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* Neurons in primary visual cortex (V1) are tuned to .
respond to visual stimuli with specific properties - - .\
* V1 Is known to respond to non-visual signals, , - o v e
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experimental technique — it is difficult to record both
brain activity and movements of a freely-moving
animal, and analysis of this data is challenging given

Left: Electrode, world camera, IMU, and eye camera attachment. Middle: Schematic of modeling (GLM) of freely-moving data.
head-fixed experimental setup. Right: Schematic of freely-moving experimental setup.
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the lack of control over sensory input and action
 We developed a novel technique to record and Resu“s
analyze electrophysiology data, as well as
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head/eye movements, body movements, and the
animal’s visual scene In order to investigate the
integration of signals from multiple modalities In -
mouse V1 C eye
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Figure 6. Action potential waveforms of three
individual V1 units.

@
position

(deg)
(92} o (9]

N

o

How are movement signals integrated into

speed
(cm/sec)
-
o o

the primary visual cortex? - o+ » = = » = pupllposition, and running
Back d ST b RLLE bl i) Speed during recording, Future Work
ackgroun ’ e ml Lt RIS gligned with raster plot of al
» V1 plays a role in important natural behaviors in L w2 ety ] TECOTAEA UNIES * Next, we will perform population-level
mice, such as navigation and prey capture (Hoy et o 5w B » s analyses of the response of V1 neurons to
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