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DISSERTATION ABSTRACT

Cameron Warren Johnson

Doctor of Philosophy

Department of Physics

June 2021

Title: Grating-Based Beam Shaping and Inelastic Interferometry with Free Electrons

Here I present studies for the manipulation of free electrons using material

holograms and the application of holographically structured electrons in

interferometry. The research in this dissertation can be divided into two main

sections. First, is the design and nanofabrication of off-axis material holograms

for free electrons that can be used to arbitrarily shape the amplitude and phase

of the electron wavefront. Focused ion beam gas-assisted etching is presented

as a method to reliably achieve the fabrication resolution required to produce

the intended grating groove profiles to optimize diffraction efficiency and meet

the precise hologram depth profiles required to impart a desired structured

wavefront. An analytical method for finding hologram groove profiles is also

outlined and experimental tests are performed to verify its accuracy. In the second

portion, binary straight diffraction gratings are placed in a transmission electron

microscope to create a scanning two-grating Mach-Zehnder interferometer. The

iv



sensitivity of the relative phases in the interferometer output are shown through

the relative alignment of the gratings, as well as by introducing external phase

shifts from static potentials to the path separated probes. The interferometer’s

capability to achieve phase sensitive nanoscale imaging is also demonstrated.

Finally, the interferometer is used to measure interference between a coherent

superposition of electrons inelastically scattered from the dipole plasmon of a gold

nanoparticle.

This dissertation contains previously published and unpublished material.
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CHAPTER I

INTRODUCTION

1.1. History and Motivation

Although atomic theories of nature and macroscopic electrical phenomena were

known to the ancient Greeks, the discrete aspect of electrons and the constant

of charge they carry were not veritably discovered until the turn of the 20th

century with J. J. Thomson’s 1897 cathode ray tube and Robert Millikan’s 1909

oil drop experiments, respectively [1, 2]. In the following decades, the physical laws

governing the behavior of bound electrons was the subject of intense scrutiny and

was instrumental in the development of quantum mechanics and modern atomic

theory [3]. Concurrently, Louis de Broglie proposed a hypothesis on the quantum

mechanical wave nature of free electrons (and all massive quantum particles)

assigning a wavelength that is inversely proportional to its momentum, λ ∝ p−1

[4]. While this property seems to contradict the previously measured point-like

particle nature of electrons, it is technically complimentary and was independently

verified a few years later by George Paget Thomson (son of J. J. Thomson), as

well as Clinton Davisson and Lester Germer by showing that electrons could diffract

from both amorphous and crystalline materials [5, 6]. Soon after in 1933, Ernst

Ruska constructed the first electron microscope opening a crucial window into the

sub-micron world with electron microscopy [7]. Dismayed by the resolution of these

early microscopes, Dennis Gabor developed his holographic principle that exploited

electron interference to surpass technological resolution limits [8]. In 1952, Haine

and Mulvey provided an experimental verification of the holographic principle with
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electrons [9], subsequently Gabor’s holographic principle has become a versatile tool

in the physics of image formation for all wave mediums. So far, electron microscopy,

along with its various spectroscopic capabilities, has achieved the highest imaging

resolution of all microscopic techniques [10], providing an immeasurable insight into

atomic-scale structure and energetic information of materials, leading to innumerable

advances in materials science and nanoscale physics [11]. While bound electrons play

a central role in the properties of materials, here we describe studies of free electrons

in vacuum, and unless state otherwise any mention of an electron can be assumed to

be a free electron.

We can describe the state of individual electrons in an electron microscope with a

beam-like geometry where the expectation value of momentum is in the longitudinal

direction with only a small distribution in the transverse plane. The degree to

which an electron will exhibit wavelike behavior is determined by the purity of its

quantum state. A pure electron quantum state is spatially and temporally coherent,

that is, different parts of the transverse/longitudinal wavefront can perfectly self-

interfere if they were displaced in space/time to overlap. In practice, most electron

states are partially coherent having a finite coherence lengths/times. The coherence

length is largely associated with the spatial extent of the emission source and is

constant with angular spread, scaling with beam diameter, where as the coherence

time is associated with the energy distribution of the electron. However, modern

field emission electron sources have an energy spread to peak energy ratio that is

comparable to a HeNe laser, and the spatial coherence of the beam can be improved

by selecting a smaller solid angle of wavefront. Under these conditions, it is valid to

approximate the propagation of an electron as a pure quantum state, but if necessary
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the partial coherence can be incorporated to the pure state solution perturbatively

[12].

Many traditional electron microscopy techniques rely on diffraction and

interference of coherent electrons after interactions with condensed matter systems

to determine the structure and composition of matter. However, using electrons

to probe quantum coherent interactions is a relatively new concept that is being

explored in the emerging field of quantum electron optics [13, 14]. Some specific

topics in this developing field include: interaction free measurements [15], coherent

optical control [16], quantum state tomography [17], transfer of orbital angular

momentum [18], the Aharonov-Bohm effect [19], and electron decoherence and

entanglement [20, 21]. Research of these topics has been enabled by structuring

the longitudinal [22] and transverse [23] electron wavefunction and interferometry

[24], but being an emerging field, there is much room for new and improved methods

and experiments [25].

In this dissertation, I explore methods that improve shaping the electron

transverse momentum distribution and wavefront with off-axis material holograms,

use diffraction gratings to construct a novel, highly functional, scanning grating-

based interferometer in a transmission electron microscope (TEM), and finally

demonstrate inelastic interferometry with coherent superpositions of plasmon

scattered electrons.

1.2. Background Information

Before diving into the main body of research presented in this dissertation,

we cover some background concepts that are instrumental for the heuristic

understanding of the main chapter contents.
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1.2.1. Free Electron Solutions to Schrödinger Equation

The fully relativistic, quantum mechanical dynamics of free electrons can be

determined with the Dirac equation [26]. Although electrons in a TEM are inherently

relativistic with velocities that are a considerable fraction of the speed of light,

the benefits of explicit inclusion of spin and Lorentz invariance afforded by the

Dirac equation are not outweighed by its complexity [12]. Instead, we can apply

a relativistic correction to the Schrödinger equation that provides a description of

the electron wavefunction that is sufficiently accurate for most experiments in the

TEM [27].

In a conventional TEM there is a continuous emission source and besides the

magnetic lenses that are used to focus the electron beam, we consider electrons

that only interact with electrostatic potentials such that we can consider the

vector potential A = 0. Consequently, the time-independent Schrödinger equation

determining the steady-state electron wavefunction can be written as

(
− ~2

2me

∇2 + V (r)

)
ψ(r) = Eψ(r), (1.1)

where E is the total energy of the electron, V (r) is the electron’s potential energy,

and the probability of finding the electron in a volume V is giving by the Born rule

PV =
∫

V
d3r|ψ(r)|2. The electrons are accelerated from the source by an electrostatic

potential V = −eUacc, giving a kinetic energy in the column EKE = E + eUacc and

allowing us to write the time independent Schrödinger equation in a form that is

identical to the Helmholtz equation

(
∇2 + k2

)
ψ(r) = 0, (1.2)
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where k =
√

2meEKE
~ = 2π

λ
. The relativistic effects in a TEM can be accounted for by

replacing the de Broglie wavelength with its relativistic form λ→ λrel giving

krel =
2π

λrel
=

1

~c

√
E2
KE + 2EKEmec2. (1.3)

The electrons propagating down the TEM column are traveling, on average, in a

single direction with a small beam divergence, see Figure 1.1, allowing the electron

Emission Source + Accelerating Potential

Longitudinal Electron Plane Wave

Magnetic Lens

Focused Electron Beam

x̂

ŷ

ẑ

FIGURE 1.1. Cartoon diagram of a paraxial beam of electrons accelerated from a
point-like emission source in a TEM column with magnetic lenses to focus the beam.
The general coordinate conventions used in this dissertation, z is up and R = (x, y)
is the transverse plane.
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wavefunction to be written in the form ψ(r) = φ(r)eikzz with kz . krel and the mode

function φ(r) governed by the the time-independent paraxial wave equation

(
∇2
⊥ + 2ikz

∂

∂z

)
φ(r) = 0, (1.4)

where ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2 is the transverse Laplacian. This mode function has an exact

solution known as the Fresnel diffraction integral

φ(r) =
kz

2πiz

∫
d2R′ φ(R′, 0) exp

(
ikz
2z

(R−R′)2

)
, (1.5)

where r = (R, z) and R = (x, y). Conveniently, when z is much larger than the

radial extent of φ(R′, 0), the kzR
′2/z term in the argument of the exponent becomes

small enough to be neglected making the Fresnel diffraction integral mathematically

equivalent to the Fourier transform of φ(R′, 0). This result is general to the paraxially

approximated Helmholtz equation that is widely known in linear Fourier optical

theory for scalar waves [28].

1.2.2. Scalar Wave Optics and Coordinate Conventions

All paraxial scalar waves that follow Fourier optical theory can be decomposed

into a superposition of plane waves eik·r with a continuous or discrete spectrum

of momenta ~k = (~kx, ~ky, ~kz). We can consider an ideal converging lens with

the defining property that it will focus a plane wave incident on the lens to a

single location in the transverse plane located a distance f past the lens, called

the back focal plane or far field. There is a 1-to-1 relationship between a plane

wave’s transverse momentum ~K = (~kx, ~ky) and its focused position in the back

focal plane of the lens. For an arbitrary transverse scalar wave incident on the lens
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ψ(R) this 1-to-1 mapping to the back focal plane is the Fourier transform and is

proportional to the transverse momentum distribution of the incident scalar wave

ψ̃(K) ∝
∫
d2Rψ(R)eiK·R ≡ F{ψ(R)}, Figure 1.2.

When working in holography, we use the coordinate convention that R = (x, y)

is the position coordinate at the hologram or diffraction grating with incident plane

waves, and K = (kx, ky) is considered the transverse momentum coordinate in the

back focal plane where discrete focused diffraction orders are spatially separated,

Figure 1.2(a). Alternatively, when dealing with focused waves scattering from an

object it is convenient and physically valid to flip this convention and consider the

focused wave incident on the object in the front focal plane of the lens as the position

coordinate R = (x, y), then the back focal plane of the lens is still the momentum

coordinate K = (kx, ky), but now is the maximally defocused transverse wavefront.

This convention is used so that when we consider an energy loss spectrum, Γ, for

the scattering process we can intuitively describe the transverse momentum resolved

loss spectrum, dΓ/dK, in the far field of the interaction, Figure 1.2(b).

(a) Holograpy Convention (b) Scattering Convention

f

f

(b)

R = (x, y)

K = (kx, ky)

Γ

dΓ
dK

Grating

Diff. Orders

ẑ

FIGURE 1.2. (a) Transverse plane coordinate convention for holography/diffraction
grating experiments; a grating in front of a magnetic lens and the far field diffraction
orders spatially separated in the back focal plane. (b) Transverse plane coordinate
convention for scattering experiments; a focused electron beam interacting with
a sample with interaction probability Γ and the transverse momentum resolved
probability dΓ/dK in the back focal plane of a magnetic lens.

7



1.2.3. A TEM as an Electron Optics Workbench

In general TEMs have current carrying wire coils acting as magnetic lenses and

apertures at fixed distances in a vertical column that forms a sequential optical

system for the freely propagating electrons. The focal length of each lens can

be controlled with independently by increasing or decreasing coil currents and the

apertures can be easily be swapped for flat electron optical elements. In the body

of this work we use an FEI Titan image-aberration-corrected 60-300 keV scanning

transmission electron microscope (STEM/TEM) that has 11 magnetic lenses and 4

aperture holders (Fig. 1.3). Figure 1.3(b,c) show what physical

ẑ

FIGURE 1.3. (a) Photograph of an image-corrected FEI Titan TEM. (b) Ray tracing
diagram of TEM with the approximate relative spacing between the magnetic lenses
and apertures consisting of: condenser lenses (C1, C2, C3) and condenser apertures
(C1 Ap, C2 Ap, C3 Ap), mini-condenser and objective lenses at the specimen section
(MC, Obj1, Obj2), an objective aperture (Obj Ap), a Lorentz lens (Ltz), a selected-
area aperture (SA), as well as a diffraction, intermediate, and two projector lenses
(Diff, Int, P1, P2). Shown in a two-grating interferometer configuration with input
grating (G1) and output grating (G2) placed in the C2 Ap and SA Ap planes
respectively. (c) Illustration of two-grating interferometer showing what abstract
optical component corresponds to in the TEM.
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lens groups and apertures correspond to the abstract illustration components that

will be used throughout this dissertation.

One important note not captured in the illustration in Figure 1.3(c) is that the

post-specimen projection lenses can easily provide up to a ×1,000,000 magnification

between the specimen and detector planes in this configuration. Additionally, these

lenses can be adjusted to display an image of the aperture planes above and below

the specimen. At the bottom of the column there are various detectors: a charge-

coupled device (CCD) camera capturing two-dimensional intensity images of the

transverse electron wavefunction at a given z = z0 plane, |ψ(R, z0)|2; monolithic

detectors that measure different radial sections of the scattered intensity for every

specimen scanning probe location, a brightfield (BF) detector for the central region,∫
dϕ
∫ R0

0
dRR|ψ(R, z0)|2, and high-angle annular darkfield detector (HAADF) for an

annular region around the optical axis,
∫
dϕ
∫ R2

R1
dRR|ψ(R, z0)|2, with R0 � R1 <

R2; and an electron energy loss spectrometer (EELS) that disperses the electrons

with magnetic prism to measure the spectrum of the electrons, |ψ(ω)|2.

1.2.4. Coherent Transmission Through Materials

When electrons in a TEM enter a thin amorphous material, as depicted in Figure

1.4, they experience an electrostatic potential due to the average value of all the

atomic potentials called the mean inner potential Umip. This mean inner potential

contributes to the kinetic energy of the electron and modifies the longitudinal

wavenumber as

kz(Umip) =
1

~c

√
(EKE + eUmip)2 + 2(EKE + eUmip)mec2. (1.6)
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ẑ

t0

Umip = 0

Umip > 0

Umip = 0

λ = 2π
kz(Umip)

λ = 2π
kz(0)

FIGURE 1.4. Diagram of electron longitudinal plane-wave passing through a thin
material with thickness t0 and a positive mean inner potential. Depicted here is a
positive mean inner potential giving rise to a decreased de Broglie wavelength in the
material, for materials with a negative mean inner potential it would increase.

This is similar to the refractive index for light. At normal operating conditions the

case that eUmip � EK is satisfied and we can approximate Equation (1.6) with the

first two terms of its Taylor expansion about eUmip/EK

kz(Umip) = kz(0) +
emrelλrel

2π~2
Umip +O

((
eUmip

EKE

)2
)

≈ kz(0) + σUmip,

(1.7)

where σ = emrelλrel/2π~2 is called the interaction parameter that is independent of

any material parameters for an electron with relativistic mass mrel = me + EKE/c
2

and relativistic de Broglie wavelength λrel = hc/
√
E2
KE + 2EKEmec2.
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Within the material the electron’s longitudinal wavefunction is modified by the

first order expansion in the wavenumber ψz(z) = exp(ikz(0)z) exp(iσUmipz). This

additional phase changes the wavelength in the material, but electrons return to

their initial kinetic energy upon exiting the material, (Fig. 1.4). Provided that the

material thickness, t0, is sufficiently small so dynamical diffraction can be ignored

within the material, the phase accumulated by passing through the material can be

found by integrating across the thickness of the material, projecting the total phase

shift in the transverse plane
∫ t0

0
dz σUmip = σUmipt0 = Φt0. What has not been

discussed so far is that there are many elastic and inelastic high angle scattering

processes that can occur within the material that are highly dependent on the

material properties as well as the acceleration energy. It would be a tedious, but

possible task to calculate the probability of all of these scattering processes for a

given material. However, since these processes just eject electrons outside of the

collection apertures of the optical system in the TEM column, we can empirically

find a Beer’s law like “absorption” coefficient which can be written as the complex

part of the phase shift Φ̃ = σUmip + iα.

In general, the thickness of the material is not required to be uniform across

the transverse directions. If the thickness varies in the transverse plane t(R), with

r = (R, z), then after transmission through the material the electron wavefunction

becomes

ψ(r) ∝ exp(ikz(0)z) exp(iΦ̃ t(R)). (1.8)

A material that can form hard, homogeneous, low-stress, free standing thin films with

small high angle scattering probabilities α � σUmip, that supports nanofabricated

depth profiles, t(R), can then be used as diffraction holograms. For example, we use

Si3N4, which has the properties σUmip ≈ 0.15 rad·nm−1 and α ≈ 0.008 nm−1.
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1.2.5. Electron Energy Loss Due to Electromagnetic Interactions

In addition to the elastic interactions that are described in the previous section,

there can be a significant probability that electrons can be inelastically scattered.

Here I summarize the mechanism for energy loss via interactions with induced

electromagnetic fields.

1.2.5.1. Classical Approach

Consider an electron propagating down the column of a TEM with velocity

v = −vẑ (Fig. 1.5). Classically, this can be described as a delta function charge

density along a time dependent path, ρ(r, t) = eδ(r−r0(t)), where the time dependent

path can be written explicitly as r0(t) = (R0 cos(ϕ0), R0 sin(ϕ0), z0 − vt). This

charge density has a corresponding current density J(r, t) = evδ(r− r0(t)), which in

frequency space is given by

J̃(r, ω) =

∫
dt eiωtJ(r, t)

= − ev

v
δ(R−R0)eiω(z−z0)/v.

(1.9)

The charge of a fast electron produces a time dependent external electric field

Eext(r, t), which in frequency space is given by Ẽext(r, ω) =
∫
dt eiωtEext(r, t).

Now consider an arbitrary nanostructure whose optical response is determined by

the dielectric function ε(r, ω). The nanostructure response to the external electric

field from the passing electron results in an induced electric field denoted as, Eind(r, t)

and Ẽind(r, ω) =
∫
dt eiωtEind(r, t). This induced electric field can be written in terms

of the current density of the fast electron and the dyadic Green’s function of the
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Eext(r, t)

Eind(r, t)

r0(t)

ε(r′, ω)

Ĝ(r, r′, ω)

ẑ

FIGURE 1.5. Illustration of a classical point electron on passing through the
electric field from a plasmonic nanostructure induced by the dielectric response to
the external electric field from the passing electron itself that results in a EELS
probability Γ.

nanostructure

Ẽind(r, ω) = −4πiω

∫
d3r′ Ĝ(r, r′, ω) · J̃(r′, ω), (1.10)

where Ĝ(r, r′, ω) is the solution to

∇×∇× Ĝ(r, r′, ω)− ω2

c2
ε(r, ω)Ĝ(r, r′, ω) = − 1

c2
δ(r− r′), (1.11)

this differential equation can be derived directly from Maxwell’s equations (Fig. 1.5)

[29].

The induced electric field does work on the passing electron resulting in a loss of

energy

∆E = e

∫
dtv · Eind

r0
(r0(t), t) =

∫ ∞
0

dω ~ωΓ(ω), (1.12)

where the subscript in Eind
r0

is included to denote that the induced field is produced

from the electron on the path r0(t) and is evaluated at r0(t), and Γ(ω) is the
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probability of losing ~ω amount of energy per unit ω. The loss probability can

then be written as

Γ(ω) =
e

π~ω

∫
dtRe

{
e−iωtv · Ẽind

r0
(r0(t), ω)

}
. (1.13)

Using the dyadic Green’s function representation of the induced field with the

substitution of time integral coordinates z = z0 − vt and dt = dz/v gives

Γ(R0, ω) =
4e2

~

∫
dz dz′ cos (qz(z − z′)) Im

{
−ẑ · Ĝ(R0, z,R0, z

′, ω) · ẑ
}
, (1.14)

where qz = ω/v [30]. With this we can calculate the energy loss spectrum we would

expect to see using an EELS spectrometer to predict an expected result or compare

to experimental measurements.

1.2.5.2. Quantum Approach

A more rigorous result can be derived quantum mechanically by calculating the

transition rate probability using Fermi’s golden rule. This is done by considering

the fast electron wavefunction ψi(r) = ψi⊥(R)eikzz exciting the solid state electron

density operator ρ̂ from its ground state to an excited state, |g〉 → |e〉, via the

Coulomb interaction Hamiltonian, H int ∝ |r − r′|−1, where r and r′ are the source

and field points of the electric potential. Within this formulation we can determine

the loss probability in terms of the final transverse momentum distribution of the

scattered wave, K (Fig. 1.6). Under the assumptions that the gradient of the

transverse wavefunction is much smaller than the longitudinal plane wave,
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H int ∝ 1
|r−r′|

ψ(r)
ρ̂(r′) : |g〉 → |e〉

ε(r′, ω)

Ĝ(r, r′, ω)

K

ẑ

FIGURE 1.6. Illustration of an electron wavefunction exciting the condensed matter
electrons in a plasmonic nanostructure to a higher energy state via the Coulomb
interaction Hamiltonian resulting in an EELS probability that can be resolved by
final transverse momenta dΓ/dK.

the non-recoil approximation ω = q · v − ~q2/2me ≈ q · v for the incident plane

wave wavevector q, and delta function normalization of the final states, then in this

formalism the momentum resolved EELS probability can be written as

dΓ(ω)

dK
=

e2

π2~

∫
d2R d2R′ ψ∗i⊥(R)ψi⊥(R′)eiK·(R−R

′)

×
∫
dzdz′ e−iqz(z−z′)Im

{
−ẑ · Ĝ(r, r′, ω) · ẑ

} (1.15)

[30]. Integrating over all possible final transverse momenta gives the intuitive result

Γ(ω) =

∫
dK

dΓ(ω)

dK
=

∫
d2R|ψi⊥(R)|2Γ(R, ω), (1.16)

where Γ(R, ω) is the same as Equation (1.14) from the classical formalism.
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1.3. Dissertation Outline

This dissertation is laid out in two main sections: The first pertains to the design,

fabrication, and measurement of material holograms for free electrons that split the

transmitted beam into multiple off-axis diffraction orders. Chapter 2 covers the

development of focused ion beam gas-assisted etching as a reliable nanofabrication

process for making straight diffraction gratings with ideal diffraction efficiencies for a

given groove profile. Chapter 3 covers the development of an analytical theory for the

design of off-axis holograms that can be used to arbitrarily shape the amplitude and

phase of the transverse wavefront of a single diffraction order and an experimental

implementation is demonstrated. The second section is on the application of these

nanofabricated gratings to grating-based electron interferometry. Chapter 4 covers

the construction of a scanning two-grating electron Mach-Zehnder interferometer in a

TEM and demonstrates its phase sensitivity to electrostatic fields and an application

for quantitative phase imaging. Chapter 5 covers the theoretical treatment of

plasmon scattering in the grating interferometer for multiple coherent probes incident

on a single metallic nanoparticle and the interference in the interferometer output.

Chapter 6 covers an experimental demonstration of this inelastic interference on

isolated gold spherical nanoparticles. Finally, chapter 7 provides an outlook for future

experiments that can be performed with the electron interferometer and provides a

conclusion for the dissertation.

This dissertation contains previously published and unpublished material.
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CHAPTER II

FIB GAE FABRICATED DIFFRACTION HOLOGRAMS

Notes for Ch. II:

This chapter is adapted from the published research article:

[31] C. W. Johnson, D. H. Bauer, and B. J. McMorran. Improved Control of

Electron Computer-Generated Holographic Grating Groove Profiles Using Ion Beam

Gas-Assisted Etching. Applied Optics, 59(6):1594-1601, 2020.

BJM and I developed the study for the paper. DHB assisted in designing the

gratings and helped measure diffraction efficiencies for the tilted incidence portion of

the experiment. I performed the nanofabrication, the measurements and wrote the

paper.

————————————————————————————————————–

An off-axis hologram’s groove profile can be generated by simulating the

interference pattern of a reference wave and a wave with a desired phase to encode,

then imprinting that interference pattern into a phase-shifting material for an

incident plane wave [32]. The desired phase from the hologram is imparted to the

incident wave upon transmission. Given a material that can impart a thickness-

dependent phase shift to a wave medium, holograms can be created for any medium

which creates complex scalar waves such as photons, electrons, neutrons, atoms,

and molecules [33, 34, 35, 36, 37]. Holograms have been used for decades to shape

electromagnetic waves and have recently been applied to the field of matter wave

optics that exploit the particle-wave properties of massive quantum particles first

proposed by de Broglie in 1924 [4].
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Conventional transmission electron microscopes (TEMs) operating at accelerating

voltages ranging from 60-300 kV, resulting in electron wavelengths of 5-2 pm

respectively, routinely achieve atomic resolution and have been instrumental at

increasing our understanding of material properties at the nanoscale. In the past

decade researchers have been developing holograms to structure the profile of electron

waves in TEMs with the hope to create new tools able to measure new degrees

of freedom that are undetectable within conventional electron microscopy [38].

Many of these efforts have been to create holograms that produce electron vortex

beams (EVBs) which carry quantized amounts of orbital angular momentum aiming

to develop nanoscale, symmetry-breaking dichroism type measurements [18, 39].

Holograms for electrons have also shown to be useful for aberration correction

[40, 41, 42], interferemetric 4D scanning TEM [43, 44], and exploring fundamental

properties of free electrons [45]. The biggest hindrances to holograms having a large

impact in these research areas are two-fold. The first problem is efficiency; the

groove profile of a hologram must be precisely controlled in order maximize the

diffraction efficiency into a desired diffraction order while simultaneously minimizing

all the other diffraction orders to reduce background noise. The second problem

is scalability; the holograms must be large enough to have a sufficient intensity in

the desired diffraction order. Previous efforts have been able to address one of these

issues at a time, but there has not been a nanofabrication method to create holograms

that overcomes both of these problems simultaneously.

Holograms for electrons can be amplitude-type, consisting of arrays of slits

milled all the way through a material only allowing transmission through the slits

[46, 47, 48], or phase-type, consisting of grooves in an electron-transparent material

like silicon nitride (Si3N4) of a particular depth to introduce a thickness-dependent
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phase shift [49, 50, 51]. The two most successful nanofabrication methods for

creating electron phase holograms have been focused ion beam (FIB) milling and

electron beam lithography (EBL) [52, 53]. FIB milling sputters material away

by physical momentum transfer and easily allows for arbitrary groove profiles,

ultimately limited by the size of the intensity distribution of the FIB and the

redeposition of the sputtered material back on the hologram. FIB milling also

requires very low currents, ∼10 pA, to achieve the best resolution. Implantation

of gallium from the FIB process introduces a nontrivial scattering and phase shifts

onto transmitted electrons as well causing membrane swelling and stretch, further

complicating the manufacture and efficiency of holograms [34]. Consequently, FIB

milling is good at arbitrarily controlling the efficiency of holograms, but is difficult to

create holograms large enough to fill condenser apertures of a typical TEM, ∼50 µm

and introduces unwanted material defects. EBL has an even better resolution than

FIB milling and can easily pattern 50 µm, but it is difficult to implement arbitrary

groove profiles without introducing more processing steps to the nanofabrication

process, significantly increasing the chance of process failure. This makes it nearly

impossible to create single Si3N4 membranes with multiple holograms using EBL or

any lithographic technique; it is much more practical to have a single membrane

with multiple holograms placed in a condenser aperture of a TEM, as replacing

a condenser aperture for each application is undesired on a shared user instrument.

This means EBL is a scalable process, but does poorly at creating multiple holograms

with differing arbitrary groove profiles needed to maximize efficiencies.

Indeed, different nanofabrication processes other than FIB milling and EBL as

well as different host materials other than Si3N4 have been explored in previous

studies [54, 55, 56]. These different processes still lack all the necessary attributes,
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such as scalability, resolution, and consistency, required for the fabrication of

holograms. While different membrane materials have arguably better physical

properties than Si3N4 for holograms, ease of manufacture and commercial availability

of high quality, low stress, thin Si3N4 make it an ideal host material.

Introducing a concurrent gas-assisted etching (GAE) process to the FIB milling

procedure selectively catalyzes a dry chemical etch where the FIB is being rastered.

This chemical etching process works by adsorbing to the material surface and

disassociating to reactive ionic components, then wherever the material has been

weakened by the scanning FIB the reactive ions capture material to form volatile

compounds that out-gas and pumped from the vacuum chamber. This removes

much of the material whose structure has been altered and implanted with ions. As

a result, all the positive attributes of FIB milling such as reproducibility, and spatial

depth variability are kept, while simultaneously increasing resolution by decreasing

process time, stage drift, and material redeposition. FIB GAE is a robust single-step

nanofabrication process for the creation of highly efficient electron phase holograms

that can be scaled to fill the apertures in TEMs.

2.1. Holograms Made Using FIB GAE

2.1.1. Nanofabrication Methods

All of the FIB GAE presented here was performed in a FEI Helios Dual Beam

FIB - 600 using Ga+ ions. We use XeF2 as the etchant gas, which is commercially

available in FEI dual beam FIB instruments. XeF2 has been shown to increase the

sputtering rate of Si based materials by up to factor of 12 for Ga+ ion beam milling

[57].
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To characterize the effectiveness of FIB GAE we chose three standard holograms

groove profiles - binary, sinusoidal, and blazed - that can each be optimized for various

applications in electron beam engineering. We made a total of 36 holograms, 12 for

each groove profile shape with increasing groove depth, all with 200 nm pitch and 12

µm diameter. The ion beam current and accelerating energy was held constant for

all mills at 7.7 pA and 30 keV respectively. The binary holograms were made with a

single raster pattern with total ion doses varying linearly from 2.5-21.9 pC/µm2.

To intentionally fabricate a pattern with a continuous, spatially varying groove

profile we can create a set of multiple raster patterns with slightly varying pitch

duty cycles, that when milled in sequence produces the intended groove shape. The

sinusoidal hologram were made by repeating a sequence of 7 different raster patterns

with total ion doses from 3.8-31.5 pC/µm2. The blazed holograms were made by

repeating a sequence of 19 different raster patterns with total ion doses from 3.4-36.4

pC/µm2. The XeF2 gas was introduced through a commercial gas injection needle

approximately 1 mm above the milling region. Examples of the groove profiles made

can be seen in Figure 2.1.

2.1.2. Diffraction Efficiency

For weakly interacting objects in a TEM, the amplitude and phase of the

transmitted electron wave are changed proportionally to the spatially varying

thickness of the hologram, t(R), dependent on the materials properties of the

hologram [58]. For an incident electron wavefunction ψ0(R), incident on a material

with varying thickness t(R) with a phase shift per nm, Φ0, and ‘absorption’

per nm, α, then the wavefunction directly after the hologram can be written as

ψ(R) = ψ0(R)eiΦ̃t(R), where Φ̃ = Φ0 + iα. We introduce the ‘absorption’ term α to
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FIGURE 2.1. Example 12 µm diameter, 200 nm pitch holograms with (a) binary,
(b) sinusoidal, (c) blazed groove profiles. All white scale bars are 500 nm. Milled
in 100 nm thick free standing Si3N4 membrane with a 5 nm titanium/platinum
charge alleviation layer on the underside, viewed at 52◦ angle in a scanning electron
microscope. Red insets are zoomed sections on the hologram upper edge. Blue
insets are FIB cross-sections showing a platinum cap layer (only present for cross-
sectioning), a typical Si3N4 groove profile, a titanium/platinum charge alleviation
layer (high contrast line at bottom), and vacuum underneath; the dashed yellow
lines trace the interface of the platinum cross-sectioning cap and the actual hologram
groove profile. (d-f) Normalized, defocused far field diffraction patterns from
holograms with mill depths designed to produce the ideal diffraction properties of
each groove profile.

account for electrons scattered by the Si3N4 membrane at high angles outside of

the collection aperture of the optical system. If we write the output electron wave

as a one dimensional Fourier series in the diffraction direction, assuming plane

wave illumination with an amplitude |ψ0(R)| = 1, the magnitude squared Fourier

coefficients are the absolute diffraction efficiencies from the hologram,

ηm = |cm|2 =

∣∣∣∣ 1

x0

∫ x0

0

ei(Φ̃t(x)−2πmx/x0)dx

∣∣∣∣2 , (2.1)
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where x0 is the pitch of the hologram and m ∈ Z is the diffraction order. These

efficiencies can be normalized giving efficiencies relative to total transmitted wave,

η(r)
m ≡

ηm∑
k∈Z ηk

. (2.2)

We placed holograms in the specimen plane of an FEI Titan TEM and expanded

convergence angle of the electron beam for plane wave illumination. The lenses after

(a)

(b)

FIGURE 2.2. Defocused far field diffraction intensity patterns from FIB GAE
nanofabricated diffraction grating arrays measured in a TEM at (a) 80 keV and
(b) 300 keV. Sinusoidal, binary, and blazed groove profile gratings from left to right
respectively. From top to bottom is increasing mill depth by linearly increasing the
FIB dose.
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the specimen plane were used to project the focal plane of the holograms onto the

CCD detector at the bottom of the TEM column. This was performed with both 80

and 300 keV electrons for every grating Figure 2.2

As is clear from Figure 2.1, we note that we have slight deviations from the

ideal profiles for the binary and blazed cases; these deviations can be attributed to

material redeposition and the finite width of the ion beam used to mill and catalyze

the chemical etch [59]. To model the thickness of the binary groove profile, t(R),

we replace the bottom of the square trough with the lower half of an ellipse. For

the sinusoidal case, we use a sine function. For the blazed case, we use two linear

ramps with opposite slopes. The modelled thickness profile of a single groove period,

0 < x ≤ x0, of each hologram can be explicitly written as

t(x) =



t0 − dΘ(x0/2− x)

(
(1− fbi) + fbi

√(
x0

4

)2 −
(
x− x0

4

)2
)

; Binary

t0 − d sin2(πx/x0); Sinusoidal

t0 − d
(

Θ(x0fbl − x) x
x0fbl
−Θ(x− x0fbl)

x−x0

x0(1−fbl)

)
; Blazed

(2.3)

where t0 is the thickness of the Si3N4 membrane, d is the groove depth, fbi is what

vertical fraction of the binary groove has the ellipsoidal shape, fbl is the fraction of

the pitch with the positive slope, and Θ(x) is the Heaviside step function. We use

the values fbi = 0.6 and fbl = 0.13 that were used by fitting to the yellow dashed

curves in Figure 2.1.

The first-order phase shift per nanometer of any non-magnetic material can

be decomposed into the mean inner potential of the material and an electron

energy dependent interaction parameter ϕ0 = Umipσ(E), where σ(E) = 2πe(E +

mec
2)/hc

√
2Emec2 + E2 [58]. We use the previously measured value Umip = 15
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V [60]. The ‘absorption’ per nanometer was found experimentally to be α =

0.008±0.001 nm−1 by comparing the integrated intensity of an electron beam passing

through vacuum and through a uniform membrane of Si3N4 with a known thickness.

The measured relative relative diffraction in Figure 2.3. These efficiencies were

found by summing all of the pixel values in a 80×80 pixel square around each

diffraction order in Figure 2.2, then normalizing by the sum of all pixel values in

the recorded diffraction pattern image. The uncertainties were found by applying

Poisson counting statistics to the count of pixel values in each box, normalizing to

the total pixel value sum of the image, then an extra 1% uncertainty was added in

quadrature to account for higher diffraction orders not recorded by the CCD.

FIGURE 2.3. (a,b,c) SEM micrographs of ion milled cross-sections of binary,
sinusoidal, and blazed holograms respectively; blue profiles are the modelled groove
profiles t(x) from Equation (2.3) for simulated diffraction efficiencies. Experimentally

measured relative diffraction efficiencies, η
(r)
m , of the first 5 diffraction orders, m, as

a function of hologram groove depth, d, for the array of 36 test holograms, (d,e,f) at
80 keV for binary, sinusoidal, and blazed holograms respectively, (f,h,i) and at 300
keV for binary, sinusoidal, and blazed holograms respectively. The dots with error
bars are the measured values, and the solid curves are the fits from Equation (2.2).
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The mill depths were estimated by taking the mean of least squares fits of Equation

(2.2) for the appropriate groove profile with d used as the only fit parameter. The

uncertainties in mill depth were found by adding the standard deviation of the two

fit mill depths as well as an extra 1 nm uncertainty added in quadrature to account

for any systematic deviation from the expected groove shapes defined in Equation

(2.3). The first 5 diffraction order relative efficiencies are in good agreement with

Equation (2.2) up to about a 50 nm mill depth. We attribute this deviation for mill

depths greater than 50 nm to the appreciable aspect ratios between depth and pitch

causing an increased rate of redeposition from sputtered and etched material in the

milled hologram trenches, changing the expected groove profile.

2.1.3. Tilted Incidence of Blazed Hologram

The phase shift a thin material applies to a passing electron wave is due to

the interaction with the inner potential Uip(r) of the material projected along the

z-axis Φ(R) = σ(E)
∫ t(R)

0
Uip(r)dz. Since Si3N4 is amorphous, we can average the

electric potentials from the atomic sites in the material giving a mean inner potential

Umip = 〈Uip(r)〉r, allowing us to write

Φ(R) = σ(E)Umip

∫ t(R)

0

dz = Φ0t(R). (2.4)

For a hologram, the thickness function t(R) in Equation (2.4) is assumed to be

oriented parallel to the electron wave fronts. If the hologram is tilted with respect

to the optical axis, t(R) is not the thickness of the material normal to the plane of

the hologram, it is the projection of the thickness along the propagation direction

of the electron as a function of the tilt angle t(θ,R) (Fig. 2.4(a)). We used this to
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design a 450 nm pitch, 15 µm diameter blazed grating whose maximum first order

relative diffraction efficiency is increased from 74% to 88% by changing the incidence

angle by 30◦ (Fig. 2.4(b,c)). In principle, a hologram could be made that has a

near perfect relative diffraction efficiency in the first diffraction order η
(r)
1 ≈100%,

limited by the ‘absorption’ α, caused by high angle scattering within the hologram

material. We kept the hologram pitch below 500 nm to retain pattern scalability, and

only considered up to 30◦ tilt angles for practical considerations of the TEM sample

holder. The larger tilt angles up to 30◦ certainly push the limits of the weak phase

approximation and treatment as a flat optical element. When scaling up to larger

diameter gratings it may be necessary to include wave propagation to the analysis.

FIGURE 2.4. (a) SEM micrograph of a 450 nm pitch, 15 um diameter hologram,
white scale bar is 2 µm. (b) Diagram showing the geometry of tilted hologram and
how the projection of the thickness profile of the hologram changes with incidence
angle. (c) Measured relative diffraction efficiencies of the hologram from (a) at three
different incidence angles with the predicted values from Equation 2.
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2.2. Practical Considerations

2.2.1. Scalability and Applications

To highlight the scalability and immediate applications of the FIB GAE

nanofabrication method we made two 50 µm diameter, 100 nm thick holograms. First

is a blazed 200 nm pitch hologram with an azimuthally varying spatial phase creating

an electron vortex beam that can be used in nanoscale magnetic and plasmonic

dichroism experiments [18, 39]. Second is a binary 125 nm pitch hologram that can

be used as an amplitude dividing beam splitter for electron interferometry and phase

sensitive electron microscopy [61]. The two holograms required 45 minute and 30

minute mill times, respectively.

Electron vortex beams are a relatively new class of electron beam that possesses

orbital angular momentum (OAM). The OAM is associated with an azimuthally

varying spatial phase that can be imprinted on the beam in a number of ways [62],

including a hologram with a fork dislocation [48, 51, 52]. These beams show promise

for probing chiral excitations in matter [18, 63], measuring atomic magnetic moments

[39], and manipulating nanoparticles [64]. However, these applications are severely

limited by low beam current, and effects caused by nearby diffracted beams. The use

of FIB GAE allows better control over the groove profile and faster mill times, which

provides the ability to improve both diffraction efficiency and effective aperture size.

The 50 µm blazed forked hologram has a relative diffraction efficiency (Eqn. (2.2))

η
(r)
1 = 68% and no more than 7% of the total transmitted intensity into any other

diffracation order at 200 keV, and with α = 0.008 nm−1, the absolute diffraction

efficiency (Eqn. (2.1)) is η1 ≈ 22% (Fig. 2.5(a)). The previous highest reported
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FIGURE 2.5. (a) 50 µm diameter, 200 nm pitch, 1 OAM blazed hologram. (b)
50 µm diameter, 125 nm pitch, straight binary hologram. Top images are SEM
micrographs viewed at 52◦ angle, scale bar is 2 µm. Red insets show zoomed portion
of micrographs, scale bar is 2 µm. (c,d) Normalized far field diffraction patterns
taken at 200 keV and 300 keV respectively. (e,f) Bar plots of the measured relative
diffraction efficiencies.

efficiency blazed hologram was made with FIB milling and had a relative diffraction

efficiency of η
(r)
1 = 40%, but required a 2 µm pitch [65]. This is a greater

than 50% increase in diffraction efficiency, but with a significant decrease in pitch

and increase in hologram diameter. Consequently, FIB GAE-fabricated holograms

produce high beam current, isolated electron vortex beams ideal for electron vortex

probe experiments.

Recent demonstrations of electron interferometry using nanoscale gratings show

promise for significantly improving the phase sensitivity of scanning transmission

electron microscopy [66], but are limited by the devices used to coherently divide

the electron beam. A hologram used as an amplitude-dividing electron beamsplitter

must maximize diffraction into two diffraction orders separated by a large angular

separation. The undiffracted (m = 0) order can be completely suppressed by

controlling the mill depth of a binary hologram so that the phase difference between
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peaks and troughs of the square wave of the transmitted wave is π [49]. FIB GAE

allows for this condition to be met at a smaller pitch, and larger aperture than

conventional FIB milling (Fig. 2.5(b)). When used as an amplitude-dividing beam

splitter, the path separation between diffraction orders is inversely proportional to

pitch, and suppressing the m = 0 diffraction order doubles the path separation of

the two most intense diffraction orders.

We have made holograms up to 60 µm diameters with comparable efficiencies

to those in Figure 2.5. Combining current of the ion beam with the dose used in

each test mill and the linearity of mill depth in time as shown in Figure 2.3, gives

an average mill time per mill depth per mill area of 0.008 s·nm−1 · µm−2 for binary

gratings. At 80 keV, 21 nm of S3N4 gives a π phase shift to the electron wave; if we

wanted to reach this depth for a binary grating with a 80 µm diameter it would take

1.5 hours. This is a reasonable estimated limit for making holograms with ∼200 nm

feature sizes with the parameters used. This could be improved by increasing the

ion beam current at a cost of resolution.

We used 100 nm thick Si3N4 membranes of the gratings because of the large mill

depths required at higher energies. It should be noted that FIB GAE is scalable with

minimal membrane stretch when the mill depth is at most 2/3 the thickness of the

membrane. This makes it possible to have ideal binary holograms in 30 nm thick

membranes for energies below 80 keV.

2.2.2. Incoherent Scattering from Holograms

A primary concern about material phase gratings for electrons is the decoherence

effects of scattering within the materials. Current research in programmable phase

plates based on the interaction of free electrons with static electromagnetic fields
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shows promise, but are still a long way from matching the resolution and versatility

of static material phase plates [67, 68].

The angular distributions of all the scattering processes that occur within the

material of the holograms have non-zero contributions at the angles of the usable

diffraction orders from the holograms. Inelastically scattered electrons from the

material that remain in the solid angle subtended by the diffracted electrons cause a

loss in coherence [69]. However, note that the electrons coherently diffracted by the

hologram have well-defined transverse momentum whereas the electrons scattered

in the hologram delocalize in the far field according to their angular distributions.

If the coherently diffracted electrons are used as interaction probes in the far field

of the hologram, the loss of coherence should be partially mitigated by essentially

filtering by transverse momenta. A qualitative example of this delocalization is

shown for the bulk plasmon of Si3N4 using electron energy loss spectroscopy in the

Figure 2.6 and generalizes to any angularly distributing scattering process within

the material. FIB GAE further mitigates these decoherence effects by allowing for

the use of large holograms with ideal groove profiles in thinner Si3N4 membranes, as

well as decreasing gallium implanted in the hologram by decreasing the needed time

under the ion beam.

2.3. Chapter Summary

We have demonstrated FIB GAE as a scalable method for fabricating electron

holograms that is robust for generating any arbitrary groove profile for electron

diffraction gratings. This nanofabrication method is not only capable of making high

efficiency blazed holograms for electrons, but is much easier to implement than pure

FIB milling and lithographic techniques, as well as having immediate applications
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FIGURE 2.6. (a,b) Electron energy loss spectra (EELS) at different focal planes,
magnifications, and spectrometer entrance aperture positions of electrons that have
passed through a 200 nm pitch binary hologram showing that the diffracted beams
do not have an appreciable energy spread. All spectra are normalized to the total
counts. (c-d) Images of electron intensity distribution without the hologram (c),
used for comparison, and for different defocused planes after the hologram (d-h)
with the position and scale of the EELS entrance aperture. (a) The different colored
EELS spectra correspond to the same colored apertures and positions shown in
(c-f). The Si3N4 bulk plasmon around 20 eV decreases in intensity with respect
to the zero loss peak as the electrons are allowed to propagate to the far field.
Near the focal plane, the electrons coherently diffracted by the hologram have a
well-defined transverse momentum separating into their individual diffraction orders,
while electrons inelastically scattered by hologram delocalize and cannot be resolved
above the noise of the detector (b,g,h). The Roman numerals next each aperture
match the corresponding EELS spectrum.

in structured probe spectroscopy and interferometric phase contrast microscopy.

Although we have only highlighted two specific examples for the application of FIB

GAE made holograms in electron optics, it also can be just as impactful making
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holograms to correct aberrations that are inherent to magnetic lenses, as well as

holograms that can impart arbitrary spatial amplitudes and phases to electron

wavefronts [40, 41], as discussed in the next chapter. Aside from its applications in

electron optics, this technique could prove useful in creating holograms for coherent

X-ray, EUV, and neutron optics [35, 70].
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CHAPTER III

HOLOGRAPHICALLY STRUCTURING ELECTRON WAVEFRONTS

Aside from optimizing the off-axis diffraction efficiency of a grating, the

nanofabricated holograms described in the previous chapter can also be used to

coherently structure the transverse wavefront of an electron beam.

Notes for Ch. III:

This chapter is adapted from the published research article:

[71] C. W. Johnson∗, J. S. Pierce∗, R. C. Moraski, A. E. Turner, A. T. Greenberg,

W. S. Parker, and B. J. McMorran. Exact Design of Complex Amplitude Holograms

for Producing Arbitrary Scalar Fields. Optics Express, 28(12):17334-17346, 2020.

∗JSP and I were co-authors with equal contributions. JSP developed the theory

and reconstruction code for this project. BJM and I developed the experimental tests

for the paper. I wrote ∼70% the paper with ∼30% of the text written in previous

drafts by JSP. I performed all the experiments. RCM, AET, ATG, and WSP all

either contributed to one or more of writing analysis code, interpreting experiment

results, or providing paper edits.

————————————————————————————————————–

Transverse shaping of paraxial optical beams via holography has been a mature

subject for decades [33]. Research in this field remains active due to the vast

utility and applications of structured optical wavefronts [72]. The physical principles

allowing for transverse optical beam shaping are general for any scalar field that is

well described by Fourier optics, i.e., the wavefunctions describing electron matter-

waves [73] or any other quantum matter-wave [74, 75, 76]. Recent advances
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in theoretical treatments and experimental implementations over the control of

transverse optical fields have mainly focused on specific technologies, such as spatial

light modulators (SLMs), that can be programmed to independently control either

the transverse amplitude or phase [77, 78, 79, 80].

Within the past decade, research in shaping the transverse wavefunction of

coherent electron beams in transmission electron microscopes (TEM) has been

expanding with the possibility to replicate the successes transverse beam shaping

have provided light optics. The high spatial resolution possible in a TEM has allowed

structured electrons to match the symmetry of individual nanoplasmonic excitations

to distinguish between modes [23]. Prospects for using structured electrons to probe

individual atomic systems seem achievable [81]. The spin, charge, and mass of a

free electron differ from that of a photon resulting in rich physics due to spin-orbit

coupling, magnetic field interactions, and relativistic effects that have not been fully

experimentally realized [82, 83, 84]. Progress in these fields could be advanced with

more precise transverse beam shaping.

Programmable diffractive optics for electrons are in development [67, 68], but

the most predominant way to shape the transverse electron wavefront has been by

material phase plates [49, 50, 51], much like the passive diffractive optics used in

coherent X-ray optics [70, 85]. These material phase plates have a phase shift and

amplitude attenuation per unit thickness of the material. Accordingly, the hologram

designs for SLMs that assume only a pure phase shift or pure amplitude loss cannot

be used for electron holograms to exactly produce the correct desired amplitude and

phase [86]. A new method for hologram pattern generation is required that can

simultaneously consider phase shift and amplitude loss through the hologram and

still produce the intended target wavefunction.
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In this chapter, we introduce such a method to design off-axis holograms that

exactly encodes any arbitrary phase and amplitude profile on a specific diffraction

order of a scalar field. These holograms can be expressed as an envelope function

over a periodic function, defined by its (position dependent) Fourier expansion. The

method is general for phase-only, amplitude-only, or mixed phase and amplitude

holograms in the thin-hologram limit.

3.1. Model and theory

3.1.1. Thin transmission holograms

Under the thin hologram approximation, a paraxial scalar wave transmitting

through a thin material with a complex transmission function will acquire both

a phase shift and amplitude loss. Thus, the phase shift and amplitude loss of the

transmitted wave through a material hologram are dependent on material parameters

and the longitudinal thickness

ψ(R) = ψ0(R) exp

(
i

∫ t(R)

0

dz Φ̃

)
, (3.1)

where ψ(R) and ψ0(R) are the transmitted and incident waves immediately after

and before the hologram, t(R) is the longitudinal thickness profile of the hologram,

with transverse coordinates R = (x, y), and Φ̃ = Φ0 + iα gives the longitudinal phase

shift and amplitude attenuation per unit length through the material. We assume

plane wave illumination as well as a homogeneous and amorphous hologram material

with d
dz

Φ̃ = 0, allowing us to set ψ0(R) = ψ0. Carrying out the integration gives

ψ(R) = ψ0 exp
(
iΦ̃t(R)

)
. (3.2)
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Generally with these assumptions, the wavefront transmitted through an off-axis

hologram can be written as a sum of diffraction orders

ψ(R) =
∞∑

m=−∞

ψm(R)eimK0·R. (3.3)

The mth diffraction order carries m~|K0| transverse momentum and is spatially

separated from the other orders in the far field. By far field we mean at the back

focal plane of a lens which is equivalent to forward wave propagation to z → ∞

with scaled transverse coordinates K = (kx, ky). The spatial positions, K, in this

back focal plane correspond to the transverse momentum distribution of the wave,

see Figure 3.1.

FIGURE 3.1. Illustration of a wavefunction ψ0(R) incident on an off-axis hologram
with groove profile t(R). The wavefunction after the hologram ψ(R) propagates into
spatially separated diffraction orders in the back focal plane/far field,

∑
m ψ̃m(K).

The goal is to produce a desired wavefunction in the far field when the diffraction

orders are spatially separated, but since ψm(R) and ψ̃m(K) are uniquely related

via Fourier transformation it is sufficient to reconstruct the near field ψm(R) =∫
dK ψ̃m(K)eiK·R. Consequently, we expand each transmitted wave diffraction order
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as

ψ(R) =
∞∑

m=−∞

AmZm(R)Θm(R)eimK0·R ≡
∞∑

m=−∞

Ψm(R)eimK0·R, (3.4)

where Am > 0 is a scalar amplitude, 0 ≤ Zm(R) ≤ 1 is an envelope function,

Θm(R) is a complex unit phase factor, and Ψm(R) is the target wavefunction. The

scalar amplitude, envelope function, and phase factor are uniquely determined by

the target wavefunction to create in the far field in the mth diffraction order. Now

the hologram thickness profile t(R) must be parameterized such that Equation (3.2)

can be expanded as a sum of diffraction orders.

3.1.2. Constructing the hologram thickness profile

To construct the hologram thickness profile we first expand it into a Fourier series

t(R) = t0 − dZ(R)
∞∑

n=−∞

cne
inK0·R, (3.5)

where t0 > 0 is the hologram thickness, 0 < d < t0 is the max groove depth,

0 ≤ Z(R) ≤ 1 is an envelope function, cn = |cn|αn are Fourier coefficients for the

groove profile with αn the unit phase factor, and K0 is the same transverse wavevector

in Equation (3.3) that determines the hologram grating pitch and direction. However,

the groove depth modulation of this linear grating, provided by Z(R), is not

enough to arbitrarily sculpt the diffracted wavefronts. To allow for sculpting of

the transmitted wavefront we let cn and K0 deviate from their nominal values over
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the transverse plane

t(R) = t0 − dZ(R)
∞∑

n=−∞

|cn(R)|αn(R)
(
Θ(R)eiK0·R

)n
, (3.6)

where we have defined Θ(R) = eiδK0(R)·R as the unit phase factor due to the local

deviations from the constant pitch defining wavevector in the transverse plane K0 →

K0 + δK0(R). It is important to allow for arbitrary groove profiles considering

the choice of nanofabrication method and intended application of the hologram. In

most cases we keep the Fourier coefficients constant, relying on Θ(R) to change

the transmitted wavefront, but for binary groove profiles we allow the duty cycle of

the grooves to vary in the transverse plane. Regardless, it can be shown that the

thickness parameters Z(R) and Θ(R) can be written as functions Z1(R) and Θ1(R)

which are determined by a target wavefunction to be generated in the first diffraction

order for any groove profile defined by the Fourier coefficients {cn}. As a result, we

can write a single diffraction order as

AmZm(R)Θm(R) = eiΦ̃(t0−c0(R)dZ(R))Θ(R)m

×
∑
s∈Em

∞∏
n=1

αn(R)s(n)Is(n)

(
− 2iΦ̃|cn(R)|dZ(R)

)
,

(3.7)

where s(n) ∈ Em is a set of all maps that provide an eimK0·R factor and Im(x)

is a modified Bessel function of the first kind. This result is found by algebraic

manipulation while rewriting an infinite product of infinite sum as an infinite sum

of infinite products and an explicit derivation is shown in Appendix A.
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3.2. Holograms with specific groove profiles

This theory applies to any material hologram, though here we apply it to electron

wavefront manipulation in a TEM. For electron off-axis holograms patterned on a

TEM thin silicon nitride (Si3N4) window, the typical groove pitch is between 100

nm and 200 nm. Standard beam energies between 60 keV and 300 keV correspond

to electron wavelengths from approximately 5 pm to 2 pm, respectively. To produce

a hologram groove profile we first need to use a specific value of Φ̃, i.e., choose an

electron beam energy and material. We will assume an electron energy of 200 keV,

giving Φ̃ ≈ 0.008i− π/29 nm−1 for a Si3N4 film [31].

We chose to design example holograms for producing two example target

wavefunctions in the first diffraction order. The first target wavefunction is a

balanced superposition of Laguerre-Gaussian modes with non-zero radial numbers:

Ψ(1)(R) = A1Z1(R)Θ1(R) ∝ LG8
2(R) + LG−8

2 (R), (3.8)

where Laguerre-Gaussian modes are a class of solutions to Equation 1.4 with radial

and azimuthal indices p, l for every mode LGl
p(r). The second target wavefunction is

a superposition of two Laguerre-Gaussian modes with differing azimuthal and radial

numbers:

Ψ(2)(R) = A1Z1(R)Θ1(R) ∝ LG5
3(R) + LG10

1 (R). (3.9)

All holograms have a groove pitch set to be 0.8 times the minimum Gaussian beam

waist parameter of the of the Laguerre-Gaussian target wavefunctions. As an aside,

any target wavefunction can be reproduced only being limited by the nanofabrication
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resolution; complicated waveforms can require high precision in the large spatial

frequencies of the periodic hologram profile. These example target wavefunctions

were chosen because they have non-trivial complexity while still being experimentally

practical as well as having the convenient property that the far field amplitude and

phase is the same as near field, but just scaled and rotated in the transverse plane.

To exemplify the full versatility of this method, we demonstrate hologram groove

patterns for both target wavefunctions that feature blazed, sinusoidal, and binary

groove profiles, the latter two exhibiting convenient simplifications to Equation (3.7).

3.2.1. Blazed groove shapes

A blazed groove profile can be described by the Fourier coefficients

cn =


1
2

if n = 0

i
2πn

if n 6= 0

. (3.10)

We ran a brute force search for all the first order maps s(n) ∈ E1, i.e. all the maps

that contribute to the first diffraction orders. We used 10,000 maps that had the

largest contribution to the sum of products in Equation 3.7. Further details about

this search can be found in Appendix A. The resulting hologram groove patterns are

shown in Figure 3.2(a,d).
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3.2.2. Sinusoidal groove shapes

The Fourier coefficients for a sinusoidal groove profile are given by c0 = 1
2

and

c1 = c−1 = 1
4
, with all other cn = 0, giving a transmitted wavefunction of

ψ(R) = eiΦ̃(t0− d2Z(R))

∞∑
m=−∞

(
Θ(R)eiK0·R

)m
Im

(
−id

2
Φ̃Z(R)

)
. (3.11)

To reconstruct some function Z1(R)Θ1(R) in the first diffraction order, we must

invert Z(R) and Θ(R) in

A1Z1(R)Θ1(R) = eiΦ̃(t0− d2Z(R))Θ(R)I1

(
−id

2
Φ̃Z(R)

)
. (3.12)

The amplitude is then

A1 =

∣∣∣∣eiΦ̃(t0− d2 )I1

(
−id

2
Φ̃

)∣∣∣∣ . (3.13)

With this amplitude, it is straightforward to numerically invert Equation (3.12) to

find Z(R) and Θ(R), see Figure 3.2(b,e).

3.2.3. Binary groove shapes

Binary groove profiles are given with the Fourier coefficients:

cm(b(R)) =


b(R) if m = 0

b(R) sinc(mπb(R)) if m 6= 0

. (3.14)

Here b(R) is a position dependent parameter giving the duty cycle, with 0 ≤ b(R) ≤

1. Instead of following the procedure outlined previously, we note the transmitted

42



wavefunction has just two regions now where the hologram applies a constant phase

and amplitude loss to each region, namely

ψ(R) = eiΦ̃(t0−d)

∞∑
m=−∞

cm(b(R))
(
Θ(R)eiK0·R

)m
+ eiΦ̃t0

(
1−

∞∑
m=−∞

cm(b(R))
(
Θ(R)eiK0·R

)m)
.

(3.15)

Combining these two convergent sums gives

ψ(R) = eiΦ̃t0 +
(
eiΦ̃(t0−d) − eiΦ̃t0

) ∞∑
m=−∞

cm(b(R))
(
Θ(R)eiK0·R

)m
. (3.16)

A single non-zero diffraction order is then

AmΘm(R)Zm(R) =
(
eiΦ̃(t0−d) − eiΦ̃t0

) sin(mπb(R))

mπ
Θ(R)m. (3.17)

We do not present a proof that Equation (3.17) is equivalent to Equation (3.7), but

have verified that this does indeed produce the same hologram groove profile.

To reconstruct some function Z1(R)Θ1(R) in the first diffraction order we must

find the appropriate amplitude A1 that satisfies Equation (3.17). The magnitude of

Ψ1(R) is maximized when b(R) = 1/2, meaning we must set A1 = |eiΦ̃(t0−d)−eiΦ̃t0|/π.

With this, the functions b(R) and Θ(R) are given by

b(R) =
1

π
arcsin (Z1(R)) (3.18)

and

Θ(R) = Θ1(R)e−i arg[eiΦ̃(t0−d)−eiΦ̃t0 ]. (3.19)
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This is the same result as in [80], but is not limited to amplitude only holograms.

The resulting holograms for the target wavefunctions can be seen in Figure 3.2(c,f).

Notice that, for Equation (3.19), the ultimate groove depth d only changes the

global phase and scalar amplitude of the diffracted beam and does not affect its

spatial structure. From a design perspective this is desirable since fabricating groove

arrays to an exact depth can be quite difficult. More importantly, the hologram

groove profile does not change as a function of material parameter Φ̃, the only energy-

dependent parameter. In other words one hologram can provide consistent correction

for a range of wavelengths, albeit with different amplitudes.

Another benefit of binary holograms is that if the +1 diffraction order gives an

exact beam (say a perfect LG0
1 beam, which is a vortex beam [52]), then the −1

diffraction order will be a perfect beam of the opposite phase (giving an LG0
−1). This

is not the case for the other hologram groove types because they produce asymmetric

FIGURE 3.2. (a-c) Blazed, sinusoidal, and binary hologram groove profiles for
Ψ(1)(R), respectively. (d-f) Blazed, sinusoidal, and binary hologram groove profiles
for Ψ(2)(R), respectively.
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groove patterns and only provide the correct target wavefunction in a single

diffraction order.

3.2.4. Choosing a groove profile

The groove profile of the hologram ultimately affects the diffraction efficiencies

which are highly dependent on the ratio of phase shift and amplitude attenuation

per unit length of the hologram material. The nanofabrication method used to

make the hologram is also a factor, as some methods are more adept at creating a

given groove profile than others. Typically, blazed profiles maximize the intensity

in a single given diffraction order and have mostly been made by focused ion beam

(FIB) milling, where as binary profiles maximize an equal amount of intensity into

equal but opposite diffraction orders and have mostly been made by electron beam

lithography. When the FIB beam size is comparable to the feature size of the

hologram, the resulting grooves can be sinusoidal. The nanofabrication method’s

resolution limit and the feature sizes of the hologram must be considered on a case

by case basis depending on the required precision of the hologram output for the

intended application.

3.3. Experiment

The hologram design principles outlined above apply to any paraxial beam,

e.g. photons or matter waves. We demonstrate the effectiveness of this procedure

by producing nanoscale holograms for manipulating coherent electron beams in a

transmission electron microscope (TEM).

45



3.3.1. Hologram nanofabrication

Groove profiles of the two target wavefunctions, Ψ(1)(R) and Ψ(2)(R), similar

to those in Figure 3.2, were used to create raster pattern stream files for an FEI

Helios Dual Beam 600i Ga+ FIB [87]. The profiles were milled into a single 100

nm thick Si3N4 membrane which was coated on the bottom with a ∼5 nm thick

titanium/platinum layer to alleviate charge. An etchant gas, XeF2, was used to

assist in the milling process and improve the spatial groove depth controllability

[31]. All six groove profiles were repeatedly milled with varying mill time to ensure

that the correct groove depth was achieved for the blazed and sinusoidal hologram,

as only the correct groove depth produces the desired wavefunction.

3.3.2. Measurement and phase reconstruction of target wavefunctions

The array of holograms was placed in the specimen plane of an FEI Titan

transmission electron microscope (TEM) operated at 200 keV, see Figure 1.3. The

incident beam was spread out to be much larger than the outer hologram diameter

to ensure close to plane wave illumination. The magnetic lenses after the specimen

plane were used to place a magnified image of the hologram’s back focal plane at a

CCD camera at the bottom of the TEM column. For each hologram, a focal series of

transverse plane intensity images were recorded at equally spaced z positions through

the back focal plane of a lens.

These images of the focal series were smoothed with a Gaussian convolution

kernel. A small amount of stigmatic aberration from small misalignments in the

TEM were removed digitally with affine scale transformations linear with the defocus

applied to each image. The images were then digitally aligned by their intensity

center of mass. We used a Fourier transform-based iterative transport of intensity
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equation algorithm to reconstruct the phase of the electron wave in the back focal

plane of each hologram with a flat initial phase input guess to seed the iterative

reconstruction. This phase reconstruction method has been shown to be robust for

reconstructing the phase of a wave in the presence of phase singularities [88].

3.3.3. Discussion of experimental results

The desired and measured far field complex amplitude (the square root of

measured intensity multiplied by the reconstructed phase factor for each target

function) of Ψ̃(1)(K) and Ψ̃(2)(K), as well as the binary, sinusoidal, and blazed

holograms can be seen in Figure 3.3. Notice in Figure 3.3(f) the hologram was

FIGURE 3.3. (a,e) Desired complex amplitudes (color is phase and brightness is

amplitude) for Ψ̃(1)(K) and Ψ̃(2)(K) in the far field, respectively. Experimental
hologram SEM micrographs and TEM back focal plane complex amplitudes for (b-

d) Ψ̃(1)(K) and (f-h) Ψ̃(2)(K) with blazed, sinusoidal, and binary groove profiles each
with maximum mill depths of dmax = 61.5 nm, 36.2 nm, and 29.0 nm, respectively.
All scale bars in the micrographs are 2 µm.
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made for conjugated target wavefunction Ψ(2)(R)∗ which is reflected in the

reconstructed phase. Also, in Figure 3.3(b-d) there is a noticeable additional phase

to the expected phase from Figure 3.3(a). This additional phase curvature is in the

direction of the scaling from the affine transformations used on the focal series and

is considered to be part of the error from the reconstruction. We also note that the

reconstruction appears to be closer to the intended target wavefunction with higher

contrast going from the blazed to binary profiles. Numerical simulations with the

intended groove profiles produce the exact target wavefunctions, so we attribute this

deviation from the expected result to inaccurately milled profiles and for the case

of blazed and sinusoidal grooves, not reaching the exact maximum mill depth dmax.

The finite width of the FIB beam size does a poor job at properly defining the sharp

cusps of the blazed profile, so it is reasonable that the sinusoidal profile produces a

more accurate wavefront. As noted in Section 3.2.3, the relative transverse structure

of the of the reconstructed wavefront is not affected by mill depth for binary groove

profiles and it should be expected that this groove profile most accurately produces

the target wavefunction.

3.4. Chapter Summary

We have presented a new analytic method to generate groove patterns for off-

axis holograms that takes complex transmission (modulation of both amplitude

and phase) into account, and theoretically are able to exactly produce a desired

target wavefunction in a chosen diffraction order. We demonstrated an experimental

implementation of this method for two target wavefunctions, each with three different

groove shapes milled into thin SiN membranes for electron waves. We have

reconstructed the phase from focal series images of the back focal plane from the
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experimental holograms and have shown that they are in good qualitative agreement

with the expected amplitude and phase.
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CHAPTER IV

A SCANNING TWO GRATING INTERFEROMETER IN A TEM

The holograms described in the previous two chapters can be used as efficient

amplitude-dividing beam splitters for use in electron interferometry.

Notes for Ch. IV:

This chapter is adapted from the submitted research article:

[89] C. W. Johnson∗, A. E. Turner∗, and B. J. McMorran. A Scanning two-Grating

Free Electron Mach-Zehnder Interferometer. {Submitted}, arXiv:2104.09992

[physics.ins-det], April 2021.

∗AET and I were co-authors with equal contributions. BJM, AET, and I

developed the study for the paper. AET and I both contributed ∼ 50% in performing

experiments and writing the paper.

————————————————————————————————————–

Electron holography and interferometry can enable nanoscale phase imaging

[90, 91], the exploration of the Aharonov-Bohm effect [19, 92], interaction-free

measurements and quantum electron microscopy [15, 93, 94], the measurement of

coherence properties [20, 95? ], quantum state tomography [17, 96], and the coherent

control of the free electron wavefunction [97]. While interferometry is widely used

in optics and photonics fields such as astronomy [98], optical metrology [99], neutral

atom optics [100], and quantum optics [101], electron interferometry has advanced at

a slower pace, partially due to a lack of basic optical elements such as beam splitters

and mirrors that can be used to build a versatile system. Here we use two diffraction

gratings as beam splitters in a conventional transmission electron microscope (TEM)
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to create a flexible, path-separated Mach-Zehnder interferometer for free electrons,

emulating the canonical example for phase sensitive interferometry.

Electron interferometers are currently limited and defined by the electron optical

elements used to construct the interferometer. Electrostatic mirrors for free electrons

show great promise, but are in their early development [67, 102, 103]. beam

splitters have existed for decades, the most prevalent being electrostatic biprisms

[104], which divide wavefronts and require high spatial coherence [105]. Biprisms

generate interferograms from which the phase of the sample can be extracted

after image processing. However, they require high spatial coherence; thus, they

are inherently limited by modern electron emission sources that are only partially

coherent. Using recently improved diffraction gratings as amplitude dividing beam

splitters [16, 49, 106] to create spatially separated paths evades the high spatial

coherence requirement, if the separated paths are recombined in the exact manner

they were split after the sample [43]. We note that amplitude division with microwave

chip beam splitters has also been demonstrated, but is not yet practical for electrons

with kinetic energies above 200 eV [107].

Various demonstrations of matter wave interferometry have proceeded for

decades [108]. Path-separated Mach-Zehnder interferometers specifically have been

demonstrated for different kinds of matter waves, including neutrons [109], atoms

[100], Bose-Einstein condensates [110], conduction and quantum Hall valley electrons

in two-dimensional devices [111, 112], and superconducting quantum interference

devices [113]. Free electron Mach-Zehnder interferometers with discrete separated

outputs, i.e. dark and bright ports, have predominantly been constructed using

nanofabricated diffraction gratings or crystals as beam splitters. Single crystal

electron interferometers with two planes fabricated from monolithic uniform crystals
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[114, 115] and three-crystal Mach-Zehnder interferometers with discrete adjustable

crystal planes, [108, 116] have been demonstrated. A three-grating Mach-Zehnder

interferometer for free electrons was demonstrated with nanofabricated transmission

amplitude gratings [117]. Even though all of these interferometer variants for free

electrons have advanced electron interferometry, none of them have the ability to scan

well defined spatially separated paths over a specimen; i.e., they cannot be used for

imaging. Furthermore, the short longitudinal length scales of these interferometers

have restricted the type of experiments that can be performed.

Here we demonstrate a two-grating electron Mach-Zehnder interferometer

(2GeMZI) inside a conventional TEM that provides clearly defined spatially

separated probes that are the off-axis diffraction orders of the input grating focused

in a back focal plane at the specimen section of the microscope, continuously tunable

probe phase shifts, and scanning/imaging capabilities, i.e. the interferometer probes

can be scanned across a phase shifting specimen changing the intensity of the

interferometer output for each pixel in an imaging scan grid. Furthermore, since

this is a scanning probe technique, the magnification can be changed at will by

simply scanning over larger or smaller areas without adjusting the setup, unlike

other comparable interferometric electron imaging technique. This is accomplished

by placing diffraction gratings in apertures above and below the specimen plane of

a TEM operated in scanning TEM (STEM) mode. The small deviations of the lens

and aperture positions from the nominal STEM settings allow us to maintain the

high resolution imaging capabilities afforded by the TEM while retaining the precise

interferometer alignments. To demonstrate the phase sensitivity of the 2GeMZI we

map electrostatic potential differences in the vicinity of both grounded and charged
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silver nanorods and demonstrate quantitative nanoscale phase imaging of a spherical

latex nanoparticle.

4.1. Interferometer Theoretical Description

In this electron interferometer, nanoscale diffraction gratings are used as

amplitude-dividing beam splitters and the standard TEM imaging optics are used

to separate, scan, and recombine the beams. An illustration of this system can be

seen in Figure 4.1 where successive transverse planes are defined in relation to the

previous plane by Fourier transform. Here we describe how the evolution of the

electron wavefunction can be modeled throughout the interferometer and use the

notation convention that input grating (G1) is in the R plane, the interferometer

FIGURE 4.1. Diagram for 2GeMZI showing definitions of the different transverse
planes as well as labels for the transverse wavefunctions in each plane, the magnetic
lenses (L1, L2, L3), gratings (G1, G2), and beam-defining aperture A(R) are also
shown. The three different images depict the 3 cases of when the different gratings
are inserted or removed. In the lower right corner we show the direction of the
grating shift R′0 of the second grating.
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probes are in the K or specimen plane, the output grating (G2) is in the R′ plane,

and the interferometer outputs are in the K′ or detector plane.

The evolution of an electron wavefunction propagating through free space,

neglecting spin, can be described by the time-independent Schrödinger equation

with relativistic corrections (Section 1.2.1). In a typical TEM with a field emission

electron source, electrons are accelerated to beam energies of 60 to 300 keV with

a 500 meV energy spread and the electron beam has very small beam divergence

[27]. The evolution of electron wavefunctions can therefore be modeled using Fresnel

and Fourier optical theory [28], consistent with the Schrödinger equation with

assumptions that the electrons are largely quasi-monochromatic, non-interacting,

and collimated.

An electron wavefunction passing near or transmitting through an object can

accumulate phase shifts and amplitude losses. In the weak phase approximation

[118], these effects are proportional to the longitudinal extent of the interaction,

e.g., the thickness of the material. This can be described by a complex index of

refraction Φ̃ = σUmip+iα, where σ = 2πmeλ/h2 is the object independent interaction

parameter for a free electron with relativistic mass m and de Broglie wavelength λ,

Umip is the mean inner potential of the material, and α is a material-dependent decay

coefficient that models coherent amplitude loss due to high-angle scattering. We use

this complex index of refraction model to describe both the diffraction holograms we

employ as beam splitters and the specimens we image.

The transverse electron wavefunction incident on the input grating of the

interferometer is assumed to be a plane wave with an outer edge defined by an

aperture ψ
{1}
in (R) = A(R). When transmitted through a grating the wavefunction is
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modified by its transmission function

ψ
(1)
out(R) = A(R)eiΦ̃t1(R), (4.1)

where t1(R) is the periodic thickness profile of the grating. For a straight grating

with pitch p1 and diffraction wavevector K1 = 2π/p1, we can expand Equation (4.1)

by the Fourier series representation of the exponential term

ψ
(1)
out(R) = A(R)

∑
n

c{1}n einK1·R, (4.2)

where the Fourier coefficients are given by

c{1}n =
1

p1

∫ p1

0

dx̃ eiΦ̃t1(x̃)−in|K1|x̃ (4.3)

where x̃ is in the direction of the grating pitch. Then the unnormalized probes in

the back focal plane of the input grating can be expressed as

ψ(2)(K) ∝
∑
n

c{1}n Ã(K− nK1), (4.4)

where Ã(K) is the Fourier transform of A(R). If the second grating is allowed to

translate by an amount R′0, then the output of the second grating is

ψ
(3)
out(R

′) ∝ A(R′)
∑
n,n′

c{1}∗n c
{2}
n′ e

in′K2·(R′−R′0)−inK1·R′ , (4.5)

where c
{2}
n and K2 are similarly defined for the second grating. When the image

of the input grating is projected onto the output grating with the same pitch and

orientation, i.e., K0 = K1 = K2, the wavefunction in final K′ plane can be written
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as

ψ(4)(K′) ∝
∑
n,n′

c{1}∗n c
{2}
n′ e

−in′K0·R′0Ã(K′ − (n− n′)K0). (4.6)

The output of the interferometer is divided into distinct m = n − n′ diffraction

orders. Using this to re-index the double sum, we can write Equation (4.6) as a sum

of output diffraction orders

ψ(4)(K′) ∝
∑
m

(∑
n

c{1}∗n c
{2}
n−me

−i(n−m)K0·R′0Ã(K′ −mK0)

)

=
∑
m

ψ(4)
m (K′).

(4.7)

When the gratings are symmetric and put a majority of the the transmitted intensity

into the m = ±1 diffraction orders, i.e., |c±1| � |c|n|6=1| and |c+1| = |c−1|, then the

m = 0 output diffraction order where n = n′, up to a global phase, is

ψ
(4)
0 (K′) ∝ |c{1}1 c

{2}
1 |
(

1 + e−2iK0·R′0
)
Ã(K′) + · · · . (4.8)

We can consider the ability to scan the interferometer probes in the K plane by the

vector Ks, then the mth probe is at the location mK0 +Ks. We can also consider the

probes passing through some electrostatic potential V (K, z), allowing us to apply the

weak phase approximation and write the phase accumulated by each probe as being

proportional to the projected potential along the z direction Φ(K) = σ
∫
dz V (K, z),

see Figure 4.2. With this the 0th order output of the interferometer is approximately

ψ
(4)
0 (K′) ∝

(
1 + eiϕ(Ks,R′0)

)
Ã(K′), (4.9)
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where the total phase difference between the two highest intensity probes is

φ(Ks,R
′
0) = − 2K0 ·R′0 + Φ(Ks −K0)− Φ(Ks + K0). (4.10)

We should note that the static potential V can have contributions that extend into

the vacuum region due to the build up of surface charge on a material as well as

inside materials from the mean inner potential as was defined in Φ̃.

Ks KsV (K, z)V (K, z)

R: G1

Scan

K: Specimen

R′: G2

Descan

K′: Detector

FIGURE 4.2. Illustration of how the microscope imaging scan/descan coils translate
the interferometer probes by the vector Ks in the K plane while maintaining the
interferometer alignment. Two scan directions shown, but is capable of scanning in
two-dimensional transverse plane. Static potential V (K, z) is depicted by the semi-
transparent yellow spot. A bright field (BF) monolithic detector can measure the
intensity of the m = 0 interferometer output for every scan location to create an
image.
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4.2. Construction of Interferometer

Two arrays of 350 nm pitch, 30 µm diameter binary phase gratings were each

nanofabricated onto a 250×250 µm2, 30 nm thick, free-standing Si3N4 membrane

using focused ion beam (FIB) gas-assisted etching described in Chapter 2 [31]. To aid

with alignment, the gratings were patterned at multiple orientations in a 6×6 array.

In an image-corrected 80-300 keV FEI Titan TEM, one grating array was installed in

the second condenser aperture and used as the initial beam splitter (G1). The second

grating array was installed in the post-specimen selected area aperture as the beam-

combining beamspliter (G2). The TEM was operated at 80 keV in STEM mode with

approximately a 1 mrad convergence angle. An independently positionable circular

aperture at the third condenser lens was used to select the output of a single grating

out of the widely illuminated array of gratings. The diffraction orders created by the

selected input grating were focused to narrow probes at the specimen plane, Figure

4.2. The lenses were set in free lens control, so they could each be manually and

independently controlled, and with the assistance of the “Lorentz” lens in the image

corrector a correctly magnified, oriented, and in-focus image of G1 was projected

onto G2. Finally, the post-G2 projection lenses were used to form images of the

the far field diffraction pattern from the interferometer output on the detectors at

the bottom of the TEM column. The relative grating shift parameter R′0, that is

the relative transverse displacement between the input and output gratings, was

controlled by the diffraction alignment coils in the image corrector that shifted the

image of G1 relative to G2 allowing for arbitrary relative phase shifts between the

two specimen plane probes in the interferometer output. The K plane probes at the

specimen could be adjusted to have up to 1 µm separation between the ±1 probes,

although the spot size increases proportionally with the probe separation. Using
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these beam splitter gratings, the ratio between separation between the paths, 2k0,

and the width of the probes, δk, is fixed at about 2k0/δk = 20.

The magnitude of the {c{1}n } and {c{2}n } Fourier coefficients were measured by

inserting only one of G1 or G2 at time while collecting an image of the probe

intensities with a scintillator fiber-coupled CCD. A single diffraction order was

integrated and divided by the total integrated intensity to determine normalized

diffraction efficiencies |c{1}n |2 and |c{2}n |2; the measured grating outputs are shown in

Figure 4.3(a,b). Ideally, the gratings would be perfect binary gratings with 50%

groove duty cycle with up to 40.5% of the transmitted intensity going into each

of the m = ±1 probes. However, edge rounding and non-ideal duty cycles from

nanofabrication with a finite width ion beam as well as over and under milling from

the ideal groove depth caused deviations from the optimal diffraction efficiency. Even

so, we were able to achieve dominant m = ±1 coefficients allowing for efficient two

(a) (b)

(c) (d)

|R
′ 0
|/
p 1

FIGURE 4.3. (a) G1 grating relative diffraction efficiency without G2 inserted.
(b) G2 grating relative diffraction efficiency without G1 inserted. (c) Interferometer
output order intensities as function of relative grating shift R′0 normalized by the
grating pitch p1. (d) Simulated interferometer output order intensities as function of
relative grating shift R′0 normalized by the grating pitch p1.
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beam scanning in the 2GeMZI where each beam corresponds to either the +1 or -1

diffraction order.

With G1 and G2 both inserted, we collected CCD images of the output beams

for different values of R′0 by tuning the previously mentioned diffraction alignment

coils. The measured output intensities are in good agreement with the expected

result, Figure 4.3(c,d). Without the presence of an electrostatic potential, the

intensity of the 0th order interferometer output is expected to be proportional to

the modulus square of Equation (4.9), i.e., sinusoidal in the argument K0 · R′0.

We see this dependence in the experimental data, but it is also accompanied by

a beating at half the spatial frequency K0/2. This frequency beating is caused by

a combination of grating duty cycle mismatch and contributions of the higher-order

terms from the sum of probe coefficients. Due to these higher-order effects, the

fringe visibility V = (Imax − Imin)/(Imax + Imin) = 0.76 when the output is aligned

for maximally destructive interference or V = 0.82 when aligned for maximally

constructive interference. The maximum theoretical fringe visibility V = 1 can be

approached through the continued improvement of gratings.

Scan and descan coils can be used to raster both beams across a scan region up

to 3 times the probe separation while keeping the electron interference pattern (the

image of G1) stationary on the second beam splitter (G2), ensuring the interferometer

output was constant while beams were scanned across a flat phase region. The

scan/descan system is independent of the diffraction alignment used to control R′0,

so the relative phases between the interferometer probes remains constant throughout

the scan. It should be noted that phase shifts due to path length differences during

the scan certainly exist, but are small enough to neglect. While scanning, a bright

field (BF) monolithic detector can be inserted such that it is illuminated by only the
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0th interferometer output order, Figure 4.2. This is a small, single pixel detector

with a much faster acquisition rate than the microscope CCD camera that can

record a single output order intensity value at every Ks scan position in a grid

for a short dwell time on the order of microseconds creating interferometric BF

images. In this configuration we can perform interferometric imaging with the

2GeMZI creating 512×512 pixel images on the order of hundreds of milliseconds.

The relative phase between the probes at any scan position in the specimen plane

Ks can be reconstructed from the intensity of the interferometer output

I
(4)
0 (Ks,R

′
0) = |ψ(4)

0 (Ks,R
′
0)|2 ≈ 〈I(4)

0 〉Ks [1 + V cos (ϕ(Ks,R
′
0))] , (4.11)

where 〈· · · 〉Ks is the average over all Ks scan positions.

4.3. Electrostatic Potentials in the Interferometer

One application of the 2GeMZI is mapping electrostatic potentials with out

the need of image post-processing. In the last 30 years, quantitative potential

maps measured with electron holography have been used to accurately determine

charge distributions of nanoscale devices [119, 120]. However streamlined this

method has become, it still requires image post-processing or proprietary live

analysis software [121, 122]. While the high spatial and phase resolution of electron

holography cannot yet be matched by the 2GeMZI in this initial demonstration, the

interferometer provides a live interpretation of the electrostatic potential, whereas

electron holography requires post-scan image processing. Each scanned image

pixel values corresponds to the intensity of the interferometer output indicates the

electrostatic potential difference at the two interferometer probes at scan locations
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Ks ±K0. Here we use the 2GeMZI to show the fringes in raw interferometric BF

images of a grounded and insulated vertical nanorod.

Using a Ga+ FIB operated at 30 keV with a 7.7 pA beam current, we fabricated

vertical silver nanorods on a nitride cantilever from a 100 nm thick silver film

thermally deposited on a 50 nm thick Si3N4 membrane in the following steps:

(i) Mill completely through silver and nitride forming cylindrical silver bead along

nitride tether.

(ii) Mill only through silver defining bottom edge of nanorod, optionally leaving a

small lead of silver between the rod and the film.

(iii) Mill completely through silver and nitride defining top edge of rod and nitride

cantilever.

(iv) Flip membrane over and raster FIB over the bare nitride section of cantilever

to induce bending until the nanorod is vertical, normal to the silver film and

nitride membrane [123].

These nanorods were fabricated with a clear vacuum region around the rods for

easy access for imaging in the 2GeMZI. One of the two nanorods was given a small

lead to ground to the rest of the silver film, while the other was electrically insulated

by removing all of the silver between the nanorod and the film. An illustration of the

fabrication process can be seen in Figure 4.4(a) accompanied by scanning electron

microscopy (SEM) micrographs displaying the sample geometry and orientation,

Figure 4.4(b-d).
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FIGURE 4.4. (a) Vertical silver nanorod FIB nanofabrication steps (i-iv). (b)
SEM micrograph at 52◦ tilt after fabrication steps (i-iii). SEM micrographs after
fabrication steps (i-iv) imaging from bottom of membrane at (c) 0◦ tilt and (d) 52◦

tilt. All scale bars are 200 nm.

The vertical nanorods were inserted in the specimen plane of the 2GeMZI which

was adjusted to have a larger path separation of 500 nm with a probe size of about

25 nm. We recorded interferometric BF images over a scan region of 1.5x×1.5 µm2 of

the grounded and insulated nanorods shown in Figure 4.5(a,b). The electric potential

from the semiconductor nitride substrate cantilever and the grounded nanorod was

small; as shown in Figure 4.5(a), the interferometer output was only modulated close

to the surface of the nitride and the relative phase between two probes in the vacuum

region far away from the object is constant. However, the electrically insulated

nanorod charged when exposed to the beam until reaching a static surface charge,

creating a larger static potential. The resulting interference fringes for the probe

potential differences can clearly be seen far into the surrounding vacuum region, as
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Imin

Imax

FIGURE 4.5. 2GeMZI BF images showing the m = 1 interferometer output
intensity oscillating as a function of scan location between the intensity minimum
and maximum for, (a) grounded vertical Ag nanorod, (b) insulated vertical Ag
nanorod, insets are STEM high angle annular dark field images of each nanorod.
(c,d) Simulated 2GeMZI output for two probes passing through a 1/r electrostatic
potential where (d) has 10 times the charge of (c). (e,f) Same as (c,d) but with a
horizontally elongated Gaussian included with the potential to simulate the increased
induced charging. All scale bars are 100 nm.
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shown in Figure 4.5(b). Close to the nanorod, the larger gradient in electrostatic

potential induces a phase that varies within the width of the probes, resulting in a

loss of fringe visibility.

We use V (K, z) = V0/r as the electrostatic potential to approximate the nonlinear

monotonically decreasing behavior that is expected surrounding a charged vertical

nanorod, Figure 4.5(c,d). In the experimental interferometric BF images there is

elongation in the probe separation direction that is not shown in this simple model,

a plausible explanation for this is an increased surface charge on the nanorod when

the higher-order probes (m 6= ±1) are incident. Including a Gaussian background

to the potential giving the projected potential Vz(K, z) = V0/r + V1e
−k2

x/2δk
2
x−k2

y/2δk
2
y

that is elongated in the probe separation direction, δkx = 5δky. This extra potential

is to account for the increase in surface charge when the interferometer probes are

incident on the nanorods, Figure 4.5(e,f). The simulation values for V0, V1, and δky

were chosen to give a qualitative fit for the interferometric images were experimentally

measured in the 2GeMZI.

This initial demonstration shows that the 2GeMZI is qualitatively sensitive to

differences in electrostatic potentials at the locations of the two probes: spatially

varying electrostatic potentials impart a phase to the specimen probes and the phase

difference modulates the intensity at the BF detector. With moderate improvements,

the interferometric BF images can provide nanoscale that interpretable as maps of the

static projected potential without need of image post-processing. Some challenges

still need to be overcome to achieve quantitative potential mapping, especially for

determining static charge distributions. First, one must ensure that the static charge

is independent of the scanning probes which can be accomplished with adequately

grounded, conductive materials. Second, one must limit the samples of interest
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such that the spatial extent of the potential does not significantly extend over

multiple probe locations in the K plane. This ensures there is a reference probe

and a measurement probe with a phase difference that is directly proportional to

the potential. This second point can be relaxed2 with a careful analysis and full

understanding of the accumulated relative phases between all the probes as they are

scanned through the potential. Third, smaller probe sizes must be used to probe

potentials with small spatial features or large spatial gradients.

4.4. Quantitative Phase Imaging of a Latex Nanoparticle

To demonstrate an example of quantitative phase imaging with the 2GeMZI,

we imaged polystyrene latex spherical nanoparticles (NP) on a suspended single

layer of graphene. Polystyrene latex has a well-characterized mean inner potential,

U latex
mip = 8.5± 0.7 V [124]. We use a nanosphere with a diameter of 60 nm. The ratio

of probe size and separation is fixed, but can be simultaneously tuned by changing

the lens magnification settings. Here the 2GeMZI was tuned for a probe separation

of 92± 2 nm and a focused beam width of approximately 5 nm such that one of the

two 2GeMZI probes could be scanned through the nanosphere while the other passed

through uniform graphene in the specimen plane; same as in Figure 4.2, but with a

NP instead of a static potential. The phase imparted by the graphene is expected

to be about 45 mrad [125]. Individual atoms are not resolvable at the resolution

in this initial demonstration, so we treat the sample as a homogeneous latex sphere

with a small uniform phase background. Another benefit of the graphene substrate

is that it efficiently alleviates charge, allowing us to disregard extraneous static fields

due to sample charging and only consider the mean inner potential from the latex

as the source of the probe phase shift. Due to the size of the NP in comparison to
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the large probe separation, the elimination of electrostatic fields, and the negligible

decay coefficient of latex, we can assume the phase difference between the two probes

is

ϕ(Ks,R
′
0) = − 2K0 ·R′0 + σU latex

mip tsph(Ks). (4.12)

The first term, 2K0 · R′0, is due to the interferometer alignment and the last,

σU latex
mip tsph(Ks), is the phase accumulated by the probe passing through the sphere

of projected thickness tsph(Ks) at the scan location Ks. The latex spheres were

interferometrically imaged by scanning the probes over a 100×100 nm2 scan region

while the m = 0 interferometer output order was recorded by the BF detector, same

as in Figure 4.2, but with spherical NP instead of a vacuum static potential.

We recovered the phase image of the 60 nm diameter latex NP from two

interferometric BF images, one with the interferometer initially aligned for maximally

constructive 0th order output, 2K0 · R′0 = π, Figure 4.6(ii), and one aligned for a

destructive output 2K0 · R′0 = 0, Figure 4.6(iii). To map each pixel’s intensity

from an image scan onto a phase, we first find the center of the NP and take an

azimuthal average of the intensity to exploit the particle symmetry. This provides

an average intensity line profile across the NP and graphene from the constructive and

destructive interferometric images, Figure 4.6(iv). Exploiting the phase continuity

of the spherical NP, we note that the phase should be monotonically increasing from

the graphene substrate to the center of the NP. We set the phase of the graphene

substrate to zero, as a reference. Using the co-sinusoidal relation between phase and

intensity found in Equation (4.11), we map the intensity profile to a phase profile.
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FIGURE 4.6. High angle annular dark field (HAADF) and 2GeMZI BF image scans
of a latex NP both from (a) simulation and (b) experiment. The rows display (i)
the HAADF image, the 2GeMZI image aligned at the maximally (ii) constructive
(magenta) and (iii) destructive (blue) interferometer output, and (iv) the respective
line profiles. The experimental cross section (b(iv)) shows a raw cross section (light
line) and the radially averaged signal (weighted line). All scalebars are 10 nm.
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From these radial phase profiles, we reconstruct a phase image of the particle, as

shown in Figure 4.7.

Using the experimental Fourier coefficients which define each grating, a 5 nm

spot size, 100 nm probe separation and assuming the NP is a perfectly spherical

phase object, we simulate the expected intensity output in the BF detector when

the positive first order probe interacts with the sample for both alignment schemes,

Figure 4.6(a). The simulated intensity profile is then mapped to phase using the

same mechanism as described above. The phase profiles reconstructed from the

experimental interferometric images of the latex NPs can be up to 10% lower than

FIGURE 4.7. Reconstructed azimuthally averaged phase images of a latex NP from
the raw 2GeMZI BF images with (a) constructive alignment (magenta) and (b)
destructive alignment (blue). The simulated outcome (c) is also shown. (d) The
experimental and simulated cross-sections of the reconstructed particle phase with
shaded regions to show the error. All scale bars are 10 nm.
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the expected maximum depending on the interferometer alignment and thickness

profile of the NP is broader than is expected when simulating an incident probe with

a 5 nm width, Figure 4.7(d). These deviations from the expected results can be

attributed to the small, but non-negligible amplitude decay coefficient αlatex 6= 0,

as well as unexpected charging on the NP throughout the scan. Decoupling the

amplitude loss and imparted phase with multiple probes is a subject of ongoing work

and as of now is treated as a source of systematic error and charging effects can be

mitigated through improved sample preparation procedures.

The 2GeMZI achieves qualitative phase imaging of static electric potentials and

quantitative phase recovery of a latex NP with a phase resolution of δφ = 240 mrad;

this is the standard deviation of m = 0 interferometer output order intensity

converted to phase. The phase precision could be improved with enhanced gratings,

a smaller probe size, longer exposure times with efficient charge alleviation, or by

using a detector with a higher quantum efficiency. The spatial resolution of the

2GeMZI is limited by the focused probe width, which is tunable by selecting different

convergence angles using the lens system. Since the holographic grating is used

as both a beam splitter and a beam-defining aperture, the ratio of the maximum

separation between probes to the width of those probes is constant and equal to

the number of lines in the grating. Considering grating-based phase imaging has

previously achieved 30 mrad phase and sub-nanometer spatial resolutions [126],

there is promise for phase and spatial resolution improvements of this grating-based

technique.
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4.5. Chapter Summary

We constructed a scanning, path-separated, two-grating Mach-Zehnder interferometer

(2GeMZI) for free electrons by employing two nanofabricated diffraction grating

holograms in a conventional TEM. Although each figure of merit can be tuned or

improved, the initial implementation shown here has an interference contrast of 82%,

a path separation of up to 1 µm, a demonstrated phase resolution of δφ = 240 mrad,

and an output current on the order of tens of picoamps. We qualitatively showed that

the 2GeMZI is sensitive to phase shifts due to electrostatic potentials in vacuum by

imaging the potential differences around both grounded and insulated silver vertical

nanorods. We then quantitatively recovered the phase of a polysterene latex NP on

graphene. The 2GeMZI is particularly impactful in free electron interferometry due

to its tunable probe separation, the accessibility of individual paths, the ability to

arbitrarily apply phase shifts between separate paths, its scanning capabilities, and

the real-time phase information at the nanoscale.

With incremental improvements in grating beam splitters and detectors, the

2GeMZI could be used for interaction-free electron imaging [15, 94], low-dose STEM

imaging [44, 127], nanoscale magnetic imaging [128], fundamental quantum physics

experiments such as the Aharnov-Bohm effect [92, 129], and furthering decoherence

theory [130, 131]. Subjects of ongoing work are decoupling the imparted phase and

amplitude loss, enhancing the contrast at the detector, and improving the spatial and

phase resolution. Due to the flexible design and broad applications, the 2GeMZI is

uniquely positioned in electron microscopy to open doors to sub-nanometer electron

interferometry and low-dose, high-resolution microscopy.
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CHAPTER V

INTERFEROMETRIC PLASMON SCATTERING THEORY

In addition to nanoscale phase imaging, the two-grating electron interferometer

can be used to coherently probe plasmons.

Notes for Ch. V:

This chapter is adapted from the supplementary material of a manuscript that is in

preparation:

C. W. Johnson, A. E. Turner, F. J. Garcia de Abajo, and B. J. McMorran. Grating-

Based Inelastic Mach-Zehnder Interferometry with Free Electrons. {Manuscript in

Preparation}, 2021.

BJM, AET, and I developed the study for the paper. FJG initially conceived

the experimental idea and interpreted the results. I performed the experiment and

wrote the paper.

————————————————————————————————————–

The energy loss probability of a single focused electron probe passing next

to a metallic nanoparticle is well understood and is directly proportional to the

experimentally measured electron energy loss spectra (EELS) in a TEM [30]. In

this chapter we show how this loss probability behaves in the 2GeMZI output with

multiple focused electron probes, and simulate the spectrally resolved interferometer

output for a two-beam scan over a single spherical gold nanoparticle.

From this point on in this dissertation we will switch to the scattering coordinate

convention outlined in Section 1.2.2 and illustrated in Figure 1.2(b).
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5.1. Energy Loss Probability from a Focused Electron Probe

R0

a

r0(t)
R̂

ẑ

ϕ̂

FIGURE 5.1. An electron with path r0(t) at an impact parameter R0 to a spherical
metallic NP with radius a in a cylindrical coordinate system.

As mentioned in Section 1.2.5, a fast electron passing next to a surface will lose

energy due to the dielectric response of the material. For metals, this dielectric

response to the fast electron can be explained as collective oscillations of the

conduction electrons in the material that are referred to as plasmons [132]. For

individual metallic nanoparticles (NPs) these plasmon excitations are localized to

the object and have a geometry dependent resonant mode structure where the energy

dispersion of each mode is dependent on the material properties [133].

We can consider a fast electron passing next to a spherical metallic nanoparticle

with radius a at an impact parameter R0, see (Fig. 5.1). The energy resolved

probability of the electron losing ~ω energy by exciting a localized plasmon resonance

(LPR) while travelling at a velocity v along a straight vertical trajectory r0(t) =
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(R0 cos(ϕ0), R0 sin(ϕ0), z0 − vt) can be written as

Γ{1p}(ω, r0, r
′
0) =

e

π~ω

∫
dtRe

{
e−iωtv · Eind

r′0
(r0(t), ω)

}
, (5.1)

where the {1p} superscript stands for one probe, and the electric field is induced by

the dielectric response of the NP due to the external electric field of the electron. A

fully relativistic analytic solution to Equation (5.1) can be found by expanding the

induced electric field due the retarded dielectric response of the spherical NP by a

multipole expansion of its Green’s function representation, giving

Γ{1p}(ω, r0, r
′
0) =

e2

~ωc

∞∑
l=1

l∑
m=−l

Km (qγR0)Km (qγR
′
0)
[
CM
lmIm{tMl (ω)}+ CE

lmIm{tEl (ω)}
]

× Re{e−im(ϕ0−ϕ′0)−iω(z0−z′0)/v},

(5.2)

where Km is a modified Bessel function of the second kind, qγ = ω/vγ with γ the

Lorentz factor, CM
lm and CE

lm are the magnetic and electric coupling constants, and

tMl and tEl are the scattering matrix elements given by Mie scattering theory. The

latter are written explicitly as

tMl (ω) =
−jl(ρ0)ρ1

d jl(ρ1)
dρ1

+ ρ0
d jl(ρ0)
dρ0

jl(ρ1)

h
(+)
l (ρ0)ρ1

d jl(ρ1)
dρ1
− ρ0

d h
(+)
l (ρ0)

dρ0
jl(ρ1)

tEl (ω) =
−jl(ρ0)d [ρ1jl(ρ1)]

dρ1
+ ε(ω)d [ρ0jl(ρ0)]

dρ0
jl(ρ1)

h
(+)
l (ρ0)d [ρ1jl(ρ1)]

dρ1
− ε(ω)

d [ρ0h
(+)
l (ρ0)]

dρ0
jl(ρ1)

(5.3)

where ρ0 = ωa/c, ρ1 = ωa
√
ε(ω)/c, ε(ω) is the dielectric function of the NP, c is the

speed of light, and jl and h
(+)
l are spherical Bessel and Hankel functions respectively.

Although in this case we evaluate the induced field at the location of the passing
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electron, r0(t) = r′0(t), we have shown them explicitly as it will be important to know

where the contributions come from in the next section. A full derivation of Equation

(5.2), explanation of Equation (5.3), as well as closed forms of the coupling constants

CM
lm and CE

lm can be found here [134].

For a gold NP with 30 nm radius and 80 keV electrons, the electric contribution

to the energy loss probability is much larger than the magnetic contribution in the 1-

6 eV region where the plasmon resonance peaks are, i.e. CE
lmIm{tEl } � CM

lmIm{tMl }.

So we will neglect the magnetic contribution in the following analysis, giving

Γ{1p}(ω,R0) ≈ e2

~ωc

∞∑
l=1

l∑
m=−l

Km (qγR0)2CE
lmIm{tEl (ω)} =

∞∑
l=1

Γ
{1p}
l (ω,R0), (5.4)

where the l = 1, l = 2, etc. terms correspond to the dipole, quadrupole, etc. loss

probabilities, respectively and

FIGURE 5.2. Calculated one-probe energy loss probability for an a = 30 nm radius
gold NP excited from a focused electron beam at an impact parameter of R0 = 1.2a.
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Γ
{1p}
l (ω,R0) ≡ e2

~ωc

l∑
m=−l

Km (qγR0)2CE
lmIm{tEl (ω)}. (5.5)

Using numerically tabulated values for dielectric function of gold [135], we plot the

different multipole components of the energy loss probability for the gold NP to show

that the LPR multipole peaks around 2.4 eV are not spectrally resolvable, but the

l = 1 dipole mode has the largest contribution to the spectrum, Figure 5.2.

5.2. Multiple Focused Electron Probes in a 2GeMZI

R

K

FIGURE 5.3. (a) Diagram of two focused electron probes incident on a NP in the
2GeMZI. (b) The scattering geometry within the 2GeMZI. Focused electron probes in
the specimen plane, with coordinates R = (x, y), excite an NP LPR with probability
Γ. In the back focal plane, with coordinates K = (kx, ky), the overlapping beams
have a transverse momentum resolved loss probability dΓ/dK. The second 2GeMZI
grating redirects these beams to be co-propagating in the interferometer output with
corresponding transverse momentum resolved loss probability dΓout/dK. Finally, the
entrance aperture of the EELS spectrometer selects the m = 0 interferometer output
order to resolve the combined two-probe loss probability Γout|0.
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The input grating of a 2GeMZI creates a superposition of electron probes spatially

separated in the specimen plane each with a well defined relative phases. We

can write the electron wavefunction as the longitudinal plane wave superposition

ψ(r) = eikzz
∑

j ψj(R) ≡ eikzzψ⊥(R), where each transverse probe wavefunction can

be approximated as a delta function with a complex amplitude ψj(R) ≈ cjδ(R−jR0),

with cj = |cj|eiφj being proportional to the Fourier coefficients attributed to the

periodic shape of the 2GeMZI input grating and R0 ∝ 1/p0 is the probe spacing for

a grating with pitch p0, i.e., each probe at the specimen plane is the jth diffraction

order from interferometer input grating, Figure 5.3(a). In the far field after this

interaction the electron probes from the sample plane expand to their transverse

momentum distributions and, as shown in Figure 5.3(b), recombine at the output

2GeMZI grating in the back focal plane where the energy loss probability is resolved

by its transverse momentum dΓ/dK. To find the energy loss probability for this

electron wavefunction we must move to the quantum mechanical formalism from

Section 1.2.5.2 that is capable of including explicit wave properties of the electrons

after the interaction. Plugging the superposition of probes at the specimen into the

transverse momentum resolved loss probability from Equation (1.15) gives

dΓ(ω)

dK
=

e2

π2~
∑
j,j′

∫
d3r d3r′

(
ψj(R)e−iK·R

)∗ (
ψj′(R)e−iK·R

)
× Im {−Gzz(ω,R,R

′, z, z′)}

∝
∑
j,j′

(
cje
−ijR0·K

)∗ (
cj′e

−ij′R0·K
)

×
∫
dzdz′ e−iω(z−z′)/vIm {−Gzz(ω, jR0, j

′R0, z, z
′)} ,

(5.6)
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where Gzz = z ·G · z is a component of the electromagnetic dyadic Green’s function

[30].

In the weak phase approximation upon transmission through the output grating,

the passing unscattered wavefunction ψ⊥(K) ∝
∫
d2Rψ⊥(R)e−iK·R =

∑
j cje

−ijR0·K

is multiplied by the grating transmission function eiΦ̃t(K), where Φ̃ contains the phase

shift and amplitude loss per unit thickness of the grating, and t(K) is the periodic

thickness profile of the grating. Since t is periodic, the whole transmission function

can be written as the Fourier series eiΦ̃t(K) =
∑

k c̃ke
ikR0·K, where, in this case,

the probe plane spacing R0 ∝ 1/p0 corresponds to the spatial frequency for the

output grating with pitch p0 in the K plane and c̃k are the Fourier coefficients for

transmission function. The unscattered transverse wavefunction out of the second

interferometer grating is then

ψ⊥out(K) = eiΦ̃t(K)ψ⊥(K)

∝
∑
j,k

cj c̃ke
i(k−j)R0·K.

(5.7)

From here we can see that all the terms that contribute to the m = 0 interferometer

output diffraction order must satisfy the condition k = j.

Similarly, in the Equation (5.6) we multiply both wavefunctions by the output

grating transmission function to find the transverse momentum resolved loss

probability of the 2GeMZI output

dΓout(ω)

dK
∝

∑
j,k,j′,k′

(
cj c̃ke

i(k−j)R0·K)
)∗ (

cj′ c̃k′e
i(k′−j′)R0·K)

)
×
∫
dz dz′ e−iω(z−z′)/vIm {−Gzz(ω, jR0, j

′R0, z, z
′)} .

(5.8)
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The plane waves with in each of the parentheses must now satisfy j = k and j′ = k′

to contribute to the 0th output diffraction order of the 2GeMZI

dΓout(ω)

dK

∣∣∣∣
0

=
dΓout(ω)

dK
δj,kδj′,k′

∝
∑
j,j′

c∗jcj′ c̃
∗
j c̃j′

∫
dz dz′ e−iω(z−z′)/vIm {−Gzz(ω, jR0, j

′R0, z, z
′)} .

(5.9)

By integrating over K and normalizing over the area of integration we can find the

energy loss probability when only the entire m = 0 2GeMZI output order is selected

by an EELS entrance aperture as depicted in Figure 5.3, giving

Γout(ω)
∣∣
0
∝
∑
j,j′

|cjcj′ c̃j c̃j′ | cos(∆φj,j′)

×
∫
dz dz′ e−iω(z−z′)/vIm {−Gzz(ω, jR0, j

′R0, z, z
′)} ,

(5.10)

where ∆φj,j′ = φ′j − φj are the relative probe phases and we have also made the

assumption that the Fourier coefficients are even under inversion of their indices

cj = c−j, as is the case with the binary gratings of the 2GeMZI. The integral over z

and z′ in Equation (5.10) is equivalent to Equation (5.1) with r0 and r′0 allowed to

differ and written in the Green’s function formalism. With this we can write

Γout(ω)
∣∣
0
∝
∑
j

|cj c̃j|2Γ{1p}(ω, jR)

+ 2
∑
j,j′>j

|cjcj′ c̃j c̃j′|Γ{int}(ω, jR0, j
′R0,∆φj,j′),

(5.11)
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where the two-path interference terms are given by

Γ{int}(ω,Rj,Rj′ ,∆φj,j′) =
e2

~ωc

∞∑
l=1

l∑
m=−l

Km (qγRj)Km (qγRj′)C
E
lmIm{tEl (ω)}

× cos (∆φj,j′) cos(m∆ϕj,j′)

=
∞∑
l=1

Γ
{int}
l (ω,Rj,Rj′ ,∆φj,j′),

(5.12)

where again, Γ
{int}
l are the l multipole components. In the case where the input and

output gratings of the 2GeMZI are optimized to create only two probes in the j = ±1

orders at R−1 and R+1, Figure 5.3, then we have the condition c|m|6=1 ≈ c̃|m|6=1 ≈ 0

giving

Γ
{2p}
out (ω)

∣∣
0
∝ Γ{1p}(ω,R−1) + Γ{1p}(ω,R+1) + 2Γ{int}(ω,R−1,R+1,∆φ)

=
∞∑
l=1

Γ
{1p}
l (ω,R−1) + Γ

{1p}
l (ω,R+1) + 2Γ

{int}
l (ω,R−1,R+1,∆φ),

(5.13)

where we have dropped the subscripts for ∆φ = φ−1 − φ+1.

5.3. Inelastic Interference in the 2GeMZI by Multipole Components

The relative phase difference between the two 2GeMZI probes have contributions

from the internal interferometer alignment as well as from any external static

potential the probes pass through

∆φ = ∆φinternal + ∆φexternal. (5.14)
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Taking two interferometric spectra with different interferometer alignments

∆φinternal = 0 and ∆φinternal = π gives

Γ
{2p}
out (ω,∆φinternal = 0)

∣∣
0

= Γ{1p}(ω,R−1) + Γ{1p}(ω,R+1)

+ 2Γ{int}(ω,R−1,R+1,∆φexternal)

Γ
{2p}
out (ω,∆φinternal = π)

∣∣
0

= Γ{1p}(ω,R−1) + Γ{1p}(ω,R+1)

− 2Γ{int}(ω,R−1,R+1,∆φexternal).

(5.15)

With this we can express the interference component as

Γ{int}(ω,R−1,R+1,∆φexternal) =
1

4

(
Γ
{2p}
out (ω,∆φinternal = 0)

∣∣
0

− Γ
{2p}
out (ω,∆φinternal = π)

∣∣
0

)
.

(5.16)

As discussed in Chapter 4, the 2GeMZI can be used in an imaging mode that

scans the probes across a specimen. We can use this scanning capability to not only

record an output intensity at every scan location, but also an energy spectrum for

every scan location. This is no different than what is displayed in Figure 4.2, except

instead of using a bright field single pixel detector we use an EELS spectrometer

allowing us to create interferometric spectrum images by selectively integrating the

intensity energy windows.

Also recall from Chapter 4 that electrostatic potentials that can build up

throughout an imaging scan creating a spatially dependent external phase shift

between the probes, ∆φexternal. Since spectrum imaging is much less dose efficient

than imaging with a bright field detector, requiring much longer dwell times per

pixel, we can expect a considerable amount of charging throughout a spectrum

imaging scan. Experimentally we use amorphous carbon support films to support
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gold nanoparticles in a TEM. We simulate interferometric images of a gold NP with

a Vz ∝ 1/r+30/(y−y0) potential to approximate the projected potential phase shift

applied to each probe for the l = 1−4 multipole modes from surface charge on the NP

and amorphous carbon support, where the 1/r term comes from the gold NP and the

1/y term comes from the carbon support. These carbon supports can have much more

surface area than a 30 nm radius NP and a lower conductivity than gold, supporting

a larger surface charge throughout the scan and the 30 times larger 1/y potential

was chosen as an estimation to fit the experimental data in the next chapter. These

simulations include interferometer phase shifts ∆φinternal = 0 and ∆φinternal = π,

allowing us to also show Γ
{int}
l (ω,R−1,R+1,∆φexternal), Fig. 5.4. As expected, the

l = 1 dipole mode dominates, but there can be considerable contribution from the

higher order modes, especially near the edge of the NP.

When the probe separation direction is parallel to the carbon support the 1/y

part of the projected potential exactly cancels in the phase difference, Figure 5.4.

Introducing an angular offset between the probe separation direction and the carbon

support introduces an asymmetric potential that can be used to impart a position

dependent phase shift to the two probes. Figure 5.5 shows this effect for a 5◦ angular

offset. This allows for a convenient way to image the interference fringes in the

interferometer output as a function of continuously varying relative phase.

5.4. Chapter Summary

We have developed the theory for how the EELS probability of plasmon excitation

with multiple STEM probes behaves in the output of the 2GeMZI that is general
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(a) (i) (ii) (iii)

(b) (i) (ii) (iii)

(c) (i) (ii) (iii)

(d) (i) (ii) (iii)

(e) (i) (ii) (iii)

FIGURE 5.4. Simulated interferometric spectrum images of a single a = 30 nm
gold nm NP over a 120×120 nm2 scan region with a probe separation of 80 nm and
wx = wy = 120 nm. Spectra were integrated over the energy range 1-3 eV. (a)
l = 1, (b) l = 2, (c) l = 3, (d) l = 4, and (e)

∑4
l=1. With corresponding (i) Γl(ω)

spectrum images for ∆φinternal = 0, (ii) Γl(ω) spectrum images for ∆φinternal = π, and

(iii) Γ
{int}
l (ω) spectrum images. All colorbar scales are normalized to the maximum

intensity of (e)(i).
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(a) (i) (ii) (iii)

(b) (i) (ii) (iii)

(c) (i) (ii) (iii)

(d) (i) (ii) (iii)

(e) (i) (ii) (iii)

FIGURE 5.5. Simulated interferometric spectrum images of a single a = 30 nm
gold nm NP over a 120×120 nm2 scan region with a probe separation of 80 nm and
wx = wy = 120 nm. Spectra were integrated over the energy range 1-3 eV. (a)
l = 1, (b) l = 2, (c) l = 3, (d) l = 4, and (e)

∑4
l=1. With corresponding (i) Γl(ω)

spectrum images for ∆φinternal = 0, (ii) Γl(ω) spectrum images for ∆φinternal = π, and

(iii) Γ
{int}
l (ω) spectrum images. All colorbar scales are normalized to the maximum

intensity of (e)(i).
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to the geometry of the plasmonic nanostructure and interferometer alignment. We

use this to simulate EELS signal for a two-probe excitation of a single metallic gold

nanoparticle in bare vacuum as well as in the presence of a static electric potential

at the sample.
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CHAPTER VI

INELASTIC INTERFEROMETRY EXPERIMENT

The two-grating electron interferometer described in Chapter IV can be used to

explore the plasmon scattered inelastic electron interferometry outlined in Chapter

V.

Notes for Ch. VI:

This chapter is adapted from a manuscript that is in preparation:

C. W. Johnson, A. E. Turner, F. J. Garcia de Abajo, and B. J. McMorran. Grating-

Based Inelastic Mach-Zehnder Interferometry with Free Electrons. {Manuscript in

Preparation}, 2021.

BJM, AET, and I developed the study for the paper. FJG initially conceived

the experimental idea and interpreted the results. I performed the experiment and

wrote the paper.

————————————————————————————————————–

Free electrons (FE) in a transmission electron microscope (TEM) are ideal

for probing individual, nanoscale plasmonic systems [30] due to their picometer

wavelengths allowing for Ångstrom resolution imaging and their ability to couple

with electromagnetic fields. These interactions can be measured with electron energy

loss spectroscopy (EELS) that is sensitive to the photonic local density of states

of materials, but not sensitive to the sign or phase of the excited field [136]. In

general, plasmonic excitations and their radiated fields are phase coherent; this

phase information is passed on to the scattered FE, motivating the use of electrons

as quantum probes in the detection and manipulation of nanoplasmonic systems
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[25]. There have been multiple experiments in TEMs to exploit this phase coherence

after inelastic electron-matter interactions. Inelastic holography is an interferometric

technique using an electrostatic biprism to interfere different parts of an electron

plane wave after interacting with the sample; specifically looking at the coherent

interference of the inelastically scattered electrons. This has been used to measure

the coherence properties of bulk and surface plasmon excitations [137, 138], as well as

measure the loss of coherence due to the Coulomb interaction [20], but requires a high

degree of electron spatial coherence. The partial coherence of the electron source and

multiple final scattering states after excitation with broad illumination complicates

the analysis and interpretation of measured signals [105, 139, 140]. An alternative

approach is to shape the transverse wavefront of a single electron longitudinal plane

wave mode and use this shaped transverse mode to match the spatial extent and

phase of the plasmonic near field. Post-selection of the coherent scattered wavefront

by selecting a small transverse area with a circular aperture in the far field can act

as a spatial mode filter. A successful demonstration of this wavefront selection has

shown discrimination between the dipole an quadrupole localized plasmon resonance

(LPR) modes of a metallic nanorod with a Hermite-Gaussian beam [23]. It has also

been proposed to measure the transfer of orbital angular momentum [141]. However,

post-selection by spatially filtering wavefronts is very dose inefficient and requires

precise simultaneous alignments of the structured electron wavefront at the specimen

as well as the and selection apertures in the far field for filtering. These plasmonic

interactions can be resonantly enhanced by temporally and spatially matching pulses

of probe electrons with plasmonic near fields excited an by external optical pump [22].

This has been very successful in the detection and manipulation of plasmonic systems

and the longitudinal electron wavefunction [13], but requires highly specialized TEMs
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and optical systems. A robust electron Mach-Zehnder interferometer with scanning,

spatially separated paths, phase tunability, and discrete, co-propagating outputs

could not only improve on many of these approaches, but it can also open the door

to a diverse range of interferometric experiments that were not possible before.

Mach-Zehnder interferometers [108, 116, 117] or crystal plane interferometers

[114, 115] for electrons have previously been demonstrated, but all have either

had poorly-defined separation between paths, no ability to vary the relative phase

between probes, or no ability scan the separate paths relative to a sample of interest.

More recently, improvements in the fabrication of electron phase gratings [31] has

allowed for the implementation of an efficient and phase tunable two-grating electron

Mach-Zehnder interferometer (2GeMZI) in a TEM [89]. The 2GeMZI is constructed

with an amplitude dividing beamsplitter grating [43] forming tightly focused probes

to interrogate a sample. After the sample the probes pass through a second grating

recombining the separate paths for co-propagation to a detector. With flexible

control over the relative probe positions and phases, the 2GeMZI can conveniently

match plasmon resonance modes. Co-propagation in the interferometer output

allows for complete interference, mitigating the need for post-selection apertures

and reducing the complexity of the analysis and interpretation of the interference.

Inelastic interferometry with 2 phase coherent probes after scattering from plasmonic

near fields in the 2GeMZI combines the concepts of transverse beam shaping

and inelastic holography gaining all the individual techniques capabilities while

mitigating their faults, all accomplished by only modifying the two apertures of

a conventional TEM.

We use a two-probe 2GeMZI to image the interference of coherent superpositions

of electrons inelastically scattered by self-induced LPR excitations of an individual
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spherical gold nanoparticle (NP). The interferometer output is projected onto a real-

space image plane and collected by an EELS system where the plasmon scattered

electrons can be spectrally resolved from the zero loss peak (ZLP), (Fig. 6.1).

The relative phase between the two probes in the interferometer output can be

arbitrarily tuned by shifting the incident image of the input grating (G1) with

respect to the output grating (G2), or by passing the probes through a spatially

varying electrostatic potential. This is used to show phase-sensitive enhancement

and suppression of the dipole LPR spectral peak in the output of the interferometer

that is out of phase with the interference of the elastically scattered electrons.

This demonstrates that electrons in a coherent superposition of paths can interact

inelastically with an environment and still retain coherence.

R′0 R′0

FIGURE 6.1. Qualitative diagram of interferometer constructed from gratings
(G1, G2) and magnetic lenses (L1, L2, L3) with a gold NP in the specimen plane
(Sp) and EELS spectrometer for two different interferometer alignments. Converse
interference relationship between the green ZLP electrons and orange dipole plasmon
scattered electrons spectrally resolved for (a) a deconstructive and (b) a constructive
2GeMZI alignment.
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6.1. Plasmon Scattering in the 2GeMZI

The electric field from a fast electron STEM probe passing next to a metallic NP

causes excitations of localized plasmon resonances (LPR). The induced electric field

produced by the LPR then acts back on the passing electron, causing a loss of energy;

the probability of an ~ω amount of energy being lost by a passing electron with a

straight vertical trajectory r0(t) = (R0 cos(ϕ0), R0 sin(ϕ0), z0 − vt) can be expressed

as a relativistic multipole expansion,

Γ{1p}(ω,R0) =
e2

~ωc

∞∑
l=1

l∑
m=−l

CE
lmIm{tEl (ω)}Km(qγR0)2, (6.1)

where the superscript {1p} denotes one STEM probe at the sample plane, CE
lm is

a coupling constant depending on v/c, tEl (ω) is the electric Mie scattering matrix

element, Km are modified Bessel function of the second kind, and qγ = ω/vγ is a

Lorentz factor scaled energy loss wave number [134]. The sum over l is a sum over the

multipole components, i.e., l = 1, l = 2, · · · correspond to the dipole, quadrupole,

etc. modes. For a gold NP with radius a = 30 nm, the dipole mode dominates, but

for impact parameters close to the radius of the NP a < R0 < 1.2a the higher order

multiple modes can have more significant contributions.

In the 2GeMZI, the G1 puts a majority of the transmitted electrons into 2

equal intensity diffraction orders. These probes focused to the sample plane with

an NP can be approximated by the longitudinal plane wave superposition of two

delta functions ψ(r) = eikzz(c1δ(R −R−1) + c2δ(R −R+1)), where cj = |cj|eiφj are

complex amplitudes, and Rj = (Rj cos(ϕj), Rj sin(ϕj)) are the impact parameters

for each probe in the transverse plane separated by the constant b = R−1 − R+1.

G2 redirects the two paths to be spatially overlapped and co-propagating. In this
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case, the EELS probability is modified to include individual loss probabilities for

each probe, but also an interference term that describes the energy loss due to the

electron wave component at R−1 traveling through the electric field induced by the

NPs response to the electron wave component at R+1, and vice versa

Γ{2p}(ω,R−1,R+1) = Γ{1p}(ω,R−1) + Γ{1p}(ω,R+1)

+ 2Γ{int}(ω,R−1,R+1,∆φ),

(6.2)

with the interference term

Γ{int}(ω,R−1,R+1,∆φ) =
e2

~ωc

∞∑
l=1

l∑
m=−l

CE
lmIm{tEl (ω)}

×Km(qγR−1)Km(qγR+1)

× cos(∆φ) cos(m∆ϕ),

(6.3)

where we have defined ∆φ = φ−1 − φ+1 and ∆ϕ = ϕ−1 − ϕ+1. A derivation of this

result can found in the previous chapter. We should note that this analysis neglects

the inelastic momentum transfer applied to the passing electron in the transverse

direction. Near the edge of a metallic NP at TEM energies this can cause a center

of mass angular displacement on the order of 1 µrad in the far field at G2 [142].

Yet, with the STEM probe convergence angle on the order of 1 mrad, this effect is

negligible.

When the two probes are scanned such that they pass in small regions on

opposite sides of an NP, we have the condition ∆ϕ ≈ π. By only considering

the dipole mode that dominates the plasmonic response of the NP we can expect

a converse interference relation between ZLP intensity output of interferometer,

proportional to cos(∆φ/2)2, and the interference of the dipole plasmon scattered
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electrons proportional to sin(∆φ/2)2. This can be understood as a consequence

of the overlap integral of the electron wavefunction and the dipole plasmon mode

function that has odd parity [23].

6.2. Phase Sensitivity of the 2GeMZI

The 2GeMZI can be aligned to have any relative phase shift between the two

probes by shifting the relative position of G1 and G2. If G2 is shifted by the amount

R′0, then the phase difference between the two co-propagating probes in the output

is 2K0 ·R′0; to change the interferometer output from constructive to deconstructive

interference requires the relative grating shift by a quarter grating pitch, |R′0| = p0/4.

The 2GeMZI is also sensitive to relative phase differences introduced to the two

paths. One important source of this external phase shift to consider is due to a

nonuniform electrostatic potential. In the weak phase approximation [118], a position

dependent phase shift accumulated by a path due to a potential V (r) is σVz(R),

where σ = 2πmeλ/h2 is the first order interaction parameter of an electron with

relativistic de Broglie wavelength λ and relativistic mass m, and Vz(R) =
∫
dz V (r)

is the projected static potential along z. The total relative phase difference between

the two probes is then ∆φ = ∆φinternal + ∆φexternal where ∆φinternal = 2K0 · R′0 is

due to the interferometer alignment, and ∆φexternal = σ(Vz(R−1) − Vz(R+1)) is the

external phase shift due to a static potential.

When the electron beams are rastered across an NP object it is continually

pumping current into the system and reaches an equilibrium of static surface charge.

For an NP on the edge of a lacey carbon support, we approximate the projected static

potential in the surrounding vacuum region as Vz(R) ∝ 1/R+ 30/(y−y0) due to the

much larger surface area of the carbon support. With this projected potential the
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interferometer is very sensitive to angular offsets between the diffraction direction

of the probes and the edge of the carbon support. In Figure 6.2(a-g), a 5 degree

angular offset is shown to give considerable apparent phase gradient away from the

carbon support that skews the interference pattern. Regardless of the asymmetry

FIGURE 6.2. (a) 120×90 nm2 region of Vz(R)/Vz;max for a simulated 60 nm Au NP
on a carbon support with white dashed 2 probe scan regions for probes separated by
b with 5◦ angular offset. (b) ∆φexternal with a the combined white dashed scan region.
Simulated 40×30 nm2 spectrum images for: (c) ∆φinternal = π, ZLP integrated; (d)
∆φinternal = 0, ZLP integrated; (e) ∆φinternal = π, plasmon integrated; (f) ∆φinternal =
0, plasmon integrated. (g) Simulated spectra at single scan point where line color
corresponds to different interferometer alignments, red and yellow shaded regions
are the spectrum integration regions for the ZLP and plasmon peak. (h) and (j)
2GeMZI BF images of Au NP with deconstructive and constructive interferometer
alignments respectively showing spectrum image scan regions. (i) Dark field STEM
image of NP. All red scale bars are 60 nm. (k-o) Experimental spectrum images and
spectra with same conditions as simulations in (c-g).
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in the static potential, the converse interference relation between the ZLP and the

dipole plasmon scattered electrons remains over a sizable spatial region as long as

the two probes are on either side of the NP and the two impact parameters are

comparable, R−1 ≈ R+1.

6.3. Experimental Methods

The 2GeMZI is constructed in an image corrected 80-300 keV FEI Titan TEM by

placing the input grating G1 in the condenser 2 aperture holder above the specimen

plane and the output grating G2 in the selected area aperture holder below the

specimen plane. The TEM is operated at 80 keV in STEM mode such that the probe

convergence angle was tunable from 1 to 10 mrad. Both G1 and G2 were one of a 6x6

array of 30 µm diameter, 300 nm pitch binary diffraction gratings milled into a 30

nm thick Si3N4 free-standing membrane. These gratings were optimized to maximize

intensity in the ±1st diffraction orders and minimize intensity in the 0th diffraction

order; approximately 30% of the total transmitted intensity is in each of the ±1st

order, and no more than 6% is in any other diffraction order. An intermediate

aperture after G1 (condenser 3 aperture) was used to transmit only electrons passed

through a desired grating. The Lorentz lens in the image corrector was then used

to project a focused image of G1 onto G2. The post-G2 projection lenses were

then used to project the discrete outputs of the interferometer for selection by the

entrance aperture of the EELS system. The natural energy spread of the emission

source convolved with the point spread function (PSF) of the optical system of the

spectrometer gives a measured full width half maximum of the ZLP of 0.8 eV. In

this configuration, the scan and descan coils were used to raster the probes in the

specimen plane for up to a 200×200 nm2 scan region while maintaining the alignment
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of the image of G1 with respect to G2, as well as keeping the interferometer output

on the EELS entrance aperture stationary. The probe widths were 5 nm with a probe

separation of 80 nm between the ±1 diffraction orders.

Although the LPR intensity for a gold NP is more limited by the resonance

frequency overlap with interband transitions compared to other noble metals such

as silver [143], gold was chosen for its resistance to form oxides, offering long-term

stability, availability, and ease of sample preparation. A commercial 60 nm diameter

monodisperse gold NP solution was dropcast on a lacey carbon grid, allowed to air

dry, and then placed in the specimen plane of the TEM. A single NP was isolated on

edge of the carbon such that two electron beams could pass on either side of the NP

through vacuum, Figure 6.2(i). The 2 probe scan regions were selected such that the

probes were straddling NP with ∆ϕ ≈ π, Figure 6.2(h,j), then spectrum images were

recorded for both deconstructive and constructive interferometer outputs, Figure

6.2(k-n).

The imaging procedure is as follows: A larger area BF scan was recorded to select

a smaller region to collect a spectrum image. The spectrum image scan region was

scanned while the interferometer output was collected by a 2 mm EELS entrance

aperture with the spectrometer magnetic prism set to have an energy dispersion of

0.03 eV/channel on the CCD collecting the spectrum. The non-dispersing direction

on CCD was binned to 1 pixel and for each scan location 20 spectra were summed

with each spectrum integrated for 0.01 seconds giving a total integration time of 0.5

seconds per scan location.

Once the spectrum images were recorded they were post-processed in two steps.

First, each spectrum was smoothed with a 4 pixel standard deviation Gaussian

convolution to remove high frequency noise. Second, 4 iterations of the 1D
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Richardson-Lucy deconvolution algorithm were run using the HyperSpy Python

library on each spectrum. A vacuum collected spectrum that was identically

smoothed was used as the deconvolution kernel to partially remove the PSF of

the spectrometer. This significantly narrows the tails of the zero loss peak (ZLP),

effectively removing the background in the 1-3 eV region where the plasmon signals

of interest are [144]. Finally, the post-processed spectra were integrated over range

(-1,1) eV for the ZLP and over the range (1.5,4) eV for the plasmon peaks, shown in

Figure 6.2(o).

6.4. Discussion of results

The side-by-side comparison of the simulated and experimental spectrum images

in Figure 6.2 shows an excellent qualitative agreement for the converse dipole

interference relationship between the ZLP and plasmon peaks over a spatially varying

electrostatic potential. To provide a more quantitative analysis, we assign a relative

probe phase to each pixel with probes passing through vacuum in Figure 6.2(k,l)

by normalizing the ZLP intensity, then we find the relative phase by inversion of

IZLP ∝ cos(∆φ/2)2. The normalized integrated ZLP and plasmon intensities of

each pixel were plotted as a function of the assigned relative probe phase (Fig.

6.3). For clarity, we also show the mean values binned by every π/12 relative phase

interval along with the theoretically predicted values for ∆ϕ = π. To account for our

ignorance of whether or not the minimum and maximum ZLP intensities correspond

to the exact actual ∆φ = π and ∆φ = 0 points we give a π/12 systematic error to the

standard deviation of the binned values added in quadrature. Since we definitionally

assigned the relative phase to the integrated intensity of the ZLP peak, we didn’t
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FIGURE 6.3. Measured and theoretical ZLP and plasmon integrated intensities
as function of the total relative probe phase fit to each spectrum image pixel from
Figure 6.2(k-n).

give an error for this integrated intensity. The error given for the mean integrated

plasmon intensities is the standard deviation of the integrated intensities for each

binned region and the phase error is assumed to be the same as the mean ZLP data.

Deviation of the measured ZLP intensity compared to the theoretical prediction is

well understood by the small, but non-zero contributions of the higher order probes

from G1 causing a loss of fringe visibility. This does not have as large of an effect

the visibility of the plasmon interference because the higher order probes are further

away from the NP than the main ±1 probes and the plasmon loss probability is

exponentially suppressed for large impact parameters, i.e. Km(x) ∼ e−x
√
π/2x for

large x. We made additional measurements on a separate gold NP where an angular

offset between the probe separation direction and the carbon support were in the

opposite direction. The spatially varying relative phase is consistent with the
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FIGURE 6.4. (a) Left, simulated static projected potential Vz(R)/Vz;max in a
120×90 nm2 region; right, 2 probe relative external phase due to simulated projected
potential, ∆φext, for a metallic NP on a carbon support. (b) Simulated spatially
varying interference for: top ZLP integrated, and bottom plasmon integrated
spectrum images. Blue outlines correspond to deconstructive interferometer output,
∆φint = π, and green outlines to constructive interferometer output, ∆φint = 0.
Red scale bars are 70 nm. (c) Simulated EELS spectra from location of colored
spot corresponding to color of the plot line. (d) 2GeMZI bright field images of 35
nm radius gold NP for a deconstructive and constructive interferometer alignments
showing spectrum image scan regions on the left and right respectively. (e,f)
Experimental data with same conditions as simulated data in (b,c).

98



changed orientation and still exhibits the expected converse intensity relation

between the ZLP and dipole plasmon peak, Figure 6.4.

Similar conditional interference relations between the the ZLP and the higher

order modes in the multipole expansion dependent on the geometry and symmetry

of the mode spatial distribution and probe position exist, but the multipole plasmon

peaks for a spherical gold NP of this size are not spectrally resolvable; the peak

widths are much larger than the peak spacing in the loss spectrum. However,

multiple plasmon mode peaks can be resolved with more complicated NP geometries

[145], chains of spherical NPs [146], or by changing the spherical NP material

[147]. These relations could be explored with this apparatus, but may require

constructing another 2GeMZI in a monochromated TEM with an energy resolution

below 100 meV. Another potential application for the 2GeMZI is to demonstrate

entanglement between the electron and the NP plasmon or the photons radiated from

the plasmon [148]. Incorporation of a cathodoluminescence collection system with

a 2GeMZI could provide information on the correlation between the phase coherent

superpositions of scattered electrons to the radiated light from the dipole plasmon

[149, 150]. Alternatively, this 2GeMZI could serve as an indirect way to measure the

transfer of orbital angular momentum [18, 151, 152]. Finally, we note that inelastic

electron interference in the 2GeMZI can be used to probe many different condensed

matter quasiparticle excitations, not just plasmons [13].

6.5. Chapter Summary

We have demonstrated phase sensitive interference between coherent superpositions

of inelastically scattered electrons within a two-probe 2GeMZI from plasmonic

excitations of a single gold NP. Supplement to the additional applications in probing
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nanoplasmonic systems, the flexibility, scanning capabilities, and operation in a

conventional TEM of this technique provides an exciting platform for probing

quantum mechanics at the nanoscale and application of control over the transverse

electron wavefunction. Further development of the techniques presented in this letter

could lead to tests of quantum complementarity for electrons [153], exploration of

decoherence theory [130], and, as a STEM technique, has the inherent potential for

including multimodal functionality with control over multiple degrees freedom for

the electron wavefunction [25].
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CHAPTER VII

FUTURE DIRECTIONS AND CONCLUSION

Notes for Ch. VI:

This chapter contains unpublished material.

————————————————————————————————————–

As noted in the previous chapter, there is an abundance of opportunities for

future experiments with the 2GeMZI. In this chapter we outline two possible

future experiments that the 2GeMZI could enable, one that could be immediately

performed, and a second that could be performed after further experimental

development. Finally, we conclude with a brief dissertation summary and a final

outlook for the future research enabled by the body of this work.

7.1. Future Directions

7.1.1. Next Experiment: Plasmonic Mode Selection

Before exploring the larger parameter space of different nanoparticle geometries

to find ideal situations of spatially and spectrally separated plasmon modes, we

can restrict the search to spherical nanoparticles with different materials. We

simulate the two-probe 2GeMZI EELS probabilities for gold, silver, aluminum, and

platinum spherical nanoparticles with different radii (Fig. 7.1). Considering the

∆E ≈ 0.7 eV energy resolution of the current 2GeMZI, we see that aluminum

spherical nanoparticles with radii a < 10 nm have their dipole and quadrupole

modes spectrally resolvable. Multipole resolved EELS probabilities for an a = 7

nm aluminum nanoparticle are shown in Figure 7.2 displaying not only the
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FIGURE 7.1. Simulated two-probe 2GeMZI EELS spectra of different material
spherical nanoparticles with varying radii for constructive and deconstructive
interferometer outputs. Different materials by row, top to bottom: gold, silver,
aluminum, and platinum. Different nanoparticle radii by column, left to right: a = 30
nm, a = 20 nm, a = 10 nm, a = 6 nm.
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FIGURE 7.2. The total and l = 1− 6 multipole components of two-probe 2GeMZI
EELS spectrum for an a = 7 nm aluminum spherical nanoparticle for a (top)
constructive and (bottom) deconstructive interferometer output. Γ and Γl are defined
in Equation 5.13.

converse relation of the dipole peak with the interferometer alignment, but also the

resolvable converse relation between the even and odd multipole components.

With the availability of aluminum nanopowders allowing for the ease of sample

preparation, a single aluminum nanoparticle could be used in the current 2GeMZI

apparatus to measure spatial spectrum images for multiple multipole components of

the EELS spectrum like in Figures 5.4 and 5.5.
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7.1.2. Future Experiment: Free Electron Plasmonic Quantum Eraser

Scully, Englert, and Walther [153] outlined tests of quantum complementarity

where momentum space interference between a superposition of a quantum particle’s

spatial locations (i.e. a double slit) is collapsed upon measurement of an

entangled system when the result of the measurement gives ‘which-path’ information.

Specifically, quantum eraser and delayed choice experiments exploit control of the

measurement parameters to destroy and revive interference as a function of parameter

tuning. Variants of these experiments have been performed with atoms [154], photons

[155], and condensed matter quasi-particles [156]. The inelastic interference we, and

others [137], have demonstrated suggests that it should possible to entangle free

electrons with a plasmonic system. However, methods for control of the which-path

information has not been demonstrated, although experiments to measure correlation

with FEs with entangled systems have been recently proposed [148]. Here we propose

a quantum eraser experiment to control the interference of inelastically scattered

electrons by measuring the polarization state of the radiated photons.

Consider the portion of the electron wavefunction that was inelastically scattered

by the dipole plasmon. In the far field, the the spatial superposition of electrons

inelastically scattered from a dipole plasmon form interference fringes that can

be spectrally filtered from the elastic counterpart (Fig. 7.3). The probability of

electromagnetic radiation emission from a NP plasmon (neglecting the magnetic

component)
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FIGURE 7.3. Diagram of energy filtered interference fringes with an EELS
spectrometer. Symbolic EELS spectrum with dipole plasmon peak at 3 eV spectrally
resolved from the ZLP at 0 eV and the higher order multipole peaks >3.5 eV. A slit
can filter by energy only letting the dipole plasmon peak to pass and form an image
of the interference fringes.

is given by

Γ{rad}(ω,R0) =
e2

~ωc

∞∑
l=1

l∑
m=−l

Km (qγR0)2CE
lm|tEl (ω)|2

=
∞∑
l=1

Γ
{rad}
l (ω,R0)

(7.1)

[134]. We will only consider l = 1 dipole of an aluminum NP that is spectrally

resolved from the rest of the multipole peaks. A cathodoluminescence light collection

system can be used to collect the emitted photons. After spectrally filtering the dipole

peak in the emission spectrum, a polarizing beamsplitter can resolve this radiation

into two orthogonally polarized spatial photon maps for the dipole plasmon emission

for every electron probe scan position [149]. A half wave plate (HWP) can be used
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to rotate the detected photon’s polarization state with respect to the DH and DV

detectors (Fig. 7.4).

PM

Sp
HWP

PBS

DH

DV

ϑ/2

(a) (b)
max

H V

ϑ
=

0
ϑ

=
π
/4

FIGURE 7.4. (a) Diagram of cathodoluminescence light collection system consisting
of a parabolic mirror (PM), spectrometer (Sp), half wave plate (HWP) for rotating
the polarization by the angle ϑ, polarizing beamsplitter (PBS), and two detectors
DH and DV for detecting H and V polarizations respectively. (b) Top row, simulated
H and V photon maps outside of the NP for ϑ = 0. Bottom row, same but for
ϑ = π/4.

A single electron probe at the position R0 = (R0 cos(ϕ0), R0 sin(ϕ0)), with

impact parameter R0 and azimuthal angle ϕ0 that are similarly defined in Figure

5.1, is entangled with the emitted photons and can be written as the composite

wavefunction in detector polarization basis |H〉 and |V 〉

|ψ(ϑ)〉 = |ψs0〉 (cos(ϕ0 + ϑ) |H〉+ sin(ϕ0 + ϑ) |V 〉), (7.2)

where ψs0(R0) = 〈R0|ψs0〉 is the electron wavefunction scattered by dipole plasmon.

Now we consider a two-probe incident wavefunction ψ(R) = ψ+(R+) +

ei∆φψ−(R−). With equal impact parameters R+ = R− and incidence at right

azimuthal angles, ϕ+ = 0 and ϕ− = π/2, the total scattered state becomes entangled
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with the polarization of photons emitted from the dipole plasmon

|ψ(0)〉 =
∣∣ψs+〉 |H〉+ ei∆φ

∣∣ψs−〉 |V 〉 . (7.3)

Here, a measurement of the radiated photon polarization corresponds to a which-

path measurement. If the photon is measured to have H or V polarization, the

probability of measuring the scattered electron, PH/V (ϑ) = | 〈H/V |ψ(ϑ)〉 |2, is

PH/V (0) =
〈
ψs±|ψs±

〉
. (7.4)

Thus, the energy-filtered interference fringes depicted in Figure 7.3 will disappear

upon measurement of the radiated photon’s polarization state. This which-path

information can be erased by rotating the polarization detection basis. With a ϑ =

π/4 rotation of the HWP, the scattered electron wavefunction becomes

|ψ(π/4)〉 =
1√
2

∣∣ψs+〉 (|H〉+ |V 〉) +
ei∆φ√

2

∣∣ψs−〉 (− |H〉+ |V 〉)

=
1√
2

(∣∣ψs+〉− ei∆φ ∣∣ψs−〉) |H〉+
1√
2

(∣∣ψs+〉+ ei∆φ
∣∣ψs−〉) |V 〉 . (7.5)

Then interference fringes of the scattered electron remains after any polarization

measurement

PH/V (π/4) =
1

2

(〈
ψs+|ψs+

〉
+
〈
ψs−|ψs−

〉
∓ 2Re

{
ei∆φ

〈
ψs+|ψs−

〉})
. (7.6)

With this, we see that by selecting the measurement basis of the photon polarization

and using coincidence counting to ensure correlation of the entangled state, we can

create or destroy the which-path information for the passing electron superposition.
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This will result in a loss of fringe visibility in the energy-filtered electron interference,

as is expected for the quantum eraser. With the slow velocity of the electrons ∼ 0.5c

and the ease of allowing for delayed photon detection, a delayed choice extension of

the experiment could also be implemented.

7.2. Conclusion

In this dissertation I have described original research in holographic beam shaping

and grating-based inelastic interferometry with free electrons. We have demonstrated

the efficient diffraction and shaping of a free electron’s wavefront via off-axis material

holograms by developing the FIB GAE nanofabrication process. With FIB GAE

fabricated binary gratings we have constructed a novel, scanning, phase-tunable

2GeMZI in a TEM capable of quantitative nanoscale phase imaging and mapping

of electrostatic potentials. We use the 2GeMZI to demonstrate interference between

a coherent spatial superposition of electrons inelastically scattered from the dipole

plasmon of a single gold nanoparticle. The multiple prospects for future quantum

and nanoplasmonic experiments the 2GeMZI provides gives an exciting outlook

for the breadth of research that can be enabled by free electron Mach-Zehnder

interferometry.
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APPENDIX

TRANSVERSE BEAM SHAPING FORMALISM

A.1. The transmitted wave as a sum of diffraction orders

Inserting Equation (3.6) into Equation (3.2) gives

ψ(R) = eiΦ̃t0 exp

(
−iΦ̃dZ(R)

∞∑
n=−∞

|cn(R)|αn(R)
(
Θ(R)eik0·R

)n)
. (A.1)

By definition, the Fourier coefficients have the properties |c−n(R)| = |cn(R)|,

α−n(R) = αn(R)−1 and α0(R) = 1. With this, Equation (A.1) can be rewritten

as

ψ(R) = eiΦ̃(t0−c0(R)dZ(R))

∞∏
n=1

exp

(
− iΦ̃|cn(R)|dZ(R)

(
αn(R)

(
Θ(R)eik0·R

)n
+
[
αn(R)

(
Θ(R)eik0·R

)n]−1
))

.

(A.2)

Note now that there is a well-known generating relation for the Bessel functions,

usually written as

exp
(ρ

2

(
χ+ χ−1

))
=

∞∑
m=−∞

χmIm(ρ), (A.3)
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where Im(ρ) is the mth order modified Bessel function of the first kind [157], and

when applied to Equation (A.2) gives

ψ(R) = eiΦ̃(t0−c0(R)dZ(R))

∞∏
n=1

∞∑
m=−∞

αn(R)m
(
Θ(R)eik0·R

)nm
Im
(
− 2iΦ̃|cn(R)|dZ(R)

)
.

(A.4)

To make any useful progress with Equation (A.4) we need to turn the product of

the sums into a sum of the products. For an arbitrary function B, a general product

of sums can be rewritten as

∏
n∈P

∑
m∈S

B(n,m) =
∑
s∈E

∏
n∈P

B(n, s(n)) (A.5)

where P is the domain of the product, S is the domain of the sum, and E = {s | s :

P → S} is the set of all maps from the initial product domain to the initial sum

domain. Further explanation of this operation can be found in Appendix A.3.

Turning Equation (A.4) into a sum of products yields

ψ(R) = eiΦ̃(t0−c0(R)dZ(R))
∑
s∈E

∞∏
n=1

αn(R)s(n)
(
Θ(R)eik0·R

)ns(n)
Is(n)

(
− 2iΦ̃|cn(R)|dZ(R)

)
= eiΦ̃(t0−c0(R)dZ(R))

∑
s∈E

(
Θ(R)eik0·R

)∑∞
k=1 ks(k)

∞∏
n=1

αn(R)s(n)Is(n)

(
− 2iΦ̃|cn(R)|dZ(R)

)
.

(A.6)

We now define a function g : s ∈ E → Z that we will call the order of a map s as

g(s) =
∞∑
k=1

ks(k). (A.7)
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With this definition we can define the subsets Em ⊂ E as Em = {s ∈ E | g(s) = m},

i.e., group all the maps s which give the same integer order under the function g.

Applying these conventions, Equation (A.6) can be recast as

ψ(R) = eiΦ̃(t0−c0(R)dZ(R))

∞∑
m=−∞

(
Θ(R)eik0·R

)m ∑
s∈Em

∞∏
n=1

αn(R)s(n)Is(n)

(
− 2iΦ̃|cn(R)|dZ(R)

)
.

(A.8)

Now we note that the first sum in Equation (A.8) is a sum of diffraction orders

and, when compared to Equation (3.4), gives

AmZm(R)Θm(R) = eiΦ̃(t0−c0(R)dZ(R))Θ(R)m
∑
s∈Em

∞∏
n=1

αn(R)s(n)Is(n)

(
− 2iΦ̃|cn(R)|dZ(R)

)
.

(A.9)

A.2. Reconstruction in the first diffraction order

Equation (A.9) can be used to calculate a hologram pattern that gives a desired

output beam in the first diffraction order

A1Z1(R)Θ1(R) = eiΦ̃(t0−c0(R)dZ(R))Θ(R)
∑
s∈E1

∞∏
n=1

αn(R)s(n)Is(n)

(
− 2iΦ̃|cn(R)|dZ(R)

)
.

(A.10)

The diffraction efficiency (relative to the incident intensity) can be easily calculated

by integrating over the hologram aperture. If the envelope function Z(R) is unity

within the aperture and zero elsewhere, the diffraction efficiency is simply |ψ1|2.

The value of |ψ1|2 increases monotonically with the groove depth d until maximum

diffraction efficiency is reached at dmax, the maximum invertable groove depth. dmax is

111



different for every groove profile. It can be found recursively, or it can be estimated by

finding the first 1st order diffraction efficiency maximum for the 1-dimensional infinite

grating with the given groove profile, i.e., the smallest non-zero valued solution to

iΦ̃|k0|
2π

∫ 2π
|k0|

0

dx exp
(
i(Φ̃t(x, dmax)− |k0|x)

) [ ∂
∂h
t(x, d)

]
d=dmax

= 0, (A.11)

where t(x, d) is the 1-dimensional analog of Equation (3.5) with a unit envelope

function [31]. If d > dmax, Z1(R)Θ1(R) is not guaranteed to be produced exactly.

Provided that d ≤ dmax, we can set

A1 =

∣∣∣∣∣eiΦ̃(t0−〈c0〉Rd)
∑
s∈E1

∞∏
n=1

Is(n)

(
− 2iΦ̃|〈cn〉R|d

)∣∣∣∣∣ , (A.12)

where 〈· · · 〉R is an average over R. Thus, we find

Z1(R) =

∣∣∣∣∣eiΦ̃(t0−c0(R)dZ(R))
∑
s∈E1

∞∏
n=1

αn(R)s(n)Is(n)

(
− 2iΦ̃|cn(R)|dZ(R)

)∣∣∣∣∣ /A1 (A.13)

and

Θ(R) = Θ1(R) exp

(
−i arg

[
eiΦ̃(t0−c0(R)dZ(R))

∑
s∈E1

∞∏
n=1

αn(R)s(n)Is(n)

(
− 2iΦ̃|cn(R)|dZ(R)

)])
.

(A.14)

Equation (A.13) can be numerically inverted to find Z(R), which can then be

used to find Θ(R). This is an exact solution when every map s ∈ E1 is known.

However, in general there are an infinite number of maps s. If we are to practically

use this formalism we must rank each map by the magnitude of its contribution and

select the highest contributors to use, truncating the sum over the set E1. We define
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a ranked contribution

Cj =

∫ d0

0

dd′

∣∣∣∣∣e−iΦ̃〈c0〉Rd′
N∏
n=1

Isj(n)

(
− 2iΦ̃|〈cn〉R|d′

)∣∣∣∣∣ , (A.15)

where Cj > Cj+1 gives the rank j to each map sj, d0 ≤ dmax is the groove depth

used in the search, and N is a sufficiently large number. To help find a majority

of the highest ranked maps sj, we note that |Ik(ix)| ∝ xk for small x, and cn → 0

as n → ∞; for large n, |I0(−2iΦ̃|cn|d)| ≈ 1 and |Ik(−2iΦ̃|cn|d)| ≈ 0 for all |k| > 0.

With this in mind we can set limits to the search parameters |s(n)| ≤ p and n ≤ q,

setting all s(n) = 0 for n > q. It must be stressed that the number of maps in

the search increases as (2p + 1)q, the order g(s) must be computed for each map,

and the 1st order maps must be sorted by their ranked contribution Cj. This may

be computationally expensive for large parameter limits p and q, but for a given

material Φ̃, and groove profile {cn}, the same set of maps found in the search {sj}

can be used to make the hologram groove profile from Z(R) and Θ(R) corresponding

to any desired function to reconstruct Z1(R)Θ1(R). An example Python script

implementation of this process can be found here [158].
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A.3. Product of sums to a sum of products

Consider the product of sums

F =
3∏

n=1

1∑
m=−1

B(n,m)

= B(1,−1)B(2,−1)B(3,−1) +B(1,−1)B(2,−1)B(3, 0) +B(1,−1)B(2,−1)B(3, 1)

+B(1,−1)B(2, 0)B(3,−1) +B(1,−1)B(2, 0)B(3, 0) +B(1,−1)B(2, 0)B(3, 1)

+B(1,−1)B(2, 1)B(3,−1) +B(1,−1)B(2, 1)B(3, 0) +B(1,−1)B(2, 1)B(3, 1)

+B(1, 0)B(2,−1)B(3,−1) +B(1, 0)B(2,−1)B(3, 0) +B(1, 0)B(2,−1)B(3, 1)

+B(1, 0)B(2, 0)B(3,−1) +B(1, 0)B(2, 0)B(3, 0) +B(1, 0)B(2, 0)B(3, 1)

+B(1, 0)B(2, 1)B(3,−1) +B(1, 0)B(2, 1)B(3, 0) +B(1, 0)B(2, 1)B(3, 1)

+B(1, 1)B(2,−1)B(3,−1) +B(1, 1)B(2,−1)B(3, 0) +B(1, 1)B(2,−1)B(3, 1)

+B(1, 1)B(2, 0)B(3,−1) +B(1, 1)B(2, 0)B(3, 0) +B(1, 1)B(2, 0)B(3, 1)

+B(1, 1)B(2, 1)B(3,−1) +B(1, 1)B(2, 1)B(3, 0) +B(1, 1)B(2, 1)B(3, 1).

(A.16)

Each term in the sum above is of the form B(1, a)B(2, b)B(3, c), where a, b, and c

can be any number in the domain of the sum a, b, c ∈ S = {−1, 0, 1}. Furthermore,

each term represents a unique way to map the domain of the product P = {1, 2, 3}

to the domain of the sum S = {−1, 0, 1}. We can define the set of all these maps

E = {s | s : P → S}, clearly for this case there are 27 such maps each of which can

be seen in Table A.1.
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n s1(n) s2(n) s3(n) s4(n) s5(n) s6(n) s7(n) s8(n) s9(n)
1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 -1 -1 -1 0 0 0 1 1 1
3 -1 0 1 -1 0 1 -1 0 1

n s10(n) s11(n) s12(n) s13(n) s14(n) s15(n) s16(n) s17(n) s18(n)
1 0 0 0 0 0 0 0 0 0
2 -1 -1 -1 0 0 0 1 1 1
3 -1 0 1 -1 0 1 -1 0 1

n s19(n) s20(n) s21(n) s22(n) s23(n) s24(n) s25(n) s26(n) s27(n)
1 1 1 1 1 1 1 1 1 1
2 -1 -1 -1 0 0 0 1 1 1
3 -1 0 1 -1 0 1 -1 0 1

TABLE A.1. All the maps E for P = {1, 2, 3} and S = {−1, 0, 1}. Note that we
use a superscript here sk(n) instead of the subscript sj(n) as used in Equation A.15.
This is because k is just a counting index and does not correspond to a rank from
its contribution, as with the index j.

Consequently, we see that

F =
∏
n∈P

∑
m∈S

B(n,m)

=
∑
s∈E

∏
n∈P

B(n, s(n)).

(A.17)

This is equally valid when P = Z+ and S = Z.

A.4. Map search for blazed groove profiles

The search stated in the main body of paper was performed for a depth of d0 = 60

nm and yielded the set of order g(s) = 1 maps whose highest 10 contributors and

their normalized contributions can be found in Table A.2.

We numerically invert Equation (A.13) for a linear input of Z, Fig. A.1. The

function Z(R) is interpolated from the envelope function of the desired target

wavefunction Z1(R). It should be noted that Cj is dependent on h0, meaning that
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n: 1 2 3 4 5 6 7 8 · · ·
s1(n): 1 0 0 0 0 0 0 0 · · ·
s2(n): −1 1 0 0 0 0 0 0 · · ·
s3(n): 0 −1 1 0 0 0 0 0 · · ·
s4(n): −2 0 1 0 0 0 0 0 · · ·
s5(n): 0 0 −1 1 0 0 0 0 · · ·
s6(n): −1 −1 0 1 0 0 0 0 · · ·
s7(n): 3 −1 0 0 0 0 0 0 · · ·
s8(n): 0 0 0 −1 1 0 0 0 · · ·
s9(n): 2 1 −1 0 0 0 0 0 · · ·
s10(n): −1 0 −1 0 1 0 0 0 · · ·

...
...

...
...

...
...

...
...

...
. . .

Cj/C1

1.000
0.265
0.084
0.074
0.041
0.034
0.033
0.024
0.019
0.018

...

TABLE A.2. The 10 leading components to the first diffracted order of a blazed
hologram for h0 = 60 nm. All terms after n = 8 shown here have sj(n) = 0.
Also note that g(s) = 1 for each map, signifying that it does contribute to the first
diffraction order.

the set of {sj} can change depending on what value d0 is used in the search. However,

for the blazed profile case with Φ̃ ≈ 0.008i − π/29 nm−1, if 10 ≤ d0 ≤ 60 is used

to search for the maps {sj}, the inverted curves, an example of which are found in

Figure A.1(a), are no more than 0.15% different from the curve in Figure A.1(a) up

the groove depth used in the search for maps {sj}, Fig. A.1(b). This implies that it

is sufficient to use one set of maps for all d < d0 and the best choice is d0 / dmax.

Figure A.1(c) can be used to explain why this is the case. The smaller the value of d,

the less terms are needed for an accurate approximation. More maps have significant

contributions when d0 is close to dmax than when d0 is small. A set of maps created

from a large d0 is more likely to contain large contributor maps of the smaller d0 sets

than vice-versa.
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FIGURE A.1. (a) Numerical inversion of Equation (A.13) for a blazed hologram
with d0 = 60 nm using the first 5000 highest contributing maps. Red dashed line
is the maximum invertable groove depth dmax ≈ 61.5 nm. (b) The relative error
of Equation (A.13) for different values of d0 compared to when d0 = 60 nm. The
dashed lines lead to the points of maximum error for d < d0. (c) Log10 of the
normalized ranked contributions Cj/C1 for the 50000 highest contributors j found
in map searches with different depths d0.
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