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DISSERTATION ABSTRACT

Saumya Biswas

Doctor of Philosophy

Department of Physics

December 2021

Title: Hamiltonian Formulation for Single/Few Photon Detection

Fully quantum mechanical models for device models of single photon 

detectors have recently been developed. Detection of single/few photons in both 

inanimate devices and biological eyes have the universal structure of absorption, 

amplification and measurement s tages. Previous models succeeded in developing 

definite models for all stages but the amplification st age. We  write out explicit 

Hamiltonians that can describe such irreversible changes and also measurement 

induced decoherence. The time evolutions created by these Hamiltonians

are solved in the discrete part of the Hilbert space and the desired dynamics

are verified. Previous proposals of minimum noise amplification schemes are 

completed with specific Hamiltonians presented in this d issertation. A  new kind 

of problem where a molecule absorbs two photons sequentially is investigated. The 

proposed Hamiltonian method is matched with a classic method in the field called
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“generalized density matrix operator method” to calculate the probabilities for such

sequential absorption of photons.

This dissertation contains previously published and unpublished material.
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CHAPTER I

INTRODUCTION

Everything we call real is made of

things that cannot be regarded as

real.

If quantum mechanics hasn’t

profoundly shocked you, you

haven’t understood it yet.

Niels Bohr

Are not rays of light very small

bodies emitted from shining

substances?

Sir Isaac Newton

1.1. Overview and Glossary

Chapter 1 explains the motivation behind writing the entire photodetection

process with the help of a Hamiltonian. The discussion has been kept mostly

nontechnical.

Chapter 2 reviews some of the theoretical formalisms used in the dissertation.

The discussion is technical and is helpful for a smooth read of chapter 3 and 4.

Chapter 3 presents a simple Hamiltonian that embodies the physics of a

typical single photon detector in its entirety. The evolution problem is solved in

the Heisenberg picture for elucidation of the magnitude of gain and noise.
1



Chapter 4 presents the problem of two photon detection with one absorber

molecule.

Chapter 5 presents some novel schemes for amplifying weak signals,

computations of operator evolution in Heisenberg picture with time dependent

Hamiltonians.

Appendix A discusses the general structure of an operator evolution in the

Heisenberg picture. Appendix B discusses further Hamiltonian models that can

facilitate amplification and connect with available measurement theories.

A glossary of terms is presented in the table 1.1 that are not necessarily

technical, but have special meanings in the context of single photon detection.

1.2. What happens in a quantum measurement?

The trademark of nature’s departure from classical behaviour is undoubtedly

quantum superposition. Our perception or knowledge of the physical world is

subject to the measurement induced wavefunction collapse. Knowledge is limited

to the instant of measurement. And the quantum world meets the classical one

through the measurement. Erwin Schrödinger’s gedanken experiment of a cat

simultaneously alive and dead inside a box is a cliché, far too well known to be

repeated here. It has invited interesting accounts from physicists and authors

in the field. Maximilian Schlosshauer ([2]) in his book “Decoherence: and the

quantum-to-classical transition”, writes “no other example has illustrated this

problem of the quantum-to-classical transition more poignantly and drastically

than Schrödinger’s infamous cat, which appears, by the verdict of quantum

theory, to be doomed into a netherworldy superposition of being alive and dead”.

It is widely accepted that measurement yields classical readout results from a

2



Term Meaning
Amplification (non-unitary) The irreversible growth of a microscopic signal

into a classical macroscopic signal.
Amplification (unitary
quantum amplification) The unitary evolution (between final

and initial time) equation for a quantum
mechanical “signal” operator where it is
magnified by some gain and corrupted by
the addition of noise operators during the
evolution.

Continuous measurement Monitoring of the “meter” through a coupling
to a bath of large degrees of freedom.
Information flows from the “meter” to the
bath.

Continuum Solutions of the Schrödinger equation (without
any imposed boundaries) that carry a nonzero
probability current are continuum states.

Decay Rate The uniform (Markovian) coupling of discrete
states to the continuum. The rate at which a
discrete state decays into a continuum.

Discrete State Solutions of the Schrödinger equation confined
by a boundary (higher potential than energy
eigenvalue) that carry zero probability current.

Electron Shelving A method where macroscopic fluorescence is
created with laser from a molecule when it is
in a particular state (shelving state).

Filtering (frequency) Sifting through the optical scatterers.
Reflection and transmission coefficient
dictates whether a particular frequency of
electromagnetic wave passes through or not.

Minimum noise amplification Quantum mechanical amplification of an
operator with addition of minimal noise [1].

POVM Positive Operator Valued Measure: A set of
operators that completely specify a quantum
measurement process.

Reflection coefficient Ratio of the reflected probability current and
incident probability current by a scatterer.

Shelving state The particular state of the absorber molecule
that drives the amplification mechanism.

TABLE 1.1. Glossary of terms.

3



quantum observable. The dephasing that follows through measurement eats

away the quantum attributes of a system and can render the state completely

classical. Since any measurement device we use such as a photodetector can itself

be considered a quantum object, it is in turn performed a measurement on by

the circuity it has. The circuitry, in turn, is measured by the dial or display of

the device and our eyes perform a measurement of the dial/display. This series

or chain of measurement devices is referred to as the “von Neumann chain”

and we can cut it off (“Heisenberg’s cut”) at the final link (of our choice) to the

measurement device whose measurement readout we consider to be classical.

The chain can extend at best to the human mind which records the information

gained from neurological impulses from our eyes. A subsequent observer cannot be

imagined which can find our brain to be in a quantum superposition state. Human

consciousness is not subject to quantum superposition ambiguity, our minds have

an unambiguous idea about what we saw, and no subsequent observer can be

defined that measures our brains. Human consciousness is unique in a world of

quantum objects since it can possess classical knowledge and make up its “mind”

about some observed quantity. Physicist Sean Carroll finds it quite remarkable,

“We are part of the universe that has developed a remarkable ability: We can

hold an image of the world in our minds. We are matter contemplating itself.”

Since measurement process always ends with a human mind learning some new

numbers or images, consciousness based quantum measurement theories have

been propounded. Eugene Wigner, a pioneer of consciousness based quantum

measurement theories adds a twist to the Schrödinger’s cat experiment. Dubbed

as “Wigner’s friend” experiment, the cat is replaced by a (lady)friend of Wigner

who is asked upon opening the box if at a given point in time, the vial was intact

4



or broken. In her mind, she has no doubts about one certain state of the vial at

that point in time (and she will relay that) and we cannot agree with the idea of

the vial being in a superposition state prior to opening the box anymore.

The separateness of soul/mind/consciousness from the physical world

gives rare common ground to major religions and scientific minds. In fact, the

validation or confirmation of some observational fact (such as the Moon orbits

our planet Earth) is not made until some human mind observed and recorded

the information. It is the inspiration behind Einstein’s famous quip, “ Is the

moon there when nobody looks?”. In fact, some thinkers have invoked “God” or

an omnipresent observer with eyes set on all of the universe for the continuation

of matter left unobserved by all humans at any given point in time. In certain

quantum information theories, laws of physics are valid for all of the universe

but the assumed non-physical human consciousness. The other extreme theory

uses many worlds interpretation to preserve the universality of physical laws at

the expense of branching out of universes at every single measurement event that

happens. See ref. [3] for a comprehensive overview.

If we are dead set on preserving the universality of quantum laws and

are economical about the number of universes (many world theoy is a little

extravagant in terms of necessary number of universes), we need a closer look

on why the measuring device can produce classical results measuring a quantum

observable/system and are themselves somewhat distinct from the quantum

system under study. Firstly, a measurement device like galvanometer is made

up of a massive number of atoms (and in turn subatomic particles) whereas

quantum systems are typically a few atoms (or photons or some other particles)

at most. Secondly, the working principle of a measurement device can be explained

5



with classical laws exclusively (laws of electromagnetism for a galvanometer for

example). A proposition called “spontaneous collapse” has been used in some

theories to describe the collapse of the superposition when a macroscopic object is

used in the measurement chain or von Neumann chain. Despite being explainable

by macroscopic classical rule, the origin of the behaviour of a macroscopic object

can come from microscopic components. The bulk (“classical”) resistances of

metals and insulators are to be calculated from microscopic quantum mechanical

description of band theories. The heat conductivity or capacity is also calculated

from microscopic quantum mechanical models before the values can be used in

classical laws. Therefore in a sense, macroscopic objects are quantum mechanical

as well. How could they be different from the few atom quantum system we

investigate?

One possible answer is the presence of cooperative/collective motion of

a large number of particles that indicate the measurement result. The pointer

that moves across the dial in a galvanometer is made up of an enormous number

of atoms which move in unison that human eye can observe. The “avalanche”

of particles in a avalanche photodiode is also a collective motion of a massive

number of particles. Does such cooperative/collective motion result in a collape of

quantum superposition spontaneously? Although macroscopic quantum states have

been realized in superposition, no confirmation of spontaneous collapse of collective

states like superconducting current (in Superconducting Quantum Interference

Devices (SQUIDS) ) has ever been observed. However, it is yet not possible to rule

out the spontaneous collapse theory [3].

To distinguish between a quantum process (reversible) and measurement

process (seems to be irreversible), a third category of theory distinguishes

6



between the quantum systems isolated from external disturbance and quantum

systems affected by thermal noise. It also requires the mechanism for a collapse,

where some of the measurement outcome would be actualised. If a detector

or measurement device is coupled to external degrees of freedom, it can make

a tangible measurement record like with a flash of light, pulse or current or

movement of a pointer. This will be a “measurement process”. If it does couple

to numerous degrees of freedom, there is a minuscule chance of avoiding making

a mark, some telling sign of some change is almost guaranteed. In an effort to

not leave a mark, in an experiment, horizontal/vertical polarized photon may

pass through a H/V polariser and the record and everything associated with it

may be erased and the photon may be reconstructed in the original state; only we

know doing this is prohibitively difficult if not impossible, so postulating it to be

impossible is not illogical. So, a quantum process is reversible, but measurement

process is absolutely irreversible.

And we need not look hard to find theories of irreversibility, since

thermodynamics pre-dates quantum mechanics by years. Irreversibility is predicted

to occur with high likelihood by the second law of thermodynamics in the

relevant timescale. There also exists the ergodic principle which predicts that

a thermodynamic system touches upon every possible (allowed by conservation

laws) configurations if left to evolve on itself. Therefore there will be recurrences

of any given configuration after waiting long enough times– a phenomena known

as Poincaré recurrence. The postulate that works for quantum measurement

problem now becomes one that assumes ergodic principle is incorrect and Poincaré

recurrence does not occur. Important distinctions between reversible quantum

processes and irreversible quantum measurements were discussed by Ilya Prigogine.

7



It is well known that future dynamics of a system can be very sensitive to small

changes in the initial conditions, which is referred to as “strong mixing”. Prigogine

solves the measurement problem with the basic idea that a measurement chain is

broken whenever strong mixing is involved and the second law takes precedence

over quantum mechanical rules. It necessarily implies pure quantum behaviour

is observed only when strong mixing is negligible. This perspective makes

irreversible changes fundamental entities and reversible dynamics are considered

an approximation.

There exists recent theories for explaining quantum measurement without

necessarily falling back on irreversibility, such as “consistent histories" where

the most faithful representation or map of a physical process is constructed [3].

The modern update of the theory, however, is based on quantum decoherece. As

such, most theories, do work with a premise of irreversibility in the measurement

process. A modern contribution, “Quantum Darwinism" by Wojciech Zurek is

gaining ground, even passing initial experimental tests [4]. Quantum Darwinism

explains emergence of classical reality with an environment “watching” over. Since,

we are interested in irreversibility based approaches and so we simply sum them

up with two simple conclusions. First, quantum measurement devices will have

intrinsic irreversibility as a fundamental attribute. Second, our eyes are the final

conceivable measurement device (the latest link in the chain where the cut can

be taken) before the signal is imparted to our consciousness. Naturally, we should

take a closer look at what happens in a human eye in converting optical rays into

neurological pulses.

8



1.3. Are our eyes special? Like our minds?

The process responsible for human perception through vision is of

fundamental importance. Seeing with own eyes has been considered the fail-

safe method for acquiring reliable information – in all adages across all societies.

Efforts to understand the mechanism of light transmission and human vision also

originated in ancient times, notably by Euclid and Ptolemy. Ibn al-Haytham

aka Alhazen, Sir Isaac Newton and Johannes Kepler made crucial contributions

fractions of millennia apart. The 20th century, however, witnessed a revolution

where our knowledge of light and knowledge of quantum theory complemented

each other’s growth. The biggest debates and celebrated problems in the history

of quantum mechanics have been starred by photon, the fundamental quanta

of light. The EPR paradox and the photo-electric effect have revolved around

photons, which originally marked the coming of age of quantum mechanics.

Feynman resolved the enigma of interference pattern created by light in Young’s

double slit experiment, showing that they simultaneously take every possible

path from point A to point B. Photon has enjoyed a unique attention in major

conceptual breakthroughs in physics. All in all, we have come to peace with the

wave and particle dual nature of light/photon and quantum theory has become

the most successful and meaningful theory of our universe. Naturally, scientists

are getting more interested in the response of our eyes to photons, and not just

electromagnetic waves. It is still impressive that, such efforts originated as early

as 1942, with the seminal work by Hecht et al. [5]. Previously, physicist Hendrik

Lorentz had given the problem a fair shake in 1911 freshly equipped with the

knowledge of photons or particles of light [6].

9



Quantum measurement problem and theories ultimately separate mind from

matter. We have measurement devices that can produce numbers as measures of a

physical quantum mechanical observable. If nature is indeed quantum mechanical,

so would be the measurement device itself. So, in effect, our minds perform a

measurement on the measurement device itself, be it a photodetector display or

the interference pattern out of an interferometer. Since the human observer uses

their eyes to read that display, the eye counts as a “quantum” measurement device

as well. In the end, a neurological impulse from the eyes take the information to

the brain or human mind. A mathematical description of the process would hold

clues for the mathematical description of a general single photon detection that

can be applied to photon detection devices as well.

Ref. [7] reports a recent convincing experiment establishing the ability of

human eye for detecting single photons. The ideas originally are credited to Hecht

et al.[5] (see also [8] for a review). Experiments characterizing single photon

responses in mammalian eyes have been reported for a while now [9, 10, 11].

With the advent of modern quantum optics techniques, modern experiments are

employing state of the art quantum optics capabilities (such as heralded single

photons) for measuring attributes of human eye response to single photon signals

[12, 13, 14, 15]. To be fair, the basic mechanism of single photon detection by the

human eye had been “disentangled” at least two decades earlier [6].

Human eyes have two distinct (in shape and functionality) kind of

photoreceptors, rods (approximately 100 million in a retina) and cones

(approximately 3 million in a retina). Cones respond to bright light and facilitates

colour vision. Rods are functional in dim lights and can detect single photons.

Seeing a flash involves less than 10 of these rods. The chain of events in seeing

10



FIGURE 1.1. Phototransduction cascade.
(a) Outer-segment discs (a stack of about 1000) are specialized for photoreception.
In the absence of light, Ca2+ and Na+ ions flow into the outer segment through a
channel gated by cGMP. The photosensitive molecule (called rhodopsin) in the
rods have a prosthetic group 11-cis retinal (light absorbing chromophore) and a
protein component opsin linked together. (b) Schematic of transduction cascade.
Absorption of light causes an isomerization of the 11-cis-retinal group to a all-trans
form. In dim light, an incident photon activates rhodopsin (Rh) as a catalyst
which activates transducin (T), in turn T activates a cGMP phosphodiesterase
(PDE), next activated PDE causes cGMP concentration to fall. (c) The rod
current, I(t) calculated from eq.1.1. Rhodopsin activity, R(t) is taken to be a
decaying exponential. The parameter values and other equations can be found in
[6] (reproduced with permmission from [6])

a dim light, commonly referred to as “phototransduction” in vertebrate rods

can be summarised from the review [16]. The photopigment molecule rhodopsin

changes its structure upon absorption of a photon and becomes active as a catalyst

(fig. (1.1) ). In response to a photon, the isomerization from cis to trans of the
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prosthetic group in the rod is characterized by a 5Ådisplacement of Schiff-base

nitrogen atom [17]. This is a characteristc of bio-based photodetectors. Photon

transduction brings about structural-chemical changes in their bond structure. The

current in the rods, was modelled with a linear filter system, where the rhodopsin

response function, R(t) acts an an input. The filter function (impulse response),

F(t) can be estimated [6]. ID is the current in the dark, k is a constant, GD is the

cGMP concentration in the dark.

I(t) = ID − 3kG2
D

∫ t

0

dτF (τ)R(t− τ) (1.1)

The electrical signal change manifests as a closure of some channels in the outer

segment and a dip in the circulating current. The names of the compounds or

types of compounds (in Fig. 1.1(b), see also [17]) are less important for the

purpose here, so they are mentioned briefly in the caption of Fig. 1.1 without

much details. What is more important is the structure of the equation 1.1. The

filtering function acts a temporal and frequency filtering operation. In effect,

the input photon undergoes filtering in passage through the eye lens as well as

in the internal mechanism of eye’s response into the output macroscopic current

signal. The production of a macroscopic signal through the closing and opening of

a gate is equivalent of an amplification process. Modern idea of a general quantum

mechanical model for photodetector resorts to same “filtering+amplification”

strategy as we shall shortly see. A structural change in the photoreceptive

molecule is responsible for initiating the amplification mechanism. We later

discuss how this irreversible change in the structure is a feature of device based

photodetectors as well. Single photon detection in a device has the same working
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principle. A single photon wavepacket is filtered in, creates a structural change and

incurs a macroscopic signal.

1.3.1. Two-photon detection in a human eye

An interesting question to contemplate would be if human or animal eyes can

do Photon Number Resoling (PNR) detection. Can our eyes tell a single photon

excitation from two photons? We have known for awhile, the toad rods produce

distinct signals in response to 0,1,2 photons and can thus differentiate between

the three possibilities for number of absorbed photons [6]. And very recently Two

Photon Absorption (TPA) has been reported in human vision as well, with the

added intrigue that we have learnt that human eye may be sensitive outside the

visible range. Previously, Rods were believed to have a sensitivity range from

300 to 700nm of wavelength. Recent works have found rods to be sensitive at

wavelengths longer than 800nm and some authors have purportedly perceived

1060nm of infrared light as pale green. [18] The physical mechanism behind it

were suspected to be either Second Harmonic Generation (SHG) or Two Photon

Absorption (2PO). We can be safe in assuming that human eyes have capabilities

far exceeding our previous expectations, also physics that confounds current

theory.

1.4. How are quantum observables (classically) measured?

Einstein and Bohr faced off (“officiated” by mutual friend Ehrenfrest) a

number of rounds (Solvay conferences) in, perhaps, the most consequential mano

a mano in the history of science. A particular bone of contention was Bohr’s

complementarity principle. It refers to the dual nature of the behaviour of the
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photon (particle and wave) observed, depending on the particular setup of the

experiment. In fig. 1.2, the first or left-most screen has a slit small enough for the

wavelength of the light so as to create single slit diffraction. If the size of the slit

were large, the diffraction pattern would disappear. The second screen (middle)

has two slits that the photon deflected through the first screen’s slit can take if

unobserved. And on the third screen the interference pattern of the two states (one

each for the photon passing through each slit) shows up as alternate bright and

dark spots. If the photon is not observed (through which slit it passes) the wave

nature wins and an interference fringe is observed. If it is observed the particle

nature takes over and interference fringe is lost (Heisenberg’s statement, “the

particle trajectory is created by our act of observing it.”). Bohr’s complementarity

principle proclaims mutual exclusivity of the two natures. Fig. 1.3 shows a

modification of the first screen that Einstein proposed. The slit is suspended

by a spring and can be deflected vertically up or down while the photon passes

through. Einstein argued that from the deflection observed of the first slit and

conservation of momentum principle we can deduce the direction the photon was

deflected when it passed the first screen which in turn gives away whichever slit

the photon went through on the second screen (a piece of information referred

to as “which-path” information). Since the interference is the result of the two

wavefronts created from the two slits, it will not be disturbed by whatever happens

before the second screen. Thus we can obtain both which-path information

and the interference pattern in direct contradiction of Bohr’s complementarity

principle. Bohr successfully countered pointing out that the precise measurement

of the momentum of the first slit would smudge its position (due to Heisenberg’s

indeterminacy principle) and effectively increase the size of the slit making the
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diffraction from it disappear and destroy the interference pattern on the third

screen.

FIGURE 1.2. Schematic for the double slit experiment for light.
The first slit can deflect the photon towards the top or bottom slit in the middle
screen. An interference pattern emerges on the third screen.

FIGURE 1.3. Bohr’s original drawing for the thought experiment behind Bohr-
Einstein debate.
If the screen has a recoil upward or downward, the “which-path” information
namely the path taken by the photon can be learned.

The round went to Bohr (in fact the match eventually as well), needless to

say. It also serves to warn us against treating macroscopic objects as completely

classical, because if we did then atomic scale measurements that violate

the uncertainty principle may become a possibility. However, later theorists

(Wootters, Zurek, Scully, and Drühl) have shown in certain cases if the which-path

information is partial (and not complete), we can have interference pattern that
15



is partially smudged ([2]). This is the mechanism through which environment can

monitor a system and gain which-path information without completely destroying

the quantum attributes of the system. The system is affected in a way that

quantum phase relationship between certain states is partially lost, a process

called decoherence. The solutions derived in this thesis utilizes the method of

employing an environment to watch the quantum system and absorb “which-path”

information. Before discussing decoherence and strategies of learning which-path

information from the environment, a segment of Bohr’s account of the events is

worth remembering.

From Bohr’s reminiscence, “Discussions with Einstein on Epistemological

Problems in Atomic Physics” (1949), “all unambiguous use of space-time concepts

in the description of atomic phenomena is confined to the recording of observations

which refer to marks on a photographic plate or to similar practically irreversible

amplification effects like the building of a water drop around an ion in a cloud-

chamber.” Niels Bohr might have inadvertently outlined the methodology for

amplification of a quantum observable long before quantum theory received wide

acceptance. The amplification mechanism he alluded to is still the method to

obtain classical measurement record from quantum observables. A mechanism

that can create a sizeable effect (perceptible by ordinary human sense organs)

from a microscpic attribute or signal is required. This amplification mechanism

discards any quantumness as it grows in size and can be treated as a classical

signal produced from the microscopic values. It is very similar to the amplification

mechanism discussed in the eye that a photon hitting the rhodopsin molecule

causes. Modern developments in the theory of single photon detection retains

this fundamental structure. The single photon detection process is subdivided
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into a transduction+amplification part. As reasons that would be discussed

later, transduction for the case of optical photons is explained in terms of a

quantum mechanical transmission probability. Amplification drives the process of

measurement. The DARPA DETECT ([19]) consortium (this dissertation is result

of the collaboration) in the 2010s have summarized this fundamental structure.

FIGURE 1.4. The three parts of the single photon detection process:
transmission, amplification, and measurement.
The input photons with frequency components ωs are transmitted irreversibly via
network of discrete states and absorbed into the atom or molecule that changes in
shape and irreversibly initiates an amplification mechanism at its higher state. In
the figure, a laser with frequency ωL drives a single mode cavity which populates
massively at a optical frequency, ω′ ≈ ωL. This method of creating fluorescence
excitations when a molecule is at a higher state is also called “electron shelving”.
The amplified signal can be considered a classical macroscopic signal and human
eyes can perform a measurement of it trivially (Not unlike Bohr’s idea mentioned
before or the process in the rod cells of human eyes). (Reproduced with permission
from [20] )

Historically, writing down a quantum mechanical description for a

measurement problem had been ripe with challenges and pitfalls and caveats and

unsolved enigmas. At initial stages, Copenhagen interpretation have guided us in

the interpretation of the physical world and their perception in our minds. Over
17



FIGURE 1.5. Photon with frequency ω initiates amplification into a macroscopic
signal via electron-shelving [21, 22, 23]:
A resonant photon lifts an atom (modelled here as a three-level system) enters the
first excited state. A laser beam tuned to the second transition frequency ωL ≈ ω′,
induces fluorescence. (Reprinted with permission from [1])

time, from the shorthand narrative of Copenhagen interpretation for describing

measurements, we have evolved to the more austere von Neumann measurement

which ultimately has fallen short of eliminating the need for an interpretative

process for outcomes. Von Neumann school of thought makes a methodical

attempt to construct an evolution that supersedes the collapse of wavefunction

of the Copenhagen interpretation. The missing link of emergence of classicality

from the quantum domain is nailed down more narrowly.

The work of Wojciech Zurek has been a revelation in Quantum Information

Science (QIS) and quantum measurement problem. The theory of decoherence,

a strictly quantum effect with no classical analogue has become the language

of choice in quantum information experiments. Although we cannot yet discard

the need for an interpretive process in the emergence of classical outcomes in a

measurement process, we can certainly capitalize on the redundant information
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accrued in the environment over the course of measurement evolution through

decoherence. Zeh and then Zurek have demonstrated that to resolve a problem

called “preferred basis” in quantum measurement theory it is necessary to

treat system and meter to be open systems (coupled to their environment) [2].

Performing a measurement on a closed system energy eigenstate would definitely

perturb it. A closed system maybe preferable for precluding the undesired coupling

effects (decoherence) from environment. But is it not a little too optimistic

hoping to have closed systems absorbing the information from the photon

wavepacket? Since realistically, we would expect optical photons, stray back-

ground radioactivity, air molecules, cosmic muons, solar neutrinos, and even the

ubiquitous 3 K cosmic background radiation to couple to the quantum system of

interest. Therefore, a faithful or realistic model would include an environment that

model the decoherence that any and all quantum systems are subject to.

Our best understanding of the emergence of the classical objective reality

from quantum mechanical observables is the structure of system-environment

interaction– as pointed out by Zurek. Niels Bohr’s intuition in the early days

was correct– an irreversible amplification process will render a quantum system

“classical”. However, the quantum to classical transitions were better understood

only post 2000 with the theories of Quantum Darwinism and decoherence. All

single photon detectors have the physical mechanism where a classical macroscopic

signal is produced in response to the quantum mechanical photon transduction.

Fundamentally there exists no reason for microscopic and macroscopic objects

to be governed by different rules of nature. Physicists have referred to this

appearance of classical behaviour from large objects with the umbrella term

“quantum to classical transition”. In our everyday experience, we observe certain
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(few in number) features of classical objects like position and speed to be

measurable, underlying quantum mechanical models have a long list of quantum

numbers and observables that could possibly be observed. Yet “position eigenstate”

or “momentum eigenstate” is the quantum observable (of a bouncing basketball, for

example) is what we typically observe. Also, quite puzzlingly, we never observe

classical objects to be in superposition. How do we make sense of it without

incurring the Copenhagen interpretation? The idea of decoherence can resolve

these two puzzles [2].

A fundamental quantum mechanical model of a single photon detector can

utilize an “environment simulator” or “meter” that would become correlated with

the system observables and reveal the system observable through a measurement

of itself. This system-meter(environment) interaction would lead to decoherence

of the system and certain pointer states emerge as the “preferred basis” for the

system, resolving the first puzzle. In the spirit of von Neumann theory, the system

state |ψ〉 and meter (“environment simulator”) is initialized as a product state (the

environment’s initial state is called “ready” state).

The desired evolution will produce the following,

|ψ1〉|“ready”〉 → |ψ1〉|1〉

|ψ2〉|“ready”〉 → |ψ2〉|2〉 (1.2)

The |1〉 and |2〉 states of the environment would indicate the system states at

the end of the evolution. So if we are able to measure the meter (“environment

simulator”) projectively, we are able to measure the system, indirectly. |ψ1〉 and

|ψ2〉 are the states in the double slit experiment when the photon passes through
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the first or second slit respectively. If unobserved, the superposition of the two

states will evolve accordingly,

1√
2

(|ψ1〉+ |ψ2〉) |“ready”〉 → 1√
2

(|ψ1〉|1〉+ |ψ2〉|2〉) (1.3)

There are two things to note from eq. B.18. Firstly, an entanglement has

been created between the system and meter dynamically. Secondly, the

superposition originally in the photon states have delocalized into a larger system

of system+meter.

The density matrix can now be written out as well as the particle density,

%(x) at the detector screen,

ρ̂particle =
1

2
[|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ |ψ1〉〈ψ2|〈2|1〉+ |ψ1〉〈ψ1|〈1|2〉]

%(x) ≡ ρ̂particle(x, x) ≡ 〈x|ρ̂particle|x〉

=
1

2
|ψ1(x)|2 +

1

2
|ψ2(x)|2 +Re {ψ1(x)ψ∗2(x)〈2|1〉} (1.4)

The two extremes (Einstein and Bohr’s original stances) of perfect

distinguishability (complete knowledge of “which-path” information) and null

“which-path” information are due to the detector states 〈2|1〉 = 0,

%(x) =
1

2
|ψ1(x)|2 +

1

2
|ψ2(x)|2 (1.5)

and 〈2|1〉 = 1 respectively,

%(x) =
1

2
|ψ1(x)|2 +

1

2
|ψ2(x)|2 +Re {ψ1(x)ψ∗2(x)} (1.6)
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The extraction of the “which-path” information destroys the interference pattern

(in eq. 1.5). This is the process called decoherence, where a quantum system loses

its “quantumness” through interaction with an environment. The second puzzle

of non-observability of interference is understood in this way. Environmental

monitoring causes superposition properties to disappear. Also the intermediate

values of 〈2|1〉 between 0 and 1 is when we have partial “which-path” information

and the interference pattern has a lesser contrast (but not completely washed out).

Eq. 1.2’s evolution would be achieved with an explicit Hamiltonian in a von-

Neumann formulation.

Ĥ = ĤS + ĤE + Ĥint (1.7)

where ĤS and ĤE are the self-Hamiltonians of the system and environment

respectively. Ĥint is the system-environment interaction Hamiltonian.

The choice of Ĥint tries to make different relative environmental states to be

distinguishable or orthogonal (τd being a characeristic time).

〈Ei(t)|Ej(t)〉 ∝ e−t/τd for i 6= j (1.8)

If the relative environmental states are correlated with the center-of-mass of the

system at x, we would want to design Ĥint to produce

〈Ex(t)|Ex′(t)〉 ∝ e−Γtott (1.9)

, where τd is a characeristic rate.
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Clearly, the proper design and selection of Ĥint enables the measurement of

the system observable to be possible. Ĥint is also responsible for the decoherence of

the system states. For a particular choice of Ĥint, certain basis states of the system

will be more prone to decoherence (their phase relations will decay fast) and some

other basis states will be more robust against phase information losses. System

states can be written in multiple bases of course,

|ψ〉 =
∑
i

ci|si〉 =
∑
i′

ci′|si′〉 (1.10)

The system states more robust against environmental decoherence are the so-

called pointer states or preferred states or quantities. Therefore classically

certain eigenstates are more accessible, like the position or speed of a basketball.

Alternatively, the preferred pointer states can be thought of as the states that get

least entangled with the environment.

In a typical von-Neumann measurement interaction, A microscopic system, S,

with a Hilbert space HS having basis vecors {|si〉}, and a measuring apparatus A ,

with a Hilbert space HA having basis vectors {|ai〉} (|ai〉 are the pointer states),

|ψ〉|ar〉 =

(∑
i

ci|si〉

)
|ar〉 → |ψ〉 =

∑
i

ci|si〉|ai〉 (1.11)

Now we assume an environment (for both system and measuring apparatus) which

is initialized in the state |E0〉.

|si〉|ai〉|E0〉 → |si〉|ai〉|Ei〉, for all i (1.12)
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In most cases it is assumed that mostly the apparatus interacts with the

environment and therefore |ai〉 are the environment superselected robust preferred

states. For the socalled quantum measurement limit, Ĥ = ĤS + ĤE + Ĥint ≈ Ĥint,

and the eigenstates of Ĥint becomes stationary under the evolution. Hence,

measurement superselected pointer states are none other than the eigenstates of

Ĥint. For example, for the following Ĥint,

Ĥint = x̂⊗ Ê (1.13)

environment continuously monitors the position of the system.

e−iĤintt|s〉|E0〉 = |x〉e−ixÊt|E0〉 ≡ |x〉|Ex(t)〉 (1.14)

The more general form of the interaction Hamiltonian,

Ĥint =
∑
α

Ŝα ⊗ Êα, (1.15)

Ŝα|si〉 = λ
(α)
i |si〉, for all α and i. (1.16)

Eq. 1.18 can produce,

e−iĤintt|si〉|E0〉 = |si〉|Ei(t)〉, a product state (1.17)

Because |si〉 does not get entangled with the environment, |si〉 is an environment-

superselected preferred state, since it is immune to decoherence and does not get

entangled with the environment. For reasons to be mentioned soon, there can

be subspaces of pointer states that are immune to decoherence. If {|si〉} is an
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orthonormal basis and all |si〉 are simultaneous degenerate eigenstate of each Ŝα,

Ŝα|si〉 = λ(α)|si〉, for all α and i. (1.18)

we get

e−iĤintt|ψ〉|E0〉 = |ψ〉|Eψ(t)〉, a product state (1.19)

Existence of a Decoherence Free Subspace (DFS) is a consequence of a

symmetry in Ĥint. Such dynamical symmetries can be exploited in preserving

quantum information more robustly. System-environment interaction is all we

need to look at for the availability of a DFS. It derives from a symmetry in the

structure of the system-environment interaction, a dynamical symmetry.

The theory development at Los Alamos National Lab led by Zurek has been

a tour de force. The procession of ideas can be time ordered into some interesting

descriptions or names: environment as a witness.

In essence, we should capitalize on Zurek’s seminal ideas of decoherence,

the larger family of problems of quantum-to-classical transitions and quantum

Darwinism. Coupling to the environment would involve decoherence, be it for

measurement purposes or unwarranted coupling to stray baths of particles.

Judicious choices of pointer states (states more robust against decoherence) and

strategies of battling decoherence with Decherence Free Subspaces (DFS) can help

us design photodetectors with superior performance.

1.4.1. Positive Operator Valued Measure (POVM)

POVM are the most general description for quantum measurement. This

elucidates the observables that we can define that we would be interested in for
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learning about the photon signal. Measurement of an observable in the linear

vector space of the operators acting on HA can be done indirectly through a

projective measurement on another system, B once it is correlated/entangled with

the former. This is formulated as a generalized measurement on A. A generalized

measurementM on A is defined to be a set of operators (Hermitian or otherwise),

Mi ofM in (L(HA), the linear space of operators acting on HA) which yields the

result mi with the probability πi, given by

πi = Tr
[
MiρAM

†
i

]
(1.20)

which projects A conditionally into the final mixed state,

ρA|i =
MiρAM

†
i

πi
(1.21)

They have the normalization condition:

∑
i

M †
iMi = 1 (1.22)

If Mi are orthogonal projectors, Pi with the conditions, P †i = Pi, P
†
i Pi = P 2

i = Pi,

we have our projective measurement postulates back.

Without the orthogonality postulate, the generalized procedure,M

performed on A can be viewed as resulting from a projective measurement on an

environment simulator B, after it has been entangled to A by a proper unitary

operation, UM. We need the dimension of HB to be equal or larger than the

number of Mi operators. We then define an orthonormal basis set of |u(B)
i 〉 for B

and associate one to each Mi.
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The operation of UM on a A in a statistical mixture is,

UM
(
ρ(A) ⊗ |0(B)〉〈0(B)|

)
U †M

= UM

(∑
i

pi|φ(A)
i 〉〈φ

(A)
i | ⊗ |0(B)〉〈0(B)|

)
U †M

=
∑
i,j

Miρ
(A)M †

j ⊗ |u
(B)
i 〉〈u

(B)
j | (1.23)

For, an eigenbasis |u(B)
j 〉 of B with result mj, a projective measurement of

observable OB of B projects A into ρA|i with probabilities, πi.

POVM is the most general method for the interpretation of measurent

results in Quantum Mechanics. It is a set of positive operators (Π̂k) that add up

to the identity operator and each operator represents a measurement outcome

and projects onto orthonormal quantum states with a calculated weight, w(k)
i .

w
(k)
i is the conditional probability of obtaining outcome k given the input i, i.e.

w
(k)
i = Pr(k|i).

Π̂k =
∑
i

w
(k)
i |φ

(k)
i 〉〈φ

(k)
i |. (1.24)

The experimentalist can at best have a probability distribution for possible inputs

calculated from the measurement outcomes at hand. Knowing w(k)
i = Pr(k|i)

values, an experimentalist can calculate P (i|k) through Bayes’ theorem and

update their idea for the inputs i.e. the probability distribution over the inputs.

Knowledge of Π̂k is therefore useful and is calculated theoretically.
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1.5. Single Photon Detection (SPD) in a device

Many ingenious ideas have been implemented to detect (as well as

create) single photons with high efficiency in a device. The major ideas include

PhotoMultiplier Tube (PMT), Single Photon Avalanche Photodiode, quantum

dot field-effect transistor based detector, Superconducting Nanowire Single

Photon Detector (SNSPD), and up-conversion single photon detector. Few

photon detection have been developed in a Photon Number Resolving (PNR)

fashion. Examples include superconducting tunnel junction (STJ) based detector,

superconducting nanowire-based single photon detector, quantum dot field-effect

transistor-based detector. superconducting transition edge sensor, frequency

up conversion and visible light photon counter [24, 25, 26, 27, 28]. For a short

and concise introduction to the figures of merit (spectral range, dead time, dark

count rate, detection efficiency, timing jitter, photon number resolution, Noise

Equivalent Power (NEP) ) characterizing single photon detectors, see [25, 26].

The state of the art capabilities in terms of the figures of merit are also presented

in [25]. Modern capabilities record The timing jitters in the tens of picoseconds

in superconducting nanowire SPDs [29, 30], dark count rates on the order of a

single dark count per day [31, 32]. Quantum dot field transistor detectors and

superconducting transition-edge sensors have a longer dead time (∼ 10µs) [25].

SNSPDs [31, 32, 33, 34] with low dark count rates (∼ 10Hz) and dead times

(∼ 1ns) are becoming a popular choice these days. The prospects of robust

performance for SPDs in room temperature have also improved [35, 36].

Classic works dating as far back as 1939 [37] deserve a mention. The first

PMT was invented on 4 August 1930 in Soviet Union by L.A. Kubetsky [38],

and avalanche photodiode was invented by Jun-ichi Nishizawa in 1952 [39].
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These two platforms function based on the photoelectric effect. The myriad of

investigations done on PMT ([40, 41]), superconducting tunnel junction ([42, 43]),

superconducting transition edge sensors ([44, 45]), superconducting nanowire SPD

([31, 32]), single Photon Avalanche photodiodes (SPAD) ([46, 47]), quantum dot

field effect transistor photon detector ([48, 49, 50]) can be found.

Photoelectric effect is at the heart of the longest serving (since 1949) single

photon detector, PMT. Electrons from a photocathode with low work function

(in a vacuum tube) is liberated by incident photon due to photoelectric effect.

A cascade of secondary electrodes biased progressively higher multiplies the

initial single electron current. The Single Photon Avalanche Diode (SAPD)

has a p-n or p-i-n junction reverse biased above its breakdown voltage, the

carriers generated by photon absorption trigger a macroscopic breakdown of

the junction and create an avalanche. In a superconducting Transition Edge

Sensor (TES), a superconducting material is biased at the tipping point of a

superconducting transition; the incident photon heats up the material and it

undergoes a phase transition to lose its superconductivity. Both the energy of

the incident photon and number can be measured through the response in the

current. Ultrathin NbN films of superconducting is biased just below its critical

current for Superconducting Nanowire Single Photon Detectors (SNSPD). An

impinging photon creates a resistive hotspot and blocks the entire channel and a

fast voltage pulse is observed in response to the change in current. Quantum Dot

Field Effect Transistors use the conventional field effect to modulate the channel

conductivity in response to an absorbed photon. More details about individual

platforms can bee found in [25, 27, 51]. Some of the platforms mentioned can have

PNR functionality [45, 52].
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Photon number resolution has become a sought-after functionality in order

to reduce errors in QIS applications.[53, 54] There exists two classes of methods

for PNR detection process. Certain platforms of single photon detectors produce

output electrical pulses that are commensurate with the number of absorbed

photons [55]. The second class uses spatial or temporal multiplexing [56]. Spatial

multiplexing combines the outputs from an array of detectors [57, 58], temporal

multiplexing uses the same detector but a cascade of beam splitters separates

and delays the input pulse so as to feed them to the detector sequentially [59].

The coherent dynamics of an array of SPDs performing PNR with multiplexing

was investigated theoretically recently [60]. Inspired by biological abilities of

phootodetection, some experiments have been done investigating the abilities of

toad rods with fixed number of photons [61].

DARPA DETECT program has been instrumental in developing a unified

and general natural theory that can provide fundamental description of a single

photon detector valid across all platforms and which facilitates determination

of fundamental constraints between figures of merit. [1, 20, 35, 60, 62, 63, 64,

65, 66, 67, 68, 69, 70] The general model separates the whole process into three

subprocesses transmission, amplification and measurement (fig 1.4). A review

of biological photodetectors and device photodetectors all have this general

underlying structure. Participants of DARPA detect have also formulated new

ideas for weak signal amplification [71, 72, 73]. New device architecture and

concepts were realized by the Sandia Livermore group [74, 75, 76, 77]. Another

particular avenue explored by the group is bio-inspired photodetectors ([36]). They

would be more vulnerable to elevated thermal noise at room temperature and

larger dark count rates, but with a high enough signal to noise ratio interesting
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new devices may be found. A host of work in the traditional single photon

detectors’ phenomenological models were also conducted [30, 35, 64, 78, 79].

1.6. Genealogy of theories of photodetection and single photon

detectors

Although DARPA detect program developed the general theory for a

single photon detection “device”, it is built on years of progress of our knowledge

of the fundamental natural laws. For the physics of single photon, classical

Maxwellian theory proves inadequate and the need for quantization has driven

the advancement of our understanding of quantum light. The theories of

photodetection can be separated into few genres. Classic works by Glauber,

Kelley and Scully helped reveal fundamental features of the theory of quantum

light [80, 81, 82]. Einstein’s work on the photoelectric effect ([83]) and A-B

coefficients also belong to this fundamental physics genre. Dirac’s formulation of

Quantum Electrodynamics finally enabled the complete quantum treatment of

field and matter and subsequent contributions from others (Wigner, Oppenheimer,

Fermi, Bloch, Weisskopf, Tomonoga, Schwinger, and Feynman) gave us the full

understanding of light-matter interactions [84, 85, 86, 87, 88, 89, 90, 91, 92].

The basic results in the theory of photodetection is reviewd here. For a single

polarization µ of the quantized electromagnetic field, [93]

Êµ(~r, t) = Ê+
µ (~r, t) + Ê−µ (~r, t) = Ê+

µ (~r, t) +H.c. (1.25)

Ê+
µ (~r, t) = −

∑
j

√
~ωj
2ε0

ei(
~kj ·~r−ωjt)ε̂µâj (1.26)
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where Ê+
µ (~r, t) and Ê−µ (~r, t) are positive and negative frequency components

respectively. ε̂µ is the polarization vector, ~kj = ~p/~ the wave number, ~p, ε0 the

permittivity of free space, ~ Planck’s reduced constant, i =
√
−1, and âj the

annihilation operator corresponding to the mode j.

Glauber’s work in connecting quantized electromagnetic field correlations to

experimentally measurable physical quantities may be the most useful contribution

to quantum mechanical photodetection theory ever [80]. The theory facilitates the

calculation of transition probabilities (that experimental detection is correlated

with) as well as quantum coherence between field components in the framework of

QED. Glauber defines first and second order correlation function of the field (due

to pointlike interaction),

G(1)(~r1, ~r2; t1, t2) = 〈Ê−µ (~r1, t1)Ê+
µ (~r2, t2)〉 = Tr[ρÊ−µ (~r1, t1)Ê+

µ (~r2, t2)]

G(2)(~r1, ~r2, ~r2, ~r2; t1, t2, t3, t4) = 〈Ê−µ (~r1, t1)Ê−µ (~r2, t2)Ê+
µ (~r3, t3)Ê+

µ (~r4, t4)〉

= Tr[ρÊ−µ (~r1, t1)Ê−µ (~r2, t2)Ê+
µ (~r3, t3)Ê+

µ (~r4, t4)] (1.27)

where ρ =
∑

i Pi|i〉〈i| is the classical mixture of the (initial) field. Photoelectric

effect can enable an absorber atom to make local field measurements. The

electrons produced in a photoionization process are observed. A detector atom

placed at position ~r in the radiation field has a transition probability (by absorbing

a photon between time t and t+dt) proportional to, [51, 94, 95]

w1(~r, t) =
∑
f

|〈f |Ê+
µ (~r, t)|i〉|2 =

∑
f

〈i|Ê−µ (~r, t)|f〉〈f |Ê+
µ (~r, t)|i〉

= 〈i|Ê−µ (~r, t)Ê+
µ (~r, t)|i〉 (1.28)
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Eq. 1.28 dictate the probability of a photodetection event with a transition in the

(pure) state of the field |i〉 → |f〉. For a classical mixture of the initial field, we

resort to the density operator for the field,

w1(~r, t) =
∑
i

Pi〈i|Ê−µ (~r, t)Ê+
µ (~r, t)|i〉 = Tr[ρÊ−µ (~r, t)Ê+

µ (~r, t)] = G(1)(~r, ~r; t, t) (1.29)

so we can appreciate the physical significance of Glauber’s first correlation

function.

Likewise, the joint probability of observing one photoionization at point ~r2

between t2 and t2 + dt2 and another one at point ~r1 between t1 and t1 + dt1 with

t1 < t2 is proportional to w2(~ri, ~r2; t1, t2)dt1dt2, [94]

w2(~ri, ~r2; t1, t2) = G(2)(~r1, ~r2, ~r2, ~r1; t1, t2, t2, t1) (1.30)

The other enduring contribution by Glauber is the theory of coherent

states of electromagnetic field [96]. Coherent states were originally formulated

by Schrödinger as he was trying to find solutions to his namesake equation that

follows Neils Bohr’s correspondence principle. Simply put, the principle states

that in the limit of large quantum numbers quantum mechanics follows classical

mechanics. Coherent states are the most classical a quantum mechanical state

can be. The Heisenberg’s uncertainty principle saturates for them. They are the

eigenstates of the annihilation operator of a quantum harmonic oscillator. In terms

of the Bosonic Fock (number) basis, a coherent state is written as

|α〉 = exp{−|α|2/2}
∞∑
n=0

(
αn/
√
n!
)
|n〉 (1.31)
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Laser states are coherent states and they are characterized by a single complex

number (or magnitude). They play a crucial role in quantum-to-classical transition

theories, since a “classical” state can be written out in a quantum mechanical basis.

The time-correlation measurements of Hanbury Brown and Twiss ([97]) and

Glauber’s thories inspired a trail of photoelectron counting theories produced

by photoionization by electromagnetic fields (especially Glauber states/coherent

states). The most notable ones are due to Mandel and Kelly-Kleiner and Scully-

Lamb[81, 82, 98]. A particular theme of interest would be the measurement

induced back-action on the field and back-action evading measurement schemes

[99, 100, 101]. The ideas of back-action evading measurement and quantum non

demolition measurements will be popular in modern quantum computing platforms

[102].

The underlying physics of photoionization is quantum mechanical

photoelectric effect. However, the photodetection events recorded in a

photoionization experiment is a classical quantity. On the receiving end, statistical

rules can be used to produce counting formulas such as Mandell’s counting formula

[98],

P (n, t, T ) =

∫ ∞
0

1

n!
W ne−WP(W )dW (1.32)

with

W = η

∫ t+T

t

I(t′)dt′ (1.33)
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where η is the photodetection efficiency, I(t) is the intensity of the electromagnetic

field, and P(W ) is the quasi-probability distribution of the integrated intensity.

Mandell’s formula has had success due to its simplicity and elegance. One

particular example is that, for a thermal distribution of light eq. 1.32 yields a

Bose-Einstein distribution for photodetection events [103]. Photoionization is

the nexus between quantum mechanical interaction of light-matter and classical

measurement results of photodetector click counts. The Carmichael school and

chain of thought from [104] in using the Kelley-Kleiner (KK) ([81]) formula to

derive the photocurrent statistics from quantum-mechanical operator expressions

is a way of defining a Heisenberg cut at the detector. The photocurrent (units

of counts/time), a time series of numbers, can be treated as a classical random

variable. The signal has been demoted into a classical standing, but amplification

of a current carried by bosons/fermions have to abide by quantum laws all the

same ([105]).

The KK formula degenerates into the semiclassical Mandel photon counting

formula if the incident field is a coherent state, a result from the Optical

Equivalence Theorem.

P (k, T ) = 〈: Ω̂(T )k

k!
e−Ω̂(T ) :〉 = 〈: (εQn̄∆T )k

k!
e−εQn̄∆T :〉

where, Ω̂(T ) is the integrated photon flux and enclosure with ‘:’s denote normal

and time ordering. It quantifies the probability of k detection events in a time

window T . This enables us to find, 〈i(t)〉 = eεQn̄, indicating the quantum

efficiency, εQ to be the number of electrons produced in the photocurrent for each

electron on average. Classical i(t)/e/εQ and quantum mechanical, n̂(t) can be

shown to have same statistical features (mean, variance, correlation functions etc.).
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Another commonly used quantum model for light-matter interaction is the

Jaynes-Cummings model. A two-level atom interacting with a quantized mode of

an optical cavity (or a bosonic field), with or without the presence of light (in the

form of a bath of electromagnetic radiation that can cause spontaneous emission

and absorption)[106].

HJC =
d∑
j=1

ωjAjj −
i

2

d∑
j 6=k=1

µjk
(
σ+a− σ−a†

)
(1.34)

This Hamiltonian commutes with the total excitation number, a†a + σ+σ−.

From ref. [106], if the two possible energy level of the molecule is, ψm,m = 1, 2 and

the number of quanta in the field oscillator is n, Φn, n = 0, 1, 2, 3, ....

Another avenue of theory for relating classical measurement results from an

underlying quantum theory is quantum stochastic processes [107]. They are the

natural language for the description of continuous quantum measurements [108].

Multi-photon Fock space driven absorber atom models have been formulated as a

quantum noise driven process [109]. One interesting contribution to motivating the

photoelectron counting formulae is [110]. Quantum trajectory theory or unravelling

of the quantum master equation is the theoretical method for simulation of

measurement records [111]. Ref. [64] used the following abstract amplification

model, formulated as a continuous measurement.

Aô(t) = D[χ|X〉〈X|]ô(t) (1.35)

χ is the amplification strength, and the designated final internal state being

monitored is X. X is also called the “shelving state”, or the state that drives the

amplification. D is the Liouvillian superoperator representing the measurement.
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(for example in [64], the stochastic photocurrent,It =
∫ t
t−tm χ

2ρXX(t′)dt′ + χdW (t′)

was used) and a conditioned (upon It) density matrix can be simulated from it.

The quantum optics laboratory methods offer ways of extracting information

from a quantum system under study through continuous measurements. The

quantum observables are mathematically connected to the number or rate of

photoelectron sweeping. For example, The x-quadrature of the system dipole can

be measured from the rate of photoelectrons, (γ a real number) ([112]).

x̂ = ĉ+ ĉ†, ŷ = −i(ĉ− ĉ†)

E

[
d

dt
N(t)

]
= Tr

[
(γ2 + γx̂+ ĉ†ĉ)ρI(t)

]
(1.36)

For γ >> 〈c†c〉, eq. 2.81 has the inside the trace a large constant altered

by a small term and a term proportional to x̂. This gives an idea about how

information is extracted in a continuous measurement. It is related to the number

of particles swept per unit time in the output.

1.7. Can we write a general and useful model?

We have learnt that single photon detector models should have the

functionality embodying photon transducton, amplification and measurement.

Biological photon detectors or eyes have photoreceptive molecules that make a

structural change to itself when a photon is absorbed. The changed molecule is in

a “shelving state” and can drive an amplification mechanism. The environmental

states should be discernible to a classical observer. The photon wavepacket

should be stored in preferred basis state of the meter or states robust against

environmental decoherence. We can envisage a system+meter+environment
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structure for the photodetector. Though the system will be exposed to

environmental decoherence, the dynamics should mostly be dominated by meter-

environment interaction. The meter-environment interaction Hamiltonian,

Ĥmeter−environment dictates the nature of the decoherence that meter states are

subject to. Naturally, the meter states should be chosen so as to enable be robust

against environmental decoherence. The symmetries of Ĥmeter−environment can

facilitate Decoherece Free Subspaces (DFS) and Noise Subsystems (NS). The

“quantum information” of temporal rise in the occupation levels of the absorber

atom is better preserved in the meter states that are robust against as much

decoherence as possible. States that are immune to environmental effects are also

called “dark” states as their evolution as completely decoupled from the evolution

of the environment.

• Unitarity Glauber’s fundamental theory of photoionization calculates

transition probabilities between field states. The transition amplitude for

i→ f is [51, 93],

〈f | Û(i→ f) |i〉 ∝ 〈f | Ê+
µ (~r, t) |i〉 (1.37)

The transduction of photon is fundamentally a unitary process. However,

a photodetecto atoms have a special property. The structural change

that happens in a photodetector absorber innitiates a chain of events

going forward and the probability of the photon leaking back out into the

continuum of electromagnetic modes is statistically small (this spontaneous

emission does happen in typically a small fraction of times). Naturally,

practical photodetector physics is modelled with quantum stochastic
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calculus often that models irreversible quantum processes. Liouville master

equations that model the dynamics of a discrete system’s evolution coupled

to a continuum of modes depict an irreversible dynamics for the discrete

system for the timescale concerned. Excellent works have been done on

modelling irreversible photon transduction into absorber molecules with

a cascaded driven process for modelling photodetection [113, 114, 115].

Since the complete Hamiltonian (system+environment) in these models are

understood, the unitarity of evolution (preservation of commutation rules) is

explicitly verifiable. A photodetector model can capitalize on these theories

[116, 117].

• Amplification of weak signals Bohr’s initial intuition still holds.

Our measurement of quatum observables are only confirmable through

an amplified classical readout. The problem of amplifying weak signals,

therefore, is not new in quantum physics research. Famous examples

of techniques in use are SU(1,1) interferometry [118, 119] and Ramsey

interferometry [120]. A host of new proposals and theories exist on new

techniques for amplifying quantum observables [1, 121, 122]. The theories

offer quantum mechanically allowed evolution of operators that carry the

signal. So these input-output relationships of the operators need to be

commutator relationship preserving. The most precise description of such

unitarity preserving evolution is through a Hamiltonian that describes all the

interactions in play.

Our ability to project onto input photon wavepackets is contingent upon

experimentally obtaining the temporal shape of the rising occupation level

of the “dark state” of the absorber molecule [70]. This is the quantum
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information we need to protect and amplify and read out. By modern

standards, we do not rely upon Copenhagen interpretation, rather formulate

suitable system+meter+environment who have entwined dynamics in the

spirit of the von Neuman measurement theory. Effectively we measure meter

through the environment. The quantum information in the system and meter

should be protected against measurement backaction as much as possible.

“Which-path” information leaks into the environment from the meter

through decoherence. This redundantly encoded classical information in the

environment is available to all classical observers. Relative environmental

states are preferably clearly distinguishable [2]. A judicious design of

Ĥmeter−environment would be required. Naturally, it would be easier to measure

100spins or atoms in a collective state than an absorber single molecule

state. So 100spins could be the meter that serves the purpose of amplifying

the weak signal from the absorber molecule [71, 72]. Modern quantum

optics techniques allow classical readout of temporal evolution of quantum

observables [123].

• Preserving quantum information The dynamical symmetry of the

evolution, the symmetry of Ĥmeter−environment can help protect against

certain errors in the quantum information. A model for a single photon

detector should consider errors attacking the quantum information. Beyond

a mathematical equivalence, physical formulations should be augmented with

error models that they can possibly protect against.

The occupation in shelving state, X’s occupation can be coupled to a bound

optical cavity mode with a Hamiltonian term, i|X〉〈X|(c − c†). The cavity

mode becomes our “meter”, it needs to interact with the environment or we
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do not find out any information about its dynamics. If the cavity is coupled

to a bath of electromagnetic (continuum) modes, it would leak out and that

reveals information about it. The bath or “environment” monitors the state

of the oscillator performing continuous weak measurement. If unobserved

by an environment, the driven oscillator (initiated in the ground state, |0〉,

a coherent state with amplitude 0) continues to stay a coherent state with

amplitude being the integral of the coherent drive amplitude [124] (it’s the

time integration of the occupation we need to measure experimentally).

ρ̇ = −(i/~)[Hsys, ρ]

γ(t) = |X〉〈X|(t)

Ĥdrive = i~
(
γ(t)a† − γ∗(t)a

)
aout = ain + α(t) α(t) =

t∫
0

dt′γ(t′) (1.38)

With the cavity leaking out at a rate κ to the environment, a cavity

oscillator of resonance frequency ωc (no driving present), initiated in coherent

state |α〉, evolves as a coherent state of decaying magnitude αe−iωcte−κt/2

[125]. With driving proportional to the waveshape ( γ(t) = |X〉〈X|(t) )

we wish to measure, the quadratures of the oscillator bears information

about the waveshape we are interested in, and they can be measured with

a homodyne setup [123]. But it is quite obvious the measurement damping is

going to affect the amplitude of the cavity mode.

Another clarifying comment is in order here. The measurement result of

an atom undergoing spontaneous decay would be a discontinuous one [125].

Such trajectories can be simulated with quantum trajectory methods. So if
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our desired function γ(t) was driving an atom, and the fluorescence signal

leaking from it would be broken up ones as well. However if it was driving an

ensemble of atoms and their output was monitored the observed signal would

be almost continuous similar to the solutions of the master equation, that

calculates ensemble average dynamics.

The ideas of quantum non demolition observables and deoceherence free

subspaces are useful here. Whether we are monitoring the oscillator

amplitude or the collective atomic operators, they can be made immune

to certain errors that preserve the symmetry of the Ĥmeter−environment

interactions. These ideas are borrowed from quantum information theory

and they can preserve quantum information better. Quantum non demolition

measurements, on the other hand can carry out measurements without

backaction and such methods can help purer information about the photon

wavepackets initiating the detection event.

In summary, the interactions in the model that define the dynamics from a

weak signal to the amplified classical signal need to abide by natural or quantum

mechanical rules. The unitarity requirement is most precisely enforced by a

Hamiltonian formulation. A complete Hamiltonian can elucidate the interrelations

between all constituents of the theory, i.e. particles and modes and shed light onto

fundamental constraints of photodetector figures of merit. With a host of cavity-

QED system apparatus and Hamiltonians representing them at our disposal, we

can design very precise and fundamental descriptions of single photon detectors in

terms of the Hamiltonians.
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CHAPTER II

SUMMARY OF RELEVANT THEORY

You know only insofar as you can

measure.

Lord Kelvin

2.1. A Photon Wavepacket

Fundamentally, photon is the excitation of the electromagnetic fields.

However, from a practical point of view of an experimentalist working on an

apparatus of photo-electric effect or an atom’s spontaneous decay that definition is

of no particular practical use. Rather definitions of photon tailored to the purpose

at hand may be more useful. Rather more useful definitions can be procured

from a wavepacket point of view. For a photon generating experiment like a

spontaneous emission of an excitation from an atom into a bath of electromagnetic

field or for a photon detection experiment where an excitation is absorbed into an

atom from the bath we can define coherent superpositions of frequency (or time)

components normalized with a particle number of 1.

Classical electrodynamics has a simple form in the reciprocal space and the

electromagnetic field is decomposed into longitudinal and transverse components.

[51, 126]
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ik · E =
1

ε0
ρ

ik · B = 0

ik× E = −Ḃ

ik× B =
1

c2
Ė +

1

ε0c2
j (2.1)

A classical electric field can be represented by the complex representation,

or analytical signal E(+)(r, t). [127] All solutions of the Maxwell’s equations,

E(+)(r, t) can be considered a vector in the Hilbert space of modes, the modal

space. See ref. [127] for a review of the definitions and structures of the space. The

mode is defined to be a vector field that is a normalized solution of the Maxwell

equations in vacuum.

For a field propagating in the +z direction,

E(+)(r, t) =
∑
i,p,r

Fi,p,rfi,p,r(r, t) =
∑
m

Fmfm(r, t) (2.2)

fi,p,r(r, t) = εif
(T )
p (x, y, z)f (L)

r (t, z) (2.3)

where εi are the two orthogonal polarization vectors in the x-y plane, f (T)
p (x,y, z)

is the transverse or spatial part, f (L)
r (t, z) the longitudinal or temporal. This

separation of mode functions help identify the possible excitations (photons) in the

quantized version of the electromagnetic fields. In a beamlike geometry or a one

dimensional waveguide (oriented along the z-axis), the translationaly symmetric

direction is the z-axis alone and the reciprocal vector representations in eq. has
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only kz points. The transverse component of the mode function, f (T)
p (x,y, z) is

determined by the transverse boundary conditions.

Under the paraxial approximation (wave-vectors close to a particular ~k0) and

narrow-band approximation (frequencies close to a central frequency, ω0 = c|k0|);

the E(+)(r, t) can be resolved into a product of envelope functions and the plane

wave, ei(k0z−ωt).

E(+)(r, t) = ei(k0z−ωt)
∑
i,p,r

εif
(T)
p (x,y, z)f (L)

r (t, z) (2.4)

The quantum extension of the classical complex field E(+)(r, t), is written in

the Heisenberg picture so as to get the time dependence for the operators. [127]

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t)

Ê(+)(r, t) =
∑
l

E (1)
l âlul(r, t) (2.5)

ul(r, t) = εle
ki.r−ωlt

E (1)
l =

√
~ωl

2ε0V

The expansion is in the basis of monochromatic plane wave modes ul(r, t). The

expansion eq. (2.5) is not unique, Ê(+)(r, t) can be expanded into other modal

bases (solutions of the wave equations). [128] Unitary transformations can be

found between modal bases and also between the the corresponding creation and

annihilation operators. [127, 128]

In a waveguide oriented along the z-axis, we once again have kz the only

continuous mode (plane wave mode) index. The transverse functions have mode
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labels determined by the boundary conditions.

ul(r, t) = εlf
(T)
p (x,y, z)eki.z−ωlt (2.6)

We can identify the degrees of freedoms (DOF) that a photon can have from the

translational symmetry of the problem and polarization. In free space, light has

four DOFs e.g. helicity and the three components of the momentum vector. [129]

In a beamlike geometry or an one dimensional waveguide we have polarization,

two transverse mode profile and the longitudinal (or time) profile ([129]). A

photon can reside in any of the DOFs that light has and quantized electromagnetic

field theories have been developed for all possible photon wavepackets. The

excitations can be separated into two components. The Transverse Electric (TE)

and transverse Magnetic (TM) modes. TMs are defined with the condition Hz = 0

and only electric field has a component parallel to the z-axis (Ez). Knowledge of

Ez is sufficient for complete determination of the relevant modes,

Ex = −ikz
k2
ρ

∂Ez
∂x

, Ey = −ikz
k2
ρ

∂Ez
∂y

, Hx = i
ωµ

k2
ρ

∂Ez
∂y

, Hy = −iωµ
k2
ρ

∂Ez
∂x

(2.7)

The field-orthogonal temporal modes (connected to the longitudinal DOF or

temporal DOF only) enable us to define a photon wavepacket as a coherent

superposition of monochromatic wave modes [129, 130].

|Aj〉 =

∫
dωfj(ω)â†(ω)|0〉 ≡ Â†j|0〉 (2.8)
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In the time domain we have corresponding creation operators,

|Aj〉 =

∫
dtf̃j(t)Â

†(t)|0〉 ≡ Â†j|0〉 (2.9)

The definitions of the Fourier transform are

â†(ω) =
1√
2π

∫
dteiωtÂ†(t), Â†(t) =

1√
2π

∫
dωe−iωtÂ†(ω) (2.10)

f̃j(t) =
1√
2π

∫
dωeiωtfj(ω), fj(ω) =

1√
2π

∫
dte−iωtf̃j(t) (2.11)

The broadband mode operator Âj follows the Bosonic commutation relations [129],

Â†j =

∫
dωfj(ω)â†(ω) =

∫
dtf̃j(t)Â

†(t) (2.12)[
Âi, Â

†
j

]
= δij (2.13)

Temporal modes are orthogonal in both time and frequency domain and are

important for Quantum Information Science (QIS) applications.

∫
dωf ∗j (ω)fk(ω) =

∫
dtf̃ ∗j (t)f̃k(t) = δjk (2.14)

Similar single photon wave-packet creation operator can be defined for

twisted photon pulse, [131], (where the photon resides in the helicity degree of

freedom)

â†ξλ =

∫
d3kξλ(k)â†kλ (2.15)
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The Spectral Amplitude Function (SAF), ξλ(k) of a twisted pulse with

deterministic Orbital Angular Momentum (OAM) can be written

ξλ(k) =
1√
2π
ηλ(kz, ρk)eimφk (2.16)

In this dissertation, we are interested in the photon wavepackets in the

temporal or longitudinal DOF. The photon absorber is placed at the end of a

one dimensional waveguide and interacts with any photon or photons travelling

through the waveguide. Two (frequency) un-entangled single-photon wavepackets

in two polarizations (or spatial) modes

|ψ2〉 = |ψα〉|ψβ〉 (2.17)

=

∫
dω1gα(ω1)b†1(ω1)

∫
dω2gβ(ω2)b†2(ω2)|vac〉 (2.18)

We do not consider entangled photons. Parametric Down Conversion (PDC)

can generate spectrally (time) entangled photon pairs. [129, 130]

|Ψ〉 =

∫
dωsdωif(ωs, ωi)â

†(ωs)b̂
†(ωi)|0, 0〉 (2.19)

where the Joint Spectral Amplitude (f(ωs, ωi) ) cannot be factorised as in eq.

(4.22). But the important point is the transverse spatial mode profile is decoupled

which is determined solely by the waveguide’s features.

Note that the two photons in eq. (4.22) need not have the same polarization.

In fact it is extremely unlikely for the two to have the same polarization (as well as

transverse profile) i.e. reside in the same continuum.
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2.2. Atoms in a single mode Electromagnetic Field

Optical transition and resonance fluorescence problems exploit the dipole

coupling of the field and atom. For a d-level atom, we consider the single mode

field nearly resonant with two of the levels of the atom. So, |e〉 and |g〉 are two of

the d-levels, HI mentioned would fit inside the d-dimensional Hamiltonian for the

d-level [132].

HI = (|g〉〈e|+ |e〉〈g|) 〈g|HI |e〉 (2.20)

Eq. 2.20 only clarifies the structure of the Hamiltonian matrix elements in the

linear space of operators acting on the atomic part of the Hilbert space. The

explicit HI act on the product space of the atom and field Hilbert space and will

be presented shortly (in eq. 2.23).

The single mode electromagnetic field is a classical plane-wave field of the

form,

E(x, t) = E0

[
ei(kx−ωt) + c.c.

]
(2.21)

where, the field amplitude, E0 is taken to be real. Quantization of the

electromagnetic field is not always necessary [132]. We take, ~ω ≈ Ee − Eg, hence

all electronic states except |g〉 and |e〉 will be less important in the rotating frame

of the field..
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2.2.1. The Dipole Approximation

The d-level atomic Hamiltonian (a d dimensional operator) can be written

as,

Ha =
d∑

k,j=1

(Ha)kj |k〉〈j| =
d∑
j=1

Ej|j〉〈j| (2.22)

The single mode electromagnetic field with frequency, ω would have the energy of

a single harmonic oscillator with Hf = ~ωa†a and interact with the atom with

the Hamiltonian part, Haf = −~d. ~E. Here ~d = e~r denotes the dipole moment

operator and ~E the external quantum electric field at the position of the atom.

In the rotating wave defined by, H0 = eiωt/~a
†a+i/~

∑d
j=1 ωjAjjt, and in the long

wavelength approximation (ei~k.~x ≈ 1), the interaction is, (ref. [133, 134])

HI = Haf = − i
2

d∑
j 6=k=1

µjk (|j〉〈k|+ |k〉〈j|) (a− a†) (2.23)

with µjk =
√

2π~ω
V

∑
β

(
~E0.~eβ(xβ)jk

)
, E0 =

√
~ω

2ε0V
. Ω = dgeE0/~, where dge is the

matrix element of the electric dipole operator. The complete Hamiltonian would

be,

H =
d∑
j=1

ωjAjj −
i

2

d∑
j 6=k=1

µjk (|j〉〈k|+ |k〉〈j|) (a− a†) (2.24)

50



2.2.2. The Jaynes Cummings Interaction

The interaction Hamiltonian, (ref. [132, 134])

H =
d∑
j=1

ωjAjj −
i

2

d∑
j 6=k=1

µjk
(
σ+ + σ−

)
(a− a†)

=
d∑
j=1

ωjAjj −
i

2

d∑
j 6=k=1

µjk
(
σ+a− σ−a† − σ+a† + σ−a

)
(2.25)

In the original frame of the laboratory or “lab-frame”, σ+a − σ−a† is accompanied

by no time dependence and −σ+a† + σ−a is accompanied by the time dependence

of e±i2ωt. The Jaynes Cummings Hamiltonian ignores the high frequency

components. Also, σ+ = |j〉〈k| if Ej − Ek = Ee − Eg > 0.

HJC =
d∑
j=1

ωjAjj −
i

2

d∑
j 6=k=1

µjk
(
σ+a− σ−a†

)
(2.26)

This Hamiltonian commutes with the total excitation number, a†a + 1
2
σz. We

can call the two possible energy level of the atom or molecule ψm,m = 1, 2 and

the number of quanta in the field oscillator n, Φn, n = 0, 1, 2, 3, ... [106]. Then,

the state vectors, Φn ⊗ ψm form a basis of the Hamiltonian. We can write out the

matrix elements of the Hamiltonian in the said basis,

〈mn|H|m′n′〉 = (Em + n~ω)δmm′δnn′ + 〈mn|Hint|m′n′〉

Hint = −~µ. ~E

〈mn|µz|m′n′〉 = µ(1− δmm′)δnn′

〈mn|Hint|m′n′〉 = ~α(1− δm,m′)[
√
nδn,n′+1 +

√
n+ 1δn+1,n′ ]. (2.27)
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2.3. Open System dynamics

The Liouville representation of quantum map, S can be done with the aid

of S expressed in a particular basis. In a d-dimensional quantum system with the

Hilbert space, Hd, operator A is a map, A : Hd → Hd, and S is a mapping for the

operator A,S : L(Hd) → L(Hd). L is the vector space of linear operators acting

on Hd [135]. We define a Liouvillian dissipator map for density matrix, D : ρ →

XρX† − 1
2
X†Xρ − 1

2
ρX†X and a Liouvillian-type dissipator map for operator A,

D′ : A → X†AX − 1
2
X†XA − 1

2
AX†X, commonly known as superoperators. X is

called a quantum jump operator. The Schrödinger picture evolution of the density

matrix and the Heisenberg picture evolution of the system operator are determined

by the Liouvillian and the Liouvillian type equation respectively.

ρ̇ = Lρ = − i
~

[Hsys, ρ] +DXρ (2.28)

DXρ = XρX† − 1

2
X†Xρ− 1

2
ρX†X

˙̂
A = L′Â =

i

~

[
Hsys, Â

]
+D′XÂ (2.29)

D′XÂ = X†ÂX − 1

2
X†XÂ− 1

2
ÂX†X

Choosing {Pn}d
2

n=1 for a Hermitian operator orthonormal basis (w.r.t.

Hilbert-Schmidt inner product), we can represent any operator at any time

with its components in the basis. The inner product of A and B is defined as
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(A|B) := Tr[A†B].

A =
1

d

∑
k

Tr[PkA]Pk

S(A) =
1

d

∑
n,m

SnmTr[PmA]Pn

Snm =
1

d
Tr[PnS(Pm)]

(Pn|Pm) := Tr[P †nPm]

The operator A and map S both can be specified with the orthonormal

basis {Pn}. This is the most crucial tool for the calculations. The basis {Pn}

can be taken to be time stationary. There exists an under-appreciated method

for solving equations like (2.28) and (2.29) from [136]. For a total system that is

a cascade of three or more constituent quantum mechanical Hilbert spaces, the

density matrix can be expanded in one, two or all three constituent Hilbert space

bases to solve eq. (2.28). The coefficients of expansion are complex numbers if

expanded in all three constituent Hilbert space bases. And they are operators if

expended in less than three constituent Hilbert spaces. The same structure applies

in expanding into vector spaces of operators in solving eq. (2.29) for the evolution

of an operator.

For a cascaded system of a discrete bosonic cavity a (with a maximum

photon of Na), a N level atom F and another discrete bosonic cavity mode, c (with

a maximum photon of Nc) under the action of a system Hamiltonian and some
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collapse operators, an arbitrary operator, K̂ can be expanded as

K̂ =
Na∑
i,j=1

N∑
k,l=1

K̂ij⊗kl(t)|a†a = i, Fk〉〈a†a = j, Fl| (2.30)

=
Na∑
i,j=1

N∑
k,l=1

Nc∑
m,n=1

Kij⊗kl⊗ab(t)|a†a = i, Fk, c
†c = m〉〈a†a = j, Fl, c

†c = n| (2.31)

The expansion coefficients in eq. (2.30) are operators and in eq. (2.31) are complex

numbers. The basis in either case is time stationary and the time dependence is

entirely in the expansion coefficients. If the Schrödinger picture is opted for, eq.

(2.31) is solved with the density matrix, ρ expanded (gradually) in complete bases.

The two picture solutions are to be consistent with the condition,

Tr[ρ(t)K(t0)] = Tr[ρ(t0)K(t)] (2.32)

An example of such expansion in operator coefficients to solve a Liouvillian

equation (2.28) can be found in [136]. In a problem that is solved in chapter 3,

a cascaded system of a discrete bosonic cavity (Na = 1), a N=3 level atom F,

and a discrete cavity c, with the atom F driving mode c in the state |F2〉 with the

Hamiltonian term HF−c = i|F2〉〈F2|(c − c†), we get the following equation set
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(decoupled from all the other) of equations. This set has an interesting feature.

˙̂
K00⊗00 = D′√ΓcK̂00⊗00

˙̂
K00⊗22 = i[iF (c− c†), K̂00⊗22] +D′√ΓcK̂00⊗22

˙̂
K00⊗11 = −(γ1 + γ2)K̂00⊗11

+D′√ΓcK̂00⊗11 + γ1K̂00⊗00 + γ2K̂00⊗22

˙̂
K10⊗01 =

˙̂
K01⊗10 = −(γ1 + γ2 + κ)

2
K̂10⊗01

+
√
κγ1(K̂00⊗00 − K̂00⊗11) +D′√ΓcK̂10⊗01

In the composite operator, 1̂ ⊗ 1̂ ⊗ ĉ(t) operator, all the diagonal operators,

K̂ii⊗jj are ĉ itself. So the first two equations look like the following,

˙̂c = D′√Γcĉ

˙̂c = i[iF (c− c†), ĉ] +D′√Γcĉ (2.33)

The two equations are for a cavity mode under dissipative dynamics and a driven

cavity mode under dissipative dynamics.

In essence, every single equation in the set above behaves as a stand-alone

(except for the coupling to other ones) system initialized in a certain density

matrix (in the sense of eq. (2.32) ). The have the appearance of copies of the

same system running in parallel initialized in all the different possibilities. The

off-diagonal elements contribute to the noise in the output signal. Schrödinger

equation evolution and quantum mechanics is determinsitic. Our Heisenberg

evolution is a counting problem of how many initial state matrices can end up in

the observable eigenvalue observed. The probability of an observable expectation
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value is proportional to the number of initial states that evolved deterministically

would end up in states consistent with it. As our model shows initial unphysical

density matrices contribute to the measurement fluctuations the same way the

physical density matrices do. Mathematically invalid solutions are supported by

nature sometimes. ρ01 is a physically invalid state, but it has a bearing on physical

observable statistics!

We can emulate the multi-photon Fock state equations of ref. [113] with

expanding the density matrix, ρ(t) in a complete basis. In chapter 4, we have

an explicit example of this. The operator evolution calculation is also facilitated

by expanding them in the complete orthonormal basis, where the sparsity of the

couplings between the equations make analytical computation possible.

The variance of a quantum mechanical observable (represented by a

Hermitian matrix M) is

var(M) = 〈M2〉 − (〈M〉)2

var(M) = (Tr[M ×M × ρ(t0)])2 − (Tr[M × ρ(t0)])2 (2.34)

For the case of initial density matrix being a pure state, ρ(t0) =
∑

i,j δi,i0δj,i0 , we

get an elegant expression for var(M(t)),

var(M(t)) =
∑
k 6=i0

|Mi0k(t)|2 (2.35)

So off-diagonal couplings in the equation (2.29) for any diagonal element, add to

the variance and hence noise. If the initial density matrix is a mixed state, the

expression for noise would account for the added classical uncertainty as well.

56



2.4. Systems and meters

A brief review from [112]. The initial system state vector is |ψ(t)〉 and the

meter system has initial state vector |θ(t)〉. Hence, the initial combined state

|Ψ(t)〉 = |θ(t)〉|ψ(t)〉 (2.36)

The product state can be written for only at time t. The two systems evolve

together for a time T1 by a unitary evolution operator Û(t + T1, t) ≡ Û(T1). The

combined system-meter at time T1 is

|Ψ(t+ T1)〉 = Û(T1)|θ(t)〉|ψ(t)〉 (2.37)

Let the meter be measured projectively over a time interval T2, and T = T1 +

T2. We can assume the system+meter does not evolve in this interval (T2 may be

negligible or the coupling time-dependent)

The projection operator for the meter is Π̂r = π̂r ⊗ 1̂, where |r〉 forms an

orthonormal basis for the meter Hilbert space. The final combined state is

|Ψr(t+ T )〉 =
|r〉〈r|Û(T1)|θ(t)〉|ψ(t)〉

√
ρr

(2.38)

ρr = Pr[R = r] = 〈ψ(t)|〈θ(t)|Û †(T1)[|r〉〈r| ⊗ 1̂]Û(T1)|θ(t)〉|ψ(t)〉 (2.39)

ρr is the probability of obtaining the value r for the result R.

Post measurement system and meter are disentangled once again.

|Ψr(t+ T )〉 = |r〉M̂r|ψ(t)〉
√
ρr

(2.40)

M̂r = 〈r|Û(T1)|θ(t)〉, a measurement operator (2.41)
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where M̂r is an operator that acts only in the system Hilbert space. The

probability distribution for R can be written as

Φr = 〈ψ(t)|M̂ †
rM̂r|ψ(t)〉 (2.42)

2.4.1. Measurement operators and effects

Measurement can be completely specified in terms of the measurement

operators, M̂r. Given that after the measurement of duration T, the result R has

the value r, the conditional state of the system is

|ψr(t+ T )〉 =
M̂r|ψ(t)〉√

Φr

(2.43)

The probability operators, or effects are defined to be

Êr = M̂ †
rM̂r (2.44)

Their expectation values give the probabilities. Probabilities need to add up to

unity and a completeness condition on the measurement operators is imposed:

∑
r

Êr = 1̂S (2.45)

There are two restrictions on the set of measurement operators: 1) they have to be

positive, 2) Êr : r is a resolution of the identity for the system Hilbert space.

Generalized measurement does not require physical observables.

Measurement results r are simply labels, they can be integers, fractions, real or

complex (unlike physical observables that are real and eigenvalues of a Hermitian
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operator). The set of Êr constitute a Positive Operator Valued Measure (POVM)

on the space of results r. We do not need a probability distribution over space of r,

but rather only the POVM. For the general case of mixed states, the conditioned

state for the measurement result r is,

ρr(t+ T ) =
J [M̂r]ρ(t)

ρr

ρr = Tr[ρ(t)Êr]

J [Â]B̂ ≡ ÂB̂Â†

Or = J [M̂r] the operation for r : a superoperator

Superoperators map operators to operators, J is a superoperator. The class

of superoperators (called the completely positive maps) can map physical states to

states.

In summary:

1. It is good enough to assume that we projectively measure the ‘meter’

i.e. the electromagnetic continua, although subsequent measurements are also

done. They involve electronic signal, number plate, retina, brain signal etc. But

macroscopic objects decohere fast. So, a projective measurement on the meter is a

good enough description, we have a classical signal.

2. Measurement disentangles the system and meter.

3. M̂r are the measurement operators, act only on the system and in general,

are not unitary.

4. What state we prepare the meter state at time, t=0, (called the fiducial

state) can give rise to quantum noise. If the measurement basis states of the meter

(that we can take projective measurements on) are different from the fiducial state
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(even if it is a pure state), we shall have a distribution of outputs, a quantum

noise. If the fiducial state is a mixed state, we get a noise of classical nature on

top of it.

5. There is a way of representing the evolution during T1 + T2 using the

unitary operator,G.

6. The most general formulation of quantum measurement theory: The

operator Or for the result r is a Completely Positive (CP) superoperator. An

operation can always be written as,

Or =
∑
j

J [Ω̂r,j] (2.46)

for some set of operators, Ω̂r,j : j which is not unique. Ω̂r,j : j is the basic element

of the theory, which takes the a-priori system state to the conditioned a-posteriori

state:

ρ̃r(t+ T ) = Orρ(t) (2.47)

And now we have completely replaced the measurement operators, M̂r.

It is worth mentioning here that Quantum Darwinism theory takes a different

approach and we discuss that later.

A Back-Action Evading (BAE) measurement is one where the statistics of

an observable does not change. A projective measurement before or after the

BAE would give the same statistics. A Quantum Non Demolition measurement

is a stronger condition, demanding that the observable, X̂ does not evolve in the

Heisenberg picture (all but ensures preserving the statistics).
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BAE: The total operation for the measurement in question being O =∑
rOr,

Tr[Π̂xρ] = Tr[Π̂xOρ] (2.48)

QND: X is a QND observable (effects/probabilities are functions of X̂) if

X̂ (= X̂S ⊗ 1̂A) is a constant of motion in the Heisenberg picture.

X̂ = Û †(T1)X̂Û(T1) (2.49)

Û(T1) is the system-meter coupling.

2.4.2. Classical and Quantum uncertainties

For two quantum operators, x̂ and ŷ, we take up the definition

δx̂ = x̂− 〈x̂〉, δŷ = ŷ − 〈ŷ〉

where, 〈..〉 refers to complete expectation values arrived at from a combination of

quantum mechanical and classical uncertainties. We have the constraint [137],

〈δx2〉〈δy2〉 ≥ 1

4
|〈[δx, δy]〉|2 +

1

4
|〈{δx, δy}〉|2 (2.50)

In classical noise theory, x̂ and ŷ commutes and, we have,

〈δx2〉〈δy2〉 ≥ σ2
xy (2.51)
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But in quantum mechanical open systems (once we integrate out the bath modes),

we have a mixed state with classical and quantum statistical properties.

∆x∆p ≥
√

1

4
~2 + σ2

xp (2.52)

Therefore, in our open system model of photodetection, the uncertainty

relationships of canonically conjugate varibles have the extra contribution from the

classical statistics as well. I refer to a discussion in chapter 1 of ref. [137], to point

out that certain operator (or observable) may be measured with more certainty

than others. One quadrature of a harmonic oscillator mode (say p̂) may be a more

attractive choice for measurement observable than the other quadrature (x̂). For

the motion of a free particle without any thermal noise, the classical Hamilton

equations and the quantum Heisenberg equations of motion are of the same form,

mẋ = p ṗ = 0

We now consider the repeated measurement of the position of the free particle at

intervals of τ .

x(t+ τ) = p(t)τ/m+ x(t)

〈δx(t+ τ)2〉 = 〈δx(t)2〉+ (τ/m)2〈δp(t)2〉+ τ/m〈δx, δp〉

A precise measurement of x(t) would cause 〈δp(t)2〉 → ∞ and 〈δx(t + τ)2〉 → ∞.

It becomes impossible to measure x precisely at any subsequent moment. However,

p can be measured repeatedly without introduction of such measurement back

action. p(t+ τ) = p(t).
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For a specific choice of the Hamiltonian, H̃c(F ) = 2iF cos(ωF t)(c − c†),

p̂ ∝ i(c−c†) (commutes with the Hamiltonian for zero detuning) would be preferred

as a Quantum Non Demolition Observable over the other quadrature variable,

x̂ ∝ (c+ c†) for repeated measurements.

2.5. Linear and nonlinear quantum amplification

In principle, the “input-output relationship” for some operator are always

obtainable with a brute-force calculation.

b̂(t) = eiĤtott/~b̂(0)e−iĤtott/~

for, Ĥtot = Ĥ0 + V̂ (2.53)

b̂(t) = eiĤ0t/~b̂(0)e−iĤ0t/~ (2.54)

A lot of the times, the important part of the transformation can be achieved by

splitting the Hamiltonian, Ĥtot into a tractable part, Ĥ0 and a complex part, V̂ (in

eq. (2.53) ) as is done in the famous Caves’ model. The primary mode, â interacts

with the ancillary mode, b̂ (can be called amplifier’s internal mode)

ĤI = ˆ̃HLPA = i~κ(âb̂− â†b̂†)

ÛI(t) = e−iĤI t/~ = er(âb̂−â
†b̂†) ≡ Ŝ(r), r = κt

Ŝ(r) is the two mode squeezing operator. The a mode evolves in the Heisenberg

picture,

âout = Ŝ†âŜ = âcosh(r)− b̂†sinh(r) = gâ− b̂†
√
g2 − 1 (2.55)
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The transformation belongs to SU(1,1) algebra. Quantum Mechanics demands

unitarity of evolution (for the system+environment or the universe) and hence

requires commutation relationships to be preserved.

âout =
√
Gâin +

√
G− 1b̂†in =

√
Gâin + L̂† (2.56)[

L̂, L̂†
]

= G− 1 (2.57)

∆L̂∆L̂† ≥ ~[L̂, L̂†] =
~
2

(G2 − 1) (2.58)

The b̂in operator is the amplifier’s internal noise mode which must be added to

preserve canonical commutation relationships. The relationship was generalized

to show that amplifying currents carried by either Fermions or Bosons require

addition of noise currents holding a relationship similar to eq. (2.57) [105]. It

was also noted that, a phase sensitive amplifier can amplify one of the x̂ or p̂

quadratures noiselessly while attenuating the other.

x̂out =
√
Gx̂in, p̂out = p̂in/

√
G (2.59)

Eq.s (2.56) and (2.59) are both linear in the annihilation operators. The problem

with linear amplification is that the noise mode is necessarily amplified Eq. (2.56).

More generally, for linear amplifiers,

âout = eiĤtot/~âine
−iĤtot/~ =

√
Gâin +

√
G− 1b̂†in

â†outâout = eiĤtot/~â†inâine
−iĤtot/~

= Gâ†inâin + (G− 1)b̂†inb̂in +
√
G(G− 1)(b̂inâin + â†inb̂

†
in)
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Diagonalizing equations like Eq. (2.60) are the reason the transformation in eq.

(2.55) is given the name Bogoliubov transformation after the famous example of

BCS superconductivity. â†outâout is the diagonalized form. The output excitation

expectation value, 〈n̂out〉 is calculated from either evolved states (Schrödinger

picture) or evolved operators (Heisenberg picture) in accordance with eq. (2.62).

〈n̂out〉 = 〈ψin|eiĤtot/~â†inâine−iĤtot/~|ψin〉 (2.60)

= 〈ψout|â†inâin|ψout〉 The Schrdinger P icture (2.61)

= 〈ψin|â†outâout|ψin〉 The Heisenberg P icture (2.62)

Eq. (2.60) enables calculation of the quantity in eq. (2.62) through initial

state relationships alone. If we assume that G excitations are to be considered a

classical macroscopic signal, we can see what initial state can cause such a click

simply from the number of excitations in the initial state. For an initial state,

|ψin〉 = |n̂a = 1, n̂b = 0〉, the quantity n̂out comes out to be G. So a single photon

signal would be amplified to a “click”. However, the initial state, |ψin〉 = |n̂a =

0, n̂b = 1〉 would cause a click just as well (with G-1 excitations), with no input

photons. This would count as a dark count, where a thermal excitation causes a

click in the detector. The linear transformation in eq. (2.60) amplifies noise almost

as much as it does the signal. Linear amplification transformations are plagued

with this noise amplification property that render them non-ideal for the purpose

of single photon detection ([1]).

The particular form of the transformation is mandated by the requirement

of the commutation preservation. It was noted in [1] that, nonlinear amplification
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transformations can be conceived of, that offer ways of amplifying an input signal

without amplifying the noise excitations.

b̂†outb̂out = Gâ†inâin + b̂†inb̂in (2.63)

With such a nonlinear amplification scheme, |ψin〉 = |n̂a = 1, n̂b = 0〉 would

cause a click, |ψin〉 = |n̂a = 0, n̂b = 1〉 would not. So nonlinear amplification (eq.

(2.65) ) mechanism would far outperform linear amplification schemes in terms of

the Signal to Noise (SNR) ratios. Nonlinear amplification can be achieved with the

addition of a single noise mode operator which is not amplified. That one mode of

noise operator is, however, essential. Amplification with minimum noise addition is

called “minimum noise amplification”.

âout =
√
Gâin +

√
G− 1b̂†in The Caves’ relation(linear)

b̂†outb̂out = b̂†inb̂in +Gâ†inâin Number amplification (nonlinear) (2.64)

b̂out = Ŝ
√

(b†b)in +G((b†b)in, (2.65)

Ŝ is a unitary operator which is designed so as to preserve the commutation

relationship of the operator, b̂out in eq. (2.65). Number amplification like in eq.

(2.65) has improved SNR performance.

The Heisenberg evolution of an operator yields an input-output relationship

for the operator, which enables easy calculation of the time evolved expectation

values (such as 〈n̂out〉), only eigenvalue equations of the initial state suffice for the

computation. This is always a good way for interpreting results in the Heisenberg

picture. The matrix elements of the operators in some basis help calculate the time

evolution of the expectation values of an operator (for a initial condition) which
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coincide with the Schrödinger picture since matrix elements are the same across all

pictures.

For the more general case of mixed/entangled states,

Tr[ρ(t0)†g(t)] = Tr[ρ†(t)g(t0)] (2.66)

Tr[ρ(t0)g(t)] = Tr[ρ(t)g(t0)] (2.67)

Each individual element of g(t), e.g. 〈i|g(t)|j〉 in a chosen basis can be interpreted

as the expectation value of g(t) for a system initialized in ρ(t0) = δr,iδc,j

2.6. Access to some example observables: Techniques of quantum optics

The number operator holds a special place in quantum mechanics, since the

methods of measurement are reliant on photocurrent clicks that are proportional

to intensity of a mode which is proportional to the number operator. Also, we

have talked about why a quadrature of the field may be better suited for low noise

detection in repeated weak measurements over the other. Therefore, we can do

better by finding more suitable observables for low noise detection and better

readout of the steadystate population of the atom. I now talk about a few schemes

of finding more observables inside our absorber atom.

The Balanced Homodyne Detection (BHD) gives us photocurrent

proportional to the difference between two intensities, Ic − Id = 〈n̂cd〉 = 〈ĉ†ĉ− d̂†d̂〉.

ĉ and d̂ are mixed combinations of signal, â and reference b̂, ĉ = 1√
2
(â + ib̂), d̂ =

1√
2
(b̂+ iâ). In a homodyne detection scheme, a strong coherent field local oscillator

(lo) is added to the field to be measured (the source field) and continuous
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photoelectric detection is performed on the sum. For the continuous photoelectric

detection of the field, Ê(t)

Ê(t) = e−iωCt
[
Êlo +

√
ξ
√

2κ∆ˆ̃a(t′)
]

Ê(t),Êlo are in units of photon flux. 〈Êlo = Elo, a c-number, is the local oscillator

coherent amplitude, t′ is a retarded time, ξ is the collection efficiency,
√

2κ scales

the source field for 2κ∆ˆ̃a†ˆ̃a(t) to have units of photon flux.

2.6.1. Quantum Stochastic Calculus

By coupling a microscopic system to a macroscopic system, the quantum

features should be transferrable to the classical objects– a measurement readout.

Decoherence is a consequence of environmental monitoring of a system via system-

entanglement. Environmental monitoring has three main consequences, a) the

suppression of interference effects at the level of the system, b) the selection of

quasi-classical preferred states, and c) the robust and redundant encoding of

information about the preferred states in the environment.

2.6.1.1. Stochastic Difference Equations

At each time, the solution to a stochastic difference equation is a random

variable, which changes variable at each time step (not different random variables

at each time points). y0, y1, y2, ... (noise increments) are random variables (x(0)

may or may not be a random variable), and so x(∆t), x(2∆t), x(3∆t), x(4∆t) are

random variables.
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Solution of a stochastic Difference equation: calculating the probability

density functions of x(tn) (from the probability densities for all noise increments

(yns) and x(0) ).

2.6.1.2. Stochastic Differential Equation (SDE)

Stochastic Differential Equations are obtained by taking the ∆t → 0 limit of

stochastic difference equations. The solution of a stochastic differential equation is

a probability density for the value of x at all future ts. A process that fluctuates

randomly in time is called a stochastic process. SDEs are thus driven by stochastic

processes. The random increments that drive an SDE are referred to as noise (“the

noise driven”). A set of values of the random increments (values sampled from the

probability density) is called a “realization of the noise”. A particular evolution for

x, given a specific noise realization is called “a sample path for x”.

The full solution to SDE: complete set of all possible sample paths and their

probabilities. Simpler solution: Probability density for x at each time, correlation

of x at one time with another.

Stochastic integral are defined as,

W (T ) =

T∫
0

dW, dW are called “Wiener process” (2.68)

The continuum limit of the Gaussian increments, dW, are referred to as

being infinitesimal. A general SDE for a single variable x(t), is,

dx = f(x, t)dt+ g(x, t)dW (2.69)
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2.6.2. Quantum Trajectories

We take the ideology of ref. [112], in defining a quantum trajectory as

the path taken by the conditional state of a quantum system for which the

unconditioned system evolves continuously. The unconditioned state is the one

obtained by averaging over the random measurement results which condition the

system. Quantum jumps are discontinuous conditioned evolution. Quantum jumps

can be related to photon-counting measurements on the bath.

The evolution of an isolated quantum system in the absence of measurement

is

|ψ(t+ T )〉 = U(T )|ψ(t)〉 = exp(−iHT )|ψ(t)〉 (2.70)

We find the finite differential,

lim
τ→0

|ψ(t+ τ)〉 − |ψ(t)〉
τ

= −iH(t)|ψ(t)〉 = finite (2.71)

which governs the continuous evolution. The unconditioned state is obtained

by averaging over all the possible measurement results. For a system we are

monitoring, the differential of the density matrix,

lim
τ→0

ρ(t+ τ)− ρ(t)

τ
= ρ̇(t) (2.72)

With T taken to be infinitesimal, the state matrix at time t+dt, averaging

over all possible results,

ρ(t+ dt) =
∑
r

J [M̂r(dt)]ρ(t)
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where, ρ(t + τ) = Lτ [ρ(t)] = ρ(t) + O(τ). O(τ) is a first-order contribution in

τ . One of the operators, Mµ should be of order of unity. We can write it,

M0 = 1− iKτ + O(τ2)

K can also be put in terms of its Hermitian and antiHermitian parts, H and J

respectively.

H = ~
K +K†

2
, J = i

K −K†

2

K =
H

~
− iJ

Clearly, if M0 = 1 − Jdt − iH/~dt was the only measurement operator, enforcing∑
rM

†
r (dt)Mr(dt) = 1 would require, M †

0(dt)M0(dt) = 1 − 2Jdt 6= 1 or J = 0 and

the measurement operator would only be an unitary operator (the irreversibility

would not be facilitated). The minimum number of measurement operators are 2

and we must define,

M1(dt) =
√
dtc

c†1c1 = 2J

M †
0M0 +M †

1M1 = 1
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In fact, we can add NK − 1 measurement operators, Mµ to the set instead of

just 1 defined as,

Mµ(dt) =
√
dtcµ

NK−1∑
µ=0

M †
µMµ = 1− 2Jdt+

∑
µ6=0

c†µcµ = 1

=⇒ J =
1

2

∑
µ6=0

c†µcµ

To the first order in dt,

M0(dt)ρAM
†
0(dt) = ρA −

i

~
[H, ρA]dt− (JρA + ρAJ)dt

= ρA −
i

~
[H − i~J, ρA]dt

for µ > 0, Mµ(dt)ρAM
†
µ(dt) =

(
cµρAc

†
µ

)
dt

NK∑
µ=0

MµρAM
†
µ = − i

~
[HA, ρA]dt+

NK∑
µ=1

(
cµρAc

†
µ −

1

2
c†µcµρA −

1

2
ρAc

†
µcµ

)
dt (2.73)

2.6.3. Stochastic evolution

We now confine the number of our measurement operators to 2. The

probability for the result r=1 is,

P1(dt) = Tr [J [M1(dt)]ρ] = dtTr
[
c†cρ

]
(2.74)

Provided that c†c is bounded, P0(dt) = 1 − P1(dt) = 1 − O(dt) is much larger

than P0(dt). Clearly, r=0 is the most likely measurement result each infinitesimal

time, dt. In these majority of dt segments with outcome r=0, the system state

changes infinitesimally (and not unitarily) with the operator, M0(dt) (not a

unitary operator); we call these segments null results. And at random times,
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happening at a rate of P0(dt)/dt, we get the r=1 result, that we call a detection.

The evolution for these dt segments happen with M1(dt). We call these changes “a

quantum jump”. These discontinuous changes take place in the knowledge of the

observer and not in the physical state of the system.

In a simulation of an experiment where emitted photons from a cavity are

registered with photodetectors, the conditioned state can be thought of as the

state the system was in at the time of emission, since there may be delays from the

emission to detection.

Let us assume, the system state at time t is a pure state, |ψ(t)〉, and the

number of photodetections up to time t is N(t). Then,

dN(t)2 = dN(t) It is either 0 or 1

E[dN(t)] = 〈M †
1(dt)M1(dt)〉 = dt〈ψ(t)|c†c|ψ(t)〉

For the dt segment, dN(t)=1, the state ket changes to,

|ψ1(t+ dt)〉 =
M1(dt)|ψ(t)〉√
〈M †

1(dt)M1(dt)〉(t)
=

c|ψ(t)〉√
〈c†c〉(dt)

(2.75)

For the dt segment, dN(t)=0, the state ket changes to,

|ψ0(t+ dt)〉 =
M0(dt)|ψ(t)〉√
〈M †

0(dt)M0(dt)〉(t)
=

{
1̂− dt

[
iH +

1

2
c†c− 1

2
〈c†c〉(t)

]}
|ψ(t)〉 (2.76)
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Combining them, we get the Stochastic Nonlinear Schrödinger Equation (SSE),

d|ψ(t)〉 =

[
dN(t)

{
c√

〈c†c〉(dt)
− 1

}

+(1− dN(t))dt

(
〈c†c〉(dt)

2
− c†c

2
− iH

)]
|ψ(t)〉 (2.77)

For the general case of mixed/entangled state matrix,

π̂(t) = |ψ(t)〉〈ψ(t)|

dπ̂(t) = |dψ(t)〉〈ψ(t)|+ |ψ(t)〉〈dψ(t)|+ |dψ(t)〉〈dψ(t)|

dπ̂(t) =

{
dN(t)G[ĉ]− dtH

[
iĤ +

1

2
c†c

]}
π̂(t)G[r̂]ρ =

r̂ρr̂†

Tr[r̂ρr̂†]
− ρ

H[r̂]ρ = r̂ρ+ ρr̂† − Tr[r̂ρ+ ρr̂†]ρ (2.78)

Then, we define,

ρ(t) = E[π̂(t)]

E [dN(t)g(π̂(t))] = dtE
[
Tr[π(t)c†c]g (π̂(t))

]
(2.79)

The identity eq. (2.79) can be used to find,

dρ = −idt
[
Ĥ, ρ

]
+ dtD[ĉ]ρ (2.80)
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2.7. Measurement Methods

2.7.1. Direct Photodetection

The unitary operator representing the interaction between the system and

the bath in the infinitesimal interval [t, t+ dt) is

Û(t+ dt, t) = exp[ĉdB̂† − ĉ†dB̂ − iĤdt]

dB̂ = dB̂z:=−t

The noise operators are all defined in the interaction frame, as is the Hamiltonian.

The entangled system-bath state after the dt segment [t, tdt) is Û(t+ dt, t)|0〉|ψ(t)〉.

Since, dB̂|0〉 = 0. we need only keep the non-normally ordered second-order terms,

dB̂dB̂† = dt,

Û(t+ dt, t)|0〉|ψ(t)〉 =
[
1̂− dtc†c/2− iĤ

]
|0〉|ψ(t)〉+ dB̂†|0〉c|ψ(t)〉

dB̂†|0〉 is a bath state containing one photon. However, it is non-normalized one-

photon state with a norm of 〈0|dB̂dB̂†|0〉 = dt. The probability of finding one

photon in the bath is

〈0|dB̂dB̂†|0〉〈ψ(t)|c†c|ψ(t)〉 = P1(dt)

P1 was defined in (2.74). Eq. (2.75) gives the system state conditioned on the

bath containing a photon. The probability of finding no photons in the bath is

P0(dt) = 1− P1(dt), and the conditioned system state is given in eq. (2.76).
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The field state at the beginning of the following interval [t + dt, t + 2dt) is

a vacuum state; it is a vacuum state for a new field operator, which comes from

the part of the field which has been initiated to interact with the system while the

previous part has moved on to be detected.

2.7.2. Homodyne Detection

Eq. (2.80) is invariant under the transformations,

c→ c+ γ

Ĥ → Ĥ − i

2

(
γ∗c− γc†

)
Under the transformation, the measurement operators transform to,

M1(dt) =
√
dt(ĉ+ γ)

M0(dt) = 1̂− dt
[
iĤ +

1

2
(ĉγ∗ − c†γ) +

1

2
(c† + γ∗)(ĉ+ γ)

]

Therefore, a deterministic master-equation can be unravelled into multiple

stochastic quantum trajectories. Physically, the above transformation can be

realized by homodyne detection. A Beam-Splitter (BS) of transmittance η

performs the transformations below.

b̂→ √ηb̂+
√

1− ηô

ô→ √ηb̂−
√

1− ηô

The strong local oscillator of a coherent field (with the same frequency as the

system dipole), ô is reflected into the path of the transmitted beam itself. The
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mode ô can be modelled as, ô = γ/
√

1− η + ν̂, γ/
√

1− η; the coherent amplitude,

γ/
√

1− η (|γ|2/(1 − η) being its photon flux) comes in accompanied with vacuum

fluctuations, ν̂.

[ν̂(t), ν̂†(t′)] = δ(t− t′)

The transformation and measurement operators talked about before can be

achieved with η → 1 with the transforation,

b̂→ b̂+ γ

The x-quadrature of the system dipole can be measured from the rate of

photodetections if we take γ to be real.

x̂ = ĉ+ ĉ†, ŷ = −i(ĉ− ĉ†)

E

[
d

dt
N(t)

]
= Tr

[
(γ2 + γx̂+ ĉ†ĉ)ρI(t)

]
(2.81)

For γ >> 〈c†c〉, eq. (2.81) has the inside the trace a large constant altered by a

small term and a term proportional to x̂.

The differential in conditioned state and state matrix equations are found as

(with the new measurement operators):

dρI(t) =

{
dN(t)G[ĉ+ γ] + dtH

[
−Ĥ − γĉ− 1

2
c†c

]}
ρI(t) (2.82)

d|ψI(t)〉 =

[
dN(t)

{
ĉ+ γ√

〈(c† + γ)(c+ γ)〉I(dt)
− 1

}

+dt

(
〈ĉ†ĉ〉I(dt)− ĉ†ĉ

2
− 〈ĉ

†γ + γĉ〉I(t)
2

− γĉ− iĤ
)]
|ψ(t)〉 (2.83)
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2.8. Excitation of a Two-level System

If we only considered the evolution of a pure state, we could expand it

|ψ(t)〉 = ab(t)|ψR, 0〉+ a1(t)||vac〉R, 1〉 (2.84)

and evolve it with the Hamiltonian, H = i
√
γ1

[
ĉb̂†in(t)− ĉ†b̂in(t)

]
(which

conserves the number of excitations and the expansion (eq. (2.84) ) is sufficient)

if |ψ(0)〉 = |ψR, 0〉. If we restrict the problem to a single excitation, the Bosonic

annihilation operator of a quantum harmonic oscillator, ĉ can be used in place

of |F0〉〈F1|. One of the basis vector has the excitation in the b-field (amplitude

ab(t) ) and the other has it in the absorber atom (amplitude a1(t)). Remembering

[ĉ, b̂in] = 0, but [ĉ, b̂†in] 6= 0, and |ψR〉 =
∫
dωuα(ω)b†(ω)|vac〉; we can calculate

the Heisenberg Langevin equation of motion for ĉ. If we opted for the Schrödinger

picture, we would find a differential equation for the quantum amplitude, a1(t).

d

dt
ĉ(t) = −γ1

2
ĉ(t)−√γ1b̂in(t) (2.85)

d

dt
a1(t) = −γ1

2
a1(t)−√γ1uα(t) (2.86)

So, the quantity T (t) =
√
γ1e
− γ1

2
tΘ(t) for the two level system are Green’s

functions for the first order differential equation (2.88), (2.85) or (2.86). Another

interpretation is that they are the decaying wavepacket shape leaked into a bath

mode if the atom is initiated in the final state and is allowed to spontaneously

relax [1] (the process of absorption in reverse). These Green’s functions, T(t)

play an important role in the mathematical structure of the problem and also

help identify the physical criteria for efficient excitations. For example, ref. [138]
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concludes with a Wigner-Weisskopf theory that the input photon needs the time

reversed properties of a spontaneously emitted photon for efficient excitation of a

two level atom. It is quite easy to see from the solution of eq. (2.86)

a1(t) = −
{√

γ1e
− γ1

2
tΘ(t)

}
∗ uα(t). (2.87)

ρ11,11(t) (same as |a1(t)|2 calculated from eq. (2.87) ) and a1(t) in eq. (2.87) are

both maximized if uα(t) has the time reversed shape of the Green’s function T (t)

(spontaneous emission waveshape) because of the convolution between them. The

reciprocity of optimal storage and retrieval holds for a three level Λ atom like ours

as well according to [139]. In the two level absorber the development of the excited

state population is hindered by amplification backaction and for optimal photon

absorber the three level Λ atom is required [64].

For the absortption in the quantum harmonic oscillator’s lowest two states

with one excitation, we have from the scattering theory,

ˆ̃bin/out(ω) =
1√
2π

∫
dtb̂in/out(t)e

iωt

ˆ̃bout(ω) = R(ω)ˆ̃bin(ω)

ĉ(ω) = −T (ω)ˆ̃bin(ω).

T (ω) =

√
γ1

−iω + γ1
2

R(ω) =
−iω − γ1

2

−iω + γ1
2

And we deduce that in frequency domain, the functions, T (ω) would serve as a

transmission coefficient. In the absence of cubic and higher order terms of the

annihilation operator in the Hamiltonian, the Heisenberg-Langevin operator
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equation of motion is that of a damped harmonic oscillator. Therefore, it is

the Green’s function for a damped quantum Harmonic oscillator amplitude. It

is an equation of motion shared by the excited state quantum amplitude, the

annihilation operator and the coherence of the generalized density matrix, ρα,0.

We are also able to relate the quantum amplitude of the excited state with

the transmission coefficient and input wavepacket.

a1(t) = −uα(t) ∗ T (t)

a1(ω) = − 1√
2π
uα(ω)T (ω)

The damped quantum harmonic oscillator equation also arises if the density

matrix formalism was used [64],

d

dt
ρ01(t) = −γ1

2
ρ01(t)−√γ1uα(t) (2.88)
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CHAPTER III

THE HEISENBERG PICTURE OF PHOTODETECTION

I have no satisfaction in formulas

unless I feel their numerical

magnitude.

Lord Kelvin

We construct a class of Hamiltonians that describe the photodetection

process from beginning to end. Our Hamiltonians describe the creation of a

photon, how the photon travels to an absorber (such as a molecule), how the

molecule absorbs the photon, and how the molecule after irreversibly changing

its configuration triggers an amplification process—at a wavelength that may be

very different from the photon’s wavelength—thus producing a macroscopic signal.

We use a simple prototype Hamiltonian to describe the single-photon detection

process analytically in the Heisenberg picture, which neatly separates desirable

from undesirable effects. Extensions to more complicated Hamiltonians are pointed

out.

3.1. Introduction

We may distinguish two traditional types of photodetection theory. The first

tries to determine what quantum field observable is measured when photoelectrons

are produced by photoabsorption and the photoelectrons are subsequently

detected and/or counted. This sort of theory is exemplified by the classic papers

Refs. [80, 81], which take as starting point the Hamiltonian describing the

interaction between photons and an electric dipole, but which do not describe
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the remainder of the detection process quantum mechanically. The second type

of theory models actual photodetectors phenomenologically, taking great care to

model the many mechanisms involved in converting the initial photon energy to

the final macroscopic current. This type of theory is exemplified by recent work on

the superconducting nanowire detector [140, 141, 142].

Neither of the above types of photodetection theory establishes fundamental

limits of photodetection, that is, platform-independent limitations arising from the

laws of physics on, e.g., single-photon detection efficiency, dark count rates, time

and wavelength resolution and tradeoffs between these figures-of-merit.

For just this purpose—finding fundamental limits on photodetectors—a third

type of theory has been developed in recent years. Here the aim is to develop fully

quantum-mechanical and sufficiently realistic models that include all stages of the

photodetection process, including the crucial amplification process [1, 62, 64, 65,

66, 68, 71, 72]. The point of this paper is to continue this recent work and present

a quantum description of the processes involved in the detection of a single photon,

especially the connection between the photoabsorption and amplification processes.

Moreover, we perform our calculations in the Heisenberg picture. That picture may

not be the most intuitive—it may be easier to follow the trajectory of an excitation

through the system in the Schrödinger picture—but it does have its merits. We

mention two reasons here to use this picture.

First, lower limits on noise accompanying quantum amplification are most

easily derived in the Heisenberg picture. Caves [143] studied linear amplification

of electricmagnetic (EM) field amplitudes and formulated the problem in terms of

the Heisenberg evolution of the annihilation operator of a single discrete EM field
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mode of the schematic form

aout =
√
Gain +Nin, (3.1)

with G > 1 the gain factor and Nin a noise term. The left-hand side here

represents the annihilation operator for the mode to be amplified at the end of

the amplification process, the operators on the right-hand side represent input

operators, i.e., initial values just before the amplification process starts. Ideally,

the number of excitations in the output equals the number of input excitations

multiplied by G, and this would be the case if it were not for the noise term Nin.

The commutator [a, a†] = 1 has to be preserved, i.e., at any time t we must

have [a(t), a†(t)] = 1 for the Heisenberg-picture operators a(t) and a†(t). This

puts a restriction on the noise operator Nin. In particular, it cannot be zero. For

example, phase-insensitive amplification is obtained by setting

Nin =
√
G− 1b†in, (3.2)

in terms of the creation operator of an additional discrete bosonic mode b. As is

easily verified, the addition of that noise term preserves the commutator. Thermal

excitations in the additional mode b are amplified, too, by a factor of G − 1; and

even if mode b starts in the vacuum state (at zero temperature) the fact that it

is the mode’s creation operator appearing here still causes noise. We refer to the

lower limit on noise reached here as the Caves limit on linear amplification.

Second, in a recent paper [66] we showed that the first part of the photo

detection process (the part preceding amplification, including absorption of

the incident photon) can be described compactly in the Heisenberg picture as
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well. The input-output relations for the annihilation operators (which now are

continuous-mode operators indexed by frequencies ω) consist of two clearly

distinct terms, one desired, the other undesired but inevitable so as to satisfy the

commutator [aout(ω), a†out(ω
′)] = δ(ω − ω′). We can write

aout(ω) = T (ω)ain(ω) + Ñin(ω), (3.3)

where T (ω) is a complex transmission amplitude, with the physical meaning that

a photon with frequency ω will survive the pre-amplification stage with probability

|T (ω)|2 (we will encounter this interpretation in Eqs. (4.28–3.38)). Here the noise

term is of the form

Ñin(ω) = R(ω)cin(ω), (3.4)

with cin(ω) the annihilation operators for external bosonic modes at frequency ω,

and

|R(ω)|2 + |T (ω)|2 = 1 (3.5)

so as to preserve the commutator [aout(ω), a†out(ω
′)]. Once again, thermal

excitations at arbitrary frequencies ω in the mode cin(ω) contribute noise as soon

as R(ω) 6= 0.

There are several reasons for wishing to describe the whole photo-detection

process with one Hamiltonian. First, although in a recent paper [1] it was

shown that one can write down commutator-preserving (nonlinear) amplification

relations that beat the above-mentioned Caves limit, no explicit Hamiltonians
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were considered there that may reach that improved limit. Here, we reach the

same improved limit, but in a new way and with a (fairly simple) Hamiltonian.

Second, that same paper also noticed how one can formally express the idea that

one can amplify at a frequency that differs substantially from the incoming photon

frequency. We show here explicitly how that idea can be implemented, quite

straightforwardly, by a Hamiltonian.

3.2. A class of model Hamiltonians

3.2.1. Description

We wish to represent the whole photo-detection process (including absorption

of the photon and amplification) plus the generation of the photon to be detected,

by a Hamiltonian. We start with what seems to be a minimal model (various

possible extensions of the model are discussed in the concluding Section). There

are 6 quantum systems in total; we have 3 discrete quantum systems a, F , and

c (with small Hilbert-space dimensions, which generate the photon, absorb the

photon, and amplify the signal, respectively) and 3 continuous-mode quantum

systems that connect the discrete systems and that are used to model irreversible

processes (see Fig. 1).

The continuous modes are modeled by bosonic mode operators

b(ωb), d(ωd), g(ωg) with ωi = cki proportional to the wave number ki (using just

1 spatial dimension, the x-axis) of the bosonic excitations of type i = b, d, g.

When there is no confusion possible, e.g., when we integrate over all frequencies ωi,

we will use the symbol ω without subscript to denote those. Positive frequencies

ω > 0 describe waves traveling from left to right (towards positive x), ω < 0 waves

traveling from right to left.
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a F

c

FIGURE 3.1. From a single photon to a macroscopic signal:
a cavity a which contains one excitation generates one single-photon wavepacket
(in a continuum b(ω)). That photon is (resonantly) absorbed by a molecule F .
The molecule may decay back to its initial state |F0〉 or it may decay to a different
state |F2〉 by emitting a different photon (in a continuum g(ω)) that escapes. In
the state |F2〉 the molecule’s shape and/or dipole moment have changed. That
physical change triggers an amplification process in another system c, which
eventually reaches a steady state in which spontaneous decay is balanced by a
“classical” drive, thus producing a stream of fluorescence photons (in a continuum
d(ω)) that a classical (human) observer can observe. The final macroscopic signal
may be at a (very) different wavelength than that of the single photon.

System a is a cavity that contains a single excitation that leaks out into the

continuum described by b(ω), and this is the single photon wave packet that we

intend to detect. That single excitation couples to to first leg of a three-level Λ

system—a “molecule” which we denote by F because it is the driving force behind
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amplification. The photon may excite the molecule from its initial state, the lower

level |F0〉, to an excited state |F1〉. That level could decay back to |F0〉 or it could

decay to the state |F2〉 through coupling to the continuum g(ω) [the excitation in

g thus produced is assumed to escape; this is an irreversible transition]. When the

molecule F is in the state |F2〉 the accompanying physical change in the molecule

triggers an amplification process in system c.

This aspect of the model mimics the mechanism used in the human eye: a

retinal molecule changes its configuration from cis to trans, and that change of

shape in turn induces a conformational change in the protein the retinal binds to.

Further changes in shapes of proteins then finally lead to a change in the charge

distribution, that then can generate an electric signal (see [144]). This idea can be

exploited in a bioinspired photodetector [36, 145] where a chromophore molecule

changes its shape upon absorbing a single photon and thereby changes its dipole

moment, which then affects a (macroscopic) current.

Finally, the many excitations generated by c leak out to the continuum

mode d(ω). The macroscopic signal present in continuum d(ω) is what we then

(classically) observe (see Fig. 1).

3.2.2. Hamiltonian

We follow here the ideas of Gardiner [116, 117] (see also [114]) for describing

how the output of one quantum system may serve as the input for the next

quantum system, without the latter acting back on the first system. This is done

simply by setting the coupling to the right-to-left traveling waves equal to zero.

That is, we only need the positive frequencies here. The (electric) field operators

describing fields that travel from left to right corresponding to the modes b, d,
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and g are denoted by corresponding capital letters B(x), D(x) and G(x), and are

expanded as

B(x, t) =
1√
2π

∫ ∞
0

dω b(ω, t) exp(iωx/c),

D(x, t) =
1√
2π

∫ ∞
0

dω d(ω, t) exp(iωx/c),

G(x, t) =
1√
2π

∫ ∞
0

dω g(ω, t) exp(iωx/c). (3.6)

It is through these field operators together with their hermitian conjugates

B†(x), D†(x) and G†(x) that the discrete systems interact (at their respective

locations on the x axis) with the continuous modes, where we will make both

Markov and rotating-wave approximations (RWA), as detailed below.

The Hamiltonian is of the following form

H = Ha +Ha−b +Hb

+Hb−F +HF +HF−g +Hg

+HF−c +Hc

+Hc−d +Hd. (3.7)

System a is a single cavity mode with resonance frequency ωa (which, in all

generality, would be time-dependent), whose Hamiltonian we write as (setting

~ = 1 everywhere)

Ha = ωaa
†a. (3.8)

The cavity mode is located at x = −cτ with τ the time delay between a signal

(a photon) leaving system a and interacting with system F (which we take to be
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located at x = 0). The cavity mode is coupled to the field B(x = −cτ, t) like so:

Ha−b = i
√
κ[aB†(−cτ, t)−B(−cτ, t)a†], (3.9)

with the field B described by the Hamiltonian (recall we leave out negative

frequencies since they do not couple to the systems of interest)

Hb =

∫ ∞
0

dω ωb†(ω)b(ω). (3.10)

We can anticipate that the main terms contributing to the interaction are those

at ω ≈ ωa. That is, in the Heisenberg picture a(t) ∼ exp(−iωat) and b†(ω, t) ∼

exp(+iωt) so that the main terms not averaging to zero over time come from ω ≈

ωa. In numerical simulations, we always transform to a rotating frame, i.e., we

solve equations for the slowly-varying operators exp(iωat)a(t) rather than a(t),

etcetera.

The next line of (4.37) contains four Hamiltonians that describe how the Λ

system F interacts with two different continua (namely, b and g) at position x = 0.

The four terms are written as

Hb−F = i
√
γ1[|F0〉 〈F1|B†(x = 0, t)−B(x = 0, t) |F1〉 〈F0|]

HF =
∑

k=0,1,2

ωk|Fk〉〈Fk|

HF−g = i
√
γ2[|F1〉 〈F2|G†(x = 0, t)−G(x = 0, t) |F2〉 〈F1|]

Hg =

∫ ∞
0

dω ωg†(ω)g(ω) (3.11)

and we again can anticipate that the most important terms are those with ω ≈

ω1−ω0 := ω10 for the interaction between F and b(ω) and for ω ≈ (ω1−ω2) for the
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interaction between g(ω) and F . An important parameter is the detuning of the

photon from resonance with the molecular transition from |F0〉 to |F1〉,

δ = ωa − ω10. (3.12)

The third line of (4.37) is going to be crucial as it models the amplification

process and how the F system triggers it. We construct the two Hamiltonians

HF−c and Hc in several steps. First, assume we have a system c that is driven

by an external “force” F . That is, we assume the Hamiltonian for system c

contains a driving term proportional to a parameter F . For example, we may use

a Hamiltonian that describes electron shelving [23, 146], which is used as a method

to perform quantum state measurements on ions: in one state the ion, driven by

a laser, produces large amounts of fluorescence whereas in another state (from

which there is no transition resonant with the laser) it remains dark. The simple

Hamiltonian is [in Section 4.6 below we suggest several more involved examples of

suitable Hamiltonians]:

H̃c(F ) = 2iF cos(ωF t)(c− c†), (3.13)

which in the RWA becomes

H̃c(F ) ≈ iF (exp(iωF t)c− exp(−iωF t)c†). (3.14)

Alternatively, we could introduce yet another pair of bosonic mode operators α

and α† to replace F exp(−iωF t) and F exp(iωF t), respectively, and add another

Hamiltonian Hα = ωFα
†α; the initial state of that mode would then be a coherent
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state with amplitude F , i.e., an eigenstate of α with eigenvalue F (which indeed

can model a strong laser field). This would have the formal advantage of making

our Hamiltonian completely independent of time.

Now in order to couple system c to our quantum system F we replace the

parameter F by the quantum operator

F̃ =
∑

k=0,1,2

Fk|Fk〉〈Fk|, (3.15)

so that we replace

H̃c(F ) 7→ H̃c(F̃ ). (3.16)

Note we may apply this substitution trick to any Hamiltonian H̃c(F ) that models

amplification. For the simple example (3.14) we have

H̃F−c = iF̃ (exp(iωF t)c− exp(iωF t)c
†). (3.17)

For H̃c we assume the simple form

H̃c = ωcc
†c, (3.18)

appropriate for a bosonic mode c (but we could also use a two-level atom). An

interaction proportional to a projector |F2〉〈F2|, implements the idea (mentioned

above) that it is a physical property of the state |F2〉 that triggers amplification.

For the RWA to apply all we need is that the driving frequency ωF be close to

the frequency ωc, independent of the frequencies ωk for the three states of system

F and independent of ωa, the frequency of the photon to be detected. And so

amplification happens at the frequency ωF , not at ωa. It may be important
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to be able to amplify at a different frequency so as to suppress thermal noise

(which could lead to dark counts) by amplifying at a frequency ωF such that

(reinserting ~) ~ωF � kT . Pre-amplification thermal excitations at a frequency

ωa [either thermal photons in the input mode a or thermal fluctuations exciting

the transition to level |F1〉] are amplified, and so, too, should be suppressed by

operating at a temperature T such that ~ωa � kT . (For example, this is how our

eyes can detect optical photons at room temperature.)

We may move to a frame rotating at frequency ωF and replace our first

guesses for Hamiltonians H̃F−c and H̃c by the final results

HF−c = iF̃ (c− c†),

Hc = ∆c†c, (3.19)

with ∆ = ωc − ωF the detuning from resonance.

Finally, for the fourth line in (4.37) we stay in the same rotating frame and

write

Hc−d = i
√

Γ[cD†(x = 0, t)−D(x = 0, t)c†],

Hd =

∫ ∞
0

dω (ω − ωF )d†(ω)d(ω) (3.20)

3.3. Heisenberg equations of motion

3.3.1. Eliminating the continua

For any operator O that does not explicitly depend on time, we have the

equation of motion
d

dt
O = i[H,O] (3.21)
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with H the total Hamiltonian (4.37). We choose a time t0 in the past at which we

start the calculation (i.e., we solve the equations for t > t0), and at which time the

Heisenberg and Schrödinger picture operators are taken as equal. Those operators

at that special time are our input operators and thus are also indicated by the

subscript “in.”

We first formally solve the equations for the continuum operators b(ω), g(ω),

and d(ω) and substitute those results into the equations of motion for arbitrary

operators acting on the discrete quantum systems a, F and/or c, thus eliminating

the continua from the description. For example, starting at the end, with modes

d(ω) and the field operator D(x), we obtain [117]

D(x = 0, t) = din(t) +
√

Γc(t) (3.22)

with the “free field” given by

din(t) =
1√
2π

∫ ∞
0

dω d0(ω) exp(−i(ω − ωF )(t− t0)). (3.23)

The operator d0(ω) := d(ω, t0) is an initial value for d(ω, t) at time t = t0.

For the field operator G(x) we similarly obtain

G(x = 0, t) = gin(t) +
√
γ2 |F1〉 〈F2| (t) (3.24)

with the free field

gin(t) =
1√
2π

∫ ∞
0

dω g0(ω) exp(−iω(t− t0)). (3.25)
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For the field B(x) which couples both to a and to F we find that at x = 0 it

contains two driving terms

B(x = 0, t) = bin(t) +
√
κa(t− τ) +

√
γ1 |F0〉 〈F1| (t) (3.26)

with the free field

bin(t) =
1√
2π

∫ ∞
0

dω b0(ω) exp(−iω(t− t0)). (3.27)

At the location x = −cτ of the cavity we get just one driving term

B(x = −cτ, t) = bin(t) +
√
κa(t). (3.28)

We can now write down the equations of motion for the operators corresponding to

the three discrete quantum systems. For example, for the cavity mode annihilation

operator a(t) we get
d

dt
a = −iωaa−

√
κ[bin +

1

2

√
κa]. (3.29)

(The “extra” factor of 1/2 on the r.h.s. comes from the use of
∫ t
t0
dt′ δ(t − t′)a(t′) =

1
2
a(t), where the delta function inside the integral comes from the approximation∫
dω exp(−iω(t− t′)) = 2πδ(t− t′) [117]. Instances of the same factor of 1/2 appear

in several equations below.)

We can solve Eq. (3.29) to obtain

a(t) = a(t0) exp[(−iωa − κ/2)(t− t0)]

−
√
κ

∫ t

t0

dt′ exp[(iωa + κ/2)(t′ − t)]bin(t′). (3.30)
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For the evolution of c we find

d

dt
c = −i∆c−

√
Γ(din +

1

2

√
Γc)− F̃ . (3.31)

The equation for system F and hence for F̃ is more complicated and in general has

to be solved numerically. We can formally solve (3.31)

c(t) = c(t0) exp[(−i∆− Γ/2)(t− t0)]

−
∫ t

t0

dt′ exp[(i∆ + Γ/2)(t′ − t)][
√

Γdin(t′) + F̃ (t′)].

(3.32)

and this is an explicit solution provided we can ignore the backaction of system

c on system F , i.e., when the operator F̃ (t) does not depend on “downstream”

system c operators, but only on “upstream” system a operators.

3.3.2. Steady-state solutions

Our Hamiltonian is such that the F system will reach a steady state, The

reason is that the force driving system F is the single photon emitted by the

cavity, and that photon will have disappeared after a few cavity life times κ−1.

The F system then decays to either the |F0〉 state or to the |F2〉 state, and stays

there. The operator F̃ will eventually become constant, apart from fluctuating

noise (Langevin) terms. Eq. (3.32) then shows that the operator c will reach a

steady state, too (all transient effects decay away at a rate Γ), up to noise terms.

We now focus on terms in F̃ proportional to |F0〉〈F0| only. (These terms

describe the response of molecule F when it starts from state |F0〉, where it is

supposed to start. Other nonzero terms are discussed in Section 4.5.) We also
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assume δ = 0 for the moment (this is the optimum case, of course, for detecting

the photon). Moreover, we set F0 = F1 = 0 and F2 =: µ > 0, so that the

molecule triggers amplification only in the state |F2〉. In that case we simply have

F̃ = µ|F2〉〈F2|, and we find its steady-state value to be

F̃ss = µPabsa
†a⊗ |F0〉〈F0|, (3.33)

where

Pabs =
4γ1γ2

(γ1 + γ2)(γ1 + γ2 + κ)
(3.34)

is the probability that the photon transfers the population from the initial state

|F0〉 to |F2〉. This probability is maximized for γ2
1 = γ2

2 + κγ2, and for κ � γ1,2

this maximum approaches unity arbitrarily closely. This result confirms the “ideal

detection” result of Ref. [64].

We can in fact generalize this result to arbitrary detuning δ. Apart from

obtaining the answer by replacing κ by κ− 2iδ and taking the real part,

Pabs = Re

[
4γ1γ2

(γ1 + γ2)(γ1 + γ2 + κ− 2iδ)

]
(3.35)

we can write the result more insightfully in the form

Pabs =

∫
dω |φ(ω)|2|T (ω)|2 (3.36)

where

T (ω) =

√
γ1γ2

(γ1 + γ2)/2− i(ω − ω10)
(3.37)
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is the transmission coefficient describing the transmission of a single excitation

through the Λ system (which for a single excitation is equivalent to a Fabry-Perot

filter cavity) [63, 66] and where

φ(ω) =
1√
2π

√
κ

κ/2− i(ω − ωa)
(3.38)

is the (properly normalized) spectral shape of the photon produced by the cavity.

This way of writing the probability can be generalized to other systems than

a three-level molecule by substituting other transmission functions T (ω) that

describe the initial (absorption) stage of the photodetection process, as discussed

in great detail in Ref. [66].

When the system reaches its steady state, the expression for c(t) becomes

css(t) = d̃(t)− F̃ss

Γ/2 + i∆
, (3.39)

where d̃(t) is a single-mode “noise” annihilation operator given by (for large t, i.e.,

t− t0 � 1/Γ)

d̃(t) = −
∫ t

t0

dt′ exp[(i∆ + Γ/2)(t′ − t)]
√

Γdin(t′) (3.40)

One can verify that

[css(t), c
†
ss(t)] = 1 (3.41)

thanks purely to the noise term.

What we observe in the end is a macroscopic amount of excitations in the

continuum mode d(ω), or, equivalently, the field D(x = 0). The excitations are
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collected over some finite time interval of duration T from T0 to T0 + T [much later

than t0] with some low efficiency η. We could assume that our signal is determined

by

SD(T ) = η

∫ T0+T

T0

dt
〈
D†(x = 0, t)D(x = 0, t)

〉
=: ηND(T ), (3.42)

which corresponds to collecting a fixed fraction η of all excitations in the field

D. We could also assume we collect data continuously as a function of T , by

continuously monitoring the field D. Leaving out the noise terms we can write

ND(T ) = Γ

∫ T0+T

T0

dt

∫ t

t0

dτ

∫ t

t0

dτ ′
〈
F̃ (τ)F̃ (τ ′)

〉
×

exp ((−i∆ + Γ/2)(τ − t) + (i∆ + Γ/2)(τ ′ − t′)) .

(3.43)

Here the expectation value
〈
F̃ (τ)F̃ (τ ′)

〉
must be calculated using the Quantum

Regression Formula (or Theorem) [147].

Alternatively we could assume we collect a fraction of excitations in a

particular single discrete time-integrated mode

N ′D(T ) = η
〈
d†TdT

〉
(3.44)

where, for example, when ∆ = 0, we choose

dT =
1√
T

∫ T0+T

T0

dt D(x = 0, t), (3.45)

which similarly would contain
〈
F̃ (τ)F̃ (τ ′)

〉
. For either choice, the signal grows

linearly with T once c reaches a steady state. We will focus on the former choice
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in the numerical calculations, i.e., we assume that ND(T ) contains our macroscopic

signal.

Consider now the noise in our amplification process. We can write our

discrete mode operator dT (in the steady state) as

dT,out = Pabs

√
G(a†a)in ⊗ (|F0〉〈F0|)in + ẽin, (3.46)

where we explicitly added back in the subscripts “out” and “in” to indicate the

operators on the right-hand side are all input operators and the left-hand side is an

output operator. (Recall that we did leave out here other terms to be discussed in

4.5, given that the initial state of our molecule is |F0〉.) The gain factor G here—

which is the gain one gets if the molecule ends up in the desired state |F2〉—is

linear in T

G =
4µ2

Γ
T, (3.47)

and ẽin is a single-mode discrete annihilation noise operator fully determined by

din:

ẽin =
1√
T

∫ T0+T

T0

dt (
√

Γd̃(t) + din(t)), (3.48)

since the operator d̃ is determined by din according to Eq. (3.40).

Note that (i) the noise is not amplified, (ii) the first (gain) term is hermitian

and, therefore, commutes with its hermitian conjugate, so that the presence

of ẽin is sufficient to preserve the commutator. Of course, our operator a†a is

restricted here to the very narrow range of 0 or 1 excitations [so that we can use
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that (a†a)2 = a†a when we calculate either ND(T ) or d†TdT ]. The main point

is, Eq. (3.46) is not of the Caves form for linear amplification, but is, rather, a

nonlinear minimum-noise form that is akin to but different from the input-output

relation found in Ref. [1].

3.3.3. Numerical integration

Without noise terms, we can find the gain term and the steady-state values

numerically as well. If the Schrödinger-picture evolution equation for the density

operator can be formally solved as ρ(t) = exp(L(t − t0))ρ(t0) with L the time-

independent Liouvillian superoperator, then in the Heisenberg picture observable

O evolves as O(t) = exp(L†(t− t0))O(t0).

For the Heisenberg operator |F2〉〈F2|(t) we plot all nonzero terms (there are

five for δ = 0) as functions of time in Fig. 2. Here are the five types of terms with

their interpretations (where we ignore operators acting on the Hilbert space for the

“downstream” system c)

1. K1 = |1〉〈1| ⊗ |F0〉〈F0|: This term describes how an initial state with 1 cavity

excitation and the molecule starting in |F0〉 transfers the molecule to state

|F2〉 (blue curve).

2. K2 = |0〉〈0| ⊗ |F1〉〈F1|: This term describes how the molecule reaches state

|F2〉 even without a photon present provided it starts in the upper state |F1〉.

It decays to |F2〉 with probability 1/2, given that γ1 = γ2 here (green curve).

3. K3 = |1〉〈1| ⊗ |F1〉〈F1|: This term again corresponds to the molecule starting

in the upper state |F1〉, from which it decays to |F2〉 with probability 1/2.

Initially it behaves like the previous case. However, because of the presence
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of the photon, the molecule can also be transferred to the desired final state

|F2〉 by first decaying to |F0〉 and then absorbing the photon (orange curve).

4. K4 = 1 ⊗ |F2〉〈F2|: This term describes the trivial case where the molecule

starts in |F2〉 and just stays there, independent of the presence or absence of

a photon (dashed purple curve).

5. K5 = a ⊗ |F1〉 〈F0|+a† ⊗ |F0〉 〈F1|: This term describes the influence of

coherence: if we start with a coherent superposition of no photon and 1

photon, and the molecule is in a superposition of |F0〉 and |F1〉, then the

contributions from |0〉 ⊗ |F1〉 and |1〉 ⊗ |F0〉 to the probabillity of ending up

in |F2〉 interfere destructively (dashed black/red curve). Moreover, this term

does contribute to the signal though the combination K†5K5, see main text.

(There is the similar sixth term, K6 = ia ⊗ |F1〉 〈F0|-ia† ⊗ |F0〉 〈F1| which is

nonzero only for nonzero detuning δ.)

We also plot the amplitude of system c and the total number of excitations

in the field D(x = 0) in Figs. 3 and 4. More precisely, we plot the time evolutions

of the terms in c(t) and ND(T ) = D†(x = 0)D(x = 0) proportional to |1〉〈1| ⊗

|F0〉〈F0| ⊗ |0〉〈0|, which correspond to the system starting in the initial state with

1 excitation in the cavity, the molecule in state |F0〉 and no excitations in mode

c. We choose T0 = t0 in the definition of ND(T ). Note that it is not just the first

term of the five terms we just discussed that contributes to ND(T ): the fifth term

contributes as well and so do the noise terms; together they ensure that ND(T )

scales linearly with Pabs (as it should), rather than quadratically. (Numerically, we

used the Quantum Regression Theorem to calculate ND(T ).)
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FIGURE 3.2. The five types of nonzero terms in |F2〉〈F2|(t) as functions of time in
units of γ−1

1 ,
where δ = 0, γ2 = γ1 and κ = γ1/5. The probability Pabs for the photon to trigger
amplification is Pabs = 10/11 in this case. For details, see main text.
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FIGURE 3.3. The term in c(t)(in units of µ/Γ) prop. to |1〉〈1| ⊗ |F2〉〈F2| ⊗ |0〉〈0|
which describes how the expectation value of the amplitude of our final quantum
system c grows with time (in units of γ−1

1 ), if the cavity starts with 1 excitation,
the molecule starts in |F0〉 and the mode c itself starts in the vacuum. Parameter
values are µ = Γ = γ2 = γ1, ∆ = δ = 0, and κ = γ1/5. The steady-state value of c
for these values is css = −20µ/11Γ.
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FIGURE 3.4. The term in ND(T ), given by Eq. (3.43), proportional to
|1〉〈1| ⊗ |F0〉〈F0| ⊗ |0〉〈0| as a function of the integration time T (in units of γ−1

1 ).
Parameter values are as in the previous Fig. This represents the macroscopic signal
produced by detection of a single photon, i.e., the expectation value of the number
of excitations in the field D(x = 0). This expectation value increases linearly with
T once the system has reached a steady state, after a few κ−1, with a slope given
by Pabs4µ

2/Γ.
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The behavior of our signal plotted here and the efficiency η with which that

macroscopic signal is measured determine when the photodetector can be reset.

Namely, as soon as a few excitations (in principle, even a single one, if we can

ignore dark counts) have been detected (which requires the number of excitations

to have been of order 1/η), a photon has been detected, and our detector may be

reset in order to be able to detect a next photon. Resetting involves emptying the

system c (which takes several Γ−1) and resetting the molecule to the state |F0〉

(which takes several γ−1
1 ).

If we include the Langevin terms we could solve the stochastic differential

equations by standard methods (using Ito calculus, for example [117]). Much

more simply, we could determine what the generic form of the noise terms must

be, by making use of the fact that commutators for our output operators like dT

should be preserved. For example, if the steady-state value of dT is dT,ss (which is

expressed in terms of the input operators of our discrete systems) and the noise

term in dT is ein (which is expressed in terms of continuum input operators and

which, therefore, commutes with dT,ss and d†T,ss), then we must have

[ein, e
†
in] = 1− [dT,ss, d

†
T,ss], (3.49)

which limits the operator form for ein severely.

3.4. Conclusions and outlook

We used a fairly simple Hamiltonian model to describe quantum

mechanically the photodetection process from beginning (generation and

absorption of a single photon) to end (amplification). We solved the equations
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in the Heisenberg picture, because the end result compactly describes the essence

of the whole process including the noise therein (see Eq. (3.46), where we consider

the optimum case Pabs = 1):

dout =
√
G(a†a)in ⊗ |F0〉〈F0|+ ein. (3.50)

Here dout is the annihilation mode operator for a time-integrated mode that

contains the macroscopic output signal (a large number of excitations) that we

ultimately observe classically. We have to place the Heisenberg cut somewhere,

and we place it as far along the whole photodetection process as we can, after

amplification. Unlike for linear amplification [143] where the gain term would be
√
Gain, here the gain term indicates the amplification process is nonlinear [1].

The noise term (needed to preserve the commutator [d, d†] = 1) is just an

input mode operator, rather than
√
G− 1e†, which is the noise term accompanying

phase-insensitive linear amplification. That is, the noise in our case is not

amplified, and a vacuum input gives zero noise, unlike for linear amplification.

The projector |F0〉〈F0| projects onto the initial state of a molecule that

triggers the amplification process once it has changed its configuration by

absorbing the photon. Confirming results of Refs. [64, 65] the probability of

absorption (and detection) can indeed be nearly 100%.

Several aspects of our minimal prototype Hamiltonian can be generalized

and/or extended:

(i) In order to detect more than a single excitation we could include more

levels in the F molecule (and more excitations either in the same cavity or in

multiple cavities, all coupled to the same system F ). For example, to be able

to detect a second photon we could introduce two more F levels, such that a
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transition from |F2〉 to another upper level could occur (triggered by the second

photon), which then could decay to a level |F4〉 where the value of the parameter

F4 would be substantially larger than F2 = µ. This then would allow us

to distinguish the signal produced by the second photon from that produced

(triggered) by just a single photon.

(ii) In [71] a quantum phase transition was proposed and analyzed as a

means of amplifying a weak signal (such as a single photon). Here we could

use a dissipative phase transition [148, 149, 150, 151] to achieve minimum-noise

amplification. The Hamiltonian Hc(F ) we used is for either a driven atom or a

driven cavity. A dissipative phase transition arises even for the simple system

of an atom inside (and coupled to) a cavity, with either the atom or the cavity

driven. The presence of a phase transition may make the amplification process

more robust against deviations from the ideal Hamiltonian.

(iii) The single-photon wavepacket to be detected is fixed here by the

resonance frequency and the decay rate of the cavity that generates the photon.

We could make these two parameters arbitrary functions of time so that an

arbitrary single-photon wavepacket can be created [113, 114, 115]. That should

allow us to formulate the POVM (projecting onto a specific temporal state of the

photon) that describes our detector, as in Ref. [68].

(iv) We assumed a bosonic mode to contain the amplified signal.

Alternatively we may use many spin-1/2 particles, as in the model discussed in

Refs. [71, 72]. This extension would increase the scope of our description to include

fermionic systems.

In conclusion, the main point here was to present a class of Hamiltonians

that describe the photodetection process fully quantum-mechanically from
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beginning to end, including nonlinear, minimum-noise amplification [1] and near-

perfect photoabsorption [64].
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CHAPTER IV

DETECTING TWO PHOTONS WITH ONE MOLECULE

We apply input-output theory with quantum pulses [AH Kiilerich, K

Mølmer, Phys. Rev. Lett. 123, 123604 (2019)] to a model of a new type of two-

photon detector consisting of one molecule that can detect two photons arriving

sequentially in time. The underlying process is distinct from the usual two-photon

absorption process where two photons arriving simultaneously and with frequencies

adding up to the resonance frequency are absorbed by a single molecule in one

quantum jump. Our detector model includes a Hamiltonian description of the

amplification process necessary to convert the microscopic change in the single

molecule to a macroscopic signal.

4.1. Introduction

There are two standard ways of detecting two photons in a photon-number

resolved (PNR) manner: (i) an inherent PNR detector produces a different signal

depending on whether one or two photons were absorbed by the detector, (ii)

multiplexed PNR detection [152] exploits multiple single-photon detectors, and

the signal consists of either one or two such detectors “clicking.” An inherent

PNR detector may, for example, be sensitive to the total energy deposited by

the photons [153]. A second type of detector sensitive to two photons makes use

of a process called “two-photon absorption” (TPA) in which one molecule can

absorb two photons that arrive simultaneously and whose frequencies add up to

the resonance frequency. This effect was discovered by Göppert-Mayer in 1931

[154, 155], goes through a virtual intermediate state, and has become an item of
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modern interest since the realization that this TPA process is sensitive to time-

frequency entanglement between the two incoming photons [156, 157, 158].

For a biological example of multiplexing, we may consider the human eye.

There are about 108 rods, each of which is sensitive to single photons in that they

can absorb one photon at a time [159]. Interestingly, the TPA process occurs in

the human eye, too, where two infrared photons may give rise to the sensation

corresponding to that of light in the visible range [18, 160]. In this case the

detection is not strictly PNR, as the signals from two infrared photons or from

one visible photon are the same.

A process related to TPA is called stepwise two-photon absorption where the

first photon takes the molecule to an actual (rather than a virtual) excited state

and a subsequent photon takes the molecule to an even higher lying excited state,

see e.g., [161]. Taking a molecule to an excited state, however, is not yet sufficient

for implementing a measurement. We also need an amplification process that

produces a macroscopic signal. In the human eye a light-absorbing molecule decays

from the excited state irreversibly to a metastable state, in which the shape of the

molecule has changed. That change in shape triggers a chain reaction of shape

changes in surrounding proteins, eventually producing (or changing) a permanent

dipole moment that in turn triggers a change in a mesoscopic electric current [162],

which then permanently registers the detection of the photon.

Following the example of Refs [36, 60, 64, 65] of taking inspiration from

biological systems to design photo detectors (see also [163]), based on this robust

photo-detection mechanism we propose and model a PNR two-photon detector

consisting of a five-level molecule, as follows (see Fig. 1 and Section III for more

details and reasons for choosing this particular configuration): a ground state |F0〉
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from which a photon with a frequency ωα ≈ ω1 − ω0 =: ω01 can induce a transition

to an excited state |F1〉, which can then irreversibly decay to a metastable state

|F2〉. In this state the molecule triggers a first amplification process that indicates

and permanently registers the detection of that first photon. Subsequently, a

second photon of a different frequency ωβ ≈ ω3 − ω2 =: ω23 can excite the

molecule to another state |F3〉, from which it can decay to a different metastable

state |F4〉, triggering a second (different) amplification process that indicates the

detection of the second photon. The two photons must arrive sequentially rather

than simultaneously for TPA.

One motivation for this work comes from recent theory efforts to find

fundamental (i.e., device-independent) limits to photo detection [1, 62, 64, 65,

66, 68, 69, 71, 72]. For reasons fully explained in [69] we construct a Hamiltonian

here for the full detection process, including the crucial amplification step. A

second motivation is of a more technical nature. The theoretical description

of two (or more) photons interacting with a quantum system is known to be

considerably more complicated than that of just a single photon interacting with

the same system [109, 113, 114, 115, 164, 165, 166, 167, 168, 169, 170]. Two

types of methods have been developed to tackle this problem. One is based on a

hierarchy of coupled differential equations for generalized density matrix elements

[109, 113, 171] for a quantum system interacting with prescribed multi-photon

pulses. The other method [114, 115] includes virtual cavities that generate the

photons and is thus based on a Hamiltonian description of the quantum system

and the photons. We refer to these two methods as the “generalized density

matrix” and the “Hamiltonian” formulations, respectively. We will use both

methods here, since they each have their own advantages, and we also give the
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explicit equations (which seem not to have been given before) that link the two

methods. Moreover, we can explain why the methods above yield expressions for

scattered light and for the dynamics of the quantum system in terms of (Hilbert

space) inner products that involve the temporal amplitudes of the incoming

photons [172] on the one hand, and the appropriate response functions of the

system on the other.

This paper is organized as follows. In Section II we first give a synopsis of

some of the results, which can be understood without going into the details of

the derivations. Such details are provided in the remaining Sections. In Section

III we give the Hamiltonian for our 5-level molecule. Section IV describes the

two different methods we used to obtain results: the generalized density matrix

methods is used to obtain analytical results, while the Hamiltonian method is used

to obtain numerical results. We explain why the latter method is so much easier

to use for numerical calculations. Section V ends with conclusions and discusses

possible extensions of our work. In the Appendix we present the transformation

that unifies the two formalisms (generalized density matrix and the Hamiltonian

formulation) used in the paper.

4.2. Synopsis

Since the detailed description of our system is rather involved we first give

here a synopsis of the basic results without any derivations. The results presented

here are quite straightforward to understand. The light-absorbing molecule at the

heart of our detector is described in detail in Fig. 1.
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FIGURE 4.1. Model of a two-photon detector.
A light-absorbing molecule starts in the ground state |F0〉. There are two excited
states |F1〉 and |F3〉, indicated in red, and two metastable states |F2〉 and |F4〉. We
assume level |F2〉 corresponds to a shape change [while still being an electronic
ground state], which down the line corresponds to a change in electric dipole
moment, which in turn induces a change in a mesoscopic current or voltage (thus
mimicking the process taking place in the human eye). That mesoscopic change
permanently registers the detection of the first photon. The metastable state |F4〉
corresponds to yet another change of shape, which eventually leads to a change in
a dipole moment, which then in turn can change a mesoscopic current in a way
that is distinct from what the molecule in state |F2〉 accomplished. This distinct
mesoscopic change then registers the second photon. The molecule can detect two
photons, one “blue” photon resonant with the transition from the ground state to
the first excited state, and a “green” photon resonant with the transition from |F2〉
to the second excited state. From each of the two excited states the molecule can
spontaneously decay back to state it came from or to the desired metastable state.
Thus there are four decay rates, indicated from left to right by γ1 . . . γ4, which are
assumed to be more or less of the same order of magnitude. (The spontaneous
transitions are indicated with dashed black lines.) On a time scale much longer
than 1/γ1 the molecule resets by the metastable states decaying back to the
ground state |F0〉 (this resetting is not indicated in the figure).

4.2.1. Detection probabilities

For an incoming single-photon wave packet, the different frequency

components are not all absorbed with 100% efficiency. The probabilty Pα for the113



first photon, labeled α, to be detected can be written in the form

Pα =

∫
dω |T1(ω)|2|uα(ω)|2. (4.1)

Here uα(ω) is the Fourier component of the incoming wave packet at frequency

ω and may also be referred to as its spectral amplitude. T1(ω) is a complex

transmission amplitude for the molecule to go from the initial state |F0〉 to the

desired state |F2〉 through the intermediate excited state |F1〉 (see Eq. (4.28)

below):

T1(ω) =

√
γ1γ2

(γ1 + γ2)/2− i{ω − ω01}
. (4.2)

If γ1 = γ2, the transmission probability |T1(ω)|2 reaches a maximum of 1 at the

resonance frequency ω01 and has a width of about γ1. Thus, a resonant photon

with a narrow width in frequency space (much less than γ1) and whose duration is,

therefore, much longer than γ−1
1 , can be absorbed with near-unit efficiency, exactly

as was found before in Refs. [64, 65, 66].

A similar result holds for the second photon, labeled β. The only

(important!) difference is that the second photon can be absorbed only when the

molecule is in the state |F2〉. Hence ideally it should arrive after photon α has

been fully absorbed. In that ideal case, the conditional probability of detecting

photon β (with a spectral amplitude uβ(ω)), given that photon α was detected, is

Pβ =

∫
dω|T2(ω)|2|uβ(ω)|2, (4.3)

with

T2(ω) =

√
γ3γ4

(γ3 + γ4)/2− i{ω − ω23}
(4.4)
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a second complex transmission amplitude, describing how the molecule can

transition from level |F2〉 to level |F4〉 through the intermediate |F3〉 excited state.

The probability to detect both photons in the more general case when the

two photons do overlap in time can be written in the form

Pα&β = PαPβ − Poverlap, (4.5)

where the (non-negative) “overlap term” will be derived and discussed in Section

4.4.1. We merely note here that the overlap term can be found analytically and is

then written as a convolution involving the two spectral amplitudes uα,β(ω) and

the two transmission amplitudes T1,2(ω). If photon β is delayed by a time much

longer than 1/γ1, then Poverlap → 0, but if photon β entirely precedes photon α,

then Poverlap → PαPβ.

In Figure 2 we plot a numerical result for a case that is not optimal for two

reasons. First, the widths in time of the two incoming single-photon pulses are

equal to 1/(2γ1), which is too short to be close to optimal. Second, the pulses

partially overlap in time. The probability to detect both photons is then about

42%.

In Figure 3 we plot a case that shows how important the delay between the

two photons is. Here photon β arrives just before photon α: while this does not

affect at all the absorption (and detection) of photon α, photon β is now detected

only with a very small probability of about 2%.
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FIGURE 4.2. Top: Populations in the ground state and the two metastable
states as functions of time, when two photons arrive sequentially. Bottom: the
(Gaussian) amplitudes of the “blue” photon (uα) and the “green” photon (uβ) as
functions of time. We chose here γk = γ1 for k = 2, 3, 4 and the time delay between
the two input photons is 3/γ1

Eventually a steady state is reached, with the total population in the three lowest
states adding up to 1. The steady-state population in the ground state (dot-dashed
curve) is 0.346, which equals the probability to not detect any of the photons. The
sum of the steady-state populations in the metastable states is .654 and equals the
probability to detect the “blue” photon. The steady-state population in |F4〉 is
0.418 and equals the probability to detect both photons.

4.2.2. Detector clicks

The generalized density matrix formalism can be used to get analytical

expressions describing “clicks” of our detector in simple cases.
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FIGURE 4.3. Top: Populations in the ground state and the two metastable states
as functions of time, when the “green” photon arrives just before the “blue” photon
(the time delay is −1/(4γ1). Bottom: the absolute values of the amplitudes |uα| of
the “blue” photon and |uβ| of the “green” photon as functions of time.
The probability to detect both photons is very small in this case, 0.022. The first
photon is detected with the same probability (0.346) as in the previous figure.

4.2.2.1. One photon

For example, suppose for simplicity that we could measure in what state our

molecule is at a specific time T > t0, given that it started in the state |F0〉 at time

t0, and suppose that we find our molecule in the state |F2〉. This clearly would

implement a measurement of the incoming photon. Thus, ignoring the second

photon for now, given an expression for the population in that level as a function

of time, we can write that probability at time T in the form of the Born rule as

P2(T ) = Tr(|uα〉〈uα|Π1), (4.6)
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where |uα〉〈uα| is the projector onto the input single-photon wave packet of photon

α, and Π1 is a positive hermitian operator (guaranteeing that P2(T ) is a real non-

negative number). We can always write Π1 in a diagonal form

Π1 =
∑
n

λn|φn〉〈φn| (4.7)

with λn real and non-negative, and with {|φn〉} forming an orthonormal basis of

single-photon states. That means the probability P2(T ) can be rewritten as

P2(T ) =
∑
n

λn| 〈uα|φn〉 |2. (4.8)

The fact that the Born rule is linear in the input state (represented as a density

operator or matrix) thus explains why this probability can be expressed in terms

of overlaps involving the incoming single-photon wave packet [172, 173]. It also

follows that λn ≤ 1, since λn has the meaning of the probability that an input

photon in the state |φn〉 will be detected.

In our specific case we find that Π1 is of the form

Π1 =

∫ T

t0

dtWt|φt〉〈φt| (4.9)

where Wt is a weight per unit of time

Wt =
γ1γ2

γ1 + γ2

[1− exp(−(γ1 + γ2)(t− t0))] , (4.10)
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and the projector projects onto a normalized single-photon state of the form

|φt〉 =

∫ t
t0
dt′ exp[(γ1 + γ2)t′/2] exp(iω01(t′ − t))b†1(t′)|vac〉√∫ t

t0
dt′ exp[(γ1 + γ2)t′]

(4.11)

where b†1(t) is the Fourier transform of b†1(ω). (Note that we could equivalently

write t′ − t instead of t′ in the arguments of the γ1,2-dependent exponentials

in both numerator and denominator.) These states |φt〉 are not orthogonal for

different values of t and this type of nonorthogonal states also appears in the

context of spectral filtering [63]. We also note that the transmission function T1(ω)

given above in Eq. (4.2) is the (properly normalized) Fourier transform of the

time-dependent function —which is a Green’s function—appearing in |φt〉. That

transmission function also determines the spectral shape of the photon emitted

spontaneously by the molecule [173].

It is important to note that in Eq. (4.6) Π1 refers only to the detector, and

|uα〉 refers only to the incoming photon. Π1 is called a POVM (Positive-Operator

Valued Measure) element and fully describes the outcome of the measurement

corresponding to finding the molecule in level |F2〉 at time T . It allows us to

calculate for any incoming photon the detection probability (4.6). In particular,

it allows us in principle to infer the type of photon that is detected with the

largest possible probability, by making use of the diagonal form (4.7). The largest

eigenvalue λmax = maxn λn gives the highest possible efficiency ηmax = λmax of

detecting a single photon, and the corresponding eigenstates [there may be more

than one] give the optimal single-photon states that achieve that limit.
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The interpretation of

Tr(Π1) =
∑
n

λn =

∫ T

t0

dtWt

≈ γ1γ2

γ1 + γ2

[
T − t0 −

1

γ1 + γ2

]
, (4.12)

(where we ignored an exponentially small term in the second line) is that of a

bandwidth: the effective size of the single-photon Hilbert space covered by this

particular measurement outcome [62]. This bandwidth may be (much) larger than

unity. For a fixed value of γ1 + γ2 the bandwidth is maximized by γ1 = γ2, an

optimal “impedance-matching” condition found before in the same context of

designing an optimal single-photon detector [64, 65, 66]. The bandwidth is then

approximately equal to the total time the detector has been on in units of 2/γ1.

If we would be able to measure if the molecule were in state |F1〉 at time t,

then the corresponding POVM element would be proportional to a pure projector.

But, since we do not know when the upper state spontaneously decayed to

state |F2〉, we do not know t, and hence we get a mixed POVM element. That

is, for fixed T (when we detect the molecule to be in the state |F2〉) there are

different possibilities for time t, each with their own probability Wtdt. That is the

interpretation of (4.9).

The idea that a quantum system absorbs a single-photon wave packet with in

principle 100% efficiency if and only if it is the time-reversed version of a photon

that the system would emit if it started in the final state [174, 175] does not apply

so simply here, because of the presence of irreversible spontaneous decay. If we

imagine we would apply a laser pulse to the |F1〉 → |F2〉 transition to induce

120



stimulated emission, then, as is well known [139, 176], that idea indeed would

apply straightforwardly .

4.2.2.2. Two photons

The more interesting case of detecting the molecule in level |F4〉 at time T

signals the detection of both photons and is described by the POVM element

Π2 =

∫ T

t0

dt

∫ t

t0

dt′Wt′Wt,t′ |φt′〉〈φt′ | ⊗ |ψt,t′〉〈ψt,t′ |, (4.13)

with

Wt,t′ =
γ3γ4

γ3 + γ4

[1− exp(−(γ3 + γ4)(t− t′))] , (4.14)

and the single-photon state corresponding to the second photon is

|ψt,t′〉 =

∫ t
t′
dτ exp[(γ3 + γ4)τ/2] exp(iω23(τ − t))b†2(τ)|vac〉√∫ t′

t
dτ exp[(γ3 + γ4)τ ]

. (4.15)

The prefactor Wt and the single-photon state |φt〉 appearing here are exactly as

defined before in (4.10) and (4.11). The time-dependent function appearing in

|ψt,t′〉 is once again a Green’s function, and T2(ωb) is its (normalized) Fourier

transform.

There is a double integral over time in (4.13), each integral corresponding to

an irreversible step in the detection process, which makes it uncertain at what time

t we could have found the molecule in state |F3〉 and at what earlier time t′ < t we

could have found the molecule in |F1〉.
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We may again write down an eigenvalue equation for Π2 [which would have

to be solved numerically] and then write that POVM element in the diagonal form

Π2 =
∑
n

µn|φ(α,β)
n 〉〈φ(α,β)

n |, (4.16)

where the projectors |φ(α,β)
n 〉〈φ(α,β)

n | project onto specific pure two-photon

(eigen)states, and the eigenvalues 0 ≤ µn ≤ 1 give the corresponding efficiencies

with which those specific two-photon wave packets are detected at time T .

Like we saw for the single-photon case treated above, the bandwidth

Tr(Π2) =
∑
n

µn =

∫ T

t0

dt

∫ t

t0

dt′Wt′Wt,t′ (4.17)

is the size (dimension) of the two-photon Hilbert space covered by our detector.

4.3. The two photon absorber and its Hamiltonian

To construct the minimal absorber atom or molecule or multi-level system

that can absorb two photons sequentially and produce classical outputs signaling

the final state of the absorber, we consider the five level system of Figure 1 for

efficient photon transduction. Some recent efforts for physically based fundamental

models for photo detection assemble all parts of the process into a single fully

coupled evolution problem [1, 62, 64, 65, 66, 68, 68, 69, 71, 72]. Minimal noise

amplification of the absorbed photon signal has been shown to be optimally done

with continuous quantum measurement [64, 65, 69]. In this scheme, the “shelving

state” or the state in which the absorber produces the amplified classical readout

is continuously measured. To get around the quantum Zeno effect problem with

having the same state to be the photo-excited and shelving state, a three level
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system is determined to be optimal for single photon detection [64]. Hence we use

the three levels |F0,1,2〉 to detect one photon.

For the two-photon detection scheme, we supplement the molecule with

two more levels. The second photon can lift the molecule from state |F2〉 into

the excited state |F3〉 which can spontaneously relax into the second shelving

state |F4〉. In the latter state the molecule triggers an amplification process which

produces a noticeably different signal than that produced by the shelving state

|F2〉. The absence of a signal and the two different signals from the two levels |F2〉

and |F4〉 help the observer distinguish the number of photons (0, 1, or 2) absorbed

by the molecule. Since the frequency of the amplified signal is independent of

the input photon frequency [1], we can have different shelving states (classically)

driving different oscillators of different frequencies [69]; and hence we can have

distinguishable classical output signals for one or two detected photons.

We wish to calculate the dynamics of the 5-level discrete quantum system F

coupled to the two continua b1 and b2 which contain our two input photons (with

different frequencies). With ~ = 1, the parts of the Hamiltonian in the Markov

approximation for these coupled systems are

Hsys =
4∑

k=0

ωk|Fk〉〈Fk|, (4.18)

H
1(2)
bath =

∫
dω ωb†1(2)(ω)b1(2)(ω), (4.19)
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Hint = −i
∫
dω

[√
γ1

2π
|F1〉〈F0|b1(ω)

+

√
γ3

2π
|F3〉〈F2|b2(ω)

]
+H.c. . (4.20)

This part of the Hamiltonian includes spontaneous decay back to |F0〉 and

back to |F2〉. (The radiation field modes are fully described by four degrees of

freedom. Here we fixed the quantum numbers for three of them (polarization

and two transverse spatial degrees of freedom) and explicitly retain only the

spectral/temporal degree of freedom.)

The next and last part of our Hamiltonian is necessary for the purpose of

enabling the additional spontaneous decays of the absorber from |F1〉 to |F2〉 and

from |F3〉 to |F4〉. These two transitions need to be dipole allowed and γ2 and γ4

determine the rates (probability per unit time) of those two processes:

H1
int = −i

∫
dω

[√
γ2

2π
|F1〉〈F2|g(ω)

+

√
γ4

2π
|F3〉〈F4|h(ω)

]
+H.c. . (4.21)

in terms of two additional independent (commuting) bosonic modes, described by

annihilation operators g(ω) and h(ω) and their hermitian conjugates.

4.4. Two theories for photon absorption

Restriction of the number of excitations to one or two offers a workaround

for the complications of the multimode nature of the interaction of propagating

light with a nonlinear medium such as a two- or three-level atom. The Fock state
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master equation formalism by Baragiola et. al. [109], and the set of generalized

density matrices by Gheri et. al. [113] offer suitable theoretical frameworks for

calculating few photon Fock state interactions with a multi-level discrete quantum

system.

An alternate route for having a computationally manageable effective

master equation has recently been developed by Kiilerich et. al. [114, 115] by

restriction of the input pulse to a single time dependent mode. This approach is

appealing to the problem of single photon absorption as the same physical effects

of the incoming wave packet of the multimode bosonic input field is emulated.

As previously formulated by Gheri et. al. [113], an upstream virtual cavity is

introduced whose output serves as the incident field for a system under study.

The incident field generated by the cavity is in a state residing in a specific wave-

packet mode and all other orthogonal modes are designated the vacuum state.

Since we are only interested in the input quantum state and the absorption of

the photon, we only acquire the technique of driving with a quantum pulse from

Ref. [114, 115]. The reflected quantum state is of no interest to us, and only the

transmitted state ([66]) which quantifies the probability of absorption is required

for our purpose.

The generalized density matrices framework developed by Gheri et. al.

[113] suffices for calculating the absorption probabilities and corresponding

POVMs. However, we introduce the virtual upstream cavities and formulate

a Hamiltonian formulation for the entire evolution problem of photo detection

(including amplification to a mesoscopic signal) that we introduced in the previous

publication [69]. The Hamiltonian formulation is versatile and facilitates the

calculations to be done in either the Schrödinger or the Heisenberg picture.
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The explicit transformation between the generalized density matrices and the

components of the density matrix obtained by the Hamiltonian method is

presented in Appendix A.

4.4.1. Generalized Density Matrix Operators

We assume we have two unentangled single-photon wavepackets in two

orthogonal modes

|Ψ2〉 = |Ψα〉|Ψβ〉, (4.22)

where the individual photon states are defined as

|Ψα(β)〉 =

∞∫
−∞

dωa(b)uα(β)(ω)b†1(2)(ω)|vac〉. (4.23)

uα(β) is the properly normalized wave function for photon a (b). The two photons

reside in the two distinct continua b1 and b2. (We will also use the Fourier

transforms of the single-photon amplitudes, which for simplicity we denote by

uα,β(t).)

Following Ref. [113], we can define generalized density matrix operators

for i, j = 0, 2, α, β and derive a set of coupled differential equations for them

that describes the absorption of the two photons. In the following, R denotes

the reservoir or bath, which includes continua other than b1 and b2, such as the

continua g and h introduced above:

ρi,j(t) = TrR
[
U(t, t0)ρS(t0)⊗ |Ψi〉〈Ψj|U †(t, t0)

]
. (4.24)
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Here |Ψ0〉 denotes the vacuum state |vac〉, and |Ψ2〉, |Ψα〉 and |Ψβ〉 are the two-

photon input state and the individual single-photon states introduced above.

Furthermore, ρS(t0) is the initial state of all remaining quantum systems, including

our 5-level molecule and the reservoir R. In our case, each of these generalized

density matrices for fixed values of i and j is a 5x5 matrix, describing the 5 levels

of our molecule.

The generalized density matrices can be expanded in a time independent

complete 5x5 basis, and substitution in the evolution equations yields a set of

coupled differential equations for the coefficients ρik,jl(t) of the expansion,

ρi,j(t) =
∑
k,l

ρik,jl(t)|Fk〉〈Fl|. (4.25)

These equations are given in Appendix A. The diagonal generalized density

matrices (for i = j) have a preserved trace of 1, and off-diagonal ones have a

preserved trace of 0 over the evolution [113]. (In the alternative Hamiltonian

formulation shown below a single Hamiltonian (with auxiliary cavities appended)

can embody the complete evolution, and a single density matrix (with preserved

trace of 1) of size 20x20 can embody the complete dynamics [69].)

In order to simplify intermediate equations, we will absorb a time-dependent

phase factor exp(iω01)t) in the definition of the single-photon amplitude uα(t) for

photon a and similarly a factor exp(iω23t) in the amplitude uβ(t) for photon b,

such that both amplitudes can be considered slowly-varying if the photons are

more or less on resonance with their respective transition in the molecule. End

results are quoted in terms of the original amplitudes.
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The evolution problem is initiated with ρ00,00 = 1 at time t0, i.e., the

molecule is in the |F0〉 state, with any photon yet to come in. The coefficient ρα2,α2

embodies the evolution of the molecule occupation elevated to |F2〉 state driven by

just the first photon α with temporal amplitude uα(t). The solution found is

ρα2,α2(t) = γ1γ2

t∫
t0

dt1
[
e−(γ1+γ2)t1

t1∫
t0

dt2e
γ1+γ2

2
t2u∗α(t2)

t2∫
t0

dt3e
γ1+γ2

2
t3uα(t3)

+ c.c., (4.26)

This result becomes especially simple when considering the steady-state, obtained

by taking the limit t → ∞. The result further simplifies when we take the limit

t0 → −∞ such that in principle any single-photon wave packet could be absorbed,

irrespective of when it arrives. The equations in those limits are most easily solved

in Fourier space, and we obtain then the same result we had obtained before in

Ref. [69],

ρα2,α2(∞) = Pα =

∫
dω |uα(ω)|2|T1(ω)|2, (4.27)

where

T1(ω) =

√
γ1γ2

(γ1 + γ2)/2− i{ω − (ω1 − ω0)}
(4.28)

is the transmission coefficient describing the propagation of a single excitation

through the Λ system [63, 66]. (This is Eq. (4.2)) of the Synopsis Section.)

ρα2,α2(t) in Eq. 4.26 can be recast into the more informative form

ρα2,α2(t) =

t∫
t0

dt′

∣∣∣∣∣
∫ t′

t0

dt2
√
γ1γ2e

γ1+γ2
2

(t2−t′)uα(t2)

∣∣∣∣∣
2

.

(4.29)
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This is the form that can be used straightforwardly to obtain the expressions

(4.9)–(4.11) for the POVM element Π1. The quantity inside the integral over t′

is actually γ2 times the population in level |F1〉 as a function of time [65].

The probability of the molecule reaching |F4〉 state driven by the second

photon β has a “nested” structure containing the expression, ρα2,α2(t),

ρ24,24(t) = γ3γ4

t∫
t0

dt1
[
e−(γ3+γ4)t1

t1∫
t0

dt2e
γ3+γ4

2
t2u∗β(t2)

t2∫
t0

dt3e
γ3+γ4

2
t3uβ(t3)ρα2,α2(t3)

+ c.c.

(4.30)

We may rewrite this expression by changing variables in the complex conjugate

term and by substituting (4.29) to obtain our two-photon POVM (4.13).

As we noted in Section 4.2 the time-dependent functions appearing in the

expression for ρ24,24(t) and other populations of quantum levels can be interpreted

as Green’s functions. Their (normalized) Fourier transforms act as transmission

and reflection coefficients when treating this problem as a scattering problem.

In our case, transmission coefficients T1(ω) (defined above) and T2(ω) (defined

below) play the new role of determining the detection probability of photons with

frequency ω in the limit of t → ∞, as we saw in Eq. (4.27) and as we will show in

the next subsection.

4.4.2. Overlap term

The absorption of the two photons can be completely calculated in the

frequency domain. To that end, we define the Fourier transform of the population
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in level |F1〉, since we can express all quantities of interest in terms of that

function. We find

F1(ω) =
1√
2π

∫
dx T1(ω + x)uα(ω + x)T ∗1 (x)u∗α(x). (4.31)

The 0-frequency component of
√

2πF1(ω), equals the detection probability for the

first photon
√

2πF1(0) =
∫
dx|uα|2|T1(x)|2 =: Pα. In the frequency domain, we

then obtain the Fourier transform of ρα2,α2(t) as

ρα2,α2(ω) = γ2

[
iF1(ω)P

(
1

ω

)
+ πF1(0)δ(ω)

]
. (4.32)

where P denotes the principal value. In eq. (4.30), if we replace ρα2,α2(t) with its

steady state value Pα, we get an expression identical in form to eq. (4.26) with

different decay rates, and we thus can simply evaluate the result for t → ∞ as the

product PαPβ with Pβ given by (4.3). So, if the second photon arrives long after

the first photon has been completely absorbed (and the absorber raised to the level

|F2〉), the probability of both photons being absorbed becomes the product of their

individual absorption probabilities.

Therefore, we can rewrite the probability of two-photon absorption, ρ24,24(∞)

as a sum of two parts, one being the product of the two absorption probabilities.

We name the other term Poverlap, since we expect the term to vanish if the second

photon comes in after a delay and the two wave functions of the two photons

overlap negligibly. We thus write

ρ24,24(∞) = PαPβ − Poverlap . (4.33)
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After some algebra, we obtain

Poverlap =
1

2
PαPβ + Pαβ (4.34)

where

Pαβ =
γ2
√
γ3γ4√

2π(γ3 + γ4)

∫
dω u∗β(ω)T2(ω)

×
∫
dx uβ(ω − x)P

F1(x)

ix
+ c.c.,

(4.35)

where P denotes the principal value. The following results are borne out in

numerical simulations for different arbitrary wave shapes of the two photons that

are delayed by a long time td >> 1/γ1:

Pαβ −→ −1

2
Pα
absP

β
abs

Poverlap −→ 0

ρ24,24(∞) −→ PαPβ. (4.36)

4.4.3. Hamiltonian Formulation

In a recent paper, Ref. [69], we developed a “Hamiltonian formulation” that

can describe a single photon detection process in its entirety. We now adapt that

formulation for the detection of two unentangled photons absorbed sequentially.

The most convenient method for solving the dynamical equation set is numerical

integration of the Liouvillian equation in the Hamiltonian formulation [69]. In

the Hamiltonian formulation, we get a single density matrix for the entire system
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that can be solved easily with well-known vectorization and Trotter decomposition

techniques [177]. From the solution of the single density matrix, the generalized

density matrices can be found easily with the transformation (4.50).

We introduce two auxiliary cavities with damped harmonic motion leaking

one excitation each into the continuous bath modes b1(ω) and b2(ω). These two

excitations mimic the photon wave packets in the two baths that we are trying to

detect. There are two other continuous modes g and h, which are introduced only

to enable the spontaneous relaxation of the molecule F. The Hamiltonian is of the

FIGURE 4.4. The cavity modes a1 and a2 each have one excitation to start with.
These two excitations leak out into their adjacent baths (continuous modes b1 and
b2 respectively) by designing the coupling to the baths in time, thus creating two
single-photon wavecpackets. They respectively drive the |F0〉 to |F1〉 and |F2〉 to
|F3〉 transitions. From the excited levels, the molecule can relax with certain
probabilities either back to the state it came from or to another shelving state.
The two shelving states drive two distinct amplification processes and thus produce
two macroscopically distinct “classical” signals (unrelated in frequency to the
incoming photons) in an output bath d(ω).

following form

H = Ha1 +Ha1−b1 +Hb1 +Ha2 +Ha2−b2 +Hb2

+Hb1−F +Hb2−F +

HF +HF−g +Hg +HF−h +Hh

+HF−c +Hc +Hc−d +Hd. (4.37)
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The diagonal terms in the Hamiltonian give all the eigen energies of the systems.

For example, for the cavities it features their resonance frequencies,

Ha1(2) = ωa1(2)a
†
1(2)a1(2), (4.38)

and for the continuous modes, such as g, we have

Hg =

∫ ∞
0

dω ωg†(ω)g(ω), (4.39)

and similar terms for Hb1 , Hb2 , Hc, Hd and Hh. HF is simply Hsys as defined before

in Eq. (4.18).

The interaction between the cavities and the field modes, as well as the

interaction of the photons with the molecule are mediated by the electric fields

corresponding to modes b1 and b2. Each of the electric field operators of the modes

can be expanded into plane wave basis (also their Hermitian conjugate operators).

For the input fields B1,2(x, t), we expand

B1,2(x, t) =
1√
2π

∫ ∞
0

dω b1,2(ω, t) exp(iωx/c). (4.40)

The molecule is located at x = 0 and the cavities a1 and a2 are located “upstream”

at x = −cτ1 and x = −cτ2 where c is the speed of light and τ1, τ2 are the times

it takes for a photon to travel from the respective cavities to the absorber F. The

cavities are coupled to the fields B1(x = −cτ1, t) and B2(x = −cτ2, t)in the manner:

Ha1(2)−b1(2) =

i[g∗1(2)(t)a1(2)B
†
1(2)(−cτ1(2), t)− g1(2)(t)B1(2)(−cτ1(2), t)a

†
1(2)]
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As pointed out in previous work [69, 113, 115], the coupling of the virtual cavities

to the fields can be made time dependent for the purpose of creating arbitrary

photon wavepackets, and therefore the Hamiltonian formulation is completely

general for the photo detection process. In this way, we can calculate the evolution

of the complete system with the elements of a single density matrix, instead of the

multiple generalized density matrices in eq. (4.24). All other discrete-continuum

couplings are at position x = 0.

Hb1(2)−F = i
√
γ1

∣∣F0(2)

〉 〈
F1(3)

∣∣B†1(2)(x = 0, t) +H.c.

HF−g = i
√
γ2 |F2〉 〈F1|G†(x = 0, t) +H.c.

HF−h = i
√
γ4 |F4〉 〈F3|H†(x = 0, t) +H.c.

Hc−d = i
√

ΓcD†(x = 0, t) +H.c., (4.41)

where the field operators G(x, t) and H(x, t) are defined in terms of g(ω) and h(ω)

just as the field operator B(x, t) is defined in Eq. (4.40) in terms of b(ω).

The amplification mechanism is embodied in the parts,

F̃ =
∑

k=0,1,..,4

Fk|Fk〉〈Fk|, (4.42)

HF−c = iF̃ (c− c†).

The different eigenvalues of the operator F̃ drive a discrete quantum harmonic

oscillator (another cavity, for example) with annihilation operator c by different

classical driving strengths. That driven cavity mode will contain an increasing

number of excitations. We assume here F0 = F1 = F3 = 0 so that no amplification

(no driving) takes place when the molecule is in the corresponding states. The
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values for F2 and F4(6= F2) are nonzero and drive the amplification process.

Excitations from the driven cavity c leak into the continuum mode d(ω), which can

be observed “classically” when populated massively. Thus d(ω) contains our final

“classical” signal. We will not analyze the macroscopic signal here and refer instead

for further details to Ref. [69], where it is shown that this type of amplification

process yields minimal noise; see also [122].

4.4.4. Invariants of motion

The Hamiltonian formalism preserves the basic idea of the photodetection

process that is meant to be simulated. We can find some operators that commute

with the Hamiltonian and are therefore conserved in time.

I20 = a†1a1 +

∫
dωb†1(ω)b1(ω)− |F0〉〈F0|,

I21 = a†1a1 +

∫
dωb†1(ω)b1(ω) + |F1〉〈F1|+

∫
dωg†(ω)g(ω),

I22 = a†2a2 +

∫
dωb†2(ω)b2(ω)− |F2〉〈F2|+

∫
dωg†(ω)g(ω),

I23 = a†2a2 +

∫
dωb†2(ω)b2(ω) + |F3〉〈F3|+

∫
dωh†(ω)h(ω),

I24 = |F4〉〈F4| −
∫
dωh†(ω)h(ω),

A conserved quantity of particular interest is IN = 1
2
I20 + 1

2
I21 + 1

2
I22 + 1

2
I23 −

I24 + 1
2
. The 1

2
is added here to give the invariant IN the meaning of the number

of excitations (photons). The invariant takes the values 0,1,2 for the three cases of

0,1,2 input photons, respectively.

The values of these quantities keep track of where the excitations are and

whether the photons will be detected or not. For example, an initial excitation in
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the a1 cavity means I20 maintains a value of 0 in the entire evolution. So as the

eigenvalue of a†1a1 decays from 1 to 0, either the eigenvalues of both
∫
dωb†1(ω)b1(ω)

and |F0〉〈F0| for t → ∞ are 1 (the photon was not detected) or they are both 0

(the photon was detected).

Similarly, I24 always equals 0, with an eigenvalue of 1 for both |F4〉〈F4| and∫
dωh†(ω)h(ω) indicating the second photon was detected, and an eigenvalue 0

indicating it was not detected (yet).

4.4.5. The Liouvillian Representation

Due to the continua in our model, the Hilbert space is infinite dimensional.

However, we follow the well established practice of eliminating the continua and

focus our attention on the “system Hilbert space, Hd” (d=2×2×5=20) and are able

to calculate all quantities of interest in the vector space of the linear operators,

L(Hd) acting on the Hilbert space, Hd. We eliminate the continua b1, b2, g, h

and obtain our Liouvillian master equation for the system density operator, ρs

comprised of discrete quantum systems a1, a2, F . Details of the exact method and

validation of quantum mechanical commutation relationships can be found in the

preceding paper Ref. [69]. For the absorption problem, we need not include the

discrete cavity mode c. The Liouvillian master equation for the chosen discrete

quantum parts of the Hamiltonian is

∂

∂t
ρs = −i[Hsys, ρs] +D [ρs] . (4.43)

Eq. 4.43 facilitates numerical calculation in the Schrödinger picture. For a collapse

operator, X, the Lindblad dissipator super-operator (a map, S: L(Hd) → L(Hd))
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acting on the system density operator, ρs has the form, DX [ρs] = XρsX
† −

1
2
ρsX

†X − 1
2
X†Xρs. For time dependent coupling of system and environment,

the collapse operator take time dependent forms [114, 115]. The collapse operator

embodying the decay from the upper state
∣∣F1(3)

〉
back to the state

∣∣F0(2)

〉
takes

the form X = g∗1(2)(t)a1(2) +
√
γ1|F0(2)〉〈F1(3)|. A quantum jump effected by this

operator indicates the corresponding photon was not detected.

The density operator in Eq. 4.43 can be expanded in the partial basis of

the two virtual cavity populations, i.e. four basis states |n,m〉 with n,m = 0, 1

indicating the number of photons inside the cavity. This gives rise to a coupled

equation set of sixteen coefficients. The complete expansion can be found in eq.

4.47. With the transformation in eq. 4.50, we get back the equation set in eq. 4.46

for the generalized density matrix operators, ρab(t) with the substitution.

uα(β)(t) = g∗1(2)(t)e
− 1

2

t∫
t0

dt′|g1(2)(t′)|2

, (4.44)

which is the same result as found in [114, 115]. Inversion of the relationship in

eq. 4.44 gives away the method of varying the couplings g1(2)(t) in time so as to

generate a desired photon wavepacket uα(β)(t) [114, 115]

g1(2)(t) =
u∗α(β)(t)√

1−
t∫
t0

dt′|uα(β)(t′)|2
. (4.45)
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FIGURE 4.5. The steady state occupations of F2 and F4 level for the initial
state of both cavity having one photon. Here we chose γ1 = γ2 = γ3 = γ4 and
κ1 = κ2 = γ1/5.

4.5. Results

4.5.1. Exponentially decaying uα(t) and uβ(t)

With uα(t) =
√
κ1e
−κ1t/2Θ(t) and uβ(t) =

√
κ2e
−κ2t/2Θ(t), (Θ(t) being the

Heaviside unit step function) either dynamical equation sets 4.46 or 4.43 as well

as quantities like absorption probabilities (eq. 4.33) can be solved analytically.

Through eq. 4.45, we find both couplings g1(2)(t) =
√
κ1(2) to be constant in

time, This is the only example which can be calculated with a time-independent

system Hamiltonian and collapse operators. As discussed previously, if the two

photons have significant temporal overlap, the second photon may get reflected

before the first is absorbed, and the molecule may end up in |F2〉 instead of being

raised all the way to |F4〉. If we gradually delay the second photon in time with

increasing delay periods (td) and calculate the steady state populations in |F2〉

and |F4〉 from the Liouvillian equation each time, we find that with a longer delay

the second photon is absorbed with higher probability (Fig. 4.5). The sum of

the two populations is always Pα
abs(= 10/11), the probability of the first photon
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being absorbed. For a delay td � 1/γ1, the steady state occupation of the F4 level

reaches Pα
absP

β
abs(= 100/121), as expected.

However, the delay is not the only critical determinant of the absorption

probability of the second photon. (The absorption of the first photon is completely

independent of the second.) The closer to Pα the occupation in |F2〉 has risen when

the second photon arrives, the more efficient the absorption of the second photon

is. So, a longer width of the second photon wavefunction would also increase the

efficiency of the second photon absorption. The overlap between the two photon

wave functions determines the efficiency of the second photon absorption. By

making κ2 smaller we can make the second photon wave function longer in time.

In Figs. 4.6 and 4.7 respectively we plot the average occupation levels of |F2〉 and

of |F4〉 as functions of time for different values for κ2 that make the wavefunction

of the second (β) photon longer. The same colored curves from Figs. 4.6 and 4.7

add up to Pα = 10/11 for t → ∞. With the larger share of the second photon

coming into the detector after the first photon has already populated the F2 level,

the probability of a successful two-photon absorption rises.

4.5.2. Gaussian |uα(t)|2 and |uβ(t)|2

We numerically calculate the two photon absorption probability, ρ24,24(∞)

for two real Gaussian wavefunctions with varying standard deviations and the

second one delayed by different delays. The results are plotted in Fig. 4.8. A note

on the numerical method is in order here. For repeated calculations with different

values of the parameters, we use eq. 4.33, since it is less demanding than solving

the Liouvillian equation (eq. 4.43) many times. For the numerical calculation of

the principal value, we use
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FIGURE 4.6. The occupation of the F2 level as a function of time for an initial
state of both cavities having one photon.
The decay rate κ2 of the second cavity (which determines the width in time of the
second photon) is varied. All rates γs are equal, and the rates κ1,2 are given in
units of γ1. The steady-state population of |F2〉 decreases with decreasing value of
κ2, that is, with increasing width of the second photon. The second photon moved
population out of level |F2〉.

FIGURE 4.7. Same as the preceding Figure, but plotting the occupation of level
F4. Here the steady-state population of |F4〉 increases with decreasing value of κ2

since the second photon is more effective at moving population from |F2〉 to |F4〉.

P

(
1

ω

)
=

1

2

(
1

ω − iε
+

1

ω + iε

)
,

and use a sufficiently small ε.

Curiously, we find that the efficiency plot is symmetric in their standard

deviations for any given delay. The efficiency for a standard deviation σ1 for
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photon α and standard deviation σ2 for photon β for a given time delay td is the

same as for standard deviations σ2 for photon α and σ1 photon β. The probability

of the second photon absorption improves a lot as the delay is increased. For

some delays there is a peak efficiency for a certain standard deviation and falls

off slightly with even longer standard deviations.

(a) (b) 

(d) (c) 

FIGURE 4.8. ρ24,24(∞) plotted on the vertical z-axis against the standard
deviations of the α and β photons plotted on the two axes on the horizontal plane
for (a) no time delay, (b) 1/γ1,(c) 3/γ1, and (d) 5/γ1 delays (of the means/centres
of the waveshape) of the second photon, β.

4.5.3. Gaussian |uα(t)|2 and exponentially decaying uβ(t)

For completeness we also consider the “mixed” case of one Gaussian wave

packet (for the first photon) and an exponentially decaying wave packet (for the

second photon). The results are plotted in Fig. 4.9 As long as the two photon

wavefunctions overlap, we get a decrease in the ρ24,24(∞) value with increasing the

standard deviation of the α photon. Increase in κ or decrease in the time constant

of the β photon increases P β
abs and is responsible for larger ρ24,24(∞).
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(a) 

(b) 

FIGURE 4.9. ρ24,24(∞) plotted on the vertical z-axis against the standard
deviations of the α photon Gaussian waveshape on the x axis and the inverse of
the rate constant (κ) of the β photons plotted on the y axis for (a) no time delay,
(b) 0.5/γ1 delay (delay between the mean of the Gaussian and the onset of the β
photon waveshape).

4.6. Conclusions

We developed a fully quantum-mechanical model for a photon-number

resolving detector that can detect up to two photons by extending the model of

Ref. [69] to a five-level molecule. Moreover, we used two different methods for

treating the interaction of two photons with a quantum system—the methods

developed by [113] and [109] on the one hand, and by [114, 115] on the other—and

provided the explicit connection between the two. The former method allowed us

to obtain several analytical results in Section 4.2 that characterize our detector,

the latter method is very well suited for numerical calculations, as shown in

Section 4.5.

The model developed in [69] followed the lead by Refs. [60, 64, 65] in taking

inspiration from visual systems appearing in biology. It is an open question

whether our current extension of that model can be found in nature as well: in
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particular, whether the specific step-wise two-photon absorption process we studied

here occurs in the human eye, just as simultaneous two-photon absorption does

occur [160].

We note two extensions of our work that may be interesting. The first

extension of our model is to another type of five-level molecule that would detect

just one photon, but it would be sensitive to polarization. From the initial state

we could either reach an excited state |F1〉 (as in our actual model) but also an

alternative excited state |F1′〉 (for an orthogonally polarized photon), which would

then decay to a different metastable state |F2′〉. If the signal produced in the latter

state is distinguishable from that produced by |F2〉, then this molecule would

perform a polarization-sensitive single-photon measurement. It is known that some

animals (insects, fish, birds) did develop polarization vision, see, e.g. Ref. [178].

Second, we focused here on the case of two distinguishable input photons,

with different frequencies. The case of two overlapping frequencies (relevant when

the two molecular transitions would have nearly equal transition frequencies)

would reveal two additional features. Both input photons would be able to

drive the two transitions, and the final expression for the two-photon absorption

amplitude would contain two terms, corresponding to two different time orders

in which the “first” and “second” photon could be absorbed. Those two terms

may interfere destructively. That type of effect is certainly interesting but known

[63, 179]. Moreover, the POVM element would involve projections onto entangled

two-photon input states, like it does for standard two-photon absorption [156].
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4.7. Emulating Photon wavepackets with Auxiliary Cavities

We outline the systematic process of deriving the transformations between

the generalized density matrix operators and coefficients (in the expansion in eq.

4.47) in the Hamiltonian formulation. Unlike Gheri et al, we do not introduce

a detuning of the auxiliary cavities for the emulation of the generalized density

matrix equations (Refs. [114, 115] did not either). Gheri et al addressed the

mapping for the problem of photons (one or few) in a single continuum. For the

problem of two photons residing in two continua (or even more complex scenarios),

the procedure outlined here can find the mapping between the two formalisms

(generalized density matrix operator and Hamiltonian formulation) systematically.

The generalized density matrix equations found for the system described in

sections III and IV are
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ρ̇2,2(t) = L{ρ2,2}(t) + [
√
γ3uβ(t)[ρα2(t), |F3〉〈F2|(t0)]

+
√
γ1uα(t)[ρβ2(t), |F1〉〈F0|(t0)] +H.c.]

ρ̇α,2(t) = L{ρα,2}(t)−
√
γ3u

∗
β(t)[ρα,α, |F2〉〈F3|(t0)] +

√
γ1uα(t)[ρ0,2, |F1〉〈F0|(t0)]−√γ1u

∗
α(t)[ρα,β, |F0〉〈F1|(t0)]

ρ̇β,2(t) = L{ρβ,2}(t)−
√
γ1u

∗
α(t)[ρβ,β, |F0〉〈F1|(t0)] +

√
γ3uβ(t)[ρ0,2, |F3〉〈F2|(t0)]−√γ3u

∗
β(t)[ρβ,α, |F2〉〈F3|(t0)]

ρ̇α,α(t) = L{ρα,α}(t)−
√
γ1uα(t) [|F1〉〈F0|(t0), ρ0,α(t)]

+
√
γ1u

∗
α(t) [|F0〉〈F1|(t0), ρα,0(t)]

ρ̇β,β(t) = L{ρβ,β}(t)−
√
γ3uβ(t) [|F3〉〈F2|(t0), ρ0,β(t)]

+
√
γ3u

∗
β(t) [|F2〉〈F3|(t0), ρβ,0(t)]

ρ̇α,β(t) = L{ρα,β}(t)−
√
γ1uα(t) [|F1〉〈F0|(t0), ρ0,β(t)]

+
√
γ3u

∗
β(t) [|F2〉〈F3|(t0), ρα,0(t)]

ρ̇0,2(t) = L{ρ0,2}(t)

−√γ3u
∗
β(t)[ρ0,α, |F2〉〈F3|(t0)]−√γ1u

∗
α(t)[ρ0,β, |F0〉〈F1|(t0)]

ρ̇0,α(t) = L{ρ0,α}(t) +
√
γ1u

∗
α(t)[ρ0,0, |F0〉〈F1|(t0)]

ρ̇0,β(t) = L{ρ0,β}(t) +
√
γ3u

∗
β(t)[ρ0,0, |F2〉〈F3|(t0)]

ρ̇0,0(t) = L{ρ0,0}(t) (4.46)

D is the Lindblad dissipator superoperator and its explicit form depends on

the number and nature of the baths coupled to the system. Due to the coupling

of the total of four continua, we get four collapse operators for the Lindblad

dissipator superoperator, D, namely √γ1|F0〉〈F1|,
√
γ2|F2〉〈F1|,

√
γ3|F2〉〈F3|, and
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√
γ4|F4〉〈F3|. The density matrix in the Hamiltonian formulation can be expanded

in the complete basis (time dependence restricted to the expansion coefficients):

ρ(t) =

ρ̃2,2(t)|0, 0〉〈0, 0|+ ρ̃α,α(t)|0, 1〉〈0, 1|+ ρ̃β,β(t)|1, 0〉〈1, 0|

+ρ̃β,2(t)|1, 0〉〈0, 0|+ ρ̃0,α(t)|1, 1〉〈0, 1|

+ρ̃2,β(t)|0, 0〉〈1, 0|+ ρ̃α,0(t)|0, 1〉〈1, 1|

+ρ̃α,2(t)|0, 1〉〈0, 0|+ ρ̃0,β(t)|1, 1〉〈1, 0|

+ρ̃2,α(t)|0, 0〉〈0, 1|+ ρ̃β,0(t)|1, 0〉〈1, 1|

+ρ̃0,0(t)|1, 1〉〈1, 1|+ ρ̃0,2(t)|1, 1〉〈0, 0|+ ρ̃2,0(t)|0, 0〉〈1, 1|

+ρ̃β,α(t)|1, 0〉〈0, 1|+ ρ̃α,β(t)|0, 1〉〈1, 0| (4.47)

Here a state |n,m〉 for n,m ∈ {0, 1} indicates the number of photons in the

two cavities, respectively. Since we start the cavities with one photon each, an

input photon in mode α or β will correspond to a cavity state |n,m〉 with n = 0

or m = 0 respectively (the photons have leaked out of their cavities). The F -

operators in the Hamiltonian and Lindbladian of eq. 4.43 act on the expansion

coefficients, ρ̃i,j(t) and the cavity mode annihilation a1, a2 operators act on the

basis elements |n,m〉. Using the expansion, eq. 4.47 in eq. 4.43, we get a set

of coupled differential equations for the 16 coefficients. For example, the two
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coefficients, ρ̃β,2(t) and ρ̃0,α have the coupled equations,

˙̃ρβ,2(t) =
(
D√γ1|F0〉〈F1| +D√γ2|F2〉〈F1| +D√γ3|F2〉〈F3|

+D√γ4|F4〉〈F3|
)
ρ̃β,2(t)− 1

2
|g2(t)|2 [ρ̃β,2] + |g1(t)|2ρ̃0,α(t)

+g1(t)
√
γ1 [|F0〉〈F1|, ρ̃β,β(t)]− g2(t)

√
γ3 [ρ̃β,α, |F2〉〈F3|]

−g∗2(t)
√
γ3 [|F3〉〈F2|, ρ̃0,2(t)] (4.48)

˙̃ρ0,α(t) =
(
D√γ1|F0〉〈F1| +D√γ3|F2〉〈F3|

−|g1(t)|2 − 1

2
|g2(t)|2

)
ρ̃0,α

+g1(t)
√
γ1 [|F0〉〈F1|, ρ̃0,0(t)] (4.49)

The following transformation from the tilde operators gives us back the set

of differential equations in eq. 4.46 with the generalized density matrix operators

defined previously in eq. 4.24. This comes with the substitutions in eq. 4.45.
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ρ0,0(t) = ρ̃0,0(t)e
∫
dt(|g1(t)|2+|g2(t)|2)

ρα,α(t) = [ρ̃α,α(t) + ρ̃0,0(t)] e
∫
dt|g1(t)|2

ρβ,β(t) = [ρ̃β,β(t) + ρ̃0,0(t)] e
∫
dt|g2(t)|2

ρ2,2 = [ρ̃2,2 + ρ̃α,α(t) + ρ̃β,β(t)]

ρ0,α(t) = ρ̃0,α(t)e
∫
dt(|g1(t)|2+ 1

2
|g2(t)|2)

ρβ,2(t) = [ρ̃β,2(t) + ρ̃0,α(t)] e
∫
dt 1

2
|g2(t)|2

ρ0,β(t) = ρ̃0,β(t)e
∫
dt( 1

2
|g1(t)|2+|g2(t)|2)

ρα,2(t) = [ρ̃α,2(t) + ρ̃0,β(t)] e
∫
dt 1

2
|g1(t)|2

ρα,β = ρ̃α,βe
∫
dt 1

2
(|g1(t)|2+|g2(t)|2)

ρ0,2(t) = ρ̃0,2(t)e
∫
dt 1

2
(|g1(t)|2+|g2(t)|2) (4.50)

The coefficients in eq. 4.47 can actually be given the meaning of a density

matrix element with their usual meaning. The Hamiltonian formulation helps us

write the density operator with trace of 1 that embodies all the generalized density

operators in eq. 4.46 (the diagonal(off-diagonal) ones each have a preserved trace

of 1(0) each).
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CHAPTER V

CONCLUSIONS

We talk about two kinds of amplifications. The first kind is the one Bohr

remarked on, classical measurements of a microscopic quantum observable need

to be the outcome of an irreversible amplification from it. The second kind

are specific unitary (reversible) evolutions of quantum mechanical operators

with explicit gains and noise additions. Quantum measurement theories cannot

completely eliminate the need for an interpretative process in the end of the

quantum mechanical process of the amplification. We do have answers to a number

of puzzles in the measurement process. Quantum mechanical decoherence can be

used to explain and interpret quantum measurement process in most parts. As

progress continues in quantum measurement theories, it behoves us to push the

efforts to write fundamental models and theories for technological platforms like

single photon detectors using our best understanding of nature at the time.

This dissertation accomplishes the task of embodying the entire process of

single/few photon detection with Hamiltonians as well as outlines the procedure

for analysing absorption probabilities. A few well known Hamiltonians are

discussed. The mechanism and physics inherent in these Hamiltonians are well

understood from cavity Quantum Electro-Dynamics. As such the methodology

described can serve as a guideline for designing photon detectors and their

amplification characteristics. The models are capable of depicting the entire

evolution composed of absorption, amplification and measurement. This is

an improvement over the status quo Hamiltonian description of single photon

detectors which discusses definite models for absorption stage only. A number
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of Hamiltonians are discussed that can implement a wide range of quantum

amplification processes and measurement interpretations in the theoretical

frameworks known today. The measurement section is described with classicality

of large macroscopic signals. But it is compatible with the modern theory of

measurement induced decoherence and readily adaptable to quantum Darwinism

and emergence of classical objective reality theories.

Hamiltonians readily ensure preservation of bosonic canonical commutation

and fermionic canonical anticommutation relationships. Photon absorptions

leading the evolution into a macroscopic number of bosonic excitations in a mode

or macroscopic number of atoms or spins excited or generated can be modelled

with known Hamiltonian models that are explicitly compliant with quantum

mechanical evolution requirements. Bonus features like models with dissipative

phase transitions can make our models further protected against non-ideal

realizations. The macroscopic excitations generation gives us an output quantum

mechanical operator amplified with minimal noise contribution added. The other

desired attribute of near-perfect absorption is built in the absorber molecule in all

cases.

The absorber molecule can be designed with the near-perfect absorption

design into a five level atom that can absorb the two photons sequentially. The

versatility of our Hamiltonian formulation is verified by the model and suitability

of computations. The model can be adapted to implement polarization sensitive

single photon detection capability. The POVM elements show rich structure. If

the two photons have somewhat close central frequencies, the photons become less

distinguishable and the POVM elements involve projectors into entangled photon

pairs and connects with the standard two photon absorber physics.
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On a more fundamental physics front, we get exciting new prospects

of device level modelling of modern quantum measurement theory and

interpretations. Theories of decoherence and quantum Darwinism can be

incorporated and more profound quantum measurement processes could be

conceptualized. Going beyond a single photon detection problem alone, the more

general problem of amplifying microscopic quantum mechanical observables

into objective reality can be touched upon. Concrete models of generating

macroscopic number of excitations or large signal amplitudes in a quantum

mechanical evolution can benefit the modern evolution of the ideas of the quantum

measurement problem.
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APPENDIX A

HEISENBERG PICTURE EVOLUTION OF OPERATORS

Knowing the Hamiltonian essentially indicates knowing the input-output

relationship for the amplification evolution, as it comes down to the formal

solution of the Heisenberg equation of motion. The density matrix evolves

accordingly in the Schrödinger equation [180],

ρ(t) = U(t)ρ(0)U †(t), ρ(t) = ρ(0); Schrödinger picture (A.1)

A(t) = U †(t)A(0)U(t), A(t) = A(0); Heisenberg picture (A.2)

U(t) = T exp

−i t∫
0

H(t′)dt′

 , (A.3)

where T is the Dyson time-ordering operator. The decomposition of the output

operator in terms of the input operators tells us the gain of the amplification

as well as noise operators and their contributions. From the point of view of

amplification, computation of eq. (A.2) is of paramount importance. Computation

of eq. (A.2), even with convergent series expansions, can answer the important

question of which operators (signal and noise) do and do not contribute to the

output signal operator. Now we look at methodical ways of counting or enlisting

the operators that should arise in the decomposition of an output operator.

There are methods of solving eq. (A.1) in the Schrödinger picture with series

expansions. For an explicitly time dependent Hamiltonian (time dependent in the

Schrödinger as well as Heisenberg picture), the evolution operator in eq. (A.3) can
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be expanded in a Dyson series [180],

U(t) = T exp

−i t∫
0

H(t′)dt′


= 1− i

t∫
0

dt1H(t1) +
(−1)2

2!

t∫
0

dt1

t1∫
0

dt2H(t1)H(t2) + ...

The Hamiltonian does not necessarily commute at different times, i.e.

[H(t1), H(t2)] 6= 0, and the time ordering operator ensures t1 ≥ t2 ≥ t3 ≥ t4....

Average Hamiltonian Theory (AHT) ([180]) and Magnus expansion ([181])

tries to calculate an average solution for a certain time T [182],

U(t = T ) = T exp

−i t∫
0

H(t′)dt′

 = e−iHavgT (A.4)

with Havg =
∑
j=0

Hj

H(0) =
1

T

T∫
0

dt1H(t1), H(0) =
1

T

i

2!

T∫
0

dt1

t1∫
0

dt2[H(t1), H(t2)]

Therefore, the computation of the operator at some point in time T, can be

facilitated through

A(t) = U †(t)A(0)U(t) = eiHavgTA(0)e−iHavgT (A.5)

For a Hamiltonian constant in time (in the Schrödinger picture), we trivially have

the same form for the evolution of an operator in the Heisenberg picture, from eq.

(A.2)

A(t) = U †(t)A(0)U(t) = eiHTA(0)e−iHT (A.6)
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Now, Havg needs to be calculated for each T. And later we see an approximate

evaluation of an operator evolved till T with Havg to a given order in T.

So, numerically the expansion to be mentioned soon is not very useful for

Hamiltonians with explicit time dependence. But the expansion into powers of

T still gives us the structure of evolution and an approximate magnitude for A(t)

at T.

With labels indicating the picture a operator is represented in, we write out

U(t) = e−iHt/~

AH(t) = U †(t)ASU(t) (A.7)

d

dt
AH(t) =

i

~
[H,AH(t)], (A.8)

where H is understood to be a Hamiltonian constant in time (in the spirit of eq.

(A.5) and eq. (A.6)).

A.1. Open system dynamics as a homomorphism for operators

Structure preserving maps in algebra and group theory are called

Homomorphism. Fermionic and Bosonic creation and annihilation operators

generate CAR (Canonical Anticommutation Relation) and CCR (Canonical

Anticommutation Relation) algebras respectively. Interactions of two level

and three level atoms can be represented by the two and three dimensional

representation of SU(2) and SU(3) Algebra respectively. The irreversible

transduction of photons can be emulated with the quantum mechanical

rulebook where the system evolution is tracked disregarding the evolution of the

environmental degrees of freedom. Mathematically it amounts to eliminating the
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bath operators in favour of system operators. However, all quantum mechanical

rules hold in the back of our minds in the description with the all operators and

variables kept track of.

[AB]H (t) = eiHt/~ASe
−iHt/~eiHt/~BSe

−iHt/~ = AH(t)BH(t) (A.9)

A simple reflection of the Heisenberg evolution of operators eq. (A.9) demands

that the calculated system operator dynamics when appended with the bath

operators we have integrated out must preserve its structure. Mathematically, it

is equivalent of a homomorphism. And therefore CCR, CAR, SU(3) etc. algebra

are expected to be preserved fully in the evolution in the complete space of

‘system+bath’ operators. With the bath coupling for Bosonic operators, the

following general form can be found which with a condition of the white noise

correlations ([bin(t), b†in(t′)] = δ(t − t′)) for the input field operator, bin(t) always

conform to Bosonic commutation relations [183].

a(t) = a(t0)exp[−(iωa +
γ

2
)(t− t0)]−√γ

t∫
t0

dt′bin(t′)exp[−(iωa +
γ

2
)(t− t′)], t > t0(A.10)
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Eq. (A.9) ensures the preservation of commutation relationships in the Heisenberg

picture at the same time,

[AH(t), BH(t)] = AH(t)BH(t)−BH(t)AH(t)

= eiHt/~ASe
−iHt/~eiHt/~BSe

−iHt/~ − eiHt/~BSe
−iHt/~eiHt/~ASe

−iHt/~

= eiHt/~ASBSe
−iHt/~ − eiHt/~BSASe

−iHt/~

= eiHt/~
(
ASBSe

−iHt/~ −BSASe
−iHt/~)

= eiHt/~ (ASBS −BSAS) e−iHt/~

= eiHt/~ ([AS, BS]) e−iHt/~

= [AS, BS]H(t)

is the Heisenberg evolution of the commutator in the Schrödinger picture

operators.

A.2. A Complete Basis

The linear space of operators associated with the Hilbert space of {|na〉 ⊗

|Fj〉} is L(S). A complete basis for L(S) is succinctly written as {|q〉〈p|}. The

time evolution of each element,|q〉〈p| of the basis can facilitate the calculation of

correlation function of interest in the system.[184] |q〉〈p| can be written out more

explicitly,

|q〉〈p| = |nq, Fq〉〈np, Fp|

Since any given operator (for example |F1〉〈F1| or â) can be written out

in the basis at t = t0, knowing the time evolution of all |q〉〈p|(t) produces the
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time evolution of the operator. The evolving operator will have components

along different static basis elements, |k〉〈l|(t0). The time varying component, i.e.

coefficient of |q〉〈p|(t) along |k〉〈l|(t0) is Cqp
kl .

|q〉〈p|(t) =
∑
k,l

Cqp
k,l(t)|k〉〈l|(t0) (A.11)

The coefficients, Cqp
k,l(t) can have interesting physical interpretations in problems

like photodetection and amplification [69].

A.2.1. Evolution of basis elements, (|j〉〈i|)(t) in L(S)

Any operator in the linear space of operators acting on Hilbert space, H

can be expanded in terms of basis elements (|j〉〈i|)(t). Their dynamics can be a

powerful computational tool in the calculation of quantities of interest. We recount

some of the equations from ref. [184]. The density matrix, ρ = TrE (ρSE), obeys

the linear master equation,

d

dt
ρij(t) =

∑
i′,j′

Mij,i′j′ρi′,j′(t) (A.12)

Now,

TrS {ρ(t)|j〉〈i|(t0)} = TrS {ρ(t0)(|j〉〈i|)(t)}

=⇒ ρij(t) = TrS {ρ(t0)(|j〉〈i|)(t)} = 〈(|j〉〈i|)(t)〉

=⇒ ρij(t) = 〈(|j〉〈i|)(t)〉 (A.13)
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Now, the identity,

〈A(t)〉 =
∑
ij

ρij(t0)Aji(t) =
∑
ij

ρij(t)Aji(t0) = TrρA

〈(|j〉〈i|)(t)〉 =
∑
ij

ρij(t)|j〉〈i|ji(t0) =
∑
ij

ρij(t0)|j〉〈i|ji(t)

(A.14)

For the case, |j〉〈i|ji(t0) = δr,iδc,j ad ρij(t0) = δr,iδc,j,

(ρij(t))S = (|j〉〈i|(t))H

Consequently, if the master equation is,

d

dt
ρij(t) =

∑
ij,i′j′

Mij,i′j′ρi′,j′(t) (A.15)

we can use eq. (A.13) to write,

d

dt
〈(|j〉〈i|)(t)〉 =

∑
ij,i′j′

Mij,i′j′ρi′,j′(t) (A.16)

Eq. (A.16) is written only to be corrected with the noise operators so as to satisfy

the commutation relations,

d

dt
〈(|j〉〈i|)(t)〉 =

∑
ij,i′j′

Mij,i′j′ρi′,j′(t) + Fij(t) (A.17)

A.3. Expansion of evolving operators in orders of time

Equations (A.7) and (A.8) enable us to write an operator evolving in time

at a particular time with evolution operators having constant Hamiltonians. We
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define the notation,

[H,AS] = AHS [H,AH(t)] = AHH(t)

[H, [H,AS]] = AHHS [H, [H,AH(t)]] = AHHH (t)

[H, [H, [H,AS]]] = AHHHS [H, [H, [H,AH(t)]]] = AHHHH (t)

.....................................................

The solution of eq. (A.8) is,

AH(t) =
i

~

t∫
0

[H,AH(t1)]dt1 (A.18)

Of course, we can substitute the integral for AH(t) in the right hand side, as

many times as we wish,

AH(t) =
i

~

t∫
0

[H,AH(t1)]dt1 (A.19)

AH(t) =

(
i

~

)2
t∫

0

t1∫
0

[H, [H,AH(t2)]]dt2dt1 (A.20)

AH(t) =

(
i

~

)3
t∫

0

t1∫
0

t2∫
0

[H, [H, [H,AH(t3)]]]dt3dt2dt1 (A.21)
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In the notation chosen,

AH(t) =
i

~

t∫
0

AHH(t1)dt1

AH(t) =

(
i

~

)2
t∫

0

t1∫
0

AHHH (t2)dt2dt1

AH(t) =

(
i

~

)3
t∫

0

t1∫
0

t2∫
0

AHHHH (t3)dt3dt2dt1

A.3.1. Expansion in unevolving Schrödinger operators

Continuing from eq. (A.7),

AH(t) = eiHt/~ASe
−iHt/~

= 1 +

(
it

~

)
[H,AS] +

1

2!

(
it

~

)2

[H, [H,AS]] +
1

3!

(
it

~

)3

[H, [H, [H,AS]]] + ...(A.22)

= 1 +

(
it

~

)
AHS +

1

2!

(
it

~

)2

AHHS +
1

3!

(
it

~

)3

AHHHS + ...

=
∞∑
n=0

1

n!

(
it

~

)n
AH

n

S + E(tn+1) (A.23)

Eq. (A.23) can be verified citing identities in literature [185],

eτA1Be−τA1 = B + [A1, B]τ + ...+ [A1, ..., [A1, B]...]
τ p−1

(p− 1)!
+O(τ p) (A.24)

where the error term, explicitly is,

O(τ p) =

τ∫
0

dτ2e
(τ−τ2)A1 [A1, ..., [A1, B]...]e−(τ−τ2)A1

τ p−1
2

(p− 1)!
(A.25)
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Therefore, the error term in eq. (A.23) would be

E(tn+1) =

(
i

~

)p+1
it/~∫
0

dt2e
i
~ (t−t2)H [H, ..., [H,AS]...]e−

i
~ (t−t2)H t

p
2

p!
(A.26)

A.4. Binomial Expansion

The terms in the expansion eq. (A.23) resemble a binomial expansion,

AH
n

S = (H − AS)n =
n∑
r=0

(
n

r

)
(−1)rHn−rArS (A.27)

For example, the term, AH4

S in the expansion of eq. (A.23),

AH
4

S = AHHHHS = [H, [H, [H, [H,AS]]]]

= HHHHAS − 4HHHASH + 6HHASHH − 4HASHHH + ASHHHH

The calculation of AHn

S terms completely enumerates all the possible time

stationary Schrödinger operators that can show up in the closed system evolution

of a an operator.

A.5. Example time independent Hamiltonian: A Cavity mode Driving

a 2LS

The cavity mode will be assumed to have a maximum occupation of 1. The

driven system is a Two-Level System (TLS) with the two levels, F0 and F1(F1 is
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higher in energy).

H(t) = H = Hsys(t) +Hint(t), an invariant of time

Hsys(t) = ~ωaa†(t)a(t)− ~δ0,1|F0〉〈F0|(t) + ~
∞∫

−∞

dω|ω|b†(ω, t)b(ω, t)

Hint(t) = i~
∞∫

−∞

dωκ1(ω)
(
b†(ω, t)a(t)− a†(t)b(ω, t)

)

+i~
∞∫

−∞

dωκ2(ω)
(
b†(ω, t)|F0〉〈F1|(t)e−iωτ − |F1〉〈F0|(t)b(ω, t)eiωτ

)

Hsys(t) or Hint(t) are not invariants of time; but their sum is.

Integrating the equation of motion for b(ω, t), the bath mode annihilation

operator can be found to be,

b(ω, t) = b0(ω)e−iω(t−t0) +

t∫
t0

dt′
[√

κ

2π
a(t′)e−iω(t−t′) +

√
γ1

2π
|F0〉〈F1|(t′)e−iω(t−t′+τ)

]
(A.28)

Hint(t) is necessarily time dependent, H is the only operator which can be taken to

be conserved in time. Substitution of eq. (A.28) can give the Hint(t).

Hint(t) = i~
√
κγ1

(
a†(t− τ)|F0〉〈F1|(t)− |F1〉〈F0|(t)a(t− τ)

)
+i~
√
κ
(
b†in(t)a(t)− a†(t)bin(t)

)
+ i~
√
γ1

(
b†in(t− τ)|F0〉〈F1|(t)− |F1〉〈F0|(t)bin(t− τ)

)
(A.29)

Hsys(t) can be evaluated at t = t0, substituting eq. (A.28) for t = t0,

Hsys(t0) = ~ωaa†(t0)a(t0)− ~δ0,1|F0〉〈F0|(t0) + ~
∞∫

−∞

dω|ω|b†0(ω)b0(ω)
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The quantity, ~
∞∫
−∞

dω|ω|b†0(ω)b0(ω) is a constant and do not contribute to any

dynamical coupling between operators evolving in time in the Heisenberg picture.

Taking that last number to be zero, we have our Hamiltonian, (ignoring the

delay, τ)

H = H(t0) = Hsys(t0) +Hint(t0)

= ~ωaa†(t0)a(t0)− ~δ0,1|F0〉〈F0|(t0) + i~
√
κγ1

(
a†(t0)|F0〉〈F1|(t0)− |F1〉〈F0|(t0)a(t0)

)
+i~
√
κ
(
b†in(t0)a(t0)− a†(t0)bin(t0)

)
+ i~
√
γ1

(
b†in(t0)|F0〉〈F1|(t0)− |F1〉〈F0|(t0)bin(t0)

)
(A.30)

A.5.1. Matrix representation of a system Hamiltonian

Making open system dynamics explicitly unitary (conforming to quantum

mechanical rules) requires tracting the bath operators and a combinatorial

counting problem that may be facilitated by graph theoretical algorithms. Konig

digraphs can be a very useful representation for matrices and matrix multiplication

[186]. For a closed system evolution problem without bath contributions Konig

digraph methods can be formulated most straightforwardly. Our H will be,

H = ~ωaa†(t0)a(t0)− ~δ0,1|F0〉〈F0|(t0) + i~
√
κγ1

(
a†(t0)|F0〉〈F1|(t0)− |F1〉〈F0|(t0)a(t0)

)
In the rotating frame defined by,

U(t) = exp
{
i~ωaa†a− i~δ0,1|F0〉〈F0|

}
,

the Hamiltonian would be even more compact,

H = i~
√
κγ1

(
a†(t0)|F0〉〈F1|(t0)− |F1〉〈F0|(t0)a(t0)

)
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In the basis {|na〉 ⊗ |Fj〉},

H = i~
√
κγ1



0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(A.31)

A.5.2. Weighted Konig Digraph

Hamiltonian matrices are always Hermitian, so they would necessarily have

directed edges going in both directions between two nodes (weighted by complex

conjugate numbers). We choose the following Hamiltonian (chosen to be more

stuffy than the one in eq. (A.31) ) to demonstrate the method. The elements of

the Hamiltonian are taken to be -1 for simplicity.

H =



∆1 0 0 −th 0 −th

0 0 0 0 0 0

0 0 0 0 0 0

−th 0 0 ∆4 0 −th

0 0 0 0 0 0

−th 0 0 −th 0 ∆6


(A.32)

Now for the calculation of some Cqp
k,l(t) (in eq. (A.11) ), for example, C61

6,4(t),

we have to calculate all the different contribution from t-powers from the closed

walks from 6 to 4 (k to l). For the coefficient of tn, we find the weight of all walks
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FIGURE A.1. The Digraph (brown edges) for the Hamiltonian in eq. (A.32) along
with the edge |6〉〈1| (orange). The edge 1-6 of the Hamiltonian is not shown (or is
hidden under the edge |6〉〈1| ). The edges have arrows on both ends (bidirectional
edges or two edges) because of the hermiticity of the matrix.

of length (n+1) from the node k to l (in fig. (A.2) ). If |6〉〈1| appears multiple

times (if only the Hamiltonian has that edge itself), we have multiple permutations

to be summed; each time with a factor of (−1)m; m is the serial (starting from 1,

m ∈ N ) of the edge |6〉〈1| in the composite (cascaded) graph (fig. (A.2) ). The

general relationship is,

Cqp
k,l(t) = δk,l +

∞∑
n=1

1

n!

(
i

~

)n
tn(−1)mW n+1

kl

W n−1
kl = Weight of the walks of length (n+1)

from k to l through the edge p → q

m = the serial of the edge p → q in the walk, m ∈ N

If i=j, and there is a self-loop at vertex i, the walk must include that loop (as an

edge) at a serial in the walk.

Fig. (A.2) makes the method more obvious; however the weighted Konig

di-graph (fig. (A.1) ) of the Hamiltonian is all we need for the calculation of any

Cpq
k,l(t) coefficient.
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FIGURE A.2. The composite graph (ref. [186]) for H4|6〉〈1|H2 (The arrows of the
graph-edges not shown). H is from eq. (A.32)

The QuTiP ([187]) function mesolve is used for calculating the expectation

value of any operator in L(S) in the open system evolution. However, it operates

on exponentiating matrices and runs into memory problems for large Hilbert space

sizes. Knowledge of all |q〉〈p|(t) calculated through algorithms of graph theory

might make it possible to calculate these expectation values for very very large

system dimensions with known error terms.

The coefficients Cqp
k,l(t) can be calculated recursively. Here is a pseudo code

expressing this idea.
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Algorithm 1: Recursive function program for A(t)
Input: A(t0), H, N(maxm order of t)
Output: A(t)

1 Initialize n to 1
2 A(t) = recursive function(n).
3 Recursive function(n):
4 Step 0: Set An to 0. m to 1.
5 Step 1: take the product C = HH..A ..HHH of length (n+1) with A at the
serial of m.

6 Step 2. Add (−1)mC to An.
7 if m < N:
8 m → m+1.
9 goto Step 1.

10 else:
11 A(t0) → A(t0) + (it/~)nAn

12 Step 3:
13 if n < N: resursive function(n+1)
14 else: return A(t0)
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APPENDIX B

AMPLIFICATION MECHANISMS AND HAMILTONIANS

We have discussed a quantum amplification mechanism implemented with a

driven quantum Harmonic oscillator. We now contemplate a host of other cavity-

QED Hamiltonians that can implement such amplification mechanisms.

Ref. [122] discusses a class of nonlinear amplifiers that add a single noise

mode for the amplification evolution.

âout = gf̂in + b̂in (B.1)

f̂in is the quantum mode carrying the signal and b̂in is the added noise mode. It

was facilitated with the interaction Hamiltonian,

ĤI = −iκ
(
f̂ †b̂− f̂ b̂†

)
(B.2)

The input-output transformaton is achieved with a normal operator f̂in

(an operator that commutes with its adjoint). In fact f need not be a modal

operator, it can be a qubit operator such as |0〉〈1| − |1〉〈0| which is normal but

non-Hermitian. Therefore a qubit population operator such as σ̂z can be measured

with minimum noise addition.

Ref. [122] summarizes modern techniques in qubit readout techniques with

the single interaction Hamiltonian in eq. (B.2). Conditional displacement of an

oscillator based on the occupation of a qubit is exploited in some nondemolition

measurements of qubits [188, 189, 190]. Fundamentally, the oscillation frequency

of a cavity mode is dynamically modulated by the occupation of the qubit. The
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Langevin equation of the cavity mode reads [189],

˙̂a = −i1
2
g̃zσ̂z −

1

2
κâ−

√
κâin (B.3)

The input-output boundary condition reads,

âout = âin +
√
κâ (B.4)

The mean of the output is,

αout = 〈âout〉 = − ig̃z√
κ
〈σ̂z〉

[
1− e−

1
2
κt
]

(B.5)

The homodyne detection of the output signal corresponds to the measurement

operator, M̂(τ), (τ being the integration time and φh the homodyne angle).

M̂(τ) =
√
κ

τ∫
0

dt
[
â†out(t)e

iφh + âout(t)e
−iφh

]
(B.6)

For long measurement times, the signal to Noise Ratio (SNR) grows as square root

of time [189, 190]. The interaction Hamiltonian is a special case of the general

relationship in eq. (B.2).

The amplification mechanism formulated in chapters 3 and 4 are different

from the one in [122] in the sense that they include the projector into a third

Hilbert space,

âout = gn̂in ⊗ |ψ0〉〈ψ0|+ b̂in (B.7)

|ψ0〉〈ψ0| = |F2〉〈F2| in the single photon model. The shelving state |F2〉 drives

the amplification process. Since the operator, |ψ0〉〈ψ0| commutes with the
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measurement Hamiltonian, it counts as a Quantum Non Demolition (QND)

observable. In chapter 4, it was established that to project onto photon

wavepackets, the temporal shape of the occupation of the absorber levels are

necessary. We now consider physical amplification mechanisms where such

quantum signals (carried by a projector operator) can be amplified into large

quantum signals carried by a large number of spins or atoms. Readout techniques

for such large quantum signals into classical signals may enable us to learn the

growing occupation levels in the shelving state within the liberties of quantum

mechanics.

The projector operator of the shelving state |ψ0〉〈ψ0| can be used in other

cavity-QED Hamiltonians to achieve the desired change in some parameter value

that will drive an amplification. A driven version of the Jaynes-Cummings model

can lead to a coherent state steady state ([191]). Therefore, we are able to use

the model for amplification of a change in a parameter, µ caused by an absorbed

photon.

ρ̇ = Lρ = −i[H̃dJC , ρ] +D√κddρ+D√κτz τzρ

H̃dJC =
1

2
(∆− ωa)(1 + τz) + λ(τ+d+ τ−d†) + µ(t)(τ+ + τ−) (B.8)

µ(t) = µ|ψ0〉〈ψ0|(t) (B.9)

For, µ > λ, as the shelving state grows its occupation, we get to the coherent state

(with amplitude µ/λ, ([191]) ) steady state for the cavity mode. H̃dJC is written

in a rotating frame, ωa is the angular frequency of the ac field driving the qubit τz,

τ are the Pauli spin operators representing a two level atom. The steady state of

the cavity mode, d̂ would be our pointer state. The Heisenberg picture evolution of
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|ψ0〉〈ψ0|(t) is unchanged if terms are added to the Hamiltonian that it commutes

with. And the evolution of other operators can be calculated from the Hamiltonian

H̃dJC in eq. B.8.

The detuning of different photon signal can lead to different steady state

occupation of the absorber atom. In fact, the switching between distinct steady

states brought about by varying the detuning across certain critical value was

utilized to fashion a quantum transducer in a Kerr resonator.[192] There are a

host of non-linear Kerr models where the steady-states are Schrödinger cat states

of coherent states [193]. These systems involve the physics of driven-dissipative

phase transitions [194]. The heightened susceptibilities of the degrees of freedom

of a system close to a critical point has long been investigated for applications in

metrology, estimation and sensing[195, 196]. First order phase transitions have also

attracted much attention in schemes for amplifying weak signals.[71].

B.1. From master equation to rate equation

Dicke Hamiltonian describes the dynamics of a two level atom/ qubit coupled

to a single mode of electromagnetic cavity mode.

HDicke = ω0Sz + ωa†a+ λ(a+ a†)(σ+ + σ−)

The Jaynes Cummings Hamiltonian discards terms far from resonance,

HJC = ω0Sz + ωa†a+ λ(aσ+ + a†σ−)

The emission from the qubit and the populations are found to be discrete

in time (in a single shot measurement) and can be calculated with the quantum
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trajectory method. However, the solutions and measurement signals can both

be continuous (solutions from the master equation approach) for an ensemble

of qubits driven and decaying identically. Such a system is described by the

Tavis-Cummings Hamiltonian, where N qubits are coupled identically to a single

electromagnetic cavity mode.

HTC = ω0Jz + ωa†a+
λ√
N

(a+ a†)(J+ + J−)

The collective spin-operators abide by the SU(2) algebra just like the individual

spin operators [125, 182, 197, 198].

Ji =
N∑
j=1

σji , i = x, y, z;

J± =
N∑
j=1

σj± =
N∑
j=1

(
σjx ± iσjy

)
= Jx ± iJy

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy

[Jz, J±] = ±J±, [J+, J−] = 2Jz (B.10)

The simultaneous eigenstates of J2 and Jz are called Dicke states. With ~ = 1,

J2|j,m〉 = j(j + 1)|j,m〉

Jz|j,m〉 = m|j,m〉

J±|j,m〉 =
√

(j ∓m)(j ±m+ 1)|j,m〉

where j ≤ N/2, and |m| ≤ j, j,m multiples of half-integers for spin-1/2 particles.

jmin = 0 for even M (number of TLS) and 1/2 for odd N.
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The Dicke states are permutationally symmetric quantum superpositions of

spin tensor product states with the same number of excited and unexcited spins.

|j,m = k − N

2
〉 =

1√(
N
k

)∑
p

|j1, 1〉...|jk, 1〉|jk+1, 0〉...|jN , 0〉 (B.11)

=
1√(
N
k

)S [|e〉⊗k ⊗ |g〉(N−k)
]

(B.12)

The Symmetrization operator S enlists all permutations with the same number of

excited (|e〉) and unexcited (|g〉) spins in the sum. The Dicke states with j=N/2

are called the symmetric Dicke states.

Quantum information can transfer from a system to the monitoring

environment. While single-shot measurements yield a discrete in time quantum

jumps, an ensemble of atoms under the same drive and coupling can accumulate

temporal shapes of “click”s that are sufficiently continuous or smooth. The

populations of the master equation’s density operator becomes state populations in

a rate equation. If the environment does not distinguish between individual spins,

the dynamics is split into individual symmetric subspaces evolving separately. The

populations may be labeled by the z-component of the Spin operators m, and we

get a rate equation model for the state populations, pm = ρm,m.

d

dt
pm = −Γm→m±1pm + Γm−1→mpm−1 + Γm+1→mpm+1

if the population transfer with state of m is limited to states with m ± 1. The

symmetries (such as collective spin operator interactions only) in the meter-

environment Hamiltonian also facilitates Decoherence Free Subspaces (DFS) that

can protect against environmental errors [182].
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B.1.1. The observable |ψ0〉〈ψ0|

The “generalized Dicke model” of ref. [199] shows utility in engineering

arbitrary Dicke states in the steady state.

Hgen. Dicke = ω0Jz + ωa†a+
λ√
N

(a+ a†)(J+ + J−) +
U

N
Jza

†a (B.13)

We propose a scheme for amplifying a monotonically increasing amplitude of a

occupation operator through the transformation in eq. (B.7).

Hgen. Dicke pd = ω0Jz + ωa†a+
λ√
N

(a+ a†)(J+ + J−) + |ψ0〉〈ψ0|
U

N
Jza

†a (B.14)

Since |ψ0〉〈ψ0| commutes with Hgen.Dickepd, it’s equation of motion is not changed

with the addition of the “meter” spin ensemble. Therefore the solution for

|ψ0〉〈ψ0|(t) we obtained before still holds. For any of the collective spin operators,

J∗ ∈ {Jx, Jy, Jz, J+, J−}, we get the Heisenberg equation of motion,

d

dt
J∗ = i [Hgen. Dicke pd, J∗] (B.15)

The derived equations of motion would be exactly the same ones as the ones

derived from the following Hamiltonian,

Hgen. Dicke spin = ω0Jz + ωa†a+
λ√
N

(a+ a†)(J+ + J−) +
U(t)

N
Jza

†a (B.16)

where, U(t) = U |ψ0〉〈ψ0|(t).
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ρ̇ = − i
~

[H, ρ] +
γ↓
2
LJ− [ρ] +

γΦ

2
LJz [ρ] +

γ↑
2
LJ+ [ρ] (B.17)

As long as the master equation has system Hamiltonian and collapse operators

only in terms of collective operators Jx, Jy, Jz, J+, J− and the system was

initialized in a symmetric Dicke state the evolution is confined to the (N+1)

symmetric Dicke states. For a closed system evolution (without any bath

coupling), we can solve the Schrödinger equation itself instead of eq. (B.17),

i
d

dt
|ψ〉(t) = Hgen. Dicke spin(t)|ψ〉(t) (B.18)

since it is computationally much less demanding. However, decoherence must be

introduced for the purpose of measurement as discussed in chapter 1. The closed

system results can serve as a guiding measure and are easier to compute.

B.1.2. Measurement Models

A macroscopic number of spins/atoms/qubits may cause a discernible

classical signal. But to be more precise about the measurement model, there

must be a transfer of information from the “meter” (quantum system) to the

environment. Our meter here is a large number of spins. The model would

require introduction of decoherence to be a viable model for measurement. If

only collective emission (or other collective operators) are considered, the Hilbert

space size can be restricted to (N+1). It still is a sizeable and time-costing job

computationally.
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B.1.2.1. Model 1

As discussed in ref. [182], in the semiclassical approach to Nuclear Magnetic

Resonance (NMR) physics, the spin magnetization model is quantum mechanical

and the NMR detection coil is treated semi-classically. So with the variation of the

spin magnetic field calculated from the quantum mechanical Dicke model, we can

calculate the emf induced in the coil,

emf = − d

dt

∫
B̂1. ~M(t)dΩ (B.19)

B.1.2.2. Model 2

The weak measurement model introduced in ref. [182] can serve as a method

to extract the classical readout 〈Jz〉(t). While strong measurement model demands

the 〈Jz〉(t) value to be repeated in measurements done in quick succession, it

does not necessarily happen in the weak measurement model. In fact, in the weak

measurement model, the measurement device is less precise and the spin ensemble

collapses to a few manifolds of m centred around m0. The conditional probability

distribution p(m|m0) is a distribution with mean m and width w. The POVM

elements, Em = M †M is written as,

Em =

l=N/2∑
l=−N/2

D(m, l)Πl (B.20)

In one model,

D(m, l) =

(
1/
∑
k

e−
(k−l)2

2w2

)
e−

(m−l)2

2w2 (B.21)
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If w is taken to be vanishingly small, D(m, l) becomes a delta function, δ(m − l).

More details of the weak measurement model can be found in ref. [182].

B.1.2.3. Machine Learning/Deep Learning Algorithms

Given that measurement models can be found that enables us to learn

the temporal shape of 〈Jz〉(t), we still have to determine the theoretical shape

of U(t) or ψ0〉〈ψ0|(t) that produced it. Modern Machine learning and Deep

Learning algorithms are one of doing that. A large number of theoretical 〈Jz〉(t)

and the corresponding U(t) can be derived from the theory and used to train.

Experimentally observed 〈Jz〉(t) can lead us to the corresponding U(t).

B.1.3. Fermionic Quantum Amplification

Inverse of the Jordan-Wigner transformation and the transformation

itself are clever ways of adorning a spin with fermionic statistics and vice-versa.

σ+
j = e

−iπ
j−1∑
k=1

a†kak
a†j, σ+

j = e
−iπ

j−1∑
k=1

a†kak
a†j, σzj = 2a†jaj − 1 (B.22)

Instead of measuring 〈Jz〉(t), the problem can be mapped mapped to a problem of

counting fermions i.e. the number of fermions changing in time would indicate the

source U(t)’s temporal profile.

B.1.4. Single mode amplification

Ref. [1] paper concluded that amplifying in a single mode will outperform

multi-mode amplification. So, a collective mode of a large number of fermions or
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spins would have superior signal to noise characteristic performance over multi-

mode amplifiers.

B.2. New class of Phase Preserving Linear Amplification

Very recently, from ref. [121], we have learnt of new phase preserving linear

amplifiers (which are not simulable by linear parametric amplifiers). Hamiltonians

can be found for achieving these new kinds of phase preserving linear amplifiers.

d

dt
â = (κ↑ − κ↓) â†â†ââ+ 2κ↑â

We find the Hamiltonian,

Hnl =
i

3
(κ↑ − κ↓) â†â†â†ââ+ 2iκ↑â

†â

B.3. Quantum Darwinism

Quantum states are understood to be fragile against measurement (they

collapse to eigenstates) or even the smallest leak of information that necessarily

‘reprepare’s it in states consistent with the leaked information [200]. The

measurement and amplification models discussed in this dissertation use it to

advantage. The eigenstates of the bosonic annihilation operator (the coherent

states) in the case of collecting the excitations in the mode d (leaked from mode

c), or the eigenstate of the z-component of the collective spin operator are singled

out, among other states while the system leaks out information about itself. Phase

relations between eigenstates or these “pointer” states are destroyed. Decoherence
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solves the puzzle of non-observationality of quantum superposition in measurement

theory [200].

The second part of the measurement problem, the emergence of objective

reality, is explainable in the setting of ‘Quantum Darwinism’ as well. In the

coupled evolution of the system, S and environment, E ; information about S is

accumulated in E . Although in the numerical result presented, E is ‘traced out’

and is inaccessible, our observers (plural) are eavesdropping on it, None of whom

need to access the entire E . Only fragments of E suffice to reveal the eigenstates

they need to observe. This is how classical objective reality may emerge. The

eigenstates mentioned are capable of producing multiple informational offspring or

inserting multiple record into E at a robust rate. The proliferation of information

throughout E , enables our observers (plural) to collect it from shards and pieces of

E and agree about the observations.

The models in this dissertation chooses system states robust against

environmental decoherence as both the ‘meter’ states for the absorber molecule

and ‘einselected’ (environment induced superselected) pointer states amenable to

classical readouts. Coherent states of bound cavity modes and Dicke states are

shown to be suitable choices for that purpose.

B.4. Code Repository

Some code examples of amplification and measurement ideas can be found in

[201].

179



REFERENCES CITED

[1] Tzula B Propp and S J van Enk. On nonlinear amplification: Improved
quantum limits for photon counting. Opt. Express, 27(16):23454–23463, 2019.

[2] Maximilian A Schlosshauer. Decoherence: and the quantum-to-classical
transition. Springer Science & Business Media, 2007.

[3] Alastair IM Rae. Quantum physics: illusion or reality? Cambridge University
Press, 2004.

[4] Wojciech Hubert Zurek. Quantum theory of the classical: quantum jumps,
bornâĂŹs rule and objective classical reality via quantum darwinism.
Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 376(2123):20180107, 2018.

[5] Selig Hecht, Simon Shlaer, and Maurice Henri Pirenne. Energy, quanta, and
vision. Journal of General Physiology, 25(6):819–840, 1942.

[6] Foster Rieke and Denis A Baylor. Single-photon detection by rod cells of the
retina. Reviews of Modern Physics, 70(3):1027, 1998.

[7] Jonathan N Tinsley, Maxim I Molodtsov, Robert Prevedel, David Wartmann,
Jofre Espigulé-Pons, Mattias Lauwers, and Alipasha Vaziri. Direct detection
of a single photon by humans. Nature communications, 7(1):1–9, 2016.

[8] Edward N Pugh Jr. The discovery of the ability of rod photoreceptors to signal
single photons. Journal of General Physiology, 150(3):383–388, 2018.

[9] Daisuke Takeshita, Lina Smeds, and Petri Ala-Laurila. Processing of
single-photon responses in the mammalian on and off retinal pathways at the
sensitivity limit of vision. Philosophical Transactions of the Royal Society B:
Biological Sciences, 372(1717):20160073, 2017.

[10] Jürgen Reingruber, Johan Pahlberg, Michael L Woodruff, Alapakkam P
Sampath, Gordon L Fain, and David Holcman. Detection of single photons
by toad and mouse rods. Proceedings of the National Academy of Sciences,
110(48):19378–19383, 2013.

[11] Greg D Field and Fred Rieke. Mechanisms regulating variability of the single
photon responses of mammalian rod photoreceptors. Neuron, 35(4):733–747,
2002.

180



[12] Rebecca M Holmes, Michelle M Victora, Ranxiao Frances Wang, and Paul G
Kwiat. Testing the limits of human vision with quantum states of light: past,
present, and future experiments. In Advanced Photon Counting Techniques
XII, volume 10659, page 1065903. International Society for Optics and
Photonics, 2018.

[13] Michelle Victora, Rebecca M Holmes, R Frances Wang, and Paul G Kwiat.
Measuring temporal integration in human vision with single photons. In
Frontiers in Optics, pages FW3A–4. Optical Society of America, 2016.

[14] Rebecca Holmes. Seeing single photons. Physics World, 29(12):28, 2016.

[15] Rebecca M Holmes, Bradley G Christensen, Whitney Street, Cory Alford,
R Frances Wang, and Paul G Kwiat. Determining the lower limit of human
vision using a single-photon source. In Quantum Information and
Measurement, pages QTu2A–2. Optical Society of America, 2014.

[16] Edward N Pugh Jr and TD Lamb. Amplification and kinetics of the activation
steps in phototransduction. Biochimica et Biophysica Acta
(BBA)-Bioenergetics, 1141(2-3):111–149, 1993.

[17] L Stryer, JL Tymoczko, and JM Berg. Biochemistry 5th ed freeman. WH and
Company, 41, 2002.

[18] Grazyna Palczewska, Frans Vinberg, Patrycjusz Stremplewski, Martin P
Bircher, David Salom, Katarzyna Komar, Jianye Zhang, Michele Cascella,
Maciej Wojtkowski, Vladimir J Kefalov, et al. Human infrared vision is
triggered by two-photon chromophore isomerization. Proceedings of the
National Academy of Sciences, 111(50):E5445–E5454, 2014.

[19] Fundamental limits of photon detection (detect). URL
https://www.darpa.mil/program/fundamental-limits-of-photon-detection.

[20] Tzula B Propp. Fundamental Limits to Single-Photon Detection. PhD thesis,
University of Oregon, 2020.

[21] Hans G. Dehmelt. Monoion oscillator as potential ultimate laser frequency
standard. IEEE transactions on instrumentation and measurement, (2):
83–87, 1982.

[22] D. J. Wineland, J. C. Bergquist, Wayne M. Itano, and R. E. Drullinger.
Double-resonance and optical-pumping experiments on electromagnetically
confined, laser-cooled ions. Opt. Lett., 5(6):245–247, 1980.

[23] JC Bergquist, Randall G Hulet, Wayne M Itano, and DJ Wineland.
Observation of quantum jumps in a single atom. Phys. Rev. Lett., 57(14):
1699, 1986.

181



[24] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov. Invited review article:
Single-photon sources and detectors. Review of Scientific Instruments, 82(7):
071101, 2011.

[25] Robert H. Hadfield. Single-photon detectors for optical quantum information
applications. Nature Photonics, 3(12):696–705, 2009. ISSN 1749-4885,
1749-4893.

[26] Christopher J Chunnilall, Ivo Pietro Degiovanni, Stefan Kück, Ingmar Müller,
and Alastair G Sinclair. Metrology of single-photon sources and detectors: a
review. Optical Engineering, 53(8):081910, 2014.

[27] GS Buller and RJ Collins. Single-photon generation and detection.
Measurement Science and Technology, 21(1):012002, 2009.

[28] Alan Migdall, Sergey V Polyakov, Jingyun Fan, and Joshua C Bienfang.
Single-photon generation and detection: physics and applications. Academic
Press, 2013.

[29] Kristine M. Rosfjord, Joel K. W. Yang, Eric A. Dauler, Andrew J. Kerman,
Vikas Anant, Boris M. Voronov, Gregory N. Goltsman, and Karl K.
Berggren. Nanowire single-photon detector with an integrated optical cavity
and anti-reflection coating. Opt. Express, 14(2):527, 2006.

[30] Kristen A. Sunter and Karl K. Berggren. Optical modeling of superconducting
nanowire single photon detectors using the transfer matrix method. Appl.
Opt, 57(17):4872, 2018. ISSN 1559-128X, 2155-3165.

[31] F Marsili, Varun B Verma, Jeffrey A Stern, S Harrington, Adriana E Lita,
Thomas Gerrits, Igor Vayshenker, Burm Baek, Matthew D Shaw, and
Richard P Mirin. Detecting single infrared photons with 93 percent system
efficiency. Nat. Photonics, 7(3):210, 2013.

[32] Emma E. Wollman, Varun B. Verma, Andrew D. Beyer, Ryan M. Briggs,
B. Korzh, Jason P. Allmaras, F. Marsili, Adriana E. Lita, R. P. Mirin, and
S. W. Nam. Uv superconducting nanowire single-photon detectors with high
efficiency, low noise, and 4 k operating temperature. Optics Express, 25(22):
26792–26801, 2017.

[33] G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov,
K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and Roman Sobolewski.
Picosecond superconducting single-photon optical detector. Applied Physics
Letters, 79(6):705–707, 2001.

182



[34] Boris Korzh, Qing-Yuan Zhao, Jason P. Allmaras, Simone Frasca, Travis M.
Autry, Eric A. Bersin, Andrew D. Beyer, Ryan M. Briggs, Bruce Bumble,
Marco Colangelo, Garrison M. Crouch, Andrew E. Dane, Thomas Gerrits,
Adriana E. Lita, Francesco Marsili, Galan Moody, Cristián Peña, Edward
Ramirez, Jake D. Rezac, Neil Sinclair, Martin J. Stevens, Angel E. Velasco,
Varun B. Verma, Emma E. Wollman, Si Xie, Di Zhu, Paul D. Hale, Maria
Spiropulu, Kevin L. Silverman, Richard P. Mirin, Sae Woo Nam,
Alexander G. Kozorezov, Matthew D. Shaw, and Karl K. Berggren.
Demonstration of sub-3 ps temporal resolution with a superconducting
nanowire single-photon detector. Nature Photonics, 14(4):250–255, 2020.

[35] Elisha S Matekole, Hwang Lee, and Jonathan P Dowling. Limits to
atom-vapor-based room-temperature photon-number-resolving detection.
Phys. Rev. A, 98(3):033829, 2018.

[36] François Léonard, Michael E Foster, and Catalin D Spataru. Prospects for
bioinspired single-photon detection using nanotube-chromophore hybrids.
Scientific reports, 9(1):1–13, 2019.

[37] James S. Allen. The detection of single positive ions, electrons and photons by
a secondary electron multiplier. Phys. Rev., 55:966–971, 1939.

[38] Bayarto K Lubsandorzhiev. On the history of photomultiplier tube invention.
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 567(1):
236–238, 2006.

[39] Jun-ichi nishizawa: Engineer, sophia university special professor (interview),
2011.

[40] GA Morton. Photon counting. Applied Optics, 7(1):1–10, 1968.

[41] RE Simon, AH Sommer, JJ Tietjen, and BF Williams. New high-gain dynode
for photomultipliers. Applied Physics Letters, 13(10):355–356, 1968.

[42] A Peacock, P Verhoeve, N Rando, A Van Dordrecht, BG Taylor, C Erd, MAC
Perryman, R Venn, J Howlett, DJ Goldie, et al. Single optical photon
detection with a superconducting tunnel junction. Nature, 381(6578):
135–137, 1996.

[43] A Peacock, P Verhoeve, N Rando, A Van Dordrecht, BG Taylor, C Erd, MAC
Perryman, R Venn, J Howlett, DJ Goldie, et al. On the detection of single
optical photons with superconducting tunnel junction. Journal of applied
physics, 81(11):7641–7646, 1997.

183



[44] B Cabrera, RM Clarke, P Colling, AJ Miller, S Nam, and RW Romani.
Detection of single infrared, optical, and ultraviolet photons using
superconducting transition edge sensors. Applied Physics Letters, 73(6):
735–737, 1998.

[45] Adriana E Lita, Brice Calkins, LA Pellouchoud, Aaron Joseph Miller, and
S Nam. Superconducting transition-edge sensors optimized for high-efficiency
photon-number resolving detectors. In Advanced Photon Counting Techniques
IV, volume 7681, page 76810D. International Society for Optics and
Photonics, 2010.

[46] A. W. Lightstone, R. J. McIntyre, and P. P. Webb. Iia-1 avalanche photodiodes
for single photon detection. IEEE Transactions on Electron Devices, 28(10):
1210–1210, 1981. ISSN 1557-9646.

[47] Francesco Ceccarelli, Giulia Acconcia, Angelo Gulinatti, Massimo Ghioni, Ivan
Rech, and Roberto Osellame. Recent advances and future perspectives of
single-photon avalanche diodes for quantum photonics applications. Advanced
Quantum Technologies, 4(2):2000102, 2021.

[48] Deepak Sethu Rao, Thomas Szkopek, Hans Daniel Robinson, Eli Yablonovitch,
and Hong-Wen Jiang. Single photoelectron trapping, storage, and detection
in a one-electron quantum dot. Journal of Applied Physics, 98(11):114507,
2005.

[49] Mary A Rowe, EJ Gansen, Marion Greene, RH Hadfield, TE Harvey, MY Su,
Sae Woo Nam, RP Mirin, and D Rosenberg. Single-photon detection using a
quantum dot optically gated field-effect transistor with high internal
quantum efficiency. Applied physics letters, 89(25):253505, 2006.

[50] BE Kardynał, SS Hees, AJ Shields, C Nicoll, I Farrer, and DA Ritchie. Photon
number resolving detector based on a quantum dot field effect transistor.
Applied physics letters, 90(18):181114, 2007.

[51] C Kurtsiefer et al. Quantum optics devices. Lecture Notes, Les Houches
Singapore, Centre for Quantum Technologies, 2009.

[52] EJ Gansen, Mary A Rowe, MB Greene, Danna Rosenberg, Todd E Harvey,
MY Su, RH Hadfield, Sae Woo Nam, and Richard P Mirin.
Photon-number-discriminating detection using a quantum-dot, optically
gated, field-effect transistor. Nature Photonics, 1(10):585–588, 2007.

[53] Pieter Kok, William J Munro, Kae Nemoto, Timothy C Ralph, Jonathan P
Dowling, and Gerard J Milburn. Linear optical quantum computing with
photonic qubits. Reviews of modern physics, 79(1):135, 2007.

184



[54] Prem Kumar, Paul Kwiat, Alan Migdall, Sae Woo Nam, Jelena Vuckovic, and
Franco NC Wong. Photonic technologies for quantum information processing.
Quantum Information Processing, 3(1):215–231, 2004.

[55] Adriana E. Lita, Aaron J. Miller, and Sae Woo Nam. Counting near-infrared
single-photons with 95% efficiency. Optics Express, 16(5):3032, 2008.

[56] Christine Silberhorn. Detecting quantum light. Contemporary Physics, 48(3):
143–156, 2007.

[57] Leaf A Jiang, Eric A Dauler, and Joshua T Chang. Photon-number-resolving
detector with 10 bits of resolution. Physical Review A, 75(6):062325, 2007.

[58] Aleksander Divochiy, Francesco Marsili, David Bitauld, Alessandro Gaggero,
Roberto Leoni, Francesco Mattioli, Alexander Korneev, Vitaliy Seleznev,
Nataliya Kaurova, Olga Minaeva, et al. Superconducting nanowire
photon-number-resolving detector at telecommunication wavelengths. Nature
Photonics, 2(5):302–306, 2008.

[59] Daryl Achilles, Christine Silberhorn, Cezary Śliwa, Konrad Banaszek, and
Ian A Walmsley. Fiber-assisted detection with photon number resolution.
Optics letters, 28(23):2387–2389, 2003.

[60] Steve M Young, Mohan Sarovar, and François Léonard. Design of
high-performance photon-number-resolving photodetectors based on
coherently interacting nanoscale elements. ACS Photonics, 7(3):821–830,
2020.

[61] Nam Mai Phan, Mei Fun Cheng, Dmitri A. Bessarab, and Leonid A. Krivitsky.
Interaction of fixed number of photons with retinal rod cells. Phys. Rev.
Lett., 112:213601, 2014.

[62] S J van Enk. Photodetector figures of merit in terms of povms. Journal of
Physics Communications, 1(4):045001, 2017.

[63] S J van Enk. Time-dependent spectrum of a single photon and its
positive-operator-valued measure. Phys. Rev. A, 96(3):033834, 2017.

[64] Steve M Young, Mohan Sarovar, and François Léonard. Fundamental limits to
single-photon detection determined by quantum coherence and backaction.
Phys. Rev. A, 97(3):033836, 2018.

[65] Steve M Young, Mohan Sarovar, and François Léonard. General modeling
framework for quantum photodetectors. Phys. Rev. A, 98(6):063835, 2018.

185



[66] Tzula B. Propp and S. J. van Enk. Quantum networks for single photon
detection. Phys. Rev. A, 100:033836, Sep 2019. doi:
10.1103/PhysRevA.100.033836. URL
https://link.aps.org/doi/10.1103/PhysRevA.100.033836.

[67] NJ Harmon and ME Flatte. Theory of single photon detection by a
photoreceptive molecule and a quantum coherent spin center. arXiv preprint
arXiv:1906.01800, 2019.

[68] Tzula B Propp and Steven J van Enk. How to project onto an arbitrary
single-photon wave packet. Physical Review A, 102(5):053707, 2020.

[69] Saumya Biswas and SJ van Enk. Heisenberg picture of photodetection.
Physical Review A, 102(3):033705, 2020.

[70] Saumya Biswas and SJ van Enk. Detecting two photons with one molecule.
arXiv preprint arXiv:2108.00498, 2021.

[71] Li-Ping Yang and Zubin Jacob. Quantum critical detector: amplifying weak
signals using discontinuous quantum phase transitions. Opt. Express, 27(8):
10482–10494, 2019.

[72] Li-Ping Yang and Zubin Jacob. Engineering first-order quantum phase
transitions for weak signal detection. J. Appl. Phys., 126(17):174502, 2019.

[73] Li-Ping Yang, Chinmay Khandekar, Tongcang Li, and Zubin Jacob. Single
photon pulse induced transient entanglement force. New Journal of Physics,
22(2):023037, 2020.

[74] Juan Pablo Llinas, Michelle A Hekmaty, A Alec Talin, and FrancÌğois
LeÌĄonard. Origami terahertz detectors realized by inkjet printing of carbon
nanotube inks. ACS Applied Nano Materials, 3(3):2920–2927, 2020.

[75] Kevin Bergemann and Francois Leonard. Giga-gain at room temperature in
functionalized carbon nanotube phototransistors based on a nonequilibrium
mechanism. ACS nano, 14(8):10421–10427, 2020.

[76] Catalin D Spataru and François Léonard. Quantum dynamics of single-photon
detection using functionalized quantum transport electronic channels.
Physical Review Research, 1(1):013018, 2019.

[77] Catalin D Spataru and François Léonard. Nanoscale functionalized
superconducting transport channels as photon detectors. Physical Review B,
103(13):134512, 2021.

186



[78] Yang Zhang, Yang Wu, Xiaoxin Wang, Lei Ying, Rahul Kumar, Zongfu Yu,
Eric R. Fossum, Jifeng Liu, Gregory Salamo, and Shui-Qing Yu. Detecting
single photons using capacitive coupling of single quantum dots. ACS
Photonics, 5(5):2008–2021, 2018.

[79] Saman Jahani, Li-Ping Yang, AdriÃąn Buganza Tepole, Joseph C. Bardin,
Hong X. Tang, and Zubin Jacob. Probabilistic vortex crossing criterion for
superconducting nanowire single-photon detectors. Journal of Applied
Physics, 127(14):143101, 2020.

[80] Roy J Glauber. The quantum theory of optical coherence. Phys. Rev., 130(6):
2529, 1963.

[81] PL Kelley and WH Kleiner. Theory of electromagnetic field measurement and
photoelectron counting. Physical Review, 136(2A):A316, 1964.

[82] Marlan O. Scully and Willis E. Lamb. Quantum theory of an optical maser.
III. Theory of photoelectron counting statistics. Phys. Rev., 179(2):368, 1969.

[83] Albert Einstein. Strahlungs-Emission und ÂŋAbsorption nach der
Quantentheorie. Deutsche Physikalische Gesellschaft, 18:318–323, 1916.

[84] Paul Adrien Maurice Dirac. The quantum theory of the emission and
absorption of radiation. Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physical Character, 114(767):
243–265, 1927.

[85] E. Wigner. Einige folgerungen aus der schrÃűdingerschen theorie fÃĳr die
termstrukturen. Zeitschrift fÃĳr Physik, 43(9-10):624–652, September 1927.

[86] J. R. Oppenheimer. Note on the theory of the interaction of field and matter.
Physical Review, 35(5):461–477, 1930.

[87] Enrico Fermi. Quantum theory of radiation. Rev. Mod. Phys., 4:87–132, 1932.

[88] F. Bloch and A. Nordsieck. Note on the radiation field of the electron. Physical
Review, 52(2):54–59, 1937.

[89] V. F. Weisskopf. On the self-energy and the electromagnetic field of the
electron. Physical Review, 56(1):72–85, 1939.

[90] S. Tomonaga. On a relativistically invariant formulation of the quantum theory
of wave fields. Progress of Theoretical Physics, 1(2):27–42, 1946.

[91] Julian Schwinger. Quantum electrodynamics. i. a covariant formulation.
Physical Review, 74(10):1439–1461, 1948.

187



[92] R. P. Feynman. Space-time approach to quantum electrodynamics. Physical
Review, 76(6):769–789, 1949.

[93] Daniel A. Steck. Quantum and Atom Optics,. Available online at
http://steck.us/teaching, revision 0.12.3, 25 October 2018.

[94] Marlan O Scully and M Suhail Zubairy. Quantum optics, 1999.

[95] Roy J Glauber. Quantum theory of optical coherence: selected papers and
lectures. John Wiley & Sons, 2007.

[96] Roy J Glauber. Coherent and incoherent states of the radiation field. Physical
Review, 131(6):2766, 1963.

[97] R. Hanbury Brown and R. Q. Twiss. A test of a new type of stellar
interferometer on sirius. Nature, 178(4541):1046–1048, 1956.

[98] L. Mandel. Fluctuations of photon beams: The distribution of the
photo-electrons. Proceedings of the Physical Society, 74(3):233–243, 1959.

[99] Bernard Yurke and John S. Denker. Quantum network theory. Phys. Rev. A,
29(3):1419, 1984.

[100] M. Ueda. Probability-density-functional description of quantum
photodetection processes. Quantum Opt.: J. Eur. Opt. Soc. B, 1:131, 01
1999.

[101] D. I. Schuster, Andreas Wallraff, Alexandre Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. M. Girvin, Schoelkopf, and RJ. ac Stark shift and dephasing of a
superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett., 94
(12):123602, 2005.

[102] Aashish A Clerk, Michel H Devoret, Steven M Girvin, Florian Marquardt, and
Robert J Schoelkopf. Introduction to quantum noise, measurement, and
amplification. Rev. Mod. Phys., 82(2):1155, 2010.

[103] L. Mandel and E. Wolf. Optical Coherence and Quantum Optics. Cambridge
University Press, 2nd edition, 1995. ISBN 0521417112.

[104] Howard J Carmichael. Statistical methods in quantum optics 2: Non-classical
fields. Springer Science & Business Media, 2009.

[105] U Gavish, B Yurke, and Y Imry. Generalized constraints on quantum
amplification. Physical review letters, 93(25):250601, 2004.

[106] E.T. Jaynes and F.W. Cummings. Comparison of quantum and semiclassical
radiation theories with application to the beam maser. Proceedings of the
IEEE, 51(1):89–109, 1963.

188



[107] Robin L Hudson and Kalyanapuram R Parthasarathy. Quantum ito’s formula
and stochastic evolutions. Communications in mathematical physics, 93(3):
301–323, 1984.

[108] MD Srinivas. Quantum theory of continuous measurements. In Quantum
Probability and Applications to the Quantum Theory of Irreversible Processes,
pages 356–364. Springer, 1984.

[109] Ben Q Baragiola, Robert L Cook, Agata M Brańczyk, and Joshua Combes.
N-photon wave packets interacting with an arbitrary quantum system.
Physical Review A, 86(1):013811, 2012.

[110] Wilhelm von Waldenfels. Ito solution of the linear quantum stochastic
differential equation describing light emission and absorption. In Quantum
probability and applications to the quantum theory of irreversible processes,
pages 384–411. Springer, 1984.

[111] Martin B Plenio and Peter L Knight. The quantum-jump approach to
dissipative dynamics in quantum optics. Reviews of Modern Physics, 70(1):
101, 1998.

[112] Howard M Wiseman and Gerard J Milburn. Quantum measurement and
control. Cambridge university press, 2009.

[113] Klaus M Gheri, Klaus Ellinger, Thomas Pellizzari, and Peter Zoller.
Photon-wavepackets as flying quantum bits. Fortschritte der Physik: Progress
of Physics, 46(4-5):401–415, 1998.

[114] Alexander Holm Kiilerich and Klaus Mølmer. Input-output theory with
quantum pulses. Phys. Rev. Lett., 123(12):123604, 2019.

[115] Alexander Holm Kiilerich and Klaus Mølmer. Quantum interactions with
pulses of radiation. Physical Review A, 102(2):023717, 2020.

[116] C W Gardiner. Driving a quantum system with the output field from another
driven quantum system. Phys. Rev. Lett., 70(15):2269, 1993.

[117] Crispin W Gardiner and MJ Collett. Input and output in damped quantum
systems: Quantum stochastic differential equations and the master equation.
Phys. Rev. A, 31(6):3761, 1985.

[118] Bernard Yurke, Samuel L McCall, and John R Klauder. Su (2) and su (1, 1)
interferometers. Physical Review A, 33(6):4033, 1986.

[119] Carlton M Caves. Reframing su (1, 1) interferometry. Advanced Quantum
Technologies, 3(11):1900138, 2020.

189



[120] Norman F Ramsey. A molecular beam resonance method with separated
oscillating fields. Physical Review, 78(6):695, 1950.

[121] Andy Chia, Michal Hajdušek, R Nair, Rosario Fazio, Leong Chuan Kwek, and
Vlatko Vedral. Phase-preserving linear amplifiers not simulable by the
parametric amplifier. Physical Review Letters, 125(16):163603, 2020.

[122] Jeffrey M Epstein, K Birgitta Whaley, and Joshua Combes. Quantum limits
on noise for a class of nonlinear amplifiers. Physical Review A, 103(5):052415,
2021.

[123] Jonathan Kohler, Justin A Gerber, Emma Deist, and Dan M Stamper-Kurn.
Simultaneous retrodiction of multimode optomechanical systems using
matched filters. Physical Review A, 101(2):023804, 2020.

[124] Christian F Roos. Ion trap quantum gates with amplitude-modulated laser
beams. New Journal of Physics, 10(1):013002, 2008.

[125] Serge Haroche and J-M Raimond. Exploring the quantum: atoms, cavities,
and photons. Oxford university press, 2006.

[126] Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg.
Photons and Atoms-Introduction to Quantum Electrodynamics. 1997.

[127] Claude Fabre and Nicolas Treps. Modes and states in quantum optics.
Reviews of Modern Physics, 92(3):035005, 2020.

[128] UM Titulaer and RJ Glauber. Density operators for coherent fields. Physical
Review, 145(4):1041, 1966.

[129] Benjamin Brecht, Dileep V Reddy, Christine Silberhorn, and Michael G
Raymer. Photon temporal modes: a complete framework for quantum
information science. Physical Review X, 5(4):041017, 2015.

[130] Michael G Raymer and Ian A Walmsley. Temporal modes in quantum optics:
then and now. Physica Scripta, 95(6):064002, 2020.

[131] Li-Ping Yang and Zubin Jacob. Quantum structured light: Non-classical spin
texture of twisted single-photon pulses. arXiv preprint arXiv:2102.13248,
2021.

[132] Dietrich Leibfried, Rainer Blatt, Christopher Monroe, and David Wineland.
Quantum dynamics of single trapped ions. Reviews of Modern Physics, 75(1):
281, 2003.

190



[133] O Castaños, S Cordero, R López-Peña, and E Nahmad-Achar. Single and
collective regimes in three-level systems interacting with a one-mode
electromagnetic field. In Journal of Physics: Conference Series, volume 512,
page 012006. IOP Publishing, 2014.

[134] Stephen Barnett and Paul M Radmore. Methods in theoretical quantum
optics, volume 15. Oxford University Press, 2002.

[135] Andrzej Veitia and Steven J van Enk. Testing the context-independence of
quantum gates. arXiv preprint arXiv:1810.05945, 2018.

[136] Jay Gambetta, Alexandre Blais, David I Schuster, Andreas Wallraff,
L Frunzio, J Majer, Michel H Devoret, Steven M Girvin, and Robert J
Schoelkopf. Qubit-photon interactions in a cavity: Measurement-induced
dephasing and number splitting. Physical Review A, 74(4):042318, 2006.

[137] Crispin W Gardiner. Quantum noise. Springer series in synergetics, 1991.

[138] Yimin Wang, Jiří Minář, Lana Sheridan, and Valerio Scarani. Efficient
excitation of a two-level atom by a single photon in a propagating mode.
Physical Review A, 83(6):063842, 2011.

[139] Alexey V Gorshkov, Axel André, Michael Fleischhauer, Anders S Sørensen,
and Mikhail D Lukin. Universal approach to optimal photon storage in
atomic media. Physical review letters, 98(12):123601, 2007.

[140] Joel KW Yang, Andrew J Kerman, Eric A Dauler, Vikas Anant, Kristine M
Rosfjord, and Karl K Berggren. Modeling the electrical and thermal response
of superconducting nanowire single-photon detectors. IEEE transactions on
applied superconductivity, 17(2):581–585, 2007.

[141] JJ Renema, R Gaudio, Q Wang, Z Zhou, A Gaggero, F Mattioli, R Leoni,
D Sahin, MJA De Dood, A Fiore, et al. Experimental test of theories of the
detection mechanism in a nanowire superconducting single photon detector.
Phys. Rev. Lett., 112(11):117604, 2014.

[142] S Frasca, B Korzh, M Colangelo, D Zhu, AE Lita, JP Allmaras, EE Wollman,
VB Verma, AE Dane, E Ramirez, et al. Determining the depairing current in
superconducting nanowire single-photon detectors. Phys. Rev. B, 100(5):
054520, 2019.

[143] Carlton M Caves. Quantum limits on noise in linear amplifiers. Phys. Rev. D,
26(8):1817, 1982.

[144] John E Hall. Guyton and Hall textbook of medical physiology e-Book. Elsevier
Health Sciences, 2010.

191



[145] Xinjian Zhou, Thomas Zifer, Bryan M Wong, Karen L Krafcik, François
Léonard, and Andrew L Vance. Color detection using chromophore-nanotube
hybrid devices. Nano letters, 9(3):1028–1033, 2009.

[146] Warren Nagourney, Jon Sandberg, and Hans Dehmelt. Shelved optical
electron amplifier: Observation of quantum jumps. Phys. Rev. Lett., 56(26):
2797, 1986.

[147] Howard J Carmichael. Statistical methods in quantum optics 1: master
equations and Fokker-Planck equations. Springer Science & Business Media,
2013.

[148] F Dimer, B Estienne, AS Parkins, and HJ Carmichael. Proposed realization of
the dicke-model quantum phase transition in an optical cavity qed system.
Phys. Rev. A, 75(1):013804, 2007.

[149] Eric M Kessler, Geza Giedke, Atac Imamoglu, Susanne F Yelin, Mikhail D
Lukin, and J Ignacio Cirac. Dissipative phase transition in a central spin
system. Phys. Rev. A, 86(1):012116, 2012.

[150] HJ Carmichael. Breakdown of photon blockade: A dissipative quantum phase
transition in zero dimensions. Phys. Rev. X, 5(3):031028, 2015.

[151] Johannes M Fink, András Dombi, András Vukics, Andreas Wallraff, and Peter
Domokos. Observation of the photon-blockade breakdown phase transition.
Phys. Rev. X, 7(1):011012, 2017.

[152] MJ Fitch, BC Jacobs, TB Pittman, and JD Franson. Photon-number
resolution using time-multiplexed single-photon detectors. Physical Review A,
68(4):043814, 2003.

[153] Danna Rosenberg, Adriana E Lita, Aaron J Miller, and Sae Woo Nam.
Noise-free high-efficiency photon-number-resolving detectors. Physical Review
A, 71(6):061803, 2005.

[154] Maria Goppert-Mayer. Uber elementarakte mit zwei quantensprungen. Ann.
Phys., 9:273–295, 1931.

[155] Maria Göppert-Mayer. Elementary processes with two quantum transitions.
Annalen der Physik, 18(7-8):466–479, 2009.

[156] Hong-Bing Fei, Bradley M Jost, Sandu Popescu, Bahaa EA Saleh, and
Malvin C Teich. Entanglement-induced two-photon transparency. Physical
review letters, 78(9):1679, 1997.

192



[157] Michael G Raymer, Tiemo Landes, Markus Allgaier, Sofiane Merkouche,
Brian J Smith, and Andrew H Marcus. How large is the quantum
enhancement of two-photon absorption by time-frequency entanglement of
photon pairs? Optica, 8(5):757–758, 2021.

[158] Dmitry Tabakaev, Matteo Montagnese, Geraldine Haack, Luigi Bonacina, J-P
Wolf, Hugo Zbinden, and RT Thew. Energy-time-entangled two-photon
molecular absorption. Physical Review A, 103(3):033701, 2021.

[159] Haruhisa Okawa and Alapakkam P Sampath. Optimization of single-photon
response transmission at the rod-to-rod bipolar synapse. Physiology, 22(4):
279–286, 2007.

[160] Pablo Artal, Silvestre Manzanera, Katarzyna Komar, Adrián
Gambín-Regadera, and Maciej Wojtkowski. Visual acuity in two-photon
infrared vision. Optica, 4(12):1488–1491, 2017.

[161] Yoichi Kobayashi, Katsuya Mutoh, and Jiro Abe. Stepwise two-photon
absorption processes utilizing photochromic reactions. Journal of
Photochemistry and Photobiology C: Photochemistry Reviews, 34:2–28, 2018.

[162] John E Hall and Michael E Hall. Guyton and Hall textbook of medical
physiology e-Book. Elsevier Health Sciences, 2020.

[163] Herman CH Chan, Omar E Gamel, Graham R Fleming, and K Birgitta
Whaley. Single-photon absorption by single photosynthetic light-harvesting
complexes. Journal of Physics B: Atomic, Molecular and Optical Physics, 51
(5):054002, 2018.

[164] Tao Shi, Darrick E Chang, and J Ignacio Cirac. Multiphoton-scattering
theory and generalized master equations. Physical Review A, 92(5):053834,
2015.

[165] Anders Nysteen, Philip Trøst Kristensen, Dara PS McCutcheon, Per Kaer,
and Jesper Mørk. Scattering of two photons on a quantum emitter in a
one-dimensional waveguide: exact dynamics and induced correlations. New
Journal of Physics, 17(2):023030, 2015.

[166] Yu Pan, Daoyi Dong, and Guofeng Zhang. Exact analysis of the response of
quantum systems to two-photons using a qsde approach. New Journal of
Physics, 18(3):033004, 2016.

[167] Ben Q Baragiola and Joshua Combes. Quantum trajectories for propagating
fock states. Physical Review A, 96(2):023819, 2017.

[168] William Konyk and Julio Gea-Banacloche. One-and two-photon scattering by
two atoms in a waveguide. Physical Review A, 96(6):063826, 2017.

193



[169] Hemlin Swaran Rag and Julio Gea-Banacloche. Two-level-atom excitation
probability for single-and n-photon wave packets. Physical Review A, 96(3):
033817, 2017.

[170] Anita Dąbrowska, Gniewomir Sarbicki, and Dariusz Chruściński. Quantum
trajectories for a system interacting with environment in n-photon state.
Journal of Physics A: Mathematical and Theoretical, 52(10):105303, 2019.

[171] BR Mollow. Pure-state analysis of resonant light scattering: Radiative
damping, saturation, and multiphoton effects. Physical Review A, 12(5):1919,
1975.

[172] Alexandre Roulet and Valerio Scarani. Solving the scattering of n photons on
a two-level atom without computation. New Journal of Physics, 18(9):
093035, 2016.

[173] Philipp Müller, Tristan Tentrup, Marc Bienert, Giovanna Morigi, and Jürgen
Eschner. Spectral properties of single photons from quantum emitters.
Physical Review A, 96(2):023861, 2017.

[174] Magdalena Stobińska, Gernot Alber, and Gerd Leuchs. Perfect excitation of a
matter qubit by a single photon in free space. EPL (Europhysics Letters), 86
(1):14007, 2009.

[175] Michael G Raymer, Dileep V Reddy, Steven J van Enk, and Colin J
McKinstrie. Time reversal of arbitrary photonic temporal modes via
nonlinear optical frequency conversion. New Journal of Physics, 20(5):
053027, 2018.

[176] Luigi Giannelli, Tom Schmit, Tommaso Calarco, Christiane P Koch, Stephan
Ritter, and Giovanna Morigi. Optimal storage of a single photon by a single
intra-cavity atom. New Journal of Physics, 20(10):105009, 2018.

[177] Granade, Christopher E. Characterization, VeriïňĄcation and Control for
Large Quantum Systems. PhD thesis, 2015. URL
http://hdl.handle.net/10012/9217.

[178] Gábor Horváth, Amit Lerner, and Nadav Shashar. Polarized light and
polarization vision in animal sciences, volume 2. Springer, 2014.

[179] CA Schrama, G Nienhuis, HA Dijkerman, C Steijsiger, and HGM Heideman.
Destructive interference between opposite time orders of photon emission.
Physical review letters, 67(18):2443, 1991.

[180] U Haeberlen and JS Waugh. Coherent averaging effects in magnetic
resonance. Physical Review, 175(2):453, 1968.

194



[181] Wilhelm Magnus. On the exponential solution of differential equations for a
linear operator. Communications on pure and applied mathematics, 7(4):
649–673, 1954.

[182] Razieh Annabestani. Collective dynamics in nmr and quantum noise. 2016.

[183] Crispin Gardiner, Peter Zoller, and Peter Zoller. Quantum noise: a handbook
of Markovian and non-Markovian quantum stochastic methods with
applications to quantum optics. Springer Science & Business Media, 2004.

[184] Philip Daniel Blocher, Serwan Asaad, Vincent Mourik, Mark AI Johnson,
Andrea Morello, and Klaus Mølmer. Measuring out-of-time-ordered
correlation functions without reversing time evolution. arXiv preprint
arXiv:2003.03980, 2020.

[185] Nathan Wiebe and Shuchen Zhu. A theory of trotter error. Physical Review
X, 11(011020):26, 2021.

[186] Richard A Brualdi and Dragos Cvetkovic. A combinatorial approach to matrix
theory and its applications. CRC press, 2008.

[187] J Robert Johansson, Paul D Nation, and Franco Nori. Qutip: An open-source
python framework for the dynamics of open quantum systems. Computer
Physics Communications, 183(8):1760–1772, 2012.

[188] Joni Ikonen, Jan Goetz, Jesper Ilves, Aarne Keränen, Andras M Gunyho,
Matti Partanen, Kuan Y Tan, Dibyendu Hazra, Leif Grönberg, Visa
Vesterinen, et al. Qubit measurement by multichannel driving. Physical
review letters, 122(8):080503, 2019.

[189] Nicolas Didier, Jérôme Bourassa, and Alexandre Blais. Fast quantum
nondemolition readout by parametric modulation of longitudinal
qubit-oscillator interaction. Physical review letters, 115(20):203601, 2015.

[190] S Touzard, A Kou, NE Frattini, VV Sivak, S Puri, A Grimm, L Frunzio,
S Shankar, and MH Devoret. Gated conditional displacement readout of
superconducting qubits. Physical review letters, 122(8):080502, 2019.

[191] Michael J Kastoryano and Mark S Rudner. Topological transport in the
steady state of a quantum particle with dissipation. Physical Review B, 99
(12):125118, 2019.

[192] Toni L Heugel, Matteo Biondi, Oded Zilberberg, and R Chitra. Quantum
transducer using a parametric driven-dissipative phase transition. Physical
review letters, 123(17):173601, 2019.

195



[193] Fabrizio Minganti, Nicola Bartolo, Jared Lolli, Wim Casteels, and Cristiano
Ciuti. Exact results for schrödinger cats in driven-dissipative systems and
their feedback control. Scientific reports, 6(1):1–8, 2016.

[194] Wim Casteels, Rosario Fazio, and Christiano Ciuti. Critical dynamical
properties of a first-order dissipative phase transition. Physical Review A, 95
(1):012128, 2017.

[195] Paolo Zanardi, Matteo GA Paris, and Lorenzo Campos Venuti. Quantum
criticality as a resource for quantum estimation. Physical Review A, 78(4):
042105, 2008.

[196] Katarzyna Macieszczak, Mădălin Guţă, Igor Lesanovsky, and Juan P
Garrahan. Dynamical phase transitions as a resource for quantum enhanced
metrology. Physical Review A, 93(2):022103, 2016.

[197] Andrei B Klimov and Sergei M Chumakov. A group-theoretical approach to
quantum optics: models of atom-field interactions. John Wiley & Sons, 2009.

[198] Nathan Shammah, Shahnawaz Ahmed, Neill Lambert, Simone De Liberato,
and Franco Nori. Open quantum systems with local and collective incoherent
processes: Efficient numerical simulations using permutational invariance.
Physical Review A, 98(6):063815, 2018.

[199] Stuart J Masson and Scott Parkins. Extreme spin squeezing in the steady
state of a generalized dicke model. Physical Review A, 99(2):023822, 2019.

[200] Wojciech Hubert Zurek. Quantum darwinism. Nature physics, 5(3):181–188,
2009.

[201] Amplification and measurement code repository. URL
https://github.com/sbisw002/Amplification-and-Measurement.

196


