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DISSERTATION ABSTRACT

Francesco Arceri

Doctor of Philosophy

Department of Physics

September 2021

Title: Amorphous Structure Controls Mechanical Properties of Jammed Solids

A vast variety of physical systems falls within the description of amorphous solids.

From glasses to grains, all of these materials share a disordered structure of their constituents.

Understanding the nature of the mechanical properties of such systems is a conundrum which

still poses challenging open questions. Recent experimental advances have led to the conclusion

that the preparation of the system controls its stability against mechanical perturbations. In

particular, amorphous solids can be classified as marginally stable or highly stable with respect to

external perturbations. In this work I show that the amorphous structure, whether marginally or

highly stable, uniquely controls the mechanical response of amorphous solids. First, I show that

thermal glasses under very high pressure share the same mechanical and vibrational properties

of athermal granular packings near the onset of rigidity. Secondly, I investigate the role of

mechanical stability in the context of rheology, in particular with respect to cyclic shear training,

and show that jammed solids are able to store an information of the repeated shear deformation

only if the system, or a portion of it, is marginally stable.

This dissertation includes previously published and unpublished coauthored material.
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CHAPTER I

INTRODUCTION

When we think about a solid, the first thing that comes to mind is a rigid material where

particles of the same shape are arranged in an ordered structure, in other words a crystal. Is this

enough to describe all the solid systems around us? Surely, the answer is no. Despite real life

crystalline solids are characterized by a variety of structural defects, countless physical systems

do not feature a microscopic ordered structure but rather a disordered arrangement of their

constituents. This class of materials falls under the definition of amorphous solids and the study

of the mechanical properties of such systems is the object of this dissertation.

Examples of amorphous materials can be easily found in everyday life: from the sand on

the ocean shore to the bubbles in the foam of dish soap, from window glass to flooring resins

and many others. All of these materials are the result of a fast cooling or compression of a fluid,

where particles had not had enough time to arrange into an ordered structure. Although this

may sound reproducible only in an experimental laboratory, there is a pretty straightforward

example which I invite the reader to think about: glass-blowing. Statues and ornaments made of

glass are produced by blowing a molten material and shaping it to the desired look. A mixture of

lead and silica glass is heated in a furnace at extremely high temperature until the glass becomes

liquid. The glass-blower collects the heated glass through a pipe and blows air which expands

the glass compound. This process needs to be quick since out of the furnace the glass rapidly

solidifies. For this reason glass-blowers work next to the furnace so that they can heat up the

glass to keep it malleable. This example shows that supercooling a liquid is a relatively easy task

which can happen at room temperature and more importantly it highlights that the transition

from liquid to glass is extremely rapid. From a physical point of view, the glass transition is

defined as the point where the viscosity of the liquid exponentially increases above a certain

threshold. Microscopically, particles cannot relax and find their preferred configuration but get

stuck in a cage formed by their neighbors. As mentioned before, glasses are just one example of

amorphous solids. In particular granular materials form another wide category of disordered solid

systems. For a collection grains, rocks and so on, the average temperature that we experience

throughout the year does not really e↵ect their structure in an appreciable way. What controls
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their solid state is the pressure under which they are confined. For example, let’s imagine pouring

sand inside a cylindric container. As we pour the sand, it behaves like a fluid and flows until the

container is filled. If we now push our closed hand on the surface of the sand, we may be able to

squeeze it initially but we quickly experience rigidity no matter how much we push further. The

particles of sand block each other from flowing and the system pushes back against the applied

pressure. This transition from fluid to solid behavior is called jamming.

Similarly to the glass transition, jamming is an out-of-equilibrium process where the

constituents of the material get stuck in a disordered structure. However, jamming exclusively

depends on how particles are arranged with respect to each other. By contrast, temperature

fluctuations play an important role in the state of a system undergoing the glass transition. From

a theoretical point of view, a glass can be produced starting from a liquid at equilibrium with its

surroundings, and then by quenching it to a low temperature. If we imagine quenching a glass-

former liquid down to zero temperature, the system will jam: the glass reaches a mechanically

stable configuration in which all of the particles are stuck by their neighbors. Jamming is then

a unifying point for the the physics of glasses and granular materials. Over the years, di↵erent

models have been proposed to describe amorphous solids and among them, two extremely

simple models have been greatly exploited: hard and soft sphere assemblies interacting through

a pairwise potential. On one hand, a collection of hard spheres under a particular pressure and

at a certain temperature is often used to describe glass-former liquids. In this model particles

interact via colliding into one another and can be excited by thermal fluctuations. On the other

hand, soft spheres are widely used to describe the physics of granular materials, systems where

particles would deform under the forces exchanged with their neighbors. Soft spheres interact only

when they are in contact and are allowed to overlap, occupying the same portion of space. The

physical state of a soft sphere system is controlled by the competition between temperature and

potential energy.

The hard and soft sphere models describe the jamming transition from two di↵erent

perspectives. Firstly, let’s imagine soft spheres under pressure in a confined box. The system

can be decompressed by enlarging the volume of the box until there are just enough contacts

between particles to ensure rigidity [3]. Secondly, by confining a collection of hard spheres in

a box, particles will lock each other in an amorphous state and the system will become rigid.
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If we imagine squeezing the box further, all the particles will eventually be forced to come

into an enduring contact with their neighbors and the system will get stuck in a mechanically

stable configuration [4, 5]. These two cases respectively represent approaching the jamming

transition from above and from below the critical point. One could now ask: if I have a jammed

configuration of hard spheres what happens if I switch on the soft sphere potential? In other

words, are configurations of jammed hard spheres valid configurations of jammed soft spheres

and vice versa? The answer is yes. Jamming is a purely geometrical transition which occurs

when all the particles are constrained by a critical number of contacts. Furthermore, since

jammed packings of soft and hard spheres share the same structure, do they also share the same

mechanical properties? This question drove my research for the first part of my graduate career

and in this dissertation I show that the mechanical properties of these two seemingly at odds

models are unified at the jamming point. In particular the mechanical properties of extremely

low temperature glasses and jammed granular solids are exclusively controlled by the amorphous

structure.

What controls the amorphous structure of the system? Let’s go back to the simple example

of pouring sand into a container, but imagine putting a weight on top of the sand for a couple

of hours. When we remove the weight and push on the surface, we find more resistance against

squeezing the top layer of sand and we experience rigidity as soon as we touch it. Under the

pressure of the weight, the sand particles have rearranged and reached a configuration which

better supports an applied load, such as the weight of our hand. This configuration is more

mechanically stable than the one we discussed before and it underlines the role of mechanical

stability in defining the structure of the system. More stable configurations of jammed solids are

able to support a bigger deformation, whether under pressure or shear stress. In particular, the

rheology of a jammed solid is ruled by its mechanical stability [6]. While poorly stable jammed

solids show a ductile behavior upon deformations, more stable amorphous configurations present

a broad elastic response until a brittle failure, as for a shuttered window glass. Theoretically,

amorphous solids in the vicinity of the jamming point are described as marginally stable: the

arrangement in which particles are held in place is just enough to ensure mechanical stability

so that a tiny mechanical perturbation leads the system to an instability. Recent advances in

both experiments and computer simulations allow one to produce highly stable configurations of
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amorphous solids. In particular it is now possible to tune mechanical stability and understand

its influence on the mechanical response of the system. To this end, I recently explored the

role of mechanical stability in the context of rheology of jammed solids. Furthermore, I studied

the ability of these systems to adapt their mechanical response to a cyclic shear driving and

store information of the repeated deformation in their structure, a property called memory

training [7, 8]. This work leads to the conclusion that memory training is only possible when

the system, or at least a portion of it, is marginally stable.

With this dissertation I show that the amorphous structure is exclusively responsible for

the mechanical properties of jammed solids. Chapter II features a state-of-the-art description of

the glass and amorphous states from a theoretical point of view. Here, the vibrational properties,

jamming transition and rheology of amorphous solids are described. Chapter III focuses on the

connection between thermal hard sphere glasses and granular materials at the jamming point,

showing that the vibrational properties of hard and soft sphere systems are unified at jamming.

Mechanical properties of the hard sphere model are explored using an e↵ective energy potential

which mimics the interaction between frequently colliding thermal hard spheres under very high

pressure. Chapter IV explores the role of mechanical stability in the context of rheology and

memory training by cyclic shear in jammed solids. Chapter II is available here [9] and it will be

featured in the new edition of Encyclopedia of Complexity and Systems Science, Springer Edition.

Chapter III has been published in Physical Review Letters [10] and Chapter IV is currently under

review.
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CHAPTER II

GLASSES AND JAMMING: A STATISTICAL MECHANICS PERSPECTIVE

Mean-field theory of the glass transition

In the last three decades, three independent lines of research, Adam-Gibbs theory [11],

mode-coupling theory [12] and spin glass theory [13], have merged to produce a theoretical

ensemble that now goes under the name of Random First Order Transition theory (RFOT), a

terminology introduced by Kirkpatrick, Thirumalai and Wolynes [14, 15] who played a major role

in this unification. Instead of following the rambling development of history, we summarize it in a

more modern and unified way.

A key ingredient of RFOT theory is the existence of a chaotic or complex free energy

landscape with a specific evolution with temperature and/or density. Analyzing it in a controlled

way for three dimensional interacting particles is an impossible task. This can be achieved,

however, in simplified models or using mean-field approximations, that have therefore played a

crucial role in the development of RFOT theory.

A first concrete example is given by ‘lattice glass models’ [16]. These are models of hard

particles sitting on a lattice. The Hamiltonian is infinite either if there is more than one particle

on a site or if the number of occupied neighbors of an occupied site is larger than a parameter m,

but is zero otherwise. Tuning the parameter m, or changing the type of lattice, in particular its

connectivity, yields di↵erent models. Lattice glasses are constructed as simple statmech models to

study the glassiness of hard sphere systems. The constraint on the number of occupied neighbors

mimics the geometric frustration [17] encountered when trying to pack hard spheres in three

dimensions. Numerical simulations show that their phenomenological glassy behavior is indeed

analogous to the one of supercooled liquids [18–20]. Other models with a finite energy are closer

to molecular glass-formers, and can also be constructed [21]. These models can be solved exactly

on a Bethe lattice 1, which reveals a rich physical behavior [22]. In particular their free energy

landscape can be analyzed in full details and turns out to have the properties that are also found

in several ‘generalized spin glasses’. Probably the most studied example of such spin glasses is the

1In order to have a well-defined thermodynamics, Bethe lattices are generated as random graphs with fixed
connectivity, also called random regular graphs.
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p-spin model, defined by the Hamiltonian [23]

H = �
X

i1,...,ip

Ji1,...,ipSi1 ...Sip , (2.1)

where the Si’s are N Ising or spherical spins, p > 2 is the number of interacting spins in a single

term of the sum, and Ji1,...,ip quenched random couplings extracted from a distribution which,

with no loss of generality, can be taken as the Gaussian distribution with zero mean and variance

p!/(2N
p�1). In this model, the couplings Ji1,...,ip play the role of self-induced disorder in glasses,

and promotes a glass phase at low temperature.

All these models can be analyzed using the so-called replica theory [13]. Given its

importance in setting the foundations of the theory of glasses at the mean-field level, we now

present its main technical steps. To keep the discussion as simple as possible, we focus on p-spin

models. Note that the theory holds for more complex models but it is technically more involved.

The starting point is the computation of the free-energy which is obtained as an average over the

distribution of couplings:

F = lim
N!1

� 1

�N
log ZJ , (2.2)

where · · · represents the average over the disorder. Performing this average is possible thanks to

the replica trick

log ZJ = lim
n!0

1

n
log Zn, (2.3)

where n is the index of replicas, i.e. clones of the same system with di↵erent couplings Ji1,...,ip

extracted from the same distribution. The use of the replica trick may seem purely mathematical,

yet it has a profound physical sense. If the system is ergodic, averages of thermodynamical

observables for two replicas of the same system (with identical disorder) coincide, whereas they

di↵er if ergodicity is broken. We can define the overlaps between two replicas a, b as Qab, which

defines the n ⇥ n overlap matrix:

Qab =
1

N

NX

i=1

S
a
i S

b
i , (2.4)

where the product between spins represents a dot product for spherical spins [24]. After some

computations, the free energy can be expressed as a function of Qab, which therefore plays the
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role of the order parameter. In the ergodic phase one expects symmetry between replicas 2,

and the so-called replica-symmetic (RS) parametrization of Qab is adopted: all the o↵-diagonal

elements of Qab are equal to q0 < 1 and the diagonal elements are Qaa = 1. The parametrization

that corresponds to the glass phase, when ergodicity is broken, is the so-called one-step replica

symmetry breaking (1RSB) solution. Here, the overlap matrix is divided into blocks of dimension

m ⇥ m; elements belonging to blocks far from the diagonal are equal to q0, while o↵-diagonal

elements of blocks along the diagonal are equal to q1 with 1 > q1 > q0. On the diagonal Qaa = 1.

This parametrization encodes the existence of many thermodynamically equivalent basins, hence

two replicas can either fall in the same basin and have overlap q1, or fall in two di↵erent basins

and have overlap q0. The crucial simplification introduced by the mean-field approximation is that

barriers between basins have a free energy cost which grows exponentially with N , so that truly

metastable states can be defined in the thermodynamic limit [25]. At high temperature (or low

density) the RS solution has a lower free energy. Below the ideal glass transition temperature the

1RSB solution instead becomes dominant.

Liquids and glasses in infinite dimensions

A major theoretical breakthrough of the last years is the analysis of the glass transition

for interacting particle systems in the limit of infinite dimensions [26–28]. The starting point

approach is the definition of a pair interaction potential with a proper scaling with dimension d to

ensure a non trivial thermodynamic limit:

v(r) = ṽ[d(r/` � 1)] (2.5)

where ` defines the range of the interaction. Many di↵erent potentials used to model glasses can

be written in this way by using a suitable function ṽ(x), such as hard spheres, Lennard-Jones,

Yukawa, square-well, harmonic, and Weeks-Chandler-Andersen potentials [28]. In the limit of

infinite space dimension, d ! 1, and using the scaling above, the thermodynamics and the

dynamics of liquids and glasses can be analyzed exactly 3. The resulting theory is qualitatively

2If additional symmetries are broken then one can have ergodicity breaking also in the RS phase.

3For large d the crystalline phase does not intervene. In fact, the amorphous and crystalline solid phases are well
separated in configuration space and issues related to finite dimensions, such as the crystallization of monodisperse
particles, are suppressed [29, 30].
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a b
�� > �g �� < �g

FIGURE 1. Sketch of the evolution of free-energy landscape of hard spheres across the glass
transition. In the liquid phase (a) at low packing fractions ' < 'g, every portion of the phase
space is accessible. For ' > 'g the system is in the glass phase (b) and remains trapped in one of
the many equivalent basins.

very similar to the one obtained from the simple models discussed in the previous section (both

for the statics, in terms of replica formalism, and for the dynamics, in terms of self-consistent

Langevin equations).

In fact, all these models belong to the universality class of 1RSB systems [31], with

a free-energy landscape evolving as in the sketch in Fig. 1. At low densities or high enough

temperatures, they all describe an ergodic liquid phase, analogous to the paramagnetic phase

of a spin glass. Under cooling or application of an external pressure, the free energy breaks up

into many di↵erent minima which eventually trap the dynamics, and the system enters the glass

phase, as described further below.

The merit of the infinite dimensional theory is that it o↵ers quantitative results and applies

directly to microscopic models of liquids and glasses. Moreover, it directly reveals the nature

of ‘mean-field’ theories and approximations, such as the diagrammatic liquid theory and Mode-

Coupling Theory. Last but not least, it establishes once and for all that the 1RSB phase and

associated physics and phase transition is the correct and universal mean-field theory of glass-

forming models.

Mean-field theory of the amorphous phase

The phase transition between liquid and glass is not the only interesting phenomenon

characterizing the phase diagram of glassy materials. Since the transition occurs at finite
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pressure and temperature, glasses can be further compressed or cooled within the glass phase

itself [26, 27, 32]. How do physical properties of glasses change in this context? In mean-field

theory, this question has been widely investigated by using the hard spheres glass model [33, 34],

a favorite canonical example of a glass-former system because of its analytical simplicity.

Eventually, by compressing a hard sphere glass, the system undergoes the jamming transition

in the limit of infinite pressure [5]. In this section, we briefly survey recent progress in the

development of an analytic theory of the glass phase in the large d limit, with a particular

emphasis on hard spheres [28].

Mean-field glassy phase diagrams

When a glass-forming liquid undergoes the glass transition, it becomes confined into a

single free energy minimum and the timescale to explore di↵erent minima becomes infinite. It

is formally possible to define thermodynamic properties by restricting the available statistical

configurations to a single free energy minimum. This can be enforced in the replica formalism

by considering two copies of the system and constraining the distance between them [2]. First,

an equilibrium reference configuration Y at (Tg, '̂g) is introduced, where '̂ is the scaled packing

fraction '̂ = 2d
'/d. Second, a copy of the equilibrium configuration X(t) is created and evolved

in time. Let us define now the mean-squared displacement (MSD) between the two copies as

h�(X, Y )i = �r. The properties of X(t) are sampled in a restricted region of phase space close

to the equilibrium configuration. Within this state following construction, the system at (Tg, '̂g)

with initial configuration Y can be adiabatically followed anywhere in the glass phase diagram.

Concretely, for the glass state selected by Y and followed until (T, '̂), we can write the

restricted partition function as:

Z[T, '̂|Y , �r] =

Z
dXe

��V (X)
�(�r � �(X, Y )), (2.6)

where V (X) is the potential energy of the configuration X, and the delta function enforces the

restricted average. In order to obtain the glass free energy, we need to compute its average over
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� < �G�G < � < �g

a b

FIGURE 2. (a) Sketch of the free energy structure deep in the hard sphere glass phase, where
each basin breaks down in sub-basins corresponding to secondary relaxations. At the Gardner
transition in (b), the sub-basins become fractal and ergodicity is broken.

the chosen reference configuration Y , which acts as a source of quenched disorder:

fg(T, '̂|Tg, '̂g, �r) = � T

N

Z
dY

Z[Tg, '̂g]
e
��gV (Y )

⇥ ln Z[T, '̂|Y , �r]

(2.7)

where Z[Tg, '̂g] =
R

dY exp��gV (Y ) is the partition function at (Tg, '̂g). Mathematically, the

quenched disorder is handled using the replica method. We then introduce (n + 1) replicas of

the original system, with the initial glass at (Tg, '̂g) being the master replica, while the n other

slave replicas describe the glass at (T, '̂). The glass free energy is finally expressed in terms of

the average MSD between the slave replicas and the master replica �r, and the average distance

between the slave replicas �. At this step, we assume that the symmetry between slave replicas is

not broken, which corresponds to the 1RSB ansatz previously described.

By choosing the state point at (T, '̂) = (Tg, '̂g), the recursive equations for � and �r have

to satisfy 1/'̂ = F�(�), where F�(�) is a positive function which vanishes for both � ! 1 and

� ! 0, with an absolute maximum in between. This equation can then be satisfied only if

1

'̂d
 max

�
F�(�). (2.8)

This condition occurs for volume fractions larger than a critical value '̂d(�g), which corresponds

to the dynamical glass transition.
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We can explore the glass phase following the glass prepared at the glass transition (Tg, '̂g)

at di↵erent temperatures and packing fractions. At low T and high '̂ one eventually meets

another phase transition, where the 1RSB assumption fails [13] and the more complex full-

replica symmetry breaking (fullRSB) solution is necessary to compute the glass free energy,

the so-called Gardner phase transition [35, 36]. Here, the fullRSB solution corresponds to a

hierarchical organization of the distances between the slave replicas and the glass becomes

marginally stable [37, 38]. The emergence of a complex free energy landscape gives rise to non-

trivial dynamical processes [39–41]. A pictorial representation of the Gardner transition is shown

in Fig. 2.

It is worth noting that the derivation sketched above is completely general and can be used

for any glassy pair potential mentioned in the previous section. In the following we will apply this

formalism to the hard spheres model, for which several implications from the mean field picture

have been successfully tested numerically [31, 42]. Here, the relevant state parameter is the scaled

reduced pressure p̂ ⌘ �P/⇢d.We refer to Refs. [32, 36, 41, 43] for more results regarding systems

made of soft potentials.

Starting from an equilibrated hard sphere liquid configuration at '̂g, we can apply the state

following formalism to explore the hard sphere phase diagram in Fig. 3. The reduced pressure can

be computed from the equation of state of an infinite dimensional hard sphere liquid p̂ ⇠ '̂/2,

derived from h Virial expansion of the free energy [44]. Starting from '̂g and decompressing the

system, the glass eventually undergoes a melting transition: the 1RSB solution becomes unstable

and the glass melts into the liquid via a spinodal instability [27]. Upon compression instead, the

glass enters deeper into the glass phase and remains dynamically arrested. Numerically, this has

been proven by measuring � as the long-time limit of the MSD �(t) between the system at time

t and the initial configuration at t = 0. The order parameter of the transition �r is instead

computed as the long-time limit of the distance �AB(t) between two copies A and B of the same

initial system evolved with di↵erent initial velocities:

�AB =

*
1

N

NX

i=1

|rA
i � rB

i |2
+

. (2.9)

Upon further compression, the glass eventually undergoes the Gardner transition at a finite

pressure p̂G. Here, the relation between �r and � breaks down and �(t) is characterized by a
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200 The Gardner transition

b'g = 8, 7, 6, 5.5, 5

equilibrium liquid

RS glass

fullRSB glass

jamming line

1/
b p

b'

b'd

Figure 6.1 Following hard sphere glasses in compression and decompres-
sion, within the full replica symmetric breaking ansatz [298]. The inverse of
the reduced pressure �p = p/d is plotted versus packing fraction �' = 2d

'/d.
As in figure 4.4, the liquid equation of state is plotted as a full line, and
the dynamical transition �'d is marked by a full circle. The equations of
state of glasses prepared at �'g > �'d are reported here as full lines in the
region where the replica symmetric ansatz is stable. Upon compression, all
glasses undergo a Gardner transition at a density �'G(�'g), marked by a
triangle. The “Gardner line” obtained by connecting the Gardner transi-
tions of di↵erent glasses is plotted as a dotted line. Only data for �'g > �'†

g
are reported, for which glasses are described by a fullRSB ansatz beyond
the Gardner transition (dashed lines). The glass equations of state end at
the jamming point, at which the pressure diverges5. Note that once RSB
is taken into account, no unphysical spinodal upon compression is present
(unlike in the RS case of figure 4.4), and all glasses can thus be followed
up to jamming.

the kRSB equations with k = 99, following the procedure discussed in sec-
tion 6.6, are reported in figure 6.1 and in table 6.1. These results remain
stable upon further increasing k [298]. Upon decompression, the RS ansatz
always remains stable and the results of chapter 4 are unchanged. The glass
states then melt into the liquid at a spinodal point. Upon compression, by
contrast, there is always a Gardner transition, reached at a finite pressure,

this is just a numerical instability of the code, and in figure 6.1 the equations of state have
thus been extended to infinite pressure by a linear fit. By contrast, for ��g � 7, the code
converges up to infinite pressure.

FIGURE 3. Phase diagram of hard spheres in the inverse reduced pressure – reduced packing
fraction (1/p̂, '̂) plane. The glass transition is marked by a full circle. The glass equations of state
are reported as full lines in the region where the replica symmetric solution is stable. The Gardner
transition is marked by triangles, beyond which the fullRSB solution is stable (dashed lines). The
glass equations of state end at the jamming transition. Upon decompression, glasses are stable
until a spinodal instability arises (open squares).

logarithmic growth in time, suggesting the emergence of a complex free energy landscape [42].

The copies A and B cannot occupy the same sub-basin and are no longer able to explore the

entire metabasin. Due to the fractal nature of the free energy landscape, the excitations required

to move around the fractal states correspond to soft modes [41]. The correlation length of these

modes can be estimated by measuring the dynamical susceptibility, computed as the variance of

�AB , which indeed shows a divergence at the Gardner transition [42].

Compressing further within the Gardner phase, the pressure eventually diverges as the

system reaches its jamming density '̂J , which depends explicitly on the selected initial condition

(Tg, '̂g). In particular, there exists a range of jamming points, or a ‘jamming line’ [45], whose

extension increases with d [26].
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Jamming

During the last two decades, a large research e↵ort has shed light on the critical behavior

characterizing the jamming transition [46]. Jamming can be seen from two di↵erent perspectives.

An assembly of Brownian hard spheres under compression becomes rigid at a finite density, at

which point the pressure diverges. On the other hand, athermal packings of soft repulsive spheres

reach the jamming point under decompression when the pressure vanishes. In both situations,

each particle is constrained by enduring contacts with the neighbor particles and the system is

rigid. In particular, at jamming the average number of contacts per particle Z reaches the critical

value Zc = 2d, which represents the lower limit for mechanical stability [47] (Maxwell’s criterion

for rigidity). From the hard spheres side, Z jumps from zero to Zc at the transition, while from

the soft spheres side, as the pressure decreases toward zero the excess number of contacts scales

as [3, 48]:

�Z ⌘ Z � Zc ⇠ �'
1/2

, (2.10)

where �' = ' � 'J is the amount of compression above the jamming threshold. A connection

between hard and soft spheres at jamming is observed in the pair correlation function [3, 4],

confirming that allowed configurations of hard and soft spheres are identical at jamming.

When �Z = 0 the system is isostatic, i.e. there are just enough contacts to ensure

mechanical stability and the system is marginally stable: breaking a bond between contacts

can lead to an excitation that causes a collective motion throughout the whole system [49]. Not

surprisingly, this critical behavior fits well into the free energy picture of marginal glasses reported

above.

Marginality in athermal jammed solids can be explained in real space by the so-called

cutting argument [50]. Imagine removing the contacts between a subsystem of linear size l and

the rest of the system. If we slightly compress the system, this cutting will lead to a competition

between the overall excess contacts �Z created by the compression, and the missing contacts

at the boundary of the subsystem. If the total number of contacts is below the isostatic value

Niso = NZ/2, then there are modes with no energetic cost, i.e. soft modes. The number of soft

modes Nsoft then corresponds to the di↵erence between the number of contacts at the boundary,

proportional to l
d�1, and the number of extra contacts created by the compression, which scales
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as �Zl
d. There is then a critical length l

⇤ ⇠ �'
�1/2 for which the system looks isostatic and

for l = l
⇤, soft modes correlate over the whole subsystem. These extended anomalous modes

correspond to random excitations over all the system, profoundly di↵erent from acoustic modes

proper of crystalline solids.

Other anomalies of jammed solids are observed in the scaling of the elastic moduli near

the transition. These critical behaviors have been successfully described within a force network

picture, for which en e↵ective medium theory has been developed [51, 52]. In particular, a jammed

soft sphere configuration can be mapped onto a network of springs with elastic contacts keff ,

computed as second derivatives of the pairwise interaction between particles. The resulting scaling

behaviors for the bulk modulus B ⇠ keff and the shear modulus G ⇠ keff�'
1/2 suggest that

the Poisson ratio G/B ⇠ �'
1/2 vanishes at the jamming transition [3]. This criticality reflects

on the frequency of normal modes which is directly related to the elastic moduli (B(!), G(!))

by the dispersion relation !
⇤ = ck

⇤, where k
⇤ ⇠ 1/l

⇤ and c is the speed of sound. Since sound

propagates either longitudinally (B) or transversely (G), two di↵erent length scales can be defined:

the longitudinal length scale l
⇤ ⇠ �'

�1/2, which matches the cutting length scaling behavior

and is indeed attributed to extended soft modes, and the transverse length scale which follows the

scaling lt ⇠ �'
�1/4.

Other critical scaling laws have been predicted both by replica mean field calculations and

e↵ective medium theory for a spring network, with good consistency with numerical results in

finite dimensions. In particular, the distributions of interparticle voids and interparticle forces

follow universal power-laws [53–56]. Contact forces can be either extended or localized, with

distributions defined by power law exponents ✓e and ✓l respectively. Extended forces are predicted

from the infinite dimensional exact solution, whereas the localized forces likely result from the

presence of localized defects, such as rattling particles, which only exist in finite dimensions.

Remarkably, the numerical value of the critical exponents associated to scaling laws near jamming

can be predicted analytically in the mean-field approach [28], and their value is confirmed by

numerical simulations in dimensions d � 2.

The influence of temperature on the jamming criticality has also been studied [52, 57].

These works show that above jamming there exists a region in the plane T�' where the harmonic

approximation of the soft sphere potential holds, and the vibrational spectrum converges to its
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zero temperature limit, provided that T < T
⇤('). The value of T

⇤(') decreases with �' ! 0

with a trivial scaling exponent. A similar result holds below jamming for hard sphere glasses [58].

For T > T
⇤('), the harmonic approximation breaks down, defining an anharmonic critical regime,

controlled by non-analyticities in the interparticle potential. Physically, strong anharmonicities

stem from the constant breaking and reformation of particle contacts in the presence of thermal

fluctuations [59].

Vibrational properties

The anomalous thermal properties of low temperature glasses can be related to the

structure of the free energy landscape of glassy states. Amorphous solids behave very di↵erently

from crystalline solids. In terms of heat capacity and thermal conductivity, crystals are dominated

by phononic excitations with a low-frequency density of states (DOS) D(!) given by the Debye

scaling law D(!) ⇠ !
d�1. Instead, the thermal properties of glasses are dominated by an excess

of vibrational modes referred to as the boson peak and by an anomalous low-frequency scaling

of D(!). This excess of anomalous vibrations reflects, within mean-field theory, the existence of

multiple free energy barriers in glassy states. In fact, when the glass enters the Gardner phase, the

system becomes marginal and even infinitesimal perturbations lead to excitations that can bring

the system to a di↵erent glassy state.

The mean-field theory of glasses has been explored using soft spheres in the jamming

limit [60]. The theory predicts the low-frequency scaling of the vibrational density of states

(vDOS) to be D(!) ⇠ !
2 in any dimension [34, 51, 61], quite di↵erently from the Debye scaling.

The same result was previously obtained within the e↵ective medium theory [55].

Numerically, the nature of the low-frequency vibrational spectrum has been widely studied

using soft spheres packings close to jamming. Early studies suggested the existene of the D(!) ⇠

!
2 scaling [31, 60] for a wide range of dimensions d, reinforcing the relevance of the mean-field

description for finite dimensional systems [62]. The modes giving rise to this scaling form have

been found to be extended anomalous modes. A more recent study established that the !
2 scaling

is only observed over a finite frequency range, which seems to increase systematically with the

space dimension d, which is consistent with a pure quadratic scaling when d = 1. However, for

any finite d, the density of states eventually obeys Debye scaling for su�ciently low frequencies.
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FIGURE 4. Adapted from [1]. Vibrational density of states of jammed harmonic soft spheres
scaled by the Debye law !

d�1 in d = 3. Modes with index k are classified as extended (blue)
or localized (yellow) by their participation ratio P

k. Below the boson peak frequency !BP , the
density of states is the superposition of anomalous extended modes eventually obeying Debye
scaling, and a population of quasi-localised modes scaling as !

4, as confirmed in the inset.

Finally, recent numerical works show that for frequencies lower than the boson peak, an

additional family of soft modes due to marginal instabilities can be observed [1, 63]. As Fig. 4

shows, the vibrational density of these additional modes scales as !
4. A spatial analysis of such

modes shows that they correspond to quasi-localised modes, which are again absent from the large

d analytic description.

Rheology

Once the glass is created, it can be adiabatically cooled or compressed, but it can also be

deformed by applying an external mechanical constraint. The rheology of amorphous solids is a

very broad research field. Here, we present recent results in this field obtained using the mean

field glass theory, including implications regarding elasticity, yielding and shear jamming [37, 64,

65].

We report results obtained from the same state following formalism applied to study the

amorphous phase along a compression in the d ! 1 limit. If the master replica Y is in the
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dynamically arrested region, the system reacts elastically to a small applied strain �. We can then

obtain the stress-strain curve as a function of the state point (T, '̂) of the slave replica X. The

stress for an elastic medium increases linearly with strain, which defines the shear modulus µ̂ = d�̂
d�

computed at zero strain, where stress and shear modulus are scaled such that the d ! 1 limit

remains finite. In the small strain limit one finds

µ̂ =
1

�
(2.11)

where � is the long time limit of the MSD. The MSD �(X, Y ) is the superposition of an

a�ne component due to the strain, and of a non-a�ne contribution defined by the particular

shear protocol. At the glass transition, the shear modulus jumps from a zero value (liquid state)

to a finite value at '̂d (glass state). In finite dimensions, this sharp discontinuity becomes a

crossover [28].

When the system is confined within a glass state, it is able to sustain a shear strain on a

time scale which corresponds to the diverging time scale for which the dynamics becomes di↵usive.

One can then follow adiabatically the slave replica until a state point (T, '̂) and study the linear

response to shear for the di↵erent phases of the glass. This corresponds to exploring the strain vs

volume fraction phase diagram of the system. Upon decompression, the shear modulus decreases

and displays a square root singularity at the melting spinodal point [28, 64].

Increasing the strain and/or the volume fraction, the glass phase may undergo a Gardner

transition and transform into a marginal glass, for which all non-linear elastic modulii diverge and

standard elasticity theory does not hold anymore [66]. As for a simple compression without shear,

the boundary of the Gardner phase transition explicitly depends on the selected glass state.

Once the Gardner phase is entered, upon further compression or strain, two kinds of

transition may occur in hard sphere glasses. First, the shear modulus may increase and eventually

diverge when a jamming point is reached. At zero strain, this is the ordinary jamming transition.

In that case, the power law scaling of the MSD directly implies a similar behaviour for the shear

modulus. In the presence of a finite strain, this corresponds to the phenomenon of shear jamming,

observed in the context of granular materials [67, 68].

A second type of instability can occur when increasing the strain of a hard sphere glass.

Here, the shear stress reaches a maximum followed by a spinodal instability where the fullRSB

17



solution for � and �r is no longer stable. The spinodal point �Y ('̂g) corresponds to the glass

yielding transition [67, 69]. The yielding transition in glasses has been studied for a variety of

models and under di↵erent physical conditions [70, 71]. In particular, it has been suggested

that the yielding transition belongs to the same universality class as the RFIM, i.e. a spinodal

transition with disorder.
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CHAPTER III

VIBRATIONAL PROPERTIES OF HARD AND SOFT SPHERES ARE UNIFIED AT

JAMMING

Introduction

Glasses and granular materials are unified by their expression of amorphous rigidity.

Seen from the perspective of soft sphere granular systems, described as soft sphere packings,

jamming marks the onset of rigidity and occurs at zero pressure, when every particle becomes

fully constrained but all contacts are just kissing [47]. By contrast in hard sphere glasses,

considered as shadow systems for colloidal glasses [72], rigidity is achieved at the dynamical glass

transition [73, 74] and the jamming point is only reached at infinite pressure when all the particles

are forced to come into enduring kissing contact with one another [2]. As such, the jamming point

is a matching point for the two systems, where hard sphere glasses end and soft sphere rigid solids

begin. Even though the configurations found in each limiting case must be valid configurations for

the other, there is no a priori reason to expect that the properties of such configurations should

bear any meaningful relation due to their very di↵erent origins and interactions. Although the

criticality of jamming has been explored from both hard and soft sphere perspectives [42, 54, 75],

whether the jamming point represents a smooth crossover between hard and soft spheres or

a singular point is still an open question. In this work we demonstrate that the vibrational

properties of both hard and soft sphere systems approach the jamming transition point in the

same manner and show no discontinuity between behavior below and above jamming. We use

an e↵ective potential to bring packings of hard spheres to their free energy minima, allowing us

to quench towards jamming without the limitations of conventional thermal simulations and to

directly measure the vibrational spectrum from the dynamical matrix.

Amorphous solids exhibit vibrational properties very di↵erent from those predicted by

Debye theory [76–78]. The replica mean field theory of glasses and jamming predicts the low-

frequency scaling of the vibrational density of states (VDOS) to behave as D(!) ⇠ !
2 for

systems in every spatial dimension [34, 51, 60, 61]. This non-Debye scaling has been observed

numerically in systems of soft spheres right above the jamming point [62] and is the result of an

excess of vibrational modes within this low frequency range. These excess modes are spatially
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extended but non-phononic and give rise to a peak in the heat capacity of glasses, often called

the boson peak [79–81]. The VDOS associated with these modes is nearly flat for low frequencies

ranging down to a crossover frequency !
⇤ below which it decays to zero [3]. At jamming even an

infinitesimal excitation leads to an extended motion and the VDOS is flat until !
⇤ = 0 [82].

In contrast to the mean field picture, as low dimensional soft sphere systems are brought

to densities above jamming an additional class of modes appears as quasi-localized modes which

are hybridized between system spanning phonons and local rearrangements [1]. These modes are

believed to control the elastic response to externally applied shears [6, 83] and are measured to

follow a low frequency scaling of Dloc(!) ⇠ !
4 [63, 84–86]. Such a scaling result has been observed

for a wide variety of disordered systems [87–89]. These quasi-localized modes do not appear in the

mean field picture as they are exclusively a low-dimensional phenomenon [90].

Similar quasi-localized modes play a central role in the physics of real low-temperature

glasses [56, 57]. They are described as soft excitations that connect two local minima of the

free energy, a scenario introduced by Phillips in the two-level tunneling model [91, 92]. These

modes can be derived from anharmonic e↵ects which are directly related to the non-analytic

form of the hard sphere potential [57, 93–95]. Anharmonic e↵ects independently arise from

perturbation theory of hard spheres near jamming [60, 96], where the free energy has been found

to be well approximated by a logarithmic e↵ective pair potential [97] and higher order corrections

to this behavior are unnecessary even at a finite distance to the jamming point [98]. The same

e↵ective interaction has also been shown in simulations of thermal hard spheres under very high

pressure [58] for which an e↵ective medium theory has been developed [52].

In the limit of high pressure thermal hard spheres this e↵ective logarithmic potential can be

understood as deriving from entropic consideration. If the typical timescale between collisions is

much smaller than the typical timescale for relaxational rearrangements then the time-average of

the momenta exchanged between frequently colliding particles is inversely proportional to the gap

h between those particles [58]. This coarse graining over time defines a network of e↵ective forces

between hard spheres with corresponding potential energy given by a sum of two-body logarithmic

potentials of the form

V (h) = �kBT log(h). (3.1)
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FIGURE 5. Minimization of the e↵ective logarithmic potential in d = 2 with packing fraction
' = 0.55. Left: packing after harmonic minimization. Right: final configuration of the same
packing after the logarithmic potential minimization.

Thermal hard spheres near jamming can thus be directly mapped to a collection of athermal

particles interacting via the logarithmic e↵ective potential.

While the mean field theory predicts the same vibrational properties for hard spheres below

jamming and soft spheres above jamming, in low dimensional systems the vibrational spectra

could be very dissimilar due to the very di↵erent circumstances giving rise to quasi-localized

modes. In this paper, we present a protocol to produce stable glassy configurations based on

the minimization of the e↵ective free energy potential for a packing of athermal hard spheres.

By measuring the evolution of the vibrational spectrum approaching jamming we show that the

spectrum of jammed solids is unified when crossing the transition between the hard and the soft

sphere descriptions. This result demonstrates that mechanical and thermal properties of jammed

solids arise purely from a geometric origin.

Numerical methods

Hard sphere packings are produced using the pyCudaPacking package, developed by

Corwin et al. [54, 99]. The packing is a collection of N particles in d = 2, 3 spatial dimensions,

with a log normal distribution of particle sizes chosen to avoid crystallization. The packing is

inside a box of unit volume with periodic boundary conditions and characterized by the packing

fraction ', the fraction of the box volume occupied by particles.
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FIGURE 6. Gap distribution of hard sphere packings in d = 3. The distance from jamming
increases from left to right: data from decompressions (blue squares) �' = 1.1 ⇥ 10�7

, 1.3 ⇥
10�6

, 1.5 ⇥ 10�5, data from compressions (green diamonds) �' = 2.3 ⇥ 10�5
, 2.1 ⇥ 10�4

, 3 ⇥
10�3

, 2 ⇥ 10�2. The distributions peak around the value of the typical nearest neighbor gap and
then decay following a power law scaling (black line) consistent with the mean field prediction h

��

with � = 0.41296... [2]. Gaps are cuto↵ at h = 1 to avoid showing next nearest neighbor behavior.

Starting from a packing fraction well below jamming we randomly distribute particles

and minimize energy using a harmonic interaction potential (the same as used in the context of

soft spheres [48]) to eliminate any overlap between particles. The logarithmic potential is then

applied as a pair potential between particles separated by less than a cuto↵ gap distance. This

cuto↵ is chosen to be twice the value of the position of the first peak of the gap distribution

to allow for nearest neighbor interactions and exclude the non-physical next nearest neighbor

interactions. However, all the results reported herein are insensitive to this choice as long as

the cuto↵ encompasses nearest neighbors, see Supplementary Materials. We then minimize the

potential using the FIRE (Fast Inertial Relaxation Engine) algorithm [100].

The result of the minimization of the logarithmic potential is depicted in Fig. 5. From

an initial packing characterized by a broad distribution of nearest neighbor gaps, the system

reaches a configuration where the nearest neighbor gaps are more uniform. This resulting packing

is compatible with the time-averaged limit of a thermal hard sphere system, where collisions push
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particles as far as possible from their neighbors on average [58]. If ' is less than the jamming

packing fraction 'J , no particles are in contact after the minimization and a void region can

be found around each particle. We exploit this to creep up in density by inflating particles

until saturating 10% of the minimum gap and then minimizing the e↵ective potential for this

new packing fraction. Repeating this procedure iteratively we are able to push the system to a

distance from jamming �' = |'J � '| of the order of 10�6. To produce packings at densities

significantly closer to jamming, we decompress critically jammed soft sphere configurations

and then minimize the logarithmic potential [54]. By slightly decompressing these packings we

maintain the same spatial structure of the jammed systems, with a precise tuning of the distance

from jamming �'.

Fig. 6 shows the gap distribution from both compressions and decompressions exhibiting

the same behavior. We find a power-law scaling of the gap distribution that is well described by

the mean field scaling law PDF(h) / h
�� [2] and has previously been measured for soft spheres

precisely at jamming [54]. The systems created by decompression from jamming show a sharper

peak for the nearest gaps than is found in systems created through compression, even when both

systems are nearly the same distance from the jamming transition. This reflects the underlying

property that systems created from jammed soft spheres will maintain a memory of their kissing

contacts, while those compressed from below have not yet chosen a single set of incipient contacts

and thus have a broader distribution. Nevertheless, for every protocol, the distribution of nearest

gaps tends to a delta function upon approach to the jamming point as the nearest neighbors

become contacts.

Vibrational spectrum analysis

In order to distinguish extended and localized modes we compute the participation ratio

(PR) of each mode, a measure of the fraction of particles that are participating in the motion

governed by the mode. Given a mode at frequency ! with eigenvectors {ui(!)}, where ui is the

displacement vector for particle i, we define the PR as:

PR(!) =
1

Ns

(
PNs

i |ui(!)|2)2
PNs

i |ui(!)|4
, (3.2)
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phononic quasi-localized randomly extended

FIGURE 7. Top: participation ratio and vibrational density of states for a packing of N = 8192
particles in d = 3 at �' = 3 ⇥ 10�2. Bottom: real space representation of the eigenvectors for
a packing of N = 8192 particles in d = 2 with distance from jamming �' = 3 ⇥ 10�2. Left:
phonon with characteristic plane wave modulation. Center: quasi-localized mode with localized
excitations distributed over the whole system. Right: extended anomalous mode which correlates
a large portion of the system with random excitations.
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where Ns is the number of stable particles, i.e. those with at least z = d + 1 force bearing

neighbors [101]. A mode which corresponds to a totally extensive motion in which every particle

participates equally will be characterized by PR = 1, whereas a mode completely localized to a

single particle will have PR = 1/Ns [1, 62].

The vibrational spectrum for both two and three dimensional packings produced by

minimization of the logarithmic potential can be divided into four di↵erent ranges of frequency

as illustrated in Fig. 7 a, ranging from lowest to highest frequency: 1) At lowest frequencies, the

modes separate into discrete phonon bands with PR ' 2/3 as expected for plane waves [1, 86]

(blue region). 2) For frequencies close to !
⇤ we find quasi-localized modes which show a splitting

in the PR and a power-law decay in the density of states (green region). 3) For higher frequencies

modes become increasingly delocalized as indicated by a very high PR. This region corresponds

to extended anomalous modes as evidenced by a nearly flat density of states (red region). 4) At

highest frequencies modes are strongly localized as a result of Anderson localization in a random

medium and have a density of states that decays rapidly with increasing frequency [85].

We analyze the diverse nature of the vibrational modes by looking at the real space

representation of their eigenvectors shown in Fig. 7 b. Phonons (left) have a typical plane wave

modulation which spans the system. Quasi-localized modes (center), with frequencies near !
⇤,

present a number of localized distortions and vortices hybridized with those phonons at nearby

frequencies. Extended anomalous modes (right) contain random seeming excitations spread

throughout the entire system.

As shown in Fig. 8 systems in two and three dimensions di↵er significantly within the

quasi-localized frequency range as evidenced both in the PR and the VDOS. Three dimensional

have a greater fraction of modes with strong localization than in two dimensional systems. This

di↵erence manifests in the functional form of the decay of the VDOS. For d = 3 the density of

quasi-localized modes dominates over that of extended modes as evidenced by a decay that follows

the !
4 law. For d = 2 instead, a continuous crossover between phonons and extended modes

dominates this region of the spectrum with a decay of the density that goes as !
2. These results

for hard sphere systems below jamming agree with previous observations for soft spheres above

the jamming threshold [1].
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FIGURE 8. Evolution of participation ratio (PR) and vibrational density of states along the
compression as a function of �' in d = 2 (left) and d = 3 (right). Data from compressions are
shown in green and that from decompressions in d = 3 in blue. Each scatter plot of PR shows
data from 10 samples while the density of state curves are averaged over the same number of
samples. The distance from jamming increases from left to right. In d = 3 �' = 1.1 ⇥ 10�7,
�' = 2.3 ⇥ 10�5

, 5 ⇥ 10�4
, 3 ⇥ 10�2. In d = 2 �' = 2.7 ⇥ 10�6

, 3 ⇥ 10�4
, 3 ⇥ 10�2. The low-

frequency decay of the density of states in d = 2 follows !
2 for every value of �' while in d = 3 it

follows !
4 su�ciently far from jamming.

Criticality near jamming

Fig. 8 show the evolution of the density of states and the participation ratio for systems in

both d = 2 and d = 3 at a broad range of distances from jamming. As jamming is approached

quasi-localized modes move toward lower frequencies and hybridize with the existing phonons

as local excitations get softer [87]. For a range of densities su�ciently far from jamming, quasi-

localized modes coexist with phonons. For �' . 10�4 extended modes dominate the vibrational

spectrum. Localized excitations disappear due to the increasing stability of the packing from the

compression, a property which translates into a reduction of the number of soft spots from which
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FIGURE 9. Scaling of !
⇤ as a function of �' for di↵erent system sizes from decompressions (blue

squares N = 4096) and compressions (green circles N = 1024, upward triangles N = 2048,
downward triangles N = 4096, diamonds N = 8192). Data are consistent with the critical scaling
!

⇤ ⇠ �'
1/2 observed for soft spheres.

localized excitations originate [87]. We observe that for �' . 10�5 localized distortions are

suppressed for both spatial dimensions as the extended mode plateau reaches down towards ! = 0.

We observe that in d = 3 the low frequency scaling of the VDOS deviates from the !
4 law while in

d = 2 the !
2 scaling holds for every step of the compression.

We measure !
⇤ as the frequency of the last extended mode above a cuto↵ in participation

ratio, PRc = 8 ⇥ 10�2. As shown in the Supplementary Materials, the results are insensitive to the

choice of PRc for 8 ⇥ 10�2
< PRc < 2 ⇥ 10�1. The relationship of !

⇤ on �' is reported in Fig. 9.

The resulting scaling law is consistent with that already found in the jamming critical region for

harmonic soft spheres [75].

Conclusions

By minimizing the logarithmic e↵ective potential we are able to track the structural

features from which the mechanical properties of hard sphere glasses originate, both below

jamming and at the transition. We have exploited the analytic e↵ective potential to implement
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a deterministic minimization algorithm and to compute the vibrational properties of hard sphere

glasses, something which previously was accessible only from the velocity autocorrelation function

in thermal simulations [57]. The vibrational modes found below and at jamming using this

e↵ective potential quantitatively agree with those observed in soft sphere systems above the

transition. Thus, we have demonstrated that granular systems and the shadow systems of colloidal

glasses have the same vibrational properties at jamming and approaching the transition. Further,

the scaling of !
⇤ confirms that the jamming criticality is universal from both the hard and the

soft sides of the transition: thermal hard spheres under very high pressure (or their athermal

mapping in this case) have the same criticality as a packing of harmonic soft spheres brought close

to zero pressure.

This work suggests several paths forward for studying hard sphere glassy systems using

the tools developed for athermal soft sphere systems. First, it would be useful to apply these

techniques to develop a more detailed characterization of the size distribution of soft spots

in higher dimension, for which existing methods in identifying quasi-localized modes are not

su�cient. Further development of real-space characterizations of these modes will allow for

investigations of spatial correlations of quasi-localized modes and how the associated lengthscale

evolves towards jamming. Another future direction will be to minimize the logarithmic potential

in a previously equilibrated hard sphere glass [42]. By doing so, it will be possible to isolate

structural features from thermal noise and study mechanical and rheological properties directly

related to the real space glassy structure.

Acknowledgements

We thank A. Altieri, C. Brito and S. Franz for useful discussions about the logarithmic

potential and L. Berthier, E. Flenner, A. Ikeda and A. Liu for fruitful suggestions. This work was

funded by the NSF Career Award grant No. DMR-1255370, and the Simons Collaborations on

Cracking the Glass Problem (No. 454939 E. Corwin).

28



CHAPTER IV

MARGINAL STABILITY ENABLES MEMORY ENCODING IN JAMMED SOLIDS

Introduction

When subject to a repeated driving, amorphous solids are able to adapt their spatial

structure to the external deformation [7]. By doing so, they store a memory of the periodic

driving as a structural information which can be later extracted [102, 103]. A widely used

protocol for encoding a memory in jammed solids is cyclic shear training [7, 104]: the system is

repeatedly sheared with cycles of strain amplitude �train, until it reaches a periodic orbit, i.e. a

sequence of rearrangements that the system undergoes every time the same cyclic perturbation is

applied. Cyclic shear training finds an explanation in the complex energy landscape of amorphous

solids [105, 106] where each rearrangement corresponds to a transition between two energy

minima. As the training goes on, the system finds the most energetically favorable path between

minima optimizing the mechanical response to the cyclic deformation [104, 107]. While previous

studies have shown that cyclic shear brings the system to a lower energy minimum [108], recent

advances in producing extremely annealed glassy configurations in thermal [109] and athermal

simulations [110] have led to the conclusion that the rheology of amorphous solids is ruled by

the preparation protocol [37, 111, 112]. In particular, cyclic shear is only e�cient in lowering the

energy of marginally stable glasses [108, 112], i.e. configurations that become unstable under very

small perturbations [2, 66]. By contrast, cyclic shear fails to further anneal highly stable glassy

configurations [112]. Here, we explore the connection between memory training by cyclic shear

and mechanical stability in jammed solids and show that memory training is only possible when

the system, or a portion of it, is marginally stable.

We produce highly stable packings of jammed soft spheres via a recently developed

algorithm based on the simultaneous minimization of positional and radial degrees of

freedom [113], while a conventional FIRE minimization is used to produce marginally stable

packings [3, 48]. While marginally stable packings show ductile behavior upon increasing

the applied shear strain [6], highly stable packings are brittle and yield by forming a shear

band [37, 71, 110, 114]. Subject to cyclic shear training, marginally stable packings store

memories down to low strain amplitudes and show a uniform participation to the training. By
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contrast, highly stable packings can only store memories past the yielding strain and only the

particles in the shear band actively participate to the training. Here we show that the shear band

is a marginally stable region of the system and its size controls the memory training.

Numerical methods

We produce samples of athermal soft sphere packings using the pyCudaPacking package

developed by Corwin et al. [54, 99]. Each packing is composed of N particles contained in a

three dimensional simulation box of unitary volume with periodic boundary conditions. Particles

interact via the soft sphere harmonic contact potential

Uij = q
2
ij⇥(qij) , qij = 1 � |~rij |

�ij
(4.1)

where ~rij is the distance between particles i and j, �ij is the sum of their radii, and ⇥ is the

Heaviside step function. We use a log-normal distribution of particle sizes with 20% polydispersity

to avoid nucleation of crystalline structures. This model undergoes the jamming transition at

zero pressure where particles share just enough contacts to enforce global rigidity [3]. We produce

marginally stable packings by minimizing the energy with respect to only positional degrees of

freedom via the FIRE algorithm [100]. To produce highly stable packings, we add particle radii

as constrained variables to the minimization. In particular, we start from a configuration with

random positions and polydisperse size distribution, and allow both particle positions and radii

to relax in order to minimize the energy. To keep the initial size distribution fixed, we constrain

the radial components of the particle forces by fixing a set of moments of the distribution, namely

{�6,�3, 3} [113]. Once the energy is minimized, we fix the radii and perform the shear training.

We simulate athermal quasistatic shear (AQS) along the yx direction by applying steps of

�� = 10�3 strain with Lees-Edwards boundary conditions. A single strain step consists of an

a�ne displacement of each particle (xi, yi, zi) ! (xi, yi + ��xi, zi), followed by a minimization

of the potential energy with respect to the positional degrees of freedom only. We choose to

study configurations produced at pressure P0 ' 0.08 to optimize the computational cost of our

simulations which slows down as the jamming transition is approached.

The rheology of marginally stable and highly stable packings is depicted in Fig. 10.

Marginally stable packings show ductile behavior as they encounter the first instability at very
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FIGURE 10. Stress vs. strain curves for highly stable (blue) and marginally stable (green)
packings produced at pressure P0 ' 0.08 and composed of N = 4096 particles. The stress is
scaled by its typical value �1 in the plastic regime after yielding. Inset: yielding stress, �Y , as a
function of the initial pressure, P0, at which brittle packings are produced.

small strain and yield through a series of plastic rearrangements [6]. On the other hand, highly

stable packings are brittle: they show an elastic response up to a large yielding strain, �Y . After

yielding, a sharp stress drop signals the failure under the external load and the system breaks

along a shear band [110, 114]. In the inset of Fig. 10, we plot the yielding stress, �Y , of highly

stable packings as a function of the pressure at which they are produced, P0. The yielding stress

plateaus to a finite value as the jamming point is approached in the limit P0 ! 0 showing that

highly stable packings are brittle down to extremely low pressures.

Evolution of stability under shear

To understand the relation between the mechanical stability of a packing and its ability

to store memories of shear amplitudes, we first study the evolution of mechanical stability upon

increasing the applied shear strain. Before reaching the yielding transition, highly stable packings

are characterized by a smooth rise of both pressure and energy in the elastic regime. At the

same time, the low-frequency vibrational density of states, which rules the linear response of

the system [83], is progressively shifted towards lower frequencies. These properties suggest that
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FIGURE 11. Top: pressure change, �P , required to push a packing to a nearby instability as
a function of the applied strain � averaged over 20 samples for both highly stable (blue) and
marginally stable (green) packings of N = 4096 particles. The dotted line indicates the average
yielding strain of highly stable packings. Bottom: magnitudes of the first 20 low-frequency
eigenvectors, averaged over slices of the system along the x axis at zero strain (black), right after
yielding at � = 0.122 (red), and in the plastic regime at � = 0.3 (yellow) for a highly stable
packing. Data are shifted to center the shear band.
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highly stable packings would become unstable under an increasingly smaller perturbation as they

approach the yielding point. We investigate how the stability of a packing evolves during AQS

by computing the change in pressure, �P , required to push the system to an instability without

changing the contact network [113], as reported in the top panel of Fig. 11. In marginally stable

packings, the distance to a nearby instability fluctuates around a typical value across all the

explored range of strain. Highly stable packings present a very di↵erent behavior. At zero strain,

they require a large change in pressure to find a nearby instability. As the system is progressively

sheared, �P decreases following an exponential decay which ends at the yielding point. After

yielding, �P follows a similar behavior as for marginally stable packings. The behavior of �P

implies that highly stable packings lose stability and become marginally stable after yielding.

We then explore how the progressive loss of stability in highly stable packings influences

the spatial structure of the system by computing the first 20 low-frequency eigenvectors

of the Hessian, i.e. the vibrational modes which control the particle motion under small

perturbations [83]. In the bottom panel of Fig. 11, we report the averaged magnitude of the low-

frequency eigenvectors as a function of the applied strain. At zero strain, the motion due to small

perturbations spans the entire system uniformly, a typical behavior for highly stable jammed

solids [1]. After yielding, the motion of the low-frequency eigenvectors stays confined in the shear

band while the rest of the system is less susceptible to external perturbations. The shear band is

then a marginally stable region of the system where particles are more likely to rearrange under

quasistatic deformations. We can now show that the existence of a shear band in highly stable

packings past yielding is necessary for training a memory by cyclic shear.

Memory training

We use AQS to encode a memory of a strain amplitude, �train, by cyclic shear in both

marginally and highly stable packings. The following results represent averages over 35 samples

of N = 1024 particles for both cases. We train a packing by repeating shear cycles until the

system reaches a periodic orbit which we identify when the energy at the end of a cycle does

not change after one or more consecutive cycles. The encoded memory can then be extracted

using a readout [8, 102]: starting from a configuration at zero strain, we perform a cycle of strain
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FIGURE 12. Readout shear: �cycle as a function of the strain amplitude � for untrained (top)
and trained (bottom) configurations of highly stable (blue) and marginally stable (green)
packings. The solid red line indicates the encoded strain amplitude, �train = 0.15, and the dashed
black line shows the average yielding strain for highly stable packings.
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amplitude � and measure the distance between the initial and final configurations as

�cycle =

sX

i

|~ri
final � ~ri

initial|2 , (4.2)

where the sum runs over the stable particles, i.e. those with at least d + 1 force bearing

contacts [101]. The readout is performed for a range of strain amplitudes � 2 [0, 0.2], separated by

an increment of �� = 10�3.

Before training a memory, the readout plots for marginally and highly stable packings

show two very di↵erent behaviors, as can be seen from the top panel of Fig. 12. The readout

for highly stable packings (blue) shows that these are reversible for any cycles with � < �Y as

�cycle stays equal to zero up to the yielding transition. After the brittle failure, �cycle shows an

upturn and the system becomes irreversible. For marginally stable packings (green), by contrast,

�cycle monotonically increases from zero starting at the beginning of the readout. This indicates

that a marginally stable packing undergoes irreversible rearrangements for all the explored strain

amplitudes. The readout plots for trained packings is shown in the bottom panel of Fig. 12. Here,

�cycle stays close to zero for cycles of strain amplitudes smaller than the training strain, �train =

0.15. Note that �train is larger than the average yielding strain of highly stable packings. For

� > �train, both plots show a quick upturn, which is a signature of the memory encoded by cyclic

shear training.

We study the trainability of our packings by plotting the number of training cycles, Ncycles,

needed to encode a memory as a function of the training strain amplitude, �train, see Fig. 13.

While marginally stable packings store memories for all the explored ranges of �train, highly stable

packings are able to store memories only for strain amplitudes larger than the yielding strain.

Moreover, at a fixed strain amplitude, highly stable packings need a larger Ncycles to reach a

periodic orbit compared to marginally stable packings. This is due to the di↵erence in the fraction

of particles which are actively participating to the training: while in marginally stable packings

all the particles are uniformly displaced by the shear cycles, in highly stable packings the particles

within the shear band rearrange much more than others.

To support this claim, we study the relation between marginal stability and the number

of training cycles by tuning the width of the shear band. This is accomplished by shearing

brittle packings with an initial cycle of large strain amplitude, �break, before performing cyclic
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FIGURE 13. Number of training cycles required to encode a memory, Ncycles, as a function of the
encoded strain amplitude �train for brittle (blue) and ductile (green) packings as well as brittle
packings that are broken with a single cycle of strain amplitude of �break = 0.2 (pink), 1 (red)
and 5 (yellow) before the training. Inset: shear band size, �, as a function of �break after training
a memory of �train = 0.15 with the same color code as in the main plot. The error bars represent
the standard error on the mean.

shear training at a given �train. During the breaking cycle, particles adjacent to the shear band

relax and lose their initial stability. We estimate the size of the shear band, �, by computing the

distribution of �cycle along one of the transverse directions to shear and extracting the width of

the distribution peak. We measure � after both the initial breaking cycle and cyclic shear training

and find it to be the same within error. As shown in the inset of Fig. 13, the size of the shear

band computed after training a memory of �train = 0.15 is proportional to �break. Fig. 13 shows

that for any �break, broken brittle packings are able to store memories of strain amplitudes below

the yielding strain. As �break increases, the trainability curve gets closer to the one for ductile

packings (green). For �break = 5 (yellow), the shear band is spread out to the entire system and

the number of training cycles for strain amplitudes above the yielding strain are similar to those

reported for ductile packings. As the shear band broadens, more particles actively participate to

the training. The existence of a shear band is thereby necessary to store a memory by cyclic shear
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in brittle packings, suggesting that memories can only be formed in marginally stable regions of

the system.

Conclusions

In this Letter, we explore the role of mechanical stability in the context of memory training

by cyclic shear in jammed solids. While marginally stable packings are able to store memories for

all the explored strain amplitudes, we observe that highly stable packings need to first overcome

brittle yielding and form a shear band in order to do so. Here is where mechanical stability

comes into play: brittle packings become marginally stable after yielding and marginal stability

is confined in the shear band where most of the rearrangements during the training take place.

This result shows that memory training in jammed packings is only possible if the system, or a

portion of it, is marginally stable.

The strong connection between memory training and mechanical stability suggests that the

development of memory in real space is coupled to the evolution of the low-frequency vibrational

modes, an aspect of memory training which requires further investigation. An exciting new

direction would be to extend the work conducted here to soft sphere packings driven by athermal

quasi-static random displacements, an active matter model introduced in theory [115] and

simulations [116], where the brittle failure happens in regions randomly distributed across the

system. Training a highly stable packing with this new cyclic driving could potentially allow for

encoding memories in pockets of the system which could be preemptively designed, broadening the

application scope of trainable jammed solids.
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CHAPTER V

SUPPLEMENTAL MATERIALS FOR CHAPTER 2

FIGURE 14. Participation ratio (PR) as a function of the gap distance cuto↵ hcut for the
logarithmic potential for a typical sample. Curves are plotted for hcut = ahpeak with a ranging
from 2 to 4, where hpeak is the size of the gap at the first peak of the gap distribution. Samples
are obtained by compressing the same initial packing of N = 8192 particles in d = 3 from a
starting packing fraction of ' = 0.55. Data are plotted for ' = 0.65722. The PR does not show
any significant di↵erence as the cuto↵ distance changes over the full frequency range.
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FIGURE 15. Dependence of !
⇤ on PRc, the cuto↵ threshold for the participation ratio, PRc =

0.2 (green), 0.18 (yellow), 0.15 (orange), 0.12 (red), 0.1 (magenta), 0.08 (blue). The curves are
plotted for di↵erent system sizes from decompressions (squares N = 4096) and compressions
(circles N = 1024, upward triangles N = 2048, downward triangles N = 4096, diamonds
N = 8192). The scaling relation between !

⇤ and �' is not a↵ected by the choice of PRc for
8 ⇥ 10�2

< PRc < 2 ⇥ 10�1, values which correspond to 8% and 20% participating particles
respectively.
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CHAPTER VI

CONCLUSION

The work presented in this dissertation clarifies how the amorphous structure of jammed

solids influences the vibrational and mechanical properties of the system. Here, the mechanical

response of jammed packings of hard and soft sphere packings has been investigated under either

compression or shear deformation in the limit of zero temperature where both systems experience

rigidity. Two main results have been discussed. First, the critical behavior of thermal hard sphere

glasses and granular soft sphere packings merge at the jamming transition, where these two

models share the same vibrational properties. Second, the mechanical stability of the amorphous

structure controls the rheology of jammed solids and their ability to adapt to a cyclic shear

driving. These results answer questions on the nature of the mechanical response of amorphous

solids as well as opening up new avenues of research in di↵erent fields.

Chapter II encompasses the latest theoretical advances on the glass transition and the

amorphous solid phase from an infinite-dimensional perspective. In the first part of the chapter,

the physics of glasses is explored by using a state-following algorithm on a system of thermal

hard spheres, a framework which allows one to build the glassy phase diagram by controlling

the temperature and density of the system. Starting from a liquid configuration at equilibrium,

the system is rapidly cooled or compressed until it undergoes a dynamical arrest at the glass

transition. Upon further compression or cooling, the dynamics of the system becomes even slower

and the system gets stuck in a marginally stable configuration. In the limit of zero temperature

or infinite pressure a marginally stable glass jams and thermal fluctuations are no longer relevant

to describe the physical properties of the system. Although this chapter presents a mean field

description of glassy physics, the free energy landscape picture reported here o↵ers a powerful

tool for interpreting the physical properties of glasses at finite dimensions. In particular, each

glassy configuration corresponds to a free energy basin and the system can travel between basins

thanks to thermal fluctuations. When the thermal energy is lowered, the system can access a more

limited portion of the phase space and the rugged and hierarchical organization of the free energy

landscape controls the extremely slow dynamics of the system. At zero temperature, glasses find a

unifying point with granular materials as they jam under an infinitely high pressure. The system
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can now travel among energy minima only through mechanical deformations and a similar state-

following framework can used to explore the energy landscape as a function of applied shear strain

and density.

The theory of the amorphous solid phase is presented in the second part of chapter II. The

critical properties of soft sphere packings near the jamming point are described, with particular

emphasis on the critical scaling of the elastic moduli near the transition. The mechanical and

thermal response of amorphous solids is analyzed through the free energy landscape picture

which again o↵ers an interpretation of the anomalous behavior with respect to the crystalline

counterpart. In particular, the excess of low-frequency vibrational modes is linked to the presence

of many marginally stable free energy minima or energy minima at zero temperature. This gives

rise to a di↵erent scaling of the low-frequency tail of the vibrational density of states which

controls the mechanical and thermal properties of the system.

In chapter III, I show that the vibrational properties of thermal hard sphere glasses

and soft sphere packings meet at the jamming point. In more detail, as a hard sphere system

approaches jamming from below and a soft sphere packings from above, the low-frequency modes

computed from samples of both systems give rise the same statistics of the low-frequency tail of

vibrational density of states. This enforces that the mechanical properties of hard and soft sphere

configurations are uniquely determined by their amorphous structure. In this work I developed

a protocol to produce stable configurations of hard spheres right below the jamming point via

athermal simulations, a particularly challenging task due to the non-analytical repulsive potential

between particles. To overcome this di�culty, I implemented the energy minimization algorithm

of an e↵ective potential between hard spheres which is a good approximation of the interaction

between frequently colliding particles under very high pressure. The analytical e↵ective potential

allowed me to compute the mechanical properties of the system, such as the normal modes and

the vibrational density of states, using tools already developed for soft potentials. This work takes

a big step forward in linking the properties of granular materials to those of glass-former liquids

approaching the rigidity transition.

The technique I developed to produce equilibrated hard spheres configurations has already

been used by others in the glass community. It allows one to probe the vibrational properties

of thermal hard sphere glasses with a simple and reproducible athermal algorithm, rather than
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using conventional thermal simulations which can only give an indirect measure of the vibrational

density of states. A future research direction is applying the logarithmic potential minimization

on configurations of previously thermalized hard spheres. This would allow to decouple the

amorphous structure from the thermal noise and investigate the inherent mechanical properties

of the systems. This work also underlines that low-frequency modes, responsible for the linear

response of the system, originate from localized weak, often called soft spots. The soft spots

distribution has been greatly studied from the soft sphere perspective as it o↵ers a prediction

on where structural rearrangements and plastic events would happen. It is now possible to

perform similar studies for thermal glasses for which the typical length scale of soft spots have

been theorized as a critical correlation length for the jamming transition. This could potentially

o↵er insights for building a finite-dimensional continuum theory of amorphous solids.

In chapter IV, I explore the role of mechanical stability on the rheology of jammed solids.

Precisely, I show that cyclic shear driving can be used to encode a memory of a shear deformation

only in marginally stable regions of the system. Jammed solids are produced via two protocols

which allow to access marginally stable and highly stable configurations of soft spheres interacting

via a harmonic contact potential. While the first protocol is based on using a conventional energy

minimization, the latter is a recently developed algorithm which introduces the radial degrees

of freedom in the minimization of the potential energy. Having access to a richer number of

degrees of freedom allows the system to find a better configuration which is highly stable against

mechanical deformations. Upon athermal quasistatic shear, marginally stable packings show a

ductile behavior whereas highly stable packings have a large elastic response and eventually fail to

support the external load at a large yielding strain. When it comes to memory training by cyclic

shear, packings produced with a very high mechanical stability are not able to store a memory

of strain amplitudes below the yielding strain. The reason is the lack of marginal stability before

yielding: highly stable packings are reversible under shear cycles in the elastic regime and cyclic

deformations do not change the structure of the system. By contrast, marginally stable packings

undergo irreversible rearrangements even for small strain amplitudes as they travel between

energy minima which are connected by small perturbations. I show that the ability to access

marginally stable configurations during the cyclic shear training is necessary to store a memory.

In particular, highly stable packings beyond the yielding point are able to store memories because
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they form a shear band, a region of the system which I show to be marginally stable. This work

sheds light on the mechanisms responsible for memory formation by mechanical training in

jammed solids in relation to the mechanical stability of the system.

In addiction to presenting a quantitative study of memory training by cyclic shear, this

work reveals that the development of memory is strongly tied with the amorphous structure

of the system. As athermal quasistatic shear has been used to explore the energy landscape

of amorphous solids, it can also be used to investigate whether the structural rearrangements

during the training influence the normal modes of the system. This could shed light on how

the optimization of the structure to the shear deformation is linked to the optimization of the

energy landscape in phase space, and potentially clarify whether memory develops as a collective

phenomenon arising from localized weak regions, or more as a sequence of avalanches which spans

throughout the entire system.

The result presented in chapter IV opens up new directions in the field of memory training

in jammed solids. In a preliminary study I observed that multiple memories can be encoded by

using shear training on orthogonal shear directions, a phenomenon also observed in experiments of

colloidal systems. Along the same lines, I’m currently working on implementing memory training

using a newly developed algorithm to simulate the physics of active soft particles: athermal

quasistatic random displacements (AQRD). Here, particle activity is schematized as a propulsion

in a direction extracted from a random distribution. The rheology of highly stable packings under

AQRD has already been explored and a similar brittle behavior has been observed as in the case

of simple shear. Nevertheless, a highly stable packing subject to AQRD does not form a shear

band upon yielding but the brittle failure originates from localized weak regions of the system.

If these regions reveal to be marginally stable as in the case of the shear band in simple shear,

memories by cyclic driving of AQRD could potentially develop in localized portions of the system.

This would allow to preemptively designed the location where memory gets stored. In particular,

recent works on simple shear showed that it is possible to tune the location of the shear band of

a brittle amorphous packing by exciting a localized region of the system, producing a weak spot

from which the brittle failure originates. In a similar fashion, weak spots could trigger memory

to form in determined regions of a packing subjected to cyclic AQRD, a possibility which would

represent an important advance in the field of designing materials with particular tasks.
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