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DISSERTATION ABSTRACT

Nicolae Istrate

Doctor of Philosophy

Department of Physics

June 2022

Title: A Reservoir of Timescales in Random Neural Networks.

The temporal activity of many biological systems, including neural circuits,

exhibits fluctuations simultaneously varying over a large range of timescales. The

mechanisms leading to this temporal heterogeneity are yet unknown. Here we

show that random neural networks endowed with a distribution of self-couplings,

representing functional neural clusters of different sizes, generate multiple timescales

of activity spanning several orders of magnitude. When driven by a time-dependent

broadband input, slow and fast neural clusters preferentially entrain slow and fast

spectral components of the input, respectively, suggesting a potential mechanism for

spectral demixing in cortical circuits.
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DEDICATION

During the last Apollo 15 moonwalk, Commander David Scott replicated the results

of one of the most famous experiments: Galileo’s dropping of objects from the

leaning tower of Pisa. Commander David Scott simultaneously dropped a hammer

and a falcon feather from the same height. Due to the lack of atmosphere on the

moon, both objects touched the lunar surface simultaneously, thus showcasing one

of the basic principles in classical physics - all objects fall at the same rate,

regardless of their mass.

I did not get the chance to see this lunar experiment until my early twenties.

However, when I was 8 years old, I got the opportunity to perform a version of this

wonderful experiment with my grandfather, Liviu Racovit, ă. He taught me about

the irrelevance of mass and the effects of air resistance on falling objects in his own

way. He simultaneously dropped two sheets of paper from the same height. As

expected, they landed at the same time. He crumbled one sheet, glued together two

others, and asked me a pointed question. “If you think that objects with larger mass

reached the ground first,” - he was very particular about physics words, especially

when it came to the difference between weight and mass - “do you expect the glued

papers to fall faster?” This memory is imprinted in my brain forever because this
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exact moment was my first introduction to the world of scientific inquiry, next to

Papa Liviu (that’s what I called my grandfather) as my personal physics teacher.

His life story is inspirational! He was born in a loving family in Mos,eni, a tiny

village in northern Moldova. His parents valued education and ensured that their

children (my grandfather and his sister) attended school, despite not having a

school in their village. Every day, indifferent to the weather, my grandfather had to

walk 5 miles there, then back, to attend classes, and then he had homework and

house chores. There were no cars, buses, or electricity in the village. On top of this,

at an early age, my grandfather had the misfortune of encountering soviet soldiers

(they were in the middle of occupying the current territory of Moldova). These

soldiers decided to separate my grandfather’s family by deporting his father to the

coal mines in Siberia. My grandfather’s father was a school principal and thus seen

as a threat in the eyes of the red army. Forced to grow up without a father, having

to pick up the responsibilities left behind, and being publicly labeled as “coming

from a dangerous family” by the occupiers did not break my grandfather’s spirit

and desire for knowledge. He followed his dream and dedicated his humble life to

teaching students about the mysteries of the universe.

Papa Liviu passed away on July 12, 2021. However, he will always be alive in my

heart and soul. He was a kind and loving father and grandfather, a fearful citizen

always ready to defend his core values, and a soul who never stopped wondering and

asking deep questions about the world that surrounded him.

I dedicate this work to my grandfather, Liviu Racovit, ă. May his life story inspires

you in ways he inspired me!
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Summary

Experimental evidence shows that the temporal activity of many physical and

biological systems exhibits fluctuations simultaneously varying over a large range of

timescales. In condensed matter physics for example, spin glasses typically exhibit

aging and relaxation effects whose timescales span several orders of magnitude [1].

In biological systems, metabolic networks of E. coli generate fluxes with a power-law

distribution of rates [2, 3]. Gas release in yeast cultures exhibit frequency distributions

spanning many orders of magnitude [4], endowing them with robust and flexible

responses to the environment [5].

In the mammalian brain, a hierarchy of timescales in the activity of single neurons

is observed across different cortical areas [6, 7, 8], as well as within the same area [9,

10, 11]. This heterogeneity was identified in the intrinsic activity of the brain at rest

in the absence of stimulus. This suggest that multiple timescales are an intrinsic

property of the dynamics of neural circuits. Leveraging computations over multiple

timescales is beneficial for the brain. However, the neural mechanisms underlying

the emergence of multiple timescales are not yet understood. We suggest here such

mechanism.

In this work, we demonstrate a novel class of recurrent networks, capable of

generating temporally heterogeneous activity whose multiple timescales span several

orders of magnitude. We interpret this novel class of recurrent neural networks with

multiple timescales as a regulating mechanism for the analysis of temporally complex

external stimuli. We also suggest that the such networks can regulate the performance

of complex behavior. Such behaviors (high-level schemas) can be broken down into

simpler actions (low-level schemas). Thus, the short timescales in the network will
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regulate the low-level schemas, meanwhile the longer timescales will regulate the

higher-level schemas by flexibly sequencing the lower-level schemas.

We focus on random neuronal networks whose units are recurrently connected,

with couplings that are chosen randomly. In our model, each network unit represents

a functional cluster of cortical neurons with similar response properties. We interpret

the unit’s self-coupling as the neural cluster strength, reflecting the product of the

cluster size and the average value of the recurrent synaptic coupling between its

neurons. In the case where the self-couplings are zero or weak (order 1/
√
N),

random networks are known to undergo a phase transition from silence to chaos

when the variance of the random couplings exceeds a critical value [12]. When the

self-couplings are strong (order 1) and are all equal, a third phase appears featuring

multiple stable fixed points accompanied by long transient activity [13]. In all these

cases, all network units exhibit the same intrinsic timescale, estimated from their

autocorrelation function.

We show that when the self-couplings are heterogeneous, a reservoir of multiple

timescales emerges, where each unit’s intrinsic timescale depends both on its own

self-coupling and the network’s self-coupling distribution. In particular, we find

an exponential relationship between (a power of the) unit’s self-coupling and its

timescales. We analytically study the dynamics of a single unit in the limit of large

self-coupling, revealing a new metastable regime described by colored noise-driven

transitions between potential wells. We study the stimulus-response properties of

our networks with heterogeneous self-couplings. In networks with zero or weak self-

couplings chaotic activity is suppressed best at a single resonant frequency [14].

However, when we drive our networks with a time-dependent broadband input

featuring a superposition of multiple frequencies, we find that the chaotic activity
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is suppressed across multiple frequencies which depend on the units’ respective self-

couplings. We see that units with large and small self-couplings are preferentially

entrained by the low and high frequency components of the input, respectively. This

spectral specificity suggests that a reservoir of timescales may be a natural mechanism

for cortical circuits to flexibly demix different spectral features of complex time-

varying inputs.
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CHAPTER I

THE BRAIN AS A HIERARCHICAL STRUCTURE

On a daily basis, the brain is bombarded with an ongoing flux of convoluted

information, hence its overarching role is to analyze this information, structure it

into comprehensible pieces, and form an appropriate response. To perform its role

successfully, the brain evolved into spatial, highly specialized structures that perform

particular functions. For example, the occipital lobes, one of the four main divisions

of the cerebral cortex, located at the back of the brain, have an essential role in vision

processing. The parietal lobes, located on top of the occipital lobes, are involved

in processing sensory information. The temporal lobes are situated on each side of

the brain hemisphere and are involved in object recognition, memory formation, and

language; while the frontal lobes, found at the front of the brain, are responsible

for making decision, planning, motor functions, and personality development [15].

This functional topographical separation is not sufficient. On top of it, the brain

developed a spatial hierarchy responsible for signal processing at different stages.

This is well illustrated in the visual system. The external images received through

the eyes, the sensory organ, are projected onto the retina, where they are translated

into electrical neural signals. From here, through the optic nerve, the neural signals

are sent to the lateral geniculate nucleus (LGN), whose role is to map the visual input

and regulate the flow and strength of the visual stimulus. Next, the neural signals

follow a complicated path to the V1 through V8 regions in the visual cortex. All these

regions perform specific functions but also are interconnected, thus offering feedback

to each other. The feedback helps reduce processing errors and detect changes in the

visual input. Some of the functions of these regions in the visual cortex are: spatial

organization of the image through edge detection computations, control of visual
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attention, detection of objects and their movement, executing eye movements, and

even signaling other regions of the brain in case a non-visual response is required [16].

The structural organization of the visual system is illustrated in Fig. 1.

Figure 1. The structure of the visual system. The image received by the eye is transformed
into electrical pulses which are sent to the LGN, and further to the occipital lobes in the V1
through V8 regions of the visual cortex. Each of these regions is specialized in performing
specific tasks and provide feedback between them.

Besides the spatial hierarchical organization, the brain also manifests a

hierarchical structure in its temporal dynamics. Neural circuits in the brain operate

in a temporally irregular regime, where fluctuations in neural activity reveal the

simultaneous presence of multiple timescales.

1.1 Bottom-Up Approach: Heterogeneous timescales

The environmental information that our brain receives is extremely complex even

before it reaches the sensory organs. Before being analyzed, it has to be translated into

a language that the nervous system understands (the raw information is transformed
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into electrical impulses). This information is dynamic, constantly varying, and it is

structured across multiple timescales. Consider the image of a tree, from a bird’s-eye

view perspective the tree seems static, however the raw image received through the

eyes includes information about small movements of the leaves and branches, or even

a squirrel cracking an acorn. On a longer timescale, the brain is able to process the

static image of the tree. At the same time, on shorter timescales, it also detects rapid

fluctuations due to the movement of leaves or the squirrel.

This heterogeneity of neural timescales is observed in awake animals during

periods of ongoing activity, in the absence of external stimuli or behavioral tasks.

This suggests that neural activity of multiple timescales may be an intrinsic property

of recurrent cortical circuits. To measure a timescale, one can use the autocorrelation

function of the intrinsic dynamic. The autocorrelation function is the correlation value

between a signal and a delayed copy of itself for different values of delay. It informs

us about the similarity between a signal and its lagged version. In case of chaotic

activity, the autocorrelation decays to zero from its initial value. The timescale of the

signal is dependent on how fast the autocorrelation decays. A short timescale will

be characterized by a fast autocorrelation function decaying while a longer timescale

corresponds to a slowly decaying autocorrelation function.

To study the temporal features in the brain, Murray et. al. [6] analyzed

electrophysiological recordings in monkeys. They looked at single neuron activity in

different cortical areas to characterize fluctuation in pre-stimulus neuronal activity.

These fluctuations were quantified into regional intrinsic timescales through the

autocorrelation function of the neuronal spike-count in each area. The results revealed

a hierarchical ordering of intrinsic timescales across different brain regions, as seen in

Fig.2.
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Figure 2. The analysis of single neuron spike trains revealed a consistent hierarchical
ordering of intrinsic timescales across different brain regions. a) The data was collected
across seven brain regions in 26 macaque monkeys: MT, LIP, LPFC, OFC, ACC, S1, and
S2. b) The anatomical hierarchy of the brain regions based on long-range projections. c)
The intrinsic timescales across the visual-prefrontal hierarchy (left), and the somatosensory
hierarchy (right). Timescale variability within one cortical region. From left to right, we see
the histogram of individual neuron timescales within the dorsal prefrontal cortex (DLPFC),
orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). The solid lines represent
the mean of the timescales, mean(log(τ)), while the dashed line show the standard deviation
from the mean, mean(log(τ))±stdev(log(τ)). The parts a), b), c) of this figure were adapted
from Murray et. al. [6] and part d) from Cavanagh et. al. [10].
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They observed that fluctuations in the activity of sensory regions describe short

timescales while fluctuations in the prefrontal cortex are slower and exhibit longer

timescales. These result were consistent across multiple independently collected

datasets. Another series of non-invasive experiments showed a similar heterogeneity.

Spontaneous infra-slow (< 0.1 Hz) fluctuations in functional magnetic resonance

imaging (fMRI) signals [17] along with fluctuations with faster frequencies 1 to

70 Hz from electroencephalography (EEG) and magnetoencephalography (MEG)

experiments [18, 19] were collected from the human cortex in a resting state. These

experiments showed a gradient of timescales within subcortical regions, especially

in the thalamus and striatum, that mirrors the temporal hierarchy observed at the

cortical level. Longer timescales were identified in higher-order transmodal regions

like central-executive networks and dorsal attention networks, while significantly

shorter timescales were detected in the unimodal sensory regions [20].

So far, we have seen multiple timescales in different regions of the brain, however

such a heterogeneity was also observed within one cortical area. Cavanagh et. al. [10]

examined the spike count autocorrelation function for individual neurons during pre-

trial fixation. The neuronal activity data was collected from different regions of

the prefrontal cortex in a macaque monkey. The results revealed a heterogeneity of

timescales across individual neurons across regions and also within regions. Neurons

showed the most variability in timescales in the dorsal prefrontal cortex (DLPFC),

orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). The distribution of

timescales identified in this region are shown in Fig. 2 d).

The presence of heterogeneous timescales across different regions and also within

a region of the brain is not only characteristic to only human and non-human primate
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brains, but is found across different species as an intrinsic property of recurrent neural

circuits.

1.2 Role of timescales

Recent studies highlighted the benefits of leveraging computations on multiple

timescales when performing complex tasks in primates [21] as well as in artificial

neural networks [22]. However, the role of the multiple timescales in the dynamics

of the brain is not fully understood. Nevertheless, we have some insights that could

explain their role. The intrinsic timescales in the brain are involved in processing

and structuring the environmental external input into temporal frameworks. Hasson

et.al. [23] argue that electrocorticography (ECoG), and functional imaging data

suggest two main conclusions about how the information is encoded in the brain:

(i) all cortical neural circuits are capable to accumulate (integrate) information over

time, and (ii) the timescales over which information is accumulated manifests as a

hierarchical structure: from short timescales (0 to 100 ms range) in the unimodal

sensory cortical areas to long timescales (order of seconds to minutes) in higher-order

transmodal areas. This hierarchical type of processing information suggests that

memory is not only restricted to a specific location, but is tightly connected to how

the brain processes external stimuli over multiple timescales. [23]

The heterogeneity of timescales in the brain facilitates the matching between

the external stimuli and the intrinsic neuronal dynamics. They allow the brain

to encode the temporal structure of external (environmental) inputs according to

existing temporal structure in the brain. Shorter temporal segments from the

incoming stimulus (a linguistic analogy would be the words in a story) are processed

preferentially in the unimodal sensory regions with shorter timescales, meanwhile
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longer intervals (paragraphs in the story) are simultaneously processed in transmodal

regions with longer timescales. [20]

1.3 Top-Down Approach: Schema Theory

So far we have taken a bottom-up approach in analyzing cognitive functions. We

used functional brain imaging techniques in order to correlate an observable (behavior,

responses, neural dynamics) to a location in the brain. Now, let us consider a top-

down approach in analyzing cognitive functions. From this perspective, we can use

empirical studies of behavior, rather than brain imaging data, to develop theories

about cognitive processes.

In the analysis of cognitive dynamics and behavior we make the assumption that

a generally similar stimulus will trigger a generally similar response. Consider the

relationship between prey and predator. A hungry frog that detects the presence of a

fly (prey recognition stimulus) will attempt to catch it. Meanwhile, if the same frog

detects the presence of a stork (predator detection stimulus), it will attempt to evade

it. This stimulus-response relationship indicates that behavior is schematic [24]. One

of these theories was first introduced by H.Head and G.Holmes and later transformed

into what we currently refer to as Schema Theory by F.C.Bartlett. The basis for

schema theory served the field of neuropsychology, which studies the effects of brain

injuries on behavior. In 1911, while studying the effects of cerebral lesions due

to disease, accidents, or surgery, in a tour de force, H.Head and G.Holmes were

able to put forward a mechanism underlying sensation [25]. Two decades later,

F.C.Bartlett [26], while studying how new memories are incorporated into the existing

body of knowledge, presented an abstraction mechanism that connects stimuli to

specific responses. The main idea behind the modern schema theory, is that complex

behaviors (physical and cognitive) are made out of primitives (simpler behaviors)
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that are sequenced together in a flexible manner. Consider the trivial behavior of

drinking a cup of coffee. This behavior in itself can be considered a schema, and is

made out of simpler schemas: reach out for the cup, grabbing the cup, lifting it up

towards your mouth, drinking the coffee, and placing the cup on the table. This is

an example of a motor schema since it involves a motor response. Other types of

schemas are perceptual schemas that deal with processing of sensory input and may

trigger a response in the form of a motor schema. An example of a sensory schema is

the detection of prey / predator discussed at the beginning of this section. We will

dive a bit deeper into schema theory in chapter 5.

Given the two approaches to neural behavior, (i) we develop a neural network

mechanism that will replicate the heterogeneity of timescales observed from the data;

and (ii) we propose this mechanism as a brain-inspired neural architecture able to

mediate schemas at different levels. Instead of explicitly sequencing and defining the

relationship on between lower- and higher-level schemas, we expect a self-organization

of this functional hierarchy to emerge as a property of the network’s dynamics (and

learning) due to the heterogeneity of timescales. Slower timescales would represent

the primitives while longer timescales their sequencing into complex schemas. Imagine

a complex network architecture with a regulatory mechanism as a reservoir recurrent

neural network with heterogeneous timescales trained to distinguish between inputs

and provide appropriate responses.

We believe that using both, a bottom-up and a top-down approach in studying

the dynamics and determining the capabilities of this neural architecture with

multiple timescales will provide useful insights into complex cognitive processes

which can be useful to the field of computational neuroscience and also artificial

intelligence.
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CHAPTER II

THE BRAIN AS A RECURRENT NEURAL NETWORK

The magnificent capabilities of the brain are evident. Despite the essential roles

it plays for living organisms, the brain’s anatomical and physiological complexity still

baffles scientists. The brain is an organ made out of smaller cells called neurons.

Traditionally, neurons are viewed as the basic computation units of the nervous

system. They are specialized unidirectional cells that communicate between each

other through voltage pulses called action potentials. Morphologically, the cell body

of a neuron can be divided into dendrides, soma, and the axon, as shown in Fig. 3

a). Functionally, the dendrites, which are tree-like branched structures extending

from the soma, receive input pulses from the surrounding neurons through the

exchange of complex molecules1, called neurotransmitters. There are multiple types

of neurotransmitters like glutamate, dopamine, gama-aminobutyric acid, serotonin.

Along with many other functions, they are also responsible for the closing/opening

of ion channels to allow for ions to circulate in-and-out through the cell membrane.

When a neuron incorporates these ions the cell membrane potential (the voltage

difference between the inside and outside of the neuron) changes. The main body

of the neuron, the soma, accumulates these ions and works as an integrator of the

potential. Once the membrane potential reaches a threshold, a positive feedback

chemical process is initiated and the neuron generates an action potential (electrical

pulse) that propagates through the axon, a thin fiber extending from the soma towards

other post-synaptic neurons. To study neurons and their behavior, neuroscientists use

a variety of computational models. These models can account for different levels of

complexity. There exist models ranging from simple binary neurons [27] to models of

1for alternative communication channels between neurons, see also electric synapses.
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neurons described by large systems of coupled differential equations that can account

for biochemical processes (e.g. Hodgkin-Huxley model [28]). Given such a large

variety of models, it can be hard to chose a specific one. Hence, the choice of the

model is ultimately determined by the nature of the question that the researcher is

posing. For example, the Hodgkin-Huxley models of neurons are useful to understand

the dynamics of the biophysical ion channels and identify potential mechanisms for

firing patterns in different types of neurons. Meanwhile, firing rate models, which we

focus on in this work, are a good choice when the goal is to study the dynamics of

a network of neurons. Due to their relative simplicity, the firing rate models allows

us to use analytical tools to study the input-output properties of neurons and can be

easily expanded to account for interactions of multiple neurons.

In the next sections, we will start from the dynamics of a single neuron and

slowly build up to a rate neural network that can manifest diverse chaotic activity.

We will also provide analytical and numerical tools useful to analyze the temporal

dynamics of such neuronal networks.

2.1 From Neurons to Rate Networks

Although action potentials are unique and slightly vary in duration, amplitude,

and shape, on timescales larger than their average duration (≈ 1 ms), it is useful

to treat action potentials as point processes that convey information through their

timing. Hence, mathematically, a sequence of n action potentials can be represented

by a list of times ti with i = 1, 2, ..., n at which they occurred (Fig 3 b). The algebraic

form of a spike sequence of a neuron is represented as a sum of Dirac δ functions known

as the neural response function,

ρ(t) =
n∑
i=1

δ(t− ti). (2.1)
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Figure 3. Structure of a neuron and its dynamic. a) A hand drawn image of a
pyramidal neuron by Ramon y Cajal [29]. The soma (left) is located below the cerebral
cortex. Branching on the left are the dendrites (order of mm) that receive signals from
the presynamptic neurons. On the left, we see the the axon and axon terminals that
communicate signals to other neurons. b) A cartoon representation of a neuron’s behavior.
In blue we see the membrane potential during a series of action potentials, the dashed
blacked line represents the threshold value that the membrane potential needs to reach
before an action potential is initiated. In red we have the firing rate of the neuron, calculated
by binning action potentials.

The neural response function for a given neuron tends to vary from trial to trial

and thus needs to be treated statistically or probabilistically. A more useful way to

treat the dynamics of a neuron is to consider its firing rate. To move from the spike

sequence to a firing rate, we can count the number of spikes over short interval of
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times and divide it by the set interval. To reduce the variability across trials, we also

average across multiple trials. As a result, we can move from a point process, to a

continuous rate model Fig. 3 b).

Another reason to consider a rate model comes from experimental considerations.

A series of experimental recording and imaging techniques used in neuroscience (e.g.

EEG, MEG, fMRI, or widefield Ca2+-sensitive imaging techniques) measure the

average neuron population activity, rather than the activity of a single neurons. The

rate model allows us to analyze such experiments, since they can be easily generalized

to populations of neurons with similar response properties. Such generalized models

are knows as Wilson-Cowan models [30].

The brain is made out of a large number of neurons (the human brain contains

around 90 − 100 billion neurons). Simulating the dynamics of such a system at the

level of a single neuron is a tedious, if not impossible, task. To solve this problem

we can turn to how related issues have been handled in physics. When studying the

dynamics of gas atoms, physicists realized that solving the equation of motion for a

large number (1 mol ≈ 6.022 × 1023 units) of gas molecules is close to impossible.

Instead, statistical physics was developed as a bridge between the microscale and

macroscale description of the system. The key aspect of this approach is to define

macroscopic observables as statistical properties of the microstates of the system. For

example, the internal energy of a gas is defined as the average energy of all microstates.

The analogy can be transferred to a system of neurons. Instead of studying the

dynamics of networks of single neurons, we move to a macro scale by considering

interactions between sub-populations of neurons, i.e. clusters. The way we perform

this coarse-graining is by grouping neurons with similar properties together. These

clusters serve as the building blocks of the macrosopic neural model. Such an approach
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was taken by H.Wilson and J.Cowan [30]. They analyzed the collective behavior of

large numbers of neurons using methods from statistical mechanics. Their model

describes the dynamics of two separate populations of neurons, one excitatory and

the other inhibitory. The schematic of interaction is shown in Fig. 4.

Figure 4. The Wilson Cowan Model describes the behavior of two sub-populations of
neurons, one excitatory xE and the other inhibitory xI . Both sub-populations can interact
with each other. Self-interactions are also allowed to account for the internal dynamics
inside the sub-population. The model also allows for independent external input to each
sub-population.

The model is represented as a set of coupled differential equations

θ
d

dt
xE(t) = −xE(t) + φ [wEExE(t)− wEIxI(t) + Eext]

θ
d

dt
xI(t) = −xI(t) + φ [wIExE(t)− wIIxI(t) + Iext] ,

where the weights wEE, wEI , wII , , wEI are positive and describe the connection

strength between the excitatory E and inhibitory I subpopulations. Notice that the

inhibitory sub-population has the role of reducing the firing rate of the excitatory
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sub-population. In the Wilson Cowan model, a sigmoid function was chosen as the

activation function φ.

2.2 Cluster Model: Rate equations

In this work, we also consider a population based rate model. Our model consists

of N clusters of neurons. Mathematically, each cluster can be represented as a

localized continuous variable Qi, i = 1, 2, ..., N ranging between Qi(t) ∈ [−1.0, 1.0].

Each cluster is associated with a local field xi(t) such that Qi(t) = φ [xi(t)], where φ

is an activation function that defines the input-output relationship for each cluster.

Biologically, xi(t) can be interpreted as the mean activity, also known as the firing

rate or population activity.

Now that we defined the building blocks of our model, we can focus on the

interactions and dynamics of such clusters. For start, we consider a linear recurrent

neural network (RNN), a fully connected rate model with a linear activation function:

d

dt
xi(t) = −xi(t) +

∑
j

Jijxj(t), (2.2)

where Jij is an N × N matrix describing the strength of the recurrent connections

between clusters. In a linear neural network the activation function φ[x] = x. There

are two types of dynamics present in the linear RNN in Eq. 2.2: stable and unstable.

The stable patterns are described by a simple decay to zero or a non-trivial fixed

point in case constant input is added to the network, meanwhile the unstable patterns

represent cluster activity that blows up, as illustrated in Fig. 5.

To get a more diverse behavior we can introduce non-linearilty in the model

through and activation function φ. The reason for introducing a non-linearity is

motivated by the physiology of neuronal connections. As mentioned before, neurons

communicate with each through action potentials. However, the neural signals are

17



Figure 5. The network rate dynamics xi(t) in linear recurrent neural network can be stable
or unstable.a) In the stable dynamics regime, the network starts at its initial conditions
and quickly reaches a stable fixed point. b) In the unstable dynamics regime, the network
starts at its initial conditions and as time passes, the firing rate of all units blows up to
large values.

not directly shared, but depend on the amount and type of neurotranmitters released

through the axon terminals of the pre-synaptic neurons and absorbed by the dendrites

of the post-synaptic neuron. In a linear RNN the current in the model cluster

depends on the pre-synaptic currents of other clusters weighted by the coupling

strength. However, the neuron’s output is not the sum of all of the inputs; it actually

performs a nonlinear operation on it. For example, neurons integrate the inputs until

a certain threshold is reached before an action potential happens. Neurons also are

able to regulate the input, experimental evidence shows that there exist a saturating

nonlinearity for large inputs [31]. Therefore, it stands to reason that the output (i.e.

firing rate2) of a a cluster of neurons is a non-linear computation of the inputs due

to all the clusters connected to it. We introduce the non-linearity in our model by

assuming a sigmoid shape of the activation function φ; we chose φ [·] ≡ tanh [·]. It is

worth noticing that for weak currents, the linear and non-linear RNN are equivalent,

2the negative firing rates are problematic and there are ways of countering that. However, we
want to consider them as though they are relative to some kind of background.

18



while for stronger current, the nonlinearlity of the activation function prevents the

network from blowing up. Other popular choices include a threshold-linear transfer

function, logistic function, or even transfer functions fitted to experimental data.

Given that our network is also made of clusters of neurons, we have to account for

the internal activity of each cluster as well. This can be done by adding a self coupling

term to the set of coupled ordinary differential equations from Eq. 2.2. Hence, the

final form of our model becomes:

d

dt
xi(t) = −xi(t) + siφ [xi(t)] +

∑
j

Jijφ [xj(t)] . (2.3)

We can interpret Eq. 2.3 through the Kirchoff’s laws perspective. If we imagine a

cluster of neurons as a electrical element. The left hand side describes the average

change in the potential, the first term on the right hand side describes the average

current leakage through the membrane of neurons, the second terms describes the

average current due to the activity of neurons in the cluster scaled by a self-coupling

parameter si proportional to the number of neurons in the cluster. The last term

on the right hand side describes the average current due to the activity of all other

clusters. It is important to notice that the form of Eq. 2.3 implies that time is a

dimensionless parameter. In this model, we are using a homogeneous time constant

θi = 1 ms for all clusters. The effect of non-homogeneous time constants on the

temporal dynamics present in the network are described in Appendix B.

Compared to the linear RNN, the dynamical patterns in our model, rather than

being trivial or exploding, become transient or ongoing. We recover the decay to a

trivial fixed points seen in Fig. 5, however the network is also capable of oscillatory

activity along with other rich, chaotic ongoing activities, Fig. 6.
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Figure 6. The network rate dynamics xi(t) in non-linear recurrent neural networks can
be stable, chaotic, and also oscillatory. a) In the stable dynamics regime, the network
starts at its initial conditions and quickly reaches a trivial stable fixed point. b) In the
stable dynamics regime, the network starts at its initial conditions and fluctuates until it
reaches a non-trivial fixed point. c) In the chaotic dynamics regime, the network firing rate
fluctuates in a chaotic manner. d) In the oscillatory dynamics regime the firing rate of the
units create complex, but periodic fluctuations.

The long-time behavior of the network depends on the particular realization of

the J matrix, however in the large N thermodynamic limit we can identify a typical

behavior. [12]

The case that we shall consider in this work is a non-symmetric J matrix. In

this scenario, besides fixed points, the system can also exhibit limit cycles and even

chaotic behavior.

Even in this regime, one can consider a nearly infinite set of connectivity matrices.

We will focus on a fully connected RNN models where the Jij and Jji elements in the
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connectivity matrix are uncorrelated. Furthermore, our model considers the elements

of matrix J to be a collection of independent and identically distributed random

Gaussian variables with zero mean and variance g2/N , where g is a gain parameter

that controls the recurrent coupling strength. The value of this coupling defines the

type of synaptic connection: Jij > 0 describes an excitatory connection, meanwhile

Jij < 0 describes an inhibitory one.

2.3 Dynamic Mean Field Theory

Our goal is to gain an analytical understanding of the dynamical behavior in

our network. In particular, we are interested in determining the timescales present

in the network along with understanding how they can be manipulated. For a

large network size, N , certain quantities, the autocorrelation function being one

of particular interest, are self-averaging. This means that their expectation value

can be obtained by averaging over multiple network configurations [32]. Hence,

we use a path integral approach to derive the Dynamic Mean Field Theory of our

network. Path integral methods are well known in high energy physics and have

been extended for the study of stochastic dynamics in statistical systems [33], critical

phenomenon and renormalization group [34, 35, 36], and also stochastic dynamics of

spin glasses [37, 38, 39]. Applying path integral methods to deterministic dynamical

systems such as the one in Eq. 2.3 is not that common. However, the application of

this methodology is facilitated by the presence of asynchronous chaotic states which

generates deterministic fluctuations with stationary statistics. Our strategy of the

path integral approach is to derive a generating functional for the relevant correlation

and response function induced by the dynamics in our RNN.

Here we apply the dynamic mean field theory [40] to an RNN with self-couplings.

We start by discretizing a finite dimensional time period, t ∈ [t0 = 0, T ], into n
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segments of duration dt, such that ndt = T remains fixed. In discretization of Eq. 2.3,

we use the Ito convention [41] to obtain:

xa+1
i = xai +

(
−xai + siφ [xai ] +

∑
j

Jijφ
[
xaj
])

dt, (2.4)

where the notation xai refers to the activity rate of cluster i at time t = a ∗ dt. To

recover the continuous limit, we take n → ∞ and dt → 0. Given the form above,

we can write the probability density functional for the path x(t) as a product of δ

functions:

P
(
x1
i , x

2
i , ..., x

n
i

∣∣x0
i

)
=

n−1∏
a=0

δ
(
xa+1
i − ya+1

i (xai )
)

=
n−1∏
a=0

δ

(
xa+1
i − xai −

(
−xai + siφ [xai ] +

∑
j

Jijφ
[
xaj
])

dt

)
,

(2.5)

where ya+1
i (xai ) was interpreted as the solution to Eq. 2.4 at timestep a+ 1 given the

activity rate xai at the previous timestep a. Using the Fourier representation of a

Dirac Delta function

δ(x) =
1

2π

∫
e−ikxdx,

we can write the probability density function as:
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P
(
x1,..,n−1
i

∣∣∣x0i) =

∫ ∏
a

dkai
2π

exp

−ikai
xa+1

i − xai −

−xai + siφ[xai ] +
∑
j

Jijφ[xaj ]

 dt


=

∫ ∏
a

dkai
2π

exp

−ikai
xa+1

i − xai
dt

−

−xai + siφ[xai ] +
∑
j

Jijφ[xaj ]

 dt


=

∫ ∏
a

dx̃ai
2π

exp

−x̃ai
xa+1

i − xai
dt

−

−xai + siφ[xai ] +
∑
j

Jijφ[xaj ]

 dt

 ,
(2.6)

where in the last line x̃ai = ikai and the appropriate integral is over the complex axis.

Moving back to the continuous space by taking the appropriate limit of dt → 0 and

n → ∞ while T = n ∗ dt remains constant. In this limit the following quanties take

their continuous form as follows:

xai → xi(t)
x̃ai → x̃i(t)

xa+1
i −xai
dt

→ d
dt
xi(t) ≡ dtxi(t)

∑
a →

∫ T
t0=0

dt∏
a,i

dx̃ai
2π
→ Dx̃i

∏
a,i dx

a
i → Dxi

.

With these changes we can rewrite the probability density functional in terms of an

action:

P (x|x0) ≡
∏
i

P
(
x1,..,n−1
i

∣∣x0
i

)
=

∫ ∏
i

Dx̃i exp{[−S (xi(t), x̃i(t))]}, (2.7)

where the action is explicitly defined as:

S (xi(t), x̃i(t)) =

∫
dt x̃i(t)

(
(dt + 1)xi(t)− siφ[xi(t)]−

∑
j

Jijφ[xj(t)]

)
. (2.8)

The action S is known as an example of an Martin-Siggia-Rose-Janssen-de Dominicis

action, while the new field x̃i(t) is called an auxiliary field, or a response field. Such a
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mathematical representation of the probability density function is a very useful and

well studied representation in physics as well.

The next step is to write the moment generating functional for the probability

density function in Eq. 2.7.

For a random variable Y with probability density function p(y), one can find the

n-th moment of Y as 〈Y n〉 =
∫
ynp(y)dy/Z, where Z is the normalization constant.

However, instead of calculating moments one by one, it is more efficient to define the

moment generating funcition as

Z(λ) ≡
∫
eλyp(y) dy.

To determine the n-th moment of Y , we just take the n-th order derivatives of Z(λ):

〈Y n〉 =
1

Z(0)

dn

dλn
Z(λ)

∣∣∣∣
λ=0

In our case the moment generating functional becomes:

Z(λ) =

∫
Dx̃Dx exp

[∫
dt
∑
i

x̃i(t)
(

(∂t + 1)xi(t)− siφ [xi(t)]

−
∑
j

Jijφ [xj(t)]
)

+ λi(t)xi(t)

]
,

(2.9)

where Dx =
∏

iDxi.

Recall that the dynamics of the network in Eq. 2.3 depend on their statistics as

a whole, in other words on the particular value of the gain parameter g. To capture

these properties that are generic to the ensemble of the models, we further proceed

by averaging the moment generating functional above over the normal distribution
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describing connectivity matrix J ∼ N (0, g2/N):

Z̄ = 〈Z(λ)〉J

=

√
N

2πg2

∏
i,j

∫
dJij Z(λ) exp

{[
−
J2
ijN

2g2

]}

=

∫
Dx̃Dx exp

{[
−
∫
dt
∑
i

x̃i(t)
(
(dt + 1)xi(t)− siφ [xi(t)]

)
+ λi(t)xi(t)

]}

× exp

{[
1

2

∫
dtdt′

(∑
i

x̃i(t)x̃i(t
′)

)(
g2

N

∑
j

φ [xj(t)]φ [xj(t
′)]

)]}
.

(2.10)

In deriving the last line we completed the square and made use of the property that

the elements Jij are independent and identically distributed. The coupling term

between x̃i and xj fields in the last line describes quantities dependent on four fields

and we would like to decouple them into products of pair of fields. We can do that

by defining the quantity

Q1(t, t′) ≡ g2

N

∑
j

φ [xj(t)]φ [xj(t
′)] .

This new quantity represents a superposition of N weakly correlated contributions,

hence, in the N → ∞ limit, it will approach a Gaussian distribution by the Central

Limit Theorem. This allows us to replace Q1(t, t′) by its expectation value when

performing a saddle point approximation to the lowest order. We enforce this

definition by multiplying the disordered averaged moment generating functional by

unity expressed as an integral over a Dirac delta function in its integral form:

1 =

∫
dQ1δ[ f(Q1)] =

1

2π

∫
dQ1dQ2 exp{[Q2 f(Q1)]},
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where the Q2 integral is over the imaginary axis, recall x̃ = ik. As a result, Eq. 2.10

becomes:

Z̄ =

∫
Dx̃Dx exp

{[
−
∫
dt
∑
i

x̃i
(
(dt + 1)xi − siφ [xi(t)]

)
+ λixi

]}

× exp

{[
1

2

∫
dtdt′

∑
i

x̃i(t)x̃i(t
′)Q1(t, t′)

]}

×
∫
dQ2 exp

{[
−
∫
dtdt′

N

g2
Q2(t, t′)Q1(t, t′) +Q2(t, t′)

∑
j

φ [xj(t)]φ [xj(t
′)]

]}
.

(2.11)

The disordered averaged moment generating functional can be written in a more

elegant form. However, first we have to clarify the meaning behind the changes we

are about to make. As previously mentioned, our network is made out of clusters of

neurons whose sizes are quantified by the self-coupling term si. It is possible that

every cluster is unique. However, we want to explore network dynamics generated by

interactions between sub-populations of clusters of the same size (same si). Hence,

we introduce the quantity sα ∈ S, where S denotes the set of different values of

self-couplings sα, indexed by α = 1, 2, ..., A and A ≤ N . Further, we denote by Nα

the number of units with the same self-coupling sα, and accordingly by nα = Nα/N

their fraction. Under this conditions, the disordered averaged moment generating
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functional becomes:

Z̄ =

∫
dQ2 exp

{[
−N
g2

∫
dtdt′Q1(t, t′)Q2(t, t′) +

A∑
α=1

Nα ln[Ωα]

]}
,

Ωα =

∫
Dx̃αDxα exp

[
−
∫
dt x̃α(t)

(
(dt + 1)xα(t)− sαφ [xα(t)]

)
+ λα(t)xα(t)

+
1

2

∫
dtdt′x̃α(t)Q1(t, t′)x̃α(t′) +

∫
dtdt′φ [xα(t)]Q1(t, t′)φ [xα(t′)]

]
.

(2.12)

In writing Eq. 2.12 we accounted for A types of clusters sharing the same value of

self-couplings sα. We also used that the auxiliary fields Q1 and Q2 couple to sums

of the fields x2
i and φ [xi]

2. This allows to factorize the functional integrals of the

fields into products of Nα factors of Ωα. Next, we consider the thermodynamic limit

of N � 1 by taking advantage of the saddle point approximation, i.e.

lim
M→∞

∫ b

a

eMf(x)dx =

√
2π

−Mf ′′(z0)
eMf(z0) where f

′
(z0) = 0.

In the saddle point approximation we search for the stationary point of the action by

requiring that:

0 =
∂S[Q1, Q2]

∂Q1,2

=
∂

∂Q1,2

[
−N
g2

∫
dtdt′Q1(t, t′)Q2(t, t′) +

A∑
α=1

Nα ln[Ωα]

]
.

This corresponds to finding the point in the space of (Q1, Q2) which provides the

dominant contribution to the probability mass. By applying the properties of the
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moment generating functional,

0 = −N
g2
Q∗1(t, t′) +

A∑
α=1

Nα

Ωα

∂Ωα

∂Q2(t, t′)

∣∣∣∣∣
Q∗

⇔ N

g2
Q∗1(t, t′) =

A∑
α=1

nα 〈φ [xα(t)]φ [xα(t′)]〉 ≡ Cφ(t, t′),

(2.13)

0 = −N
g2
Q∗2(t, t′) +

A∑
α=1

Nα

Ωα

∂Ωα

∂Q1(t, t′)

∣∣∣∣∣
Q∗

⇔ Q∗2(t, t′) =
g2

2
〈x̃(t)x̃(t′)〉 = 0,

(2.14)

where Cφ(t, t′) represents the average autocorrelation function of the network.

Meanwhile, the second saddle point Q∗2 = 0 must vanish since it alters the

normalization of the moment generating functional by mixing the retarded and non-

retarded time derivatives which gives rise to acausal response functions [40, 12, 42].

Inserting the saddle points back into Eq. 2.12, the moment generating functional

becomes

Z̄ =
A∑
α=1

∫
Dx̃αDxα exp

[
−Nα

∫
dtx̃α

(
(∂t + 1)xα − sαϕα + λxα

)
+
g2

2

∫
dtdt′x̃αCϕ(t, t′)x̃α

] (2.15)

This result indicates that in the large thermodynamic limit of N � 1 a network with

A ≤ N self-couplings from Eq. 2.3 simplifies into A coupled differential equations

sharing a common term:

28



d

dt
x1(t) = −x1(t) + s1φ [x1(t)] + η(t)

d

dt
x2(t) = −x2(t) + s2φ [x2(t)] + η(t)

...

d

dt
xA(t) = −xA(t) + sAφ [xA(t)] + η(t),

(2.16)

where η(t) can be interpreted as common Gaussian noise shared by all clusters with

the autocorrelation 〈η(t)η(t′)〉 = g2Cφ(t, t′) calculated in Eq. 2.13. This result is quiet

remarkable since it tells us that in our model, clusters of the same size exhibit the

same temporal dynamics. This simplifies our situation a lot, instead of studying the

dynamics of N � 1 individual clusters, we can replace it by a model of A � N

interacting clusters that share a common source of Gaussian noise whose statistics

are self-consistent and can be easily calculated.

2.4 Mean Field and Autocorrelation Function

In the previous section we showed that an RNN with N � 1 clusters behaves

statistically identical to model of A � N distinct clusters that share a common

source of Gaussian noise. In what follows we will provide an analytical analysis of the

network autocorrelation function. This will help with understanding and quantifying

the types of temporal dynamics we identify in our networks.

For start, let us consider the simple case of the RNN in Eq. 2.3 with no self-

couplings, (si = 0),

d

dt
xi(t) = −xi(t) +

∑
j

Jijφ [xj(t)] . (2.17)

The dynamics of this RNN model were extensively studied by Sompolinsky, Crisanti,

and Sommers[12]. In the large N limit, the effective mean-field dynamics of this
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network simplifies to the dynamics of a single unit

(dt + 1)x(t) = η(t), (2.18)

driven by a Gausian noise with with auto-correlation 〈η(t)η(t′)〉 = g2Cφ(t, t′) as shown

in Eq. 2.13.

Our goal is to represent the self consistent autocorrelation as motion of a particle

in a potential. First, let us use the knowledge of the noise statistics by first multiplying

Eq. 2.18 by itself at a different time t′ and then taking the expectation value of the

new expression:

(dt + 1)(dt′ + 1)Cx(t, t
′) = g2Cφ(t, t′), (2.19)

where Cx(t, t
′) ≡ 〈x(t)x(t′)〉. We are interested in the stationary statistics of the

system, i.e. Cx(t, t
′) = Cx(τ) where t − t′ = τ . Given that Cφ is time-translation

invariant, Cφ(t + τ, t) is also a function of τ . The derivatives in the equation above,

become derivatives with respect to τ :

dt′ = dt−τ = −dτ

dt = dτ−t′ = dτ .

Hence, we obtain:

(−d2
τ + 1)Cx(τ) = g2Cφ(τ). (2.20)

By solving this equation we can learn about the covariance function Cx(τ) between

two points τ apart as a function of the initial condition given by the variance C0 ≡

Cx(0).
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We continue with the replacement of our variable x(t) by a sum of two other

Gaussian variables that satisfy the same statistics:

x(t) = αz1(t) + βz2(t) such that
〈
z1(t)2

〉
=
〈
z2(t)2

〉
= 1

0 = 〈x(t)〉 = α 〈z1(t)〉+ β 〈z2(t)〉

⇒ 〈z1(t)〉 = 〈z2(t)〉 = 0

C0 = 〈(αz1(t) + βz2(t)) (αz1(t) + βz2(t))〉 = α2 + β2.

If we let

β =
C0√
Cx(τ)

⇒ α =

√
C0 −

Cx(τ)2

C0

,

the initial value of our variable becomes

x(0) =
√
c0z2(t).

Before going further in finding an analytical expression for the autocorrelation

function, we notice that given the moment generating functional of a Gaussian theory

in Eq. 2.15 with s = 0 and x(t) as a zero mean Gaussian variable, the second moment

completely determines the distribution, hence Cφ(τ) = g2fφ(Cx(τ), C0), where we

used

fu(Cx(τ), C0) =

∫
Dz1Dz2 u

√C0 −
Cx(τ)2

C0

z1(t) +
Cx(τ)√
C0

z2

u
(√

C0z2(t)
)
,

(2.21)

where Dzi = exp
(
−z2i

2

)
dzi. By substituting the result above into Eq. 2.20, we

obtained a closed system for determining the autocorrelation functions for x(t) and

φ(t).
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Given the result we have arrived to, it is worth looking back at Eq. 2.20. Its

mathematical form describes the motion of particle with unit mass in a potential,

however, there is a slight complication. While in the case of Newtonian mechanics, C0

would describe the initial position of the particle, here, we have a slight complication

due to the relationship between Cφ and C0 in Eq. 2.21. This complication indicates

that the potential in which the particle moves, depends not only on the position of

the particle Cx(τ) at time τ , but also on the initial position of the particle C0.

The potential function can be written in the following manner

V (Cx, C0) = −1

2
C2
x + g2fΦ(Cx, C0)− g2fΦ(0, C0), (2.22)

where the last term is an arbitrary constant that ensures that V (0, C0) = 0 and Φ is

the primitive of φ. In obtaining the potential, we made use of Price’s theorem [43, 40]

(i.e. dc fΦ = fdc Φ = fφ) and that the dependence of fu(Cx, C0) on τ comes only

through Cx(τ). This allows us to write Eq. 2.20 in terms of the potential V (Cx, C0)

− d2
τCx(τ) = − ∂

∂Cx
V (Cx, C0). (2.23)

The shape of the potential (Fig. 7) is determined by the interplay between two

opposing terms: the −1/2 C2
x downward bend and the upwards bend due to

g2fΦ(Cx, C0).

A further in depth analysis hints at multiple types of behavior given the specific

value of the gain parameter g. For g < 1 the potential (Fig. 7) takes the form of a

parabola centered at 0 driving the system into the zero fixed point, xi(t) = 0. For

g > 1 the g2fΦ starts to dominate the curvature of the potential close to Cx ≈ 0.
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With increasing C0, the curvature of the potential at Cx ≈ 0 changes from negative to

positive. In the intermediate regime, the potential assumes a double well shape. [40]

The behavior of the system in the case of g > 1 can be studied through finding

the maximum Lyapunov exponent. The maximum Lyapunov exponent describes the

sensitivity of the system to initial conditions by measuring the asymptotic growth rate

of infinitesimal perturbation. We consider two replicas of the same network with the

same J matrix. Generally following the same procedures as before, we find that the

maximum Lyapunov exponent is positive. This indicates that the distance between

two initially close trajectories grows exponentially with time, characteristic of chaotic

dynamics [12, 44].

Using the conservation of energy argument, we can numerically determine the

initial position of the particle, C0, through a bisectioning algorithm. The goal is to

find the root of V (C0, C0) = 0.

Figure 7. The shape and change of the potential V (Cx, C0) as a function of the
autocorrelation function Cx(τ) for increasing values of the chaotic variance C0. The initial
value of the aurocorrelation function, C0, is analogous to a initial position of the unit mass
particle, its value increases as the network is more chaotic. This figure was adapted from
M.Helias et.al. [40].
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Finally, we can obtain the autocorrelation function by integrating Eq. 2.23. This

can be done numerically by rewriting the second order differential equation as a

coupled set of first order equations:


d

dτ
y(τ) = Cx(τ)− g2fφ

(
Cx(τ), C0

)
d

dτ
Cx(τ) = y(τ)

, (2.24)

where τ > 0 and y(0) = 0. The agreement between this result and a numerical

simulation of a network of N = 2000 neurons with gain g = 2.0 can be seen in

Fig. 8 a), and the behavior of the network in each mode can be seen in Fig. 8 b) and

c).

Having familiarized ourselves with the Dynamic Mean Field Theory calculation

for Eq. 2.3, in the next chapter we will explore the set of possible dynamical patterns

along with the temporal behavior that our RNN class is capable of.
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Figure 8. Behavior of a recurrent neural network in Eq. 2.17. (a) The autocorrelation
function for g = 1.8 derived from the mean field result (red dashed line) in Eq. 2.24 compared
to a network simulation (blue solid line) of N = 2000 clusters. (b) Illustrates the chaotic
dynamics of the recurrent neural network in a). (c) Illustrates the decay to trivial fixed
point dynamics in a recurrent neural network with N = 2000 clusters and gain g = 0.5.
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CHAPTER III

NETWORK DYNAMICS AND TIMESCALES

Now that we have an analytical tool for studying recurrent neural networks, we

can explore the temporal dynamics present in the network. Our goal is to understand

the conditions necessary for the network to generate multiple timescales as well as

the effect of different parameters on these timescales.

To build a bridge between our theoretical model and experiments, we have to

quantify neuronal population dynamics in the temporal domain. We use a practical

metric like the autocorrelation function of the firing rate to accomplish this. The

value of the autocorrelation function at no delay describes the total variance of the

temporal dynamics present in the network, meanwhile, the value of the autocorelation

function at some time delay τ > 0 gives us an insight of the temporal structure present

in the network [14]. In a chaotic regime, which can describe the intrinsic spontaneous

activity in the cortical and subcortical regions, the autocorrelation function decays to

zero as the time delay increases. This behavior is indicative of uncorrelated firing rate

dynamics for large time intervals. Thus, a slowly decaying autocorrelation function

indicates temporal stability and corresponds to slow fluctuations of the neuron’s firing

rate, thus a large timescale. Meanwhile, a fast decaying autocorrelation function

indicates variability (fast fluctuations) in the firing rate and corresponds to shorter

timescales. To quantify the timescales present in the network we use the width at

half amplitude of the autocorrelation functions.

Such a definition of timescales requires us to consider only regions of the

parameter space in which the network temporal dynamics is continuous and avoids

fixed points, meaning that the intrinsic dynamics of the network are chaotic. As we

will see in this chapter, chaotic phases are common in large networks with random
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connectivity. Chaotic dynamics have been proposed as a mechanism for generating

cortical variability [45], meanwhile, in the field of machine learning, the rich network

dynamics present at the edge of the chaotic phase have been useful in learning complex

temporal patterns [46].

In the rest of this chapter we will explore the network dynamics and identify the

timescales present in recurrent neural networks with homogeneous and heterogeneous

self-couplings. Also, we will examine the emergence of multiple timescales within

one network, and study their dependence on network parameters such as gain g, self

coupling si, and cluster sub-population size Ni.

3.1 Timescale Dynamics: Homogeneous Self-coupling

The case of an RNN with homogeneous self-couplings, s, i.e. clusters having the

same number of neurons, has been extensively studied by Stern et. al. [13]. Based on

the values of the parameters g and s, three distinct types of network dynamics were

identified: the trivial fixed point regime, the chaotic regime, and the transient chaos

with fixed points regime. The parameter space of phase transformation along with

examples of network dynamics in each phase can be seen in Fig. 5. Generally speaking,

having the gain parameter g and the self-coupling s, has an effect of producing rich

dynamics in our network. By changing their values we can alternate between different

types of dynamics in the RNN.

To determine the phase boundaries of the chaotic region, we can explore the

fixed-point solutions present in the network. We will follow the work done by Stern

et.al. [13]. For illustrating the general procedure, we examine the simple case of the

network in the trivial fixed point region. To analyze stability of the xi(t) = 0 solution,
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Figure 9. The phase space and dynamic of the network as a function of the gain g and self-
coupling s parameters. Below the long dashed blue line any initial activity in the network
decays to zero. Above the solid red curve, the network exhibits transient irregular activity
that eventually settles into one out of a number of possible nonzero stable fixed points. In
the region between these two curves, the network activity is chaotic. This figure was created
by and borrowed from M. Stern et al. [13]

we compute the stability matrix of Eq. 2.3, with one self-coupling in the region:

0 = −xi(t) + sφ [xi(t)] +
∑
j

Jijφ [xj(t)] .

This is achieved through a Taylor expansion of φ [xi(t)] around the trivial fixed point

xi(t) = 0. Neglecting higher order terms, we get

0 = (−1 + s)xi(t) +
∑
j

Jijxj(t)

=
∑
j

[(−1 + s)δij + Jij]xj(t),
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where the Kronecker delta δij is used to match the appropriate indices. Hence, the

stability matrix around the trivial fixed point is:

Mij = (−1 + s)δij + Jij.

Given the statistical properties of the connectivity matrix J, the elements of whom are

independent and identically distributed random variables extracted from a Gaussian

distribution of zero mean and variance g2/N , we can make use of the circlular law

from random matrix theory [47, 48] to gain information about the phase boundary

separating the trivial fixed-point and chaotic region. The eigenvalues of the stability

matrix M belong in the complex plane and lie in a circle of radius g centered at

(−1 + s) on the real axis. The stability of the zero fixed-point requires the real

part of the eigenvalues to be negative, which is satisfied by the simple inequality

(−1 + s) + g < 0. Meanwhile, the phase boundary is determined by the condition

s = 1 − g, which corresponds to the dashed blue line in Fig. 9. For s > 1 − g, the

system is chaotic, while for s < 1 − g the system reaches fixed points. For the case

of the non-trivial fixed points, the procedure is similar, we expand around a non-zero

fixed point, determine the stability matrix, and then examine its eigenvalues. For the

case of nontrivial fixed points, the elements of the stability matrix are described by

Mij =
[
−1 + s(1− tanh[xj]

2)
]
δij + Jij(1− tanh[xj]

2).

As before, the stability of the fixed points requires that the real part of the

eigenevalues to be negative. Unfortunately, the eigenvalue distribution of the stability

matrix is not as easy to compute as in the trivial fixed-point case. It requires a careful

derivation with the use of random matrix theory due to the non-normal nature of the
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stability matrix. A careful derivation strategy is described by Ahmadian et.al. [49]

meanwhile the results have been studied by Stern et.al. [13]. The boundary between

the chaotic and nontrivial fixed points corresponds to the solid red line in Fig. 9.

As explained in the previous chapter, in the limit of a large number of

homogeneous clusters, the dynamics of the network resembles the dynamics a single

cluster driven by noise (Eq. 2.16):

d

dt
xi(t) = −xi(t) + sφ [xi(t)] +

N∑
j=1

Jijφ [xj(t)]

w� N � 1

d

dt
x(t) = −x(t) + sφ [xi(t)] + η(t).

Differently put, in the large N limit, the network temporal dynamics are described

by one autocorrelation function, hence only one timescale is present in the network.

The magnitude of this timescale can be modified by changing the values of the gain

g and the self coupling s parameter while the network remains in the chaotic regime.

As we get closer to the zero fixed point transition line, the dynamics of the network

slows down and the timescale increases. A larger timescale can be also achieved by

increasing the value of the self-coupling term. The timescale dependence on the two

network parameters can be seen in Fig. 10

3.2 Multiple Timescales: Heterogeneous Self-coupling

While recurrent neural networks with homogeneous self-coupling can create

timescales of diverse magnitudes depending on the values of the gain and self coupling

parameters, all clusters share the same timescale. A simple way of generating

heterogeneous timescales in our network model is to consider a network with clusters

of different sizes. For start, we consider the network from Eq. 2.3 with equal number of
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Figure 10. Autocorrelation and timescale dependence on network parameters (Eq. 2.3.a)
Normalized autocorrelation function (left) and timescale dependence on the gain g
parameter (right) for a network with N = 3000 and s = 0. b) Normalized autocorrelation
function (left) and timescale dependence on the self coupling s parameter in a network with
N = 3000 and g = 2.0.

interacting neuron clusters (N1 = N2) of two sizes, s1 and s2. In a large network, the

dynamic mean field theory shows that the dynamics of such a network is equivalent to

the interaction of only two clusters that share a common source of Gaussian noise, η(t).

The statistics of the noise are determined by the mean field as described in Eq. 2.13

and 2.16. In these network models, we recover the same three types of network

dynamics as in the homogeneous self-coupling case. We can determine the phase
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transition boundaries through analyzing the stability of the fixed points, through the

methods referenced in the previous section.

Networks with heterogeneous self-couplings exhibit a complex landscape of fixed

points x∗α, obtained as the self-consistent solutions to the static version of Eq. 2.16

and Eq. 2.13, namely

xα − sα tanh(xα) = η , (3.1)

where the mean field η has zero mean and its variance is given by

〈η2〉 = g2Cφ

Cφ(τ) =
∑
α∈A

nα〈φ[xα]2〉 . (3.2)

The solution for each unit depends on its respective sα (Fig. 11). If sα < 1 a single

interval around zero is available. For sα > 1, for a range of values of η, x∗α can take

values in one of three possible intervals. However, the available solutions in the latter

case are further restricted by stability conditions.

We can derive the stability condition by expanding the dynamical system in

Eq. 2.3 around the fixed point and requiring that all eigenvalues of the corresponding

stability matrix are negative. To determine the onset of instability we look for

conditions such that at least one eigenvalue develops a positive real part. An

eigenvalue of the stability matrix exists at a point z in the complex plane if [13, 49]

g2
∑
α∈A

nα

〈 [
1− tanh2(xα)

]2[
z + 1− sα

(
1− tanh2(xα)

)]2
〉
> 1. (3.3)
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Figure 11. Transition to chaos with multiple self-couplings: Fixed point solutions and
stability. a-i) The fixed point curve xα − sα tanhxα, from Eq. 3.1, for sα > 1. Stable
solutions are allowed within the dark green region. b-i) The shape of a unit’s contribution
to stability q−1 = (sα − coshxα

2)−2, from Eq. 3.4. Stable solutions of xα − sα tanhxα = η,
filled blue circles in (a-i), with different |x| values contribute differently to stability. At the
edge of chaos only a fixed point configuration with all units contributing most to stability
(minimal q−1) is stable, light green region in (a-i). a-ii) The curve xα − sα tanhxα for
sα < 1. a-iii) A possible distribution of the Gaussian mean-field η. A representative fixed
point solution is illustrated by the dashed blue line: for sα < 1 a single solution exists for all
values of η, (filled blue circle in a-ii);For sα > 1 multiple solutions exist (a-i) for some values
of η; some of them lead to instability (empty blue circle in a-i). The other two solutions
may lead to stability (filled blue circles in a-ii), although only one of them will remain stable
at the edge of chaos (encircled with green line in a-i).
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Since the denominator of the expression above is z plus the slope of the curve in

Fig. 11a-i, a solution whose value x∗α gives a negative slope (available when sα >

1) leads to a vanishing value of the denominator at some positive z and hence to

a positive eigenvalue and instability. Hence, the nα fraction of units with sα >

1 at a stable fixed point are restricted to have support on two disjoint intervals

[x∗α(sα) < x−α (sα)] ∪ [x∗α(sα) > x+
α (sα)]. We refer to this regime as multi-modal, a

direct generalization of the stable fixed points regime found in [13] for a single self-

coupling s > 1, characterized by transient dynamics leading to an exponentially large

number of stable fixed points. For the nα portion of units with sα < 1, the stable

fixed point is supported by a single interval around zero.

A fixed point solution becomes unstable as soon as an eigenvalue occurs at z = 0,

obtaining from Eq. (3.3) the stability condition

g2
∑
α∈A

nα〈q−1
α 〉 ≤ 1 , (3.4)

where qα =
[
sα − cosh2(xα)

]2
. For sα > 1 the two possible consistent solutions to

Eq. 3.1 that may result in a stable fixed point (from the two disjoint intervals in

Fig. 11a-i), contribute differently to qα. Larger |x∗α| decreases q−1
α (Fig. 11b-i), thus

improving stability. Choices for distributions of x∗α along the two intervals become

more restricted as g increases or sα decreases, since both render higher values for the

stability condition, Eq. 3.4, forcing more solutions of xi to decrease q−1
α . This restricts

a larger fraction of x∗α at the fixed points to the one solution with higher absolute

value. At the transition to chaos, a single last and most stable solution exists with all

xi values chosen with their higher absolute value x∗α (Fig. 11a-i, light green segments).

For those with sα < 1 only one solution is available, obtained by the distribution of
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η through consistency (Eq. 3.1) at the fixed point. In this configuration, the most

stable solution is exactly transitioning from stability to instability where Eq. 3.4

reaches unity. Hence the transition from stable fixed points to chaos occurs for a

choice of g and P (s) such that solving consistently Eq. 3.1 and 3.2 leads to saturate

the stability condition (Eq. 3.4) at one.

We illustrate the discussion above in the case of a network with two sub-

populations with n1 and n2 = 1 − n1 portions of the units with self-couplings s1

and s2, respectively. In the (s1, s2) plane, this model gives rise to a phase portrait

with a single chaotic region separating four disconnected stable fixed-point regions

(Fig. 12a). A unit’s activity is determined by its own self-coupling, the network’s

distribution of self-couplings and g. We will first discuss the stable fixed points, which

present qualitatively different structures depending on the values of the self-couplings.

When both self-couplings s1, s2 < 1, the only possibility for a stable fixed point is the

trivial solution, with all xi = 0 (Fig. 12a), where the network activity quickly decays

to zero. When at least one self-coupling is greater than one, there are three stable

fixed point regions (Fig. 12a-i, a-ii, a-iii); in these three regions, the network activity

starting from random initial conditions unfolds via a long-lived transient periods, then

it eventually settles into a stable fixed point. This transient activity with late fixed

points is a generalization of the network phase found by M.Stern et.al. [13] When both

self-couplings are greater than one (s1, s2 > 1) the fixed point distribution in each

sub-population is bi-modal (Fig. 12a-ii,iii). When s1 > 1 and s2 < 1, the solutions for

the respective sub-populations are localized around bi-modal fixed points and around

zero, respectively (Fig. 12a-i). In the case of a Gaussian distribution of self-couplings

in the stable fixed point regime, a complex landscape of stable fixed points emerges.

The unit values at the stable fixed points continuously interpolates between the zero
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(for units with si < 1) and the multiple values bi-modal cases (for units with si > 1)

within the same network, Fig. 14a).

In the chaotic phase, we can estimate the intrinsic timescales τi of a cluster unit

xi(t) from its autocorrelation function Cφ(τ) = 〈φ[xi(t)]φ[xi(t+ τ)]〉 as the width

at half amplitude. For networks with two self-couplings, s1 and s2, we identified a

parametric separation of timescales between the sub-populations. This separation

quantified as the ratio τ1/τ2, is dependent on the network parameters g, s1, and s2,

and also on the sub-population ratio of the clusters sharing the same self coupling

n1/n2 (nα = Nα/N). A visual summary of the parametric separation of timescales

in such a network can be seen in Fig. 13. The observed general behavior is that

in a network with similar n1 and n2 sub-populations, the timescales τ1 and τ2

increase concomitantly for large values of the self-couplings, meanwhile their ratio

τ2/τ1 increases fast at first and then starts to plateau with larger values of the self-

couplings. The story changes when we consider a small sub-population n2 with a large

self-coupling s2 interacting with a large sub-population n1 with a small self-coupling

s1. In this case the timescale τ1, for the large sub-population, remains relatively small,

while the timescale τ2, of the small sub-population, increases supra-linearly with the

increase of the self-coupling s2. We examine the reason of switch in the behavior of

timescales the next section.

In this section we explored models of recurrent neural networks with

heterogeneous self-couplings. The dynamics of such networks describes a complex

parameters space of phase transformations. Limiting our analysis to the chaotic

regime, we have shown that the mechanism of creating multiple timescales in a

network requires the interaction between sub-populations of different size clusters,

i.e. heterogeneous self couplings. The separation of timescales in such networks
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Figure 12. Ratio of autocorrelation timescales τ2/τ1 of units with self-couplings s2 and
s1, respectively (τi is estimated as the half width at half max of a unit’s autocorrelation
function, see panels iv) - vi), in a network with n1 = n2 = 0.5 and g = 2 and varying
s1, s2. A central chaotic phase separates four different stable fixed point regions with or
without transient activity. Black curves represent the transition from chaotic to stable
fixed point regimes. i)-iii) Activity across time during the initial transient epoch (left) and
distributions of unit values at their stable fixed points (right), for networks with N = 1000
and (i) s1 = 3.2, s2 = −1.5, (ii) s1 = 3.2, s2 = 1.2, (iii) s1 = 3.2, s2 = 3.2. iv) - vi) Activity
across time (left) and normalized autocorrelation functions C(τ)/C(0), (right) of units with
(iv) s1 = 0.8, s2 = −1.5, (v) s1 = 0.8, s2 = 0.8, (vi) s1 = 0.8, s2 = 3.2.
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Figure 13. Timescales τ2, τ1 (left) and their ratio τ2/τ1 (right) for fixed s1 = 1 and varying
s2, as a function of the relative size of the two populations n1 = N1/N, n2 = N2/N (at
g = 2, N = 2000; average over 20 network realizations.)

is dependent on the network parameters and, with the right tuning, can span over

several orders of magnitude.

3.3 A Reservoir of Timescales

In the chaotic phase we can estimate the intrinsic timescale τi of a unit xi from

its autocorrelation function Cφ(τ) = 〈φ[xi(t)]φ[xi(t + τ)]〉t as the half width at its

autocorrelation half maximum (Fig. 12a-vi, τ1 and τ2). The chaotic phase in the

network is characterized by a large range of timescales that can be simultaneously

realized across the units with different self-couplings.

In a network with two self-couplings s1 and s2 in the chaotic regime, we found

that the ratio of the timescales τ2/τ1 increases as we increase the self-couplings ratio

s2/s1 (Fig. 12b). The separation of timescales depends on the relative fraction n2/n1

of the slow and fast populations. When this fraction drops below 10%, the log of the
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timescale ratio exhibits a supralinear dependence on the self-coupling ratio, leading

to a vast separation of timescales.

In a case of a lognormal distribution of self-couplings, in the chaotic regime

the network generates a reservoir of multiple timescale τi of chaotic activity across

network units, spanning across several orders of magnitude (Fig. 14b). For long tailed

distributions such as the lognormal, mean field theory can generate predictions for

rare units with large self-couplings from the tail end of the distribution by solving

Eq. 2.16 and the continuous version of Eq. 2.13 highlighting the exponential relation

between a unit’s self-coupling and its autocorrelation decay time.

We do not have to limit our analysis to the case of a network with discrete self

couplings and can also consider the case when si are extracted from a continuous

distribution. To see the temporal capabilities of our network, we considered the case

of a long tailed distribution of self-couplings. In the chaotic regime, such a network is

able to generate multiple timescales τi spanning across multiple orders of magnitude

as a function of the clusters’ self-couplings si. The span of timescales present in a

chaotic RNN with self-couplings extracted from a lognormal distribution are shown

in Fig. 14 b).

3.4 Timescale Separation in the Bistable Chaotic Regime

As previously mentioned, the ratio and magnitudes of the timescales present in

a network with two self couplings depends on network parameters like the gain g, the

magnitude and ratio of self couplings s1 and s2, and also on the fraction of the numbers

of clusters in each subpopulation, n1 = N1/N and n2 = N2/N . In this section we will

focus on the latter with the goal of gaining an analytical understanding of parametric

separation of timescales seen in Fig. 13 b). For this analysis, we consider the special

case of a network from Eq. 2.3 where a large subpopulation of clusters, N1 = N − 1,
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Figure 14. a) In a network with a Gaussian distribution of self-couplings (mean µ = 1
and variance σ2 = 9), and g = 2.5, the stable fixed point regime exhibits a distribution of
fixed point values interpolating between around the zero fixed point (for units with si ≤ 1)
and the multi-modal case (for units with si > 1). The purple curve represents solutions to
x = s tanh(x). b) In a network with a lognormal distribution of self-couplings (parameters
µ = 0.2 and σ2 = 1), and g = 2.5, autocorrelation timescales τi in the chaotic phase span
several orders of magnitude as functions of the units’ self-couplings si (purple curve shows
the dynamic mean-field predictions for τi).

with s1 = 1.0 containing all but one slow cluster unit, x2, described by a large self

coupling s2 � s1. A illustration of this network is depicted in Fig. 15 a).

In the large N limit the behavior of the probe unit is described by the dynamical

equation

d

dt
x2(t) = −x2(t) + s2φ [x2(t)] + η(t), (3.5)

where η(t) is interpreted as a source of external colored noise with autocorrelation

relation

〈η(t)η(t+ τ)〉 = g2C(τ)

≈ g2 〈φ [x1(t)]φ [x1(t+ τ)]〉 .

In the large N limit, the contribution to the mean field term from the probe unit is

negligible, hence not included in the expression for the autocorrelation function. The
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Figure 15. a) A graphical representation of an RNN with a single slow cluster s2 (probe
unit) interacting with multiple fast clusters (s1 , N1 = N−1). b) A graphical representation
of the dynamics of the probe unit in a double well potential governed by external noise.

noise term η is described by its strength D =
∫∞

0
dτC(τ) and a timescale τ1, which

is also refereed to as the color.

In the case of a large cluster, s2 � s1, the dynamics of the probe units x2(t) is

described by a bi-stable chaotic phase where its temporal activity is localized around

two critical points. An analogy to this situation would be an object located in a

double-potential well whose movements are governed by external noise, as illustrated

in Fig. 15 b). The critical points are located at x2 = x± ≈ ±s2. The probe unit

switches between the critical points at random times. The interval of time the probe

unit spends in on of the arms of the potential well is known as the dwell time, T .

The behavior of the probe cluster and the distribution of dwell times T can be seen

in Fig. 16 a-i,iii). For comparison, we also show the results for probe unit driven by

external white noise as well b-i,iii).

Given the large timescale τ1 > 1 (τ1 ≈ 7.9 for s1 = 1 and s2 = 5), the behavior of

the probe unit falls under the strong colored noise regime. The stationary probability

distribution p(x), Fig. 16 a-ii,b), satisfies the the condition for using the colored noise
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approximation to the Fokker Plank equation [50, 51]. We provide a refresher on the

Fokker Plank formalism in Appendix A.

p(x) = Z−1|h(x)| exp [−Ueff (x)/D] , (3.6)

where Z is a normalization constant, h(x) ≡ 1 − τ1f
′(x), and the effective potential

Ueff (x) = −
∫ x

f(y)h(y)dy is given by

Ueff =
x2

2
− s2 log cosh(x) +

τ1

2
f(x)2 − Umin . (3.7)

The distribution p(x) has support in the region h(x) > 0 comprising two disjoint

intervals |x| > xc where tanh(xc)
2 = 1− 1+τ1

τ1s2
(Fig. 16b). p(x) is concentrated around

the two minima x± ' ±s2 of Ueff . The main effect of the strong color τ1 � 1 is

to sharply decrease the variance of the distribution around the minima x±. This

is evident from comparing the colored noise with a white noise, when the latter is

driving the same bi-stable probe dx2/dt = −x2 + s2φ(x2) + ξ(t), where ξ(t) is a white

noise with an equivalent strength to the colored noise, Fig. 16a-iv,v,vi. The naive

potential for the white noise case U = x2/2− s2 log cosh(x) is obtained from Eq. 3.6

by sending τ1 → 0 in the prefactor h and in potential Ueff . It results in wider activity

distribution compared to our network generated colored noise, in agreement with the

simulations, Fig. 16a,b.

In our network generated colored noise the probe unit’s temporal dynamics is

captured by the mean first passage time 〈T 〉 for the escape out of the potential well:

〈T 〉 =

∫ −xc
−s2

dx

D

h(x)2

p(x)

∫ x

−∞
p(y)dy

' 2π
√
U ′′eff (x−)ρ′′(xf ) exp

(
∆

D

)
, (3.8)
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Figure 16. Separation of timescales and metastable regime. (a) Examples of bistable
activity. i,iv - time courses; ii,v - histograms of unit’s value across time; iii,vi - histograms
of dwell times. (a-i,ii,iii) An example of a probe unit x2 with s2 = 5, embedded in a neural
network with N = 1000 units, N1 = N − 1 units with s1 = 1 and g = 1.5. (a-iv,v,vi) An
example of a probe unit driven by white noise. (b) The unified colored noise approximation
stationary probability distribution p(x2) (dark blue curve, Eq. 3.6, its support excludes
the shaded gray area) from the effective potential Ueff (dashed blue curve) captures well
the activity histogram (same as (a-ii)); whereas the white noise distribution p(x2) (dark
green curve, obtained from the naive potential U , dashed green curve) captures the probe
unit’s activity (same as (a-v)) when driven by white noise, and deviates significantly from
the activity distribution when the probe is embedded in our network. (c) Average dwell
times,〈T 〉, in the bistable states. Simulation results, mean and 95% CI (blue curve and
light blue background, respectively; An example for the full distribution of T is given in
(a-iii)). Mean-field prediction (purple curve). The mean first passage time from the unified
colored noise approximation (Eq. 3.8, black curve) captures well the simulated dwell times.
An approximation for the unified colored noise (Eq. 3.9, gray dashed line) achieves good
results as well. the white noise average dwell times are significantly different (green curve).

where ∆ = ρ(xf ) − Ueff (x−) and ρ = Ueff + D log h (Appendix C). We evaluated

the integrals by steepest descent around x− and −xf , where tanh(xf )
2 ' 1 − 1/2s2.

The agreement between Eq, 3.8 and simulation results improves with increasing s2,

as expected on theoretical ground [52, 53]. The asymptotic scaling for large s2 is

log [〈T 〉] ∼ τ1 + 1

2D

(
s2

2 − s2 log[s2]
)
. (3.9)

The agreement between the analytical result in Eq. 3.9 and simulation are presented

in Fig. 16 c).
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Given a large cluster (s2 � s1), the dynamics in the network generate a

parametric separation of timescales between the sub-populations x1 with intrinsic

timescale τ1 and the probe cluster x2 whose dynamics is characterized by two separate

timescales, a large one, T , which is the average dwell time in one of the arms of

the potential, and a small one τ1 which describes the fast fluctuations around the

metastable states x±. This analytical method can be generalized to a network with

N − p clusters with self-coupling s1 and p � N probe clusters with self-coupling

s2 � s1. This analysis explains the change in the individual timescales behavior seen

in Fig. 13 in the case of larger values of n1. The slow dynamics of each probe unit

xα is captured by its own bistable switching time Tα in Eq. 3.8 and all slow units

are driven by a shared external colored noise η(t) with timescale τ1. In summary, in

our model multiple timescales can be robustly generated with specific values, varying

over several orders of magnitude. [54].

Is the relationship between the unit’s self-coupling and its timescale relying on

single-unit properties, or does it rely on network effects? To answer this question,

we compare the dynamics of a unit when driven by a white noise input vs. the

self-consistent input generated by the rest of the recurrent network (i.e., the mean

field). If the neural mechanism underlying the timescale separation was a property

of the single-cell itself, we would observe the same effect regardless of the details of

the input noise. We found that the increase in the unit’s timescale as a function of

s2 is absent when driving the unit with white noise, and it only emerges when the

unit is driven by the self-consistent mean field. We thus concluded that this neural

mechanism is not an intrinsic property of a single unit but requires the unit to be

part of a recurrently connected network.
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In summary, we have presented a category of recurrent neural network models

with self-coupling terms capable of chaotic activity. The network is made out of

clusters units, where each cluster represents a conglomeration of neurons. The size

of the cluster is quantified through the self-coupling term si. A network made out of

homogeneous clusters, si = s, manifests a single timescales. The sufficient condition

to generate multiple timescales within the network is to consider heterogeneous

clusters, i.e. clusters of different sizes si. In the case of an RNN with heterogeneous

clusters, the separation of timescales generated by the network depends on the

magnitude of the self-coupling terms and also on the ratio of same size clusters,

ni, present in the network. Given the right set of parameters, our network is able to

generate multiple timescales ranging over multiple orders of magnitude, as observed

in experimental literature.
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CHAPTER IV

RNN NETWORK WITH INPUT

A different approach to study neural systems is considering their responses

to different external inputs. The input-output relationship can reveal important

characteristics of the neural system. Such an approach is very common across

disciplines like information theory, physics, engineering, and neuroscience.

In this section we will study the effect of external input on the ongoing intrinsic

dynamics of recurrent neural network. A useful approach in studying network

responses to oscillatory input has been presented by K.Rajan et. al. [14]. We will

explicitly present this approach here, and then apply it to our case.

4.1 RNN with Sinusoidal Input

We introduce this analysis method by first considering external input Hi(t) to

individual clusters in a recurrent neural network (Eq. 2.3) with no self-couplings,

si = 0. The external input to each cluster is a sinusoidal function with shared

amplitude I and frequency f across all clusters, and individual phase γi for each

cluster.

d

dt
xi(t) = −xi(t) +

∑
j

Jijφ [xj(t)] +Hi(t)

Hi(t) = I cos [2πft+ γi]

(4.1)

The phase γi is extracted randomly from a uniform distribution in the [0, 2π] range.

The individual phase for each cluster assures that the sinusoidal input does not

introduce global temporal coherence. This corresponds to a situation where the

population of clusters favors a wide range of spatiotemporal phases [14]. In the
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original work, the authors use a slightly different transfer function:

φ [x] =


r0 tanh

[
x
r0

]
, for x ≤ 0

(2− r0) tanh
[

x
2−r0

]
, for x > 0

.

This choice of transfer function is more biologically plausible compared to the more

common choice of tanh[·]. Notice that when the parameter r0 = 1 we recover our

transfer function φ[x] = tanh[x]. We would like to remind the reader that while

negative firing rates are problematic, we can avoid this issue by consider the firing

rate from our transfer function as relative to some background rb:

d

dt
xi(t) = −xi(t) +

∑
j

Jij

(
φ [xj(t)] + rb

)
.

Hence, the different choices for the transfer function in this work does not affect the

analysis method nor the main results.

In order to make a biological equivalence to the spontaneous and ongoing intrinsic

activity recorded in cortical and subcortical areas of the brain, we restrict our analysis

to the the regime of chaotic activity in the recurrent neural network (i.e. g > 1). To

understand the effects of the sinusoidal input on the chaotic activity we can analyze

the average autocorrelation function of firing rate across all clusters:

Cφ(τ) =
1

N

N∑
i=1

〈φ [xi(t)]φ [xi(t+ τ)]〉 .

As discussed in chapter 2, we can gain a thorough understating of the network

dynamics by applying the dynamic mean field theory and considering the large N

limit of clusters in the network. In this limit, the total recurrent input from all
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the other clusters, mathematically represented as
∑

j Jijφ [xj(t)], is approximated

as Gaussian noise η(t). The self-consistent conditions for this approximation are

determined by matching the first two moments of the mean-field variable η(t) and

the network firing rate φ [xi(t)]:

〈η(t)〉 = 〈φ [xi(t)]〉 = 0

〈η(t)η(t+ τ)〉 = g2Cφ(τ)

An analytical expression for the average auto-correlation function in the large N

limit can be determined by treating the intrinsic chaotic dynamics and the oscillatory

dynamics (due to the input stimulus) independently. We write that xi(t) = xchaosi (t)+

xosci (t), where xchaosi (t) satisfies the set of coupled differential equations describing the

intrinsic chaotic dynamics without input:

d

dt
xchaosi (t) = −xchaosi (t) +

∑
j

Jijφ
[
xchaosj (t) + xoscj (t)

]
,

while xosci (t) is a steady state solution that takes account of the sinusoidal input into

the network:

d

dt
xosci (t) = −xosci (t) + I cos [2πft+ γi] .

Such an approach allows to explicitly express the average autocorrelation function

as a contribution from the intrinsic chaotic component and the oscillatory stimulus
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component:

Cφ(τ) =

∫ 2π

0

dγ

2π

∫
Dz3

∫
Dz1φ

[√
Cx(0)− |Cx(τ)|z1

+ sgn (Cx(τ))
√
|Cx(τ)|z3

I√
1 + (2πf)2

cos[γ]

]

×
∫
Dz2φ

[√
Cx(0)− |Cx(τ)|z2 +

√
|Cx(τ)|z3

+
I√

1 + (2πf)2
cos [2πft+ γ]

]
,

where z1, z2, and z3 are Gaussian random variables with mean zero and unit variance,

while Dzi = dzi exp[−z2
i /2]/

√
2π. For more details see K.Rajan et. al. [14]

The interplay between the intrinsic chaotic activity and the oscillatory external

input seen in the analytical expression for the average autocorrelation function is also

observed in the network dynamics. Depending on the strength of the external input,

the network dynamics undergoes a transition from chaos to complete entrainment.

We are already familiar with the chaotic state for the network with no input

(I = 0, illustrated in Fig 17 a)). The firing rate fluctuations are irregular and the

autocorrelation function decays from its initial value Cφ(0) to zero. This interplay

manifests in the average power spectrum density as well, which in the chaotic

regime, exponentially decays as a function of increasing frequency and does not show

any spikes. The suppression of power density for large frequency fluctuations is a

characteristic of a chaotic behavior [14].

In the case of a sufficiently strong input (large I ≥ Ic, illustrated in Fig 17

c)), the firing rate of the clusters oscillates at the frequency of the external input.

These oscillations are also present in the autocorrelation function. In this regime, the

amplitudes of the oscillations in the autocorrelation function are equal and match its
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Figure 17. Network dynamics and transition from chaos to driven activity as a function of
external signal amplitude I. a) Chaotic RNN with no input (I = 0). b) Interplay between
chaos and signal in an RNN with sinusoidal input (I = 0.6, f = 20 Hz). c) Driven(no chaos)
RNN with sinusoidal input (I = 1.2, f = 20 Hz). In all cases (a,b,c), from left to right: the
normalized average autocorrelation function, power spectrum density, and the firing rate
dynamics.
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initial value Cφ(0). This indicates that the external stimulus dominates the network

by fully suppressing the intrinsic chaos. This new phase in the network is seen

in the power spectrum density of the firing rate dynamics. In the driven regime,

the network power is focused only at the frequency f of the input signal and its

following harmonics. The broad decaying power spectrum seen in the chaotic regime

is completely gone.

When the network is driven by a weaker signal (0 < I < Ic, illustrated in

Fig 17 b)), we observe an convoluted dance between the two phases, an interplay

between chaos and driven activity. The firing rate shows periodic fluctuations on

top of a chaotic background. This also manifests in the autocorrelation function,

which oscillates at the frequency of the input signal at large time-lags τ , however

the amplitude of these oscillations is smaller compared to the initial value of

the autocorrelation function Cφ(0). This driven-chaos interplay is also present in

the power spectrum, where we can identify the broad decay for large frequencies

characteristic to chaos and also peaks at the input frequency f and its harmonics.

A useful way to quantify this transition is through the autocorrelation function.

In the chaotic regime (with no external input), the initial amplitude of the averaged

autocorrelation function Cφ(0) describes the total variance of the firing rates of all

clusters in the network and the contribution from the external signal is null. In

the driven regime (no chaos), the initial amplitude of the averaged autocorrelation

function Cφ(0), along with the amplitude of all the subsequent oscillations, quantify

the external sinusoidal signal introduced in the network. The contribution from

the intrinsic chaos is null in this regime. In the intermediate regime, the initial

amplitude of the averaged autocorrelation function Cφ(0) is a combination of the

chaos present in the network and the external stimulus. Meanwhile at larger values
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Figure 18. a) Average autocorrelation function of an RNN with sinusoidal input. The
shape of the autocorrelation function is quantified as an interplay of the variance due to the
intrinsic chaos σ2

chaos and the variance due to the sinusoidal external input σ2
osc. b) Phase-

transition curves showing the critical input amplitude Ic that separates the chaotic regime
from the driven regime as a function of frequency, for the following network parameters
g = 2.0 and N = 5000. This figure was adapted from K.Rajan et.al. [14]

of the delay Cφ(τ > 0), the contribution from the intrinsic chaos drops to zero

leaving only the contributions from the external signal. Hence, we divide the network

response into a chaotic and a oscillatory component. We write the initial amplitude

of the averaged autocorrelation function as a sum of the variance due to the intrinsic

chaos and the variance due to the sinusoidal input: Cφ(0) = σ2
chaos + σ2

osc. The

variance due to external signal σ2
osc also equals to the amplitude of the oscillations

at large delay Cφ(τ > 0), as illustrated in Fig. 18 a). Under this representation, the

complete entrancement of chaos happens when Cφ(0) = σ2
osc. This condition allows

us to determine the minimal values of the network parameters I and f required to

completely suppress the chaotic fluctuation in a network. The transition lines for a

network with gain g = 2.0 is shown in Fig. 18 b).
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4.2 RNN: Heterogeneous Self-Couplings with Sinusoidal Input

We apply the analysis method described in the previous section to a recurrent

neural network with heterogeneous timescales. We consider a network of N clusters

with two self couplings s1 and s2 and equal ratios of sub-populations n1 = n2. Each

cluster receives the same external sinusoidal input with individual phase Hi(t) =

I cos [2πft+ γi]. As before, the phase γi for each cluster is random and extracted

from a uniform distribution in the [0, 2π] range. In the limit of a large number of

clusters N � 1, the dynamics of the recurrent neural network can be described by a

set of two coupled differential equations:

d

dt
x1(t) = −x1(t) + s1φ [x1(t)] + η(t) + I cos [2πft+ γ1]

d

dt
x2(t) = −x2(t) + s2φ [x2(t)] + η(t) + I cos [2πft+ γ2] ,

where η(t) can be interpreted as Gaussian noise whose moments are matched in the

mean field approximation, 〈η(t)〉 = 0 and 〈η(t)η(t+ τ)〉 = g2Cφ(τ). This indicates

that each sub-population responds differently to the same external input, therefore

it should have its own phase-transition curve. As before, we determine the critical

amplitude and frequency pair for the transition in each sub-population, by comparing

the peaks of the average autocorrelation function for large delays to its initial value.

The critical pair (Ic, fc) is quantified as the minimum amplitude and frequency at

which the ratio between the peaks Cφ(0)/σ2
osc = 1. The phase-transition curve

for larger values of si will occur at higher signal amplitudes. The phase transition

curve along with the network dynamics, average autocorrelation function, and power

spectrum density per sub-population are shown in Fig. 19.

By studying the phase-transition curve in the network with zero self-couplings,

Fig. 18, we observe the presence of a resonant frequency at which the intrinsic chaotic
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Figure 19. Phase transition from chaos to driven RNN with sinusoidal input per sub-
population s1 = 1.0, s2 = 4.0. Below, from left to right we see the average autocorrelation
functions, power spectrum density and firing rate for each sub-population (blue for s1, and
red for s2). In the brown we have the RNN with 2 self-couplings driven by a sinusoidal
signal with I = 0.5 and f = 7 Hz; pink box: sinusoidal signal with I = 3.0 and f = 5 Hz;
cyan box: sinusoidal signal with I = 5.5 and f = 3 Hz.
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activity is entrained by an external signal with the smallest amplitude. We could not

detect such a resonant frequency in a network with two timesclaes.

4.3 Time-Dependent Broadband Input

We further investigated the response of our network with two different self-

couplings s1 < s2 to a more complex external input. We drove the network with

a broadband stimulus Hi(t) = I
∑L

l=1 cos[2πflt + γi], consisting of a superposition

of L sinusoidal functions at different frequencies fl in the [0, 200] Hz range, random

phases γi, and shared amplitude I.

We observed that each sub-population responds differently to certain ranges

of frequencies. The sub-population with a slow intrinsic timescale, clusters with

self-coupling s2, prefer to concentrate more power around smaller frequencies of the

broadband stimulus. Meanwhile, the sub-population with a fast intrinsic timescale,

clusters with self-coupling s1, prefer to concentrate more power around larger

frequencies of the broadband stimulus. This behavior is observed by comparing

the peaks in each sub-population at the stimulus frequencies of the power spectrum

density in Fig 20 a).

We quantify this effect through a spectral modulation index m(f). This

modulation index is computed at every frequency of the broadband stimulus and

represents the ratio between the difference of the power spectrum peak amplitude of

each sub-population and their sum:

m(f) =
P2(f)− P1(f)

P2(f) + P1(f)
, (4.2)

where Pi(f) is the power spectrum amplitude at frequency f of the sub-population

with self-coupling si. A positive value for m(f) indicates a stronger entrainment

at frequency f in the sub-population with self-coupling s2 compared to the s1 sub-
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Figure 20. Network response to broadband input. (a) Power spectrum density of a network
driven by time-dependent input comprising a superposition of 11 sinusoidal frequencies (see
main text for details). Maroon and navy curves represent average power spectrum density
in s1 and s2 sub-populations, respectively; circles indicate the peak in the power spectrum
density amplitudes at each frequency; amplitude I = 0.5; N1 = N2 = 1000, g = 3.0, s1 = 1,
and s2 = 4. (b) Modulation index, Eq. 4.2, of the power spectrum density amplitudes as a
function of frequency in networks with s1 = 1 and various s2. The green circles mark the
cutoff frequency fc where the modulation index changes sign. (c) Cutoff period, 2πω−1

c ,
as a function of self coupling s2 for different input amplitudes. An inversely proportional
relation between the cut off period and the amplitude of the broadband signal is present.
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population. A negative value of m(f), indicates the opposite, a stronger entrainment

at frequency f in the sub-population with self-coupling s1 compared to the s2 sub-

population. The spectral modulation index for the frequency range of the input signal

is shown in Fig 20 b).

We observe a consistent behavior of the spectral modulation units across the

frequency range of the broadband input for different values of s2. The crossover of

m(t) from positive to negative values, as the frequency increases, indicates that the

low frequency components of the input entrained the slow sub-population s2, while the

fast components, large frequencies, of the input predominantly entrained the fast sub-

population s1. The frequency at which this crossover happens is called the crossover

frequency fc, from which we can determine the crossover period as ω−1
c = 1/(2πfc).

The dependence of the crossover period ω−1
c on the self-coupling of the slow

sub-population s2 (the self-coupling of the fast sub-population was fixed to s1 =

1.0) is strong at for external stimuli with low amplitude and it begins to weaken

as the amplitude increases. This dependence relationship illustrated in Fig 20 c), is

consistent with the suppression of chaos (the transition from a a chaotic to a driven

network regime) for signals with larger amplitude as seen in the previous section.
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CHAPTER V

SCHEMA THEORY AND MULTIPLE TIMESCALES

This chapter presents a potential path for the future of this project. Here, we

introduce the framework behind Schema Theory in more details and also discuss how

to computationally integrate this theoretical framework with our recurrent neural

network with heterogeneous timescales.

5.1 Schema Theory

A lot of behaviors of living organisms can be structurally decomposed into a series

of simple actions known as primitives. Primitives can be thought of as generalized

actions segments that can be reused in different situations. Consider the simple

action of grabbing an object, i.e. the grabbing primitive. This primitive can be

used in different scenarios, independent of the object, or the sequence of actions

that preceded or followed it. For example the grabbing primitive can be used when

drinking some coffee (grabbing the cup), or for climbing a latter (grabbing the latter

for support).

Schema theory is the concept that complex behaviors can be broken down into

primitives. A schema is what is learned (or innately given) about some aspect of

the world; it combines knowledge with the process of applying it [24]. Generally,

schemas can be of two types: perceptual schemas and motor schemas. Perceptual

schemas are structured internal representations of objects or images acquired through

the sensory organs (ex: the coffee detection schema). Motor schemas, on the other

hand, are easier to comprehend. They can be thought of as memory representations

of adaptable parameters that define specific motor actions (ex: grabbing an object

schema). Perceptual and motor schemas are not necessarily independent and can
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affect each other, for example the coffee detection perceptual schema can activate

grabbing an object motor schema.

It is important to make the distinction between the concept of a schema, which

is an abstraction over a set of similar circumstances, and the concept of activating

a schema, which is a neural computation that determines the similarities between

the current situation and pre-existing concepts of similar circumstances and can also

generate an appropriate response [24].

We have talked about schemas as an abstraction phenomena, and now we want

to build a bridge from a theory to an implementation framework. This can be done

by studying the relationship between schemas. In his studies of memory recollections,

F.C.Bartlett [26] determined that in order to encode and identify a specific event

within a schema-based structure it is necessary to find the similarities between a

specific event and the pre-existing general schema, and also to identify how this

specific event differs from the generalized version. Another point to consider is that

schemas can be nested structures, meaning that more complex schemas are made

out of simpler schemas, and so on, until we reach the simplest structures, primitives.

Computationally, we can interpret a schema as a knowledge structure described by a

set of relevant parameters. The values of these parameters determine the relationship

between schemas, thus allowing for the inhibiton or activation of others schemas. To

illustrate these concepts, consider the prey-predator detection schema. At the lowest

level, there is an elementary features detection schema that expresses parameters like

orientation, color, texture, margins. The value of these parameters can activate more

higher-level schemas that can parametrically express more complex structures like

body parts or movement. These new schemas can activate or inhibit even higher-level

schemas. For example the identification of pray-like parameters activates the catch-
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and-feed schema and inhibits a run-away response. Alternatively, the identification

of predator-like parameters inhibits the catch-and-feed and activates the run-away

response.

Such a relationship creates some computational requirements. First, schemas can

work together by reinforcing each other, and secondly, schemas can be competitive as

well. A predator can have different responses to a prey-detection schema depending

on the type of prey. This last point requires a mechanism to ensure that at any time,

the behavior is determined by only one schema [24].

Each schema, within the sequence of hierarchical schemas is associated with an

activation function that can vary between zero and one. The value of the activation

function at value t+ 1 depends on the inhibitory or excitatory inputs to the schema

during the interval of time between timesteps t and t+1. A constant excitatory input

will drive the activation value to one, meanwhile sustained inhibitory input will drive

it to zero. Mathematically, we can determine the activation value Aα of a particular

schema α at time t+ 1 as

Aα(t+ 1) = σ

[
pσ−1 [Aα(t)] + Iα(t)

]
,

where σ[x] = 1/(1 + exp[−(x+ b)]) is the usual sigmoid function with bias b. The

equation above can be generalized as a recurrence relationship:

Aα(t+ 1) = σ

[
t∑
i=0

piIα(t− i)

]
.

The parameter p ∈ [0, 1] is known as the persistence and it describes the sensibility

of the activation value to the the input Iα(t) relative to prior inputs. Low values of

the persistence parameter favors the dominance of the input in determining Aα(t),
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which manifests as fast fluctuations of the schema activation value. A more physical

interpretation of p is as the parameter describing the temporal granularity of the

system (i.e. the time interval in ms between timestep t and t + 1). When p is close

to 1, the time interval is small and and the system is continuous, while a p close to 0

describes a large time interval causing the activation value to be updated less often

thus risking overshooting or undershooting the activation value at each timestep [55].

The term Iα(t) is the total input to the schema. It contains contributions from

the surrounding schemas, but also can include more complicated contributions as top-

down, bottom-up excitations, lateral inhibitions, self-activation, and noise. [56, 57]

While we can build a good understanding of the relationships between schemas,

the underlying neural mechanism that governs the way in which the external stimuli

are broken down into primitives and how these primitives are flexibly sequenced into

higher-level schemas is currently unknown.

We propose a brain-inspired neural architecture mediated by temporal functional

hierarchies (multiple timescales) able to flexible sequence primitives. In previous

studies, a hierarchical structure was hardcoded into the modular structure of

the computational model. The primitives represented lower modules, while

the sequencing of tasks was implemented via higher modules within an ad-hoc

architecture [58, 59]. An advantage of hardcoding a hierarchical structure during

learning is that one module will not affect other modules. However, such an approach

creates a conflict between the generalization of similar sequences and the segmentation

of primitives. This generalization-segmentation conflict becomes evident when

considering a set of complex behaviors that have an overlap of primitives. Consider

the schema of making a cup of instant coffee with milk and sugar illustrated in

Fig. 21. If we were to hardcode the sequence of lower-level schemas, then we would
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get multiple, redundant, versions of the same schema: in one version one might first

pour the milk, then the coffee, then the sugar; in another version one might pour

the coffee, then the sugar, and then the milk. Hardcoding schemas doesn’t offer a

flexibility of sequencing primitives, is not a generalize method and thus requires lots

of memory space for storing every possible primitive.

As an alternative to hardcoding the schema architecture and solving the

generalization-segmentation conflict, we propose the use of the recurrent neural

network with mutiple timescales presented in the previous chapters. The smaller

clusters with short timescales will engage the primitives and low-level schemas

meanwhile the larger clusters with longer timescales will have the role of sequencing

primitives into more complex tasks, or higher-order schemas. We have illustrated

this concept for the preparing a coffee schema in Fig. 21. Ours is a novel approach

since we do not hardcode this functional hierarchy into the network. Instead, it is an

emergent property of the network’s dynamics and learning.
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Figure 21. The complex behavior of preparing a cup of instannt coffee with milk and sugar
can be broken into serveral schemas, ranging from low- to high-level schemas. The low-
level schemas are governed by the fast units (short timescale clusters s1) in our RNN. The
intermediate-level schemas are governed by the slower units (intermediate timescale clusters
s2) in our RNN. Meanwhile the slowest units (longest timescale clusters s3) keeps track of
the highest-level schema and its completion.
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CHAPTER VI

CONCLUSION

We demonstrated a new robust and biologically plausible network mechanism

whereby multiple timescales emerge across units with heterogeneous self-couplings. In

our model, units are interpreted as neural clusters, or functional assemblies, consistent

with experimental evidence from cortical circuits [60, 61, 62, 63, 64] and theoretical

modeling [65, 66]. We found that the neural mechanism underlying the large range

of timescales is the heterogeneity in the distribution of self-couplings (representing

neural cluster strengths).

A heterogeneous distribution of cluster sizes, in turn, generates a reservoir of

timescales.

Several experimental studies uncovered heterogeneity of timescales of neural

activity across brain areas and species. Comparison of the population-averaged

autocorrelations across cortical areas revealed a hierarchical structure, varying from

50 ms to 350 ms along the occipital-to-frontal axis [6]. Neurons within the same

area exhibit a wide distribution of timescales as well. A heterogeneous distribution

of timescales (from 0.5 s to 50 s) was found across neurons in the oculomotor system

of the fish [11] and primate brainstem [67], suggesting that timescale heterogeneity

is conserved across phylogeny. During periods of ongoing activity, the distribution of

single-cell autocorrelation timescales in primates was found to be right-skewed and

approximately lognormal, ranging from 10 ms to 10 s [10]. Single neuron activity

was found to encode long reward memory traces in primate frontal areas over a wide

range of timescales up to 10 consecutive trials [9]. In these studies, autocorrelation

timescales where estimated using parametric fits, which may be affected by statistical

biases, although a new Bayesian generative approach might overcome this issue [68].
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In this study, we estimated timescales nonparametrically as the half-width at half-

maximum of the autocorrelation function. In our biologically plausible model based

on a spiking network with cell-type specific connectivity, the distribution of timescales

was in the range between 20 ms and 100 s, similar to the range of timescales observed

in experiments [11, 67, 10]. Moreover, the distribution of cluster sizes in our model is

within the 50 − 100 neurons range, consistent with the size of functional assemblies

experimentally observed in cortical circuits [60, 64]. A fundamental new prediction

of our model, to be tested in future experiments, is the direct relationship between

cluster strength and its timescale.

Previous neural mechanisms for generating multiple timescales of neural activity

relied on single cell bio-physical properties, such as membrane or synaptic time

constants [69]. In feedforward networks, developmental changes in single-cell

conductance can modulate the timescale of information transmission, explaining the

transition from slow waves to rapid fluctuations observed in the developing cortex [70].

However, the extent to which this single-cell mechanism might persist in presence of

strong recurrent dynamics was not assessed. To elucidate this issue, we examined

whether a heterogeneous distribution of single-unit integration time constants could

lead to a separation of timescales in a random neural network (see Appendix B for

details). In this model, half of the units were endowed with a fast time constant

which we held fixed, and the other half with a slow time constant, whose value

we varied across networks. We found that, although the average network timescale

increased proportionally to the value of the slower time constants, the difference in

autocorrelation time between the two populations remained negligible. These results

suggest that, although the heterogeneity in single-cell time constants may affect the

dynamics of single neurons in isolation or within feedforward circuits [70], the presence
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of strong recurrent dynamics fundamentally alter these single-cell properties in a

counterintuitive way. Our results suggest that a heterogeneity in single cell time

constants may not lead to a diversity of timescales in presence of recurrent dynamics.

Our results further clarified that the relationship between a cluster’s self-coupling

and its timescale relies on the strong recurrent dynamics. This relationship is absent

when driving an isolated cluster with white noise external input (Fig. 16). Indeed, the

mechanism linking the self-coupling to the timescale only emerged when driving the

unit with a mean field whose color was self-consistently obtained from an underlying

recurrent network of self-coupled units.

Previous models showed that a heterogeneity of timescales may emerge

from circuit dynamics through a combination of structural heterogeneities and

heterogeneous long-range connections arranged along a spatial feedforward gradient

[71, 72]. These networks can reproduce the population-averaged hierarchy of

timescales observed across cortex in the range of 50−350 ms [6, 72]. A similar network

architecture can also reproduce the heterogeneous relaxation time after a saccade,

found in the brainstem oculomotor circuit [11, 67], in a range between 10 − 50 s

[73, 74]. This class of models can explain a timescale separation within a factor of

10, but it is not known whether they can be extended to several orders of magnitude,

as observed between neurons in the same cortical area [10]. Moreover, while the

feedforward spatial structure underlying these two models is a known feature of the

cortical hierarchy and of the brainstem circuit, respectively, it is not known whether

such a feedforward structure is present within a local cortical circuit. Our model, on

the other hand, relies on strong recurrent connectivity and local functional assemblies,

two hallmarks of the architecture of local cortical circuits [60, 61, 62, 63, 64]. Other

network models generating multiple timescales of activity fluctuations were proposed
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based on self-tuned criticality with anti-hebbian plasticity [75], or multiple block-

structured connectivity [76].

In our model, the dynamics of units with large self-couplings, exhibiting slow

switching between bistable states, can be captured analytically using the universal

colored noise approximation to the Fokker-Planck equation [52, 53]. This is a

classic tool from the theory of stochastic processes, which we successfully applied

to investigate neural network dynamics for the first time. This slow switching regime

may underlie the emergence of metastable activity, ubiquitously observed in the

population spiking activity of behaving mammals [77, 78, 79, 80, 74, 81, 82].

What is the functional relevance of neural circuits exhibiting a reservoir of

multiple timescales? The presence of long timescales deeply in the chaotic regime is a

new feature of our model which may be beneficial for memory capacity away from the

edge of chaos [83]. Moreover, we found that, in our model, time-dependent broadband

inputs suppress chaos in a population-specific way, whereby slow (fast) subpopulations

preferentially entrain slow (fast) spectral components of the input. This mechanism

may thus endow recurrent networks with a natural and robust tool to spatially demix

complex temporal inputs [22] as observed in visual cortex [84]. Third, the presence of

multiple timescales may be beneficial for performing flexible computations involving

simultaneously fast and slow timescales, such as in role-switching tasks [21]; or as

observed in time cells in the hippocampus [85, 86]. A promising direction for future

investigation is the exploration of the computational properties of our model in the

context of reservoir computing [87] or recurrent networks trained to perform complex

motor and cognitive tasks [88].
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APPENDIX A

FOKKER PLANK FORMALISM

The Fokker Plank formalism is used to describe a stochastic process. This

formalism has been found useful in physics to study rotational and translational

motion of a structured Brownian particles [89], in chemistry to describe complex

chemical reaction through a protein folding model [90] and in neuroscience to describe

the coupled behaviors of ion transport and channel conformation under an applied

membrane potential [91]. In this work we used the Fokker Plank formalism to describe

the statistical properties of clusters of neurons in a double-well potential under the

influence of colored noise.

In this abstract we will provide a review of the general Fokker Plank formalism.

In a stochastic process where the variable x(t) describes the system, the probability

distribution p(x, t) obeys the Fokker plank equations:

∂

∂t
p(x, t) = − ∂

∂x
(F (x)p(x, t)) +D

∂2

∂x2
p(x, t), (A.1)

where F (x) is the force driving the system, and D is the diffusion coefficient. One

way to solve the the Fokker Plank equation is to consider it as a Schrodinger type

equation. This allows us to use operator techniques from quantum mechanics to find

the p(x, t), which furthers allow to obtain averages of macroscopic values through

integration [92].

The solution to this equation can be obtained through the separation of variables.

The probability distribution can be written as a product of a time dependent function

T (t) = exp{(−t|Λn|)} and a position dependent function. The position dependent
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function is the solution to the Schrodinger type equation:

− 1

2

[
F (x)2

2D
+

∂

∂x
F (x)

]
Ψn(x) +D

∂2

∂x2
Ψn(x) = Λnψn(x), (A.2)

where the eigenfunctions Ψn(x) form an orthonormal basis, while Λn are eigenvalues.

Notice that the left hand side of the equation above resembles the Hamiltonian

operator with the terms in square brackets playing the role of an effective potential

Ueff

Ueff (x) =
1

2

[
F (x)2

2D
+

∂

∂x
F (x)

]
(A.3)

Thus, the probability distribution function can be written in terms of

eigenfunctions Ψn(x) and eigenvalues Λn

p(x, t) = ψ0(x)
∑
n

anΨn(x) exp{[−t|Λn|]}, (A.4)

where an = Ψn(x0)/Ψ0(x0). The initial condition x0 ≡ x(t = 0) is a delta function

located at x0, and Ψ0(x0) is the equivalent of the ground state to Eq. A.2.

A.1 Symmetric Double Well Potential

For clarity, we provide the example for finding the probability distribution

function p(x, t) for a system that can be related to a symmetric double well effective

potential: []

Ueff (x) =
1

2
(|x| − α)2 +

√
D

2
. (A.5)
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Figure A.1. An illustration of the effective potential in Eq. A.5. The two potential wells
are centered at ±α, where α = 2.0 and the diffusion parameter D = 0.5.

The shape of this potential for α = 2 and D = 1 is illustrated in Fig. A.1. To find

the driving force F (x) we solve Eq. A.3 for the given potential Ueff(x):

F (x) =

−
√

2D(x− α), for x > 0

−
√

2D(x+ α), for x < 0
.

Notice that for x = ±α, the force term F (x) has two minima. This shows us the

location of the minima in the potential function.

To find the spatial component of the probability distribution p(x, t), we use

rewrite Eq. A.2 as

− 1

2

[
(|x| − α)2 +

√
2D
]

Ψn(x) +D
∂2

∂x2
Ψn(x) = Λnψn(x). (A.6)
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For simplicity we chose the diffusion parameter D = 0.5. The equation above is

analogous to the Schrodinger equation for a quantum double oscillator whose solutions

are known: [93]

Ψn(x) =
1

Z

 Dn

(√
2(x− α)

)
, for x ≥ 0

±Dn

(
−
√

2(x+ α)
)
, for x < 0

, (A.7)

where Dn is the parabolic cylinder function, and Z is a normalization constant. The

eigenvalues of the corresponding Ψn(x) are Λn = −(n+ ε), where a infinitesimal shift

ε in the potential is necessary in order ensure that the ground state eigenvalue is

Λ0 = 0).

The probability density function p(x, t) becomes:

p(x, t) = Ψ0(x)2 +
Ψ0(x)

Ψ0(x0)

∑
n>0

Ψn(x0)Ψn(x) exp{[−t|Λn|]}.
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APPENDIX B

NEURON TIME CONSTANT

An assumption that we make for the model class of rate recurrent neural network

from Eq. 2.3, is that all clusters of neurons share the same time constant, θ = 1 ms.

The time constant measures the rate of change of neuron’s membrane potential.

Mathematically, it is represented as θ = RmCm, where Rm is resistance and Cm is

the capacitance across the membrane. The resistance is determined by the density

of ion channels, while the capacitance depends on the lipid layer in the neuron’s

membrane. The time constant is the time it takes the membrane’s potential to

decay to approximately 37 % of its initial value.[94] Therefore, one can hypothesize

that multiple timescales can arise in a network of neurons with heterogeneous time

constants.

To examine such a possibility, we consider the RNN model from Eq.2.3 with no

self-coupling term, si = 0, where each neuron can have its own time constant θi:

θi
d

dt
xi(t) = −xi(t) + g

∑
j

Jijφ [xj(t)] . (B.1)

Following the same strategy as in the case with self-couplings, we consider the

scenario when our network contains two equal populations of neurons (N1 = N2)

with time constants θ1 and θ2. The connectivity matrix J is extracted from a normal

distribution with mean µ = 0 and variance σ2 = 1/N . The timescales, τi, present in

the system are quantified as the width of the autocorrelation function at midpoint.

Given a homogeneous time constant θ1 = θ2 we recover the same dynamics as seen

in Eq.2.3, where only one timescale is present in the system, Fig. B.1a(i). When

considering distinct time constant values θ1 6= θ2, we observe a new timescale emerging

in the network, Fig. B.1a(i-v). While the overall timescales, τi, increase with larger
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time constants θi, the timescale separation between each population, τ2/τ1, remains

minimal even for large time constant ratios θ2/θ1, Fig. B.1b.

Figure B.1. Timescale analysis for an RNN with two time constants θi, Eq. B.1, governing
equal populations of neurons (N1 = N2 = 1000) and gain g = 2.5. a) Average
autocorrelation function for each population. The insert shows the dynamics of individual
neurons from each population: blue for neurons with timeconstant θ1 and green for neurons
with timeconstant θ2. In the networks considered here, θ1 = 0.1 ms is kept constant while:
θ2 = 0.1 ms (i), θ2 = 1.0 ms (ii), θ2 = 10.0 ms (iii), θ2 = 100.0 ms (iv), θ2 = 1000.0 ms (v).
b) Population timescale ratio τ2/τ1 for fixed timeconstant θ1 = 0.1 ms and varying θ2.

Hence, we conclude that heterogeneous timeconstants is not an efficient

mechanism to generate discrete timescales that range over multiple orders of

magnitudes.
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APPENDIX C

ESCAPE RATE: KRAMER’S FORMULA

The problem that we want to solve is determining the rate at which a Brownian

particle escapes from a potential well. For that, we consider a collection of Brownian

particles located in a well of the potential U(x) (Fig. C.1). Our expectation is that

the particles will reach a close to equilibrium state, however some of the particles will

cross the potential barrier and slowly leak out. To determine the escape rate we start

from the Langevin equation for the particles in the overdamped regime (m d
dt
v(t) = 0):

γ
d

dt
x(t) = − ∂

∂x
U(x) + η(t). (C.1)

We can describe the probability density p(x, t) of the particles in the potential

U(x) through the Fokker Plank equation (Appendix A)

∂

∂x
p(x, t) =

∂

∂x

[
1

γ

(
∂

∂x
U(x)

)
p(x, t) +D

∂

∂x
p(x, t)

]
= − ∂

∂x
J(x, t),

(C.2)

where the current term J(x, t) can be rewritten as:

J(x, t) = −1

γ

(
∂

∂x
U(x)

)
p(x, t)−D ∂

∂x
p(x, t)

= −D exp

[
−U(x)

Dγ

]
∂

∂x

(
exp

[
U(x)

Dγ
p(x, t)

])
.

(C.3)

At equilibrium, the current term will be zero and probability density function is time

independent. We can further rewrite the equation above as:

∂

∂x

(
exp

[
U(x)

γD

]
p(x, t)

)
= − J

D
exp

[
U(x)

γD

]
.
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Figure C.1. Potential energy as a function of reaction coordinate. The potential function
has a stable minimum at x = A, and a barrier at x = B. In order to escape, a particle must
overcome the potential barrier and move from point x = A to x = C.

We proceed by integrating this expression from x = A to x = C, while assuming

that the particles are approximately at equilibrium, at the bottom of the well A in

U(x). In this regime, there will be a small current across the potential barrier, thus

p(x = C) is very small and the probability density function can be approximated as

being time independent. The small current becomes

J =
D exp

[
U(x)
γD

]
p(A)∫ C

A
exp

[
U(x′)
γD

]
dx′

,

while the probability distribution function

p(x) = p(A) exp

[
−U(x)− U(A)

γD

]
p(x, t).
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If we consider the escape rate r of a particle as the conditional probability of

escape per unit time given that the particle is located in the well x = A, and let P

be the probability of the particle being inside the well, the current can be written as

the product between these quantities J = rP . The probability of being inside the

potential well can be determined by integrating around the well:

P =

∫ a+∆

a−∆

p(x)dx

= p(A) exp

[
U(A)

γD

] ∫ a+∆

a−∆

exp

[
−U(x′)

γD

]
dx′

≈ p(A)

(
2πDγ

|U ′′(A)|

)1/2

.

To obtain the last line, we Taylor expanded around the point x = A since the

integrand is peaks at this point. Similarly, we can expand around the point x = B to

approximate the denominator in the formula for the current J .

∫ C

A

exp

[
U(x′)

γD

]
dx′ ≈

(
2πDγ

|U ′′(B)|

)1/2

exp

[
U(B)

γD

]
.

Using the approximations above, we get an expression for the r = J/P

r =
1

2πγ

(
U
′′
(A)U

′′
(B)
)1/2

exp

[
−U(B)− U(A)

γD

]
.

This formula is known as Kramer’s escape rate formula. The quantity U(B)− U(A)

describes the height of the barrier that the particle needs to overcome in order to

escape. The escape rate falls exponentially with the barrier height.
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