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DISSERTATION ABSTRACT

Joel Sorchevich Doss

Doctor of Philosophy

Department of Physics

June 2022

Title: Hidden Dark Sectors – Jet Substructure and Effective Field Theories

The search for physics beyond the Standard Model is a daunting task. As

parameter spaces for compelling models shrink, there is motivation for more radical

concepts. However, there is a need for understanding the structure of novel signal

regions. We describe two analyses on extensions to the Standard Model wherein the

dynamics of new particles are isolated.

We first examine collider predictions for a dark sector with QCD-like properties.

Pair production of dark quarks can result in a wide variety of signatures. A challenging

signal results when production induces a parton shower with a high multiplicity of

collimated dark hadrons, which subsequently decays to Standard Model hadrons. The

final states contain jets whose substructure encodes their non-QCD origin. This is

a subtle signature of strongly coupled beyond the Standard Model dynamics whose

analyses must incorporate systematic errors from model approximations. We estimate

theoretical uncertainties for a substructure observable designed to be sensitive to the

gauge structure of the underlying object, the two-point energy correlator e
(β)
2 . We

explore the separability against the QCD background as model parameters are varied.

Estimates are provided that quantify one’s ability to distinguish these dark sector jets

from the overwhelming QCD background.
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Next, we look at Effective Field Theory (EFT) extensions of the Standard Model.

EFTs are systematically improvable expansions suppressed by a new physics scale

M . For EFT predictions in parameter spaces where M <
√
ŝ, concerns of self-

consistency emerge, which can manifest as a violation of perturbative partial-wave

unitarity. However, when searching for EFT effects at a hadron collider with center-

of-mass energy
√
s using an inclusive strategy, we typically do not have access to the

event-by-event value of
√
ŝ. This motivates the need for a formalism that incorporates

parton distribution functions into the perturbative partial-wave unitarity analysis.

Our approach opens up a potentially valid region of the EFT parameter space where

M � √s. The perturbative unitarity bounds are sensitive to the details of a given

search, an effect we investigate by varying kinematic cuts.

This dissertation consists of previously published co-authored material.
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ÑC . The angular dependence parameter is β = 2 for all panels. . . . . 28

7. The behavior of e2 as the number of dark quark flavors ñF is varied, for pT =
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CHAPTER I

INTRODUCTION

The physics program at the Large Hadron Collider (LHC) has reached a very

mature stage. Run II is now completed, and ATLAS and CMS each have ∼ 150 fb−1 of

13 TeV data to explore. This data has already taught us a variety of lessons regarding

the Standard Model and beyond, but detection of new physics has thus far remained

elusive. Given the strong theory motivations provided by, e.g. supersymmetry and/or

WIMP dark matter, most signal regions have been developed to target perturbative

extensions of the Standard Model, which yield relatively clean, easily interpretable

observables. This is made sharp by the notion of Simplified Models [1, 2, 3], which

typically introduce one or two new physics states whose dynamics and interactions can

be fully captured via a few additional terms that one adds to the Standard Model

Lagrangian. However, not all Standard Model extensions have collider signatures

that can be captured in the weakly-coupled Simplified Model framework. A good

understanding of the novel signal regions associated with more out-of-the-box ideas

is crucial to achieving full coverage when searching for new physics potentially being

produced at the LHC.

Searches for new physics at the LHC largely fall into two categories: (1) hunting

for the signatures of the direct production of new particle(s) and (2) looking for the

indirect imprint of new heavy physics on the final state distributions of Standard

Model particles. In order to parameterize the space of possible new physics effects,

it is typical to utilize the theoretical frameworks of (1) Simplified Models and (2)

Effective Field Theory (EFT) extensions of the Standard Model (perhaps including

other light states, e.g. a dark matter candidate). These theory platforms provide a

principled way to design signal regions, in that they allow us to optimize sensitivity to
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Beyond the Standard Model (BSM) physics. The theory also gives an interpretation

of either a null result or, all the better, a discovery of something new. Therefore,

it is of paramount importance that we ensure that our signal model frameworks are

robust. While this is typically straightforward for (perturbative) Simplified Models,

it can be significantly more subtle when it comes to EFTs.

This dissertation comprises two analyses of extensions to the Standard Model.

We first investigate to what extent a particular class of models, namely hidden sectors

with a new confining gauge group, can be parameterized if there are no collider

stable BSM final states. By assuming the dynamics of the hidden sector is similar to

QCD, we develop a novel procedure for quantifying the uncertainty of measuring the

substructure of parton showers. We then explore the discovery potential of looking

for BSM signatures that mimic QCD signatures utilizing substructure.

Next, we present a revised formalism for EFT interpretations of experiments

performed in hadron colliders. Rather than searching for signatures directly, the EFT

framework provides a more model agnostic approach for parameterizing BSM physics

compared to Simplified Models. However, as we demonstrate, utilizing EFTs for

hadron level processes requires incorporating Parton Distribution Functions (PDFs)

into the formalism. Our work establishes a methodology for applying EFT techniques

in a hadronic environment while underscoring the nuances of the energy scaling in

EFT expansions.

1.1 Jet Substructure in Dark Sectors

In Ch. II, we explore the idea that the dark matter could be a stable remnant of

some new strong dynamics that resides in a hidden sector [4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. It is then reasonable to
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assume the presence of some non-gravitational connection to the visible sector, such

that the hidden sector was in thermal contact with the Standard Model at some point

in the early Universe. This could result from a renormalizable interaction involving

the Higgs, Neutrino, and/or Hypercharge Portals [29, 30, 31] or could be due to

the exchange of some new mediator. Depending on the properties of the portal, it

could be possible to access the hidden sector at the LHC. Furthermore, the dark

strong dynamics could obfuscate the resultant signatures, as has been demonstrated

concretely through many examples, e.g. lepton jets [32, 33, 34, 35, 36, 37], emerging

jets [38, 39, 40], semi-visible jets [41, 42, 43, 44], and soft bombs [6, 14].

All of these examples share a common characteristic: a hard collision can generate

a dark sector parton that subsequently undergoes a dark sector parton shower. This

often yields a high multiplicity of soft final state particles, smearing out the kinematics

of the underlying partons and making it difficult to distinguish the associated signal

against large backgrounds. There is a further practical complication due to the fact

that these signatures rely on the presence of dark strong dynamics — the theoretical

predictions are not nearly as well understood as in the Simplified Model case. As

a result, searches for this class of models are usually designed to be very inclusive,

avoiding over reliance on details of the modeling. The resulting trade-off between

signal significance and systematic error mitigation motivates the work presented

here: our goal is to understand the systematic uncertainties associated with making

predictions that rely on dark sector strong dynamics. An appreciation of which

aspects of the observable can be reliably considered is crucial for the optimization of

resulting search strategies.

Specifically, we focus on scenarios where the dark hadrons that result from a dark

sector shower promptly decay back to Standard Model hadrons. Our goal is to explore
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the properties of the resulting jets’ substructure, and to quantify the uncertainty

inherent to making such predictions. Since substructure is sensitive to a variety

of IR effects, such as the dark hadron mass spectrum and hadronization model, our

work provides an observable-driven window into the systematic issues associated with

making predictions for these strongly coupled dark sector scenarios.

As the use of jet substructure has become routine (see Refs. [45, 46, 47, 48, 49,

50, 51, 52, 53] for some reviews), many observables have been proposed to distinguish

quark and gluons, or to tag boosted objects, and applications to dark sector showers

have also been previously explored [43]. Detailed comparisons of parton and hadron

level predictions for substructure observables have been performed in the context of

the Standard Model, e.g. see the Les Houches 2017 report [54]. Of particular interest

here are variables that were designed to be sensitive to the showering history of a

jet, since our goal is to find ways to distinguish QCD jets from those that resulted

from showering within a dark sector. We are also interested in taking advantage of

advancements in analytic calculations that rely on resummation techniques to capture

the showering contribution to substructure. To this end, our benchmark observable

will be the energy correlation function e
(β)
2 [55], where β controls the sensitivity to

wide-angle radiation; see Eq. (2.1) below for details. We choose to focus on e
(β)
2 since

this family of observables is primarily sensitive to the gauge charge of the associated

parton in the underlying hard process, which could be our only handle for uncovering

dark shower signatures.1

1A number of observables has been considered for the problem for quark/gluon discrimination

that are expected to provide superior discirminiation to e
(β)
2 . These include both intrinsically IRC

unsafe variables like track multiplicity or N95 [56], and also more complicated IRC safe observables
that try to exploit correlations between multiple particles to approximate the behavior of these
multiplicity variables [57, 58, 59]. The distributions of these observables are dominated by non-
perturbative corrections, as discussed in more detail in Sec. 2.1.1. For QCD, this information can
be extracted from suitably chosen control regions, while in the case of a new hidden sector, our only
recourse is to appeal to phenomenological models whose systematics are challenging to quantify.
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There is potential concern when predicting the efficiency of jet-substructure

assisted searches. The discriminating power of nearly all substructure observables

only becomes calculable if large logarithms that can appear in perturbation theory

are resummed to all orders. If this calculation is performed using a Monte Carlo

generator such as Pythia, only the leading logarithms (LL, defined in Sec. 2.1) are

correctly captured, resulting in large expected theory uncertainties, which cannot

be quantified by running the generator alone.2 For QCD studies, such concerns are

partially ameliorated by the fact that the parameters of generators are tuned to real

data, allowing them to often match the real world better than their formal accuracy

would suggest. When looking for physics beyond the Standard Model that we have not

yet observed, we have no such recourse. To better address this state of affairs, we take

advantage of theoretical technology developed to resum the soft and collinear QCD

logarithms that contribute to e
(β)
2 at leading and next-to-leading logarithmic order

along with modern numerical implementations within Pythia. Sensibly enveloping

across the spread of associated predictions will allow us to quantify the systematic

error band that is the main result of this work. These error bands can then be

utilized to consistently include substructure information into LHC searches for dark

sector physics.

This implies that the ability to extract meaningful limits using such observables is significantly
reduced, and so we will not consider them at this time.

2Automating parton showers beyond leading log and leading color is extremely challenging. Some
progress towards formalizing the problem was made in Ref. [60], followed by a numerical approach
to address aspects of subleading color in Ref. [61]. For recent progress in automating aspects of
next-to-leading-logarithm accurate parton showers, see Refs. [62, 63, 64], with a recent candidate
full proposal in Ref. [65].
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1.2 Unitarity Bounds on Effective Field Theories

As we turn to EFTs in Ch. III, we investigate the role of EFT validity at hadron

colliders. The reason that EFT validity is an interesting question stems from the

starting assumption of the EFT approach: it is necessarily a low energy approximation

of a BSM theory that is associated with a dimensionful scale M (the mass of a

heavy BSM state in simple UV completions). It is often the case that a search for

EFT effects at the LHC yields a limit on this scale M ≥ Mlimit with Mlimit <
√
s

[66, 67, 68, 69, 70, 71, 72, 73], where
√
s is the center-of-mass energy of the collisions.

When confronted with such a result, one should worry that the EFT approach is

inconsistent (see e.g. [74, 75, 76, 77]). In this work, we will investigate this question

by assessing the impact of the proton’s structure on one of the necessary conditions

for EFT validity, namely that its scattering amplitudes satisfy perturbative partial-

wave unitarity.3 We will provide a formalism for convolving matrix elements with

PDFs, and will investigate the consequences of including PDFs on the region of EFT

parameter space with M <
√
s.

In order to better understand why PDFs are important, it is useful to recall that

an EFT is an expansion that is organized using a “power counting” parameter ∼ 1/M ;

see Sec. 3.2.3 for a more detailed discussion. Dimensional analysis implies that (tree-

level) EFT observables yield a power series in E/M , where E is a characteristic scale

of the collision. If E =
√
s (e.g. as it would for an e+e− collider) and M .

√
s, the

series would diverge. We interpret this theoretical inconsistency as telling us that

the EFT in this region of parameter space does not provide a useful description for

interpreting the results of the experimental search.

3We emphasize that when this condition is not satisfied, what actually breaks down is the
perturbative calculation itself, since we expect that the theory is fundamentally unitary. The
bounds derived here should be interpreted as a necessary condition for the EFT to potentially
have a perturbative UV completion.
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At a hadron collider, the relevant scale is E =
√
ŝ, the partonic center-of-mass

energy, which varies from collision to collision as determined by the PDFs. When

designing a signal region, one is typically interested in keeping statistical fluctuations

under control, which requires choosing cuts that accept events with a non-trivial

range of
√
ŝ values. For the ensemble of events isolated by these cuts, the relevant

scale on average is E =
√
ŝave, which can be much smaller than

√
s due to the PDF

suppression of high-energy partons. This is why it requires a detailed investigation of

a given search to determine if accounting for PDFs could salvage the EFT parameter

space where M � √s, such that a meaningful bound can be extracted.

We emphasize that the necessity to convolve the parton-level amplitudes with

the PDFs is a consequence of the following statements:

– The validity of an EFT depends on the experiment being performed (for our

purposes here, specific to a single search region). The same EFT could be valid

for one experiment, but not another, as they may use different cuts (or be at

colliders with different collision energies).

– The only physical scattering matrix elements at a hadron collider have hadrons

in the initial state (not partons).

– If the cuts used to design an experimental search region allow for a range of

parton level energy scales, then one should take an ensemble average over the

parton-level scattering matrix elements to determine the EFT validity for a

proton level matrix element.4

In order to provide a quantitative discussion that is conceptually straightforward

to interpret, we will be working with simple example UV toy models throughout

4One might be able to isolate the “parton” level matrix element to a very good approximation
by changing the cuts appropriately, but this would correspond to a different “experiment.”
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Ch. III, leaving a detailed analysis of more realistic situations to future work. This will

allow us to derive a concrete EFT expansion by matching to the UV model, which we

can use to probe the physics associated with the regions that are deemed invalid. For

an experimental search that includes a range of
√
ŝ, PDF effects can significantly shift

the perturbative unitarity bounds on EFT validity into the region where M � √s.

Interestingly, this conclusion begins to break down as one includes higher-and-higher

terms in the E/M expansion; eventually there are enough
√
ŝ factors in the numerator

to beat the strong PDF suppression at large momentum fraction. Therefore, one of

our main results is that any claim of EFT validity for a given search region requires

knowing both the scale M and the maximum dimension ∆ (the truncation dimension)

of the EFT operators. We conclude that the question of when one can consistently

use EFTs to perform searches at a hadron collider depends on both theoretical and

experimental considerations.
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CHAPTER II

JET SUBSTRUCTURE IN DARK SECTORS

Throughout this chapter, we assume the dark sector includes ñF families of

dark quarks which bind into dark hadrons at energies below some dark confinement

scale Λ̃ due to a non-Abelian dark SU(ÑC) gauge group. Dark quarks will be

produced with large transverse momentum pT � Λ̃ such that they shower and

hadronize, yielding jets of dark hadrons. We assume that these dark hadrons decay

promptly back to Standard Model quarks,1 yielding QCD-like jets. We then explore

the impact on the e
(β)
2 observable as we vary the dark sector parameters Λ̃, ñF ,

ÑC , and the effect of making the dark quarks massive. In addition, we provide

an approximate characterization of the non-perturbative uncertainties associated

with dark hadronization by exploring the impact of varying the phenomenological

parameters associated with the Lund string model [78]. We then use our error bars

to estimate the extent to which dark sector showers can be distinguished from QCD

when including the impact of substructure.

The rest of this chapter is organized as follows. In Sec. 2.1, we introduce

the two-point energy correlation function, which will be used as our benchmark

substructure variable. We then review how to calculate this observable to next-

to-leading-logarithmic accuracy utilizing traditional resummation techniques. Our

enveloping procedure that combines the analytic predictions with numerical results

derived from Pythia is then introduced, and provides a proxy for the systematic

error associated with making a dark substructure prediction. In Sec. 2.2, we present

the extent to which the substructure changes as a function of some of the dark sector

parameters: the dark confinement scale Λ̃, the number of dark colors ÑC , dark flavors

1Decays to gluons are also in principle possible but to have them dominate the decay rate would
require more involved model building.
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ñF , and the dark quark mass m̃q. In Sec. 2.3, we explore the effect of varying the

parameters that model the dark sector hadronization. In Sec. 2.4, we estimate our

ability to experimentally probe a dark sector jet against the QCD background. In

App. A, we detail the expressions that are used to derive the analytic contributions

to our systematic error envelopes.

2.1 Substructure Observables with Error Envelopes

A large array of jet substructure observables and algorithms have been developed,

and are being combined in analyses in increasingly complicated ways. However, the

majority of substructure techniques are designed to find evidence of hard processes

buried within boosted hadronic events,2 and as such, most observables are optimized

for the identification of distinct multi-prong structures within a jet. A dark sector

has no guarantee that it will produce such structure. Instead, we are interested in

observables that are sensitive to the structure of the color charge and gauge group of

the radiation making up the parton shower. This problem is closely analogous to the

problem of quark/gluon discrimination in QCD, and we may look to prior work in this

context for guidance [81, 82, 83, 84, 85, 86, 56, 87, 88, 89, 90, 55, 91, 92, 93, 94, 95,

96, 97, 59]. Additionally, we would like to work with infrared and collinear (IRC) safe

observables, so that they are perturbatively calculable. This is particularly important

for a dark sector search since, unlike the situation for QCD, we have no data from

which to extract any of the non-perturbative parameters which are required to make

predictions. Thus, there is no way to estimate their uncertainties without resorting

to ad hoc empirical models.

2For signals that yield high multiplicity final states via perturbative decays, so-called “accidental
substructure” can also provide a useful handle, e.g. see [79, 80].
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These two considerations almost uniquely limit us to considering observables

which characterize the angular spread of radiation within the jet. A representative

choice is the two-point energy correlation function [55], defined as

e
(β)
2 =

∑

i<j∈J

zizj (θij)
β , (2.1)

where β is the angular dependence parameter that determines how sensitive the

variable is to the angular distribution of the radiation. The jet algorithm determines

the constituent particles in jet J that are summed over in Eq. (2.1). In the context of a

hadron collider like the LHC, it is most useful to define zi ≡ pTi/pTJ and θij ≡ Rij/R0,

where pTJ is the total pT of the jet, Rij is the Euclidean distance between the ith and

jth partons in the η–φ plane, and R0 is the jet radius.3 For brevity, we will usually

drop the (β) superscript below when making general statements, and will also refer to

the two-point energy correlation function as the energy correlator when appropriate

from context. Note that e
(β)
2 is equivalent to the C

(β)
1 variable introduced in Ref. [55]

and widely used in experimental studies [98, 99, 100].

To build intuition, one can consider a jet with two constituents; in the infrared

and collinear limit, the jet mass is given by m2/p2
T ' z1z2

(
θ12/R0

)2
, such that

e
(2)
2 ' m2/p2

T . Hence, e
(β)
2 can be seen as a generalization of jet mass that

incorporates arbitrary angular dependence. It is also closely related to the family

of jet angularities [101, 102], without the need to define a jet axis.

3For an e+e− collider, a more convenient choice would be zi ≡ Ei/EJ and θij ≡ 2pi · pj/EiEj
or the actual Euclidean angle between the ith and jth partons. In the strict collinear limit, all these
definitions collapse to be equivalent, and thus only differ in terms that are non-singular in the small

e
(β)
2 limit. We choose to normalize θij by the jet radius R0 to eliminate the leading dependence on
R0.
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Our essential idea is to calculate the distributions of interest analytically and

numerically assuming various approximations, and then use these to determine an

error bar such that it spans the range of predictions. First, we review the analytic

calculation of the resummed substructure distributions at leading and next-to-leading

log order, followed by a brief discussion of the numerical implementation using

Pythia. Then, we explain how we combine the various approximations into an error

envelope in the context of a QCD calculation. This will set the stage for Sec. 2.2,

where we explore the range of predictions for the substructure distributions resulting

from a dark sector shower.

2.1.1 Analytics Using Traditional Resummation Techniques

To understand the robustness of the e2 distributions, it is useful to explore the

range of predictions that result from analytic techniques for calculating the normalized

differential cross section. These formulas were derived in Ref. [103], and we present a

summary of the main steps for the calculations in App. A. The collinear limit of the

leading order e2 distribution generates a collinear logarithm from the integral over the

splitting angle θ and a soft logarithm from the integral over the momentum fraction z.

Enforcing the kinematics of two-body momentum conservation with a delta function,

we can write down the differential distribution for e2 by appealing to the definition

in Eq. (2.1):

1

σ

dσLO
i

de2

=
αs
π

∫ R0

0

dθ

θ

∫ 1

0

dz pi(z) δ

(
z(1− z)

(
θ

R0

)β
− e2

)
, (2.2)

where R0 is the jet radius4 and pi(z) is the appropriate parton splitting function for

a quark-initiated jet or a gluon-initiated jet, which are given by

4Although we work in a small jet radius limit, this is known to be a reasonable approximation
even up to R0 ∼ 1 [104, 105].
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pq(z) = Pg←q(z) = CF
1 + z2

1− z ,

pg(z) =
1

2
Pg←g(z) + nFPq←g(z)

= CA

(
z

1− z +
1− z
z

+ z(1− z)

)
+ nFTR

(
z2 + (1− z)2

)
, (2.3)

where TR = 1
2

is the index of the quark representation, i.e., the fundamental

representation. These splitting functions encode the divergences associated with a

shower that is initiated by the emission of a soft gluon.

In the limit where e2 � 1, we can simplify z(1 − z)(θ/R0)β ' z(θ/R0)β by

assuming z � 1. It is then straightforward to evaluate Eq. (2.2), which yields

e2

σ

dσLO
i

de2

' 2αs
π

Ci
β

(
ln

1

e2

+Bi +O
(
e2

)
)
, (2.4)

where Cq = CF =
N2
C−1

2NC
and Cg = CA = NC are the color factors associated

with the jet, and Bq = −3
4

and Bg = −11
12

+ nFTR
3CA

encode the subleading terms

in the splitting functions that arise from hard collinear emissions. Identifying the

characteristic logarithm L ≡ ln
(
1/e2

)
, the cumulative distribution at leading order

exhibits a characteristic double logarithm in the limit of small e2:

ΣLO
i ≡

∫ e2

0

dx
1

σ

dσLO
i

dx
= 1− αs

π

Ci
β

(
L2 + 2BiL+O(L0)

)
. (2.5)

This shows that perturbation theory breaks down in the limit of small e2, so we would

like to resum this double logarithm to derive a convergent prediction.

The authors of Refs. [106, 107] derived a concise expression for the next-to-

leading logarithmic (NLL) resummation of the cumulative distribution for recursively
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IRC safe observables such as e2:

ΣNLL
i =

e−γER
′
i

Γ(1 +R′i)
e−Rie−

αs
π

(R1,i−G2,iL
2−G1,iL), (2.6)

where the “radiator” Ri is given by

Ri =

∫ R0

0

dθ

θ

∫ 1

0

dz pi(z)
αs(κ)

π
Θ

(
z

(
θ

R0

)β
− e2

)
, (2.7)

with R′i ≡ dRi
dL

and κ = zθpTJ , and R1,i is the fixed-order (FO) correction at next-to-

leading order, which allows one to match (in the Log-R scheme [108]) between the

resummed and perturbative regimes, ensuring the appropriate kinematic endpoint

is respected. As such, G2,iL
2 and G1,iL are the logarithms appearing in the fixed-

order expression (in the collinear limit) that must to be subtracted to avoid double

counting the resummed logarithms. Simplifying z(1− z) to z in Eq. (2.2) is justified

by the identical structure of the two collinear limits and is compensated by a suitable

combinatoric factor, as further discussed in App. A.

In the context of quark/gluon discrimination, a number of observables have

been proposed that seemingly satisfy our property of being perturbatively calculable

while claiming to offer improved discrimination over the energy correlation function

above [57, 58, 59]. This comes at a price. Instead of contributions from individual

emissions contributing linearly to the observable, each emission’s weight depends

on the entire shower history. However, this feature also increases the resulting

sensitivity to non-perturbative corrections by reducing the parametric suppression

of these effects, and until more detailed understanding of these features is available,

it is difficult to recommend the use of such substructure variables in situations where

these effects cannot be constrained by data. Note that even in the case of the better
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understood e
(β)
2 , the β dependence of quark/gluon discrimination has been measured,

and it noticeably deviates from that of the perturbative predictions [109].

An analytic evaluation of Ri is possible, although challenging, e.g. see Ref. [110].

The calculation of the resulting efficiencies at NLL due to a cut on e2 requires

evaluating the gauge coupling αs at two-loop order using the CMW scheme [111],

such that efficiencies still need to be computed numerically. Another issue is related

to αs becoming non-perturbative as the integral is evaluated at low enough scales.

To mitigate these complications, we follow the procedure outlined in Ref. [103]:

the coupling is only run at one-loop order and is frozen at a “non-perturbative

scale” µNP = 7Λ, where the factor of 7 is an arbitrary choice. This allows us to

find a closed-form solution to Eq. (2.7) at the expense of limiting its logarithmic

accuracy. We will call this approximate evaluation of Eq. (2.6) the “modified leading

logarithmic” (MLL) resummed cumulative distribution with FO corrections. All

analytic distributions presented will be MLL+FO accuracy (with the exception of

Fig. 1).

2.1.2 Numerics From Pythia

Our analytic expressions have the benefit that they are transparent, in that we

can precisely identify the approximations that go into the calculations. However,

they do not account for important corrections from, e.g. hadronization or finite quark

masses. They also do not provide any way for us to assess the impact of dark

sector hadronization on our prediction. To address these shortcomings, we compare

our results for the e2 observables to those of a Monte Carlo parton shower that

models a new confining gauge group. Although all parton showers in common use

are formally accurate to leading log, they include various corrections with the goal

of modeling certain higher order effects, e.g. see the Monte Carlo Event Generators
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review in Ref. [112]. It is worth emphasizing here that all such corrections assume

QCD, and as such should be revisited in the context of more general confining theories.

Specifically here, we simulate events using Pythia 8.240 [113]. We simulate pp

collisions at
√
s = 14 TeV including initial- and final-state radiation (without multiple

parton interactions) for all our events. The signal is generated via a direct portal from

q̄ q pairs to dark sector quarks, and the evolution of the dark sector is implemented

in Pythia’s Hidden Valley module [10, 11, 12], including a dark parton shower,

hadronization, and decay back to Standard Model states. Events are clustered into

anti-kt jets [114] with radius R0 = 1.0 and e2 computed for each jet using FastJet

3.3.2 [115], subject to a jet-level cut of pT > 1 TeV.

We will briefly comment on the implementation of the parton shower in Pythia’s

Hidden Valley module.5 The underlying physics model is the same as that used for

the time-like QCD shower. Showering proceeds via the emission of a dark gluons

from both dark quarks and gluons. The dark quarks may be duplicated up to eight

flavors, ñF , with identical masses and integer spin by default (we set the dark quark

spin to be 1/2). Running of the dark gauge coupling is included up to one-loop for an

arbitrary SU(ÑC) gauge group, assuming massless quarks. Although the functionality

to include an arbitrary dark quark mass spectrum is available, we take the masses

m̃q to be degenerate throughout this study. We do not include any states that are

charged under both the Standard Model and dark sector symmetry groups, although

such states may be considered to extend the range of phenomenological handles in

the resulting signal.

A number of aspects of our analytic calculation make its perturbative accuracy

greater than that of the Pythia parton shower. Dark gluon splitting into quark pairs

5For a more complete discussion, see the corresponding section of the Pythia manual:
http://home.thep.lu.se/~torbjorn/pythia82html/HiddenValleyProcesses.html.
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Model Showering Hadronization

Ngauge 3 FSR on fragment on

nFlav 5 alphaFSR — probVector 0.75

spinFv6 0 alphaOrder 1 aLund 0.3

spinqv — Lambda 1 GeV bmqv2 0.8

doKinMix off pTminFSR 1.1 GeV rFactqv 1.0

Table 1. List of variables within the Pythia 8.240 Hidden Valley module, along with
the default choices made for the study performed here. All of these variables should be
prepended with “HiddenValley:” when being called within Pythia. Note that spinqv

(alphaFSR) are derived from spinFv (Lambda), which is why they are marked with “—” in
the table. Decay tables for the dark mesons must additionally be specified.

is not currently implemented in Pythia; the Pq←g(z) splitting function is not singular

in the soft limit, and therefore provides contributions beyond LL accuracy. A choice of

minimum allowed pT for emissions controls the termination of the shower at low scales.

This threshold may be tuned to data in the case of QCD, but for a dark parton shower,

this is a parameter that should not be much larger than the confinement scale. Matrix

element corrections ensuring the accuracy of parton splitting to one-loop order are

included in the QCD parton shower of Pythia but, being model-dependent, not for

the Hidden Valley module. Comparing the analytic results to the Pythia predictions

will estimate the resulting uncertainties, which are either included or (in the case of

the pT cut) have no impact on our analytic results.

The dark sector is assumed to confine, and hadronization is implemented via

the Lund string model [78], which has some associated parameters whose values

are unknown a priori. We explore the consequences of this fact below in Sec. 2.3.

Hadronization proceeds exclusively to dark pions and dark rho mesons, which all

6spinFv controls the spin of particles charged under both the Standard Model and dark sector.
If this flag is nonzero (zero), then the dark quark spins are forced to be either 0 or 1 (1/2).
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decay back to the Standard Model using flat matrix elements (assuming no flavor

symmetries leading to stable dark mesons, see e.g.Refs. [42, 44]). Table 1 enumerates

the relevant parameters discussed along with their default settings.

2.1.3 Error Envelopes

In this section, we describe the procedure used to compute the error envelopes

presented in Sec. 2.2. To capture the “perturbative” theoretical uncertainty associated

with these distributions, we combine a number of variations that probe the systematic

uncertainties inherent to making dark shower predictions. First, to incorporate

uncertainties in the showering step, we capture the range of parton level predictions

by comparing the LL order and the MLL + FO order analytics (which we refer to

as MLL in the figures). Next, we compare the MLL order analytics and the parton

level numerics, i.e., turning off hadronization. Finally, we compare the parton level

and the hadron level numerics to account for the effects of hadronization. For events

originating from a dark sector shower, we also compare the dark hadron level and

the visible hadron level numerics to capture the effects of decaying dark hadrons

and their subsequent recombination into Standard Model hadrons. To construct our

error bands, we sum the widths of these comparison sub-envelopes in quadrature

to produce an averaged final envelope. The results of this procedure when applied

to QCD are presented in Fig. 1. Note that for the later plots we show the central

value of the envelope merely to guide the eye; this curve does not simply follow from

our analytic results. Then in Sec. 2.3 below, we investigate the uncertainty due to

hadronization modeling. The total error band that includes the perturbative and

hadronization errors is then used as the input to our search sensitivity estimates for

the LHC presented in Sec. 2.4.
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Figure 1. Illustration of the enveloping procedure utilized to estimate theory systematic
errors as applied to QCD, for pT = 1 TeV jets. The analytic and numerical predictions for
the e2 distributions are shown assuming various levels of approximation as detailed in the
legend [left panel].7 These predictions are used to create error sub-envelopes [middle panel]
that are then combined to result in the final envelope [right panel]. The green sub-envelope
captures the difference between the LL and MLL analytic predictions The red sub-envelope
captures the difference between the MLL analytic prediction and the parton level numerical
result from Pythia. The blue sub-envelope captures the difference between the parton and
hadron level prediction from Pythia. These envelopes are added in quadrature to compute
the total envelope [right panel]. Note that when computing envelopes for the dark sector,
we include three numerical predictions when the final states are dark partons, dark hadrons,
or visible hadrons. The angular dependence parameter is set to β = 2 for illustration.

We note that a common approach to calculating a theory uncertainty is

to vary factorization, resummation, and (when considering exclusive observables)

fragmentation scale parameters by a factor of two away from their canonical choices.

This is a way of estimating higher-order terms that have not been explicitly computed

by assuming they are dominated by their logarithmically enhanced pieces. The

logarithms dominating our distributions are not due to a running effect so that

uncertainties in the resummation procedure will not be captured by such an approach.

7Note that the excellent agreement between the analytic and numerical distributions here does
not persist across parameter variations (and may actually be due to the fact that Pythia is tuned
using jet mass as one of the inputs).
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Theoretical uncertainties for resummed calculations typically require more involved

multi-scale variational schemes using effective field theory frameworks.8

The enveloping approach advocated here is designed to incorporate this

uncertainty, while also accounting for unknown details of the hadronization and decay

properties of the dark sector. Our estimates of perturbative errors are comparable

to those of the effective field theory scale variational approaches for QCD, where

similar calculations have been done [118]. Depending on the precise treatment of

the normalization when taking scale variations, it is possible to find significantly

larger errors below the Sudakov peak (e.g. see Fig. 5 in Ref. [119]), where the

interplay of constraints from the integrated cross section calculation and breakdown

of resummation convergence makes uncertainties particularly sensitive to choice of

scheme [120]. However, the resulting effect on signal yields is minimal, since such

large uncertainties occur in a vary rapidly falling part of the distribution.

Before showing the results from varying parameters in the dark sector, we note

that the analytic approximation for the radiator Ri used in our calculations is not

continuously differentiable, see Eqs. (A.21) to (A.23). This is a consequence of

sharply cutting off the integrals using the non-perturbative scale µNP introduced in

Sec. 2.1.1above, which leads to a kink in the second derivative of the radiator R′′i .

To avoid this issue, we follow Ref. [103] and replace this derivative with a discrete

approximation:

R′′i
(
e2

)
' R′i

(
e−δe2

)
−R′i(e2)

δ
, (2.8)

where the choice δ = 1 is an additional source of theoretical uncertainty that is

negligible to single logarithmic accuracy.

8For work on adopting such variations in traditional resummation techniques, see Ref. [116].
Alternative schemes for estimating theory errors have also been introduced in the context of Standard
Model calculations, e.g. see Ref. [117].
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Figure 2. Dependence on the angular dependence parameter β in QCD for pT = 1 TeV jets.
We show the predictions derived using the MLL analytic calculation, along with the parton
and hadron level numerical results from Pythia. Larger (smaller) angular dependence
emphasizes the contribution from pairs of partons with larger (smaller) angular distance.
The analytic calculations begin to break down for angular dependence values β < 0.5, which
is reflected here in the fact that the β = 0.2 curve does not appropriately terminate at the
kinematic endpoint.

Fig. 2 shows the analytic and numeric e2 distributions for QCD jets across various

angular dependence values β. We note the agreement between the analytic and

the numeric distributions begin to diverge for low angular dependences β < 0.5.

Furthermore, the β = 0.2 analytic distribution does not appropriately terminate at

the kinematic endpoint. We conclude that even though we are working in parameter

space where the resummation techniques should be a good approximation, the low

angular dependence regime of e2 is not well modeled. For this reason, we will focus

our analysis on the behavior of the e
(2)
2 and e

(0.5)
2 to explore the impact of varying β.

From the definition of e2 in Eq. (2.1), we see that increasing β gives greater

weight to emissions at larger angular distances in the distribution. Since emissions at

large angle within a jet are preferentially softer at large angles, giving lower weight

to large-angle emissions leads to e2 distributions closer to their kinematic endpoint,
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behavior that is clearly reflected in Fig. 2. Simultaneously, the distribution of e2 is

dominated by emissions in singular regions of phase space, so that lower values of

β provide more sensitivity to the structure of the collinear singularity of partonic

splitting functions. This comes at the cost of loss of perturbative control. Sec. 2.1.1

makes clear that the effective coupling in the calculation of e
(β)
2 is αs/β and that for

values of β � 1, perturbative control of the e2 distribution is lost throughout phase

space.

2.1.4 Applying the Predictions

In addition to plotting the normalized e2 distributions, we will provide a few

different ways of presenting the predictions. We will show the cumulative cross

section, which is derived by taking the differential distribution and numerically

evaluating the following integral, see the bottom row of Figs. 3, 5, and 7:

Σ(xcut) =

∫ e2,max

xcut

de2
1

σ

dσ

de2

, (2.9)

where e2,max = 1
4
Rβ

0 . To incorporate the error envelopes, we assume they are fully

correlated. In practice, this simply means we compute the upper (lower) error

envelope of the cumulative distribution by integrating the upper (lower) edge of the

differential distribution. The choice of xcut will be optimized below when we discuss

the discovery potential of dark substructure in Sec. 2.4.

We also provide some quantitative insight into how different the signal and

background distributions are using the MLL analytic predictions directly, see Figs. 4,

6, and 8. The left and middle panels of these figures provide two different figures of

merit, which give a quantitative sense of how well one could distinguish signal from

background, in this case approximated by quark initiated jets. Specifically, on the

left we show ROC curves, which are the parametric curve that traces the background
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rejection 1 − εB as a function of signal acceptance εS, due to varying a cut on e2.

The middle panels show the parametric curve for discovery significance εS/
√
εB as

a function of signal acceptance εS, again due to varying a cut on e2. The right

panels show the change in the signal rate as a function of the dark sector parameter

that is being varied, for a benchmark fixed background factor, which is taken to be

1−εB = 90%. As we will explore in the next section, these various ways of presenting

the predictions provide additional insight into the behavior of the e2 observable across

the dark sector parameter space.

2.2 Distinguishing Dark Substructure from QCD

Now that we have established a method to estimate the theoretical uncertainties

inherent to calculating substructure distributions, we will apply this technology to

explore the range of predictions one can expect from a dark sector including error bars.

This demonstrates the behavior of the dark sector as a function of its parameters. In

particular, we will highlight how the uncertainties depend on the parameters. While

we incorporate the effects of hadronization in this section, we set the hadronization

parameters to their default values. The results presented here will be combined with

an estimate of hadronic uncertainties in Sec. 2.3, which are computed by varying the

non-perturbative parameters. These are then used as the inputs to the estimates

performed in Sec. 2.4, where we study to what extent it is possible to distinguish

dark sector showers from QCD via substructure measurements. Note that we have

made the simplifying assumption that the QCD background is entirely composed of

quark jets in what follows, since the signal will dominate in the central region of the

detector. A more realistic study should of course incorporate a more sophisticated

modeling of the background. However, since our uncertainties are dominated by the
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signal modeling, a more careful accounting of the quark/gluon composition of the

background should be a subdominant effect.

2.2.1 Λ̃ Dependence

In this section, we explore the dependence on the dark sector confinement scale

Λ̃. The plots shown in Fig. 3 compare the e2 distribution for a dark-quark-initiated

jet against a QCD-quark-initiated jet for a range of confinement scales Λ̃ 6= ΛQCD

compared to the QCD quark background, for two choices of β. As the confinement

scale increases, the dark sector distribution shifts toward larger values of e2. The

larger confinement scale implies that the dark sector coupling is larger than the QCD

coupling at the energy scale of the jet. This implies that the peak of the differential

distribution occurs at a larger value of e2, or equivalently, that the resummation

approximation α̃L2 ∼ 1 becomes relevant for larger values of e2. Therefore, the

distribution peaks closer to the kinematic endpoint.

In the bottom row of Fig. 3, we provide the cumulative distribution Σ(xcut) for

the various choices of Λ̃. For β = 2, the envelope saturates at xcut = 10−3 for large

values of Λ̃ and shifts toward xcut = 10−4 as Λ̃ decreases. The range of this envelope

is 0.22 and insensitive to the size of Λ̃. Similarly, for β = 0.5, the envelope saturates

at xcut = 10−2. The envelope range increases as Λ̃ decreases, from a minimum of 0.26

and a maximum of 0.40.

As Fig. 4 shows, the discriminatory power of a dark sector signal against a QCD

background increases as the dark sector’s confinement scale Λ̃ increases. However,

this increased discrimination power saturates for large confinement scales Λ̃ & 50 GeV.

This saturation is caused by freezing the running coupling at the “non-perturbative

scale” µNP = 7Λ̃, which we emphasize is a nonphysical prescription designed to obtain
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Figure 3. The behavior of e2 as the dark confinement scale Λ̃ is varied, for pT = 1 TeV jets.
See the legend for values of Λ̃; all other values are given in Table 1. We show the normalized
e2 distributions [top], where the central value of the envelope is marked with the black lines,
while the shaded region denotes the envelope. The peak shifts to larger values of e2 as Λ̃ is
increased. The cumulant distributions Σ as a function of xcut are also provided [bottom],
where again the lines denote the central values and the shaded bands are the integrated
envelopes, see Eq. (2.9). We show both results for two choices of the angular dependence:
β = 2 [left] and β = 0.5 [right].
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Figure 4. Discrimination of dark sector against QCD for various choices of the confinement
scale Λ̃ for pT = 1 TeV jets, using the MLL analytic calculation. Note that the impact of
errors is ignored here, see Sec. 2.1.4 for details. We show ROC curves in the background
rejection 1− εB versus signal efficiency εS plane [left]. We show the curve of discriminatory
significance εS/

√
εB against signal efficiency εS [middle]. Fixing the background rejection

at 90 %, we then show the relative change in discriminatory power as a function of Λ̃. The
angular dependence parameter is β = 2 for all panels.

a closed-form solution to (2.7). Using the explicit dependence of µNP on Λ̃, we can

derive a näıve small coupling expansion for the discriminator,

Λ̃

ln Σ

d ln Σ

dΛ̃
'
(

ln
pTR0

Λ̃

)−1

. (2.10)

This provides a reasonable estimate of the scaling until Λ̃ & 5 GeV, when the

approximation begins to fail. This can be traced back to the behavior of Eqs. (A.21)

to (A.23), from which we infer that as the confinement scale increases, the non-

perturbative effects become more relevant for larger values of e2.

2.2.2 ÑC Dependence

In this section, we explore how the substructure depends on the number of dark

colors, ÑC . The set of plots shown in Fig. 5 compare the e2 distribution for a QCD-

quark-initiated jet against a dark sector-quark-initiated jet for various choices of the

number of dark colors ÑC > 3. As the number of dark colors increases, the β-function
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Figure 5. The behavior of e2 as the dark sector gauge group SU(ÑC) is varied, for pT =
1 TeV jets. See the legend for values of ÑC ; all other values are given in Table 1. We show
the normalized e2 distributions [top], where the central value of the envelope is marked with
the black lines, while the shaded region denotes the envelope. The peak moves to slightly
lower values of e2 as ÑC is increased. The cumulant distributions Σ as a function of xcut

are also provided [bottom], where again the lines denote the central values and the shaded
bands are the integrated envelopes, see Eq. (2.9). We show both results for two choices of
the angular dependence: β = 2 [left] and β = 0.5 [right].

for the dark sector gauge coupling becomes more negative, so the scale evolution is

faster for the dark sector than for the QCD background. This faster running of the
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Figure 6. Discrimination of dark sector against QCD for various choices of the number of
colors in the dark sector ÑC for pT = 1 TeV jets, using the MLL analytic calculation. Note
that the impact of errors is ignored here, see Sec. 2.1.4 for details. We show ROC curves
in the background rejection 1 − εB versus signal efficiency εS plane [left]. We show the
curve of discriminatory significance εS/

√
εB against signal efficiency εS [middle]. Fixing the

background rejection at 90 %, we then show the relative change in discriminatory power as
a function of ÑC . The angular dependence parameter is β = 2 for all panels.

coupling shifts the dark sector distribution toward smaller values of e2 since α̃ < αs

at the scale set by the jet pT .

In the bottom row of Fig. 5, we provide the cumulative distribution Σ(xcut) for

the various choices of ÑC . For β = 2, the envelope saturates at xcut = 10−4, regardless

of the value of ÑC . The range of this envelope is 0.22 and insensitive to the size of

ÑC . Similarly, for β = 0.5, the envelope saturates at xcut = 10−2. The envelope range

increases as ÑC decreases, from a minimum of 0.36 and a maximum of 0.40.

As Fig. 6 shows, the discriminatory power of a dark sector signal against the

QCD background decreases as the dark sector’s number of dark colors ÑC increases.

However, this decrease is rather marginal, and saturates for ÑC ∼ 10. We can

understand this behavior analytically, by expanding the LL resummed cumulative

distribution Eq. (A.6) to leading order in α̃. We find that the ÑC dependence is well
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approximated by

ÑC

ln Σ

d ln Σ

dÑC

' 1 + Ñ2
C

Ñ2
C − 1

+
11ÑC

4ñFTR − 11ÑC

. (2.11)

This makes it clear that the discriminator quickly asymptotes as one increases ÑC ,

thereby explaining the qualitative behavior in the figures, i.e., that the sensitivity of

the observables studied here to the number of dark colors is minimal.

2.2.3 ñF Dependence

In this section, we explore how the substructure depends on the number of dark

flavors ñF . The plots shown in Fig. 7 compare the e2 distribution for a dark-quark-

initiated jet against a QCD-quark-initiated jet for a range of dark flavors with ñF > 5;

note that we take the number of flavors for QCD to be nF = 5. As the number of

dark flavors increases, the β-function for the dark sector coupling α̃ decreases, and

in particular the dark sector is no longer asymptotically free when ñF >
11ÑC
4TR

. This

implies that the renormalization group evolution is slower for the dark sector than

for the QCD background. This impacts the dark sector distribution by shifting it

towards larger values of e2, since α̃ > αs at the characteristic hard scale of the jet.

In the bottom row of Fig. 7, we provide the cumulative distribution Σ(xcut) for

the various choices of ñF . For β = 2, the envelope saturates at xcut = 5× 10−4

for large values of ñF and shifts toward xcut = 10−4 as ñF decreases. The range of

the envelope is 0.24 and insensitive to the size of ñF . Similarly, for β = 0.5, the

envelope saturates at xcut = 10−2, regardless of the value of ñF . The envelope range

increases as ñF increases, from a minimum of 0.34 and a maximum of 0.50. While

we are limited by how many flavors we allow the dark sector to have if we want a

confining dark sector, the differential distribution shifts toward larger values of e2 as

ñF increases.
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Figure 7. The behavior of e2 as the number of dark quark flavors ñF is varied, for pT = 1 TeV
jets. See the legend for values of ñF ; all other values are given in Table 1. We show the
normalized e2 distributions [top], where the central value of the envelope is marked with
the black lines, while the shaded region denotes the envelope. The peak moves to higher
values of e2 as ÑC is increased. The cumulant distributions Σ as a function of xcut are also
provided [bottom], where again the lines denote the central values and the shaded bands
are the integrated envelopes, see Eq. (2.9). We show both results for two choices of the
angular dependence: β = 2 [left] and β = 0.5 [right].

As Fig. 8 shows, the ability to discriminate a dark sector signal against a QCD

background increases as the number of dark flavors increases. Furthermore, this effect
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Figure 8. Discrimination of dark sector against QCD for various choices of the number
of dark quark flavors ñF for pT = 1 TeV jets, using the MLL analytic calculation. Note
that the impact of errors is ignored here, see Sec. 2.1.4 for details. We show ROC curves
in the background rejection 1 − εB versus signal efficiency εS plane [left]. We show the
curve of discriminatory significance εS/

√
εB against signal efficiency εS [middle]. Fixing the

background rejection at 90 %, we then show the relative change in discriminatory power as
a function of ñF . The angular dependence parameter is β = 2 for all panels.

increases rapidly as ñ−1
F . The dark flavor dependence can be estimated by expanding

the LL resummed cumulative distribution given in Eq. (A.6) to leading order in the

coupling. This yields

ñF
ln Σ

d ln Σ

dñF
' 4ñFTR

11ÑC − 4ñFTR
. (2.12)

While naively this implies that we should be able to find regions of parameter space

that are very non-QCD-like, the framework breaks down for ñF >
11ÑC
4TR

, because the

dark sector does not confine as mentioned above. Practically, Pythia has limited

the number of dark flavors one can include to be eight at most. Therefore, we are not

able to numerically probe the discriminator beyond this point in parameter space.

However, the trend agrees between the numeric and analytic calculations, and follows

the analytic estimate in Eq. (2.12) to a good approximation.
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2.2.4 m̃q Dependence

Finally, we explore the impact of varying m̃q on the e2 distribution. Since the

analytic calculations assume massless partons, we are not in a position to include the

analytic contributions to our error envelopes. However, for IRC-safe observables such

as e
(β)
2 , the mass dependence of our distributions is suppressed as a power of m̃q/Λ̃

when m̃q � Λ̃, with the resulting effect on our results being negligible. This is not

the case when quark masses exceed the confinement scale since m̃q then set the scale

where the parton shower terminates. In the latter case, an accurate analytic treatment

of finite quark masses is challenging, due to the presence of multiple overlapping

logarithms of both e2 and ratios of quark masses and energy scales. As a result, the

resummation of differential distributions becomes a more involved procedure, and we

will content ourselves with simply providing the results of a numerical study, and will

not estimate the error band for different choices of m̃q.

With a degenerate spectrum, the impact of finite dark quark masses within

Pythia is limited at stopping the parton shower from emitting at scales below

m̃q, since the resulting partons would not be able to subsequently hadronize, and

treating the color strings as having massive endpoints in the evolution of the Lund

string during the hadronization step. Since gluon splitting to quark pairs is not

included, potential finite mass effects due to radiation dead cones around additional

massive quarks from g → qq̄ splitting play no role. Matrix element corrections in

emission, which induce additional mass-dependence in analogous QCD showers, are

not included.

When the quark masses are above the confinement scale, the hadrons are more

akin to quarkonia like the J/ψ or Υ than they are to light mesons like the π or

ρ. Hadronization still occurs, since individual dark quarks cannot decay and can
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Figure 9. The behavior of e2 for the dark sector as the degenerate dark quark mass m̃q is
varied, for pT = 1 TeV jets. The value of m̃q is varied according to the legend, while all
other values are given in Table 1. The associated dark hadron masses are 2m̃q. Only a
numerical study using Pythia is presented. We provide a cubic fit to these distributions
to guide the eye. Larger dark quark masses move the peak to higher values due to the
resulting cutoff imposed on collinear divergences for emissions from massive quarks. We
show the results for two choices of the angular dependence: β = 2 [left] and β = 0.5 [right].

only annihilate once they become bound into hadrons. While the properties of these

states may be well approximated by perturbative methods, as long as the multiplicity

of quarkonia produced is larger than a few, a parton shower is still expected to provide

a good approximation of the final state.9

The result is displayed in Fig. 9, where we compare the e2 distribution for a

quark-initiated QCD jet against the Pythia distributions for different choices of the

dark quark mass m̃q; we assume that the dark quarks are degenerate and that the

dark hadron masses are 2m̃q for simplicity. The other dark sector parameters are

9This approximation will break down as the mass of the dark quarks approaches the energy of
the jet such that production of multiple hadrons becomes kinematically disfavored. In this limit,
dark glueball production would be expected to result in additional energy missing from the final
state. We make no attempt to model this effect.
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set to the default given in Table 1. We see that the peak of the distributions moves

to higher values of e2 as m̃q is increased. Additionally, we note that the impact on

the distributions is not as dramatic as when we varied Λ̃ above (cf., Fig. 3). This

can be understood due to the fact that increasing the quark masses for fixed gauge

coupling simply acts to cut out more of the IR region of the shower phase space where

the sector is becoming strongly coupled. While this has an impact on the resultant

multiplicity of dark hadrons that are produced in a shower, their subsequent decay

from a higher rest mass to nearly massless QCD hadrons obscured the impact of the

specific mass scale set by m̃q on the observable distribution.

2.3 Quantifying Hadronization Uncertainties

The enveloping procedure includes variations among predictions that result from

either an analytic or a numerical approach to capture the dominant IR logs that

result from showering. When considering sources of systematic uncertainties, it is

critical to investigate the irreducible error on predictions due to incalculable strong

coupling effects. Specifically, the numerical results rely on a phenomenological model

of hadronization. In the case of Pythia, the hadronization step uses the Lund string

model [78], which models the physics of confinement by iteratively connecting partons

to each other with color strings, and breaking these strings by pair producing quarks

from the vacuum when energetically favorable until an equilibrium configuration is

achieved.10 This approach introduces incalculable parameters, which can be tuned to

data in the case of real QCD, but must simply be set by hand for the dark sector.

It is therefore critical to our goals here to include the uncertainty associated with

these choices. As we will show here, hadronization systematics are of the same size as

10Another commonly used Monte Carlo shower program is Herwig [121], which uses the cluster
hadronization model.
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Figure 10. Total theory uncertainties on the e2 distributions for pT = 1 TeV jets for a dark
sector whose model parameters are set to the benchmark values given in Table 1 due to
both perturbative and hadronization effects. Perturbative uncertainties are largest around
the peak region, dominating at larger e2 values. Hadronization uncertainties contribute
most noticeably starting from the peak and extend down to smaller values of e2. Results
are presented for two choices of the angular dependence: β = 2 [left] and β = 0.5 [right].

the perturbative ones included in the error envelopes thus far. Clearly, they should

additionally be included for searches performed by the experimental collaborations.

The results of varying the hadronization parameters is given in Fig. 10, where all

other dark sector model parameters are set to the benchmark values given in Table 1.

We then explored the hadronization parameter space to find a choice that resulted in

the least (most) number of dark hadrons, which corresponds to the parameter choices

aLund = 0, bmqv2 = 2, and rFactqv = 0 (aLund = 2, bmqv2 = 0.2, and rFactqv = 2).

The hadronization band in Fig. 10 is then computed by taking the envelope across the

result of the default hadronization parameters and these two extreme choices. For

reference, we also plot the perturbative prediction, and provide the error envelope

as computed above with default hadronization parameters, and we also show the
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combination of the two envelopes by adding them in quadrature. The largest impact

is that the peak of these distributions do shift; this is expected since the position of

the turn over is not under robust theoretical control. We see that the variation from

hadronization is of the same order as the perturbative uncertainty.11 We will use the

total envelope in the next section where we estimate the impact of non-trivial error

envelopes on a mock search for dark sector substructure.

2.4 Discovering Dark Substructure

Having quantified the perturbative and hadronization theory errors on the

prediction for substructure that results from dark sector showering, we will briefly

turn to estimating the impact of including our error envelopes for a search. Our

goal here is to simply estimate the discovery potential. Unsurprisingly given existing

limits, the subtle nature of the signature and the overwhelming size of the QCD

background will imply that additional handles are required to reduce the background

by a factor of O(105) if there is any hope of seeing evidence for dark substructure

signals. For example, in models where some of the dark hadrons are stable, a cut

on missing energy could play this role. In this case, ignoring the effect of jet to

jet fluctuations in the number of unstable mesons, the predictions made above are

unchanged, except that the statistics are reduced due to the fact that some particles

are missing. We expect the associated theory uncertainty to be a subleading effect.

One important mitigating factor is that stringent limits on new physics

contributions to QCD distributions already exist from ATLAS [122] and CMS [123].

Since these searches simply look for high pT jets in the final state, the dark jets would

fall in the signal region with essentially equal efficiency to QCD jets. Therefore, our

11We caution that other observables could be even more sensitive to the details of hadronization,
especially those that rely on shape aspects of the substructure.
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first step to quantifying the discovery reach for models that yield substructure from

dark showers is to interpret these bounds as a limit on the dark quark production

cross section.

We assume the portal to the dark sector can be modeled by a contact interaction:

Lint ⊃
1

Λ2
CI

(q̄γµq)(¯̃qγµ q̃) . (2.13)

By hunting for deviations in the tails of jet distributions, ATLAS [122] and CMS [123]

have derived comparable limits ΛCI & 22 TeV. We emphasize that this limit is

essentially unchanged for our model, since the searches do not make any cuts on

substructure.

We convert this limit on the new physics scale into a bound on the production

cross section using an implementation of aB−L extension of the Standard Model [124,

125] publicly available in the FeynRules [126] model database. We take the Z ′

mass to be large so that the production process q̄ q → Z ′ → ¯̃q q̃ is well approximated

by Eq. (2.13). Events are simulated using MadGraph5 aMC@NLO [127], taking

the model parameters to correspond to the lower bound on ΛCI. This allows us to

compute the cross section for pp → qq, and we then simply interpret the result as

the rate for dark quark production. We implement generator level cuts on rapidity

η < 2 and transverse jet momentum pT > 1 TeV. Our dijet backround is produced

by all 2 → 2 QCD processes applying the same cuts. This results in a signal cross

section σS = 5× 10−5 pb, which can be compared to the enormous QCD background

σB = 13 pb.12 These cross sections are used to compute the expected number of events

for two choices of integrated luminosity; the final Run III data set of 300 fb−1 and the

12Since this is meant to be a simple estimate, we do not include a K-factor, which at NNLO is in
the range 1.3− 1.5 [128].
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complete high luminosity data set of 3000 fb−1. These values should be interpreted

as the number of events that survive a loose “pre-selection” for the search.

Next we approximate the discovery significance including the impact of both

statistical and systematic uncertainties using

Z =
S√

S +B + δ2
SS

2 + δ2
BB

2
, (2.14)

where S is the number of signal events, B is the number of background events, and δi

are their respective systematic uncertainties. Given the already stringent limits on the

production of the dark quarks, it is easy to check that using dark substructure alone

will not provide enough discriminating power to beat down the QCD background.

Therefore, we will reframe the question in terms of a background reduction factor ε,

which provides an estimate of what one must be able to achieve by incorporating other

handles into the search, e.g. missing energy, resonances, and/or displaced objects.13

To compute ε, we solve Eq. (2.14) using the substitution B → εB:

ε =

√
1− 4δ2

BS
(
1 +

(
δ2
S − 1

Z2

)
S
)
− 1

2δ2
BB

. (2.15)

Larger values of ε correspond to improved discrimination.

First, we estimate how large ε would need to be in order to see a 2σ excess

of signal events without a cut on substructure and assuming no uncertainty on the

signal production rate and assuming the cut has no impact on signal statistics, see

the left panel of Fig. 11. This provides a baseline against which we can compare

how much improvement can be obtained using substructure. Next, we include the

13These changes to the model would obviously also impact the limits on signal production rates,
i.e., the limit on ΛCI in Eq. (2.13).
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substructure cut, using the models with varying Λ̃ as a concrete example. We assume

the theory error bands on the dark sector distributions are fully correlated, just as

we did above when computing the cumulative distributions, e.g. Fig. 3. For the QCD

background, there is a wealth of data that is used for tuning and calibration, and

as such the systematic error bars can be controlled by leveraging a variety of inputs.

For the results presented in Fig. 11, we use the background uncertainty δB = 0.1

as determined by a recent NNLO calculation [128]. We additionally assume that δB

does not depend on the substructure cut. As a point of comparison, data driven

approaches currently yield δB ∼ 20% [122].

In Fig. 11, we plot the background rejection factor required to achieve a 2σ

exclusion as a function of the dark confinement scale Λ̃, by optimizing a substructure

cut for each choice of model parameters. In order to explore the impact of the error

envelopes, we provide the result with δS = 0 in black and δS 6= 0 in red, and we also

provide the results for β = 2 and 0.5 to investigate varying the angular dependence

parameter. We assume either 300 fb−1 or 3000 fb−1 of integrated luminosity, which

allows us to explore the scaling as the data set size is increased.14

Most importantly, we see that a cut on substructure improves one’s ability to

discover these models, even when the systematic error on the signal shape is included.

In particular, taking β = 2 and Λ̃ = 20 GeV the relative change ∆ε = 0.9(0.6) for

no error (with error) for 300 fb−1; the relative change for 3000 fb−1 ∆ε = 1.5(1.4) for

no error (with error).15 This motivates future work quantifying the error envelopes

14It is worth noting that the bound on the scale for the contact operator ΛCI will also improve
with more data, which is not being taken into account here.

15Note that we have not included the constraint on the error of the integrated resummed cross
section given by the inclusive calculation. This is the cause of the unphysical value for the background
reduction factor for Λ̃ = 1 GeV and β = 0.5. This only becomes a significant effect when the
additional sensitivity gained from substructure discriminants becomes small.
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Figure 11. The background reduction factor (see Eq. (2.15)) required to observe new physics
over the QCD background for pT = 1 TeV jets. We show the value required if there are
no additional cuts made on jet substructure (assuming δS = 0) [left]. Then we provide the
results as a function of Λ̃ taking β = 2 [middle] and β = 0.5 [right]. The resulting reduction
in the needed ε as a result of the substructure cut is presented as a multiplicative factor
below the middle and right plots. We vary the luminosity and provide results with and
without errors, see the legend for details.

for a wider variety of substructure distributions that could result from dark sector

showers, so that cuts on these variables can be properly incorporated into searches.

In particular, it is important to include such systematics when deriving limits on

signal parameter space, since the non-trivial error bands can result in more realistic

exclusion regions. Finally, we note that for the 300 fb−1 data set, the optimized value

of the cut yields a signal region that is statistics dominated. Then when we increase

the data set size to 3000 fb−1, we find that optimal signal region has comparable

statistical and systematic errors. We conclude that this subtle signature of dark

sector physics is an interesting target scenario for the physics program at the high

luminosity LHC.
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CHAPTER III

UNITARITY BOUNDS ON EFFECTIVE FIELD THEORIES

Given the extensive literature on the subject of EFT validity, we will put our work

in context in Sec. 3.1. In Sec. 3.2, we discuss tree-level toy model UV completions of

the benchmark pair production in Eq. (3.1), which are characterized by the exchange

a heavy BSM scalar of mass M in the s-channel or t-channel. For each case, we match

to the corresponding EFT descriptions. In Sec. 3.3, we study perturbative partial-

wave unitarity and show how to incorporate PDFs into this necessary test of EFT

validity. We show that low-order EFTs can still be free of perturbative unitarity

violation, even when the mass M of the new physics state being integrated out is

significantly below the hadronic collision energy. In Sec. 3.4, we compare the pair

production cross sections predicted by the EFTs against the predictions of the UV

theories. This will provide us with a way to quantitatively understand the implications

of the perturbative unitarity bound that are appropriate for hadronic initial states. In

Sec. 3.5, we vary the PDF integration limits, which allows us to explore the impact on

our results as the search design becomes less inclusive. App. B provides some results

for the parameter space with a smaller mass for the final state particles.

3.1 Strategies for Assessing EFT Validity

In this section, we will briefly discuss the extensive related literature, which

will allow us to put the present work in context. The subject of EFT validity

is as old as the idea itself. As the framework was being developed and its

renormalization properties were being understood, e.g. in the context of condensed

matter systems [129, 130, 131] and gauge theories [132], it was always appreciated

that the EFT was only meant to be applied in a limited low energy regime. This

41



question took on a renewed urgency in the modern era, as EFTs were being utilized

as a way to design searches for new physics at the LHC, e.g. in the context of directly

producing dark matter [66, 67, 68, 69, 70, 71, 72, 73, 133, 134, 135, 136, 137, 138,

139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154], or

looking for the imprint of the Standard Model EFT (SMEFT) itself [155, 156, 157,

158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,

175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,

192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205]. Many of these

analyses explored parameter space with M <
√
s, prompting a variety of studies to

assess the validity of the EFT description and to propose modifications to make

it more robust [206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218].

Conversely, many groups advocated to abandon the EFT approach all together in

favor of Simplified Model descriptions that were clearly well defined [219, 220, 221,

222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239,

240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252].

The issues addressed by these authors essentially stem from two concerns. The

first is that when M <
√
s, one would expect to be able to produce the associated

mediator particle directly, since it is the mediator’s mass that sets the scale M .

This opens up new and often more powerful ways to search for the signatures of the

associated model. We have nothing novel to say about this important effect. However,

we remind the reader that in the narrow width approximation, the production of the

heavy on-shell states would not interfere with the processes captured by the EFT.

Therefore, including these additional direct mediator production processes would lead

to a stronger limit, in principle, than what one would obtain by using the EFT alone.

Since the EFT limit does not require specifying a concrete UV completion, it can be
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applied to a broader class of models without a dedicated recasting effort. For these

reasons, we advocate that EFT searches are still useful in their own right, although

care must be taken with regards to their interpretation.

The second concern is of direct relevance to the study we perform here.

Recognizing that
√
ŝ is the quantity of interest when testing for EFT validity, a

variety of proposals were put forward that shared a theme of “cutting away high

energy events.” In other words, the kinematics were restricted so as to avoid the

region of phase space where the EFT validity was in question.

For example, the authors of [213] proposed to cut away any event with
√
ŝ > M (at simulation truth level) when computing the signal rates. Incorporating

a maximum allowed value of
√
ŝ within the signal simulation ensures the validity of

the EFT, at the expense of reducing the EFT prediction significantly. One could even

consider the cut on maximum allowed
√
ŝ as an additional parameter of the signal

model. One could vary this additional parameter to see how sensitive a given search

is to such high energy events.1 Although the limits derived with this approach are

strictly valid, the resulting bounds on M can be artificially conservative.

Another group [207, 209, 210], proposed to cut on the observable kinematics

of the final state as a proxy for removing high energy events. In the same spirit,

experimentalists have applied a high energy cut parameter to some of their EFT

analyses, investigating the robustness of the limits they derive when this parameter

is varied [66, 67, 68, 69, 70, 71, 72, 73, 253]. An alternative strategy to “unitarize”

the EFT has also been employed in some experimental searches [254, 255]. Note

that essentially all previous validity studies are truncated at the leading order EFT

dimension; see [211] for a notable exception.

1We thank Markus Luty for emphasizing this point of view to us.
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Our focus here is on exploring the impact of PDFs on the perturbative partial-

wave unitarity bound. We emphasize that while perturbative partial-wave unitarity

provides a good proxy for the question of EFT validity, satisfying this condition is

necessary but not sufficient. The key insight of this work is to leverage the fact that

a typical signal region includes events with a range of associated
√
ŝ. Therefore,

one must incorporate an ensemble of events when diagnosing EFT validity — when

working at a hadron collider, this can be accounted for by properly treating PDF

effects. We will show that (for sufficiently inclusive signal regions) perturbative

unitarity bounds on EFTs are typically insensitive to cutting away high energy events

(when the cut is applied to both signal and background), which we take to be a sign

that the EFT validity is being saved by the PDF suppression at high momentum

fraction. One of the goals of this work is to make this intuition precise.

3.2 Benchmark Process and Toy Models

As we emphasized above, our goal is to study the impact of having an ensemble

of events with various values of
√
ŝ on the question of EFT validity. To this end, we

will focus our attention on the benchmark pair production process

(
p p→ φφ†

)
=

∑

{q, q̄}∈ p

(
φq φ

†
q → φφ†

)
. (3.1)

For simplicity, we will study this question using two simple toy model UV theories.

At tree level, these models are characterized by how they generate the benchmark

pair production by either the t-channel or s-channel exchange of a heavy BSM scalar,

as illustrated in Figs. 12 and 13, respectively. We will then match these theories onto

the subset of EFT operators that contribute to Eq. (3.1) at tree-level.

44



Note that to minimize the technical aspects of what follows, we have chosen to

work with scalar “quarks” φq, φ
†
q in the initial state (not to be confused with “squarks”

in supersymmetric theories). Specifically, we will be using the q, q̄ quark PDFs when

investigating the interpretation of the EFT parameter space. This has the benefit

that the analytic formulas will be very simple, at the obvious expense of not being

fully realistic.2

We will make an additional simplifying choice in what follows. When we integrate

out a heavy state, the leading order contribution to the EFT Lagrangian appears at

dimension 4, since we are working with pure scalar toy theories. Note that the

operators of interest here are those that lead to cross section growth, which have

dimension > 4. Therefore, we will tune a Lagrangian quartic parameter against the

EFT contribution so that the leading contribution to the 2-to-2 scattering of interest

comes from a dimension 6 operator. This makes our results much more intuitive, and

also more relevant to the realistic case where the quarks (and perhaps also the final

state particles) are fermions.

The final state φ is a (relatively light) BSM scalar. It could be a dark matter

candidate, some other BSM state, or even an Standard Model particle (as it would

be in the case of SMEFT searches); all that matters in what follows is that it is a

scalar, and otherwise we are agnostic about its identity. The only EFT operators that

contribute to the benchmark pair production process in Eq. (3.1) are those involving

extra derivatives with a fixed number of fields (leading to a 1/M expansion). We will

briefly comment on the relation to the EFT operators that involve more powers of

fields (leading to a 1/Λ expansion) in Sec. 3.2.3.

2We will perform the analysis for fermionic initial and final states in a future paper. We also
anticipate that we will find similar conclusions if the production process is dominated by a gluon or
mixed quark/gluon initial state, which we also plan to study in a future paper.
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3.2.1 t-Channel Model

A model that results in t-channel pair production utilizes a heavy complex scalar

mediator Φ that couples to the scalar quarks φq and the BSM singlet scalar φ through

a tri-linear interaction:

Lt,UV ⊃ LSM − φ†
(
∂2 +m2

φ

)
φ− λqφ

(
φ†qφ
)(
φ†φq

)

− Φ†
(
D2 +M2

)
Φ− µqφφ†qφΦ− µ∗qφΦ† φ†φq , (3.2)

where LSM is the Standard Model Lagrangian (including the kinetic term for the

scalar quarks), Dµ is a gauge covariant derivative, mφ is the mass of the BSM singlet

scalars, λqφ is a cross quartic coupling, M is the mass of the heavy scalar mediator

Φ, and µqφ is a tri-linear coupling. Since φ is a Standard Model singlet, the heavy

complex scalar Φ needs to have the same Standard Model charge as the scalar quark

φq to ensure that the tri-linear coupling is gauge invariant. For concreteness, we

will assume a universal coupling to the φq with q ∈ {dR, sR, bR}. This choice has a

minimal impact on our conclusions.

As depicted in Fig. 12, the EFT description for the t-channel pair production

process can be obtained by expanding the propagator:

1

t̂−M2
→ − 1

M2

k∑

r=0

(
t̂

M2

)r
, (3.3)

where k corresponds to the desired EFT truncation order. Using the 2-to-2 kinematic

constraints, we have

t̂ = (p1 − p3)2 = (p2 − p4)2 , (3.4)
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Figure 12. Pair production φqφ
†
q → φφ† through the t-channel exchange of a heavy complex

scalar Φ. The EFT description can be obtained by expanding and truncating the t-channel
propagator, yielding a series of local operators.

which implies that the relevant part of the EFT Lagrangian is given by

Lt,EFT ⊃ LSM − φ†
(
∂2 +m2

φ

)
φ− λqφ

(
φ†qφ
)(
φ†φq

)
+
|µqφ|2
M2

k+1∑

r=0

(
φ†qφ
)(
− ∂2

M2

)r(
φ†φq

)

= LSM − φ†
(
∂2 +m2

φ

)
φ− λqφ

M2

k∑

r=0

(
φ†qφ
)(
− ∂2

M2

)r
∂2
(
φ†φq

)
. (3.5)

In the second line, we have set

λqφ =
|µqφ|2
M2

, (3.6)

in order to tune away the dimension-4 contribution, and have relabeled the summation

index r.3

The maximum dimension of the EFT operators ∆ is related to the truncation

order k:

∆ = 6 + 2k . (3.7)

3Note that the ∂2 in this EFT Lagrangian should technically be promoted to D2 to form gauge-
invariant effective operators. However, the extra terms that result contain additional gauge bosons
and hence do not contribute to φq φ

†
q → φφ† at tree level, and so we do not include them here.
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At the lowest truncation order k = 0, our pair production process is modeled by the

dimension-six operator

O6 = −λqφ
M2

(
φ†qφ
)
∂2
(
φ†φq

)
= − 1

Λ2

(
φ†qφ
)
∂2
(
φ†φq

)
. (3.8)

The contribution from EFT operators are often said to be characterized by the scale

Λ ≡M/
√
λqφ, which could be much higher than the mediator mass M in the weakly

coupled limit λqφ � 1. However, note that the contribution from higher orders in

the EFT expansion for the 2-to-2 process of interest here is actually controlled by

the suppression factor E2/M2 as opposed to E2/Λ2, see Eq. (3.5). This distinction

is important for interpreting analyses that go beyond dimension-6, see the discussion

in Sec. 3.2.3 below.

3.2.2 s-Channel Model

Next, we can write down a model that will yield s-channel production of a pair of

BSM singlet scalars φ. This can be accomplished by introducing a heavy real singlet

scalar mediator S that couples to the scalar quarks φ†qiφqi and to φ†φ:

Ls,UV ⊃ LSM − φ†
(
∂2 +m2

φ

)
φ− λq

(
φ†qiφqi

)(
φ†φ
)

− 1

2
S
(
∂2 +M2

)
S − µqφ†qiφqiS − µφφ†φS , (3.9)

where LSM is the Standard Model Lagrangian, mφ is the mass of the BSM singlet

scalars, λq is a cross quartic coupling, M is the mass of the heavy scalar mediator S,

µq and µφ are tri-linear couplings, and we interpret φ†qiφqi as the sum over all species

and flavors of quarks in the Standard Model. Note that we have only included the

leading interactions that are relevant for our purposes here, see Sec. 3.2.3 below for

a related discussion.
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Figure 13. Pair production φqφ
†
q → φφ† through the s-channel exchange of a heavy singlet

scalar S. The EFT description can be obtained by expanding and truncating the s-channel
propagator, yielding a series of local operators.

As depicted in Fig. 13, the EFT description for the tree-level s-channel pair

production can be obtained by expanding and truncating the propagator:

1

ŝ−M2
→ − 1

M2

k∑

r=0

(
ŝ

M2

)r
, (3.10)

where we are introducing the parameter k as in Sec. 3.2.1 above, and we have set the

width of S to zero. Since

ŝ = (p1 + p2)2 = (p3 + p4)2 , (3.11)

for 2-to-2 kinematics, we infer that the EFT Lagrangian is given by

Ls,EFT ⊃ LSM − φ†
(
∂2 +m2

φ

)
φ− λq

(
φ†qiφqi

)(
φ†φ
)

+
µqµφ
M2

k+1∑

r=0

(
φ†qiφqi

)(
− ∂2

M2

)r(
φ†φ
)

= LSM − φ†
(
∂2 +m2

φ

)
φ− λq

M2

k∑

r=0

(
φ†qiφqi

)(
− ∂2

M2

)r
∂2
(
φ†φ
)
. (3.12)

In the second line, we have again tuned the quartic coupling

λq =
µqµφ
M2

, (3.13)
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to cancel the dimension-4 effect. Of course the EFT generates many additional

operators beyond the ones written here. However, none of these contribute to the

pair production φqφ
†
q → φφ† at tree level, and so we do not write them explicitly.

Similar to the t-channel model, we can identify a scale Λ = M/
√
λq, which sets the

overall rate. Once that is specified, the EFT operators relevant here are controlled

by a 1/M expansion.

3.2.3 On the 1/M Versus 1/Λ EFT Expansions

As explained in Sec. 1.2, current limits on M derived by LHC searches are

typically around a few TeV, well below the collider energy, thereby raising the question

of EFT validity for practical situations. Using the toy models discussed in Sec. 3.2.1

and Sec. 3.2.2, which characterize the corrections to our benchmark pair production

process in Eq. (3.1), we will be focused on the effects of the E/M power series in the

EFT expansions (see Eqs. (3.5) and (3.12)). One may be concerned that our results

that follow are a special feature of this specific choice. In fact, a different but very

typical expectation for a general EFT expansion is that effects from higher dimension

operators would come with powers of E/Λ (instead of E/M), where Λ ≡ M/
√
λ

characterizes the effects of dimension six (leading order) operators with λ = λqφ or

λq for the t- and s-channel models respectively. Since it is possible that Λ � M in

the weakly coupled limit λ � 1, it could also be the case that Λ >
√
s. Therefore,

this expectation might make one wonder if EFT validity is actually a problem. In

this subsection, we address this potential concern.

In fact, the EFT Lagrangians (Eqs. (3.5) and (3.12)) obtained from the toy

models are somewhat special, in the sense that higher order EFT operators come

with strictly more powers of derivatives. This is not the case for a generic EFT

expansion. Taking, for example, the s-channel toy model in Eq. (3.9), we can include
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Figure 14. A series of EFT operators with more powers of fields generated by insertions
of the self trilinear coupling in the s-channel model. Dashed lines denote the heavy scalar
mediator S; solid lines denote light particles, either scalar quarks or the BSM singlet scalars
φ.

an allowed self trilinear coupling for the heavy scalar mediator S

Ls,UV ⊃
1

3!
aS3 . (3.14)

Insertions of this vertex could generate a series of EFT operators with more powers of

fields at each order, as illustrated in Fig. 14. In general, higher order EFT operators

could contain more powers of either derivatives or fields. Operators of the former

type would obviously contribute with more powers of E/M . Operators of the latter

type would contribute with either more powers of E/Λ, or a mix of E/Λ and E/M

factors.

To see an example of this, we consider the series of effective operators generated

by the diagrams depicted in Fig. 14. We note that these operators have different

external states, and hence the associated amplitudes do not interfere with each other.

One way to compare the size of their contributions is to consider the inclusive cross

section φqφ
†
q → anything. In this case, taking into account phase space, one can show

that operators with more insertions of the self trilinear coupling lead to the pattern

each cubic insertion ⇒ µφa

M2

E2

M2
. (3.15)
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Analogous to Eq. (3.8), one could define a “Λ” for each UV coupling:4

1

Λφ

≡ µφ
M2

, and
1

Λa

≡ a

M2
. (3.16)

Using these Λ’s, we can rewrite Eq. (3.15):

µφa

M2

E2

M2
=

E

Λφ

E

Λa

. (3.17)

We see that in this specific example, operators with more fields would contribute

with more powers of E/Λ, agreeing with the typical expectation. In general cases,

contributions from operators with more fields and derivatives could come with a mix

of E/Λ and E/M factors.

The above discussion shows that the typical expectation that the EFT expansion

is governed by E/Λ alone is incomplete; for certain sets of operators it is true (such

as in Eq. (3.17)), but other operators could be governed by an E/M expansion (such

as in Eqs. (3.5) and (3.12)). Therefore, when Λ � M as it is for weakly coupled

scenarios, our choice to focus on EFTs for the benchmark pair production process

in Eq. (3.1) is exploring the most dangerous contributions to the question of EFT

validity. As we will show in the rest of this chapter, even when considering these

most dangerous operators at the limit of perturbativity, EFTs parameter space with

M <
√
s can still be a valid framework for BSM searches using inclusive signal regions,

provided that the EFT expansion is not extended to a ridiculously high order.

4We note that M and Λ have different units when the factors of ~ are restored, see e.g. [256, 165].
This underscores the point we are trying to make here, namely that they control two different
categories of EFT expansions.
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3.3 Partial-Wave Unitarity Bounds

In this section, we investigate the impact of incorporating PDFs into perturbative

partial-wave unitarity bounds. This will allow us to explore the interplay of

perturbative unitarity violation, which emerges when one probes an EFT at high

energies, and PDFs, which act to suppress the production of those problematic high

energy events. To this end, we will need to develop a formalism to incorporate

PDFs into the partial wave perturbative unitarity test. Specifically, we will

generalize the standard partial wave perturbative unitarity argument that applies

to pure initial quantum states (appropriate for parton-level scattering) to the case of

mixed/ensemble initial quantum states (appropriate for hadron-level scattering).

The results presented in this section are obtained by working with the EFTs

discussed in Sec. 3.2. Thus, everything in this section is specific to our simple

toy UV completions. The approach of using perturbative unitarity violation to

determine EFT validity is often viewed as a bottom-up consistency test. It provides

a necessary (but not sufficient) condition that the EFT is a well behaved quantum

theory. Although we are providing model specific results here, the conclusions we will

draw are expected to apply to general EFTs.

First, Sec. 3.3.1 presents the perturbative unitarity constraints derived using

parton-level scattering for the UV theories and the EFTs detailed in Sec. 3.2. Then

we turn to Sec. 3.3.2, where we show how to incorporate PDFs into the s-wave

perturbative unitarity test. In Sec. 3.3.3, we apply this technique to numerically

explore when these constraints are violated. We are particularly interested in

scenarios where the new physics scale is below the hadron collider energy M � √s,

and we will show that perturbative unitarity is violated when the EFT truncation

order k is sufficiently large. However, when k is small and the signal region is
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sufficiently inclusive, the theory passes the perturbative partial-wave unitarity test

due to the PDF suppression of high-energy partons. Therefore, such low-order

EFTs are free of perturbative unitarity violation. This will allow us to derive upper

bounds on the (M,∆) parameter space, which will denote regions of parameter space

where the EFT predictions can not be trusted, i.e., regions where one cannot place

experimental bounds on the EFT.

3.3.1 Partonic Initial State

Tree-level perturbative unitarity constraints on a scattering process at the parton

level can be obtained by checking that the S-matrix is unitary. In principle, this can

be done for each component in the partial wave expansion of the amplitude. We focus

on the s-wave component for simplicity. It is somewhat tedious to keep track of all the

S-matrix components corresponding to the various spin configurations when fermions

are involved in the scattering (see example calculations in [139, 164, 141, 229, 257] and

[192, 197] for recent reviews). Minimizing this technical complication is the reason

for studying the scalar toy models introduced in Sec. 3.2. As we stated there, we will

give φq(φ
†
q) the same proton PDFs as the quark fields q(q̄), and will treat them as

massless.

The s-wave perturbative unitarity condition on the parton-level pair production

in Eq. (3.1) can be succinctly summarized as:5

Ω(ŝ) ≡ |M(ŝ)|2 ≤ 1 , (3.18a)

M(ŝ) ≡
(
ŝ− 4m2

φ

ŝ

)1/4
1

16π

∫ 1

−1

d(cos θ)A(cos θ) . (3.18b)

5Our notation for the normalized s-wave amplitude M here follows that in [192, 197], which
differs from the a0 notation in e.g. [258] by a factor of two: M = 2a0.
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Here A is the usual scattering amplitude and M is its s-wave component. In what

follows, we will apply this test to the t-channel and s-channel production models

detailed in Sec. 3.2, to determine if perturbative partial-wave unitarity is satisfied for

this process.

t-Channel UV Theory

For the t-channel production UV model in Eq. (3.2), the scattering amplitude is

At = − |µqφ|
2

t̂−M2
− λqφ = −λqφ

t̂

t̂−M2
, (3.19)

where we have applied Eq. (3.6) to tune away the dimension-4 contribution. Following

Eq. (3.18) and using the kinematic relation

t̂ = m2
φ −

ŝ

2


1−

√
ŝ− 4m2

φ

ŝ
cos θ


 , (3.20)

the s-wave component is given by integrating over the scattering angle:

Mt =

(
ŝ− 4m2

φ

ŝ

)1/4
1

16π

∫ 1

−1

d(cos θ)At

=
λqφ
8π

M2

ŝ

(
ŝ− 4m2

φ

ŝ

)−1/4 [
log

1 + κ+

1 + κ−
− (κ+ − κ−)

]
, (3.21)

where we have introduced the dimensionless quantities

κ± ≡
ŝ

4M2


1±

√
ŝ− 4m2

φ

ŝ




2

. (3.22)
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This leads to the parton-level s-wave perturbative unitarity condition for the t-channel

UV model

Ω̂t,UV(ŝ) = |Mt|2 =
λ2
qφ

64π2

M4

ŝ2

(
ŝ− 4m2

φ

ŝ

)−1/2 [
log

1 + κ+

1 + κ−
− (κ+ − κ−)

]2

≤ 1 .

(3.23)

For most of the numerical results that follow, we will set

λqφ = 8π , (3.24)

which is compatible with the condition in Eq. (3.23), see Fig. 15.

t-Channel EFT

We can obtain the corresponding EFT result Ω̂t,EFT(ŝ) by repeating the above

calculation for the EFT Lagrangian in Eq. (3.5). Equivalently, we can expand the

UV result for the s-wave amplitude Mt in Eq. (3.21) as a power series in 1/M2 up

to some order k (or dimension ∆ = 6 + 2k).6 This yields

M[k]
t =

λqφ
8π

M2

ŝ

(
ŝ− 4m2

φ

ŝ

)−1/4 k∑

r=0

(−1)r+1

r + 2

(
κr+2

+ − κr+2
−
)
, (3.25)

which leads to the EFT s-wave perturbative unitarity condition

Ω̂
[k]
t,EFT(ŝ) ≡

∣∣∣M[k]
t

∣∣∣
2

=
λ2
qφ

64π2

M4

ŝ2

(
ŝ− 4m2

φ

ŝ

)−1/2
[

k∑

r=0

(−1)r+1

r + 2

(
κr+2

+ − κr+2
−
)
]2

≤ 1 .

(3.26)

We see that Ω̂
[k]
t,EFT(ŝ) goes to infinity as ŝ → ∞. Therefore, we can interpret the

condition in Eq. (3.26) as setting a perturbative unitarity cutoff for the parton-level

6Note that when deriving the perturbative unitarity condition, the EFT expansion should be
applied to the s-wave amplitude Mt, not to its modulus square Ω̂t,UV ≡ |Mt|2. The latter should
always be kept as a complete norm square for each choice of k.
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center-of-mass energy
√
ŝ. The precise value of this cutoff depends on the EFT

truncation dimension ∆, but it will be close to the new physics scale M .

s-Channel UV Theory

Turning to the s-channel UV model defined in Eq. (3.9), the scattering amplitude

is

As = − µqµφ
ŝ−M2 + iMΓ

− λq = −λq
ŝ+ iMΓ

ŝ−M2 + iMΓ
, (3.27)

where we have applied Eq. (3.13) to tune away the dimension-4 contribution. Again

following Eq. (3.18), the s-wave component is

Ms =

(
ŝ− 4m2

φ

ŝ

)1/4
1

8π
As = −λq

8π

ŝ+ iMΓ

ŝ−M2 + iMΓ

(
ŝ− 4m2

φ

ŝ

)1/4

, (3.28)

which leads to the parton-level s-wave perturbative unitarity condition

Ω̂s,UV(ŝ) = |Ms|2 =
λ2
q

64π2

ŝ2 +M2Γ2

(
ŝ−M2

)2
+M2Γ2

√
ŝ− 4m2

φ

ŝ
≤ 1 . (3.29)

The UV theory prediction is maximized on-resonance. Hence, if the theory is free of

perturbative unitarity violation when ŝ = M2, it will be free of perturbative unitarity

violation for all ŝ. To ensure this condition, we will set

λq = 2 , (3.30)

in the rest of this section (see Fig. 19).7

7We note that although Ω̂s,UV(ŝ) hits 1 at ŝ = M2 for λq = 2, imposing tree-level perturbative

unitarity for
√
ŝ�M actually allows λq to be as large as 8π, similar to the t-channel case.
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s-Channel EFT

We can obtain the corresponding EFT prediction Ω̂s,EFT(ŝ) by repeating the

above calculation for the EFT Lagrangian in Eq. (3.12). Equivalently, we can just

expand the UV result for the s-wave amplitude Ms given in Eq. (3.28) in powers of

1/M2 (setting Γ→ 0) up to some order k. This yields

M[k]
s =

λq
8π

(
ŝ− 4m2

φ

ŝ

)1/4
ŝ

M2

k∑

r=0

(
ŝ

M2

)r
, (3.31)

which leads to the partonic s-channel EFT s-wave perturbative unitarity condition

Ω̂
[k]
s,EFT(ŝ) ≡

∣∣M[k]
s

∣∣2 =
λ2
q

64π2

√
ŝ− 4m2

φ

ŝ

[
ŝ

M2

k∑

r=0

(
ŝ

M2

)r]2

≤ 1 . (3.32)

We see that Ω̂
[k]
s,EFT(ŝ) grows monotonically with ŝ (for ŝ ≥ 4m2

φ) and goes to infinity as

ŝ→∞. Therefore, the condition in Eq. (3.32) places an upper bound on the parton-

level center-of-mass energy
√
ŝ, which is identified as the perturbative unitarity cutoff.

Its precise value depends on the EFT truncation dimension ∆, but it is always close

to the new physics scale M .

3.3.2 Hadronic Initial State

Next, we will derive the s-wave perturbative unitarity constraints for the hadronic

scattering process in Eq. (3.1). This requires generalizing the standard partial wave

perturbative unitarity argument for pure initial quantum states to the case of mixed

(or ensemble) initial quantum states.

To begin, recall that for a pure initial state |i〉, and a pure final state |f〉 6= |i〉,

the usual perturbative unitarity condition reads

Ω̂i→f ≡ |Mi→f |2 = |〈f |T |i〉|2 ≤ 1 , (3.33)
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where T denotes the scattering operator S = 1 + i T . In order to generalize this to

the case when the initial state is a mixed state, we rewrite the above condition using

the density matrix of the (pure) initial state ρi = |i〉〈i|:

|〈f |T |i〉|2 ≤ 1 ⇐⇒ tr
(
ρi T

† |f〉〈f |T
)
≤ 1 . (3.34)

Next, we allow the initial state to be an ensemble, whose density matrix is given by

ρp =
∑

i

pi |i〉〈i| =
∑

i

pi ρi , (3.35)

where pi ≥ 0 are the coefficients (not necessarily normalized) of each pure-state

density matrix |i〉〈i|. In this case, if the condition in Eq. (3.34) holds for each pure-

state, then it must be true that

tr
(
ρp T

† |f〉〈f |T
)

=
∑

i

pi tr
(
ρi T

† |f〉〈f |T
)
≤
∑

i

pi . (3.36)

One can further sharpen this condition by making use of the fact that certain selection

rules can be imposed at the amplitude level. Suppose that for a specific final state

|f〉, the amplitude can be nonzero only when the initial state |i〉 belongs to a subset

I of the ensemble

|〈f |T |i〉|2 = tr
(
ρi T

† |f〉〈f |T
)

= 0 for i /∈ I . (3.37)

In this case, we can incorporate this effect into Eq. (3.36), which gives us

tr
(
ρp T

† |f〉〈f |T
)

=
∑

i∈I

pi tr
(
ρi T

† |f〉〈f |T
)
≤
∑

i∈I

pi . (3.38)
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For the application of interest here, we take the initial state to be the ensemble state

formed by the pair of protons, and the final state to be |f〉 =
∣∣φφ†

〉
. Then the left-

hand side of Eq. (3.38) is nothing but the parton-level Ω̂φqφ
†
q→φφ†(ŝ) integrated over

the parton distribution functions:

tr
(
ρp T

† |f〉〈f |T
)

=
∑

i

pi |〈f |T |i〉|2

=
∑

{q, q̄}∈ p

∫ 1

0

dx1dx2

[
fq(x1)fq̄(x2) + fq̄(x1)fq(x2)

]
Ω̂φqφ

†
q→φφ†(x1x2s) ,

(3.39)

where the fq (fq̄) are the PDFs for quarks (anti-quarks), x1 and x2 are the

corresponding momentum fractions, and we are suppressing the PDF dependence

on the renormalization scale.

Since the parton-level Ω̂φqφ
†
q→φφ†(ŝ) only depends on the product

τ ≡ x1x2 = ŝ/s , (3.40)

it is convenient to work with the parton luminosity function [259]

Lqq̄ (τ) ≡
∫ 1

0

dx1dx2

[
fq(x1)fq̄(x2) + fq̄(x1)fq(x2)

]
δ(τ − x1x2)

= 2

∫ 1

τ

dx
1

x
fq(x) fq̄(τ/x) . (3.41)

This allows us to rewrite Eq. (3.39) as

tr
(
ρp T

† |f〉〈f |T
)

=
∑

{q, q̄}∈ p

∫ 1

τφ

dτ Lqq̄(τ) Ω̂φqφ
†
q→φφ† (ŝ = τs) , (3.42)
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where τφ = 4m2
φ/s is the kinematic threshold for the pair production process at the

parton level. On the other hand, the right-hand side of Eq. (3.38) can be written as

∑

i

pi =
∑

{q, q̄}∈ p

∫ 1

τφ

dτ Lqq̄(τ) . (3.43)

(Note that we are suppressing the explicit dependence on the selection rule in the sum,

see Eq. (3.38).) Therefore, we obtain the s-wave perturbative unitarity condition for

the hadronic scattering process pp→ φφ†:

Ωpp→φφ† (s) ≡
∑
{q, q̄}∈ p

∫ 1

τφ
dτ Lqq̄(τ) Ω̂φqφ

†
q→φφ†(ŝ = τs)

∑
{q, q̄}∈ p

∫ 1

τφ
dτ Lqq̄(τ)

≤ 1 . (3.44)

This result applies to the case of either scalar or fermionic initial state partons.

3.3.3 Unitarity and EFT Truncation

Now that we have a hadronic formalism for the s-wave perturbative unitarity

condition Ω ≤ 1, we can investigate its implications when interpreted as an EFT

validity test. We will show results for both the t-channel and s-channel models,

finding that they yield similar results. Note that to better understand the perturbative

unitarity constraints, we will be varying the partonic (hadronic) center-of-mass energy
√
ŝ (
√
s) in what follows. In particular,

√
s will not be fixed to 14 TeV. We therefore

introduce a notation Ecm that denotes this varying center-of-mass energy to avoid

confusion.

For the numerical evaluation, we use the CT10 PDFs [260] and set the

renormalization scale to 10 TeV for convenience.8,9 We choose mφ = 1 TeV as a

8The PDFs minimally change as we vary the renormalization scale from 3 to 100 TeV.

9For certain values of M and ∆, efficiently performing the numerical integral over the PDFs is
nontrivial. To overcome this challenge, we implemented the adaptive Simpson’s method along with
some carefully chosen variable changes.
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benchmark value, but we emphasize that choosing other values of mφ will yield results

with the same qualitative features. To support this claim, we have included a set of

results for the case mφ = 10 GeV in App. B.

t-Channel UV Theory

We begin by investigating the validity of the UV theory by checking the s-wave

perturbative unitarity condition for both the partonic and hadronic cases. In Fig. 15,

we plot typical curves of Ωt,UV as a function of the center-of-mass energy Ecm. We see

that with our choice of the coupling λqφ = |µqφ|2 /M2 = 8π (see Eqs. (3.6) and (3.24)),

the UV theory is free of perturbative unitarity violation. Specifically, Ωt,UV < 1 across

the Ecm range of interest, in both the partonic initial state and the hadronic initial

state cases.

t-Channel EFT

Next, we investigate the consequences for the EFTs. In Fig. 16, we provide

typical curves of Ωt,EFT as a function of the center-of-mass energy Ecm. We see that

Ωt,EFT becomes larger than 1 in the Ecm range of interest, indicating a perturbative

unitarity cutoff on Ecm.10 Comparing the partonic initial state case [left] to the

hadronic initial state case [right], we see that the growth of Ωt,EFT is significantly

delayed by the PDF suppression of high-energy partons. Note that the curves are not

flattened by the PDFs. This implies that although the perturbative unitarity cutoff on

Ecm will be pushed significantly higher in the hadronic case, it will not be eliminated,

as explicitly verified by Fig. 17. Moreover, the cutoff on Ecm is reduced as we increase

the EFT truncation dimension ∆, and eventually approaches M in the large ∆ limit.

This implies that for Ecm > M , perturbative unitarity violation is guaranteed if one

keeps including more operators beyond a critical truncation dimension.

10The growth with Ecm is not monotonic due to the (−1)r factor in Eq. (3.26), which comes from
the fact that t̂ < 0.
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Figure 15. Ωt,UV computed using the t-channel UV model as a function of the center-of-mass
energy Ecm for parton and hadron initial states. This shows that the UV theory is free of
perturbative unitarity violation, when the couplings are taken to be λqφ = |µqφ|2 /M2 = 8π.

We conjecture that this is a generic feature of EFTs used in collider searches.

This motivates adopting the following criterion for when an EFT is invalid:

The EFT truncated to dimension ∆ = 6 + 2k is invalid if Ω
[k]
EFT(s) > 1 . (3.45)

Note that this does not guarantee that the EFT is a good description of some

underlying UV physics outside of the region deemed invalid by this criterion.

In Fig. 18, we plot the invalid region in the (M,∆) parameter space obtained

by applying this criterion to the t-channel model. We see that going from partons

to hadrons opens up significant parameter space for which the EFT could be a valid

description. This tells us that perturbative unitarity arguments for the invalidity of

EFT analyses performed at hadron colliders in the parameter space where M <
√
s

should incorporate PDF effects when the search region is sufficiently inclusive.
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Figure 16. Ωt,EFT computed using the EFT expansion of the t-channel model as a function
of the center-of-mass energy Ecm, for low choices of the truncation dimension ∆ = 6 + 2k.
For the Partonic Initial State case [left], when ∆ > 0, Ωt,EFT grows at large Ecm and
approaches infinity as Ecm →∞. This tells us there will be a perturbative unitarity cutoff
for a critical value of Ecm. In the Hadronic Initial State case [right], the growth of Ωt,EFT

is significantly delayed as compared to the partonic case.
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Figure 17. The perturbative unitarity cutoff on Ecm as a function of the EFT truncation
dimension ∆ for the t-channel model, derived using Eq. (3.45). In the Partonic Initial State
case [left], the perturbative unitarity cutoffs are more severe than for the Hadronic Initial
State case [right], although the PDF effects do not fully remove the bounds.
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Figure 18. The shaded region shows the parameter space where the EFT is invalid for the
t-channel model in the plane of the EFT truncation dimension ∆ versus the BSM scale M
with λqφ = 8π. In the Partonic (Hadronic) Initial State case, we take

√
ŝ (
√
s) = 14 TeV.

The inclusion of PDF effects opens up a region of potentially viable parameter space.

s-Channel UV Theory

The s-channel model yields qualitatively similar results to those we found for the

t-channel case. As before, we begin by checking the s-wave perturbative unitarity of

the UV theory. In Fig. 19, we plot Ωs,UV as a function of the center-of-mass energy

Ecm. We see that for our choice of the couplings λq = µqµφ/M
2 = 2 (see Eqs. (3.13)

and (3.30)), the UV theory is free of perturbative unitarity violation; Ωs,UV < 1 across

the Ecm range of interest at both the parton and hadron level. The resonance feature

is clear when varying Ecm for the partonic case, but it is smeared out by PDF effects

for the hadronic case.

s-Channel EFT

Switching to the EFTs, the requirement of s-wave perturbative unitarity will

again tell us that the EFT becomes invalid for some large Ecm. As with the t-channel

scenario, the growth of Ωs,EFT is significantly delayed by the PDF suppression of

high-energy partons in the hadronic initial state case. In Fig. 20, we plot the invalid
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Figure 19. Ωs,UV computed using the s-channel UV model as a function of the center-of-
mass energy Ecm. This shows that the UV theory is free of perturbative unitarity violation,
when the couplings are taken to be λq = µqµφ/M

2 = 2.
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Figure 20. The shaded region shows the parameter space in the plane of the EFT truncation
dimension ∆ versus the BSM scale M with λq = 2, where the EFT is deemed invalid using
the criterion in Eq. (3.45) for the s-channel model. In the Partonic (Hadronic) Initial
State case, we take

√
ŝ (
√
s) = 14 TeV. The inclusion of PDF effects opens up a region of

potentially viable parameter space.

region in the (M,∆) parameter space obtained by applying Eq. (3.45) to the s-

channel model. We again see that going from partons to hadrons opens up significant

parameter space for which the EFT could be a valid description. Note we have taken

Γ→ 0 in the EFT expansion when deriving these bounds.
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3.4 Interpreting Unitarity Violation

So far, we have simply explored the impact of PDFs on partial wave perturbative

unitarity bounds. In particular, we showed the quantitative impact that PDF

suppression has on the high energy growth of EFT amplitudes for sufficiently inclusive

search regions. This suppression postpones the scale of perturbative unitarity

violation, thereby potentially opening up parameter space with M <
√
s where the

EFT could be a useful description. The goal of this section is to interpret these results

by comparing them against the predictions for a physical observable.

We will continue to focus on the simple 2-to-2 scattering process in Eq. (3.1).

We compare the predictions for its cross section σ as derived from the UV theory and

the EFT as we vary the truncation dimension ∆ and the mediator mass M against

the invalid regions derived in the previous section. For our purposes here, a “valid”

EFT is one that

(i) reproduces the full theory cross section to a reasonable approximation, and

(ii) converges toward the full theory result as ∆ is increased.

We will show that valid EFTs exist in the region opened up by PDF effects.

To determine the hadronic pair production cross section σpp→φφ†(s) from the

corresponding partonic one σ̂φqφ†q→φφ†(ŝ), we integrate the partonic cross section over

the parton distribution functions using the standard formula

σpp→φφ†(s) =
∑

{q, q̄}∈ p

∫ 1

τφ

dτ Lqq̄(τ) σ̂φqφ†q→φφ†(ŝ = τs) , (3.46)

where we have used the parton luminosity function defined in Eq. (3.41), and the lower

bound on the integral τφ = 4m2
φ/s is the kinematic threshold for the pair production

process at the parton level.
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We are interested in varying the new physics scale M while investigating to what

extent

σ
[k]
EFT ≡

k∑

r=0

σ
(r)
EFT

?' σUV , (3.47)

where we are defining the notation σ[k] to distinguish the cross section that includes

the sum of EFT contributions up to order k (∆ = 6 + 2k; see Eq. (3.7)), from

the contribution of an individual term σ(r). To this end, Sec. 3.4.1 provides the

predictions for the parton-level cross sections σ̂φqφ†q→φφ†(ŝ) for the UV theories and

the EFTs detailed in Sec. 3.2. The main results of this section are given in Sec. 3.4.2,

where we investigate the question posed in Eq. (3.47) by comparing the numerical

results for σEFT and σUV for different choices of M and ∆, and use these results to

interpret the perturbative partial-wave unitarity results of the previous section.

In the parameter space M <
√
s, we will show that in the limit ∆ → ∞, the

EFT expansion of the cross section is not a convergent series. This implies that

one cannot blindly increase the truncation dimension ∆ to achieve an arbitrarily

good approximation of the underlying UV physics. Nevertheless, thanks to the PDF

suppression of high-energy partons, when ∆ is small, the relative error between the UV

and EFT predictions actually decreases with ∆, as if it were a convergent series. Then

for ∆ larger than a critical value ∆crit, the error will begin to grow with ∆. This tells us

that an EFT analysis performed at low orders can provide an adequate approximation

of the underlying UV physics that improves with ∆, even when M <
√
s.

3.4.1 Partonic Initial State Cross Sections

The parton-level cross sections σ̂φqφ†q→φφ†(ŝ) can be computed from the

amplitudes derived in the previous section.

68



t-channel UV Theory

We begin with the t-channel UV model defined in Eq. (3.2). The 2-to-2 scattering

amplitude is given in Eq. (3.19). This yields the color averaged squared amplitude

|At|2 =
1

3
λ2
qφ

t̂2
(
t̂−M2

)2 . (3.48)

Using the kinematic relation in Eq. (3.20), we can integrate over the scattering angle

to derive the parton-level total cross section

σ̂t,UV(ŝ) = 2π

∫ 1

−1

d(cos θ)
1

64π2ŝ
|At|2

√
ŝ− 4m2

φ

ŝ

=
λ2
qφ

48π

M2

ŝ2

[
κ+ − κ− +

κ+ − κ−
(1 + κ+)(1 + κ−)

− 2 log
1 + κ+

1 + κ−

]
, (3.49)

where κ± is defined in Eq. (3.22), and we are assuming that the initial state scalar

quarks are massless.

t-channel EFT

The EFT predictions for the t-channel production cross section can be obtained

by repeating the above calculation with the Lagrangian defined in Eq. (3.5). This

amounts to expanding the UV result in Eq. (3.49) in powers of 1/M2 (encoded by the

κ± dependence, see Eq. (3.22)) and truncating the expansion at some EFT order k:

σ̂
[k]
t,EFT(ŝ) =

k∑

r=0

σ̂
(r)
t,EFT(ŝ) , (3.50a)

σ̂
(r)
t,EFT(ŝ) =

λ2
qφ

48π

M2

ŝ2

r + 1

r + 3
(−1)r

(
κr+3

+ − κr+3
−
)
. (3.50b)

69



s-channel UV Theory

Now we turn to the s-channel UV model defined in Eq. (3.9). The 2-to-2

scattering amplitude is given in Eq. (3.27). The color averaged squared amplitude is

then

|As|2 =
1

3
λ2
q

ŝ2 +M2Γ2

(
ŝ−M2

)2
+M2Γ2

, (3.51)

which leads to the parton-level cross section

σ̂s,UV(ŝ) =
1

16πŝ
|As|2

√
ŝ− 4m2

φ

ŝ
=

λ2
q

48π

1

ŝ

ŝ2 +M2Γ2

(
ŝ−M2

)2
+M2Γ2

√
ŝ− 4m2

φ

ŝ
, (3.52)

where we are treating the initial state quarks as massless. For the numerics that

follow, we will always take Γ = M/(4π) for simplicity.

s-channel EFT

To work out the EFT predictions for the s-channel production cross section, we

can repeat the above calculation with the Lagrangian given in Eq. (3.12), with the

width effects incorporated. Equivalently, one can expand the UV result in Eq. (3.52)

in powers of 1/M2 and truncating the expansion at some order k. This yields

σ̂
[k]
s,EFT(ŝ) =

k∑

r=−2

σ̂
(r)
s,EFT(ŝ) , (3.53a)

σ̂
(r)
s,EFT(ŝ) =

λ2
q

48πM2

√
ŝ− 4m2

φ

ŝ
cr(Γ/M)

(
ŝ

M2

)r+1

, (3.53b)

where the coefficient is defined as

cr−2(Γ/M) ≡ 1

r!

(
∂

∂x

)r[
x2 + (Γ/M)2

(1− x)2 + (Γ/M)2

]∣∣∣∣∣
x=0

. (3.54)
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Note that the sum in Eq. (3.53a) starts with r = −2 in order to capture the width

effects Γ/M 6= 0 (which technically only appear at loop level). In the zero width limit,

the r = −2 and r = −1 terms would vanish (c−2 = c−1 = 0), because the expression

in the square bracket in Eq. (3.54) would have a Taylor expansion that starts with

x2. The reason we are incorporating the width effects in the EFT matching is that

they will be important for properly examining the question posed in Eq. (3.47) when

one goes to sufficiently high truncation dimension. We will explore the impact of this

“width improved matching” when we compare Figs. 26 and 27 below.

3.4.2 Evidence for EFT Validity

With the cross sections σUV and σEFT in hand, we can now turn to answering the

question raised in Eq. (3.47). Specifically, we investigate the behavior of the relative

error as a function of the truncation dimension ∆ = 6 + 2k:

Relative Error ≡ σ
[k]
EFT

σUV

− 1 , (3.55)

which provides a proxy for the question of EFT validity. Another useful quantity for

exploring this question is the “power counting uncertainty” on the EFT prediction,

which we will compute using

Power Counting Uncertainty ≡
∣∣∣∣∣
σ

(k+1)
EFT

σ
[k]
EFT

∣∣∣∣∣ . (3.56)

This captures the fact that the EFT is an approximation of the full theory, and

this power counting uncertainty provides an indication for the level of confidence one

should have when using the EFT prediction.

We will provide results for the t-channel and s-channel models separately;

while they are qualitatively similar to each other, we will highlight some interesting
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differences in the details. For the numerical results that follow, we again use the

CT10 PDFs [260] and set the renormalization scale to 10 TeV for convenience. For

the BSM singlet mass, we stick to our benchmark value mφ = 1 TeV; other values

would yield results with the same qualitative feature, as supported by App. B, where

we show some results with mφ = 10 GeV.

3.4.2.1 t-channel Results

We plot the absolute value of the relative error in Fig. 21. In the parton case with

M <
√
ŝ = 14 TeV, the error grows monotonically with ∆, meaning that the EFT

approximation keeps getting worse as ∆ is increased. This is exactly the expected

behavior, since this is effectively attempting to do an expansion when the relevant

parameter ŝ/M2 > 1, see Eq. (3.50b). For contrast, in the hadron case (now with

M <
√
s = 14 TeV), we find that the error decreases with ∆ for small values of ∆,

but turns around at some point and starts increasing at larger ∆. We summarize this

intriguing behavior of the EFT results:

– The hadronic EFT expansion appears to be converging at lower orders: we see

the EFT approximation improving before hitting a critical value ∆crit.

– The hadronic EFT expansion series does not converge absolutely: it becomes

arbitrarily poor at sufficiently large ∆.

In order to illuminate this appearing-to-be converging feature, we provide Fig. 22,

which shows typical curves of the relative error without taking the absolute value to

highlight how ∆crit is approached.11,12

11Note that the t-channel result alternates in sign, due to the (−1)r factor in Eq. (3.50b), which
appears since t̂ < 0.

12This behavior of the EFT validity is very similar, in appearance, to the validity of the
perturbation expansion series for the scattering matrix at low orders.
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Figure 21. The absolute value of the relative error (see Eq. (3.55)) computed for the t-
channel model as a function of the EFT truncation dimension ∆. For the “Partonic Initial
State” case [left], we present curves for M <

√
ŝ = 14 TeV, which show that the error grows

monotonically as ∆ is increased. In the “Hadronic Initial State” case [right], we present
curves for M <

√
s = 14 TeV, which show that the EFT approximation improves for small

values of ∆, but then the error begins to grow for ∆ > ∆crit.
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Figure 22. The relative error (see Eq. (3.55)) as computed for the t-channel model in the
“Hadronic Initial State” case for M <

√
s = 14 TeV.

We emphasize that this behavior of the EFT expansion only happens for the

parameter space where M <
√
s. If instead the new physics scale M is above the

collider energy
√
s, the EFT expansion will yield a convergent series as expected. The

contrast between these two regimes can be seen in Fig. 23, where we plot σ
[k]
t,EFT/σt,UV

as a function of M for a few low lying choices of ∆.
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Figure 23. The ratio σ
[k]
t,EFT/σt,UV for the first few ∆ = 6 + 2k as a function of M . For

the “Partonic Initial State” case [left], the series converges for M >
√
ŝ and diverges for

M <
√
ŝ. For the “Hadronic Initial State” case [right], the series converges for M >

√
s

and appears to be converging when M .
√
s (although it actually diverges for ∆ > ∆crit).

We can explore the nature of this critical point in the EFT expansion series by

investigating the size of its rth term |σ(r)
t,EFT/σt,UV| as a function of r, see Fig. 24.

We see that in the parton case, the terms grow monotonically with r. This is

expected because higher-order terms in the EFT expansion come with more powers of

ŝ/M2 > 1. Moving to the hadron case, we see that the terms tend to decrease with r

at small r (as long as M is not too small), making the series appear to be converging.

This happens because the PDF suppression of high-energy partons brings down the

average parton-level center-of-mass energy

ŝave ≡
(〈
ŝr
〉

PDF

)1/r

, (3.57)

below M2, yielding a suppression factor ŝave/M
2 < 1. However, the size of ŝave ∈ [0, s]

of course depends on r. As one increases r, the effects of (ŝ/M2)r will eventually win

over the PDF suppression factor, causing ŝave/M
2 > 1, which corresponds to where
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Figure 24. The size of the rth term
∣∣σ(r)
t,EFT/σt,UV

∣∣ as a function of r. In the “Partonic

Initial State” case [left], we have M <
√
ŝ = 14 TeV; the term grows monotonically with r.

In the “Hadronic Initial State” case [right], we have M <
√
s = 14 TeV; the term tends to

decrease with r for small r (for M & 5 TeV), and then begins to increase for large r.

the curves turn around in Fig. 24. In fact, ŝave becomes infinitely close to the collider

energy s as we take r →∞, so the relative error will always diverge when s/M2 > 1.

Having understood the behavior of the cross section as we vary M and ∆,

we can use these results to understand the meaning of the perturbative unitarity

bounds derived in the previous section. In Fig. 25, we plot the perturbative unitarity

constraint for two points in parameter space, λqφ = (8π, 2) in the (left, right) panel.

Additionally, we overlay contours of constant EFT power counting uncertainty as

defined in Eq. (3.56).13

As a rough guide, we say that the EFT is providing a good approximation of

the underlying UV physics when this uncertainty is < O(1). We see that when the

coupling is large,14 violating the hadronic perturbative unitarity constraint essentially

rules out the region with > O(1) uncertainty. When the coupling is smaller, there is

13Due to the alternating behavior in Eq. (3.50b), the summation to order k is performed separately
for even- and odd-valued r terms. We then obtain separate contours for the even and odd sets and
interleave them together to restore proper dimension ordering, avoiding a distortion in the contours
otherwise.

14Recall that λqφ = 8π saturates the parton level perturbative unitarity bound.
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Figure 25. A comparison of the perturbative unitarity results against the t-channel cross
section predictions for two choices of the UV parameters: λqφ = 8π [left] and λqφ = 2
[right]. The shaded regions are the perturbative unitarity bounds. The contours show
constant power counting uncertainty. This provides evidence that valid EFTs exist in the
region excluded by the naive partonic perturbative unitarity bound.

a region with uncertainty > O(1) that is not excluded by the hadronic perturbative

unitarity bound. This is not a contradiction, since the perturbative unitarity test is

only a necessary (but not sufficient) constraint on the validity of the EFT.

We conclude that there are valid EFTs that lie in the region that would be

naively excluded by the partonic perturbative unitarity constraint. Furthermore, the

region excluded by considerations of hadronic perturbative unitarity violation do not

contain any valid EFTs.

3.4.2.2 s-channel Results

The s-channel production results share the same qualitative features as in the t-

channel case. As before, we study the relative error defined in Eq. (3.55) as a function

of the truncation order k for the case of the s-channel model. Typical curves of its

absolute value are qualitatively similar to those for the t-channel in Fig. 21, where the

hadronic EFT expansion also exhibits an apparently converging behavior for small k.

This feature is elucidated in Fig. 26, where we plot the relative error without taking
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Figure 26. The relative error (see Eq. (3.55)) as computed for the s-channel model in the
“Hadronic Initial State” case for M <

√
s = 14 TeV and mφ = 1 TeV.
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Figure 27. The relative error (see Eq. (3.55)) as computed for the s-channel model in the
“Hadronic Initial State” case where Γ → 0 for M <

√
s = 14 TeV and mφ = 1 TeV. For

∆ < ∆crit, the EFT prediction appears to be converging to the wrong value.

the absolute value. Note that it is important to include the width effects in the EFT

description. In Fig. 27, we show that taking Γ → 0 causes the EFT to converge to

the wrong prediction for small k. Just as above, the apparently (but actually not)

converging behavior of the EFT expansion only happens when the new physics scale

M is below the collider energy
√
s; otherwise, the EFT expansion yields a convergent

series. The underlying reason for this apparent convergence at small k is again due to

the PDF suppression of high-energy partons, which has a non-trivial impact on the

relative size between the adjacent terms in the EFT expansion.
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Figure 28. A comparison of the perturbative unitarity results against the s-channel cross
section predictions for two choices of the UV parameters: λq = 2 [left] and λq = 2/(4π)
[right]. The shaded regions are the perturbative unitarity bounds. The contours show
constant power counting uncertainty. This provides evidence that valid EFTs exist in the
region excluded by the naive partonic perturbative unitarity bound.

We plot the perturbative unitarity constraint for two points in parameter space,

λq = (2, 2/(4π)) in the (left, right) panel in Fig. 28, overlaying contours of constant

EFT power counting uncertainty (taking Γ = 0), as defined in Eq. (3.56). Again, this

provides evidence for our interpretation that incorporating PDFs into the perturbative

unitarity bound is consistent.

3.5 Impact of Kinematic Cuts

In the previous sections, we explored the extent to which PDFs could soften the

high energy contributions enough to maintain the validity of an EFT description.

We saw it is possible that the EFT provides a useful approximation of the full

theory even when M <
√
s, as long as one did not include operators with dimension

above some critical value. Our conclusions stem from the essential fact that particle

physics scattering is inherently probabilistic, so one needs to collect many events

to populate a signal region in order to infer detailed properties of the underlying
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theory. In particular, with no further knowledge on the parton-level center-of-mass

energy assumed, we computed σ and Ω by integrating over the full kinematic range

τ ∈ (τφ, 1) (see Eqs. (3.44) and (3.46)), which led us to the quantitative results in the

previous sections.

The goal of this section is to explore how sensitive our conclusions are to

incorporating additional information about the parton-level kinematics. Since we are

still working in the context of toy models and are only considering 2-to-2 scattering,

we will simply focus on just two types of kinematic cuts on the τ integration range:

– Cutting away low energy events
(
requiring

√
ŝ > Emin

)
: this is a proxy for a set

of preselection cuts, including a trigger threshold and/or a minimum cut on a

kinematic quantity such as pT , HT , missing energy, etc.

– Cutting away high energy events
(
requiring

√
ŝ < Emax

)
: this is a proxy for

comparing with a test of EFT validity that is sometimes employed when doing

analyses in the parameter space where M <
√
s. Specifically, we are referring

to the test that introduces a cutoff on high energy events and checks that the

results are insensitive to this cutoff.

The results of the study where we vary Emin are presented in the left panel of

Fig. 29. We adjust the Emin cut from 0, labeled “Hadron” in the figure, to 0.5
√
s.

We see that the perturbative unitarity bound is not particularly sensitive to the

Emin = 0.2
√
s cut, but then begins to become stronger quickly. When no cut is

applied, the perturbative unitarity bound is roughly Mbound ∼ 1.5 TeV, as compared

to Mbound ∼ 5 TeV when the cut is increased to Emin = 0.5
√
s. This is a consequence

of the shape of the PDFs, which decrease by orders of magnitude as x is increased.

As we emphasized above, the PDFs suppress high energy events, and by increasing

the cut on Emin we are essentially removing that suppression which causes the
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Figure 29. Perturbative unitarity bounds in the ∆ versus M plane for various choices of a
minimum energy cut Emin [left] and of a maximum energy cut Emax [right] for the t-channel
model with λqφ = 8π. The region that is incompatible with hadronic perturbative partial-
wave unitarity is to the left of the curves.

perturbative unitarity bounds to asymptote to the parton result Mbound ∼
√
s for

Emin →
√
s as they should. When computing the perturbative unitarity bounds on

a scenario of interest, it is paramount that these low energy cuts are implemented,

since the relevant signal regions often lie in the tails of kinematic distributions (see

e.g. [168, 77]).

Next, we turn to the results where we vary Emax presented in the right panel of

Fig. 29. This is a proxy for an EFT test that is sometimes utilized, where robustness

of the result of an analysis is tested against varying a cutoff on high energy events

(see e.g. [66, 67, 68, 69, 70, 71, 72, 73, 253]). In this scheme, the validity of the result

depends on how much the derived limits change as a function of Emax. Typically, even

in the parameter space where M <
√
s, results are shown to be relatively insensitive

to such a cut. We can mimic this test by checking that the hadronic perturbative

unitarity bound introduced here is robust to varying Emax. Indeed, when taking the

relatively extreme cut Emax = 0.4
√
s, the bounds on M barely change for EFTs
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with relatively low truncation dimensions, which is relevant for most of practical

applications. This confirms that our bounds are compatible with this test. On the

other hand, for large ∆, Mbound gets weaker with the Emax cut, consistent with our

expectation that as we take ∆ to be large, Mbound → Emax.
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CHAPTER IV

CONCLUSIONS

4.1 Jet Substructure in Dark Sectors

We explored the theory uncertainties associated with making predictions for a

scenario where the presence of a new strongly coupled dark sector leaves its imprint

on the substructure of QCD-like jets. We focused on the two-point energy correlation

function, e
(β)
2 . In particular, we quantified the error resulting from perturbative

uncertainties associated with truncating to finite order in the logarithmic and gauge

coupling expansions. We also explored the uncertainty due to incalculable non-

perturbative hadronization effects. Varying the dark confinement scale Λ̃ had the

most pronounced impact on the shape of the resulting distributions. We showed e
(β)
2

to be relatively insensitive to the number of dark colors ÑC but observed more striking

variations when varying the number of dark flavors ñF . We also briefly explored the

dependence on the dark quark mass, although we did not provide an error envelope

for these distributions due to the technical limitations discussed above.

We then used these error estimates to quantify one’s ability to distinguish dark

sector jets from the QCD background. We assumed that current bounds on four-

quark contact operators apply, which was used to set the production rate for the dark

sector. Achieving sensitivity to this subtle signal requires introducing additional

handles for the search strategy that could reduce the QCD background by a factor of

O(105) assuming little impact on the signal efficiency. Depending on the model, one

could implement a cut on missing energy, a requirement of one or more b-tagged jets,

or identification of displaced vertices or resonances — these additional uncorrelated

features could additionally impact the interpretation of the limit on the production

cross section, a full exploration of the open parameter space for variations of the base
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model is an interesting topic for future work.1 This signature may also provide an

interesting target opportunity for model agnostic approaches to new physics searches

that rely on machine learning, e.g. [261, 262, 263, 264, 265, 266, 267, 268]. While

such approaches could mitigate the impact of theory uncertainties on the discovery

potential of searches using substructure, the importance of uncertainties in setting

accurate limits or extracting model parameters in the case of discovery cannot be

ignored. Regardless of these details, this study makes clear that a dedicated search

that relies on subtle features in substructure will benefit from the full data set collected

at the high luminosity LHC, thereby providing a compelling physics target for future

experimental efforts.

Moving forward, we acknowledge the practical need for the generalization of the

error envelopes presented here to additional substructure variables. It is important

to note that properly accounting for the impact of theory errors for a different

observable of interest would require a similar study to what we have presented

above. In particular, comparable analytic calculations are necessary to characterize

theory uncertainties. We do expect that for a class of mass-like observables, i.e.,

those that display Casimir scaling at LL [55], one would find conclusions broadly

similar to the case of e2. However, there are cases, e.g. those briefly mentioned

at the beginning of Sec. 2.1, with a sufficiently different structure, such that a

dedicated study would be necessary to determine the size and scaling of the errors.

In the case of uncertainties which can be reliably characterized via Monte Carlo

alone, e.g. hadronization modeling, modern machine learning methods similar to

those of Ref. [269] might prove helpful in reducing the effort involved. However, we

emphasize that a proper analytic accounting of expected theory errors in a resummed

1If these features are in fact correlated, then the analysis performed in this II would need to be
redone.
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calculation has no true substitute. The work presented here makes the case that a

comprehensive characterization of how substructure observables can be most useful

for LHC applications should be performed.

4.2 Unitarity Bounds on Effective Field Theories

We have studied the validity of the EFT framework as it applies to searching for

new physics associated with a scale that is below the center-of-mass energy at hadron

colliders M <
√
s. The key insight is that when the signal regions are designed

to be inclusive regarding the partonic center-of-mass energy, one needs to carefully

account for PDF effects, which serve to suppress events that have a high partonic

center-of-mass energy. Using the tree-level pair production process in Eq. (3.1) as

a benchmark, we have probed this question in the context of perturbative partial-

wave unitarity constraints. We conclude that there exists parameter space where the

EFT defined with ∆ < ∆crit does not violate partial wave perturbative unitarity,

even though M � √s. We provided evidence that there exist valid EFTs that lie

in the parameter space opened up by PDF effects. Importantly, this conclusion is of

practical relevance to EFT analyses being performed at the LHC, which often result

in limits on the EFT scale that are below
√
s. We emphasize that the perturbative

unitarity constraint depends on the kinematics of the process being studied, so for

each given search one must perform a dedicated analysis to obtain the EFT parameter

space compatible with perturbative partial-wave unitarity.

We view this work as demonstrating that PDF suppression of high energy events

can dramatically increase the valid region of parameter space for an EFT search. The

most obvious next step is to compute the perturbative unitarity bounds of realistic

EFT extensions of the Standard Model, e.g. of relevance to dark matter searches, for
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constraining SMEFT operator coefficients, etc. Specifically, we would like to revisit

the perturbative partial-wave unitarity bound to incorporate fermionic initial states,

and then to apply this upgraded calculation to specific EFTs that are being searched

for at the LHC. As we discussed in Sec. 3.5, the details of the signal region cuts will

also have an impact on the detailed bounds. This analysis will be critical to applying

our results in detail at the LHC. It would additionally be interesting to understand the

interplay between PDF fits and the inclusion of higher dimension SMEFT operators,

along the lines of [270].

We also plan to investigate how our findings here generalize beyond the specific

2-to-2 process of Eq. (3.1). In particular, Eqs. (3.5) and (3.12) show that the EFT

expansions for this process are only accounting for higher-dimension operators that

strictly involve more powers of derivatives. In general, one would like to see that

the same conclusions hold when including operators that involve more powers of

fields. While we anticipate that our conclusions will be essentially unchanged when

studying the effects of these operators due simply to dimensional analysis presented in

Sec. 3.2.3, it will be interesting to see how the interplay of making inclusive/exclusive

requirements on the final states will impact the bounds derived here. It will

additionally be useful to explore EFT validity in the context of experimental limits

that are placed with shape information.

Even if we restrict our scope to the derivative expansion as we have done,

there are potential applications that could follow up on some recent studies where

resumming the EFT field expansion was utilized:

– Refs. [271, 272, 273, 257] argued that one must include all orders in the

field expansion in order to correctly identify if a BSM EFT can be matched

onto SMEFT (as opposed to being forced to match onto the more general
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formulation with non-linearly realized electroweak symmetry breaking). There

is additionally a close relation between perturbative unitarity violation and

inclusive amplitudes involving an arbitrary number of fields in the final

state [274, 275].

– When focusing on BSM modifications to the two-point and three-point

amplitudes, it was emphasized that the derivative expansion is trivial [276, 277].

In these cases, one can resum the field expansion in SMEFT, an approach that

was recently advocated in [277].

– Going beyond two-point and three-point amplitudes, a resummation over the

field expansion will leave us with a non-trivial derivative expansion [277].

Nevertheless, the derivative expansion can still be systematically organized

through the use of group theoretical techniques [278, 276].

Once the field expansion is resummed, the EFT will only include a derivative

expansion. Therefore, our study here helps to justify the validity of analyses that

resum (some of) the field expansion, and it would be of significant interest to

understand the interplay between these ideas and PDF effects.

Finally, we will briefly comment on the implications for new search designs at the

LHC. Given the dependence of the perturbative unitarity bound on the kinematics

used to define the signal region of the search, one could be motivated to narrow the

range of final state energies to sharpen the perturbative unitarity bound. However,

this typically increases the statistical error, thereby reducing the power of the search.

Furthermore, since the meaning of the unitarity bound is limited to the assumption

of perturbativity, it is unclear how much is gained by attempting to sharpen it by

modifying the search strategy. Based on these considerations, we believe that in many

cases, it might be advantageous to keep the energy bin of the experimental search
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somewhat inclusive. Investigating this interplay is worthy of dedicated studies, which

we leave for future work.

Analyses that utilize EFTs are of critical importance to the LHC program.

Accounting for the impact of PDFs on their range of validity will allow us to

utilize these frameworks with confidence as we continue to pursue the experimental

signatures of beyond the Standard Model physics.
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APPENDIX A

ANALYTIC DETAILS OF THE RESUMMATION CALCULATION

In this appendix, we review the analytic calculation of the e2 distribution to NLL

order. Our discussion closely follows those of Refs. [55, 103], which in turn are based

on the framework developed in Refs. [279, 106, 107]. Our primary goal here is to

provide some additional clarification on technical points that may be less familiar to

reader not as versed in the details of QCD resummation. For a recent introduction

to the general principles of final state resummation accessible to non-experts, see

Ref. [280].

We begin with the collinear limit of the e2 distribution, which is doubly divergent

due to a collinear logarithm from the angular integral and a soft logarithm from the

integral over the so-called splitting functions. These splitting functions pi(z), which

depend on the momentum fraction z can be used to derived resummed distributions.

The leading order (LO) contribution is due to a single emission. This can be simply

modeled by integrating the splitting function against a delta function that enforces the

2-body momentum conservation as applied to Eq. (2.1). To this order, the differential

distribution is

1

σ

dσLO
i

de2

=
αs
π

∫ R0

0

dθ

θ

∫ 1

0

dz pi(z) δ

(
z(1− z)

(
θ

R0

)β
− e2

)
, (A.1)

where pi(z) is the appropriate parton splitting function for a quark-initiated jet or a

gluon-initiated jet, which are given by
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pq(z) = Pg←q(z) = CF
1 + z2

1− z ,

pg(z) =
1

2
Pg←g(z) + nFPq←g(z)

= CA

(
z

1− z +
1− z
z

+ z(1− z)

)
+ nFTR

(
z2 + (1− z)2

)
. (A.2)

For quark-initiated jets, only Pg←q is included, since the function Pq←q is not divergent

in the soft limit and would effectively double count the jet core. Likewise, for gluon-

initiated jets, the factor of 1
2

multiplying Pg←g accounts for a double counting that

results from there being the two gluons emerging from a single gluon, while the factor

of nF multiplying Pq←g provides the proper counting statistics for the gluon to split

into nF different quark pairs.

In the limit where e2 � 1, we can simplify z(1 − z)(θ/R0)β ' z(θ/R0)β by

assuming z � 1. It is then straightforward to evaluate Eq. (A.1), which yields

e2

σ

dσLO
i

de2

' 2αs
π

Ci
β

(
ln

1

e2

+Bi +O
(
e2

))
, (A.3)

where Cq = CF =
N2
C−1

2NC
and Cg = CA = NC are the color factors associated with the

jet and Bq = −3
4

and Bg = −11
12

+ nFTR
3CA

encode the subleading terms in the splitting

functions and arise from hard collinear emissions. At LO, the cumulative distribution

exhibits a characteristic double logarithm in the limit of small e2. Denoting the

logarithm as L ≡ ln 1
e2

, one finds

ΣLO
i ≡

∫ e2

0

dx
1

σ

dσLO
i

dx
= 1−

∫ e
(β)
2,max

e2

dx
1

σ

dσLO
i

dx

= 1− αs
π

Ci
β

(
L2 + 2BiL+O(1)

)
. (A.4)
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Note that the first integral is divergent, since we have not accounted for virtual

corrections. However, we can sidestep this issue by assuming that the probability to

emit anywhere is finite. Instead of computing the missing O(αs) corrections to the

total rate, we instead invoke unitary to write the integral in the second finite form

which implicitly includes the virtual corrections.

Due to presence of the logarithm in Eq. (A.4), perturbative control over the

differential distribution is lost for small values of e2. Particles with different color

charges are going to give qualitatively different behavior in precisely this limit, and

so it is necessary to resum the resulting logarithms to all orders to explore how the

distributions differ. To leading-log (LL) accuracy, one can consider the emission of

n collinear partons within the jet as independent, with the scale of the (one-loop)

coupling for each splitting m chosen at the relative transverse momentum scale κm =

zmθmpTJ . Virtual corrections do not change the kinematics, so they will contribute

to the distribution for any value of the observable, whereas real emissions will only

contribute if the kinematic configuration is such that the emission angle is smaller

than the jet radius. At LO, virtual corrections only yield a divergent correction

to the tree-level value of e2 = 0. Thus, to LL accuracy, the resummed cumulative

distribution can be computed by simply summing over all emissions off the initial

parton while treating them as uncorrelated. In the small z limit, and taking the

second form of the integral in Eq. (A.4) to work with finite quantities, the resummed

cumulative distribution is given by

ΣLL
i =

∞∑

n=0

1

n!

n∏

m=1

∫ R0

0

dθm
θm

∫ 1

0

dzm pi(zm)
αs(κm)

π

(
Θ

(
e2 − zm

(
θm
R0

)β)
− 1

)

=
∞∑

n=0

(−1)n

n!

n∏

m=1

∫ R0

0

dθm
θm

∫ 1

0

dzm pi(zm)
αs(κm)

π
Θ

(
zm

(
θm
R0

)β
− e2

)
, (A.5)
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where the second line sums over virtual emissions, which have the same matrix element

as real emissions by unitarity (modulo a sign difference) [106, 107]. The series above

is readily resummed into a single term, correct to double logarithmic accuracy:

ΣLL
i = e−Ri ,

Ri =

∫ R0

0

dθ

θ

∫ 1

0

dz pi(z)
αs(κ)

π
Θ

(
z

(
θ

R0

)β
− e2

)
. (A.6)

The function Ri is called the radiator for the jet, and it captures the Sudakov

double logarithms associated with the IR divergences that result from soft or collinear

emissions from the hard parton. In the fixed coupling approximation, the radiator

has the form

Ri '
αs
π

Ci
β

(
L2 + 2BiL+O(1)

)
, (A.7)

so that expanding ΣLL to leading order in the radiator recovers the LO behavior in

Eq. (A.4).

At NLL order a number of new effects appear: multiple emissions, the two-

loop running coupling, and non-global logarithms that arise from out-of-jet-emissions

falling within the cone. The resummed cumulative distribution can be improved to

single logarithmic accuracy by explicitly summing over uncorrelated emissions:1

ΣNLL
i =

∞∑

n=0

1

n!

n∏

m=1

∫ R0

0

dθm
θm

∫ 1

0

dzm pi(zm)
αs(κm)

π
Θ(θm−1 − θm)

×Θ

(
e2 −

n∑

m=1

zm

(
θm
R0

)β)
e−

∫R0
0

dθ
θ

∫ 1
0 dzpi(z)

αs(κ)
π .

(A.8)

1This formula ignores the effects of non-global logarithms, which must be separately implemented
to achieve true NLL accuracy.
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The angular ordering condition comes from the fact that when inserting an eikonal

emission factor
∑

i Tiki ·ε/ki ·q into an existing matrix elementM, the squared matrix

element picks up a kinematic factor of

|M|2 ∼
∑

i<j

Wij , where Wij =
1− cos θij

(1− cos θiq)(1− cos θjq)
. (A.9)

Each such term can be rewritten as Wij = W
(i)
ij +W

(j)
ij , where

W
(i)
ij =

1

2

(
Wij +

1

1− cos θiq
− 1

1 + cos θjq

)
. (A.10)

The benefit of this rewriting is that every such term satisfies an angular ordering

property,

∫ 2π

0

dφiq
2π

W
(i)
ij =





1
1−cos θiq

θiq < θij

0 otherwise

, (A.11)

such that the soft limits are correctly reproduced through the treatment of collinear

divergences and angular ordering together. The resulting expression can be evaluated

in Laplace space, where the convolution of the splitting function, running coupling,

and the Θ functions become a summable product, yielding [106]

ΣNLL
i =

∫
dν

2πiν
ee2e−Ri ,

Ri =

∫ R0

0

dθ

θ

∫ 1

0

dz pi(z)
αs(κ)

π

(
1− e−νz

(
θ
R0

)β)
, (A.12)

where Ri here is the Laplace space version of the expression in Eq. (A.6).

Logarithmic accuracy in ν tracks the logarithmic accuracy in e2, since they

are Laplace conjugates of each other. Therefore, to derive the NLL cumulative
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distribution, one must compute the radiator to single logarithmic accuracy in ν.

Expanding about ν−1 = e2 gives

ΣNLL
i = N

e−γER
′
i

Γ(1 +R′i)
e−Ri ,

R′i ≡
dRi

dL
, (A.13)

where N = 1 +O(αs) is a matching coefficient that can be determined by comparing

with the fixed-order cumulative distribution, γE is the Euler–Mascheroni constant,

and the radiator Ri is given in Eq. (A.6).

Note that improving predictability to NLL order requires matching the resummed

calculation to the fixed-order distribution. To this end, we implement the Log-R

matching scheme [108] by first considering the LO cumulative distribution, i.e., the

properly integrated form of Eq. (A.1),

ln ΣLO
i =

αs
π

∫ R0

0

dθ

θ

∫ 1

0

dz pi(z)Θ

(
z

(
θ

R0

)β
− e2

)
= −αs

π
R1,i , (A.14)

where

R1,q =
CF
β

(
− 4 Li2

(
1 + u

2

)
+ 3u+ ln2(1− u)− 2 ln(1 + u) ln(1− u)

+
(
4 ln 2− ln(1 + u)

)
ln(1 + u)− 3 tanh−1 u+

π2

3
− 2 ln2 2

)
,

R1,g =
CA
β

(
− 4 Li2

(
1 + u

2

)
+

(
67

18
− 2

9
C

(β)
1

)
u− nF

CA

(
13

18
− 2

9
C

(β)
1

)
u

+ ln2(1− u)− 2 ln(1 + u) ln(1− u) +
(
4 ln 2− ln(1 + u)

)
ln(1 + u)

−
(

11

3
− 2nF

3CA

)
tanh−1 u+

π2

3
− 2 ln2 2

)
, (A.15)
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and u ≡ √1− e2. Here u takes values between u =
√

1− e2,max =
√

1− 1
4
Rβ

0 and 1.

With the Log-R matching scheme, it is straightforward to match the resummed and

fixed-order results,

ΣNLL
i = N

e−γER
′
i

Γ(1 +R′i)
exp(−Ri) exp

(
−αs
π

(R1,i −G2,iL
2 −G1,iL)

)
, (A.16)

where G2,iL
2 and G1,iL are the logarithms appearing in the fixed-order expression

which must to be subtracted from R1,i to avoid double counting the resummed

logarithms. From Eq. (A.4), these logarithms are explicitly

G2,iL
2 +G1,iL =

Ci
β

(
L2 + 2BiL

)
. (A.17)

Using this analytic form in Eq. (A.16) requires evaluating the radiator Ri, which

is given in Eq. (A.6). An analytic evaluation of Ri is possible, although challenging,

e.g. see Ref. [110]. The calculation of the resulting efficiencies at NLL due to a cut

on e2 requires evaluating the gauge coupling αs at two-loop order using the CMW

scheme [111], such that efficiencies still need to be computed numerically. Another

issue is related to αs becoming non-perturbative as the integral is evaluated at low

enough scales. Following the procedure in Ref. [103], the coupling is only run at one-

loop order and is frozen at the non-perturbative scale µNP ≡ 7Λ. These choices result

in a closed-form solution for Ri while limiting its logarithmic accuracy, so Eq. (A.16)

provides a modified leading logarithmic (MLL) resummed cumulative distribution

with FO corrections. All analytic distributions presented above are to LL or MLL+FO

accuracy, but strictly not accurate to full NLL order.
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The prescription of freezing the coupling at the non-perturbative scale µNP ≡ 7Λ

leads to the explicit form

αs(κ) = α(1L)
s (κ)Θ(κ− µNP) + α(1L)

s (µNP)Θ(µNP − κ) , (A.18)

where α
(1L)
s (κ) is the standard one-loop order expression for the coupling,

α(1L)
s (κ) =

1

2β0 ln
(
κ
Λ

) . (A.19)

For brevity, we introduce the function F (x) = x lnx and define the following variables:

L = ln
1

e2

Lµ = ln
1

µ

λ = 2αsβ0L λµ = 2αsβ0Lµ

, (A.20)

where µ = µNP

pTR0
is the relevant scale associated with the non-perturbative transition.

Finally, we will write down the explicit expressions for the radiator functions

that are used here. Their form depends on the choice of the angular dependence β.

95



For β > 1,

R
(β>1)
i =





Ci
2παsβ2

0

(
F (1−λ)
β−1

− βF (1− 1
β
λ)

β−1
− 2αsβ0Bi ln

(
1− 1

β
λ
))

e2 > µ

Ci
2παsβ2

0

(
F (1−λµ)

β−1
− βF (1− 1

β
λ)

β−1
− 1+ln(1−λµ)

β−1
(λ− λµ)

− 2αsβ0Bi ln
(

1− 1
β
λ
))

+ Ciαs(µNP)
π

(L−Lµ)2

β−1
µ ≥ e2 > µβ

Ci
2παsβ2

0

(
− F (1− λµ)−

(
1 + ln(1− λµ)

)
λµ

− 2αsβ0Bi ln
(
1− λµ

))

+ Ciαs(µNP)
π

(
(β − 1)L2

µ + L−βLµ
β

(L+ βLµ + 2Bi)
)

µβ ≥ e2

,

(A.21)
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while for β < 1,

R
(β<1)
i =





Ci
2παsβ2

0

(
F (1−λ)
β−1

− βF (1− 1
β
λ)

β−1
− 2αsβ0Bi ln

(
1− 1

β
λ
))

e2 > µ

Ci
2παsβ2

0

(
F (1−λ)
β−1

− βF (1−λµ)

β−1
− 1+ln(1−λµ)

β−1

(
λ− βλµ

)

− 2αsβ0Bi ln
(
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+ Ciαs(µNP)
π

L−βLµ
β

L−βLµ+2(1−β)Bi
1−β µ ≥ e2 > µβ

Ci
2παsβ2

0

(
−F (1− λµ)−

(
1 + ln(1− λµ)

)
λµ

− 2αsβ0Bi ln
(
1− λµ

))
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,

(A.22)

Finally, in the limit β → 1, Eq. (A.21) and Eq. (A.22) match:

R
(β=1)
i =





Ci
2παsβ2

0

(
−F (1− λ)−

(
1 + ln(1− λ)

)
λ− 2αsβ0Bi ln(1− λ)

)
e

(1)
2 > µ

Ci
2παsβ2

0

(
−F (1− λµ)−

(
1 + ln(1− λµ)

)
λµ − 2αsβ0Bi ln(1− λµ)

)

+ Ciαs(µNP

π
(L− Lµ)(L+ Lµ + 2Bi) µ ≥ e

(1)
2

.

(A.23)
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APPENDIX B

UNITARITY BOUNDS FOR SMALLER FINAL STATE MASS

In this Appendix, we provide the perturbative unitarity bounds on the EFT

parameter space (M,∆) for the case that the final state particles have a mass of

10 GeV, see Figs. B.1 and B.2. The impact of cutting away low (high) energy events

is shown in the left (right) panel of Fig. B.3.
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Figure B.1. A comparison of the perturbative unitarity results against the t-channel cross
section predictions for two choices of the UV parameters: λqφ = 8π [left] and λqφ = 2 [right]
in the case that the final state particles have a mass of 10 GeV. The shaded regions are the
perturbative unitarity bounds, while the contours show power counting error.
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Figure B.2. A comparison of the perturbative unitarity results against the s-channel cross
section predictions for two choices of the UV parameters: λq = 2 [left] and λq = 2/(4π)
[right] in the case that the final state particles have a mass of 10 GeV. The shaded regions
are the perturbative unitarity bounds, while the contours show power counting error.
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Figure B.3. Perturbative unitarity bounds in the ∆ versus M plane for various choices of a
minimum energy cut Emin [left] and of a maximum energy cut Emax [right] for the t-channel
model with λqφ = 8π in the case that the final state particles have a mass of 10 GeV. The
region that is incompatible with hadronic perturbative partial-wave unitarity is to the left
of the curves.
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[158] T. Corbett, O. J. P. Éboli, and M. C. Gonzalez-Garcia, “Unitarity Constraints
on Dimension-Six Operators,” Phys. Rev. D 91 (2015) no. 3, 035014,
arXiv:1411.5026 [hep-ph].

[159] A. Pomarol, “Higgs Physics,” in 2014 European School of High-Energy Physics.
12, 2014. arXiv:1412.4410 [hep-ph].

[160] A. Azatov, R. Contino, G. Panico, and M. Son, “Effective field theory analysis
of double Higgs boson production via gluon fusion,” Phys. Rev. D 92 (2015) no. 3,
035001, arXiv:1502.00539 [hep-ph].

[161] A. Falkowski, “Effective field theory approach to LHC Higgs data,” Pramana
87 (2016) no. 3, 39, arXiv:1505.00046 [hep-ph].

[162] J. Brehmer, A. Freitas, D. Lopez-Val, and T. Plehn, “Pushing Higgs Effective
Theory to its Limits,” Phys. Rev. D 93 (2016) no. 7, 075014, arXiv:1510.03443
[hep-ph].

[163] LHC Higgs Cross Section Working Group Collaboration, D. de Florian et
al., “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the
Higgs Sector,” arXiv:1610.07922 [hep-ph].

[164] L. Di Luzio, J. F. Kamenik, and M. Nardecchia, “Implications of perturbative
unitarity for scalar di-boson resonance searches at LHC,” Eur. Phys. J. C 77 (2017)
no. 1, 30, arXiv:1604.05746 [hep-ph].

[165] R. Contino, A. Falkowski, F. Goertz, C. Grojean, and F. Riva, “On the
Validity of the Effective Field Theory Approach to SM Precision Tests,” JHEP 07
(2016) 144, arXiv:1604.06444 [hep-ph].

[166] A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca, and M. Son,
“Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the
LHC,” JHEP 02 (2017) 115, arXiv:1609.06312 [hep-ph].

[167] D. A. Faroughy, A. Greljo, and J. F. Kamenik, “Confronting lepton flavor
universality violation in B decays with high-pT tau lepton searches at LHC,” Phys.
Lett. B 764 (2017) 126–134, arXiv:1609.07138 [hep-ph].

112

http://dx.doi.org/10.1016/j.nuclphysb.2011.06.003
http://arxiv.org/abs/1008.3562
http://dx.doi.org/10.1007/JHEP02(2014)006
http://arxiv.org/abs/1309.7038
http://arxiv.org/abs/1309.7038
http://dx.doi.org/10.1103/PhysRevD.91.035014
http://arxiv.org/abs/1411.5026
http://arxiv.org/abs/1412.4410
http://dx.doi.org/10.1103/PhysRevD.92.035001
http://dx.doi.org/10.1103/PhysRevD.92.035001
http://arxiv.org/abs/1502.00539
http://dx.doi.org/10.1007/s12043-016-1251-5
http://dx.doi.org/10.1007/s12043-016-1251-5
http://arxiv.org/abs/1505.00046
http://dx.doi.org/10.1103/PhysRevD.93.075014
http://arxiv.org/abs/1510.03443
http://arxiv.org/abs/1510.03443
http://arxiv.org/abs/1610.07922
http://dx.doi.org/10.1140/epjc/s10052-017-4594-2
http://dx.doi.org/10.1140/epjc/s10052-017-4594-2
http://arxiv.org/abs/1604.05746
http://dx.doi.org/10.1007/JHEP07(2016)144
http://dx.doi.org/10.1007/JHEP07(2016)144
http://arxiv.org/abs/1604.06444
http://dx.doi.org/10.1007/JHEP02(2017)115
http://arxiv.org/abs/1609.06312
http://dx.doi.org/10.1016/j.physletb.2016.11.011
http://dx.doi.org/10.1016/j.physletb.2016.11.011
http://arxiv.org/abs/1609.07138


[168] M. Farina, G. Panico, D. Pappadopulo, J. T. Ruderman, R. Torre, and
A. Wulzer, “Energy helps accuracy: electroweak precision tests at hadron colliders,”
Phys. Lett. B 772 (2017) 210–215, arXiv:1609.08157 [hep-ph].

[169] ATLAS Collaboration, M. Aaboud et al., “Search for new phenomena in dijet
events using 37 fb−1 of pp collision data collected at

√
s =13 TeV with the ATLAS

detector,” Phys. Rev. D 96 (2017) no. 5, 052004, arXiv:1703.09127 [hep-ex].

[170] A. Greljo and D. Marzocca, “High-pT dilepton tails and flavor physics,” Eur.
Phys. J. C 77 (2017) no. 8, 548, arXiv:1704.09015 [hep-ph].
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