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DISSERTATION ABSTRACT
Tawney Ann Knecht
Doctor of Philosophy
Department of Chemistry
June 2022
Title: Examination of Metal Oxide Nanocrystal Formation, Growth and Applications using

a Continuous Growth Synthesis

Metal oxide nanomaterials can serve as high-performance materials in many
applications, but only if their nanoscale structure can be controlled through synthesis.
Metal oxide nanocrystals with the necessary structural attributes (size, shape, crystallinity,
dopant identity and concentration, defect structure, architecture, etc.) to enhance these
applications have been produced, but little is known about growth processes that lead to
those structures. Research on the nanocrystal growth process is necessary to gain the level
of synthetic control required to predictably engineer the desirable attributes of
nanocrystals.

The research described in this dissertation utilizes a continuous addition synthesis
that enables fine control over the nanocrystal growth process in examining the influence of
precursor oxidation state, reaction atmosphere, precursor ligation, and reagent identity are
investigated. In the case of cerium oxide, it was found that precursor oxidation state does
not significantly influence the growth of cerium oxide nanocrystals. Instead, we find that
reaction atmosphere (N2 vs air) drastically influences the nanocrystal structure, which in
turn influences the growth, with nanoribbons or plates forming under N2, and nanocubes

forming under air. We also found that acetate from the precursor starting material were

v



responsible for nanoribbon formation. For tin-doped indium oxide (ITO), it was found that
changing the primary reagent from oleyl alcohol to oleylamine drastically influenced the
nanocrystal growth by influencing the number of nanocrystals formed in the earliest stages
of nanocrystal formation and growth.

Towards utilizing ITO nanocrystals in applications, we investigate their use as
plasmonic filters and as electrocatalysts. We find that we can sculpt the absorption
spectrum of solution-processed ITO nanocrystal films, enabling the fabrication of tunable
IR filters. We also find that ITO nanocrystals are unstable and restructure to an indium/tin
metal alloy under electrochemically reducing potentials required for CO, reduction.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

I am the primary and sole author to the writing of this chapter.

Dissertation Introduction

Nanomaterials have garnered interest over the last several decades as materials that

will solve some of the world’s most challenging issues, and are used in drug delivery,'*

12-14 15-19

sensing,”® cancer treatment,!>* °!! water purification,'>'* electronics,!>"!* photovoltaics,”

17, 20-21 7,22-24

energy storage devices, and more. This special class of materials consists of

materials that have one dimension below 100 nm in size, and can be any material including

25-27 7, 28-29

carbon-based materials,>>?’ metals, and metal chalcogenides,> ® ! 16:39 to name a

few. These can include one-dimensional wires,*!~? two-dimensional sheets or films,® ' 2%

34-37 38-39

and three-dimensional nanoparticles from simple geometries like spheres and

cubes,*** to more complex geometries like branched shapes** or flowers.*>4¢

The reason nanomaterials are a special class of materials worth studying is because
they exhibit size- and shape-dependent properties that are different than their bulk
counterparts.*”*® For example, while bulk gold has a golden yellow color, nanogold can be
pink, purple, or red (depending on the particle size and shape) and was used, likely

unknowingly, to make red glass since the Middle Ages.*” Another common example is



quantum dots, which are nanomaterials that exhibit size-dependent photoluminescent
properties, appearing as different colors when excited depending on their size.**~>! Due to

these size-dependent optical properties, quantum dots have been adopted into technologies

49, 52-53 54-55

such as LEDs and quantum dot displays, solar cells, imaging in cell biology,’!

and more.

Because these properties are size- and shape-dependent, there has been a push to
develop reliable processes to fabricate or synthesize nanomaterials of predictable
compositions, size, and shape. There are two main approaches to nanomaterials fabrication:
top-down or bottom up.>® Top-down approaches start with bulk materials that are further
broken down or structured on the nanoscale. Some examples of these processes include
mechanical milling and various lithography and selective etching methods.’® The
advantage of mechanical milling is that the process is simple, but it often leads to a range
of sizes of material, and the process is not predictable nor controllable. Lithography and
etching techniques have been widely used in the electronics industry to fabricate nanoscale

electronic circuitry; however, these methods are not broadly applicable to all materials.

Bottom-up approaches are ones in which nanomaterials are synthesized from
smaller building blocks such as atoms, molecular precursors, or clusters, and they offer
several advantages.’® These techniques include atomic layer and chemical vapor
deposition, as well as solid, liquid, and gas phase syntheses. Each of these techniques has
advantages and drawbacks. This dissertation will focus on the liquid phase synthesis of
colloidal nanocrystals because such syntheses offer many handles (such as temperature,
solvent choice, precursor choice, reagent choice, concentrations, etc.) that can be

manipulated to tune nanoscale structure.



The nanoscience community has made strides towards developing liquid phase
syntheses, both aqueous and organic, that have enabled access to nearly every material and
nanostructure one could think of. Many studies have been published on size- and shape-
dependent properties of various nanomaterials. However, size and shape are not the only
structural attributes of a nanocrystal that affect properties. Properties can also be influenced

by the degree of crystallinity, what crystal phases are present, defects such as twinning®”

58 59-61

or oxygen vacancies, and in the case of multi-component nanocrystals, phase

62-63 1 64-65

segregation and/or location of dopant within the nanocrysta

Size Morphology Composition Crystal Phase
j . .
°00 e/ ‘%k SOP®

Architecture Defects Dopant Location

@@ BE= Oo0o»

Figure 1.1. Illustration depicting the different nanocrystal structural attributes that can

impact nanocrystal properties.

All of these attributes can have profound effects on nanocrystal properties but are
often difficult to detect and characterize. Thus, many studies on nanocrystals of similar
size, composition, and morphology report a wide variety of properties. For example,
Lounis et al. measured the conductivity of two different nanocrystal films made from tin-
doped indium oxide (ITO) nanocrystals of the same size and shape, but made from different
precursors, and there was an order of magnitude difference in conductivity between the
two films.® This was due to the location of Sn dopants within the ITO nanocrystals being
different between the two sets of nanocrystals.%> Spinel iron oxide is another commonly

used example, where a variety of saturation magnetizations are reported for nanocrystals



of the same size and morphology.®® This is often due to unintended structural defects and
varying thicknesses of a non-magnetic shell within the nanocrystals, both of which are
dependent upon the synthetic conditions.®®” These discrepancies within the literature

make it difficult to establish any accurate structure-property relationships.

All nanocrystal structural attributes are the product of the synthetic conditions used
to produce the nanocrystals. Unfortunately, many solution syntheses of nanocrystals are
developed through trial and error, often changing multiple synthetic parameters between
reports, making it difficult to understand the effect various synthetic conditions are having
on nanocrystal properties (this will be discussed in further detail later in this chapter). To
better understand how synthetic conditions impact nanocrystal properties, it is imperative

that we understand the nanocrystal growth process.

Mechanisms of Nanoparticle Nucleation and Growth in Solution

The formation of nanocrystals in solution is thought to happen in two stages:
nucleation and growth.®®** Nucleation is the formation of the first nanocrystals,”® and
growth happens when solution monomer continues to react with the nanocrystal surfaces,
causing them to grow.”! There are several theories have been put forth outlining various
mechanisms of nanocrystal nucleation and growth. Though none of them are broadly
applicable to every nanocrystal synthesis, there are many important and useful concepts

that have come from those efforts.



Classical Nucleation and Growth

The theory of classical nucleation and growth stemmed from work by La Mer and

68-69 and is applicable in many nanoparticle systems. In this theory, molecular

coworkers
precursors convert to reactive monomer species (M). Monomer concentration rapidly
increases over a brief period, briefly reaches a concentration above the saturation
concentration (Msat), and then a short burst nucleation occurs with the formation of a finite
number of nanoparticles of a critical radius.®® The critical radius (which happens at
[M]criticat) is the smallest radius at which a nanoparticle does not redissolve.%® At this point,
growth ensues when solution monomers react with the growing nanoparticles, decreasing
the solution monomer concentration below the saturation point, preventing the nucleation
of new particles.®® Growth will continue until the monomer concentration reaches the
saturation concentration (Msa).®® If monomer concentration falls below the saturation
concentration of the solvent, then nanoparticles will redissolve, reforming solution
monomer species.®® Smaller particles will often dissolve first due to their high surface
energy, and resulting monomer is then allowed to react with larger particles.®® This process
of smaller nanoparticles dissolving and then monomer regrowing onto larger nanoparticles
is called Ostwald ripening and is typically used to describe how nanoparticles can become

more uniform and monodisperse over time.®® A schematic depiction of classical nucleation

and growth theory is shown in Figure 1.2 below.
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Figure 1.2 Schematic depiction of classical nucleation of growth, showing how the

concentration of monomer ([M]) over time impacts nanoparticle formation and growth.

The classical nucleation and growth model has been very useful in describing the
formation of nanoparticles and the separation of nucleation and growth, and it is applicable
in many nanoparticle systems.”! However, there are some assumptions that are made that
are not appropriate in all systems.’” For example, one assumption of this theory is that
growth is independent of the material properties, but in instances where size influences
nanoparticle reactivity, this is not the case.®’” Another assumption is that there is a single
surface energy for the growing nanocrystals, but in addition to size, different exposed
crystallographic facets have different surface energies, and thus classical nucleation and
growth cannot always describe the formation of anisotropic nanoparticles.’”? Further, this
theory does not take into account different chemistries that can happen both in solution and
at the surface of the nanocrystals. Thus, classical nucleation and growth does not
adequately describe all nanoparticle growth and does not allow for the predictability

required to be able to intuitively design new nanomaterials.



Continuous Nucleation

Continuous nucleation is another mechanism of nucleation that was first described
by Finke and Watzky.® This is a two-step mechanism whereby nucleation and growth
happen simultaneously. Nucleation happens continuously where monomer forms
nanocrystals, and then surface growth happens autocatalytically. This theory is useful in
putting forth the notion that both the nature of the monomer as well as the nanoparticles in
solution affect each other, though still falls short by not considering the specific chemistries

of the monomer or nucleation and surface growth reactions.
Nonclassical Nucleation and Growth

Nonclassical nucleation and growth encompasses other mechanisms that do not fall
into the classical or continuous nucleation and growth models.®®*>- 7 These mechanisms
can include the formation of clusters, nanoparticle coalescence where nanoparticles react
with one another to form larger structures, or intraparticle growth in which diffusion of
monomer species along the surface of a nanoparticle leads to a morphology change over
time. These processes often driven by high surface energies, which are lowered upon

coalescence or rearrangement.

While each of these models put forth useful concepts, they still fail to understand
the individual chemistries happening in each system and fail to provide a model that allows
for the predictive formation of nanoparticles. Other nucleation models that are seldom
discussed take into account the chemistry of the monomer and nanocrystal material. These
models describe the reaction of monomer units to form liquid-like phases, amorphous

phases, or oligomer units that can polymerize or crosslink, which may then crystallize at



sufficiently high temperatures. While these models are vague and generally poorly
understood, they provide a useful framework for thinking about additional pathways to
nucleation beyond traditional classical or non-classical nucleation models that account for
system-dependent parameters such as the chemical properties of the monomer and
intermediates, and material properties of the nanoparticles formed in solution. A depiction

of various nucleation pathways’* is shown in Figure 1.3 below.
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Figure 1.3. Illustration inspired by reference [74] depicting different nucleation pathways
from monomer species.

Nanoparticle syntheses are often developed inefficiently through trial and error, and
the myriad of different synthetic conditions makes it impossible to understand how each of
the synthetic parameters affects nanomaterials properties. To try to understand these, it is
important to first understand the common types of reactions that are used to form

nanoparticles.



Overview of Solution Phase Syntheses of Metal Oxide Nanoparticles

Metal oxide nanocrystals are a particularly interesting class of nanomaterials due
to their ubiquity and unique properties, which have enabled their use in almost every

16, 76-77

application imaginable, including biomedical applications,”” sensing, energy

7, 22-23 64, 78

storage, optoelectronics, and beyond. This dissertation focuses on solution
methods to synthesize metal oxide nanocrystals due to the level of control afforded by
solution-based syntheses, as well as the ease with which one can change various parameters
within the syntheses.%” Solution methods can be divided into two categories: aqueous and

79-80

nonaqueous routes. The most common aqueous based syntheses are coprecipitation” " and

hydrothermal®®: 81-82

syntheses. Both of these form metal oxides through hydrolysis
reactions. In coprecipitation syntheses, a precipitating agent, typically an aqueous base, is
slowly added to a metal salt solution, either under ambient conditions or at slightly elevated
temperatures. Size and morphology are typically controlled by varying the rate of addition
of the precipitating agent, concentration of base or metal salt, or by varying the pH of the
solution. Hydrothermal syntheses involve mixing metal salts and other additives such as
stabilizing ligands in water, sealing the reaction mixture in an autoclave, and heating to
high temperatures (and pressures).*® *!: 818 In these syntheses, size and morphology are

controlled by varying the temperature, reaction time, metal concentration, or type and

concentration of additives used.

Aqueous routes are typically the most straightforward and cost-effective strategies
to form metal oxide nanocrystals.’® However, there are significant drawbacks. The
formation of nanoparticles through hydrolysis reactions occurs rapidly, making it nearly

impossible to separate nucleation from growth of nanoparticles, which is advantageous for



controlling size and morphology. Rapid hydrolysis also reduces the selectivity of the
products formed in the reaction, which often results in polydisperse nanoparticles.’” 34
Further, some reports have shown that polycrystalline shells can be formed on the surface

of nanoparticles using these syntheses,’¢%” further complicating efforts to understand

structure-property relationships.

Nonaqueous routes utilize knowledge from organic reactions to more slowly and
controllably form nanoparticles. There are two primary nonaqueous reaction routes:
thermal decomposition”' and nonaqueous sol-gel reactions.®>®¢ Thermal decomposition
involves heating a metal complex (such as a metal carboxylate) to a temperature (often
above 300 °C) at which the precursor complex decomposes, forming M® and MOe radical
species, which react with each other to form M—O-M bonds, resulting in metal oxide
nanocrystals. Nonaqueous sol-gel reactions occur through the formation of M—OH species,
that condense with each other to form M—O-M bonds. Each of these two syntheses will be

discussed in detail below.

Thermal decomposition syntheses are the most widely studied nonaqueous route to
metal oxide nanocrystals and have led to some of the most uniform nanocrystals in the
literature.”!- 7 However, because the reaction involves the formation of radical species that
quickly and indiscriminately react with each other, it is difficult to control the specific
chemistry happening in the reaction. As a result, thermal decomposition syntheses can lead
to the formation of defects within the nanocrystals,® imparting unintentional and
uncontrollable properties. Further, because these syntheses often occur at high

temperatures, often under a N> atmosphere, this can result in a highly reducing

10



environment, leading to more reduced phases of metal oxide nanocrystals than may be

desired, or even leading to the formation of metal nanocrystals.**

Nonaqueous sol-gel routes, on the other hand, allow for higher selectivity of the
chemical reactions taking place to form nanocrystals.*>3¢ These reactions typically involve
mixing a metal precursor (metal halides, acetates, acetylacetonates, carboxylates, etc.) in a
solvent (alcohols, amines, ethers, ketones, etc.), which react to form M—OH species, which
condense with each other to form M—O—M bonds. Such reactions can occur through alkyl
halide elimination, ether elimination, aldol-like condensation, ester elimination, or amide

85-86

elimination, as illustrated in Scheme 1.1.

Scheme 1.1. Depiction of various nonaqueous sol-gel routes to form M—O-M bonds.
Alkyl Halide Elimination

=M—X + R-O-M= — 5%  =M-0-M= + R-X (1)

Ether Elimination
=M—OR + R-O-M= —_— =M-0-M= + R-0O-R (2)

Aldol-like Condensation
2=M—OR + 2 o=< 2ROH,  =m-o-M= + /T (3)

Ester Elimination
(0] (0]
=M—0—CR * R-O-M= _—_ » =M-O0-M= *+ RO-CR @

Amide Elimination
(0] (0]

=M—0—CR' + R-N-M= _— 5 =M-O-M= + RN-CLR (5)
|
M H

The primary benefit of nonaqueous sol-gel routes is that the reactions can take place

at temperatures lower than the thermal decomposition temperature of the precursor

11



complex,®® which enables selective control over the reaction chemistry, and therefore more
controllable and predictable nanocrystals. It also allows for the exploration of the effect on
temperature on nanocrystal syntheses, which may impact whether a synthesis is kinetically

vs thermodynamically controlled.”
Common Techniques for Nonaqueous Syntheses of Metal Oxide Nanocrystals

There are several different methods with which one could produce metal oxide
nanocrystals via either thermal decomposition or nonaqueous sol-gel chemical routes. The
most common and simple is the heat-up method, in which a metal precursor, stabilizing
ligand, and solvent are simply heated to the desired reaction temperature at a controlled
rate, and held at this temperature for a specific amount of time.”">#° The size of nanocrystals
is determined by the number of nanocrystals formed during nucleation and can be tuned by
varying the temperature ramp rate, the temperature, precursor concentration, and

stabilizing ligand identity and concentration.”! 3

While research has come a long way in the development of these heat-up syntheses,
there remain many drawbacks to this method. The synthetic parameters of interest (reaction
temperature, precursor concentration, ligand concentration and identity) are often
developed through trial and error, without much understanding of how each of the
parameters impact nanocrystal growth and resulting properties. Further, nanocrystal
growth is highly sensitive to the flux of monomer species (derived from the precursor
complex) to the surface of the growing crystals,”® and this is difficult to control in heat-up
syntheses, leading to syntheses that are difficult to reproduce.”’ Monomer flux is often
controlled by changing the temperature and precursor concentration. However, once the

temperature at which the reaction takes place is reached, the concentration of precursor,
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and therefore monomer, rapidly changes, making it difficult to understand how
concentration impacts nanocrystal growth. Additionally, changing the reaction temperature
might require one to change the reaction solvent. This is especially true of reactions that
are carried out under reflux, where the reaction temperature is set by the boiling point of

the solvent.?’

Because two parameters (temperature and solvent) must be changed at once,
it is impossible to systematically understand the effect of each parameter on the growth

process and resulting nanocrystal properties.

Another common synthetic procedure is the hot-injection method.”*®* The hot-
injection method typically involves rapidly injecting a solution by hand containing the
metal precursor into a hot solution containing solvent and/or stabilizing ligands. The
primary benefit of the hot-injection method is that it introduces a high level of
supersaturation from the start of the synthetic procedure, which enables faster nucleation
and narrower size dispersities of nanocrystals.”® Like heat-up methods, hot-injection
methods have been developed for many different materials of different sizes and shapes,
but still suffer significant drawbacks. Again, the concentration of precursor is difficult to
control given that nucleation may begin before all of the precursor is injected, the injection
rate is not constant given that it is usually done by hand, and once nucleation starts the
concentration of precursor is rapidly and dynamically changing. Further, the rapid injection
of a lower temperature precursor into a hot solution drastically and unpredictably changes

the reaction temperature, which is known to affect nanocrystal growth processes.

The last method that will be discussed is the slow injection approach, which
circumvents many of the drawbacks of heat-up and hot-injection methods.%® 8% %495 This

approach involves s/lowly injecting a solution containing precursor into a hot solvent using
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a syringe pump. Stabilizing ligands can be in either the precursor solution or in the solvent.
The injection rate is easily controlled by the syringe pump, which injects precursor at a
slow enough rate such that the temperature change of the reaction solution is negligible. If
the formation of monomer species from the precursor complex is sufficiently fast, then the
flux of monomer to the nanocrystal surface is controlled by the injection rate. Another
primary advantage of slow injection syntheses is that the size of the nanocrystals is not
determined by the nucleation event, which is highly sensitive and difficult to control, but
by the amount of precursor added, which is far more controllable. Since the reaction
happens more slowly, and because the final size of the nanocrystals is determined by the
amount of precursor injected, nanocrystal formation can be examined during the course of

the reaction by taking aliquots at various time points during the injection.

Slow Injection Esterification Synthesis

The Hutchison lab has developed a nanocrystal synthesis that combines the slow
injection approach with ester elimination chemistry that has led to a number of size-
tunable, uniform metal oxide nanocrystals.®® 78 8959 [n a typical synthesis, a precursor
solution is made by heating a metal acetate or metal acetylacetonate in excess oleic acid
(stabilizing ligand), which forms a metal oleate and expels acetic acid or acetylacetone.
This solution of metal oleate and excess oleic acid is slowly injected via syringe pump into
oleyl alcohol, typically between 230 and 290 °C. The metal oleate reacts with the oleyl
alcohol, forming an ester (oleyl oleate) and a metal hydroxy species. Oleyl alcohol acts as
both a solvent and a reagent, and because it is in high excess it drives the esterification

reaction forward. The reactive metal hydroxy species then condense with each other,
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forming M-O-M bonds and eliminating water, and eventually nucleating nanocrystals.
While the formation of water is typically detrimental to nanocrystal syntheses, because the
precursor is slowly injected, water is rapidly removed before it has a chance to build up in
solution. The hydroxylated surface of the nanocrystals remains reactive, enabling further
reaction between the nanocrystals and solution monomer, allowing for slow, controlled,
continuous growth of the nanocrystals. This process is shown in Scheme 1.2.

Scheme 1.2. Depiction of steps involved in the slow injection esterification synthesis
developed by the Hutchison lab.

Precursor Synthesis Acetic Acid

M(acetate)n + Excess Oleic Acid ‘4’ M(oleate)n + Excess Oleic Acid (6)

150 C
Ny, 1h
Esterification
L,sM—OOCR * ROH ___o ,iM—O0OH *+ R'OOCR @
Condensation H,O

LpqM—OH + HO—ML,4 —A» Lp-iM—O—ML, 4 (8)

The slow injection synthesis developed by the Hutchison lab has been shown to
produce a number of uniform metal oxide nanocrystals, including indium oxide (Inz03),
cobalt oxide (CoQ), manganese oxide (Mn30s4), zinc oxide (ZnO), and iron oxide (y-Fe203
and Fe304).% Of the metal oxides explored by this synthesis, growth processes of indium

64,78, 90, 95,97

oxide and iron oxide®®%7- 84 have been studied the most. For both of these metal
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oxides, the volume of precursors increases linearly with the amount of precursor added,
which indicates a living growth mechanism and enables sub-nanometer size control of a
wide range of sizes (6-22 nm for In2O3, 6-18 nm for Fe304).”® Indium oxide was found to
be able to homogeneously incorporate a number of dopants with high efficacy,”® and iron
oxide was found to have superior magnetic properties compared to most reports in the
literature due to the existence of fewer defects (a thinner non-magnetic shell) in the

nanocrystals.%

An advantage of this slow addition synthesis is that each parameter (temperature,
precursor identity and amount injected, and injection rate) can be systematically and
independently varied, enabling more controlled studies of the nanocrystal growth process.
For example, former members of the Hutchison lab were able to examine the role of
injection rate (and thus monomer flux) on the growth of indium oxide nanocrystals at a
constant temperature, a study not previously possible with other synthetic methods.”® In
this study, it was determined that higher monomer flux led to increasingly branched
nanocrystals as a result of limited surface diffusion that occurs when adsorbed monomer is
sterically hindered from diffusing in the presence of high monomer concentration. The
effect of reaction temperature independent of injection rate was also examined. From this
study, we learned that more uniform nanocrystals were achievable by using a relatively
slower injection rate and higher reaction temperature, and that larger nanocrystals form at

higher temperatures as the result of initially forming fewer nanocrystals.”

Another systematic study that was enabled was the examination of the role of iron
precursor oxidation state and ligation on the morphology of iron oxide nanocrystals.’* In

this study, Plummer and Hutchison were able to determine that a deficiency of Fe(Il)
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species led to twinning crystal defects, leading to triangular and other anisotropic shapes.
The Fe(Il) deficiency was determined to occur both as a result of the precursor starting
material (iron(III) acetylacetonate as opposed to iron(Il) acetate), and as a result of
remaining acetylacetonate ligands, which limited the amount of Fe(III) species that could
be reduced to Fe(Il). This study showed that beyond temperature and injection rate, the
precursor oxidation state and coordinating ligand were vitally important in determining the

resulting nanocrystals.*

These studies highlight how the Hutchison lab has been able to utilize the slow
injection synthesis. Not only is it a means to uniform, size-tunable metal oxide nanocrystals
with few defects, but the unique attributes of the synthesis enable close examination of the
growth process itself. This is enabled by the ability to systematically tune one parameter at
a time, as well as take aliquots of the reaction mixture throughout the precursor addition,
allowing one to examine the growth at specific time points. This dissertation leverages
these attributes of the slow injection synthesis to further examine the growth process by

varying parameters not previously explored.

Extending the Slow Injection Esterification Synthesis to Other Materials

While the slow injection esterification synthesis has been adapted to several
different metal oxides, we have found it challenging to extend it to certain materials. For
example, attempts have been made to produce aluminum oxide, titanium dioxide, tin oxide,
and zirconium oxide without success. This could be due to a number of different factors.

Precursor reactivity, for example, could lead to insufficient esterification or condensation,

17



inhibiting the formation or growth of nanocrystals. In these cases, it is possible that the use

of different reagents or a higher temperature is required.

Despite these initial challenges, it is likely that the slow injection synthesis can be
extended to many other materials if the right parameters are used. To be able to predict
these parameters, we need to further understand what additional parameters can be tuned
beyond temperature and injection rate. This dissertation explores several different aspects
of nanocrystal growth for two different metal oxide systems: cerium oxide’® and Sn-doped
indium oxide (ITO). Cerium oxide was chosen as a system to study because the slow
injection synthesis had not previously been expanded to cerium oxide, and because cerium
can be present as Ce’" and Ce*', both in molecules and as different oxide materials,
allowing us to study the role of precursor oxidation state and reducing vs oxidizing reaction
environment on the growth and composition of cerium oxide nanocrystals.”® ITO was
chosen as an additional system to study the role of reagent choice (oleyl alcohol vs
oleylamine) on nanocrystal growth. The ITO system was chosen because indium oxide was
the most well-studied system regarding metal oxides that could be synthesized by our slow
injection synthesis, In>* is redox stable, and because ITO is of technological interest as a

plasmonic and electrocatalytic material.

ITO Nanocrystals as Plasmonic Materials

When doped at sufficiently high levels with aliovalent atoms such as Sn, In20O3
exhibits interesting plasmonic behavior.% Plasmonic nanocrystals are nanocrystals whose

electrons interact with incident light of a particular energy, resulting in the absorbance of
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light at that energy. This energy is dependent upon the number of free electrons in the

crystal lattice, which is directly related to the concentration of dopants within the crystal.®

Plasmonic  nanocrystals  have  potential  applications in  sensing,”!°!

102-103 104-105 106-108

telecommunications, spectroscopy, smart windows, and biomedicine, %

110'if the energy of the localized surface plasmon resonance (LSPR) can be appropriately
tuned. Plasmonic metal oxide nanocrystals are especially promising for this since their

LSPR can be tuned through composition (i.e. dopant identity, concentration, and radial

placement),®* whereas the LSPR in metal nanocrystals is fixed.

The slow injection esterification synthesis has been used to gain greater synthetic
control over doped indium oxide nanocrystals, and have allowed for exquisite control over
the concentration of tin introduced into the lattice, which is tuned by altering the ratio of
Sn and In oleate in the precursor.”>*® Further, it has allowed for precise radial placement
of tin dopants within the nanocrystal (either surface segregated or core segregated) by
alternating between pure a In oleate precursor and mixed In/Sn oleate precursors.®* This
has enabled unprecedented tuning of ITO plasmonic behavior while utilizing a single

synthetic procedure, providing predictable control over structure and properties.

Beyond engineering the nanocrystals themselves, the plasmonic response of
nanocrystal thin films can be altered based upon the processing method used to fabricate
the films.!%> Chapter IV in this dissertation describes in detail how solution processing of
different batches of nanocrystals (with varying compositions) is used to sculpt the
plasmonic response, which is useful in applications that may need absorption over a broad
range of wavelengths or multiple selective wavelengths, as is the case for

telecommunications and smart windows applications.
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ITO Nanocrystals as Electrocatalysts for the Electrochemical Reduction of CO2

Indium- and tin-based oxides have been explored as promising electrocatalysts for
the electrochemical transformation of CO: into formate, which may be a promising way to
utilize captured CO».'!! This transformation requires highly reducing electrochemical
conditions, which is known to reduce the oxides to their metal forms. Despite this reduction
of the electrocatalysts, several studies have reported that a metastable oxide persists on the
metals under reducing conditions that is thought to be important for the electrocatalytic

reduction of CQ,. 1115

Since these findings, efforts have been put forth to understand the role of nanoscale
structure such as size and morphology on the electrocatalytic performance of these indium-
and tin-based oxide catalysts.!'* For example, there have been claims that there is size-
dependent reactivity of indium oxide-derived COx reduction electrocatalysts.!'® Due to the
level of size and compositional control we have been able to demonstrate for indium oxide
and ITO nanocrystals, we explored whether the slow injection synthetic platform could be
applied to ITO nanocrystal electrocatalyst films to evaluate the effect of nanoscale structure

on the activity and selectivity.!!!

However, a recent study from Pardo et al. showed that tin-doped indium oxide films
undergo dynamic structural rearrangement during the -electrochemically reducing
conditions necessary for CO: reduction.''” This raises questions about the stability of
indium- and tin-based catalysts under operating conditions, and how the structures of the
catalysts are contributing to the overpotential necessary to drive the reaction, or the
observed CO; reduction products. While many studies have examined the structural

rearrangement of metal-based CO: reduction electrocatalysts,''®!"” few reports have
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examined the structural evolution of indium- and tin-based electrocatalysts. Chapter V of
this dissertation explores the stability and evolution of nanoscale and microscale structure

of ITO nanocrystal films under CO; reduction electrochemical conditions.

Dissertation Overview

This dissertation will expand the utility of the slow injection nanocrystal synthesis
and explore how parameters such as temperature, solvent identity, and reaction atmosphere
impact nanocrystal growth. It also examines applicability of ITO nanocrystals in plasmonic
and electrocatalytic applications. In Chapter II, the slow injection synthesis is expanded to
a new metal oxide, cerium oxide, and the growth process is carefully examined, allowing
the understanding of synthetic parameters on nanocrystal growth. Chapter III examines the
growth of indium oxide in oleylamine, which occurs through amide-elimination instead of
ester-elimination. Chapters IV and V explore the use of solution-processed ITO

nanocrystals in band-stop filter and electrocatalytic applications.

Cerium oxide nanocrystals have size- and shape-dependent properties that are
potentially useful in a variety of applications if these structural attributes can be controlled
through synthesis. Various syntheses have been developed in attempts to access different
sizes and shapes, but little is known about selecting reaction conditions to predictably
control the growth, and therefore properties, of the nanocrystals. In Chapter II we
investigate the role of cerium precursor oxidation state, reaction atmosphere, and acetic
acid ligation on the size and shape of cerium oxide nanocrystals. A continuous addition

synthesis allowed us to vary individual reaction parameters to better understand how each
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affects growth and morphology. Under N the synthesis leads to either irregular shapes or
nanoribbons, whereas the same synthesis under air leads to size-tunable nanocubes. To
determine whether air might be oxidizing the cerium precursor and changing its reactivity,
we synthesized Ce(IIl) and Ce(IV)-rich oleate precursors and found that the oxidation state
of the precursor has little effect on the resulting nanocrystals. In fact, we found that Ce(IV)
oleate is readily reduced to Ce(III) at 230 °C in the reaction medium. The significant role
of air during synthesis therefore suggests that oxygen is altering the surface reactivity of
the nanocrystals, as opposed to the precursor. We investigated the origin of nanoribbon
formation and found that the presence of acetate ligands is responsible for nanoribbon
formation in syntheses under N>, with more acetate leading to longer nanoribbons. These
insights were used to identify conditions to predictably grow various sizes and shapes of
nanocubes and nanoribbons. The findings elucidate the effects that various synthetic
parameters can have on cerium oxide nanocrystal synthesis and suggest that redox
reactivity may influence growth and properties in other syntheses where changes in
oxidation state occur for the precursor or the nanocrystal surface. This chapter was
previously published as Knecht, T. A.; Hutchison, J. E. Reaction Atmospheres and Surface
Ligation Control Surface Reactivity and Morphology of Cerium Oxide Nanocrystals
During Continuous Addition Synthesis. Inorg. Chem. 2022, 61, (11), 4690—4704.
Copyright 2022 American Chemical Society. I performed all experiments in this work, and

wrote the manuscript with editorial assistance from James Hutchison.

The rate at which precursor is converted to reactive monomer species is an
important parameter in nanocrystal synthesis that can have profound effects on the size,

shape, and other properties of nanocrystals. Control over the precursor conversion rate is
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therefore essential if we are to reliably synthesize nanocrystals with predictable properties.
Many researchers have tried to control the precursor conversion rate by varying the reaction
temperature, temperature ramp rate, or by modulating the precursor reactivity. However,
varying the temperature could also vary the chemical reactions taking place, making it
difficult to interpret how precursor conversion rate influences nanocrystal properties. An
alternative approach to influencing the precursor conversion rate is to add reagents that
either speed up or slow down that conversion rate. Reagent-driven nanocrystal syntheses
provide an opportunity to study the impact of precursor conversion rate on nanocrystal
formation and growth. The continuous addition synthesis developed by the Hutchison lab
is a highly controlled reagent-driven synthesis that allows us to examine the rate of
precursor conversion more closely, specifically by altering the primary reagent used: oleyl
alcohol or oleylamine. To form reactive monomer species, the oleylamine reacts with the
metal carboxylate precursor through amidation, while oleyl alcohol reacts with the metal
carboxylate precursor through esterification. We show that the amidation reaction occurs
more rapidly than esterification, resulting in faster precursor conversion rate, allowing us
to study that effect on ITO nanocrystal formation and growth. We find that the growth rate
of ITO nanocrystals can be tuned by controlling the number of nanocrystals that are
formed, with increasing oleylamine content (and thus increasing precursor conversion rate)
leading to fewer, larger nanocrystals. These results highlight how the earliest nanocrystal
formation stages can be tuned, offering yet another handle with which we can tune
nanocrystal size. Portions of this chapter may appear in a forthcoming publication

coauthored by myself, Brandon M. Crockett, and James E. Hutchison. I performed all
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experiments and writing in this work, Brandon M. Crockett provided insightful discussion,

and James E. Hutchison provided editorial assistance to the writing of this chapter.

Plasmonic band-stop filters with tunable optical absorbance in the near- and mid-
IR are important for wireless communications, bioimaging, and filtering applications.
However, their design is constrained by the limited tunability of individual components
and complex fabrication techniques. In Chapter IV, we demonstrate a method to overcome
these limitations that employs mixtures of nanocrystals to predictably sculpt the combined
localized surface plasmon resonance (LSPR) for band-stop filters. The additive nature of
the LSPR optical absorbances of tin-doped In2O3 (ITO) nanocrystals was used to control
the combined absorbance in a nanocrystal thin film. The optical properties of the
nanocrystals were modulated via a low-temperature esterification synthesis and an
inexpensive solution-processing fabrication method, spin-coating, was used to produce the
films. Because of the additive nature of the LSPR absorbance of the nanocrystals, the
absorption of the films can be easily predicted and designed by summing the spectra of the
individual components over the range of 6,000 — 1,000 cm™'. By design and synthesis of
individual nanocrystals with tailored optical properties, and selecting the right
combinations of nanocrystals to incorporate into films, both wide and narrow band-stop
filters were easily constructed. This chapter was previously published as Krivina, R. A.;
Knecht, T. A.; Crockett, B. M.; Boettcher, S. W.; Hutchison, J. E. Sculpting Optical
Properties of Thin Film IR Filters Through Nanocrystal Synthesis and Additive, Solution
Processing. Chem. Mater. 2020. 32 (19), 8683—8693. Copyright 2020 American Chemical

Society. Raina Krivina and I performed all experiments under the guidance of James
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Hutchison. Raina Krivina and I wrote the manuscript with editorial assistance from James

Hutchison and Shannon Boettcher.

The electrochemical reduction of CO, into fuels using renewable electricity
presents an opportunity to utilize captured CO». Electrocatalyst development has been the
primary focus of research in this area. This is especially true at the nanoscale, where
researchers have focused on understanding nanostructure-property relationships. However,
electrocatalyst structure may evolve during operation. Indium- and tin-based oxides have
been widely studied as electrocatalysts for CO; reduction to formate, but evolution of these
catalysts during operation is not well-characterized. In Chapter V, we report the evolution
of nanoscale structure of tin-doped indium oxide nanocrystals under CO; reduction
conditions. We show that sparse monolayer nanocrystal films desorb from the electrode
upon charging, but thicker nanocrystal films remain, likely due to increased number of
physical contacts. Upon applying a cathodic voltage of -1.0 V vs RHE or greater, the
original 10-nm diameter nanocrystals are no longer visible, and instead form a larger
microstructural network. Elemental analysis suggests the network is an oxygen-deficient
indium-tin metal alloy. We hypothesize that this morphological evolution is the result of
nanocrystal sintering due to oxide reduction. These data provide insights into the
morphological evolution tin-doped indium oxide nanocrystal electrocatalysts under
reducing conditions and highlight the importance of post-electrochemical structural
characterization of electrocatalysts. This chapter was previously published as Knecht, T.
A.; Boettcher, S. W.; Hutchison, J. E. Electrochemistry-Induced Restructuring of Tin-
Doped Indium Oxide Nanocrystal Films of Relevance to CO; Reduction. J. Electrochem.

Soc. 2021, 168, 126521. Copyright 2021 The Electrochemical Society. I performed all
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experimental work and writing under the guidance of James Hutchison and Shannon

Boettcher.

Chapter VI of this dissertation will detail conclusions and future directions for the

work in this dissertation. I am the sole author to the writing of this chapter.
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CHAPTER II

REACTION ATMOSPHERE AND SURFACE LIGATION CONTROL SURFACE
REACTIVITY AND MORPHOLOGY OF CERIUM OXIDE NANOCRYSTALS

DURING CONTINUOUS ADDITION SYNTHESIS

This chapter was previously published as Knecht, T. A.; Hutchison, J. E. Reaction
Atmosphere and Surface Ligation Control Surface Reactivity and Morphology of Cerium
Oxide Nanocrystals During Continuous Addition Synthesis. /norg. Chem. 2022, 61, 4690—

4704. Copyright 2022 American Chemical Society.

Introduction

Inorganic nanomaterials have been studied widely because of their interesting and
useful properties that are influenced by their size, shape and atomic-level surface
structure.' Understanding the interplay between the nanoscale structural dimensions and
the surface chemistry is essential to control nanocrystal properties and growth
mechanisms.®> >° Cerium oxide nanocrystals provide a compelling example — their
reactivity is dominated by surface oxygen vacancy defects, the presence of which are
influenced by size and shape.> !> The size and shape are, in turn, significantly influenced
by the growth processes.'®!” It has become clear that atomic structure of the nanocrystal

surfaces influence the growth process, too.? Further understanding of this interplay between
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size, nanocrystal surface chemistry and growth is therefore needed in order to design
nanocrystals with the properties of interest. Here, we investigate cerium oxide nanocrystal
synthesis under continuous growth conditions as a means to understand the influence of
key reaction conditions on the nanocrystal growth process and resulting nanocrystal

morphology.

Cerium oxide nanomaterials are attractive catalysts for a number of reactions
including alcohol oxidation,'®?> CO oxidation,>*2? and CO, reduction.'’ 273  The
enhanced catalytic activity for these materials is influenced by the presence of oxygen
vacancies, which are believed to depend upon nanocrystal size and morphology.’!-?
Vacancy formation is often attributed to the facile redox chemistry between Ce*" and Ce**,
particularly at the surface, where reduction of two Ce*" atoms to Ce*" results in the
formation of an anionic oxygen vacancy.'” '* 33 Oxygen vacancy concentration is
dependent upon the crystallographic facet exposed.>*° Further, many studies have claimed
that surface oxygen vacancy (and thus Ce**) content increases with decreasing nanocrystal
size due to higher surface area and nanoscale strain.*> Thus, understanding the size- and

shape-dependent properties of nanoscale cerium oxide is critical for tailoring these

materials towards desired applications.

Interest in harnessing the surface-dependent catalytic properties in cerium oxide
nanocrystal materials has spurred development of syntheses with precise control over size
and morphology. A number of synthetic techniques have been developed for cerium oxide
nanomaterials, leading to the formation of a number of sizes and morphologies (cubes,'®
4042 octopods,”  wires,***® tubes,¥ rods,® 404 4 4752 and more®*>%). Although

precipitation and hydrothermal methods have been widely used, thermal decomposition
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syntheses in organic media are often advantageous compared to aqueous routes because
they typically lead to more uniform nanocrystals.* Syntheses in organic media typically
involve heating a metal precursor in a mix of solvent (often oleylamine and/or 1-
octadecene) and stabilizing ligand (such as oleic acid) to reflux.>* 3% Several syntheses
in organic media have been developed to access different cerium oxide nanocrystal sizes
and morphologies. Yu et al.>®>, Lee et al.*?, and Krishnan et al.>*** have shown a wide
variety of nanocrystal sizes (3-10 nm) and morphologies (nanowires, spheres, tadpoles,
butterflies, rods, square plates, and more) via thermal decomposition of various Ce
precursors under varying reaction conditions. While these studies have produced a variety
of cerium oxide nanostructures, the wide range of synthetic parameters and different
reaction pathways and make it difficult to predictably control other sizes and morphologies
of cerium oxide nanocrystals. Further, the thermal decomposition of the precursor
generates a number of species, including Me and MOe radical species that are known to

introduce defects into the nanocrystal structure.* >

The synthetic conditions influence the concentration of oxygen vacancies, as well
as the size and morphology. For instance, Taniguchi et al. found that the choice of cerium
precursor influenced both surface oxygen vacancy content and morphology.'® They
proposed that the use of a Ce(III) precursor (compared to starting with a Ce(IV) precursor)
led to higher surface Ce(Ill) content, which induced oriented attachment between
nanocrystals due to the higher surface reactivity of the Ce(Ill). Further, the presence of
different counter anions in the precursor starting material has been shown to influence
growth and resulting Ce(III) content.> ! The reaction atmosphere can also alter cerium

oxide formation. Lin et al. found that an air (oxidizing) atmosphere promoted the growth
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of crystalline cerium oxide nanocrystals, whereas performing a synthesis under Ar led to
amorphous particles.’® While these studies showed how different synthetic parameters
influence the nanocrystal properties, the influence of the nanocrystal structure itself on the

growth process remains largely unknown.

Atomic-scale surface structure has been shown to be an important parameter in
controlling the nanocrystal growth process in other inorganic oxides.** For example,
Cooper et al. found that spinel iron oxide nanocrystals had a size-dependent growth rate,
with smaller sizes growing faster than larger sizes of nanocrystals.® This was attributed to
the presence of tetrahedral iron vacancies present in nanocrystals below 6 nm. Given the
surface-dependent reactivity in cerium oxide nanocrystals, it is likely that the surface also

influences nanocrystal growth, too.

Studying the impact of nanocrystal surfaces on growth is challenging when using
thermal decomposition syntheses: growth happens quickly, making it difficult to monitor
the reaction over time. Further, it is often the case that multiple parameters must be changed
simultaneously to control the size or morphology of particles. Size and shape are also often
controlled by altering the precursor starting concentration. However, the precursor
concentration fluctuates once growth begins, making it difficult to fully understand or
control the nanocrystal growth mechanism. A continuous addition synthesis, wherein a
precursor is continuously introduced into the reaction medium, could provide an alternative
route that enables more precise control over reaction conditions and makes it easier to study

the influence of changes in reaction conditions.®!
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Our group has developed a low-temperature continuous addition strategy to
synthesize a number of metal oxide nanocrystals.> 3 This synthesis is performed at
temperatures below thermal decomposition, which has enabled studies of the nanocrystal
growth process in ways that are not possible in traditional heat-up methods.% 3% 6465
Reaction parameters such as temperature, solvent, and precursor composition also remain
constant throughout the synthesis, and the reaction mixture can be sampled throughout the
reaction to easily monitor growth.* Combined, these attributes provide an opportunity to

study the role of each synthetic parameter individually, as well as monitor the reaction over

time to better understand the growth process.

Herein we utilize a continuous addition synthesis to investigate cerium oxide
nanocrystal growth under controlled conditions that allow us to understand the influence
of reaction atmosphere, precursor oxidation state, and a small molecule additive (acetic
acid) on the morphologies. Our findings suggest that these reaction parameters influence
the surface reactivity of the nanocrystals, which in turn influences nanocrystal growth. We
further use these findings to predictably produce specific cerium oxide morphologies

(cubes and ribbons) and sizes.

Experimental
Materials

Cerium(IIT) acetate sesquihydrate (99.99%), cerium(IV) ammonium nitrate
(99.5%), and oleyl alcohol (85%) were purchased from Alfa Aesar. Cerium(IIl) nitrate

hexahydrate (99%), oleic acid (90%), and 1-octadecene (90%) were purchased from
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Sigma-Aldrich. Sodium oleate (> 97%) was purchased from TCI America. Hexanes
(99.9%), toluene (99.9%), acetone (99.5%), and ethanol (200 proof) were acquired from

Fisher Chemical. All chemicals were used as received.
Synthesis of precursors

Initial syntheses of cerium(Ill) oleate by ligand exchange were conducted using
cerium(IIl) acetate hydrate as the source of cerium. Cerium(III) acetate hydrate and oleic
acid were mixed in a glass scintillation vial in a ratio of 2 mL oleic acid per mmol of cerium
(~6 equivalents of oleic acid). This mixture was magnetically stirred in an oil bath at 150
°C for 1 h under the flow of Nz. This precursor was used without further purification.
Cerium(III) oleate used for thermogravimetric analysis (TGA) was synthesized using the
same procedure except a stoichiometric amount of oleic acid (3 mmol oleic acid per mmol

cerium(III) acetate hydrate) was used.

Synthesis of cerium(IV) oleate by salt exchange was developed in an analogous
manner as a previous literature report for synthesizing Ce(III) oleate.°® The synthesis was
conducted using cerium(IV) ammonium nitrate (CAN) and sodium oleate. 10.97 (10 mmol)
of CAN and 24.33 (40 mmol) of sodium oleate were mixed in 100 mL hexanes, 50 mL
18.2 MQ H>O, and 50 mL ethanol. This mixture was stirred at room temperature under
atmospheric conditions overnight. The hexanes layer was then separated using a separatory
funnel and washed with nanopure H>O three times. The gelatinous cerium(IV) oleate
product was then further purified by precipitation with ethanol and centrifuged at 7000
RPM for 5 min. The supernatant was decanted, the product redispersed in a small volume
of hexanes, precipitated with acetone, and centrifuged again. This was repeated for a total

of three washes in acetone. This procedure was developed with the intent of thoroughly

32



removing any nitrate contaminants, and to recover a solid final product. The final product
was a waxy dark brown solid. Yield of the Ce(IV)-rich oleate was ~ 25%. The low yield
was due to the difficulty associated with recovering pure, solid product from the initial
gelatinous material. For use in subsequent nanoparticle syntheses, excess oleic acid was
added such that the total ratio of oleic acid to cerium was 6:1 (assuming that there were
already four oleate ligands per cerium). An equal volume of 1-octadecene was also added
so that the solution was not too viscous to pass through an 18-gauge needle. This solution
was stirred at 150 °C under flowing N> for 1 h prior to nanoparticle syntheses to ensure the

solution was sufficiently mixed and free of water.

Synthesis of cerium(IIl) oleate by salt exchange was conducted using the same
procedure as for the Ce(IV)-rich oleate, except 8.68 g (10 mmol) of Ce(NO3)3-6H>0 and
18.17 g (30 mmol) of sodium oleate were used as the starting materials. Like the Ce(IV)-
rich oleate, the initial Ce(IIl) oleate product made by salt exchange was a gelatinous
material. After purification, the final product was a light brown powder. Yield was ~ 26%.
For subsequent use in nanoparticle syntheses, excess oleic acid was added such that the
total oleic acid/oleate content per cerium was 6:1, and this was calculated assuming there
were three oleate ligands per cerium in the purified product. An equal volume of 1-
octadecene was added to the precursor so that nanoparticle syntheses using this precursor

would be comparable to syntheses conducted using the Ce(IV)-rich oleate.

Synthesis of nanoparticles

In a 50 mL three-neck round-bottom flask, 18 mL of oleyl alcohol was heated to
the desired reaction temperature (230, 260, 290, or 315 °C) using a heating mantle and

Glas-Col DigiTrol II temperature controller. The three necks were capped with rubber
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septa. The desired reaction atmosphere (N> or air) was flowed through a desiccant and then
through the headspace at a rate of ~120 mL min~' before exiting out of an 18-gauge purge
needle. In a separate single-neck 50 mL round-bottom flask, a separate solution of oleyl
alcohol (which was to be injected alongside the cerium oleate precursor) was heated to 150
°C under N> for 1 h to remove any water. For nanoparticle syntheses conducted under N>,
all oleyl alcohol was sparged with N> for 30 min prior to heating to remove dissolved

oxygen.

The desired precursor was then loaded into a BD plastic syringe equipped with a 6-
inch 18-gauge needle. An equal volume of the oleyl alcohol heated to 150 °C was loaded
into a separate identical syringe and needle. These two syringes were then assembled into
a KD Scientific syringe pump and the solutions were injected into the three-neck reaction
flask at a specific rate. An injection rate of 0.06 mL min ™' was used for syntheses conducted
using cerium(III) oleate made by acetate ligand exchange. Because 1-octadecene was used
to dilute the cerium(IIl) and cerium(IV) oleate precursors that were made through salt
exchange, an injection rate of 0.12 mL min~' was used for nanoparticle syntheses using
these precursors in order to keep the overall monomer flux the same. The total injection
time f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>