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DISSERTATION ABSTRACT 

 

Qiong Wu 

 

Doctor of Philosophy 

 

Department of Earth Sciences 

 

June 2021 

 

Title: Integrating Biochemistry and Metabolism into Biogeochemical Reaction Modeling 

 

 

 

Microbial kinetics study on the microbial metabolic rates and their dependence on 

biological and environmental conditions. It has been widely used in biogeochemical 

models. However the empirical nature of microbial kinetics masks the mechanisms of 

growth kinetic parameters and challenges the applicability to natural environments. 

Whereas metabolism analysis can heal reveal the mechanism how enzymatic kinetics 

affect the microbial kinetics. Thus it is necessary to bridge the gap between microbial 

kinetics and cell metabolism. We firstly implemented cell metabolism of a model 

methanogen which can utilize a spectrum of substrates to produce methane gas. We 

validated the model and explored the mechanisms of resource allocation. We then focus 

on the metabolism of methanol methanogenesis. The simulation results in methanol 

concentrations ranging from 0.001 mM to 100 mM, proteome allocation shows a trade-

off between growth related sector and methanogenesis sector. In addition, the model 

results link the rate-law parameters to kinetically-influential enzymes, and illustrate the 

plasticity and trade-off of the parameters as a manifestation of cellular resource 

allocation. Then we apply the microbial kinetics by integrating the physiological 

acclimation to individual functional group of acetoclastic methanogen including 
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Methanosarcina and Methanosaeta species. Current models usually treat microbes as 

auto catalysts, and couple methane production to cell growth by using rate laws and 

constant kinetics parameters. However, microbes are capable of acclimating and adapting 

to ambient environment by modulating kinetic properties. Here, we constructed an 

acclimation model to describe the variations of methanogenesis parameters with substrate 

concentrations and thermodynamic conditions, as experienced by microbes in 

environments of different trophic status. Our results show that modeling microbes as a self-

adapting catalyst is critical for predicting methanogenesis kinetics. At last, we applied 

microbial kinetics to microbial communities to study the temperature sensitivity of 

anaerobic organic matter decomposition. The model framework included the transition 

from soil organic matter to dissolved organic matter by extracellular enzymes, 

fermentation, acetoclastic and hydrogenotrophic methanogenesis by fermenters and 

methanogens. We applied the enzyme-assisted Arrhenius, Cardinal temperature equations 

and Monod equation to explore the temperature sensitivity of microbial kinetics. Results 

show that fermentation is the bottleneck of the anaerobic organic matter degradation.  

This dissertation includes unpublished material 
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CHAPTER I   INTRODUCTION   

Microbial kinetics analyze the microbial metabolic rates and their dependence on 

biological and environmental conditions. Rate laws of microbe kinetics such as the Monod 

equation depicts the microbial growth rate, and has gained wide support from laboratory 

investigations. However, its empirical nature masks the physical meanings of growth 

kinetic parameters and challenges its applicability to natural environments. Whereas, 

metabolism of microbial cell can help understand the resource allocations and their 

relationship with kinetic parameters. Chapter II shows how to how to bridge the gap 

between the microbial kinetics and cell metabolism. We simulate the growth of a model 

methanogen across a spectrum of nutrient concentrations, including those of laboratory 

bioreactors and pristine sediments, and the goal is to investigate how microbial growth 

kinetics is influenced by the optimal allocation of cellular resources. By combining kinetic 

modeling with optimization of cellular resource allocation, our modeling approach 

uncovers emergent properties arising from the kinetics of methanogenesis enzymes. These 

results support the application of mechanistic driven microbial kinetics in biogeochemical 

models, and also link rate-law parameters to kinetically-influential enzymes, and illustrate 

the plasticity and trade-off of the parameters as a manifestation of cellular resource 

allocation. The results also open new perspectives for microbial kinetic studies, from 

extrapolating laboratory observations to natural environments to the applications of 

metabolic scaling laws.  

After bridging the gap between cell metabolism and microbial kinetics, we tried 

to explore how to integrate the mechanisms of physiological acclimation of single 

microbial cell to an individual functional group using reactive transport model. 
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Methanogenic microorganisms face the challenge of limited energy resources in natural 

environments and this observation has important implications for interpreting and 

predicting the dynamics of methane emissions to the atmosphere. Current models treat 

microbes as a self-catalyst, and couple methane production to cell growth by using rate 

laws and constant kinetic parameters. However, microbes are capable of acclimating and 

adapting to ambient environments by modulating their kinetic properties. Here we show 

that modeling microbes as a self-adapting catalyst is critical for predicting 

methanogenesis kinetics. Our approach extrapolates laboratory observations to natural 

environments without introducing a new parameter, and has broad importance in 

biogeochemical kinetics. 

In Chapter IV, we applied the microbial kinetics to microbial community by 

studying the temperature sensitivity of anaerobic organic matter degradation. The Q10 

coefficient is the ratio of reaction rates at two temperatures 10 °C apart, and has been 

widely applied to quantify the temperature sensitivity of organic matter decomposition. 

However, biogeochemists and ecologists have long recognized that a constant Q10 

coefficient does not describe the temperature sensitivity of organic matter decomposition 

accurately. To examine the consequence of the constant Q10 assumption, we built a 

biogeochemical reaction model to simulate anaerobic organic matter decomposition in 

peatlands in the Upper Peninsula of Michigan, USA, and compared the modeling results to 

the predictions with Q10 coefficients. By accounting for the reactions of extracellular 

enzymes, mesophilic fermenting and methanogenic microbes, and their temperature 

responses, the biogeochemical model reproduces the observations of previous laboratory 

incubation experiments, and confirms that fermentation limits the progress of anaerobic 
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organic matter decomposition. The modeling results illustrate the oversimplification 

inherent in the constant Q10 assumption and how the assumption undermines the kinetic 

prediction of anaerobic organic matter decomposition. In particular, the model predicts that 

at <37oC, the decomposition rate increases almost linearly with increasing temperature, 

which stands in sharp contrast to the exponential relationship given by the Q10 coefficient. 

As a result, the constant Q10 approach tends to underestimate the rates of organic matter 

decomposition within the temperature ranges where Q10 values are determined, and 

overestimate the rates outside the temperature ranges. The results also show how 

biogeochemical modeling, combined with laboratory experiments, can help uncover the 

temperature sensitivity of organic matter decomposition arising from underlying catalytic 

mechanisms.  

Chapter V focuses on analyzing the energy metabolism of acetoclastic 

methanogenesis of Methanosarcina barkeri. So far, there are several studies describing the 

trade-off between rate and yield. These research emphasizes the trade-off from theoretical 

and macroscopic perspective without mechanistic understanding. Here we built an 

enzymatic kinetic model of acetoclastic methanogen based on Michaelis-Menten equation.  

Methanogens conserve energy via pumping out proton/sodium by membrane-associated 

enzymes, and the established chemiosmotic gradients generate proton motive force to 

sustain the complex biological processes such as biosynthesis. Here we analyzed the 

metabolism of the acetoclstic methanogenesis pathway to understand how acetotrophic 

methanogens allocate the energies for biosynthesis and methanogenesis to achieve the 

maximal growth rate. Our results show that all membrane associated enzymes function to 

alter the ATP flux and yield. In the meantime, ECH plays dominant roles in affecting the 
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growth rate, ATP flux and ATP yield. Our results also exhibit a significant trade-off 

between ATP flux and ATP yield due the variations in proton/sodium translocation 

numbers by membrane bound enzymes. In addition, the optimized ATP yield shows an 

increased linear correlation with available energy in the ambient environment, then 

reaching a constant when the available energy is high enough. The results suggest that 

methanogens tends to lower their conserved energy to adapt to the energy limitation 

environment. This acclimation mechanisms can also be applied to other microbes living at 

thermodynamic edge environment.  
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CHAPTER II   BRIDGING THE GAP BETWEEN MICROBIAL KINETICS AND 

METABOLISM: A MODELING APPROACH 

1. Introduction 

The Monod equation is (Jin et al., 2013a; Panikov, 1995) the most commonly used 

rate law for predicting the kinetics of microbially-driven biogeochemical processes, such as 

methane bioproduction.(Button, 1998; Liu, 2007) The Monod equation shares the same 

mathematical structure as the Michaelis-Menten equation for enzyme reactions, and 

constrains methane production fluxes from substrate concentration C, 

 

C
J k

C K
 

 ,  (1) 

by using two parameters, the rate limit k and the half-saturation constant K.  

But unlike the Michaelis-Menten equation, the Monod equation is empirical, which 

leads to a misconception of microbial kinetics and erroneous predictions of biogeochemical 

fluxes. For example, substrate affinity is a key functional trait that determines microbial 

competitive fitness. But how to measure substrate affinity by using microbial kinetic 

parameters remains controversial. As another example, despite repetitive evidence for the 

significant difference in methanogenesis kinetics between laboratory cultures and natural 

methanogens, most current ecosystem and biogeochemical models are still based on the 

kinetic parameters of laboratory cultures, leading to the significant deviation of model 

predictions from field observations.   

Here we explore the relationship between growth rates and nutrient concentrations 

by simulating the growth of a model methanogen Methanosarcina barkeri. Methanogen 

growth produces methane, a potent greenhouse gas, and hence is of environmental 
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significance. Like other unicellular organisms, methanogens acclimate to nutrient 

conditions by allocating finite cellular resources, including ATPs, ribosomes, and proteins, 

to methanogenesis, protein synthesis and biomass formation, and other intracellular 

processes (Enoki et al., 2011; Xia et al., 2009). We are interested in how cellular resource 

allocation influences the relationship between growth rates and the concentrations of 

external energy resources. For this purpose, we construct a kinetic model that focuses on 

the biochemical network of methanogenesis and energy conservation (fig 1a). We couple 

the network fluxes, including the fluxes of ATPs, to cell reproduction using genome-scale 

flux balance analysis (FBA) (Benedict et al., 2012; Shapiro et al., 2018), and optimize 

enzyme expressions under the constraints of proteome partition and ribosome allocation 

(fig 1b) (Berkhout et al., 2013; Hui et al., 2015; G. W. Li et al., 2014; Scott et al., 2010). 

This way, our approach goes beyond standard kinetic and stoichiometric metabolic 

modeling, and is related to dynamic metabolic optimization (Ewald et al., 2017; Villaverde 

et al., 2016) and resource allocation analysis (Goelzer & Fromion, 2011; Mori et al., 

2016a). By explicitly simulating enzyme expressions and fluxes, we seek to uncover 

emergent metabolic properties that bear out the mechanism between cell metabolism and 

growth kinetic parameters. 

We simulate methanogenic growth on methanol. Recently, methylotrophic 

methanogenesis,   4 2 1
3 2 2 43 3 3

CH OH H O CO CH  , has been recognized as one of the 

dominant methanogenic pathways in marine settings (Zhuang et al., 2018). Our results 

include (1) model-derived emergent properties that distinguish microbial growth from 

inanimate systems, including the plasticity and trade-off of growth kinetic parameters, (2) 

mechanistic links between macroscopic growth kinetic parameters to the properties of 
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enzymes, and (3) illustration of trait plasticity and trade-off as an outcome of cellular 

resource allocation and a key component in applying the Monod equation.   

2. Materials and Methods 

2.1 Kinetic model  

The kinetic model defines the metabolic state of M. barkeri using metabolite 

concentrations and represents methanogen growth as an initial value problem of ordinary 

differential equations (ODEs). Each ODE describes the rate at which a metabolite 

concentration changes with time t, and is constructed according to the principle of mass 

balance. Specifically, the ODE of metabolite j is 

 j

j j,i i
ij

1dC
J J

dt V


 
   

 
  , (2) 

where Cj is the concentration (mol·L1) of the metabolite, Jj is the diffusive flux 

(mol·s1) of methanol, carbon dioxide, or methane, Ji is the reaction flux of enzyme i 

(mol·s1), j,i is the stoichiometric coefficient of metabolite j in the reaction of enzyme i 

(negative for metabolite consumption), Vj is the volume of the compartment of metabolite j, 

which is either the cytoplasm volume Vcyto or the membrane volume Vmem (L). 

Chemiosmotic coupling builds membrane potential , whose ODE is  

 C,i i

im

d F
J

dt C





    . (3) 

Here F is the Faraday constant (96485 C·mol1), Cm is the membrane capacitance 

(F, or C·V1), and C,i is the stoichiometric coefficient of protons or sodium cations 

translocated out of the cytoplasm (negative if charges are translocated into the cytoplasm). 

We calculate diffusive flux Jj according to the Fick’s law and by taking M. barkeri 



 

8 
 

 

cell as a sphere of radius r(Fiksen et al., 2013), 

    j j j,env j,cyto4J D r C C   (3) 

where Dj is the diffusion coefficient (dm2·s1), and Cj,env and Cj,cyto are the 

concentrations in the environment and the cytoplasm, respectively. We apply a generalized 

reversible Michaelis-Menten equation to calculate reaction flux Ji (Noor et al., 2013),  

 S m,S i
i prot cyto i i

A S m,S P m,P i

1 exp
1

C K G
J V k

C K C K RT
 



  
        

     
  , (4) 

where prot is the protein density, the mass of proteins per cell volume (g·L1), ki is 

the catalytic constant of enzyme i (mol·g1·s1), i is the mass fraction of enzyme i in the 

proteome, CS and CP are the concentrations of substrate and product, respectively, Km,S and 

Km,P are the respective Michaelis constants, Gi is the Gibbs free energy change of the 

reaction (J·mol1), i is the stoichiometric number of electrons transferred or charges 

translocated per reaction, R is the gas constant (8.3145 J·mol1·K1), and T is the 

temperature in kelvin. The free energy change is calculated according to 

i
i C,i

i

ln
Q

G RT F
K

 
 

    
 

  ,  (5) 

where Qi is the quotient and Ki is the equilibrium constant of the reaction. We 

calculate the flux of the pseudo-biomass reaction and hence the specific growth rate from 

the flux difference between ATP production by ATP synthase and consumption by 

maintenance metabolism. In this way, the growth rate is determined by the net flux of ATP, 

which in turn depends on external methanol concentrations, a condition applicable to both 

laboratory bioreactors and natural environments.  
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2.2 Flux balance analysis 

We estimate the stoichiometric coefficients of the pseudo-biomass reaction with 

flux balance analysis (FBA) (Heirendt et al., 2011). This method predicts steady-state flux 

distribution through metabolic networks from fitness objective, e.g., maximizing growth 

rates, under the stoichiometric constraints of metabolic reactions and within the permissible 

ranges of individual fluxes. We perform FBA with the updated iMG746 genome-scale 

metabolic model of M. barkeri (Benedict et al., 2012; Shapiro et al., 2018). We neglect the 

maintenance reaction because it has already been considered in the kinetic model. We drive 

FBA with methanol uptake flux as input and calculate the stoichiometry of the pseudo-

biomass reaction from FBA output, in particular the specific growth rate and the fluxes of 

ATPs, reduced cofactor F420 and ferredoxin, and acetyl-coenzyme A out of the 

methanogenesis network. We also calculate protein yields from the growth rate and the 

exchange fluxes of methanol and methane.  

2.3 Enzyme expression optimization 

A unique feature of the kinetic model is that the model parameters include enzyme 

proteome 

 

  imax   . (6) 

The optimization is subject to the ODEs of the metabolites and membrane potential 

(eqs 7, 8, and Dataset S1), and hence is a dynamic optimization problem. The optimization 

is further constrained by the allocation of finite cellular resources (fig 1b). First, the 

expressions of methanogenesis enzymes are limited by the proteome fraction M partitioned 

to methanogenesis, 
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i M

i

   . (7) 

Based on laboratory observations (see Dataset S1), we also assume that two thirds 

of M are distributed to the enzymes in the cytoplasm, and the membrane-associated ones 

account for the rest. Second, the proteome fraction i of the enzymes is constrained by the 

cost and benefit associated with ribosome allocation (Berkhout et al., 2013; G. W. Li et al., 

2014).  

2.4 Proteome partition  

We estimate the proteome fraction M of methanogenesis according to quantitative 

“growth laws” that relate proteome composition to growth rates (fig 1b). Following the 

coarse-grained model of E. coli (Hui et al., 2015; Mori et al., 2016a; Scott et al., 2010), we 

separate the methanogen proteome to a fixed sector Q, a sector of methanogenesis (M), and 

a growth-related sector that includes biosynthesis enzymes and ribosome-affiliated proteins 

(G). The proteome fractions of the M and G sectors (M and G, respectively) change with 

growth rate according to 

 G Gk    , (8) 

and 

 M Mk    , (9) 

 

  max M G    , (10) 

does not change. Here kG and kM are the rate coefficients. These equations describe 

the tug-of-war between the M and G sector for the available proteome max.  

To maximize the growth rate, methanogens partition the proteome to the M sector 
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according to 

 G
M max

M G

k

k k
  


 . (11) 
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Figure 1. Modeling framework of M. barkeri growth. a. The kinetic model includes the 

enzyme reactions of methanogenesis and energy conservation, a maintenance reaction, 

and a pseudo-biomass reaction. Dashed and solid arrows indicate diffusion and 

biochemical reactions, respectively; circles represent enzymes; see Materials and 

Methods for abbreviations. b. Enzyme expressions are constrained by the relationships 

between proteome partitions and growth rates, and by the cost and benefit of ribosome 

allocation. The proteome is partitioned to three sectors, a fixed sector (Q) and two 

adjustable sectors – the methanogenesis and growth sector; the methanogenesis sector 

(M) includes enzymes of methanogenesis and energy conservation, and the growth sector 

(Q) contains biosynthesis enzymes, ribosomal proteins, and their affiliates. Increases in 
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the proteome fractions of the M and G sectors (M and G) increase growth rate, but the 

fractions of the two sectors add up to a constant, 1  Q. Ribosome allocation incurs both 

benefit and cost on growth rate. Dedicating more ribosomes to the synthesis of an 

enzyme increases growth rate (benefit), but lowers the ribosomes available for the 

remaining enzymes and proteins, which decreases growth.  

At this fraction, the fluxes through the methanogenesis enzymes balance the fluxes 

of the enzymes in the G sector. We determine coefficient kG based on laboratory 

observations. In laboratory bioreactors, M. barkeri grows at ~1.0 d1, and the M sector 

accounts for ~30% of the proteome (see Dataset S1). Setting max at 48%, the value 

determined for E. coli (Scott et al., 2010), gives a G value of 18%. Substituting these 

values to equation 8 gives a kG value of 5.3 d1. Coefficient kM depends on both external 

methanol concentration and how the proteome fraction of the M sector is distributed to 

individual methanogenesis enzymes. Therefore, at a methanol concentration of acclimation 

and a given proteome fraction M, we optimize individual methanogenesis enzymes to 

maximize the growth rate (eq 12), and calculate the kM value as the ratio of the maximized 

growth rate to the proteome fraction M.  

2.5 Ribosome allocation 

We account for the cost and benefit of ribosome allocation by relating growth rates 

to the ribosomes committed to an enzyme (fig 1b) (Berkhout et al., 2013; G. W. Li et al., 

2014). The fraction of the ribosomes allocated to the synthesis of an enzyme corresponds to 

the proteome fraction of the enzyme. On one hand, allocating more ribosomes increases the 

proteome fraction of the enzyme, which in turn tends to raise growth rates – the benefit of 



 

13 
 

 

ribosome allocation. The benefit depends on both the kinetics of methanogenesis enzymes 

and external methanol concentrations, but no analytical expression is available to relate the 

benefit to ribosome allocation (Berkhout et al., 2013). On the other hand, the cost is that 

fewer ribosomes are left for synthesizing the rest of the proteins, thereby lowering growth 

rate. In light of the linear dependence of growth rates on ribosomes (G. W. Li et al., 2014; 

Scott et al., 2010)., the function that accounts for the cost of ribosome allocation is   

 i
o

max

1


 


 
  

 
 ,  (12) 

where  o i is the hypothetical growth rate without accounting for the cost 

(Berkhout et al., 2013; G. W. Li et al., 2014).  

According to equation 12, the highest cost of ribosome allocation comes from the 

most abundant enzyme, which is Mcr or Mta, depending on the methanol concentrations of 

acclimation. Therefore, at a given acclimation concentration, we build the benefit function 

by sweeping the proteome fraction of the most abundant enzyme. At each swept fraction, 

we optimize the remaining methanogenesis enzymes to maximize growth rate (eq 6). 

Parsimonious resource allocation requires that the benefit-enabled growth rate should not 

exceed the cost-adjusted rate (eq 12). Otherwise, ribosomes would be invested without 

raising growth rate, wasting cellular resources (fig 1b). The optimization solutions that 

balance the cost and benefit of ribosome allocation give the optimal fractions of the 

enzymes.  

2.6 Nutrient acclimation  

To simulate the growth of M. barkeri acclimating to a given methanol 

concentration, we build the kinetic model by optimizing the proteome fractions  i of the 
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enzymes. We take an iterative approach to account for the constraints of ribosome 

allocation and proteome partition. We start with a default M-sector fraction Mo and build 

the benefit function of ribosome allocation by sweeping the proteome fraction of Mcr or 

Mta. The largest growth rate across the swept fractions represents the hypothetical growth 

rate o obtained without accounting for the cost of ribosome allocation. By balancing the 

benefit with the cost of ribosome allocation, we optimize the enzyme proteome fractions 

that give the maximum growth rate  op.  

We then balance the tug-of-war for the available proteome between the M and G 

sectors (eq 11). We calculate the rate coefficient kM by substituting the maximum growth 

rate op obtained at the default M-sector fraction Mo to equation 9, and the optimal fraction 

M,op of the M sector by substituting the kM and kG values to equation 11. We replace the 

default M-sector fraction Mo with M,op and repeat the above steps to solve for a new 

optimal fraction of the M sector. The repetition stops until the change in the optimal 

methanogenesis fractions between the two consecutive repetitions falls below a threshold 

of <0.1% of the proteome.  

2.7 Model implementation and analysis  

We implement and evaluate the kinetic models with the software COPASI (build 

217) (57). We perform FBA using the COBRA Toolbox (Version 3.0) (Heirendt et al., 

2011). We assume in the environment dissolved carbon dioxide at 20 mM and methane at 

0.1 atm. We also assume methanol at 100 mM in laboratory bioreactors. Considering the 

homeostatic control of energy balance, we fix the concentrations of ATP, ADP, and 

inorganic phosphate in the cytoplasm. We also fix the ATP flux of the maintenance 

metabolism (Shapiro et al., 2018). We follow the method of control vector parameterization 
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and solve the dynamic optimization problem by splitting into an outer optimization 

problem and an inner initial value problem (Villaverde et al., 2016). The outer optimization 

problem searches for optimal enzyme levels, and is solved with the Nelder-Mead method – 

a simplex-based direct-search algorithm. The maximum iteration number, tolerance, and 

the relative size of initial simplex are set to 104, 10–10, and 10, respectively. The inner initial 

value problem simulates the dynamics of methanogen growth, and is integrated forward for 

106 s, well beyond the time of 103 s required for reaching steady state. Absolute and 

relative error tolerance were 108 and 106, respectively. Because we focus on the growth 

of M. barkeri acclimating to different but constant methanol concentrations, we focus on 

steady-state solutions.  

We calculate numerically the scaled control coefficient  i of enzyme i (eq 13) by 

changing the proteome fraction of the enzyme by 1%.  

i
i

i

 


 


 


, (13) 

To estimate growth kinetic parameters, we fit the simulated growth rates to the 

Monod equation by using the least square method. We quantify the error of the fitting with 

the mean squared error (MSE): 

  
22

i i

i = 1

1
ˆ

n

n
     ,  (14) 

where n is the number of data points, i̂  is the fitted specific growth rate at 

methanol concentration i, and i is the respective value from modeling results.  

The kinetic model in SBML and COPASI formats, the MATLAB program for 

running FBA, and the least-square fitting program in Python are available from GitHub 

(https://github.com/geomicrobiology/Methanosarcina). The model components, including 
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the ODEs and initial concentrations of metabolites, the kinetic expressions of metabolic 

reactions, and respective thermodynamic and kinetic parameters, are available in Dataset 

S1 (xlsx).  

2.8 Abbreviations  

Enzymes. Aha, ATP synthase; Codh/Acs, carbon monoxide dehydrogenase/acetyl-

CoA synthase, Ech, energy-converting ferredoxin-dependent hydrogenase; Fmd, 

formylmethanofuran dehydrogenase; Fpo, F420 dehydrogenase; Frh, F420-reducing 

hydrogenase; Ftr, formylmethanofuran-tetrahydromethanopterin N-formyltransferase; 

GerN, sodium/proton antiporter; Hdr, heterodisulfide reductase; Mch, 

methenyltetrahydromethanopterin cyclohydrolase; Mcr, methyl-coenzyme M reductase; 

Mer, 5,10-methylenetetrahydromethanopterin reductase; Mta, methanol:coenzyme M 

methyltransferase; Mtd, methylenetetrahydromethanopterin dehydrogenase; Mtr, methyl-

H4SPT:coenzyme M methyltransferase; Vht, methanophenazine-dependent hydrogenase.  

Metabolites. CoA, coenzyme A; CH3CO-CoA, acetyl-coenzyme A; CoB, 

coenzyme B; CoM, coenzyme M; CoB-CoM, mixed disulfide of CoB and CoM; 

F420/F420H2, oxidized and reduced cofactor F420, respectively; Fdox/Fdred, oxidized and 

reduced ferredoxin, respectively; Mp/MpH2, oxidized and reduced methanophenazine; 

CHO-MF, formyl-methanofuran; H4SPT, tetrahydrosarcinapterin; CHO-H4SPT, formyl-

H4SPT; CH≡H4SPT, methenyl-H4SPT; CH2=H4SPT, methylene-H4SPT; CH3-H4SPT, 

methyl-H4SPT; CH3-CoM, methyl-coenzyme M. 

3. Results 
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3.1 Kinetic Model of Methanogen Growth  

We constructed a kinetic model to represent the growth of M. barkeri acclimating to 

a given methanol concentration. The model considers methanol diffusion from the 

environment to the cell and uses enzyme reactions to describe the stepwise processing of 

methanol to carbon dioxide and methane and concurrent chemiosmotic energy conservation 

(fig 1a). The model also includes an ATP hydrolysis reaction to represent the energy 

consumption by maintenance metabolism, and a pseudo-reaction of biomass synthesis that 

describes the mole numbers of ATPs, reduced cofactor F420 and ferredoxin, and acetyl-

coenzyme A consumed by the production of 1 g protein (Millard et al., 2017). In total, the 

model contains 16 enzymes, 21 reactions, and 35 metabolites.   

We estimate the stoichiometry of the pseudo-biomass reaction from the M. barkeri 

genome-scale metabolic model by performing FBA (Heirendt et al., 2011). This method 

allows us to couple the fluxes of the methanogenesis network to cell reproduction via the 

principle of mass balance. We compute fluxes of enzyme reactions according to the 

reversible Michaelis-Menten equation (Noor et al., 2013) and by taking the abundances and 

the catalytic constants of enzymes as model parameters. While most kinetic models favor 

maximum velocities Vmax, i.e., the products of enzyme abundances and catalytic constants, 

the choice of catalytic constants is based on the observations that Vmax values determined in 

vitro generally do not represent those in vivo (van Eunen et al., 2012; Teusink et al., 2000) 

and that significant correlation exists between the catalytic constants of Escherichia coli 

enzymes obtained in vivo and in vitro (Davidi et al., 2016). We sourced enzyme kinetic 

parameters from the literature. To the extent possible, we used the parameter values 

determined for the enzymes harvested from M. barkeri laboratory cultures at exponential 
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growth phase, and in assay media of 37 ℃ and neutral pH. Parameters not available in the 

literature were assigned based on the laboratory analyses of closely-related enzymes.  

We optimize enzyme abundances and maximize growth rates under the constraints 

of proteome partition and ribosome allocation (fig 1b). The two constraints are universal in 

that they are experienced by all living cells. Specifically, the proteome constraint resembles 

the upper bound to cellular protein content given by the molecular crowding effect, a 

limitation on molecular machinery or available energy, or toxic effects resulting from 

protein synthesis (Berkhout et al., 2013; Mori et al., 2016b). The ribosome constraint arises 

from the well-known growth effect of gratuitous or nonfunctional proteins, that is the 

competition for ribosomes between gratuitous and functional proteins reduces growth rates 

(Dekel & Alon, 2005; G. W. Li et al., 2014). The optimization bridges external nutrient 

conditions and enzyme expressions under the principle of growth-rate maximization, and 

allows us to investigate how cellular resource allocation underlying nutrient acclimation 

influences the relationship between growth rates and external nutrient concentrations. 

Further details of the model construction are available in Materials and Methods.  

3.2 Growth in Laboratory Bioreactors  

To validate the modeling approach, we simulated the growth of M. barkeri in 

laboratory bioreactors and compared the modeling results to the independent experimental 

observations that had been excluded from the model construction. We first optimized the 

expression levels of the enzymes. In agreement with the enzyme assays using cell-free 

extracts (fig 2a and b), the results show that the enzyme expressions in silico are highly 

skewed: Mcr accounts for the largest mass fraction of the proteome, 11.5%, Mta comes in 

second with a proteome fraction of 4.9%, and the other enzymes have fractions <4.0%. Mcr 
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is the enzyme that produces methane in different methanogenesis pathways, whereas Mta is 

unique to the methylotrophic pathway by consuming methanol in the cytosol.  

We then evaluated the model, and found that the results captured the metabolic 

state of the laboratory cultures. For example, the simulated membrane potential is 136 mV, 

close to the value of 130 mV determined experimentally (Blaut & Gottschalk, 1984). Out 

of the electron fluxes from the oxidation to the reduction of the methyl-group in methanol, 

86% are carried by the production and consumption of H2, whereas cofactor F420 

oxidation and reduction account for the remaining 14% (fig 2c), consistent with the 

dominant role of hydrogen cycling detected by laboratory experiments (Kulkarni et al., 

2018). In addition, H2 and cofactor F420 share similar reduction potentials (fig 2c), which 

has been observed in laboratory studies (de Poorter et al., 2005). The model also 

reproduces two metabolic patterns documented by the metabolomic studies of Escherichia 

coli (Bennett et al., 2009; Park et al., 2016). First, the free energy is unevenly distributed 

among the metabolic reactions, ranging from  31 kJ·mol-1 to close to 0 (fig 2d). Second, 

84% of the metabolites have concentrations greater than their respective Michaelis 

constants (fig 2e). 

CO2/CHO-MFR (-0.506)

Fdox/Fdred (-0.466)

H+/H2 (-0.319)
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Figure 2. The kinetic model reproduces independent experimental observations of M. 

barkeri laboratory cultures. a. Optimized proteome fractions of enzymes. b. Optimized 

enzyme expressions are in agreement with those determined from in vitro cell-free 

lysates. Solid line shows the 1:1 ratio; shaded area covers up to 2-fold deviations from the 

1:1 ratio. c. Electron fluxes from the oxidation to the reduction of the methyl-group in 

methanol. Values in parentheses show the reduction potentials (V); arrow widths indicate 

the magnitudes of the fluxes relative to the flux of the reduction of methyl-coenzyme M 

to methane (i.e., 1.74×1018 mol·s1). d. Gibbs free energy G is unevenly distributed 

among enzyme reactions. e. ~84% of metabolites have concentrations greater than the 

respective Michaelis constants KM. Solid line shows the 1:1 ratio; shaded area covers up 

to tenfold deviations from the 1:1 ratio. e. Specific growth rates vary hyperbolically with 

external methanol concentrations. Data points are modeling results; solid line represents 

the results of the least-square fitting to the Monod equation; the mean square error of the 

fitting is 1.8×105. 

We characterized the growth kinetics of the laboratory cultures by evaluating the 

kinetic model with different external methanol concentrations. These simulations mimicked 

laboratory experiments for determining growth kinetic parameters – by inoculating 

microbes into fresh growth media of different nutrient concentrations and then immediately 

analyzing growth rates. The simulation results quantify how the laboratory cultures 

instantaneously respond to the changes in methanol concentrations, without re-allocating 

cellular resources. As shown in figure 2f, the growth rates vary with external methanol 

concentrations hyperbolically – the rates increase linearly at low methanol and approach 

maximum values at high methanol concentrations, and fit well to the Monod equation. The 
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best-fit maximum growth rate max is 0.960.00 d-1, the best-fit half-saturation constant KM 

is 0.340.01 mM, and their ratio, max/KM, gives the methanol uptake affinity of 

2.840.04×103 M-1·d-1 (Button, 1998; Healey, 1980). These parameters constitute 

phenotypic traits that impact fitness, and have been frequently analyzed by laboratory 

experiments (Dataset S1). The laboratory-determined max and KM are 1.040.46 d-1 and 

0.390.18 mM, respectively, in support of the modeling results. Combining these tests, we 

conclude that the modeling approach captured the experimental observations at different 

scales. 

3.3 Growth at Different Nutrient Concentrations  

To investigate the influence of cellular resource allocation on methanogen growth, 

we built kinetic models for M. barkeri acclimating to different methanol concentrations. 

We first accounted for methanol acclimations by optimizing the expression levels of the 

enzymes. According to the optimization results, methanol acclimations shift the proteomic 

composition of the methanogen (fig 3a and S1). From the acclimation concentration of 100 

mM down to 1 M, the proteome fraction partitioned to methanogenesis increases from 

~30% to near 48%. Within the methanogenesis network, Mcr and Mta stand out by their 

relatively large proteome fractions. In addition, the proteome fractions of the two enzymes 

correlate strongly and negatively with each other (fig 3b).   
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Figure 3. Growth of M. barkeri at different methanol concentrations. a. Optimal proteome 

fractions of enzymes at different methanol concentrations of acclimation. G-sector 

includes biosynthesis enzymes and ribosomal and ribosome-affiliated proteins; see fig 1a 

for color codes. b. Spearman’s coefficient reveals statistically significant correlation 

between the proteome fractions of Mcr and Mta (rS[21] = 0.67, p<103). c. Instantaneous 

responses of growth rates to variations in external methanol concentrations without re-

allocating cellular resources. Data points are the modeling results; lines are the best-fits to 
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the Monod equation; the mean square errors of the fittings are <3.6×103. d. Variations 

with methanol concentrations of acclimation in best-fit growth kinetic parameters. e. 

Spearman’s coefficient reveals statistically significant correlation between best-fit 

maximum growth rates and uptake affinities (rS[19] = 0.78, p<10-3) and between 

maximum growth rates and half-saturation constants (rS[19] = 0.91, p<10-3). Error bars 

indicate standard deviations; those smaller than symbols are not shown.   

To characterize the kinetics of methanogen growth, we applied the kinetic models 

and simulated how M. barkeri, having acclimated to a given methanol concentration, 

instantaneously responds to the changes in methanol concentrations. Regardless of the 

acclimation concentrations, the rate responses fit well to Monod’s hyperbolic relationship 

(eq 1, fig 3c and S2). The best-fit maximum growth rates max and the half-saturation 

constants KM acquire different values at various acclimation concentrations, and so do the 

methanol uptake affinities , highlighting the plasticity of the phenotypic traits (fig 3d). 

Furthermore, as shown in figure 3e, the maximum growth rates correlate negatively with 

the uptake affinities, and positively with the half-saturation constants. By acclimating to 

>10 mM methanol, M. barkeri acquires relatively large max and KM but small  values, a 

behavior referred to by ecologists as r strategy (Fredrickson & Stephanopoulos, 1981; 

Kilham & Hecky, 1988). By acclimating to <0.01 mM methanol, the methanogen obtains 

small max and KM but large , the properties of K strategists. Therefore, the trait plasticity 

is characterized by the trade-off between the maximum growth rates and the uptake 

affinities, and confers to the methanogen a continuum of r to K strategies.  

We note that both Monod’s hyperbolic relationship and the trait trade-off arise 

directly from the model solutions, without any ad hoc constraint on the growth rates, and 
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hence represent emergent properties of methanogen growth. These emergent properties 

suggest that cellular resource allocation does not alter the kinetic expression of methanogen 

growth, but it does change the growth kinetic parameters, giving rise to the trait plasticity 

and trade-off. Accordingly, by taking the kinetic parameters as input, the Monod equation 

does not account for cellular resource allocation, and hence is best applied to short-term 

kinetic responses of microbial growth, before cellular resources are re-allocated. In 

addition, because of the parameter trade-off, methanogens may not limit themselves to r- or 

K-strategy, but can adopt the r/K continuum to gain competitive advantage across different 

methanol concentrations. In this respect, the trait trade-off reflects the adaptive capacity of 

methanogens to the surrounding environment, and distinguishes methanogen growth from 

inanimate systems. 

Although few field or laboratory observations of M. barkeri are available for 

comparison, the modeling results are consistent with experimental studies of other 

microbes. Specifically, the proteome shift agrees with patterns of the proteome partition of 

E. coli, that is, more proteins are allocated to catabolic enzymes at smaller growth rates 

(Hui et al., 2015; Scott et al., 2010). At the enzyme level, Mta affects the diffusive uptake 

of methanol from the environment by consuming methanol in the cytosol. Therefore, the 

high Mta levels at low methanol concentrations are consistent with the reports that in 

response to nutrient limitations, microbes upregulate nutrient permeases and transporters 

(Ferenci, 1999; Risso et al., 2008). Moreover, the trait plasticity resonates with the 

emerging consensus that microbial kinetic parameters do not behave as true biological 

constants (Ferenci, 1999; Jin et al., 2013b). Correlations between maximum growth rates 

and half-saturation constants have also been detected for E. coli (Kovárová-Kovar & Egli, 
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1998), methane-oxidizing prokaryotes (Dunfield & Conrad, 2000), and phytoplanktons 

(Litchman et al., 2007).  

Finally, the trait plasticity echoes the need of in situ kinetic parameters for applying 

the Monod equation (Jin et al., 2013a). For example, in the deltaic surface sediments of the 

Western Mediterranean Sea, methanol-driven methanogenesis contributes to >90% of 

methane bioproduction, but methanol concentrations occur at ~1 M (Zhuang et al., 2018). 

By using kinetic parameters estimated for methanogens acclimating to 1 M methanol, we 

predict a growth rate of 8.3×103 per day. By approximating the methanogen abundance at 

104 cell per cm3 sediments (Pancost et al., 2000), we also predict a methanogenesis rate of 

1.4×1011 mol·cm3·d1, close to the upper range of 2.0×1011 mol·cm3·d1 determined 

with the 14C-labelled method (Zhuang et al., 2018). However, if we used the parameters of 

laboratory cultures, we would predict a growth rate of 1.8×103 per day and a 

methanogenesis rate of 3.0×1012 mol·cm3·d1, nearly an order of magnitude smaller than 

the field observations. 

3.4 Metabolic Control Analysis  

To account for the kinetic influence of cellular resource allocation, we analyze the 

kinetic models with metabolic control analysis (MCA) – a quantitative framework for 

probing the control by enzymes on fluxes through a metabolic network (Kacser et al., 

1995). According to MCA theory, the control exerted by enzyme i on growth rate can be 

quantified with a scaled control coefficient i. The fractional change in growth rate by a 

fractional change in the mass fraction i of the enzyme in the proteome. A control 

coefficient near 0 applies to enzymes of little impact, whereas an enzyme with a value near 

1 is influential in controlling the growth rate. Within a network, the coefficients of the 
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different enzymes add up to unity -the summation theorem of MCA (Kacser et al., 1995). 

The MCA results suggest that Mcr and Mta are the two enzymes that significantly 

control the growth rates at high and low methanol concentrations, respectively. Figure 4a 

shows the control coefficients of Mcr and Mta across different external methanol 

concentrations. Regardless of the acclimation concentrations, the control coefficients of 

Mcr and Mta approach unity at >10 mM and <0.01 mM methanol, respectively. In-between 

0.01 and 10 mM methanol, the coefficients of Mcr and Mta vary from close to 0 to near 1 

and in opposite directions, and that their sums stay close to unity. In contrast, the rest of the 

enzymes have control coefficients <0.1 (fig S3).  

From the MCA results appear another set of emergent metabolic properties. First, 

the near-unity coefficients suggest that the growth rates can be expressed in terms of the 

proteome fractions of Mcr and Mta (fig S4 and Supplementary Text). At >10 mM 

methanol, both the growth rates and Mcr reaction velocities approach their respective 

maxima, and the two maxima can be related to each other via the protein yield YP/CH4 per 

methane (g·mol1), 

 max P/CH4 Mcr,app McrY k   
. (15) 

Here kMcr,app and Mcr are the apparent catalytic constant (mol·g1·s1) and the 

proteome fraction of Mcr, respectively, and their product gives the maximum velocity. At 

<0.01 mM methanol, both the growth rates and the Mta velocities increase linearly with 

methanol concentrations. The slopes of the velocity increases, combining with the protein 

yield YP/CH3OH per methanol, determine the slopes of the growth rate increase, i.e., the 

methanol uptake affinities  (Button, 1998; Healey, 1980),    
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   . (16) 

Here kMta,app is the apparent catalytic constant, and Km,CH3OH is the Michaelis 

constant of Mta for methanol (Molal). The product of kMta,app and the proteome fraction Mta 

gives the maximum velocity, and the ratio of the maximum velocity to Km,CH3OH defines the 

catalytic efficiency or specificity of Mta (L·g1·s1)  (Northrop, 1998). Equation 3 and 4 

reveal that the maximum growth rate max and the uptake affinity  vary linearly with the 

expression levels of Mcr and Mta, respectively. Accordingly, the ratio of max to , or the 

half-saturation constant, depends linearly on the expression ratios of Mcr to Mta. These 

relationships are supported by the correlation analyses between the best-fit kinetic 

parameters and the optimized enzyme levels shown in figure 4b.   

102 mM

10

1

10-1
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Acclimation 
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Figure 4. Metabolic control analysis (MCA) connects growth kinetics to enzyme 

expressions. a. Variations with ambient methanol concentrations in scaled control 

coefficients of Mcr and Mta and their sum. Lines are the results of performing MCA with 
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the kinetic models constructed for different methanol concentrations of acclimation. b. 

Pearson’s correlation coefficients reveal statistically significant correlation between best-

fit maximum growth rate and optimal proteome fraction of Mcr, between uptake affinity 

and proteome fraction of Mta, and between half-saturation constant and the proteome 

fraction ratio of Mcr to Mta. Error bars indicate standard deviations, and those smaller 

than symbols are not shown; lines are best-fit linear regressions. 

From these results, we observe how cellular resource allocation influences the 

kinetics of methanogen growth. First, cellular resource allocation controls enzyme 

expressions, including those of Mcr and Mta, and thereby determines maximum growth 

rates and nutrient uptake affinities. Across the different methanol acclimations, cellular 

resource allocation shifts the proteome composition and changes the expression levels of 

Mcr and Mta, giving rise to the plasticity of the growth kinetic parameters. Second, cellular 

resource allocation does not alter Monod’s hyperbolic relationship. According to the 

derivation, the hyperbolic relationship arises as a logical outcome of a bimodal control 

pattern – the growth rates are controlled by two different enzymes at high and low 

methanol concentrations, respectively. Despite the significant proteome shift, Mcr and Mta 

always remain as the enzymes of prominent growth-rate control. The control by Mcr at 

high methanol concentrations is consistent with Mcr being the methanogenesis enzyme of 

the lowest catalytic rate constant (Dataset S1). The control by Mta occurs where its velocity 

is limited significantly at low methanol concentrations. Similar bimodal control pattern has 

been noted for microbial growth on other nutrients, such as glucose and acetate (Bakker et 

al., 1999; Risso et al., 2008). The parameter plasticity has been observed from other 

microbes (e.g., (Dunfield & Conrad, 2000; Kovárová-Kovar & Egli, 1998; Litchman et al., 
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2007).  

3.5 Trait Plasticity  

Having linked trait plasticity to enzyme expressions, we are curious about how the 

pragmatic principles of optimal resource allocation govern enzyme expressions and thereby 

shape the trade-off of growth kinetic parameters. First, a key factor underlying enzyme 

expression is the strength of the growth-

allocated to the enzymes that exert stronger control. Figure 5a compares the optimal 

proteome fractions and the scaled control coefficients of the enzymes computed at the 

methanol concentrations of the acclimation. Strong positive correlations appear between 

the abundances and the control coefficients of Mta and Mcr. For the rest of the enzymes, 

whose control coefficients remain <0.1, their proteome fractions correlate weakly with the 

control coefficients. These results support the theory that in order to maximize growth 

rates, microbes mitigate the strong control of enzymes by upregulating the expressions of 

the enzymes (Heinrich et al., 1991; Klipp & Heinrich, 1999). Specifically, in response to 

the shift in the growth control, Mcr and Mta are upregulated at high and low methanol 

concentrations, respectively.  

Surprisingly, neither Mcr nor Mta accounts for more than half of the proteins 

allocated to methanogenesis (fig 3a). Why does M. barkeri not express more Mcr or Mta 

proteins? This is because enzyme expressions requires ribosomes and therefore are subject 

to the trade-off between the cost and benefit of ribosome allocation (fig 1b) (Berkhout et 

al., 2013; G. W. Li et al., 2014). For example, at >10 mM methanol, allocating more 

ribosomes to Mcr synthesis raises the expression level and mitigates the growth control of 

the enzyme, raising the rates of growth. But the consequence is that fewer ribosomes are 
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left for the production of other proteins, reducing growth rates. Figure 5b demonstrates the 

trade-off arising from the cost and benefit of synthesizing Mcr on growth rates. By 

optimizing the trade-offs, at >10 mM methanol, the fastest growth is achieved where Mcr 

accounts for ~11% of the proteome. Likewise, at methanol <0.01 mM, the growth rate is 

maximized where Mta is expressed at ~15% of the methanogenesis proteins (fig 5c).  

 

Figure 5. Constraints of proteome partition and ribosome allocation on enzyme 

expressions. a. Spearman’s coefficients reveal statistically significant correlations 

between the optimal proteome fractions and scaled control coefficients of Mcr, Mta, and 

the rest enzymes. See fig 1a for color code. b. Trade-off between the cost and benefit of 

ribosome allocation at 100 mM methanol of acclimation. The benefit function is 

constructed by sweeping the proteome fraction of Mcr and then optimizing the rest 

enzymes. The cost function is calculated according to equation 18. Mcr,op is the optimal 

proteome fraction of Mcr that balances the cost and benefit of ribosome allocation; op 

and o represent the optimal growth rates with and without balancing the cost and benefit, 
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respectively; c. Trade-off between the cost and benefit of allocating ribosomes to the 

synthesis of Mta at 1 M methanol of acclimation. Mta,op is the optimal proteome 

fraction of Mta.  

The expressions of Mcr and Mta are also constrained by the proteome partitioned to 

methanogenesis, giving rise to the negative correlation between maximum growth rates and 

uptake affinities. The trait trade-off has been attributed to allometry or the differential 

investment of cellular resources between ribosomes and nutrient uptake (Litchman et al., 

2007). Our results connect the two parameters to Mcr and Mta and therefore offer an 

alternative explanation. In particular, the expressions of the two enzymes are in a tug-of-

war for the proteins allocated to methanogenesis. Upregulating Mta expression 

downregulates the expression of Mcr, and vice versa. Moreover, the proteome partition 

varies with the acclimation concentrations of methanol (fig 3a). Greater proteome fractions 

for methanogenesis at lower methanol concentrations coincide with the upregulation of Mta 

expressions, leading to about an order of magnitude variation in Mta abundances and hence 

in the uptake affinity of methanol. In contrast, Mcr expression is upregulated at high 

methanol concentrations, where the proteome fractions of methanogenesis are small. 

Therefore, Mcr abundances and the maximum growth rates vary only by a factor of 2 (fig 

3b).  

4. Discussion  

Microbes in the environment of limited energy resources are under selection 

pressure to optimize their resource allocation. However, it is not clear how cellular resource 

allocation influences the kinetics of microbial growth. This question is critical for 

addressing current environmental challenges, from contaminant remediation to greenhouse 
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gas emissions. Here we addressed this question by constructing and analyzing kinetic 

growth models for M. barkeri acclimating to different methanol concentrations. Our 

modeling framework integrates kinetic metabolic modeling with flux balance analysis and 

dynamic optimization, and is based on the fact that biomass synthesis requires not only the 

supplies of ATPs, reducing equivalents, and metabolic precursors, but also the allocation of 

proteins and ribosomes. The new modeling approach predicts growth rates from nutrient 

concentrations and simulates emergent properties arising from the kinetics of 

methanogenesis enzymes, the stoichiometry of genome-scale metabolic reactions, and 

proteome-wide resource allocation. 

The emergent properties obtained from the simulations allowed us to derive the 

Monod equation ab initio and to link macroscopic kinetic parameters to the expressions and 

kinetics of methanogenesis enzymes. Specifically, the dependence of growth kinetic 

parameters on enzyme expressions limits the equation application to short-term growth 

responses to changing nutrient concentrations. To apply to microbes that have acclimated 

to different nutrient conditions, the Monod equation should be combined with models that 

account for the plasticity and trade-off of microbial kinetic parameters – a growing trend in 

trait-based ecosystem modeling (Smith et al., 2014). The simulation result supports the 

maximum growth rate and nutrient uptake affinity as the primary growth kinetic parameters 

– the two parameters reflect the properties of two rate-controlling enzymes under high and 

low nutrient concentrations. In contrast, by relating to the expression ratio of the two rate-

controlling enzymes, the half-saturation constant does not directly measure the competitive 

ability of microbes at low nutrient conditions, but reflects the tug-of-war in proteome 

partition and therefore the trade-off between the maximum growth rates and nutrient uptake 
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affinities. 

In addition, our results also allowed us to suggest the r-K strategy continuum as an 

outcome of optimal resource allocation. Traditionally, microbes have been classified into r- 

or K-strategists according to their growth kinetics (Fredrickson & Stephanopoulos, 1981; 

Kilham & Hecky, 1988). In our growth models, the r-K strategy continuum arises from 

optimal resource allocation under the constraints of proteome partition and ribosome 

allocation. Because these constraints are experienced by all living cells and universal, the r-

K continuum may not be unique to methanogens, but a strategy of prokaryotes in general. 

This hypothesis resonates with the emerging consensus about the pivotal role of cellular 

resource allocation in cell metabolism and physiology. In particular, optimal resource 

allocation has been recognized as a unifying principle underlying distinct metabolic 

strategies across nutrient regimes, including diauxic growth that switches between carbon 

sources and the metabolic shift from respiration to fermentation (Molenaar et al., 2009). 

The hypothesis adds that, within a metabolic pathway, optimal resource allocation equips 

microbes with the r-K continuum, another strategy for maximizing fitness over different 

nutrient conditions.  

The results also open new opportunities for investigating microbial kinetics in 

natural environments. For example, microbial kinetics in soils and sediments has thus far 

resisted traditional experimental interrogation, due to the technical difficulties in 

differentiating metabolically-active cells from dormant or dead ones and microbial 

activities from bulk chemical fluxes. The mechanistic links between microbial kinetic 

parameters and enzyme properties demonstrate the feasibility of enzyme abundances or the 

expression levels of target genes as proxies for in situ microbial kinetic parameters 
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(Holmes et al., 2013; Wilkins et al., 2011). Specifically, in light of the linear relationships 

between parameter values and enzyme expressions, we propose to extrapolate laboratory 

determined parameter values to the environment by comparing expression levels of Mcr 

and Mta of natural methanogens to those of laboratory cultures. As another example, 

metabolic scaling laws, originally developed for metabolic activities of macro- fauna and 

flora across temperatures (Brown et al., 2004), might also be applicable to methanogens 

and other prokaryotes. Where nutrients are either abundant as in bioreactors or scarce as in 

oligotrophic environments, methanogen growth is controlled predominantly by single 

enzymes in a methanogenesis network (e.g., Mcr or Mta). Because the temperature 

response of enzyme kinetics follows the Arrhenius equation, the growth rate in the two 

opposite nutrient regimes should also follow the Arrhenius equation, a foundation for the 

development of metabolic scaling laws (Brown et al., 2004).      

In summary, we fill the gap between metabolic modeling and microbial kinetics, we 

found the trade-off of resource allocation and kinetic parameters with substrate ranging 

from relative low to high concentrations. We have focused on M. barkeri, but the approach 

outlined in this study should be applicable to other microbes. By doing so, we hope to 

improve applications of the Monod equation and to move microbial kinetics beyond 

empirical equations by building models tailored for environmental and ecosystem 

applications while still grounded in fundamental biochemical pathways and metabolic 

principles.  
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CHAPTER III   PHYSIOLOGICAL ACCLIMATION AND THE 

METHANOGENESIS KINETICS IN NATURAL ENVIRONMENTS 

1. Introduction 

Methane is a potent greenhouse gas, accounting for 4–9% of the Earth’s greenhouse 

effect (Lashof & Ahujah, n.d.). Every year, microbes output a total of 1 billion metric tons 

of methane, directly contributing to the steady accumulation of atmospheric methane in the 

recent 200 years (Nisbet et al., 2016; Schaefer et al., 2016). To understand atmospheric 

methane dynamics and to forecast future climate, a key question is how fast 

methanogenesis proceeds in natural environments.  

Current models describe microbes as an autocatalyst (Bethke, 2008). They calculate 

methane production rate r by using a generalized Monod equation, 

 S
T

M S

C
r k F

K C
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
, (1) 

and couple methanogenesis to microbial growth according to, 

  X X
X X X

X
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dC C

Y r C DC
dt K

 
   

 
.. (2) 

Here k is the rate constant (mol·g1·s1), the methanogenesis rate per unit biomass 

where substrate concentration CS (molal or M) is much larger than the half-saturation 

constant KM (M), and where FT, the dimensionless factor accounting for methanogenesis 

thermodynamics, reaches unity, CX is the biomass concentration (g·L1), YX is the biomass 

yield per methane (g·mol1), KX is the carrying capacity, or the maximum biomass 

concentrations supported by the environment (g·L1), and D is the maintenance rate (s1). 
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These parameters have been analyzed for laboratory methanogen cultures (Conklin et al., 

2006; Min & Zinder, 1989), but in natural environments, microbes have escaped traditional 

kinetic analysis, due to the technical challenges in enumerating live cells of interest and in 

determining low chemical fluxes with acceptable accuracy. 

A point of controversy is how to predict methanogenesis rates in natural 

environments. Current predictions are obtained by evaluating the autocatalytic model (eqs 

1 and 2) with the parameters of laboratory cultures. However, natural methanogens tend to 

have kinetic properties differ notably from those of laboratory cultures. Taking as an 

example the pathway that dismutates acetate to methane and carbon dioxide, 

 4 2Acetate + H CH CO  , (3) 

the half-saturation constants determined for methanogens in natural sediments are 

<0.05 mM, but those obtained for laboratory cultures are above 0.5 mM (Derek R Lovley 

& Klug, 1986; Roden & Wetzel, 2003). Different kinetic properties have also been reported 

between laboratory cultures and natural microbes of sulfate reduction, iron reduction, and 

other processes (Jin et al., 2013a; Pallud & Van Cappellen, 2006). For this reason, direct 

application of the autocatalytic model to natural environments has led to predictions that 

deviated by orders of magnitude from field observations (Jin et al., 2013a). 

 Another point of debate is the contradiction between the constant kinetic 

parameters employed by the autocatalytic model and the parameter plasticity associated 

with physiological acclimation. Acclimation refers to reversible changes in phenotypic 

traits induced by the changes in environmental conditions. Well-known examples include 

the variations of microbial kinetic parameters with pH and temperature (Jin & Kirk, 2018; 

Rosso et al., 1995). Likewise, kinetic parameters also vary with substrate concentrations 
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(Friedrich et al., 2015; Litchman et al., 2015). Such variations can arise from active 

metabolic regulations or occur as an automatic outcome of physicochemical principles, and 

provide microbes with fitness across different environmental conditions (Leroi et al., 1994). 

From this perspective, microbes are also a self-adapting catalyst, capable of modulating 

their kinetic parameters.  

Here we predict methanogenesis rates by developing a model that describes 

microbial acclimation to the substrate and thermodynamic conditions of the environment. 

We focus on acetoclastic methanogenesis (eq 3), a pathway that accounts for two thirds of 

the global methane bioproduction (Prakash et al., 2019). This pathway is catalyzed by two 

genera, Methanosarcina and Methanosaeta, that show distinct niche preferences. 

Methanosarcina dominates the pathway in the environment with relatively high acetate 

concentrations, whereas Methanosaeta takes over under low acetate conditions (Conklin et 

al., 2006; Min & Zinder, 1989; K. S. Smith & Ingram-Smith, 2007). Our results show that 

the autocatalytic model alone is not sufficient for predicting methanogenesis rates or the 

niche separation, but the predictions can be improved by the acclimation model we 

constructed here.  

2. Acclimation model 

We assume that microbes gain competitive fitness by maximizing the production 

rate of adenosine triphosphate (ATP). This assumption recognizes that ATP is the universal 

energy currency of life and is required by growth, maintenance, and other metabolic 

processes (Nirody et al., 2020). ATP production rate depends on both the ATP yield YP per 

methane and the rate of methanogenesis. We first consider how methanogenesis rate is 

controlled by the allocation of intracellular resources, such as proteins, ribosomes, and 
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other macromolecules (fig 1A). 

Pahlow (2005) and Smith and Yamanaka (2007) developed an acclimation model to 

describe nutrient uptake kinetics and its dependence on ambient nutrient concentrations. 

Following their methodology, we assume that:  

The rate constant reflects methanogenesis rates at very high substrate 

concentrations and is determined by the cellular resources allocated to methanogenesis 

pathway.  

The ratio of the rate constant to the half-saturation constant, i.e., the specific affinity 

, reflect methanogenesis rates at very low substrate concentrations (Healey, 1980) , and is 

determined by the cellular resources allocated to substrate transport from the environment 

to the cytoplasm.  

Methanogens maximize methanogenesis rate by optimizing the partition of cellular 

resources between methanogenesis and substrate transport.  

From these assumptions, we formulate an optimization problem that maximizes the 

rate of methanogenesis by partitioning the resources between acetate transport and 

methanogenesis (see Data Repository). Solving the optimization problem gives the kinetic 

parameters (i.e., ka, a, and KM,a) of methanogens that acclimate to acetate concentration 

CAc,  
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Here ko and KM,o are the parameters determined for laboratory cultures, and CAc,o is 

the acetate concentration in laboratory growth media (i.e., 50 mM). According to equation 

4 to 6, compared to laboratory cultures, methanogens acclimating to low acetate 

concentrations acquire smaller rate constants, smaller half-saturation constants, but larger 

specific affinities, because more cellular resources are allocated to acetate uptake than to 

methanogenesis. 
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Figure 1. Physiological acclimation model. (A) Methanogens acclimate to substrate 

concentrations by allocating intracellular resources between methanogenesis (M) and 

substrate transport (T), leading to large rate constants at high substrate concentrations and 

large specific affinities at low concentrations. (B) They also acclimate to the energy 

available in the environment by partitioning the energy between ATP synthesis and 

thermodynamic drive of methanogenesis, raising ATP yield with increasing available 

energy.  

We then consider the trade-off between the rate and the ATP yield (fig 1B, Pfeiffer 

et al., 2001). By catalyzing methanogenesis, microbes release the chemical energy in the 

environment and conserve a part of the released energy by synthesizing ATP. The 

difference between the released and the conserved energy gives the thermodynamic drive f 

for methanogenesis, 
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 A P Pf G Y G    . (7) 

Here GA is the energy available in the environment – the negative of the Gibbs 

free energy change of methanogenesis reaction (J·mol1), GP is the energy consumed by 

ATP synthesis from adenosine diphosphate and phosphate in the cytoplasm, and its value is 

45 kJ·mol1 (Jin, 2012). At a given available energy, increases in ATP yield lower the 

thermodynamic drive and hence methanogenesis rate. Such trade-off can be captured by 

using the thermodynamic potential factor (Jin et al., 2013a), 

  T 1 exp
f

F
RT

 
   

 
, (8) 

where  is the average stoichiometric number and its value is 2 per methane, R is 

the gas constant (J·mol1·K1), and T is the absolute temperature.  

We formulate another optimization problem by assuming that microbes adjust ATP 

yields in order to maximize ATP production rates (see Data Repository). The solution to 

this problem relates the ATP yield to the energy available in the environment,  

  P AY G  . (9) 

Here coefficient 

the ATP yield predictions are biochemically feasible, we assume that the predicted YP 

values do not exceed those of laboratory cultures. The ATP yield gives the biomass yield 

YX (eq 2) according to   

 X X/P PY Y Y  . . (10) 

Here YX/P is the biomass yield per ATP and its value is 5 g∙mol1 (Jin, 2012).  

3. Results 
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3.1 Laboratory Observations 

We compiled the kinetic parameters determined for the laboratory cultures of 

mesophilic Methanosarcina and Methanosaeta (fig 2). The results show that 

Methanosarcina has a rate constant of 2.30.5×106 mol·g1·s1, a half-saturation constant 

of 4.41.2 mM, and a growth yield of 2.30.5 g·mol1, while for Methanosaeta, these 

values are 6.43.5×107 mol·g1·s1, 0.80.3 mM, and 1.30.1 g·mol1, respectively. From 

these results, we calculated that Methanosarcina and Methanosaeta have a specific affinity 

of 5.10.9×104 and 8.02.2×104 L·g1·s1, and an ATP yield of 0.460.10 and 0.270.02 

per methane, respectively. These results confirm the kinetic differences between the two 

methanogens (Conklin et al., 2006; Min & Zinder, 1989), and provide the foundation for 

applying the acclimation model. 

 

Figure 2. Variations in the rate constant (A), specific affinity (B), half-saturation constant 

(C) of Methanosarcina and Methanosaeta with acetate concentrations, and the ATP yield 
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and biomass yield (C) with the energy available in the environment. Solid lines are the 

predictions according to the acclimation model; dashed line in panel D indicates that the 

predicted ATP yield exceeds the values determined for laboratory cultures and hence is 

not biochemically feasible. Open symbols are the values determined experimentally for 

pure cultures and error bards show standard deviations; closed symbols are those 

determined in the sediments from a lake (, Lovley and Klug, 1983 and a wetland (, 

Roden and Wetzel, 2003).  

3.2 Model Predictions 

The acclimation model (eqs 4 to 6 and 9) predicts large variations in the kinetic 

parameters of methanogenesis. In response to the decreases in acetate concentration from 

50 mM to 1 M, the rate constants and the half-saturation constants decrease by up to two 

orders of magnitude, while the specific affinities increase by up to two orders of magnitude 

(fig 2). Furthermore, the rate constant decrease is faster in Methanosarcia than in 

Methanosaeta, whereas the specific affinity increase is faster in Methanosaeta than in 

Methanosarcia. The different responses may reflect the different availabilities of 

intracellular resources and the differences in the methanogenesis pathway between the two 

microbes (see Welte & Deppenmeier, 2014).  

The acclimation model also predicts notable differences in ATP yield between 

laboratory cultures and natural methanogens (fig 2D). For example, the culture media 

contains 50 mM acetate, 12 mM bicarbonate (Rosenberg et al., 2014). Assuming a methane 

concentration of 1 mM gives the available energy at ~37 kJ∙mol1. Under these conditions, 

equation 9 predicts a yield of 0.6 ATPs per methane, close to the value of Methanosarcina 

cultures. In natural environments, the available energy is small. For example, in the Rømø 
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aquifer, Denmark, the available energy ranges from 10 to 20 kJ∙mol1 (Hansen et al., 2001). 

Accordingly, the predicted ATP yield varies between 0.1 and 0.3 per methane, and the 

growth yield varies from 0.5 to 1.5 g∙mol1.   

The predicted variations in the half-saturation constants agree with the values 

determined previously for the sediments sampled from a lake and a wetland (fig 2C). The 

predicted low growth yields are also consistent with the observations that methanogens 

accounts for <2% of natural microbial communities (Bomberg et al., 2008; Kotelnikova, 

2002; Mouser et al., 2016). No other field-determined parameters are available for 

comparison. Nevertheless, the agreements between the model predictions and the limited 

field observations support the acclimation model and provide an incentive for future 

analysis of methanogenesis kinetics in natural systems.  

The acclimation model helps improve the predictions of methanogenesis. For 

example, in the surface sediments of Wintergreen Lake, Michigan, USA, acetate 

concentration reaches 110 M, and acetoclastic methanogenesis releases about 24 kJmol1 

of energy (see Data Repository). From these observations, the acclimation model predicts a 

rate constant of 4.9×107 mol·g1·s1, a half-saturation constant of 0.04 M, and an ATP 

yield of 0.3 per methane for Methanosaeta in the sediments. Substituting to equation 1 and 

8 gives a methanogenesis rate of 3.3×107 mol·g1·s1, close to the rate of 5.2×107 

mol·g1·s1 determined by using the radiotracer method (D. R. Lovley et al., 1982). 

However, if we directly applied the parameters of Methanosaeta laboratory cultures, we 

would arrive at a value of 6.8×108 mol·g1·s1, nearly an order of magnitude smaller than 

the field observations. 

As a second example, in the Rømø aquifer, Denmark, where acetate concentration 
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is ~1 M and proceeds at 3.4×108 mol·g1·s1 (Hansen et al., 2001). By applying the 

acclimation model, we predict a rate constant of 1.4×107 mol·g1·s1, 3.6×103 mM, and a 

methanogenesis rate of 1.7 to 2.5×108 mol·g1·s1. If we applied the kinetic parameters of 

Methanosaeta cultures, we would arrive at a rate up to 5.8×1010 mol·g1·s1, nearly two 

orders of magnitude smaller than the field observations.  

3.3 Reactive Transport Model 

The acclimation model is also critical for predicting the competition between 

Methanosarcina and Methanosaeta. To illustrate this point, we constructed a reactive 

transport model for a sediment bed where an acetate solution flows through and the two 

microbes grow by competing for acetate. We accounted for the transport of chemical 

species and the methanogenesis and growth of the two microbes, and solved for the steady-

state distribution of pore-water composition and methanogen biomass. Details of how we 

constructed the simulation and related files are available from Data Repository.  

We first followed the current practice and tracked methanogenesis and microbial 

growth by evaluating the autocatalytic model (eqs 1 and 2) with the parameters of the 

laboratory cultures. To allow methanogenesis to proceed at <0.1 mM acetate, we set the 

ATP yields to 0. In the simulation results (fig 3), the water chemistry and the methanogen 

populations have adjusted to a steady state, where acetate concentration decreases, methane 

accumulates, and the available energy decreases along the flow path. Methanosarcina 

dominates the sediment bed where acetate concentrations are >0.1 mM, but coexist with 

Methanosaeta at <0.1 mM acetate.  

Next, we reran the simulation by combining the autocatalytic model with the 

acclimation model (eqs 4 to 6 and 9). The simulation results differ considerably from the 
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above (fig 4). The two methanogens segregated into two zones. Methanosarcina lives in 

the upstream portion of the sediment bed, where acetate concentrations remain >0.2 mM. 

Methanosaeta occupies a narrow zone where acetate concentrations range from a few uM 

to 0.2 mM.  

2 m

1 m

0

2×106 gcm310

Methanosarcina Methanosaeta

Flow

 

 

Figure 3. Results at steady state of a reactive transport model in which 

Methanosarcina and Methanosaeta grow and compete for acetate, showing trends predicted 

for the distribution of biomass (A), acetate and methane concentrations (B), the available 

energy (C) along the flow path, and the biomass concentrations across different acetate 

concentrations (D). Rates of methanogenesis and growth are calculated by evaluating 

equation 1 and 2 with the parameters of methanogen laboratory cultures. The carrying 

capacity of the environment is assumed at 2×106 g·cm3. 

 



 

46 
 

 

Methanosarcina Methanosaeta

2 m

1 m

0

2×106 gcm310

 

 

 

Figure 4. Results of a reactive transport simulation like that shown in figure 2, but 

this simulation evaluates methanogenesis and growth rates by combining the autocatalytic 

model (eqs 1 and 2) with the acclimation model (eqs 4, 6, 9 and 10).  

The different simulation results underscore the importance of physiological 

acclimation in predicting the niche separation between the two methanogens. At low 

acetate concentrations, growth rates depend on the specific affinities and growth yields. 

Although Methanosaeta laboratory cultures have a specific affinity slightly larger than that 

of Methanosarcina cultures, their growth yield is only half of that of Methanosarcina. As a 

result, without acclimation, Methanosarcina always grow faster than Methanosaeta and our 

simulation failed to reproduce the dominance of Methanosaeta at low acetate 
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concentrations. However, as illustrated in the second simulation, by acclimating to low 

acetate concentrations, Methanosaeta raises specific affinity and hence growth rate to a 

greater extent than Methanosarcina. At <0.2 mM acetate, Methanosaeta grows faster than 

Methanosarcina, leading to the segregation of the two microbes. 

4. Discussion 

We constructed an acclimation model to describe the variations of 

methanogenesis parameters with substrate concentrations and thermodynamic conditions, 

as experienced by microbes in environments of different trophic status. We extrapolate 

the parameters of laboratory methanogen cultures to natural environments using this new 

model without introducing new parameters, and therefore overcomes the current 

technical challenges in analyzing microbial kinetics in situ. Such extrapolation is made 

possible by linking microbial parameters to metabolic resources and by assuming that 

microbes optimize resource allocation in order to maximize ATP synthesis rates.  

In predicting methanogenesis rates, we should consider the extents to which 

physiological acclimation changes the parameters of methanogenesis (Litchman et al., 

2015). Our model predicts that in the environment of low acetate concentrations, 

methanogens can lower their rate constants and half-saturation constants and raise their 

specific affinities by more than an order of magnitude relative to the values of laboratory 

cultures. To overcome the thermodynamic limitation, they also decrease ATP yields. 

Consequently, by directly applying laboratory observations to natural environments, we 

may underestimate methanogenesis rates by up to two orders of magnitude.  

In predicting the competition between Methanosarcina and Methanosaeta, we 

should consider how physiological acclimation may shape competition outcome. The 
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current paradigm accounts for the dominance of Methanosaeta in low-acetate environments 

by using the kinetic properties of Methanosarcina and Methanosaeta laboratory cultures 

(Conklin et al., 2006; Min & Zinder, 1989), which does not stand up to scrutiny. Our 

acclimation model attributes the dominance to the different acclimation responses of the 

two methanogens. From this perspective, biogeochemical theories built on laboratory 

observations, such as microbial redox zonation and the dominance of ammonia-oxidizing 

Archaea in the marine nitrogen cycle (Bethke, 2008; Martens-Habbena et al., 2009), may 

also need to consider the effect of acclimation. 

In summary, our results illustrate an important principle. Microbial kinetics 

depends on two factors: environmental conditions and physiological acclimation. The 

former is accounted for by standard microbial rate laws, and the latter factor requires 

additional models, such as the acclimation model presented here, that relate kinetic 

parameters to ambient environmental conditions. We focused on methanogenesis here, 

but the approach should be applicable to iron reduction, sulfate reduction, and other 

microbial processes. By doing so, we hope to bridge the gap in microbial kinetics 

between laboratory experiments and natural environments, and to improve the prediction 

and understanding of microbial processes of geochemical significance.  

ACKNOWLEDGMENTS 

This research was funded by National Aeronautics and Space Administration under Grant 

NNX16AJ59G and by the National Science Foundation under Award EAR-1636815 and 

1753436. 

 



 

49 
 

 

CAHPTER IV   LIMITATIONS OF THE Q10 COEFFICIENT FOR 

QUANTIFYING TEMPERATURE SENSITIVITY OF ANAEROBIC ORGANIC 

MATTER DECOMPOSITION: A MODELING BASED ASSESSMENT 

 

1. Introduction 

Soil organic matter (SOM) is one of the largest terrestrial carbon reservoirs, and its 

decomposition plays a key role in biogeochemical carbon cycling. At a global scale, 

organic matter decomposition drives annual fluxes of 210 Gt carbon dioxide (CO2) and 0.6 

Gt methane (CH4) into the atmosphere, directly contributing to the CO2 and CH4 

accumulation in the atmosphere and the resulting global warming by the greenhouse effect 

(Bardgett et al., 2008; Ciais et al., 2013; Jackson et al., 2020; Nazaries et al., 2013; Thauer 

et al., 2008). In return, surface warming speeds up the reactions of enzymes and microbes 

participating in organic matter decomposition, leading to a positive feedback (Gill et al., 

2017; Hopple et al., 2020; Romero-Olivares et al., 2017; Wik et al., 2016). Therefore, 

computer models that predict how organic matter decomposition responds to temperature 

changes play an integral role in simulating the dynamics of soil carbon storage and the 

fluxes of carbon cycles, and for forecasting future climate (Allison et al., 2010; Todd-

brown et al., 2018; Zheng et al., 2019). 

To describe the temperature sensitivity of organic matter decomposition, most 

models have used versions of the van t Hoff’s temperature coefficient Q10, 

10

1
10

o

Tr
Q

r

 
  
 

.                                                                         (1) 

Here ro and r1 are the rates of organic matter decomposition at temperature To and 
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T1, respectively, and T is the difference between the two temperatures (vant' Hoff, 1898). 

Most models also fix the Q10 coefficient at 1.5 or 2, assuming that decomposition rates 

increase by a factor of 1.5 or 2 per 10 oC increase, respectively (Foereid et al., 2014; von 

Lützow & Kögel-Knabner, 2009; Meyer et al., 2018; Peterson et al., 2014; Raich et al., 

1991). 

However, the Q10 approach has proven repeatedly to be inconsistent with laboratory 

and field observations. For example, the Q10 coefficients obtained from laboratory and field 

studies are not constant, but decrease from >300 at 10 oC to near 1 around 20 oC (Hamdi 

et al., 2013). The Q10 approach assumes that reaction rates increase exponentially with 

temperatures. This assumption originates from the transition state theory for elementary 

reactions (Eyring, 1935), but its application to complex processes, such as organic matter 

decomposition, is problematic. Specifically, organic matter decomposition consists of a 

series of reactions catalyzed by extracellular enzymes and fermenting and respiring 

microbes, and its rates are often assumed to be limited by the fermentative degradation of 

complex organic molecules (Allison et al., 2010; Herndon et al., 2015; D. R. Lovley & 

Klug, 1982; Zheng et al., 2019; Ziemiński & Frac, 2012). Like other microbially-catalyzed 

reactions, fermentative reactions respond to temperature variations by following unimodal 

functions (Finke & Jørgensen, 2008; Parashar et al., 1993). Therefore, rates of organic 

matter decomposition may not vary exponentially with temperatures (Fissore et al., 2008; 

Hagerty et al., 2014; Hopkins et al., 2014; Raich et al., 2006). Nevertheless, model 

practitioners continue to use constant Q10 coefficients routinely, perhaps because the 

uncertainty inherent in forecasting the progress of organic matter decomposition outweighs 

the error introduced by the Q10 approach. 
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The temperature response of organic matter decomposition can also be investigated 

by biogeochemical reaction modeling. This approach breaks organic matter decomposition 

into a reaction network that consists of enzymatic and microbial reactions, and simulates 

numerically the decomposition progress according to the rate laws of enzymatic and 

microbial reactions (Bethke, 2008). Typical network reactions include the conversion of 

soil organic matter (SOM) to dissolved organic carbon (DOC) by extracellular enzymes, 

fermentation reactions that consume DOC, and respiration reactions that oxidize 

fermentation products by reducing O2, sulfate, and other electron acceptors (Allison et al., 

2010; D. R. Lovley & Klug, 1982; Schink, 1997; Zheng et al., 2019). This modeling 

approach does not assume a prior how organic matter decomposition responds to variations 

in temperature. Instead, it uses rate laws to relate individual enzymatic and microbial rates 

to temperature, pH, nutrient concentrations, and other environmental conditions. By 

integrating the rate laws forward over time, the modeling approach simulates the 

temperature sensitivity of organic matter decomposition as a systems property that emerges 

from the interactions between enzymatic and microbial reactions under the constraints of 

the quality and availability of organic matter and other environmental conditions.                                                                                                                                                                                                                                                                                         

Here we examine the temperature sensitivity of anaerobic organic matter 

decomposition by comparing the results of the Q10 approach with those of biogeochemical 

reaction modeling. We use as an example anaerobic organic matter decomposition in 

peatlands in the Upper Peninsula of Michigan, USA (Ye et al., 2016). Unlike previous 

efforts, we focus not on Q10 estimation or the influences of physicochemical or biological 

conditions of the environment, but on how the choice of an approach for describing the 

temperature sensitivity might affect the rate predictions of organic matter decomposition, 
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and hence the fluxes of carbon cycling.   

2 Methods 

2.1 Q10 approach 

The Q10 approach treats organic matter decomposition as a black box, and provides 

a simple means of quantifying temperature sensitivity of organic matter decomposition. At 

temperature T, reaction rate r can be related to the base rate ro at base temperature To 

according to 

o

10

o 10

T T

r r Q

 
 
   .                                                                      (2)  

Therefore, its application requires the rate ro and the Q10 coefficient determined at 

temperature To. 

2.2. Biogeochemical reaction model 

Anaerobic microbial decomposition of organic matter consists of a series of 

reactions catalyzed by extracellular enzymes and microbes. In the simplest possible 

configuration (Fig. 1), four reactions would be required to decompose organic matter to 

CO2 and CH4. The first is the degradation of SOM to DOC by extracellular enzymes, 

followed by the fermentation reaction that consumes DOC and produces acetate and 

dihydrogen (H2), and by the methanogenesis reactions that consume acetate and H2 (D. R. 

Lovley & Klug, 1982; Schink, 1997; Zheng et al., 2019). Additional reactions occur in the 

presence of O2, ferric minerals, humic substances, sulfate, and others, where microbes can 

oxidize acetate and H2 by reducing these electron acceptors.  
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Figure 1. Anerobic organic matter decomposition to CO2 and CH4. SOM and DOC 

are soil organic matter and dissolved organic carbon, respectively; ovals indicate 

extracellular enzyme and microbial functional groups. 

Rates of SOM degradation to DOC depend on the concentrations of SOM and 

extracellular enzymes and can be described according to the Michaelis-Menten equation. 

We assume that extracellular enzymes are produced primarily by fermenting microbes and 

that their production and decay are at steady state. We also assume that SOM degradation 

is inhibited by the accumulation of DOC. Based on these assumptions, we relate 

exoenzyme concentrations to the biomass concentrations of fermenting microbes [XF] (see 

Text S1), and calculate the rates of SOM degradation according to the revised Michaelis-

Menten equation, 

SOM DOC
app F

SOM m,SOM DOC,o

[X ] max 1 ,0
 

        

m m
r k

m K m
.                                                (3) 

Here kapp is the apparent rate constant (molg-biomass1s1), mSOM and mDOC are the 

molal concentrations of SOM and DOC, respectively, Km,SOM is the Michaelis constant, and 

mDOC,o is the threshold DOC concentration above which the synthesis of the extracellular 
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enzymes stops. This equation simplifies to 

DOC
app F

DOC,o

[X ] max 1 ,0
m

r k
m

 
     

 

,                                                    (4) 

where mSOM >> Km,SOM, or SOM concentrations remain nearly constant. Under 

these conditions, the effect of SOM concentrations can be safely neglected.  

We represent microbial reactions using stoichiometric equations, and calculate their 

rates by using the modified Monod equation (Jin and Bethke, 2003, 2005). Specifically, the 

fermentation reaction is,    

2 2 2DOC Acetate H CO H O Ha b c d e      ,                                      (5) 

where DOC is represented using a generic chemical formula of C6H12O6, and a and 

others are stoichiometric coefficients (Tang et al., 2016). Acetoclastic methanogenesis is 

2 2 4Acetate H O CO CH   .                                                    (6) 

Hydrogenotrophic methanogenesis is 

2 2 2 44H CO 2H O CH   .                                                      (7) 

Rates r of microbial reactions are calculated according to  

 
T N T[X]    r k f F F ,                                                              (8) 

where k is the rate constant, or cell-specific maximum rate (molg-biomass1s1), fT 

is the dimensionless factor that describes the temperature response of the rate, [X] is the 

biomass concentration, FN is the kinetic factor, and FT is the thermodynamic potential 

factor. The kinetic factor accounts for nutrient concentration mN (molal),  

N
N

N N

m
F

m K



,                                                                     (9) 

where KN is the half-saturation constant. The thermodynamic factor considers the 
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Gibbs free energy change G (J·mol1) of microbial reactions,  

P P
T 1 exp





   
   

 

G G
F

RT
.                                                       (10) 

Here P is the ATP yield – the number of ATPs synthesized per microbial reaction, 

GP is the phosphorylation energy (the energy consumed by ATP synthesis in the 

cytoplasm with a value of 45 kJ·mol1),  is the average stoichiometric number, which can 

be taken as the number of electrons transferred per reaction, R is the gas constant (8.3145 

J·mol1·K1), and T is the absolute temperature. The Gibbs free energy change is calculated 

from the reaction quotient Q according to 

 ln 
Q

G RT
K

,  (11) 

where Q and K are the reaction quotient and equilibrium constant of the reaction. 

Variations in the equilibrium costants with temperature are shown in Figure S1. 

Evaluating equation 8 requires biomass concentrations [X], which are calculated by 

using the modified logistic equation. Taking the biomass concentration [XF] of fermenting 

microbes as an example,  

F F
F

F max

[X ] [X ]
1 [X ]

[X ]

d
Y r D

dt

 
      

 

,                                               (12) 

where Y is the biomass yield (g·mol−1) – the amount of biomass synthesized per 

reaction, [XF]max is the maximum biomass concentration supported by the environment, and 

D is the maintenance rate (s−1). Here the maintenance rate accounts for the decrease in 

growth rate due to cellular maintenance, metabolic processes that maintain the integrity and 

function of cellular components but do not contribute to the production of new cells (T. M. 

Hoehler & Jørgensen, 2013).  
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2.3. Temperature responses 

Unimodal temperature responses are key features of enzymatic and microbial 

reactions. In general, enzymatic and microbial reaction rates first increase with increasing 

temperature and, after reaching maximum values at their optimal temperatures, the rates 

start to decrease. Such temperature responses have been described by both mechanistic and 

phenomenological models (Alster et al., 2016; DeLong et al., 2017; Rossol et al., 1993; 

Schipper et al., 2014).  

We describe the temperature responses of extracellular enzymes according to the 

enzyme-assisted Arrhenius equation (DeLong et al., 2017). This equation differs from the 

standard Arrhenius equation by accounting for the temperature-dependent protein 

unfolding or denaturation. According to this equation, the apparent rate constant of 

extracellular enzymes is                                      

ΔH ΔCp m

m m

app app,o

1 ln

exp

    
        

      
 
 
  

b

T T
E E E T T T

T T
k k

RT
 .             (13) 

Here kapp,o is the maximum apparent rate constant, Eb, EΔH, and EΔCp are the baseline 

activation energy (J·mol1), the change in the activation energy due to the enthalpy of 

enzyme folding, and the change from the change in heat capacity of the enzymes, 

respectively, and Tm is the melting temperature of the enzymes (K). The values of Eb, EΔH, 

and EΔCp delineate the temperature responses of enzyme reactions (Fig.2A), and are 

estimated based on laboratory observations of the enzymes harvested from mesophiles. 

Based on Feller (2010), we take Tm, EΔH, and EΔCp as 66 oC, 59 kJ·mol1 and 2 kJ·mol1·K-

1, respectively. We estimate the Eb value by fitting equation 13 to temperature response of 
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extracellular enzymes reported by Stone et al. (2012). The best-fit Eb is 36.51.94 kJ·mol1 

(mean 95% confidence interval). As shown in Figure 2A, the equation captures the 

temperature responses of the different extracellular enzymes. Figure 2B shows, according 

to eq 13, how relative rates of exoenzymes change with temperature.  

We describe the temperature responses of fermentation and methanogenesis by 

using the cardinal temperature model – a phenomenological equation (Rossol et al., 1993). 

Although the Arrhenius equation and related models have also been applied to microbial 

reactions, our choice of a phenomenological model is based on the complexity of microbial 

reactions. Microbial reactions are catalyzed by tens to hundreds of enzymes and, according 

to metabolic control theory, their rates are not controlled by a single rate-limiting enzyme, 

but by multiple enzymes at the same time (Fell, 1992). Considering that different enzymes 

tend to display different activation energies and activity levels, and that interactions among 

enzymes are nonlinear, direct application of the Arrhenius equation to complex microbial 

reactions can be problematic. On the other hand, phenomenological models do not consider 

underlying catalytic mechanisms of microbial reactions, but they reproduce well the 

temperature responses of microbial reactions, which is adequate for our purpose – to 

predict the temperature sensitivity of organic matter decomposition from the temperature 

responses of individual reaction steps.  

According to the cardinal temperature model (Rossol et al., 1993), the temperature 

factor fT of microbial reactions can be calculated according to 

2

max min
T

opt min opt min opt opt max opt min

( )( )
max 0, 

( )[( )( ) ( )( 2 )]

  
  

        

T T T T
f

T T T T T T T T T T T
.   (14) 

Here Tmin, Topt, and Tmax are the minimum, optimal, and maximum temperature, 
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respectively. Compared to other phenomenological models (Heitzer et al., 1991; 

Ratkowsky et al., 1983; Rossol et al., 1993), the cardinal temperature model is unique in 

that it describes microbial temperature responses by taking cardinal temperatures as input, 

without the need of additional parameters. For mesophilic microbes, we set their minimum, 

optimal, and maximum temperature at 0, 37 and 50 oC, respectively (R. M. Flores, 2014; 

Hartel, 2005; Kolton et al., 2019; Singh & Das, 2019). Figure 2C shows, according to the 

cardinal temperature model, how the temperature factor fT varies with temperature.  

 

Figure 2. Variations with temperature in the relative activities of extracellular 

enzymes from soils reported by previous laboratory studies (A) and calculated according to 

equation 13 (B), the temperature factor fT of microbial reactions (C), and maintenance rate 

(D). In panel A, data points are from Stone et al. (2012); relative enzyme activities are 
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calculated as the ratios of enzyme reaction rates to those determined at 40 oC; line is the 

best-fit of equation 13. In panel B, relative enzyme activities are calculated as the ratios of 

enzyme reaction rates obtained from equation 13 to the maximal rate at 54 oC. 

 

No mechanistic or phenomenological model is available to calculate maintenance 

rate at different temperatures. According to the microbial maintenance rates at different 

temperatures compiled by Price and Sowers (2004), maintenance rates D vary 

exponentially with temperature, which can be described with the Arrhenius equation (Fig. 

2D), 

a,D

D exp
E

D A
RT

 
   

 
.                                                        (15) 

Here AD is the pre-exponential factor (s1), and Ea,D is the apparent activation energy 

(J·mol1). Based on the data compiled by Price and Sowers (2004), we set AD at 2.5 1010 

s1 and ED at 1.02 102 kJ·mol1. 

2.4 Sensitivity Analysis 

Following the framework of metabolic control analysis (Fell, 1992), we conducted 

a sensitivity analysis to analyze the significance by which the kinetic parameters of 

extracellular enzymes and microbes control the rates of anaerobic organic matter 

decomposition. The scaled control coefficient r

p  of a kinetic parameter p on the rate r is 

the ratio of the fractional change in the rate to the fractional increase of the parameter, 

r

p

p r

r p



 


.                                                                         (16) 

A coefficient of 0 indicates that the rate of anaerobic organic matter decomposition 
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is insensitive to the parameter. A value of unity occurs where the rate varies proportionally 

to the changes of the parameter, indicating a strong control.  

2.5. Model application  

We implemented the biogeochemical reaction model with PHREEQC (version 3.0) 

– a software package for geochemical and biogeochemical reaction modeling (Charlton and 

Parkhurst, 2011). We amended its thermodynamic database by adding SOM and DOC. 

Table 1 lists the kinetic parameters and their values for computing microbial reaction rates. 

Some parameter values are taken directly from previous laboratory studies, whereas other 

parameters, including the maximum apparent rate constant kapp,o of extracellular enzymes 

and the initial biomass concentrations of fermentative and methanogenic microbes, depend 

on the field site of interest and are determined based on previous experimental 

observations.  

We built the biogeochemical reaction model on the basis of the methane production 

experiments conducted by Ye et al. (2016). Ye and his colleagues (2016) sampled 

peatlands from the Upper Peninsula of Michigan, USA (sampling site, rich fen), and 

incubated the peat slurries anaerobically for 45 days. They included six independent sets of 

experiments, with and without glucose amendment at 7, 15, and 25 ℃ in quadruplicate. 

They monitored the concentrations of both intermediate and final products of anaerobic 

organic matter decomposition, including DOC, acetate, H2, CO2, and CH4 (Figs. 3 and 4). 

We calibrated and validated the model by comparing and fitting the modeling results to 

their experimental observations. The amended thermodynamic database and the input 

PHREEQC scripts are available at https://zenodo.org/record/4480176 (Wu et al., 2021a). 

Statistical analyses, including one-way ANOVA analysis and Spearman correlation, were 

https://zenodo.org/record/4480176
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conducted by python 3.7. 

 

Table 1. Kinetic and thermodynamic parameters of microbial reactions 

Reaction 

(substrate) 

Kinetic parameter  Thermodynamic parameter 

Initial 

biomass 

(mg·kg1) 

Rate 

constant k 

 

(mol·g1·s1) 

Half-

saturation 

constant 

KN  

(molal) 

Growth 

yield  

Y 

(g·mol1) 

Maximum 

biomass 

(mg·kg1) 

 Average 

stoichiometric 

number  

ATP 

yield 

Fermentation 

(DOC; glucose) 

0.20±0.13a 5 10-6 

(DOC); 

2 10-5 

(glucose)b 

1 10-3 c 10.0 0.5±0.01 a  1 d 2 e 

Methanogenesis 

(acetate) 

1.85.±0.17a 2.9 10-6 f  1 10-5 g 1.0 20 h  2 f 0.2 f 

Methanogenesis 

(H2) 

7.0±0.13a 7.4 10-6 f 1 10-7 g 1.25 20 h  2 f 0.25 f 

Note: a. Determined by this study (mean  95% confidence interval);  

b. Shiloach et al., 1996;  

c. Kim et al., 2007;  

d. Assuming that glucose uptake is the rate-determining step;  

e. Lee et al., 2008; 

f. Jin and Kirk, 2018;  

g. Hungate, 1967; Stams et al., 2003;  

h. Jiang et al., 2010.  

3 Results and Discussion 

3.1. Anaerobic organic matter decomposition 

According to the experimental results of Ye et al. (2016), the SOM decomposition 

can be represented by a simple reaction network, including enzymatic reaction that 

hydrolyzes SOM to DOC, the fermentation reaction that consumes DOC and produces 

acetate and H2, and the reactions of acetoclastic and hydrogenotrophic methanogenesis 

(Fig. 1). The fermentation reaction can be described by the stoichiometric equation,  

 
2 2 2DOC 2.7Acetate 1.2H CO 0.6H O 2.7H     .                               
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(17) 

At the end of their experiments, the amounts of SOM decomposed by microbes 

were relatively small, <1% of the SOM available at the beginning of the experiments (see 

Text S1). Therefore, we calculated the rates of SOM degradation by extracellular enzymes 

according to equation 4. Furthermore, the acetoclastic pathway dominates methanogenesis, 

contributing to ~90% of total methane production and leading to nearly equal production of 

CO2 and CH4. Therefore, we quantified the kinetics of anaerobic organic matter 

decomposition by using the rates of methane production.  

3.2. Biogeochemical reaction modeling 

To simulate the temperature sensitivity of anaerobic organic matter decomposition, 

we first constructed the biogeochemical reaction model to describe the progress of organic 

matter decomposition in the experiments of Ye et al. (2016). We achieved the possible 

ranges of the five unknown model parameters by least-squared fitting of the modeling 

results to the observations of the glucose-amended incubation experiments at 7, 15, and 25 

oC. Specifically, the maximum apparent rate constant kapp,o of enzymatic SOM degradation 

was estimated by fitting to the temporal variations of DOC concentrations, and the result 

was 1.0±0.1×102 mol·g1·s1. The initial biomass concentration of fermenting microbes 

was obtained based on the variations in the concentrations of acetate and H2. The initial 

biomass concentration of acetoclastic methanogens was estimated according to the 

concentrations of acetate, methane, and CO2. The initial biomass concentration of 

hydrogenotrophic methanogens was determined from the concentrations of H2. The 

maximum biomass concentration of fermenting microbes was determined by fitting to the 

concentrations of DOC, CO2, and CH4. The results are shown in Table 1. As illustrated in 
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Figure 3, the model simulation reproduces well the experimental results: DOC 

concentrations decrease during the first 10 days of the incubations, and then stabilize at 

~0.22 mM; acetate and H2 accumulate at the beginning of the experiments; CO2 and CH4 

accumulate steadily over time.    

 

Figure 3. Parameter estimation by fitting the modeling results to the variations with 

time in the concentrations of DOC (A, F, K), acetate (B, G, L), H2 (C, H, M), CO2 (D, I, 

N), and CH4 (E, J, O) in the experiments of organic matter decomposition with glucose 

amendment at 7, 15 and 25℃. Data points are the experimental observations of Ye et al. 

(2016); error bars show the 95% confidence interval of the observations; solid lines are the 

simulation results; shaded areas are the simulation results by using the minimum and 

maximum initial biomass concentrations (see Table 1). 

We then validated the model by applying the biogeochemical reaction model, 

together with the best-fit model parameters (Table 1), to the glucose-free incubation 

experiments. As shown in Figure 4, without glucose amendment, DOC concentrations 

increase at the beginning of the experiments, and then stay constant at ~0.25 mM. Acetate 
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and H2 do not accumulate significantly, and their concentrations are more than one order of 

magnitude smaller than those in the glucose-amended experiments. CO2 and CH4 

accumulate with time at rates slightly smaller than those in the glucose-amended 

experiments. Simulation results from the 95% confidence intervals of the initial biomass 

concentrations can cover the majority of the experimental results, except the temporal 

variations of H2. The mismatch between the simulated and observed H2 concentrations is 

likely due to the technical challenge in analyzing low H2 level and the incomplete 

consideration of microbial reactions that consume and produce H2, such as syntrophic 

acetate oxidation (Schink & Stams, 2013). Moreover, acetoclastic methanogenesis accounts 

for approximately 90% of methane production, consistent with the laboratory assessment 

(Ye et al., 2012). These results suggest that our model captures the experimental 

observations across the different incubation temperatures and, therefore, can be applied to 

study the temperature sensitivity of anaerobic organic matter decomposition.  

 

 

Figure 4. Application of the calibrated biogeochemical reaction model to the 
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experiments of organic matter decomposition without glucose amendment at 7, 15 and 

25℃. Data points are the concentrations of DOC (A, F, K), acetate (B, G, L), H2 (C, H, M), 

CO2 (D, I, N), and CH4 (E, J, O) reported by Ye et al. (2016); error bars show the 95% 

confidence interval of the observations; solid lines are the simulation results; shaded areas 

are the simulation results by using the minimum and maximum initial biomass 

concentrations (see Table 1). 

 

The modeling results highlight the complexity of the organic matter decomposition 

even with our relatively simplified reaction network (Fig. 1). First, among the three 

microbial functional groups, acetoclastic methanogens grow most significantly. Their 

biomass concentrations increase linearly with time, and the growth rates increase from 

6.0×103 mg·kg-1·d-1 at 7 ℃ to 5.6×102 mg·kg-1·d-1 at 25 ℃ (Fig. 5A-C). At 7 oC, the 

growth of fermenting microbes follows the same trend as those of acetoclastic 

methanogens. But at 15 and 25 ℃, the growth is limited by the maximum biomass of 0.5 

mg·kg-1 assumed in the model. In comparison, the biomass concentrations of 

hydrogenotrophic methanogens do not respond significantly. The growth limitation of 

hydrogenotrophs is due to the limited H2 production, whereas the limitation of fermenters 

is due to the holding capacity of the environment – the maximum biomass concentration 

supported by the environment. At the field sites, how physical and chemical conditions, 

such as nutrient concentrations and the availability and connectivity of space, lead to the 

limitation requires further investigation. 
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Figure 5. Variations with time in the biomass of fermenting microbes (A), 

acetoclastic (B) and hydrogenotrophic methanogens (C), reaction rates of extracellular 

enzymes (D), fermentation (E), acetoclastic (F) and hydrogenotrophic methanogenesis (G), 

and the Gibbs free energy change ΔG of fermentation reactions (eq 17, H), and acetoclastic 

(eq. 6, I) and hydrogenotrophic methanogenesis reaction (eq. 7, J) at 7, 15 and 25℃. 

 

Second, the modeling results suggest that the organic matter decomposition can be 

separated into two phases – a dynamic phase followed by a stationary phase. In the 

dynamic phase, the enzymatic and microbial reaction rates and hence the rates of organic 

matter decomposition vary significantly. In the stationary phase, the rates remain nearly 
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constant (Fig. 5D-G). The time required for reaching the stationary phase depends on 

temperature, and is 40, 15, and 10 days at 7, 15, and 25 oC, respectively.  

The variations in the reaction rates arise from changes in the environmental and 

biological factors. For example, variations in the enzymatic reaction rates result from the 

antagonistic effects of microbial growth and the accumulation of DOC. At the beginning of 

the experiments, the growth of fermenting microbes raises the rates (Fig. 5A), but later into 

the experiments, the DOC accumulation (Fig. 4A, F, K) slows the process down.  

Variations in fermentation rates (Fig. 5E) match well with the variations in the 

biomass concentrations of fermenting microbes (Fig. 5A), reflecting the controlling effect 

of biomass. Acetoclastic methanogenesis rates first increase and then remain constant. 

Although acetoclastic methanogen continues to grow in the stationary phase, the 

stimulatory effect of microbial growth is offset by the decrease in acetate concentrations 

(Fig. 4B, G, L) – another controlling factor of the methanogenesis rate. Our model also 

considers the limitations of the Gibbs free energy changes. However, the free energies of 

the microbial reactions are much larger than the energies conserved by microbes (Fig. 5H-

J), and hence have limited effect on microbial reactions rates.  

We note that acetate accumulates throughout the incubation at 7 ℃ (Fig. 4B). At 15 

and 25℃, acetate accumulation is limited to the beginning of the experiments, the first 10 

and 5 days, respectively, with empirical results showing even greater acetate depletion (Fig. 

4G, L). These results suggest that acetate production by fermentation is not fast enough to 

compensate for the consumption by acetoclastic methanogenesis at higher temperatures, 

consistent with the assumption that fermentation is the rate-determining step of anaerobic 

organic matter decomposition (Fey & Conrad, 2003; Kwietniewska & Tys, 2014).  
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3.3. Temperature sensitivity 

We applied the biogeochemical reaction model and simulated anaerobic organic 

matter decomposition at temperatures from 0 to 50 oC. Our simulation ran for 45 days, well 

past the duration of the initial dynamic phase, and methane production rates are calculated 

from methane concentrations at day 45. Figure 6 shows that, according to the modeling 

results, methane production responds to temperature variations by following an asymmetric 

unimodal curve, and can be described with the cardinal temperature model for mesophilic 

microbes (eq 14). In particular, the production rate increases almost linearly with increasing 

temperature from the minimum temperature of 0 oC to the optimal temperature of 37 oC, 

and between 37 and 50 oC, the rate decreases relatively fast with temperature. These results 

differ from the exponential responses assumed by the Q10 approach, but similar responses 

have been widely observed in previous laboratory incubation studies (Blake et al., 2015; 

Morrissey et al., 2014; Sha et al., 2011; Svensson, 1984).  

 

 

Figure 6. Variations with temperature in methane production rates (A) and Q10 

coefficients (B). In panel A, the solid line is the results obtained from biogeochemical 
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modeling, the dashed lines are the predictions according to the constant Q10 coefficients 

obtained at 5, 15, and 25 oC, and the blue dotted line is calculated according to equation 14 

and the maximum rate obtained from the modeling results; in panel B, the Q10 coefficients 

are calculated according to the modeling results in panel A and equation 1.  

 

The temperature sensitivity of anaerobic organic matter decomposition between 0 

and 37 oC is of particular interest, because the simulation results at higher temperatures are 

likely of limited practical applications for carbon cycling in most soils and sediments. 

Below 37 oC, the near-linear relationship can be approximated with a linear function of 

temperature (Figure 6), 

     
4 4CH CHr T  .                                                                (18) 

Here rCH4 is the methane production rate, 
4CH  is the slope of the increase that 

characterizes the temperature sensitivity of SOM decomposition, and its value is 0.14 

mol·g-1·d-1·℃-1. The near-linear relationship has been reported in peatlands (Avery et al., 

2003; Bergman et al., 1998; Nykanen et al., 1998). Moreover, according to a meta-analysis 

of 376 laboratory incubation data sets, organic matter decomposition rates determined 

across different climate zones show a curvilinear relationship with incubation temperatures 

(Xu et al., 2016). 

3.4. Q10 approach 

To apply the Q10 approach, we first calculated the Q10 coefficient from the 

modeling results (Fig. 6B). Because methane production rates is 0 at 0 oC, we calculate the 

Q10 coefficient between 1 and 30 oC. The coefficient is at its largest value, 484, at 1 oC and 

decreases with increasing temperature. The initial decrease is fast  the Q10 coefficient 
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drops to 3 at 13 oC. Afterwards, the decrease is modest, and the coefficient reaches 1 at 30 

oC. The decreasing Q10 coefficient with increasing temperature is consistent with the results 

of previous laboratory analyses. Hamdi et al. (2013) compiled the Q10 coefficients 

determined for aerobic CO2 production (n = 317), and found that the Q10 values negatively 

correlate with temperatures, decreasing from >300 at 10 ℃ to 1.2 at 20 ℃.  

To test whether the negative correlation between Q10 and temperature is also 

applicable to anaerobic organic matter decomposition, we compiled the Q10 values of CO2 

(n = 109) and CH4 (n = 190) production from anaerobic laboratory incubations (see 

https://zenodo.org/record/4480176, (Wu et al., 2021b). Two patterns appear from the 

compilation. First, as shown in Figure 7A, methane production has a larger mean Q10 value 

(4.5) than anaerobic CO2 production (3.7). Second, according to the results of one-way 

ANOVA analysis with post-hoc Turkey’s test (see Table S1-S4), the Q10 values of CH4 and 

CO2 production differ significantly between different climate zones (p<0.05, Fig. 7 B and 

C). In addition, Spearman correlation analyses show that Q10 coefficients of anaerobic CO2 

production and CH4 production correlate negatively with incubation temperatures (Fig. 7D 

and E, Spearman’s coefficient: -0.25 and -0.51, respectively, p<0.05). A notable example 

of this pattern is the 22 Q10 values obtained along a 3,800 km long north–south transect of 

forests in China, with low Q10 values in subtropical forests and high Q10 values in 

temperate forests (Wang et al., 2018). 
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Figure 7. Q10 coefficients of anaerobic organic matter decomposition compiled 

from previous studies. (A) Q10 coefficients of CH4 production and anaerobic CO2 

production. Boxes edges are the 25% and 75% percentiles of the data, horizontal center 

lines are the mean values, whisker bars show the standard deviation, and the star points are 

the outliers. Q10 coefficients of CH4 production (B) and anaerobic CO2 production (C) in 

different climate zones (only values with sampling locations are included). Q10 coefficients 

of CH4 production (D) and anaerobic CO2 production (E) show significantly negative 

correlation with incubation temperature (Spearman coefficients of -0.25 and -0.51, 

respectively; p<0.05). 

 

The Q10 difference between anaerobic CO2 and CH4 production has been attributed 

to the availability of methanogenic substrates and alternative electron acceptors in the 
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environment (Van Hulzen et al., 1999; Megonigal et al., 2003; Mu et al., 2018). Higher 

temperatures promote the degradation of SOM and increase the availability of H2, acetate, 

and other methanogenic substrates, which in turn raises the temperature sensitivity of CH4 

production (Inglett et al., 2012). At the same time, higher temperatures also speed up 

microbial CO2 production coupled to the reduction of ferric minerals, sulfate, and other 

external electron acceptors. Where these electron acceptors are limited, the temperature 

responses of CO2 production are also limited. In addition, changes in temperatures shift the 

structure and function of microbial communities, which further contributes to the Q10 

difference between CO2 and CH4 production (Auffret et al., 2016; Kolton et al., 2019). In 

our study, we did not include competing respiring microbial groups and, as a result, the 

simulated Q10 values of CO2 and CH4 productions are the same at given temperatures 

(results not shown).  

The inverse relationship between Q10 and temperature has been accounted for by 

the differences in carbon quality or activation energy. In general, recalcitrant carbon tends 

to have larger activation energies and hence large Q10 coefficients than labile carbon 

(Davidson & Janssens, 2006; Hilasvuori et al., 2013; J. Li et al., 2018). The availability of 

SOM also constrains the relationship. At high temperatures, SOM decomposition tends to 

be fast, which lowers the availability of SOM and therefore masks the intrinsic effect of 

temperature on decomposition rates, lowering the temperature sensitivity (AlMulla et al., 

2018; Gershenson et al., 2009; Inglett et al., 2012).  

In the biogeochemical reaction model, we fixed the quality and quantity of SOM, 

and therefore did not consider how SOM affects the Q10 values. Instead, the modeling 

results suggest that the inverse relationship may simply be a reflection of the linear 
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relationship between methane production rate and temperature. By substituting equation 18 

to 1, we can express the Q10 coefficient as an inverse function of temperature, 

10

10

base

1
TT

Q
T

 
  
 

.                                                    (19) 

In addition, this equation highlights temperature as the primary determinant of the 

Q10 coefficient. The biogeochemical reaction model considers the kinetic responses of 

enzymatic and microbial reactions to temperature variations. However, the near-linear 

relationship between methane production rate and temperature removes the temperature 

sensitivity of SOM decomposition (i.e., the slope 
4CH  of the rate increase in eq 18) from 

the Q10 evaluation (eq 1). As a result, the Q10 coefficient does not appear to bear much 

relevance to the reactions of extracellular enzymes or microbial reactions that drive SOM 

decomposition.   

We apply the Q10 coefficients to predict the variations with temperature in the rates 

of organic matter decomposition. Figure 6A takes 5, 15, and 25 oC as examples and 

compares the predictions of the Q10 coefficients to the modeling results. The Q10 approach 

underestimates the rates within the temperature ranges where the Q10 values are 

determined, and overestimates the rates outside the temperature ranges. The most 

significant errors come from the application of the Q10 coefficient obtained at 5 oC. 

Between 5 and 15 oC, the Q10 approach underestimates the rate by up to 40%, and at 30 oC, 

the overestimation is about threefold. 

3.5. Rate-determining Step 

Discrepancy between predictions of the Q10 and the modeling approaches arises 

mainly from the treatment of the temperature sensitivity of organic matter decomposition. 
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The Q10 approach takes organic matter decomposition as a black box, and assumes that the 

decomposition rates vary with temperature according to the Arrhenius equation. This 

assumption does not hold according to the kinetics of enzymatic and microbial reactions. 

Both enzymatic and microbial reactions respond to temperature variations by following 

unimodal functions. As shown in Figure 2B and C, beyond the optimal temperatures for 

extracellular enzymes and microbes, the rates of enzymatic and microbial reactions no 

longer increase with increasing temperature.  

Our modeling results support that the temperature response of anaerobic organic 

matter decomposition can be described according to the cardinal temperature model 

(Rossol et al., 1993). We account for this result with the limitation of anaerobic organic 

matter decomposition by the fermentation reactions that consume DOC (Fey & Conrad, 

2003; Glissmann & Conrad, 2002; Kwietniewska & Tys, 2014; Morrissey et al., 2014). We 

carried out a sensitivity analysis of the biogeochemical reaction model to evaluate the 

controlling effects of enzymatic and microbial reactions. Figure 8 shows the scaled control 

coefficients computed for the model parameters at different temperatures. Across the 

different temperatures, the control coefficient of the cell-specific maximum rate k of 

fermentation is 106±8%, which indicates that the rate of organic matter decomposition 

varies proportionally with the rate constant of fermentation. The initial biomass 

concentration of fermenting microbes also has a relatively large control coefficient, ~80%, 

at <7 ℃, and decreases gradually to 4% at 35 ℃. The control coefficient of fermentation 

growth yield ranges from 10~30% from 5~15 ℃, and decreases to 3% at 35℃. Other 

model parameters do not control significantly organic matter decomposition. For example, 

the control coefficient of the apparent rate constant kapp,o of the enzymatic reaction ranges 
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from 14% at 5℃ to 3% at 35℃. These results confirm that the anaerobic organic matter 

decomposition is limited by the fermentation reaction of DOC to acetate and H2. Because 

the fermentation reaction responds to temperature variations by following the cardinal 

temperature model, so does the decomposition of SOM.   

 

 

Figure 8. Scaled control coefficients of model parameters at different temperatures 

(oC). Control coefficients are calculated according to equation 16. 

 

4 Concluding Comments 

We explored the temperature sensitivity of anaerobic organic matter decomposition 

using biogeochemical reaction modeling and compared the modeling results to those 

obtained from the Q10 approach. The biogeochemical reaction model presented here was 

constructed based on the catalytic mechanism of organic matter decomposition, a network 

of enzymatic and microbial reactions, and how the kinetics of individual reactions responds 

to temperature variations. The modeling results captured the influence of individual 

network reactions on anaerobic organic matter decomposition, and how the decomposition 
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rates respond to the variations in temperature.  

By applying both the biogeochemical modeling and the Q10 approach to the 

peatlands in the Upper Peninsula of Michigan, USA, a number of differences arise: 

Whereas the Q10 approach treats organic matter decomposition as a black box, 

biogeochemical modeling accounts for the underlying mechanism of organic matter 

decomposition, including the reactions of extracellular enzymes, fermentative microbes, 

and methanogens.  

The Q10 approach builds on the Arrhenius equation that calculates rates of organic 

matter decomposition as an exponential function of temperature. In the biogeochemical 

reaction model, enzymatic and microbial reactions respond to temperature variations by 

following different unimodal functions.     

In contrast to the exponential relationship predicted by the Q10 approach, the 

modeling results show that the temperature response of anaerobic organic matter 

decomposition follows the same pattern assumed for microbial reactions. In particular, 

below the optimal temperature of microbial reactions, the decomposition rates vary almost 

linearly with temperature. 

Our study helps make clear the extent to which the Q10 approach oversimplifies a 

complex biogeochemical process. As a result, the Q10 approach undermines the kinetic 

study of organic matter decomposition: 

By neglecting the dynamics of organic matter decomposition. Most experimental 

studies determine Q10 coefficients from the accumulative CO2 and CH4 productions and the 

duration of the experiments are variable, from a couple of days to over months (Heslop et 

al., 2019; Lupascu et al., 2012). But because the rates of organic matter decomposition can 
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vary with time, the Q10 coefficients obtained by using different incubation times can also be 

different.  

By complicating the rate-temperature relationship of organic matter decomposition. 

As demonstrated by the modeling study here and by previous experimental efforts, the rates 

of organic matter decomposition do not necessarily vary with temperature exponentially. 

As a result, Q10 coefficients are not a constant, and a series of Q10 coefficients would be 

required to describe the rate-temperature relationship over the temperature ranges of 

interest.     

By failing to provide an accurate description of the temperature sensitivity. Based 

on the modeling results, the Q10 approach overestimates the rates of organic matter 

decomposition outside the temperature ranges where Q10 coefficients are determined. The 

errors are most significant in applying the Q10 coefficients determined near the minimum 

temperatures of microbial reactions.  

By overestimating the rates of organic matter decomposition, the Q10 applications 

introduce errors into the flux predictions of carbon cycling and their potential feedbacks to 

global climate.  

Reliable prediction of reaction kinetics should account for catalytic mechanisms. 

The biogeochemical reaction model presented here is limited in that it is constructed for a 

specific field site, and hence does not include reactions that are potentially significant at 

other environments, such as the respiration of external electron acceptors. It does not 

consider complicating physical and chemical factors (i.e., water content, organic matter 

accessibility, and so on) that influence the progress of organic matter decomposition 

(Gershenson et al., 2009, 2009; Wagai et al., 2013). Therefore, our results likely have 
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simplified the temperature response of anaerobic organic matter decomposition. 

Nevertheless, from the dramatic differences between the modeling results and those given 

by the Q10 approach, we can conclude that the Q10 coefficient may not be effective as a 

parameter for quantifying the temperature sensitivity of organic matter decomposition. We 

also suggest that biogeochemical modeling, combined with laboratory incubation 

experiments, can be applied to integrate more realistic description of reaction mechanisms 

into the kinetic study of organic matter decomposition and to uncover the relationship 

between organic matter decomposition rates and the temperature of the environment.   

Data instruction 

The amended thermodynamic database, the input PHREEQC scripts for this research, and 

the compiled dataset of temperature sensitivity of anaerobic CO2 and CH4 production are 

available from Zenodo at https://zenodo.org/record/4480176 (DOI: 

10.5281/zenodo.4480066, and 10.5281/zenodo.4480221). 

https://zenodo.org/record/4480176
https://doi.org/10.5281/zenodo.4480066
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CHAPTER V    ENERGY METABOLISM UNRAVELS THE TRADE-OFF 

BETWEEN ATP FLUX AND ATP YIELD  

 

1. Introduction 

Microbes can generate and utilize adenosine triphosphate (ATP) by catabolism and 

anabolism, respectively, which is also related with ATP flux and ATP yield. Many studies 

have explored the trade-off between rate and yield of microbial energy metabolism (Brown 

et al., 2018; Frank, 2010; Malik et al., 2020; Peña-Villalobos et al., 2020). From 

perspective of thermodynamics, the trade-off of ATP yield and ATP flux rate is caused by 

the application of net free energy, which is divided into biosysnthesis and driving the 

reaction pathway. Therefore, larger energies allocated to produce ATP would lead to 

smaller energies for driving the pathway (Pfeiffer and Bonhoeffer 2002). Specifically, 

under energetic limitation, the rate of cell growth and the biomass yield are determined by 

the allocation for anabolism and catabolism (Bauchop & Elsden, 1960; Dykhuizen et al., 

1987; Helling, 2002). There might exist a universal principle for energy metabolism that 

due to the trade-off in thermodynamics, microbes can select a strategy conditions.  For 

instance, Pfeiffer et al. (2001) hypothesized that E coli tended to use the fermentation 

pathway with high ATP yield and low rate when competing for limited energy resources. 

Du et al. (2018) reported that microbes like E coli prefer to choose thermodynamic-

favorable or cofactor-use-efficient pathways (i.e. high ATP yield under anaerobic 

conditions).  

Microbes harness energies from the ambient environment and utilize them to 

maintain their functions of biological molecules and structures (T. Hoehler et al., 2009). 
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Despite previous studies have noted a thermodynamic trade-off between the rate and 

efficiency of growth in heterotrophic organisms, these traits have never been found and 

analyzed from the mechanistic driven cell metabolism in Archaea. Methanogens are 

recognized as one of the earliest species on the planet, specifically acetoclastic 

methanogens is an important player, accounting for approximately two thirds of the total 

annual bio-methane production (Berghuis et al., 2019). Methanogens live close to the 

thermodynamic limit (Thauer et al., 2008). To cope with this problem, they have evolved 

elaborate mechanisms of energy conservation that use both protons and sodium as the 

coupling ions to produce proton motive force. Their energy metabolism help them be 

outcompeted by other microbial respiration processes. Currently, it is still not abundantly 

clearly how acetoclastic methanogens conserve enough energy under optimal laboratory 

conditions, let alone in competitive natural environments. The acetoclastic methanogenesis 

pathway is strictly anaerobic, the net free energy available for growth is small due to the 

consumption of 1 or 2 ATP for activation of acetate (Prakash et al., 2019). For the energy 

metabolism of methanogens, membrane bound enzymes play vital bioenergetic roles in 

serving on electron transport chains for generating proton/sodium motive forces (Chadwick 

et al., 2018). Therefore, it is necessary to explore and illustrate the underlying energy 

conservation mechanisms of acetoclastic methanogens from enzymatic levels.  

Here, we took acetotrophic methanogen Methanosarcina barkeri as an example to 

study the energy metabolism via building an enzymatic kinetic model. We assume that 

methanogens optimize their enzyme concentrations and proton/sodium translocation 

nubmers to achieve the maximal growth rates. In addition, from an energetic perspective, 

we assume that the proton/sodium pump out numbers of membrane-bounded enzymes are 
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not integers but fractions. Methanosarcina barkeri can employ energy converting enzymes 

such as heterodisulfide reductase (HDR), F420 dehydrogenase (FPO), Methionine synthase 

(MTR), Acetyl-CoA synthetase (ACP), methanophenazine-dependent hydrogenase (VHT), 

energy-converting ferredoxin-dependent hydrogenases (ECH) to produce proton motive 

force to generate ATP. We accounted these enzymes into the kinetic model, and obtained 

the optimal ATP yield and enzyme concentrations by maximizing the growth rate. Model 

simulation results were validated with those results achieved in vitro. In addition, we 

analyzed the importance of each membrane-bound enzyme to growth rates, ATP flux as 

well as ATP yield. We also conducted a simulation to find out the variation trend in ATP 

yield with different available energy ranging from 8~70 kJ·mol-1.  

2. Material and methods 

2.1 Enzymatic kinetic model 

In the enzymatic kinetic model, we firstly built the enzymatic reaction networks of 

methanogenesis. Here we only focus on the electron transport chain of methanogenesis, 

and do not consider the enzymatic reactions in the methyl-group chain. As shown in Figure 

1, phosphotransacetylase (PTA) and acetate kinase (ACK) involve into the activation of 

acetate to acetyl coenzyme A in the first step of acetoclastic methanogenesis of 

Methanosarcina barkeri (Singh-Wissmann & Ferry, 1995). The activation of 1 acetate for 

Methanosarcina species consumes 1 ATP (Jetten et al., 1989). Acetyl-CoA is then split by 

acetyl-CoA decarbonylase/synthase (ACDS) into methyl group and producing CO2, 

respectively. Oxidation of reduced ferredoxin (Fdred) ECH generates H2 inside the cell, 

then H2 diffuses across the cell membrane to the VHT active site, where it is oxidized and 

electrons are used to reduce methanophenazine (MPred). Then the electron flows go through 
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HDR, MTR, coupled with MCR to produce CH4. Portions of the methanogenic pathway 

that are not required for aceticlastic methanogenesis, including the use of Frh, but which 

can produce metabolites to support acetoclastic methanogenesis.  
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Figure 1 Acetoclastic methanogenesis network of Methanosarcina barkeri. Green 

frames represents the membrane, blue rectangular is the cell cytoplasm. Orange and blue 

oval are the methyl-group enzymes and membrane-bound enzymes, respectively.  

 

In this study, we assume that membrane-bound enzymes are adjustable 

proton/sodium pump, it translocates 0~2 protons during acetoclastic methanogenesis. We 

split enzymatic reactions with electrons pumped out/in to two reactions. One reaction is 

without proton/sodium involved, the other reaction is written as full proton/sodium pumped 

out/in. Therefore, the coefficient of proton/sodium translocated per pair of electrons by 

membrane-bound enzymes are no longer fixed, but changed based on the fractions of 
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enzymes participated in the two reactions. The rates of enzymatic reactions are computed 

using reversible Michaelis-Menten equation. 

i i+ i M T[E ]r k F F   
                                                                     (1) 

where ki+ and [Ei] are the maximum specific rate (mol·g-1·s 1) and the 

concentrations for enzyme i in the unit of percentage of proteins, respectively. FM is the 

metabolite factor, 

S

S
M

S PS

S P

1

m
K

F
m m

K K



 


                                                             (2) 

and FT is the thermodynamic factor,  

T 1 exp
f

F
RT

 
   

 
                                                                  (3) 

f is the thermodynamic drive, which is calculated by using equation 4. The ATP 

yield is calculated using equation 7.  

A Cf G G                                                                      (4) 

AG is calculated using eq 5 and eq 6 for redox reactions and non-redox reactions, 

respectively.  

 ( )A a dG nF E E                                                                           (5) 

lnA

eq

Q
G RT

K
                                                                         (6) 

Where n is the moles of electrons transferred in the reaction. F is Faraday constant 

(96485 C mol-1).   

Conserved energy is shown in equation 7, 
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C p PG G                                                                            (7) 

Where p  is the ATP yield number, which is determined by the ratio of net ATP 

flux with MCR flux. Here we take PG as the value of 45 kJ·mol-1. This enzymatic kinetic 

model can provide the optimized enzyme concentrations of Methanosarcina barkeri. In 

addition, we also adjusted the number of proton/sodium produced by membrane-bound 

enzymes in acetoclasstic methanogesis ranging from 0 to 2 with 0.1 step, to find out the 

optimized proton translocation numbers where methanogens can achieve maximal growth 

rate. 

2.2 Thermodynamic efficiency 

Methanogens conserves energy by pumping out proton/sodium from membrane to 

generate proton motive forces. Part of energy is used for complex biosynthesis, the rest of 

energy drives the methanogenesis pathway. Adjusting the proton numbers will affect the 

ATP flux and yield at the same time.  

The thermodynamic efficiency   can be represented as follows, 

a a

c c

J G

J G


 



                                                                     (8) 

Where Ja and Jc are the anabolic flux and catabolic flux, respectively. The rate of 

substrate consumption equals the sum of the rate of biomass formation and catabolic 

formation. 

2.3 Data collection  

The kinetic parameters including rate constant k, KM of enzymes and corresponding 

metabolites are compiled from BRENDA database of Methanosarcina barkeri cultivated 
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with acetate, pH equals to 7, at temperature of 37℃. Enzyme kinetic models is 

implemented by using COPASI 4.27.  

3. Results 

3.1 Model simulation and validation 

We validated the metabolic model by simulating the methanogenesis of M. barkeri 

under typical laboratory culturing conditions (i.e.50 mM acetate, 37 oC, and pH = 7). The 

optimized enzyme concentrations are shown in Figure 2A. For enzymes in the cytoplasm, 

MCR is the most abundant with concentrations around 12% of the total protein. Other 

enzyme concentrations of ACK, PTA and ACDH and most membrane-bound enzymes are 

about 1~2% of the total protein. Compared with the enzyme concentrations obtained from 

laboratory results, our model simulation results can capture the distribution of enzymes of 

actoclastic methanogenesis of Methanosarcina barkeri (Figure 2B).  

The simulated acetoclastic methanogenesis rate is 1.74 10-6 mol·g-1·s-1, which is 

close to the methane production rate of Methanosarcina barkeri using acetate in vitro 

(Clarens & Moletta, 1990; Rajoka et al., 1999). Production of H2 concentrations at steady 

state of acetoclastic methanogenesis is approximately 7.05 10-7 mol·L-1, within the range 

of laboratory results (i.e.  1.23 10-7 ~7.09 10-7 mol·L-1, Lovley and Ferry, 1985). 
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Figure 2 Simulated enzyme concentrations (A), comparison with enzyme concentrations 

in vitro (B) and proton/sodium numbers translocated by membrane bound enzymes (C), 

as well as monod fitted growth rate against acetate concentrations. In panel A, the orange 

and purple bars are the enzyme in electron transport chain and carbon chain, respectively. 

In panel B, the blue dotted line is the 1:1 ration slope.  

3.2 Proton translocation numbers of energy converting enzymes 

The model simulation results also gave the optimized proton/sodium translocation 

numbers of membrane-bound enzymes (Figure 2C) when Methaosarcina barkeri achieving 

the maximal growth rate. Figure 2C shows that energy-conserving membrane-associated 
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enzymes including FPO, HDR, MTR and VHT can function at their full efficiency with 

pumping out 2 protons/sodiums. Whereas, ACP can only pump in 0.3 protons due to that 

ACP reaction consumes the proton motive force. ECH, a H2-evolving enzyme, belongs to 

the group of [NiFe] hydrogenase (Schoelmerich & Müller, 2019) that catalyzes the 

oxidation/reduction of ferredoxin coupled to H2 reduction/oxidation. The optimized 

translocation number of ECH for the first time is about 0.3; meanwhile H2 concentration is 

1 10-8 mol·L-1, which is relative lower than the laboratory results. Thus we sweep the 

proton translocation numbers of ECH to find the best value where H2 concentration is close 

to the laboratory results. Figure 2C shows that the ideal proton translocation number of 

ECH is 0, indicating ECH reaction does not pump out protons. 

When we adjusted the proton translocation numbers, the results show that all 

membrane-bounded energy converting enzymes can function to produce proton motive 

force. Despite the individual proton/sodium numbers may change a little, the total 

proton/sodium translocation numbers keeps constant of 7.5 per methane produced.  

3.3 The influence of proton/sodium translocation numbers on ATP flux and yield 

To explore at what extent proton/sodium translocation numbers affect the growth 

rate of Methanosarcina barkeri, we sweep the proton/sodium numbers of each membrane-

associated enzyme. As shown in Figure 3, increased proton/sodium translocation numbers 

by all enzymes except ACP can enhance the ATP yield. On the contrary, elevated 

proton/sodium translocation numbers of ACP results in decreased ATP yield and increased 

ATP flux. This is possibly caused by ACP reaction is endergonic, which invests the 

electrochemical potential by translocating protons into the cytoplasm (Welte et al., 2010). 

In addition, increases in the proton/sodium translocation numbers of ECH, MTR, HDR, 
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and VHT reduce the ATP flux (Figure 3). The opposite trends for ATP flux and ATP yield 

suggest a trade-off between rate and yield in energy metabolism of methanogen. For FPO 

reaction, the variation trends in ATP flux and MCR flux are not significant. This is possibly 

due to that FPO reaction is not directly contribute to the MCR reactions or redox potential 

chains. As we mentioned in Chapter II, MCR reaction is the last and key step for methane 

production in all methanogenesis pathways. Therefore, reactions affecting the MCR 

reactions are potentially important factors in energy metabolism of methanogenesis. 

Figure 3 also shows that variations in proton translocation numbers of ECH highly 

affect the ATP yield, increasing from 0.4 to 0.9. At the same time, ATP flux shows highest 

value with changes in sodium translocation numbers of MTR. Metabolic control analysis 

also suggests that ECH and MTR enzyme reactions are dominating in determining the 

growth rate. MTR transfers the methyl group from the CH3-H4SPT to coenzyme M, then 

establishes a sodium-motive force across the membrane. MCR then reduces methyl-

coenzyme M to produce methane through using coenzyme B as an electron donor. The 

established disulfide bond between these coenzymes is then broken again by HDR and 

VHT (Berghuis et al., 2019). Thus, MTR reaction can directly affect the metabolites of 

MCR reaction, further affecting the growth rates. ECH reaction affects the growth rates by 

influencing the redox potential through the electron transport chain. 
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Figure 3 Impact of proton/sodium translocation numbers on ATP flux rate and ATP yield 

of ACP, ECH, MTR, FPO, HDR, and VHT enzymes. 

 

Figure 4 Impact of proton/sodium translocation numbers of ACP, ECH, MTR, FPO, 

HDR, and ECH on growth rates of Methanosarcina barkeri 
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Growth rate of Methanosarcina barkeri is determined by the difference between 

total ATP flux and (acetate kinase) ACK enzymatic flux, i.e the net ATP flux. Therefore, 

the growth rate did now show exactly the same pattern with ATP flux or MCR flux with 

variations in proton/sodium translocation numbers. Consistent with Figure 2C, Figure 4 

shows the maximal growth rate at specific proton/sodium translocation numbers. Different 

with other energy conserving enzymes, growth rates decreased with proton numbers 

pumped by ECH. This can be explained by the maximal redox potential of H2/H
+ without 

pumping out protons. 

3.4 Adaptation of ATP yield to different ranges of available Gibbs energies 

 

Figure 5 Variations in ATP yield of Methanosarcina barkeri against with ambient 

available energies. 

 

We assume that methanogens adapt to limited energy resources by lowering their 
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ATP yield to larger the thermodynamic drives to boost the methanogenesis. We randomly 

select the concentrations of chemical compounds including acetate, bicarbonate and 

methane to obtain different available energy in the environment ranging from 8 to 80 

kJ·mol-1.  Then we ran the optimization model of acetoclastic methanogenesis to find the 

optimized ATP yield. As shown in Figure 5, changes of optimized ATP yield shows a 

similar trend in equation 9 of Chapter III, further proving the hypothesis in perspective of 

cell metabolism. This results demonstrates that at thermodynamic limitation environment, 

microbes tend to lower the anabolism flux and contribute more to catabolism to get a 

maximal growth rate. When the available energy can support the growth of microbes, the 

ATP yield will be a constant.   

4. Discussion 

The simulation in our study challenges the current paradigm of energy conservation 

by Methanosarcina via chemiosmosis. Chemiosmosis conserves energy by translocating 

ions across the membrane and building electrochemical potential. Current models often fix 

the stoichiometry of proton/sodium translocation as integers. Specifically for the study on 

methanogenesis, many studies have reported that the proton translocation number of ECH 

is 2 protons per pair of electrons (Buckel & Thauer, 2013; Kaster et al., 2011; Thauer et al., 

2008). However, these values are not always fixed constants. For example, Welte et al., 

(2010) reported that the ECH participates energy conservation of methanogenesis by the 

translocating1 proton from their inhibitor studies. Previous simulation model of 

Methanosarcina barkeri (iAF692) also applied 1 proton per pair of electrons to enable the 

model to generate consistent simulation results with experimental data for methanogen 

growing on substrates such as methanol and acetate (Feist et al., 2006; Thor et al., 2017). 
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The stoichiometry of ECH reaction was later updated in iMG746 to 2 protons/2e- 

(Gonnerman et al., 2013; Thor et al., 2017). Similar with ECH, the translocation 

stoichiometry of other membrane associated enzymes also changes. Results of 

Methanosarcina Mazei showed that FPO exhibited a stoichiometry of 0.9 H+ translocated 

per two electrons transferred (Bäumer et al., 2000). Benedict et al. (2012) tested their 

hypothesis of proton pumping out numbers of rhodobacter nitrogen fixation (RNF) and 

MRP of Methanosarcina acetivorans by conducting sensitivity analysis of proton/sodium 

translocation numbers in light of experimental data. Their results showed that the best 

match occurred when RNF was set to pump 3 Na+/2 e- and when MRP was set to pump 1 

H+/Na+.  

Methanogens, like all living organisms, use energy derived from metabolic 

processes to drive growth and maintain cellular functions. They require ion gradient-

dependent ATP generation as their principal energy conservation mechanism. The energy 

metabolism analysis of acetotrophic methanogenesis in our study unravels that 

methanogens adapt to the ambient environment by adjusting the ATP yield to drive the 

methanogenesis pathways. This adjustment is highly dependent on the ambient available 

energy. When the environment energy is high enough for supporting the microbial growth, 

ATP yield will be a constant. Despite we focus on acetoclastic methanogenesis, we can 

also apply this approach to other microbes to test if the trade-off between ATP flux and 

ATP yield existed in other methanogenesis pathways or other microbial reactions under 

different thermodynamic conditions. 

 Understanding how microbes conserve energy at different thermodynamic 

environment is a fundamental open question in field of biogeochemistry. To systematically 
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explore how energy flows distribute to catabolism and anabolism as well as the strategies 

for methanogens to conserve energy under different available energy conditions, we 

applied advanced optimization algorithms and enzymatic kinetic parameters to acetoclastic 

methanogenesis metabolism. Specifically, we searched for the detailed proton/sodium 

translocation numbers by individual membrane-bound enzymes, and analyzed their 

corresponding contributions. Our results suggest that the stoichiometry of proton/sodium 

translocation per pair of electrons can be adjusted to achieve maximal growth rate. The 

model simulation results also show that variations in ATP yield increase with elevated 

available Gibbs energy. In addition to helping understand energy metabolism of 

methanogens, our approach could assist in explaining the species evolution under limited 

energy.  
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APPENDICES 

 

APPENDIX A 

CHAPTER II SUPPLEMENTARY INFORMATION AND FIGURES 

Appendix A is the supplementary data and information for Chapter II. There are five 

supporting figures and data. 

 

CO2/CHO-MFR (-0.506)

Fdox/Fdred (-0.466)

H+/H2 (-0.319)

MP/MPH2 (-0.179)

Hsfd/CoM+CoB (-0.039)

CH3CoM/CH4 (0.128)

F420/F420H2

(-0.325)

CH2=/CHH4SPT
(-0.325)

CH3-/CH2=H4SPT
(-0.336)

 
 

 

 

Figure S1 The kinetic model reproduces independent experimental observations of M. 

barkeri laboratory cultures. a. Stoichiometric coefficients of pseudo-biomass reaction 
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derived by performing FBA with the M. barkeri iMG746 genome-scale metabolic model 

and from laboratory observations. b. Optimized proteome fractions of methanogenesis 

enzymes. c. Optimized proteome fractions of methanogenesis enzymes are in agreement 

with those determined from in vitro cell-free lysates. Solid line shows the 1:1 ratio; shaded 

area covers up to 2-fold deviations from the 1:1 ratio. Pearson correlation is rp[15] = 0.97 

(p<0.01). d. Electron fluxes from the oxidation to the reduction of methyl-group in 

methanol. The electron flux via the redox couple of H+/H2 accounts for 86.4% of the total 

electron fluxes, while the redox couple F420/F420H2 accounts for the remaining 13.6%, 

consistent with the dominant role of hydrogen cycling detected by laboratory experiments. 

Values in parentheses show the reduction potentials (V); arrow widths indicate the 

magnitudes of the fluxes relative to the flux to the reduction of methyl-coenzyme M to 

methane (i.e., 1.74×1018 mol·s1). The similar reduction potential of H+/H2 and 

F420/F420H2 agrees with laboratory observations. e. Specific growth rates vary 

hyperbolically with ambient methanol concentrations. Data points are the modeling results; 

solid line represents the results of the least-square fitting to the Monod equation; the mean 

square error of the fitting is 1.8×105. f. ~84% of metabolites have concentrations greater 

than the respective Michaelis constants Km, a pattern that has been detected in E. coli. 

Solid line shows the 1:1 ratio; shaded area covers up to tenfold deviations from the 1:1 

ratio. g. Gibbs free energy G is unevenly distributed among enzyme reactions, another 

pattern detected in E. coli. h. Comparison of H2 concentration, membrane potential, and 

growth kinetic parameters predicted by the kinetic model to those determined by laboratory 

experiments. Laboratory data are compiled in Supplementary Table.  
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Figure S2 Optimal proteome fractions of methanogenesis enzymes at different methanol 

concentrations of acclimation. 
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Figure S3 Expressions of methanogenesis enzymes are subject to the constraints of proteome 

partition and ribosome allocation. a. Variations with methanol concentration of acclimation in 

the optimal proteome fractions of the methanogenesis (M) and growth-related (G) sectors. b. 

Tug-of-war between the M and G sectors at acclimation concentration of 1 M. Lines are 

calculated according to equation 15 and 16; max is the sum of the proteome fractions of the M 

and G sectors; M,op and G,op represent the optimal proteome fractions of the M and G sectors, 

respectively; at these optimal fractions, growth rate is maximized and the fluxes through the 

enzyme reactions of methanogenesis balance those through biomass synthesis. c. Tug-of-war 

between the M and G sectors at acclimation concentration of 100 mM. d. Trade-off between the 

cost and benefit of ribosome allocation at 1 M methanol of acclimation. The benefit function is 

constructed by sweeping the proteome fraction of Mta and then optimizing the rest 

methanogenesis enzymes. The cost function is calculated according to equation 19. Mta,op is the 

optimal proteome fraction of Mta that balances the cost and benefit of ribosome allocation; op 
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and o represent the optimal growth rates with and without balancing the cost and benefit; e. 

Trade-off between the cost and benefit of allocating ribosomes to the synthesis of Mcr at 100 

mM methanol of acclimation. Mcr,op is the optimal proteome fraction of Mcr. 

102 mM
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10-3
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Figure S4 Variations with ambient methanol concentration in scaled control coefficients of 

methanogenesis enzymes. Lines are the results of performing MCA with the kinetic models 

constructed for different methanol concentrations of acclimation; the coefficients of Mcr and Mta 

are shown in figure 3; the coefficients of AcDh, Ftr, GerN, Mtd are within the range of 103 and 

are not shown.
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Figue S5 The reaction of Mcr displays zero-order kinetics at very high methanol 

concentrations, whereas Mta reaction shows first-order kinetics at very low methanol 

concentrations. a. Variations in the concentrations of methyl-coenzyme M and coenzyme 

B, the Gibbs free energy change of Mcr reaction, and the reaction velocity VMcr per g 

Mcr. At very high methanol concentrations, Mcr reaction is zero-order with respect to 

methanol concentration; kMcr,app is the apparent zero-order rate constant. b. Variations 

with methanol concentrations in coenzyme M concentration, the Gibbs free energy 

change of Mta reaction, and the reaction velocity VMta per g Mta. At very low methanol 

concentrations, Mta reaction is first-order with respect to methanol concentration. The 

data points are the modeling results of the kinetic models calibrated for the different 

methanol concentrations of the acclimation; TcoM and Tcob are the intracellular 

concentrations of coenzyme M and B moieties, respectively.  
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APPENDIX B 

CHAPTER III SUPPLEMENTARY INFORMATION AND FIGURES 

This document describes the assumptions made in constructing the numerical model of 

reactive transport in sediments shown in Figure 4 of Wu, Guthrie, and Jin, “Bridging the 

gap: predicting microbial reaction rates in natural environments from laboratory 

observations.” 

 The transport of a reacting component A — which might be acetate, bicarbonate, and 

methane — can be described by the equation  

 
2 2

A A A A A
A 2 2

dC C C C r
D V

dt xx y 

   
    

  
  (1) 

Here, concentration CA is carried in mol per cm3
 
fluid, DA

 
is the diffusion coefficient 

(cm2
 

s1), x and y is the length and width of the sediment bed (cm), rA is the rate (mol 

cm3 s1) at which A is added to (positive) or removed from (negative) the pore fluid by 

methanogenesis reactions, expressed per cm3 of fluid-saturated sediment, and  is 

sediment porosity.  

We considered a sediment bed of 40 cm wide and 80 cm long, divided into 300×800 

nodal blocks. Fluid containing 10 mmolal acetate, 20 mmolal bicarbonate, and 0.2 μmolal 

methane flows from the left to the right of the sediment bed at a velocity of 0.125 m d1. 

We took temperature in the sediments to be 25°C, set porosity to 0.9, and fixed pH to 7. 

We set a diffusion coefficient of 6×106
 
cm2

 

s1. We seeded each nodal block with an 

initial biomass concentration of 1.00.5×108
 
g cm3

 
for both Methanosarcina and 

Methanosaeta. To account for the variations in the reported kinetic parameters, we assign 
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the parameter values by sampling randomly from the 95% confidence intervals of the 

laboratory values. We set the initial concentrations for the reacting species same as those 

in the fluid that recharge the sediment bed from the left, including. Table X lists the 

values assumed in the simulation for the kinetic parameters. 
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APPENDIX C 

CHAPTER IV SUPPLEMENTARY INFORMATION AND FIGURES 

Introduction  

[This supporting information contains one text, 14 figure, and 4 tables as well as a 

dataset, which will upload separately as ds01. The dataset is a collection of reported 

temperature sensitivity of anoxic methane (sheet1) and carbon dioxide production 

(sheet2); corresponding references are listed in sheet 3.] 

Text S1. Rate equation of extracellular enzymes 

Following the Michaelis-Menten equation, the reaction rate rE of extracellular 

enzymes [mol(kg water)1s1, or simply molkg1s1] is 

SOM
E E

SOM SOM

[E]
m

r k
m K

  


                                   (1) 

where kE is the rate constant (s1), [E] is enzyme concentration (the weight (g) of 

extracellular enzyme per kg water (gkg1)), mSOM is the mole amount of SOM per kg 

water (or molkg1), and KSOM is the Michaelis constant. Extracellular enzymes are 

synthesized by fermenting microbes. We assume that the rates Er


 of enzyme synthesis 

depend linearly on the biomass concentrations of fermenting microbes, but are inhibited 

by the accumulation of DOC. Accordingly, we calculate the enzyme synthesis rates 

according to 

 DOC
E XE F o

DOC

[X ] max 1 ,0
m

r k
m

  
    

 
  (2) 
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where kXE is the rate constant, [XF] and mDOC are the concentrations of fermenter biomass 

and DOC, respectively, and 
o

DOCm  is the concentration of DOC above which fermenters 

stop synthesizing extracellular enzyme. At the same time, enzymes undergo degradation 

and spontaneous decay, which reduces the concentrations,  

 E E [E]r D     (3) 

Here Er


 is the rate of decay, and DE is the decay coefficient. We assume the synthesis 

and decay balance each other, or the rate of enzyme synthesis takes the same value as the 

rate of enzyme attrition. As a result, enzyme concentration [E] can be calculated 

according to 

DOC
F o

DOC

[E] [X ] max 1 ,0
m

c
m

 
    

 
,                               (4) 

where c = kXE
1

ED
, a dimensionless coefficient that represents the turnover rate of 

extracellular enzyme.  

In the laboratory experiments of Ye et al. (2016), the amount of SOM 

decomposed by microbes was relatively small, <1%, compared to the total SOM. In their 

reactors, they added 0.7 g dry soil to make 24 g slurries. Assuming an organic carbon 

content of 42% (Bridgham et al., 1998), the concentration of SOM in the slurry is 

approximately 1.68 molal. During the incubation, microbes consumed about 0.3 mM 

SOM, which amount to ~1‰ of SOM at the beginning of the incubations. Therefore 

changes in SOM concentrations are relatively insignificant.  

Substituting equation 4 to 1 and by neglecting the impact of SOM concentrations,  

 DOC
E app F o

DOC

[X ] max 1 ,0
m

r k
m

 
    

 
  (5) 
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where kapp is the apparent rate constant,  

SOM
app E

SOM SOM

m
k k c

m K
  


.                                                          (6) 

 

Figure S1. Variations with temperature in the logarithm of equilibrium constant (log K) 

of fermentation (eq. 17), acetoclastic (eq. 6) and hydrogenotrophic methanogenesis 

reaction (eq. 7). The log K values are calculated using software package Supcrt92 

(Johnson et al., 1992).  

 

Figure S2 Tmin = -10℃, parameter estimation by fitting the modeling results to the 

variations with time in the concentrations of DOC (A, F, K), acetate (B, G, L), H2 (C, H, 
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M), CO2 (D, I, N), and CH4 (E, J, O) in the experiments of organic matter decomposition 

with glucose amendment at 7, 15 and 25℃. Data points are the experimental observations 

of Ye et al. (2016); error bars show the 95% confidence interval of the observations; solid 

lines are the simulation results; shaded areas are the simulation results by using the 

minimum and maximum initial biomass concentrations. 

 

Figure S3 Application of the calibrated biogeochemical reaction model where Tmin = -

10℃ to the experiments of organic matter decomposition without glucose amendment at 

7, 15 and 25℃. Data points are the concentrations of DOC (A, F, K), acetate (B, G, L), 

H2 (C, H, M), CO2 (D, I, N), and CH4 (E, J, O) reported by Ye et al. (2016); error bars 

show the 95% confidence interval of the observations; solid lines are the simulation 

results; shaded areas are the simulation results by using the minimum and maximum 

initial biomass 
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concentrations..

 

Figure S4 Tmin = -5℃, parameter estimation by fitting the modeling results to the 

variations with time in the concentrations of DOC (A, F, K), acetate (B, G, L), H2 (C, H, 

M), CO2 (D, I, N), and CH4 (E, J, O) in the experiments of organic matter decomposition 

with glucose amendment at 7, 15 and 25℃. Data points are the experimental observations 

of Ye et al. (2016); error bars show the 95% confidence interval of the observations; solid 

lines are the simulation results; shaded areas are the simulation results by using the 

minimum and maximum initial biomass concentrations. 
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Figure S5 Application of the calibrated biogeochemical reaction model where Tmin = -5℃ 

to the experiments of organic matter decomposition without glucose amendment at 7, 15 

and 25℃. Data points are the concentrations of DOC (A, F, K), acetate (B, G, L), H2 (C, 

H, M), CO2 (D, I, N), and CH4 (E, J, O) reported by Ye et al. (2016); error bars show the 

95% confidence interval of the observations; solid lines are the simulation results; shaded 

areas are the simulation results by using the minimum and maximum initial biomass 

concentrations. 
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Figure S6 Tmin = 5℃, parameter estimation by fitting the modeling results to the 

variations with time in the concentrations of DOC (A, F, K), acetate (B, G, L), H2 (C, H, 

M), CO2 (D, I, N), and CH4 (E, J, O) in the experiments of organic matter decomposition 

with glucose amendment at 7, 15 and 25℃. Data points are the experimental observations 

of Ye et al. (2016); error bars show the 95% confidence interval of the observations; solid 

lines are the simulation results; shaded areas are the simulation results by using the 

minimum and maximum initial biomass concentrations. 
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Figure S7 Application of the calibrated biogeochemical reaction model where Tmin = 5℃ 

to the experiments of organic matter decomposition without glucose amendment at 7, 15 

and 25℃. Data points are the concentrations of DOC (A, F, K), acetate (B, G, L), H2 (C, 

H, M), CO2 (D, I, N), and CH4 (E, J, O) reported by Ye et al. (2016); error bars show the 

95% confidence interval of the observations; solid lines are the simulation results; shaded 

areas are the simulation results by using the minimum and maximum initial biomass 

concentrations. 
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Figure S8 Topt= 30℃, parameter estimation by fitting the modeling results to the 

variations with time in the concentrations of DOC (A, F, K), acetate (B, G, L), H2 (C, H, 

M), CO2 (D, I, N), and CH4 (E, J, O) in the experiments of organic matter decomposition 

with glucose amendment at 7, 15 and 25℃. Data points are the experimental observations 

of Ye et al. (2016); error bars show the 95% confidence interval of the observations; solid 

lines are the simulation results. 
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Figure S9 Topt= 33℃, parameter estimation by fitting the modeling results to the 

variations with time in the concentrations of DOC (A, F, K), acetate (B, G, L), H2 (C, H, 

M), CO2 (D, I, N), and CH4 (E, J, O) in the experiments of organic matter decomposition 

with glucose amendment at 7, 15 and 25℃. Data points are the experimental observations 

of Ye et al. (2016); error bars show the 95% confidence interval of the observations; solid 

lines are the simulation results. 
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Figure S10 Topt= 36℃, parameter estimation by fitting the modeling results to the 

variations with time in the concentrations of DOC (A, F, K), acetate (B, G, L), H2 (C, H, 

M), CO2 (D, I, N), and CH4 (E, J, O) in the experiments of organic matter decomposition 

with glucose amendment at 7, 15 and 25℃. Data points are the experimental observations 

of Ye et al. (2016); error bars show the 95% confidence interval of the observations; solid 

lines are the simulation results. 
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Figure S11 Topt= 39℃, parameter estimation by fitting the modeling results to the 

variations with time in the concentrations of DOC (A, F, K), acetate (B, G, L), H2 (C, H, 

M), CO2 (D, I, N), and CH4 (E, J, O) in the experiments of organic matter decomposition 

with glucose amendment at 7, 15 and 25℃. Data points are the experimental observations 

of Ye et al. (2016); error bars show the 95% confidence interval of the observations; solid 

lines are the simulation results. 
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Figure S12 Parameter estimation by fitting the Arrhenius equation of microbial reactions 

to the variations with time in the concentrations of DOC (A, F, K), acetate (B, G, L), H2 

(C, H, M), CO2 (D, I, N), and CH4 (E, J, O) in the experiments of organic matter 

decomposition with glucose amendment at 7, 15 and 25℃. Data points are the 

experimental observations of Ye et al. (2016); error bars show the 95% confidence 

interval of the observations; solid lines are the simulation results; shaded areas are the 

simulation results by using the minimum and maximum initial biomass concentrations. 
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Figure S13 Application of the calibrated biogeochemical reaction model from Arrhenius 

equation to the experiments of organic matter decomposition without glucose amendment 

at 7, 15 and 25℃. Data points are the concentrations of DOC (A, F, K), acetate (B, G, L), 

H2 (C, H, M), CO2 (D, I, N), and CH4 (E, J, O) reported by Ye et al. (2016); error bars 

show the 95% confidence interval of the observations; solid lines are the simulation 

results; shaded areas are the simulation results by using the minimum and maximum 

initial biomass concentrations. 
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Figure S14 Variations in methane production rate with temperature (A) and changes of 

Q10 from simulation results from Arrhenius equation with temperature (B). In panel A , the 

green line is simulation result from Arrhenius equation, and black line is the simulation 

result from Cardinal temperature equation. 

Table S1. One-way ANOVA analysis of the effect of climate zones on the Q10 of methane 

production 

 df sum_sq mean_sq F PR(>F) 

treatments 2 156.6137 78.30686 3.637274 0.028393 

Residual 170 3659.929 21.52899 - - 

 

Table S2. Pairwise comparison of the Q10 of methane production across climate zones 

 A B mean(A) T p-tukey hedges 

0 cold_ch4 temperate_ch4 5.037931 1.908315 0.136901 0.319672 

1

  

cold_ch4 warm_ch4 5.037931 -0.90592 0.647247 -0.21473 

2 temperate_ch4 warm_ch4 3.547 -2.38001 0.046074 -0.53449 

 

Table S3. One-ANOVA analysis of the effect of climate zones on the Q10 of anaerobic 

CO2 production 

 df sum_sq mean_sq F PR(>F) 
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treatments 2 176.023 88.01149 3.899577 0.023248 

Residual 105 2369.797 22.5695 - - 

 

Table S4. Pairwise comparison of the Q10 of anaerobic CO2 production across climate 

zones 

 A B mean(A) T p-tukey hedges 

0 cold_co2 temperate_co2 5.01537 2.018352 0.108836 0.446239 

1 cold_co2 warm_co2 5.01537 2.485633 0.035235 0.622295 

2 temperate_co2 warm_co2 2.87625 0.644209 0.77507 0.175832 
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