contracting module captures the context of the input

image and outputs a feature map. The expansive module is somewhat symmetric

to the contracting module, which replaces max-pooling layers with transposed-
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convolution layers as the upsampling operators in order to reconstruct an output

with the same size as the input image. Between each two upsampling operations a

high-resolution intermediary feature map from the contracting path is attached to

the current upsampled layer for localization and propagating context information,

and then is fed to a convolution layer before getting passed to the next upsampling

operator. Since the network is based purely on convolutional layers and does

not have any fully connected layer, it can accept input images of any size (e.g.

256 × 256 in case of this dissertation). The batch-normalization layer is not part

of the original network; rather, it is added later in order to allow the network to

capture the data distribution for better convergence. Fig. 10 shows the architecture

of the Unet model: (i) the contracting module consists of the repeated application

of a 3 × 3 convolution layer with padding and stride 1, a batch-normalization layer,

and a rectified linear unit (ReLU) activation layer two or three times, followed by a

2 × 2 max pooling operation with stride 2 for downsampling, and (ii) the expansive

module consists of repeating steps of a 4 × 4 transposed-convolution for feature

upsampling, a ReLU activation layer, a concatenation of the corresponding feature

map from the contracting path, a 3 × 3 convolution layer to condense features, and

another ReLU activation layer. Finally, a 1 × 1 convolution layer is applied to the

last upsampled layer in order to map the feature layer to the desired number of

classes.

4.3.1.2 Model backbone: VGG16. VGG16, by Simonyan and

Zisserman (2014), is a Convolutional Neural Network (CNN) Architecture

developed for image classification. Since semantic segmentation networks are

evolved from image classification networks, they use one of the many available

image classification networks as the backbone for their feature generators. There
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are either two or three 3 × 3 convolutional layers followed by a max-pooling layer.

Such a stack of layers is applied repeatedly, which results in a reduction in the

number of hyper-parameters. Finally, two Fully-Connected (FC) layers are applied,

followed by a softmax layer that generates class probabilities for the output. When

considered for semantic segmentation networks, the FC and softmax layers are

factored-out and the remaining of the network is used for as the feature generator.

As mentioned in the Unet section, I use a modified version of the original VGG16

architecture, in which there are batch-normalization layers added to the network.

4.3.1.3 Learning module: supervised. The supervised loss function

is the standard cross-entropy loss on the source domain. As shown in equation 4.2,

for the source input image xs: ph,ws is the output probability distribution at

Conv, Batch-Norm, ReLU
Copy, Concat
Max Pool
Up-Conv
Conv

Figure 10. UNET architecture; the left-side is the contracting module (i.e.
encoder), the right-side is the expansive module (i.e. decoder), the brown square
is the segmentation output, and, finally, the grey squares are intermediary feature
maps to be concatenated to their corresponding upsampled layer.
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pixel (h,w); yh,ws is the corresponding ground truth label for that pixel; ys is the

corresponding ground truth semantic map; nS is the total number of pixels in the

source domain S; H is binary cross-entropy loss shown in equation 4.3; and LS is

the total loss over all images in the source domain.

LS =
1

nS

∑
s∈S

∑
h,w∈s

H(yh,ws , ph,ws (ys|xs)) (4.2)

H(y, ŷ) = −ylog(ŷ)− (1− y)log(1− ŷ) (4.3)

4.3.1.4 Learning module: self-training. The self-training loss

function is also the standard cross-entropy loss on the target domain. However,

it consists of two parts: one for unlabeled pixels that get their pseudo-labels

from the source model and one for the labeled positive pixels. Considering that

labeled positive pixels are used in the PU loss too, having an extra loss term in the

self-training loss for the labeled positive pixels means putting more emphasis on

available information for model training. In particular, this is appropriate since the

labeling mechanism is under SCAR assumption, and thus such double emphasis on

the labeled positive data does not add any bias to the learning procedure.

For calculating the self-training loss, first, I need to calculate the pseudo-

labels for unlabeled pixels within all images in the target domain. Therefore,

for each of the target images, xt, I pass the image through the source model to

obtain the pseudo-labels ŷpseudo = argmax(ps(ys|xt)) for the unlabeled pixels. For

calculating the total loss over all images in the target domain, LTpseudo
, as shown

in equation 4.4, the followings terms are needed for the target input image xt: (i)
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ŷh,wpseudo the pseudo-label generated by the source model for unlabeled pixel (h,w),

(ii) yh,wtp the ground truth label for positive-labeled target pixel (h,w), (iii) ph,wt

the target output probability distribution at pixel (h,w), (iv) yt the corresponding

target ground truth semantic map, and (v) nT the total number of pixels in the

target domain T . The extent to which the self-training loss contributes to the final

loss is controlled by the hyper-paramenter λpseudo as it is shown in equation 4.1.

LTpseudo
=

1

nT

∑
t∈T

 ∑
h,w∈tu

H(ŷh,wpseudo, p
h,w
t (yt|xt)) +

∑
h,w∈tp

H(yh,wtp , ph,wt (yt|xt))


(4.4)

4.3.1.5 Learning module: positive-unlabeled. In comparison

to positive-negative (PN) problem where fully-labeled data in label space Y ∈

{−1,+1} are available, PU problem addresses availability of some positive

labeled data and unlabeled data from both positive and negative classes. In the

PN problem, positive and negative data are sampled from their corresponding

distributions pp(x) = p(x|Y = +1) and pn(x) = p(x|Y = −1). When the goal

is to learn the decision function F for the problem, then the empirical risk of F is

estimated from PN data as follows:

R̂pn(F) = πpR̂
+
p (F) + πnR̂

−
n (F) (4.5)

Where πp = p(Y = +1) and πn = p(Y = −1) = 1 − πp are the positive and

negative class-prior probabilities, respectively. And, R̂+
p (F) = 1

np

∑np

i=1 ℓ(F(x
p
i ),+1)
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and R̂−
n (F) = 1

np

∑np

i=1 ℓ(F(xn
i ),−1). In PU learning, the negative data is absent,

and, instead, unlabeled data are available with distribution p(x). In addition,

having πnpn(x) = p(x)− πppp(x) helps to replace πnR
−
n (F) with R−

u (F)− πpR
−
p (F).

Therefore, equation 4.5 can be re-written as follows:

R̂pu(F) = πpR̂
+
p (F) + R̂−

u (F)− πpR̂
−
p (F) (4.6)

where R̂−
p (F) = 1

np

∑np

i=1 ℓ(F(x
p
i ),−1) and R̂−

u (F) = 1
nu

∑nu

i=1 ℓ(F(xu
i ),−1).

The equation 4.6 can result in negative empirical risks when flexible models such

as neural networks overfit the data. Given that semantic segmentation models use

neural networks, this type of overfitting can pose a significant problem. Therefore,

a modification to equation 4.6 can solve the negative empirical risk problem. This

is shown in the following:

R̂pu(F) = πpR̂
+
p (F) + max

{
0, R̂−

u (F)− πpR̂
−
p (F)

}
(4.7)

The equation 4.7 (proposed by Kiryo et al., 2017) is referred to as the non-

negative PU (NNPU) risk estimator. This PU loss function is used in the target

domain and is re-written in equation 4.8, where ph,wtp and ph,wtu are the output

probability distributions of the labeled and unlabeled pixels at locations (h,w),

respectively, over the label space yt; and nTp and nTu are the total number of

labeled and unlabeled pixels in the target domain T , respectively. The extent

to which the PU loss contributes to the final loss is controlled by the hyper-

paramenter λpu as it is shown in equation 4.1.
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LTpu =
πp

nTp

∑
tp∈T

∑
h,w∈tp

H(+1, ph,wtp (yt|xtp))

+ max

0,
1

nTu

∑
tu∈T

∑
h,w∈tu

H(−1, ph,wtu (yt|xtu))−
πp

nTp

∑
tp∈T

∑
h,w∈tp

H(−1, ph,wtp (yt|xtp))


(4.8)

4.3.1.6 Performance metric: Accuracy. Pixel accuracy measures

the percentage of correctly classified pixels within an image, which then can

be averaged over all images within the dataset. Since I am addressing binary

classification, the per-class and global pixel accuracies are the same representing

the pixel accuracy for the class of interest. The pixel accuracy is calculated using

equation 4.9, where TP , TN , FP , and FN are true positive, true negative, false

positive, and false negative rates that are calculated within the confusion matrix.

Acc =
TP + TN

TP + TN + FP + FN
(4.9)

4.3.1.7 Performance metric: IoU. Pixel accuracy can be misleading

if there is class-imbalance within the dataset. Therefore, pixel accuracy is always

accompanied with other performance metrics such as IoU (or Jaccard index) and

F1-score (or Dice coefficient), especially for semantic segmentation. Intersection

over Union (IoU), shown in equation 4.10, quantifies the percentage of overlapping

pixels between the model’s prediction output and the ground truth semantic map.

This metric can be reported per class or averaged over all classes as mean-IoU, but

in my case that concerns binary classes, I report IoU for the class of interest.
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IoU =
TP

TP + FP + FN
(4.10)

4.3.1.8 Performance metric: F1-score. F1-score (or Dice

coefficient) combines two popular metrics, the precision and the recall, and is

designed to handle data with class-imbalance. As shown in equation 4.11, F1-score

equals to 2 times of the overlapping pixels divided by the total number of pixels in

both models’ prediction output and the ground truth semantic map.

F1 =
2TP

2TP + FP + FN
(4.11)

4.3.2 Heterogeneous case. The assumption under which I am

working is that the homogeneous case is naive since it’s rare to have such situations

and, a more realistic case happens when the two source and target domains contain

images from different geographic locations, acquired by the different sensors (i.e.

satellites), and have different acquisition times, and, thus different atmospheric

effects (Tuia et al., 2016). As shown in Fig. 11, remote sensors are designed to

capture information from Earth’s surface within specific range intervals of the

electromagnetic spectrum called bands.

The RS imagery’s bands may not overlap for different sensors causing

different feature spaces for images acquired by those sensors. As shown in Fig. 12,

there are misalignments of different remote sensors across different bands. In

addition, the magnitude of the captured reflectance (one of the atmospheric effects)

may not be the same for different satellites that are also affecting the feature space.
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Therefore, heterogeneous case is applicable since the feature spaces are different

mainly due to differences in sensors.

Figure 11. The electromagnetic spectrum captured by satellite remote sensing
(shown as SRS in the image). Image adopted from Pettorelli et al. (2018).

Figure 12. The misalignments of different remote sensors across different bands.
Image adopted from Rocchio and Barsi (n.d.).

I propose to take advantage of consistency-training in order to tackle the

differences among feature spaces. The reason behind this is that, although feature

spaces are different, they overlap such that the centers of the bands are close or
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similar with differences in upper bound and/or lower bound for interval range

of the bands. Consistency-training approaches have shown their effectiveness in

training models that are robust to changes such as perturbation-based changes in

input data (e.g. Y. Yang & Soatto, 2020). Therefore, I add a consistency-loss to

the proposed model in the homogeneous section, which is shown in Fig. 13 and

equation 4.12. The meaning of such action can be understood from a teacher-

student network perspective (G. Hinton, Vinyals, Dean, et al., 2015) such that

the source model can be considered as the teacher to the student network in the

target domain. The differences considered in the electromagnetic spectrum range

for different bands (RGB in the case of this dissertation) can be considered as some

sort of perturbations that are added to images from one sensor to resemble images

from another sensor. Thus, the proposed consistency-loss, explained below, makes

sure that the model is robust to such changes in the input data, which results in a

better feature generator for the model.

Besides the UNET architecture and its VGG16 encoder backbone, I

incorporate DeepLabV2 architecture with ResNet101 as its encoder backbone

as well since they are used in the PixMatch model. In the following section, I

review the DeepLabV2 architecture and the ResNet101 encoder backbone and the

proposed consistency-training module for the proposed model. The performance

metrics used for models’ assessment and evaluation are the same as before:

accuracy, IoU, and F1-score.

LheterogeneousS = LhomogeneousS

LheterogeneousT = LhomogeneousT + λconsistencyLconsistency

(4.12)
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Figure 13. Heterogeneous transfer positive and unlabeled learning architecture.

4.3.2.1 Model architecture: DeepLabV2. DeepLabV2, by L.-

C. Chen, Papandreou, Kokkinos, Murphy, and Yuille (2017), is also a segmentation

network with innovative Atrous Convolution at its core. DeepLabV2 leverages high-

level global features and fine-grained details by a multi-scale feature aggregation

technique with a final element-wise summation in order to create the final feature

map. Next, the final feature map is passed to a bi-linear interpolation layer to

reconstruct an output with the same size as input image. Fig. 14 shows the
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architecture schema of the DeepLabV2 model. The Atrous Convolution is an

improvement on convolution kernels (for semantic segmentation in comparison

to image classification) and provides the opportunity for capturing the global

relationships among each pixel and its neighboring pixels at different levels—that

is controlled by the atrous (i.e. dilation) rate, while keeping the computation costs

low. DeepLabV2 utilizes the Atrous Convolution using the Spatial Pyramid Pooling

(SPP) technique in order to create multi-scale feature-maps created by different

atrous rates from 6 to 24. Finally, the whole aforementioned path for creating the

final feature-map is repeated three times over 1.0, 0.75, and 0.5 downscaled input

images for another way of multi-scale feature fusion. It should be mentioned that

DeepLabV2 also uses a Fully-connected Conditional Random Field (CRF) module.

The CRF module is a probabilistic method that helps with better label predictions

of pixels around the boundaries of objects in images based on pixels correlations.

4.3.2.2 Model backbone: ResNet-101. ResNet-101, by K. He et

al. (2016), is also a CNN Architecture developed for image classification and is

also based on layered stacks of convolutional and max-pooling layers followed, at

the end, by an average-pooling, a FC, and a softmax layer. Again, when it is used

for semantic segmentation, the last three layers are filtered out. The innovation of

general ResNet architecture—the 101 part refers to the total number of layers—is

the residual block that solves the vanishing gradient problem in deep networks,

causing accuracy degradation as more layers get added to an existing network.

Residual blocks (Fig. 15) take advantage of the residual function such that instead

of learning a mapping function, H(x), (i.e. a stack of convolutional layers) between

the input and the output, the attempt is to learn a residual function, F(x) where

F(x) = H(x) − x (or i.e. H(x) = F(x) + x). In this way, learning the residual
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function is much easier and avoids the vanishing gradient problem. As opposed to

ResNets, with smaller number of layers, the 101-layer version uses 3-layer (instead

of 2-layer) deep residual blocks. In each residual block, if the output dimensions is

}}
}}
}} }

Figure 14. DeepLabV2 architecture; top-to-bottom are three repetitions of left-to-
right path in each row over 1.0, 0.75, and 0.5 downscaled input images; left-to-right
path are multi-scale feature generators with different atrous rates from 6 to 24; the
final feature map is upsampled to generate the input-size-like output.
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the same as the input, the input is added directly to the output; otherwise, first, a

linear projection is applied to ensure that dimensions match.

Figure 15. A sample building block showing the idea of residual learning. Figure
adopted from K. He et al. (2016).

Figure 16. Residual learning block: 2- versus 3-layer. Figure adopted from K. He et
al. (2016).

4.3.2.3 Learning module: consistency-training. The consistency-

training loss is applied on the target model and measures the ℓ1-norm (shown as

|| · ||1 in equation 4.13) or the absolute value of difference between probability

predictions from the source model output and the target model output given the

input source image, xs. In equation 4.13, ph,ws and ph,wt are the output probability

distributions of the source and target models at pixel (h,w), respectively, over the

label spaces ys = yt; and nS is the total number of pixels in the source domain S.

The extent to which the consistency loss contributes to the final loss is controlled

by the hyper-paramenter λconsistency as it is shown in equation 4.12.
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LTconsistency
=

1

nS

∑
s∈S

∑
h,w∈s

||ph,ws (ys|xs)− ph,wt (yt|xs)||1 (4.13)

4.4 Results

In this section, I present the results from the proposed method and the

corresponding baselines. I again start with the homogeneous case, and then move

on to the heterogeneous case.

4.4.1 Homogeneous case. The performance of models in this section

is evaluated using PN and PU datasets as the source and target domains from

the homogeneous dataset created from Inria Image Dataset, which is discussed in

Chapter III. As for the baseline, two different models are considered. First, a PU

model with the NNPU loss (Kiryo et al., 2017) that is trained only on PU images

within the target domain in two different scenarios: (i) with and (ii) without pre-

trained weights from ImageNet dataset—this model is called Target-PU. The next

model, Target-FT, is an extension of the first model in a way that the model first

is trained on images from the source domain with and without pre-trained weights

from ImageNet dataset. Then, the weights of this model are used as the warm start

for the PU learning phase on PU images within the target domain.

The effect of the proposed model is analyzed with and without the PU

learning module resulting in two models respectively called Seamless-U and

Seamless-PU. Each of these two models, again, are considered in two cases: (i) with

and (ii) without pre-trained weights from ImageNet dataset. The reason behind

having Seamless-U alongside Seamless-PU is to investigate and understand to what

extent the assumptions made on homogeneous cases are effective in practice.
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The use of three channels of RGB for the models allows me to be able to

use the pre-trained weights from ImageNet dataset. The optimizer is chosen to

be Stochastic Gradient Descent with learning rate, momentum, and weight decay

equal to 0.01, 0.9, and 1e-4, respectively. I adjust the learning rate during the

training phase by reducing the learning rate according to LambdaLR scheduler. It is

assumed that the class-prior probability is known and equal to πp = 0.5. Although

the exact value of the class-prior is calculated from the dataset and is equal to

∼ 0.42, I consider a buffer since having the exact and precise value of the class-

prior is too ideal and rarely (i.e. almost never) happens in a real scenario. This

assumption is justifiable in a sense that it does not affect the comparison of the

models since Kiryo et al. (2017) show robustness of NNPU to the misspecification

of the class-prior probability within the range of [0.8πp, 1.2πp] = [0.36, 0.54]. Finally,

the rest of the settings of NNPU loss, such as values for α and β, are set to be the

same as the original paper by Kiryo et al. (2017).

Table 3 shows the results of running all models on PU5, PU6, PU7, PU8,

and PU9 datasets for different level of positive-class labeled probabilities—since

Sealmless-U model uses the target domain images as unlabeled, its performance is

the same across different PU datasets, and this is shown by arrows in Table 3.

The performance of both baselines degrades when they are trained with pre-

trained weights from ImageNet dataset. However, such pre-trained weights help

improve the proposed model in both U and PU cases. One interpretation of this

could be that the proposed approach finds a feature generator that is more domain

invariant, and, thus, it can incorporate other related domains such as ImageNet

dataset better without introducing negative transfer effect. However, this is not

the case for the baselines resulting in having negative transfer when using image

70



domains that are not quite similar to RS imageries. The best performance among

all models for all PU datasets belongs to the proposed approach with domain

invariant feature generator that also takes advantage of the PU learning module

as well as ImageNet’s pre-trained weights.

Next, I will address the models’ behavior in different PU datasets. Looking

at Table 3, it can be seen that, among the PU datasets, the PU dataset on which

models perform the best is not consistent. In other words, adding more labeled

positive data does not result in a consistent behavior in terms of reducing models

error and improving their performances. This is against the general belief that the

more the labeled data, the better the trained model. However, what is important

is that the proposed model outperforms all other models on all, and, especially

the PU9 dataset, which makes it valuable considering the few amount of positive

labeled data required for such performance.

In the case of Target-PU and Target-FT models, as shown in Fig. 17,

and 19, the less the labeled data are available, the more the gap between the train

and validation losses expands. This means that the models are less generalizable

since they receive fewer signals from the smaller amount of labeled data. In general,

there is one other reason for such divergence, which is that the train and val sets

are not representative of each other in some PU datasets. However, this is not

the case here since the images are a blend of the same geographic location, same

satellite sensor, same time, and same atmospheric conditions. The divergence

between train and validation losses is more noticeable when using ImageNet

pre-trained weights as opposed to training from initial random weights (Fig. 17

vs. Fig. 18; and Fig. 19 vs. Fig. 20), which can be seen as the negative transfer

effect that is discussed above. However, such divergence does not appear for
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Table 3. The performance of the proposed model and the baselines in the target
domain

PU5 PU6 PU7

Method Acc IoU F1 Acc IoU F1 Acc IoU F1

Target-PU 77.69 63.45 77.57 81.06 67.46 80.49 81.52 66.95 80.13

Target-PU(pre-train) 73.94 53.42 69.55 74.50 53.71 69.76 74.68 51.67 67.87

Target-FT 77.70 64.00 77.89 80.31 67.16 80.30 81.98 67.94 80.81

Target-FT(pre-train) 77.34 63.51 77.57 79.61 66.28 79.66 81.26 67.16 80.26

Seamless-U 87.62 73.69 84.79 ← ← ← ← ← ←

Seamless-U(pre-train) 88.81 76.01 86.31 ← ← ← ← ← ←

Seamless-PU 87.67 74.48 85.31 87.70 74.56 85.37 87.80 74.05 85.05

Seamless-PU(pre-train) 88.85 76.63 86.71 89.21 77.21 87.09 89.19 76.54 86.66

PU8 PU9 Best

Method Acc IoU F1 Acc IoU F1 Case

Target-PU 80.75 66.37 79.69 81.38 66.59 79.87 PU6

Target-PU(pre-train) 74.26 51.96 68.27 74.12 51.54 67.52 PU6

Target-FT 81.96 68.11 80.94 82.50 68.44 81.21 PU9

Target-FT(pre-train) 80.73 66.45 79.79 80.09 65.65 79.22 PU7

Seamless-U ← ← ← ← ← ← N/A

Seamless-U(pre-train) ← ← ← ← ← ← N/A

Seamless-PU 87.44 73.89 84.92 87.67 74.44 85.30 PU6

Seamless-PU(pre-train) 88.92 76.41 86.58 88.58 76.01 86.21 PU6
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Seamless-U and Seamless-PU models since these models try to learn the maximum

information available in a joint information space by the two domains. These

results are illustrated in Fig. 21, 22, 23, and 24. These figures, however, show some

irregularities in the downward trend of the loss function, which could be due to

switching the encoder back and forth between the two domains during the learning

phase.

Fig. 25 qualitatively supports the quantitative results in Table 3. Fig. 25

shows a sample of image patches, their corresponding ground truth, and predictions

from the best performing model between with and without pre-trained weights for

each model trained on the PU5 case: (i) Target-PU without pre-trained weights,

(ii) Target-FT without pre-trained weights, (iii) Seamless-U with pre-trained

weights, and (iv) Seamless-PU with pre-trained weights. Both baselines—even

when provided with the maximum amount of labeled positive data (i.e. PU5)—

result in very large amount of false positive, while both Seamless-U and Seamless-

PU do not suffer from that. Also, it seems that the false negatives are of a higher

rate in Seamless-U than Seamless-PU, which, along with the quantitative results,

makes the Seamless-PU model, the best model among all. Finally, Fig. 26 shows

the models’ outputs for the other extreme side when there is the minimum amount

of labeled positive data available (i.e. PU9). Again, it can be seen that the

proposed Seamless-PU model outperforms the rest of the models.
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Figure 17. The training loss (in red) and validation loss (in green) for Target-PU
model without ImageNet’s pre-trained weights on (a) PU5, (b) PU6, (c) PU7, (d)
PU8, (e) PU9 datasets.
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Figure 18. The training loss (in red) and validation loss (in green) for Target-PU
model with ImageNet’s pre-trained weights on (a) PU5, (b) PU6, (c) PU7, (d)
PU8, (e) PU9 datasets.
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Figure 19. The training loss (in red) and validation loss (in green) for Target-FT
model without ImageNet’s pre-trained weights on (a) PU5, (b) PU6, (c) PU7, (d)
PU8, (e) PU9 datasets.
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Figure 20. The training loss (in red) and validation loss (in green) for Target-FT
model with ImageNet’s pre-trained weights on (a) PU5, (b) PU6, (c) PU7, (d)
PU8, (e) PU9 datasets.
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Figure 21. The training loss (in red) and validation loss (in green) for Seamless-U
model without ImageNet’s pre-trained weights on (a) PU5, (b) PU6, (c) PU7, (d)
PU8, (e) PU9 datasets.
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Figure 22. The training loss (in red) and validation loss (in green) for Seamless-
U model with ImageNet’s pre-trained weights on (a) PU5, (b) PU6, (c) PU7, (d)
PU8, (e) PU9 datasets.
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Figure 23. The training loss (in red) and validation loss (in green) for Seamless-PU
model without ImageNet’s pre-trained weights on (a) PU5, (b) PU6, (c) PU7, (d)
PU8, (e) PU9 datasets.
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Figure 24. The training loss (in red) and validation loss (in green) for Seamless-
PU model with ImageNet’s pre-trained weights on (a) PU5, (b) PU6, (c) PU7, (d)
PU8, (e) PU9 datasets.
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4.4.1.1 Conclusions. In this section, I presented the results of the

proposed model for the homogeneous case, which is the basic building block for the

heterogeneous case. I demonstrated that, even in this easier scenario (compared to

the heterogeneous scenario), with or without transferring pre-learned knowledge

(i.e. model weights) from similar or different image domains, NNPU-based baselines

do not perform as well as the proposed approach and do not show competitive

results. What is more, NNPU-based baselines degrade in heterogeneous cases

and cannot be used as a baseline for the proposed model in such cases. For the

proposed model, the domain-invariant feature learner accompanied with signals

from PU data has shown promising results and suggests its potential compatibility

for the heterogeneous setting. Therefore, building upon this, in the next section, I

will present the results from the proposed model with consistency-learning module

for the heterogeneous setting and show that, with only a fraction of labeled positive

data, the model can handle this even more challenging scenario and perform much

better than the state-of-the-art UDA models.
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Figure 25. Left-to-right: Sample image patches from homogeneous PU Inrial
Dataset, the corresponding ground truth, and predictions from four models trained
on the PU5 case: (i) Target-PU without pre-trained weights, (ii) Target-FT without
pre-trained weights, (iii) Seamless-U with pre-trained weights, and (iv) Seamless-
PU with pre-trained weights.
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Figure 26. Left-to-right: Sample image patches from homogeneous PU Inrial
Dataset, the corresponding ground truth, and predictions from four models trained
on the PU9 case: (i) Target-PU without pre-trained weights, (ii) Target-FT without
pre-trained weights, (iii) Seamless-U with pre-trained weights, and (iv) Seamless-
PU with pre-trained weights.
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4.4.2 Heterogeneous case. The performance of models in this

section is evaluated using the heterogeneous dataset containing PN Massachusetts

Buildings Dataset as the source domain and the complete PU datasets with

different labeling frequencies for the positive class (i.e. PU5, PU6, PU7, PU8,

and PU9) from Inria Image Dataset created in Chapter III as the target domain.

PixMatch (Melas-Kyriazi & Manrai, 2021) is considered as the baseline with its

recommended hyper-parameters setting from the original paper. PixMatch has

different variations based on the type of the perturbation that is used in it. The

extent to which each perturbation contributes is controlled with its coefficient

λi. Within the original paper, it is not clear what is the value for λ for CutMix,

Fourier, and Fourier+CutMix perturbations. Therefore, I use the same best value

of λ that is mentioned for Augmentation perturbation, which is equal to 0.15. For

the proposed Sealmess-PU model, all the hyper-parameters are the same as before

in the homogeneous section.

Table 4 shows the performance drop of the proposed Sealmess-PU model

when trained in a heterogeneous scenario. The performance drop is not very far

in the case of PU5 with the highest amount of labeled positive data. However, for

the PU9 case, which is the most interesting case, the model performs poorly. This

situation requires some considerations within the proposed model to make up for

the challenges caused by the heterogeneous scenario.

According to Table 5, for RS imageries, the PixMatch model in its vanilla

form performs as well as when accompanied by augmentation perturbation and

even better than when the other perturbations are incorporated. In addition,

the performance gap among different perturbations is relatively large. These

observations do not follow the results in the PixMatch paper for urban scene
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Table 4. Performance drop of PUDA model (Seamless-PU) without the consistency
loss on heterogeneous PU data from Inria Image Dataset. The model uses a warm
start using the ImageNet pre-trained weights.

Acc IoU F1 PU Dataset

83.58 68.85 81.51 PU5

79.64 62.28 76.70 PU6

79.12 60.35 75.22 PU7

72.68 53.04 69.26 PU8

65.31 34.06 50.66 PU9

datasets. One explanation for this could be that the type of the data determines

which perturbation technique is most effective. This hypothesis is based on the

results in Balestriero, Bottou, and LeCun (2022) where they discover that not all

data augmentation techniques affect the different classes within the dataset in the

same way, and thus there could be model performance drop for some classes with

some specific data augmentation while the rest of the classes experience model

performance gains. In addition, the performance of PixMatch model depends

heavily on the network architecture used. For example, changing the network

architecture from DeepLabV2 with ResNet-101 backbone to UNET with VGG16

backbone degrades the PixMatch(Augmentations) model’s performance (i.e. IoU)

from 33.67 to 01.79.

As shown in Table 5, the proposed Sealmess-PU model outperforms the

PixMatch baseline model. I also investigate the effect of model architecture and the

type of backbone on the performance of Sealmess-PU model. Therefore, I change

the architecture to DeepLabV2 and the backbone to ResNet-101. Since PixMatch
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model also uses an exponential weighted moving average component in its learning

process, I use such component too in the changes to the original proposed Sealmess-

PU model to make everything the same and the comparison fair. Although this

setting for Sealmess-PU model still outperforms the PixMatch baseline model,

it results in performance improvements only on PU5, PU6, and PU7 datasets,

whereas it results in performance degradations on PU8 and PU9 datasets. The

reasons behind such performance changes can be due to (i) the difference in

the number of learnable parameters between the two architectures and/or (ii)

the operations used in each of the two architectures. In terms of the former,

DeepLabV2 model has 42610632 (∼ 43 million) learnable parameters with 42500032

(∼ 42.5 million) of these parameters being for the encoder part, whereas UNET

model has 49698434 (∼ 50 million) learnable parameters with 14723136 (∼ 15

million) of these parameters being for the encoder part, and each decoder having

17487649 (∼ 17.5 million) learnable parameters. The lightweight characteristics

of the UNET model for the target domain is an advantage when facing limited

number of labeled data. For the latter, my hypothesis is that operations such as

Atrous Convolution may depend on the supervision that comes from the labeled

data, which causes model’s performance degradations (this hypothesis needs to

be further investigated in future). Finally, Fig. 27 shows a sample image patches

from heterogeneous PU Inrial Dataset, their corresponding ground truth, and

predictions from PixMatch(Augmentations), Seamless-PU with UNET trained on

PU5 dataset, Seamless-PU with DeepLabV2 trained on PU5 dataset, Seamless-PU

with UNET trained on PU9 dataset, and Seamless-PU with DeepLabV2 trained on

PU9 dataset.

87



Table 5. Performance of unsupervised domain adaptation model (PixMatch) and
the proposed PUDA model (Seamless-PU). All utilize a warm start using the
ImageNet pre-trained weights.

Method Architecture Backbone Acc IoU F1 PU Dataset

PixMatch(Fourier)

UNET VGG

57.82 01.78 03.50 N/A

PixMatch(CutMix ) 57.82 01.87 03.67 N/A

PixMatch(Augmentations) 57.82 01.79 03.51 N/A

PixMatch(Fourier + CutMix ) 57.81 01.28 02.52 N/A

PixMatch

DeepLabV2 ResNet-101

66.82 33.19 49.56 N/A

PixMatch(Fourier) 54.21 23.15 37.51 N/A

PixMatch(CutMix ) 54.14 20.54 34.00 N/A

PixMatch(Augmentations) 63.83 33.67 50.15 N/A

PixMatch(Fourier + CutMix ) 54.20 22.58 36.75 N/A

Seamless-PU

UNET VGG16

83.08 67.36 80.45 PU5

81.06 64.40 78.29 PU6

79.57 59.62 74.65 PU7

77.66 57.52 72.99 PU8

77.09 60.33 75.20 PU9

DeepLabV2 ResNet-101

84.35 70.46 82.63 PU5

84.37 70.08 82.37 PU6

83.67 67.53 80.55 PU7

74.82 46.47 63.33 PU8

70.39 38.00 54.90 PU9
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Figure 27. Left-to-right: Sample image patches from heterogeneous PU
Inrial Dataset, the corresponding ground truth, and predictions from (i)
PixMatch(Augmentations) , (ii) Seamless-PU with UNET trained on PU5, (iii)
Seamless-PU with DeepLabV2 trained on PU5, (iv) Seamless-PU with UNET
trained on PU9, (v) Seamless-PU with DeepLabV2 trained on PU9.
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4.4.2.1 Ablation Study. I tested the effect of consistency-training

module through its amount of contribution to the proposed Seamless-PU

model using λconsistency. Therefore, using different values for λconsistency, I

investigate different levels of trade-off for focusing on the heterogeneity of the

data within the learning process. Table 6 shows the results for λconsistency =

0.05, 0.10, 0.15, 0.20, 0.25, 0.5, and 1.0 for both UNET and DeepLabV2

architectures for PU9 dataset. The behavior of λconsistency is not consistent across

the two architectures. λconsistency = 0.1 shows the best result for DeepLabV2 which

is still lower than the worst performing value for λconsistency for UNET. The best

case for UNET case is when consistency training module fully contributes to the

learning process(i.e. λconsistency = 1.0).

Table 6. The effect of the degree of the magnitude that the consistency loss is
incorporated, which is shown for the case of PU9 dataset.

λconsistency

Architecture
Backbone

Performance Metric 0.05 0.10 0.15 0.20 0.25 0.50 1.00

DeepLabV2

ResNet-101

Acc 70.33 71.77 72.26 70.35 72.00 67.44 70.39

IoU 37.37 42.24 41.79 36.21 41.10 27.78 38.00

F1 54.32 59.30 58.85 53.04 58.16 43.33 54.90

UNET

VGG16

Acc 72.06 72.55 75.59 72.68 69.58 72.41 77.09

IoU 46.40 44.78 49.89 44.35 42.47 42.89 60.33

F1 63.32 61.75 66.45 61.34 59.54 59.87 75.20
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4.4.2.2 Conclusions. In this section, I presented the results of the

proposed positive and unlabeled domain adaptation model when taking into

account the heterogeneity of the data within the training process. I demonstrated

that, even in the hard case of heterogeneous scenario, the proposed approach

performs well and outperforms the UDA models that target such scenarios. The

incorporation of consistency training loss has shown promising results. However,

it yielded relatively weaker results for more complex architectures for PU datasets

with relatively lower amount of labeled data for the positive class. Therefore, there

is a need to further investigate the relationship between the consistency training

module and the complexity of the model architecture.

4.5 Conclusion

The proposed model in both homogenous and heterogenous settings

outperforms the state-of-the-art baselines while (i) it does not impose additional

computational burdens such as style-transfer modules in adversarial approaches, (ii)

it leverages relatively light-weight architecture and backbone, (iii) it outperforms

the stand-alone PU learning and has potentials for multi-domain learning, (iv)

it performs twice as well as UDA models with only a fraction of labeled data

from the positive class, and (v) it allows PU learning to experience performance

improvement by taking advantage of the other available fully labeled datasets

through transfer learning. Finally, this work can be considered as multi-source

multi target domain adaptation without the hassle of introducing different

networks/encoders for each domain (Isobe et al., 2021) and/or an extra domain

alignment module that generates intermediate adapted domains explicitly (S. Zhao,

Li, Xu, & Keutzer, 2020).
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CHAPTER V

DEEP ENSEMBLE POSITIVE AND UNLABELED LEARNING

The performance of machine learning models may degrade if they fail to

capture the underlying structure within data (Dong et al., 2020a). Such failure is

more probable when labeled data are not available, such as in the case of positive

and unlabeled (PU) data. Therefore, this can cause degradation in the performance

of PU models, compared to fully-supervised models. Furthermore, defining the

hypothesis space and selecting algorithms that search the defined hypothesis space

can introduce inductive biases (Utgoff, 1986, 2012), which can result in machine

learning models failing to learn the problem, and thus failing to generalize. One

approach to address these two problems is ensemble learning (Dong et al., 2020a;

Opitz & Maclin, 1999), which aims to leverage the collective predictive power

of multiple different models in order to achieve a better predictive performance

compared to any of the participating individual models, alone (Sagi & Rokach,

2018b).

Recently, ensemble learning has gained attention in PU learning research in

different areas—for example Nguyen et al. (2012), P. Yang et al. (2014), P. Yang

et al. (2016), Claesen et al. (2015), Jowkar and Mansoori (2016), and Basile et al.

(2019). However, despite the effectiveness and popularity of ensemble learning in

remote sensing research—see Du et al. (2012) for a survey on such methods—little

research has been done on ensemble PU learning in remote sensing (e.g. R. Liu et

al., 2018, is one of the few).

Furthermore, there is a need to investigate the fusion of ensemble learning

within deep learning methodology in remote sensing research since the effectiveness

and power of such fusion has been shown in deep learning research (Fort, Hu, &
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Lakshminarayanan, 2019) even in a limited data regime (Brigato & Iocchi, 2021).

Research such as Ekim and Sertel (2021) has realized such needs in remote sensing

research and investigated some native ensemble approaches developed within

deep learning framework for supervised RS image classification. However, there

is a dearth of research in the area of ensemble PU learning for RS imageries, in

general, and RS image segmentation, in particular. Therefore, in this chapter, I

investigate the performance of deep learning-based ensemble methodologies for PU

learning of RS imageries, and then I propose an ensemble PU learning model, which

outperforms all the other models. Finally, I discuss the limitations of the proposed

model and future research opportunities.

5.1 Background

Despite the great performance of deep learning models in computer vision

tasks, due to a positive inductive bias through utilization of convolutional neural

networks (CNNs) (Cohen & Shashua, 2016; LeCun, Bengio, et al., 1995), the

convergence of such models to a global minimum may never happen (G. Huang

et al., 2017). The impossibility of converging to a global minimum is due to many

other inductive biases such as: increasing the number of model parameters and

model complexity (Wasay & Idreos, 2020), incomplete knowledge of inductive bias

of convolutional operations (Cohen & Shashua, 2016; Wasay & Idreos, 2020), and

optimization techniques (Dauphin et al., 2014). Although researchers have sought

to understand such inductive biases, such as pooling schemes in CNNs (Cohen &

Shashua, 2016) and Stochastic Gradient Descent (SGD) (Dauphin et al., 2014),

there are many more parameters embedded in training deep (CNN-based) learning

models, making their inductive bias hard to quantify. As an example of such

research, it has been shown that as the number of model parameters increases, the
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number of local minima grows exponentially (Cohen & Shashua, 2016; Kawaguchi,

2016). However, the good news is that not all local minima have an adverse affect

and deep learning models can still be generalizable (Keskar, Mudigere, Nocedal,

Smelyanskiy, & Tang, 2016). For this reason, deep learning models still perform

well even with converging to local optima. In addition, models that converge to

different local optima with similar error rates can have different prediction errors,

and thus an ensemble of diverse collection of such models converging to different

local optima can result in a reduction in the final error rates (Cohen & Shashua,

2016; Fort et al., 2019). In such situations, the ensemble learner outperforms each

of the participating individual models (Ekim & Sertel, 2021).

Deep ensemble learning approaches can be categorized into two main

streams: (i) those that attempt to learn a single model through ensembling the

model parameters in the training phase, and (ii) those that attempt to learn an

ensemble of models and take advantage of multi-modal optimization.

There are different approaches considered for ensembling model

parameters such as Dropout (G. E. Hinton, Srivastava, Krizhevsky, Sutskever,

& Salakhutdinov, 2012), Snapshot Ensemble (G. Huang et al., 2017), Fast

Geometric Ensemble (Garipov, Izmailov, Podoprikhin, Vetrov, & Wilson,

2018), Stochastic Weight Averaging (Izmailov, Podoprikhin, Garipov, Vetrov,

& Wilson, 2018), and Exponential Moving Average (Tarvainen & Valpola,

2017). Dropout, by G. E. Hinton et al. (2012); Srivastava, Hinton, Krizhevsky,

Sutskever, and Salakhutdinov (2014), is originally introduced as a regularization

technique to prevent model overfitting, which is common in deep neural

networks. Helmbold and Long (2017) show that dropout can result in a better

model complexity/performance balance since the penalty by dropout can grow
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exponentially as the number of hidden layers increases while the penalty by other

traditional regularizers, such as L2-norm, grow linearly. In addition, they show

that dropout is scale invariance with respect to, for example, model parameters

resulting in the possibility of finding any local optima. Finally, Warde-Farley,

Goodfellow, Courville, and Bengio (2013) introduce dropout as an ensemble

learning technique, which can be similar to bagging or boosting—such behavior

of dropout has been then further studied in different research such as Z. Zhang,

Dalca, and Sabuncu (2019). As far as the other approaches, G. Huang et al. (2017)

propose a single training multi-model learning approach called Snapshot Ensemble

(SE). The authors show that, using a cyclic cosine annealing schedule for learning

rate, a model can scape multiple local optima while visiting them properly along

its optimization path and saving the corresponding model parameters at each

local optimum along the way. Therefore, at the end of a single training, there are

multiple saved models, each of which correspond to a different local optimum.

Then, an ensemble of these models is used to produce the final predictions. Garipov

et al. (2018) propose Fast Geometric Ensemble (FGE), which is based on the same

logic as SE. However, it utilizes a linear piecewise cyclical learning rate instead.

They also show that deep neural networks’ local optima are connected with a path

such that the train and test loss stay low while moving from one local optimum

to another, and thus such paths can be utilized for an ensemble. Izmailov et al.

(2018) propose Stochastic Weight Averaging (SWA) that is an improvement on

FGE in that SWA can approximate FGE while it only requires one model at the

test time. In comparison to FGE, which averages different models’ predictions,

SWA averages the weights of such models. More specifically, first, they train a

model in a conventional manner using either the full or a proportion of the number
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of epochs to create the initial model parameters. Then, the training continues

using a cyclical learning rate for traversing multiple local optima for each of the

corresponding model parameters that are captured—for constant learning rate,

model parameters are captured at every epoch. At the end, the average of all these

captured model parameters constitutes the final model parameters. Ekim and

Sertel (2021) investigate all three SE, FGE, and SWA for image classification of

RS imagery, and show that SWA outperforms the other two and the non-ensemble

baseline. Finally, Tarvainen and Valpola (2017) propose an improvement on

Temporal Ensemble (Laine & Aila, 2016), in which model weights are averaged

using the Exponential Moving Average (EMA) method over epochs during the

training phase.

The model ensemble approaches can be categorized into Knowledge

Distillation (discussed in Chapter IV) (Tarvainen & Valpola, 2017), TreeNets

(S. Lee, Purushwalkam, Cogswell, Crandall, & Batra, 2015), AdaBoosts (Mosca &

Magoulas, 2017), and MotherNets (Wasay, Hentschel, Liao, Chen, & Idreos, 2020).

S. Lee et al. (2015) propose TreeNets as a spectrum of ensembles ranging between

single models and non-parameter sharing ensembles of multiple models. Within

the spectrum, it is possible to have models that share some layers at the beginning

of the network and then diverge from each other to create different classification

heads resulting in different outputs to be averaged for the final output. Mosca and

Magoulas (2017) propose using AdaBoost for CNN-based models such that the

learned model parameters of the previous round of sub-training are transferred to

be used as a part of the extended model in the next round. MotherNets, by Wasay

et al. (2020), try to reduce the training time for an ensemble of individual models.

MotherNets capture the structural similarity between a cluster of networks such
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that the maximum common core structure of models in each cluster is identified as

the MotherNet of that cluster. After training the MotherNet, the individual models

within the cluster inherit the model parameters from the MotherNet and will be

further trained.

Finally, the experiments by Fort et al. (2019) show that models with

different random initializations explore the weight space better than other

approaches, such as bayesian networks, and thus deep ensembles of different

random initializations are able to capture different modes of the space of solutions.

Therefore, a deep ensemble with each of its different models initialized differently

can capture a multi-modal landscape solution due to each of its members

discovering a different local optimum in the solution space, and thus such deep

ensemble can have a better prediction performance.

All in all, each of the aforementioned venues of deep ensemble learning

has their advantages and disadvantages considering the balance among final

performance, training time, and the number of added parameters. In addition,

most of these approaches are developed for supervised settings and/or for image

classification task. Therefore, I evaluate some of these approaches against a non-

ensemble model for semantic segmentation with PU data. The rest of this chapter

is organized as follows. In § 5.2, I first introduce the selected ensemble approaches

and the baseline against which I evaluate them, then I introduce the proposed

approach. In § 5.3, I assess the results, and, finally, I summarize and discuss future

work in § 5.4.

5.2 Methodologies

In this section, different approaches of deep ensemble learning are

investigated against the performance of a non-ensemble baseline model in a PU
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learning scenario. Target-PU model (introduced in Chapter IV) is chosen as

the baseline. The baseline uses random weights from a Gaussian distribution

and does not use a warm start from ImageNet pre-trained weights, since using

such weights results in a negative transfer effect—see Chapter IV. Thus, for a

fair and better comparison, the ensemble models do not incorporate ImageNet

pre-trained weights either. The selected ensemble models for this chapter are

dropout, EMA, SWA, feature ensemble, model ensemble, TreeNet, and contextual

ensemble. The structure of all of these models are the same as the baseline, except

for the contextual ensemble, which has a smaller depth than the baseline model.

All models utilize a UNET architecture with VGG16 as the backbone. Finally,

based on the lessons learned from these models, I propose a multi-scale ensemble

approach that performs the best among these models.

5.2.1 Dropout. Inspired by the results in Bartolome, Zhang,

and Ramaswami (2018), I consider dropout layers in the expansive path of the

UNET network such that a dropout with probability p = 0.1 is applied after

each concatenation of an up-sample and its corresponding feature map from the

contracting path.

5.2.2 EMA. The model’s temporal ensemble is done using exponential

moving average of model weights over each epoch in the training stage. As shown

in equation 5.1, the averaged model weights at time t (θ̄t) are calculated from the

average value of model parameters over t − 1 times (θ̄t−1) and the current state of

values at time t (θt). The value for γ is chosen to be equal to 0.999, which converts

the simple average to a weighted average.
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θ̄t = γθ̄t−1 + (1− γ)θt (5.1)

5.2.3 SWA. The SWA trains two models in the training phase. The

first model scans the weight space to find different local optima using a cyclical

learning rate scheduler—for convenience, I call this model cyclical. After a warm-

up stage for the cyclical model, its weights are used as the starting point for

the second model which I call the SWA model. The cyclical model continues its

contribution to the SWA model until the end of the training phase. The SWA

model maintains an exponential moving average (equation 5.2) of its weights and

the weights from the cyclical model. The contribution of the cyclical model’s

weights is controlled and decreased over time by adjusting the parameter α from

value 1 to a value very close to 0.

θSWA = (1− α)θSWA + αθcyclical (5.2)

5.2.4 Feature ensemble. The idea is that two (or multiple feature

generator) contribute to the same decoder. This means that the ensemble of models

happens at feature level instead of the model’s output level. Since UNET takes

advantage of multiple mid-level features to be used directly in the expansive path, I

implement the feature ensemble at the last and all mid feature maps (Fig 28a). The

ensemble of feature maps is done using a 1× 1 convolution operation.

5.2.5 Model ensemble. In this approach of ensemble, multiple

random initializations are used for training multiple models, and then their

outputs are collectively used in order to ensure diversity (Fig. 28b). This kind
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of ensemble is expensive in terms of training time. However, it may result in the

best performance, as suggested by Fort et al. (2019). I investigate two 2-model

ensembles and one 3-model ensemble with (i) a random initialization strategy, and

(ii) an average method for constructing the final output of the models’ ensemble

from the output of individual models.

5.2.6 TreeNet. TreeNets are a spectrum between a non-ensemble

single model and model-ensemble. I investigate two different ways of implementing

TreeNets: one that consider the divergence to happen at encoder level (Fig. 28c),

and the other one that consider the divergence to happen at decoder level

(Fig. 28d).

5.2.7 Contextual ensemble. Different research such as Marmanis et

al. (2016), Z. Zhou, Siddiquee, Tajbakhsh, and Liang (2019), Ma, Li, Zhang, Tang,

and Guo (2021), and L. Chen et al. (2021) have been trying to provide ensemble

networks by modifying the structure of UNET network. Most recently, Q. Zhou

et al. (2022) propose a UNET-based ensemble for semantic segmentation called

contextual ensemble network (Fig. 28e) which fully explores contextual features

by modifying the expansive module of the UNET network. At each level within

the expansive module, a stack of multi-scale feature representations from previous

stages are concatenated to the stack of upsampled features and feature maps copied

from the contracting module. This process aims to combine feature maps created

with different receptive fields and thus allows harvesting and leveraging multi-scale

context clues.

5.2.8 Multi-scale ensemble. The idea of feature sharing and

ensemble of multiple predictions is not new. Feature Pyramid Network (FPN)
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}
(a) Feature ensemble.

}
(b) Model ensemble.

}Shared

(c) TreeNet ensemble at Encoder.

}Shared

(d) TreeNet ensemble at Decoder.

Conv, Batch-Norm, ReLU
Copy, Concat
Max Pool
Up-Conv
Conv
Up-Conv (2x)
Up-Conv (4x)
Up-Conv (8x)

(e) Contextual ensemble.

Figure 28. Different deep ensemble architectures.
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by T.-Y. Lin et al. (2017) proposes using feature maps at different scales for

producing multiple predictions to be combined for the final prediction. Such final

prediction performs better than a prediction based solely on a single feature map

output of a feature generator network. FPN is originally for image classification

with a brief extension idea for image segmentation within the original paper.

Following on FPN, different research such as Tao, Sapra, and Catanzaro (2020)

and Bousselham et al. (2021) have been trying to provide an ensemble learning

framework for semantic segmentation. However, such models usually incorporate

complex modules such as different variations of attention and transformer modules

(Z. Liu et al., 2021; Vaswani et al., 2017). Although successful, these models are

developed for fully supervised learning. However, as shown in Chapter IV in the

case of UNET-VGG16 versus DeepLabV2-ResNet101, the high complexity of

the learning model becomes harmful rather than beneficial as the proportion of

labeled data from the positive class decreases (i.e. from PU5 to PU9). This is

important since it is desirable to have a model that performs well with the least

amount of available labeled data from the positive class. In addition such complex

models require using pre-trained weights for optimal performance, whereas pre-

trained weights cause negative transfer in the case of PU data (which is shown in

Chapter IV). Considering these, I propose a model that is based on three elements:

(i) the successful lightweight UNET structure for PU learning that is explored in

Chapter IV, (ii) the multi-scale multi-prediction idea by FPN, and (iii) the multi

local optima exploration idea by SWA model. The idea of using SWA model

as the third element comes from the results by Fort et al. (2019) showing that

mixing multiple ensemble approaches can result in even more improvements in the

prediction performance.
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As shown in Fig. 29, in addition to the final layer created by a series of up-

samples using deconvolution operations, the two previous layers in the expansive

module are used to create two additional prediction segmentation maps. These

two additional layers are upsampled to create an output with the same size as the

original output. The upsampling is done by a bilinear operation (rather than a

deconvolution operation) in order to (i) keep the model complexity low and (ii)

maintain the information at each layer without deforming it. The final prediction

for each of these two additional upsampled layers is produced by applying a 1 × 1

convolution, which is the same way as for the original prediction output. Finally,

all three prediction segmentation maps are averaged to produce the final prediction

segmentation map.

}
Conv, Batch-Norm, ReLU
Copy, Concat
Max Pool
Up-Conv
Conv
Up-Bilinear

Figure 29. self-ensemble multi-scale UNET.

5.3 Results

The performance of models in this section is evaluated using the PU dataset

from the homogeneous dataset created from Inria Image Dataset, as discussed
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in Chapter III. The loss function for all models is NNPU loss, and the same

evaluation metrics as in Chapter IV are used here. Target-PU model (introduced in

Chapter IV) is chosen as the non-ensemble baseline, and is initiated using random

weights from a Gaussian distribution. Dropout, EMA, and SWA models are also

initiated using random weights from a Gaussian distribution. Encoders in feature

ensemble model are initiated using random weights from a Gaussian distribution

and Xavier uniform distribution, respectively. This is the same for TreeNet models

as well. In the case of model ensemble, there are two 2-model ensembles and a 3-

model ensemble. In each of the 2-model ensembles, one model is initialized using

random weights from a Gaussian distribution and the other model is initialized

using random weights from either Xavier uniform distribution or Kaiming uniform

distribution, respectively. In 3-model ensemble, Gaussian, Xavier uniform, and

Kaiming uniform distributions are used for each of the three models’ weights

initializations. Finally, contextual ensemble and the proposed multi-scale model

are initiated using random weights from a Gaussian distribution. The optimizer

and learning rate scheduler hyper-parameters are the same as in Chapter IV for

all models, except for the SWA model. For SWA model, I use the configuration set

that the original paper (Izmailov et al., 2018) suggests.

According to Table 7, excluding the proposed model, SWA model performs

the best and outperforms the baseline. After that, model ensemble has the

second place with outperforming the baseline in some cases such as PU9 dataset.

Although Fort et al. (2019) show that using ensemble of models with different

random initializations can result in better performances, it can be seen that such

improvements are not always the case and not guaranteed for PU data. TreeNet

models surprisingly perform very poorly, given that the model ensemble does well.
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Since model ensemble is on the extreme end of the spectrum of TreeNets model

architectures, I further investigate the performance gap between TreeNets and

model ensemble by analyzing the changes in models’ parameters during the training

phase using the cosine similarity metric.

The cosine similarity of two vectors projected in a multi-dimensional space

is the cosine of the angle between the two vectors. Therefore, it can be used to

measure the alignment of the two vectors. According to Fort et al. (2019), cosine

similarity measures weight space alignment along optimization trajectory, and thus

each of the two aforementioned vectors contain the parameters (i.e. weights) of two

models that are analyzed. I calculate the cosine similarity using the equation 5.3

at every five checkpoints during the training phase, where θi is the parameter set

for model i. The value of the cosine similarity of two vectors ranges from -1 to 1,

where -1, 0, and 1 indicate strongly opposite, independent, and similar vectors,

respectively.

cos(θ1, θ2) =
θT1 θ2

||θ1||||θ2||
(5.3)

Although the shared part within the TreeNet models explores the weight

space pretty well (Fig. 30a and Fig. 31a), it controls how and to what extent

separated branches within the models would explore the weight space. As shown

in Fig. 30b and Fig. 31b, if the shared part of the network in a TreeNet model

reduces, there is a higher chance for the separate branches to explore different areas

within the weight space. For example, when the separation point is at decoder

level, since the feature map generation is done similar for the two networks, the

decoders tend to end up exploring the same area within the weight space. Whereas,
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when the separation point is within the encoder, the two models can drift away

from each other within the weight space, which gives them a higher chance of

finding two local minima, such that their ensemble performs better. This is also the

case when the models are completely separated. For example Fig. 32 compares two

models with Xavier and Kaiming random weight initializations within the 3-model

ensemble network. Although the two models start within the similar neighborhood

within the weight space, they drift apart during the training phase, which again

gives them a higher chance of finding two local minima, such that their ensemble

performs better.
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Figure 30. Cosine similarity of model weights for TreeNet (Decoder) model over
different checkpoints at different epochs during the training phase for PU9 dataset.
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Table 7. The performance of different ensemble models compared to the performance of a single model.

PU5 PU6 PU7 PU8 PU9 Best

Method Acc IoU F1 Acc IoU F1 Acc IoU F1 Acc IoU F1 Acc IoU F1 Case

Baseline (non-ensemble) 77.69 63.45 77.57 81.06 67.46 80.49 81.52 66.95 80.13 80.75 66.37 79.69 81.38 66.59 79.87 PU6

Dropout 77.09 62.91 77.20 80.40 66.49 79.85 81.27 66.85 80.10 81.13 66.60 79.93 80.87 65.67 79.25 PU7

EMA 40.94 40.94 58.07 43.33 39.85 56.95 42.48 38.90 55.98 43.13 39.63 56.73 43.20 39.71 5682 PU5

SWA 77.61 63.75 77.79 41.85 41.85 58.91 40.50 40.49 57.54 82.54 68.88 81.49 83.13 69.50 81.95 PU9

Feature Ensemble 57.69 07.84 14.53 50.81 27.69 43.34 40.55 40.44 57.48 42.13 40.32 57.35 48.76 31.48 47.85 PU7

2-Model Ensemble (Xavier) 76.72 62.67 76.98 79.84 66.28 79.64 81.32 66.84 80.05 80.51 66.39 79.67 81.20 66.93 80.12 PU9

2-Model Ensemble (Kaiming) 75.89 61.76 76.29 80.34 66.59 79.88 80.57 65.90 79.38 80.35 66.12 79.48 81.24 66.71 79.95 PU9

3-Model Ensemble 77.03 62.90 77.16 80.87 67.22 80.33 81.46 66.92 80.11 80.96 66.83 79.98 81.92 67.67 80.64 PU9

TreeNet (Encoder) 50.12 28.65 44.51 57.95 01.21 02.39 48.18 31.70 48.09 41.61 40.91 57.94 57.94 03.62 06.98 PU8

TreeNet (Decoder) 52.00 25.02 40.01 51.89 25.12 40.13 53.29 22.16 36.26 49.21 30.62 46.83 49.51 30.20 46.36 PU8

Contextual Ensemble 77.18 60.04 74.98 77.16 58.89 74.02 78.38 59.33 74.37 75.00 54.87 70.76 78.55 60.19 74.91 PU9

Proposed Model 79.58 65.83 79.34 82.77 69.90 82.21 82.00 68.05 80.91 82.78 69.17 81.68 83.93 70.18 82.42 PU9
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Figure 31. Cosine similarity of model weights for TreeNet (Encoder) model over
different checkpoints at different epochs during the training phase for PU9 dataset.
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Figure 32. Cosine similarity of model weights for ModelNet model over different
checkpoints at different epochs during the training phase for PU9 dataset.

The contextual ensemble performs poorly since there are so many

convolution operations added to the expansive module of the network. I

investigated other options that decrease such complexity such as bilinear

upsampling. This resulted in improved model performance; however, the baseline

model still shows superior performance. I also tried the proposed multi-scale
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ensemble model without weight sharing using three different models with Gaussian,

Xavier uniform, and Kaiming uniform distributions for each of the three models’

weights initializations. However, this approach resulted in a minor decrease in

prediction performance of the model. For example, the IoU for PU9 drops from

70.18% to 70.03%. Fig. 33 shows a sample of image patches from homogeneous PU

Inrial Dataset and the corresponding ground truth as well as predictions from the

baseline model and the proposed model trained on PU9 dataset.
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Figure 33. Left-to-right: Sample image patches from homogeneous PU Inrial
Dataset, the corresponding ground truth, and predictions from the baseline model
and the proposed model trained on PU9 dataset.
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Finally, since the proposed ensemble model is an end-to-end learning and

compatible with the network structure and the learning schema proposed for PU

domain adaptation, it is possible to create a mixture of both in order to further

extend the performance improvement. As shown in Table 8, the mixture of the

proposed model for ensemble and transfer learning performs the best for PU5, PU7,

and PU9 datasets, whereas its performance of PU6 and PU8 are weaker. What

this has all shown is the superior performance of the proposed model on my most

challenging dataset, that is PU9 dataset with the minimum amount of available

labeled data from positive class. However, further research is needed to investigate

the unsatisfying performance of the model on PU6 and PU8 datasets.

5.4 Conclusion

In this chapter, I investigated most of the available ensemble approaches

developed for deep learning frameworks. However, they are mostly developed for

image classification tasks and supervised learning framework. I demonstrated that

these methods—except for SWA and model ensemble—do not perform well in the

case of PU data for semantic segmentation of RS imageries. Next, I proposed a

lightweight end-to-end ensemble approach that outperforms all the other models

and shows promising results for creating a mixture with the proposed domain

adaptation model for PU learning.
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Table 8. The mixture of Ensemble and Transfer PU models.

Dataset Performance Metric Seamless-PU Ensemble Seamless-PU

PU5

Acc 88.85 89.54

IoU 76.63 77.78

F1 86.71 87.44

PU6

Acc 89.21 84.78

IoU 77.21 68.91

F1 87.09 81.53

PU7

Acc 89.19 89.54

IoU 76.54 77.08

F1 86.66 87.00

PU8

Acc 88.92 88.42

IoU 76.41 75.84

F1 86.58 86.17

PU9

Acc 88.58 89.00

IoU 76.01 76.63

F1 86.21 86.67
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CHAPTER VI

CONCLUSIONS & FUTURE WORK

Remotely-sensed (RS) imageries are key elements in research in many

fields of study. The large amount of RS imageries with high spatial and temporal

resolution that are produced frequently require machine learning algorithms for

automatic information extraction. The labor-intensive and time-consuming nature

of creating a set of representative labeled training samples, along with frequent

applications with interests in identifying only one specific landcover or object

from RS imageries, call for incorporating positive and unlabeled (PU) learning

methodology in remote sensing research. The research presented in this dissertation

is among the first that addresses the problem of PU learning in geospatial domain,

in general, and in remote sensing, in particular. As the occurrence of PU data is

inevitable and much of a reality in geospatial applications, this research aims to

connect the research in machine learning and remote sensing communities. In this

dissertation, I investigated the two research questions:

RQ1. How can Transfer Learning be incorporated in the context of positive

and unlabeled learning for semantic segmentation of satellite imagery?

RQ2. How can Ensemble Learning be incorporated in the context of positive

and unlabeled learning for semantic segmentation of satellite imagery?

In summary, my research demonstrated that the naive mixture of existing

PU learning models with transfer learning paradigms does not result in acceptable

model performance. To address this problem, I developed a method that can

overcome the negative transfer effect for PU learning. In addition, I showed that

simply adopting methods developed in computer vision, including UDA models,
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may not perform as well as they do in other categories, such as urban scene

semantic segmentation. The proposed model shows promising results with limited

amount of labeled data from the positive class. Finally, the proposed model can be

seen as multi-target domain since each city is a separate domain within the dataset.

This makes the proposed model more powerful since it can cope with the changes

in landcover structures at different geographic locations—for example, the change

in material used for rooftop of the buildings at different locations. Also, since there

is no constraint on the number of source domains, the proposed model can easily be

extended to the multi-source domain case as well.

Next, to address the ensemble PU learning framework, first I investigated

the performance of the available ensemble learning methodologies proposed

for deep learning. Most of these approaches are developed for fully supervised

settings and address image classification task rather than semantic segmentation.

I demonstrated that, again, simply adopting such models may not produce

competitive results in comparison to non-ensemble PU models. By learning from

the behavior of such models, I proposed an ensemble PU learning model, which

outperforms all discussed models and shows promising results. The proposed

deep ensemble PU learning is general and end-to-end, and thus it can be easily

incorporated with other deep learning methods, such as the proposed deep transfer

PU learning.

In summary, the results from my research delivers an expansion of the

category of positive and unlabeled learning methods. Such deliverable is a

valuable tool to be utilized for different real-world problems needing RS imagery

segmentation, for which collecting a comprehensively labeled dataset is costly.
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6.1 Future Work

The results of my dissertation research, illuminated two areas of future work.

First, I would like to investigate relaxing the SCAR assumption in generating

PU data for research, and thus relaxing this assumption in the PU loss function.

This is because it is more realistic that users are biased towards buildings/objects

that they can recognize better when creating distinct patches of labeled pixels

within an image. Second, it is also more realistic that a group of classes together

constitute the positive class which falls under multi-positive and unlabeled (multi-

PU) learning. For example, this is the case in remote sensing for agriculture, in

which multi-class methods are preferred to identify a set of crops of interest. There

is some research in this area in computer vision literature such as Xu, Xu, Xu,

and Tao (2017), Shu, Lin, Yan, and Li (2020), and Teisseyre (2021) that address

multi-PU learning. Therefore, in the future, I to extend my research further in the

context of RS imageries in order to extend the proposed models in this dissertation

to the multi-PU case.
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