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DISSERTATION ABSTRACT 

Shiloh L. Deitz 

Doctor of Philosophy 

Department of Geography 

March 2021 

 

Title: Free Movement: Enhancing Open Data to Facilitate Independent Travel for Persons 

with Disabilities 

 

 

Nearly 40 million Americans report a disability, and of this population, 70 percent travel 

less because of the challenges they face. When they do travel, those with limited mobility 

are more likely to be pedestrians or public transit users. Today, free commercial routing 

applications such as Google Maps offer a robust suite of tools for the able-bodied public 

to walk, ride bikes, take public transportation, or hail a taxi. Yet, such tools for persons 

with limited mobility to determine a safe and perhaps even pleasant urban route are 

experimental, limited, and only available in select cities (e.g. accessmap.io, 

chisafepath.com). This project intervenes by tackling the challenge of missing 

environmental data. First, I assess a regionally stratified sample of municipalities across 

the United States on their collection and maintenance of open data on environmental 

features that impact accessible travel for persons with disabilities. Based on this 

assessment, I evaluate options for filling in missing curb ramp data using machine 

learning and supplemental open data such as open street map, LiDAR, and aerial 

imagery. Finally, I look at the relevance and replicability of these GeoAI methods for 

filling in missing curb ramp data. Centering the needs of community members with 

disabilities, this research creates tools for improving mobility, increasing community 

strength and inclusivity while also critiquing the data driven scientific paradigm.  
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CHAPTER I 

INTRODUCTION 

 

Most of us living in the 21st century produce a steady stream of data throughout 

the day while conducting a variety of tasks that are also facilitated by data-driven 

services. Data are ubiquitous. Our data are used by an ever-growing number of 

government and commercial entities/services to make decisions that affect our lives - 

whether we may receive a loan, cross a border, or are stopped by the police.    

However, there remain large gaps in data collection and use. For example, over 1 

in 10 Americans report some disability.1 Yet the digital tools available – including 

routing applications – continue to mostly cater to fully abled persons. An application like 

Google Maps runs on massive quantities of proprietary data and the skills of some of the 

best and brightest programmers and data scientists in the world. The fact that the app 

offers routes optimized for cyclists but not wheelchair users, for example, is not a matter 

of the impossibility of the task, instead it reflects corporate (and perhaps social) priorities 

and awareness.  

Despite the examples above, data science has been incredibly useful for 

advancing scientific understanding and ameliorating social ills. Underpinning my 

research interest is a desire to understand power and inequality in data science and to 

better understand how data science can be mobilized for social equity. I approach my 

research with a focus on both scientific rigor (replicability, validity, and uncertainty 

 
 

1 ACS 2017, 5-year estimates 



2 
 

measurement) and social relevance (usefulness of outcomes or findings for specific 

populations or in application to particular social problems).   

In this dissertation, I explore equity in data science through the case of accessible 

mobility in the United States. Preliminary analysis of a regionally stratified sample of the 

largest cities in the United States reveals that only 76 percent provide open government 

data. Of those that have made some datasets available to the public, only 14 percent have 

at least half of the datasets on environmental features that might facilitate accessible 

routing for persons with disabilities. Rather than letting available data determine the 

analysis, this dissertation takes a transformative detour by interrogating missing data sets 

through an empirical case study. I aim to both identify what is missing and how to fill in 

missing datasets or points - asking how we can produce more data to better serve 

marginalized populations.  

 

a. To what extent do municipalities collect and maintain open-source data on 

environmental features that impact accessible travel for persons with disabilities? 

b. How can predictive spatial modelling be used to impute missing data measuring 

environmental accessibility features?  

c. What can we learn from this case about the relationship between social and scientific 

relevance in data science?  

 

This dissertation is in journal article format. Chapter 2 addresses research 

question a. This paper evaluates the open data on environmental accessibility across a 

regionally stratified sample of 178 municipalities in the United States. I argue that while 

there is a robust discussion in the literature on data privacy, exclusion from big data 
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represents a substantial injustice as well.  Specifically, the exclusion of ADA and other 

accessible features from transportation databases is a systematic and systemic exclusion 

of people with disabilities. In Chapter 3, I address research question b on using predictive 

spatial modeling to impute missing data on environmental accessibility features. I focus 

on using machine learning algorithms to classify curb ramp locations in 9 urban areas 

across the United States. In this paper, I outline a methodology which achieves high 

classification accuracy and go on to explore how the key strength of machine learning 

algorithms – powerful classification and prediction on big datasets – is also a harmful 

weakness. I examine how error varies across context in ways that are not systematic, and 

this outlier bias cannot just be coded in. I propose a kind of rich or thick description of 

data error, which is slow and tedious, but direly needed if we truly intend to develop 

equitable AI. In Chapter 4, I address questions of relevance and replicability in the data-

driven scientific paradigm (research question c). I answer these larger questions by 

looking at the impact of different data inputs and the subsequent machine learning 

classifications of curb ramp locations in Seattle, WA. On the way to thinking about 

replicability and relevance, I consider key aspects of the scientific method and the impact 

of new data and algorithms on these processes.  Specifically, I look at the implications for 

scientific knowledge of abandoning careful and reflexive conceptualization, 

operationalization, and measurement. I argue that because of complexity, big data and AI 

do in fact “speak” and careful consideration of what they have to say is important.  
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CHAPTER II 

MISSING DATA2 

 

40.7 million Americans report some disability3 and the majority (70 percent) 

reduce their travel because of their disability.4 When they do travel, they are more likely 

than the general population to be pedestrians or public transit users. Wheelchair riders are 

significantly more likely than other pedestrians to be killed in traffic accidents (Kraemer 

and Benton 2015; Poon 2015).  Thirty years after the landmark Americans with 

Disabilities Act legislation, these data suggest that pedestrians with disabilities still face 

several barriers to safely accessing their communities.  

There is an abundance of transportation data made available through Google 

Maps and other routing applications, yet these applications overlook the unique needs of 

people with disabilities. If data on the accessibility of transportation infrastructure do 

exist, they are the intellectual property of private companies and unavailable to the 

public. While Google Maps has recently piloted an accessibility option for public transit, 

common conceptions of what constitutes a mode of transportation can contribute to the 

exclusion of people with disabilities. For example, why does Google’s routing 

application define a bicycle as a mode of transportation but not a wheelchair?  

Missing data on the accessibility of US municipalities is a significant barrier to 

safe mobility for persons with disabilities. Of the 178 largest municipalities across the 

United States that we sampled, only 60 percent provided both open data and at least one 

 
 

2 Authors: Shiloh Deitz, Amy Lobben, Arielle Alfarez 
3 ACS 2018, 5-year estimates 
4 Bureau of Transportation Statistics 2018 
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piece of information vital to the safe routing of persons with ambulatory disabilities. This 

information barrier transforms an impairment into a disability – excluding those who 

depend on features such as curb cuts from safe route planning.  Moreover, the dearth of 

information on accessible features reduces the effectiveness of the Americans with 

Disabilities Act. As an unfunded mandate the ADA is toothless, but information 

(particularly quantitative information) is politically powerful (Jasanoff 1998; Koopman 

2019b). Open and accessible data on public infrastructure would give advocates the tools 

to demand ADA compliance while also fulfilling the Title II administrative requirement 

for self-evaluation and transparency (ADA National Network 2020)5.  

The absence of useful data aggravates disability in complex and often 

unintentional ways, shining light on the mundane contours of life-threatening bias. This 

social reality starkly contrasts the excitement and bold claims that have bolstered and 

shaped a new research paradigm of data-driven science (Hey 2009). This paradigm 

marvels at big data or new volumes, velocities, and varieties of data (Laney 2001) and 

claims that available data can now provide an exhaustive picture of the world (see C. 

Anderson 2008; Hey 2009; Prensky 2009). But exhaustive for whom? 

In this paper we focus on the lack of data on environmental features that might 

promote independent living and safe travel for persons with disabilities. Specifically, we 

ask to what extent municipalities collect and maintain open data on environmental 

features that impact accessible travel for people with disabilities, and what are the 

 
 

5 The Department of Justice administrative regulation for Title II include performing a self-evaluation, 

notifying the public about compliance, designating an employee to coordinate ADA compliance, 

developing a procedure for resolving ADA complaints, and developing a transition plan.  
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consequences of specific data regimes? We argue that looking at missing data reveals the 

social nature of data, which, like infrastructure itself, is stubborn to change and often 

biased in insidious ways6.  

Data-Driven Bias 

While all research is driven by data, the buzzword ‘data-driven’ refers to quantitative 

information within the realm of data science. Hey (2009) uses the term data-intensive to 

describe a fourth paradigm of scientific discovery. According to that work, the preceding 

paradigms were empirical evidence, scientific theory, and computational science. While 

this framework might be debatable, the rise in reliance on data science and data-driven 

discovery is undeniable. The term “data-driven” was found in 15 publications in 1980, 

177 in 1990, 502 in 2000, 2,408 in 2010, and 11,992 in 2019.7 The popularity of the term 

in both public and private sectors has risen alongside advances in the internet and 

computing. Oft-cited, Anderson’s (2008) proclamation of the end of theory went on to 

claim: “Petabytes allow us to say: ‘Correlation is enough’….We can analyze the data 

without hypotheses about what they might show.” These sentiments are not unique. A 

year later Prensky claimed that researchers could “mine the complete set of data for 

patterns that reveal effects, producing scientific conclusions without further 

experimentation” (2009, 5). At the same time, new analytics software was developed that 

claimed to have totally removed the human element and resultant bias (cf. Kitchin 2014). 

Various academic disciplines have been reshaped by these ideas, for example, prominent 

 
 

6 This kind of harm has been elsewhere characterized as “slow violence” or harm that happens so slowly 

and out of view that it is hardly measurable (Laurie and Shaw 2018).  
7 According to Semantic Scholar, an AI-powered aggregator of scientific literature.  
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geographers recently published an article outlining data-driven geography (Miller and 

Goodchild 2015). 

The juxtaposition between human bias and objective (non-human) data has a long 

history (Haraway 1996; D’Ignazio and Klein 2020; Perez 2019). However, as data have 

gotten bigger and algorithms more complex, biases have taken on greater heft. These 

biases are often unintentional and confusing to researchers who trust the objectivity of 

data, but who lose comprehension of what is going on within the ever more opaque black 

box of big data and complex algorithms ((Burrell 2016; Suresh and Guttag 2020). Data 

are also infrastructures like roads, plumbing, and sidewalks—as such, they are embedded 

in history, stubborn to change, and only made visible when they fail (Star 2016; Selin and 

Sadowski 2015). 

Real-world biases – systemic and repeatable errors that create inaccurate and 

often unfair outcomes - are built into our physical and research infrastructures with 

embodied consequences. These consequences are felt not only by women and minorities, 

but more so for those with physical impairments. While the data-driven research 

paradigm has been bolstered by big data and the accompanying belief that available data 

can now provide an exhaustive picture of the world, the world that is presented still 

defaults to the experience of white, able-bodied men (D’Ignazio and Klein 2020; 

Haraway 1996; Perez 2019). For example, because data about men were predominantly 

used in past heart disease research, women have long been endangered by overlooked and 

untreated heart disease symptoms that are either unique to or more prevalent in women 

(Garcia et al. 2016). Predictive policing over-targets black men because the training data 

(based on racial profiling practices) is biased in that direction (Richardson, Schultz, and 
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Crawford 2019; Selbst 2017). Facial recognition software does not easily recognize black 

women’s faces because it is trained on white men and image recognition algorithms over-

identify subjects in the kitchen as women (Simonite 2017; 2018). New software for 

automating hiring decisions overwhelmingly discriminates against disabled people by 

weeding out anyone with characteristics not found in the training data (Engler 2019; 

Whittaker et al. 2019). And autonomous vehicles have been found to not “see”  

wheelchair riders or pedestrians using other assistive technologies (Whittaker et al. 

2019). All these biases contribute to real-world inequalities, are likely accidental, and 

stem from a lack of complete information or missing data. These examples show that no 

matter the size of data, it defaults towards further embedding whatever is believed to be 

socially “normal” at the dangerous exclusion of all kinds of constituency groups. 

Furthermore, biases towards constituency groups organized by race, age or gender are 

easier to identify than those affecting people with disabilities due to the size and diversity 

of the group. Examining data-driven biases that crop up for the disabled community is 

particularly instructive for understanding inequality. While we can organize people based 

on race, gender, sexuality, or any other demographic characteristics, social scientists have 

established that any such identity intersects with other facets of a person to produce 

unique experiences of the world (Collins 2008).  

People are grouped based on socio/economic/political/physical attributes.  Those 

grouping choices are social constructs (D’Ignazio and Klein 2020). For example, there is 

a feedback between our cultural conception of gender and its formatting in demographic 
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surveys (binary, male/female).8 Demographic classification has gotten more complex as 

more of our lives move online but no less restrictive in most cases. Our “biography” on 

various platforms takes on the shape of the categories given. As Koopman points out, 

“within a few short years we have all been retrained to present ourselves again through 

exactly the terms specified by the conventions of the newest social networks” (2019b, 7). 

Or as the disabilities movement called attention to, the definition of abnormal is socially 

and medically defined with consequences for both data formats and human lives. For 

example, homosexuality was a mental illness in the Diagnostic and Statistical Manual of 

Mental Disorders (DSM) until 1973 (Drescher 2015), underscoring the interplay between 

how we defined homosexuality and how gay people were treated in society. Women have 

long been thought of as mentally and physically deficient men (Garland‐Thomson 2005) 

and the same is true of race. These ideas manifest in persistent race and gender-based pay 

gaps. In 2015, African Americans earned 75 percent as much as whites and women 

earned 83 percent as much as men in the United States  (Patten 2016).   

Data, classification, equations – these are socio-technical systems. That is, they 

are socially created and trusted, and are products of their time, making biases hard to 

weed out (Crawford 2017; Ananny 2016; Beer 2017). These systems can be seen as 

constituting an infopower that, as Koopman defines it, is “an exercise of power through 

the work of its varied and flexible formats” (2019b, 12). The process of data collection, 

analysis, and dissemination allows for information to amplify itself. In this way it both 

 
 

8 When we refer to “formats” or “formatting” we are referring to how information is conceptualized for 

quantitative measurement. For example, on demographic surveys gender could be male/female or a wider 

range of options (Koopman 2019b).  
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“pins us down” to the constraints of formats and speeds up by making things easier to 

find, analyze, and classify (ibid). This process is the subtle work of conceptualization. 

Formatting is simply the mundane choices about what and how to measure. Data size 

does not erase biases but amplifies them by overwhelming us with information. As data 

size increases, so does the opacity of the science conducted with it (Kwan 2016). In the 

very mundane work of formatting, certain possibilities are put in place which 

“preclude[d] what could have been other options” (Koopman 2019b, 180). Past injustices, 

like redlining or racial profiling in police work, cannot be solved by more data; rather, 

when coded into more data they are amplified.  

Big data has generated many of the wildest claims about what data can do. 

However, the data-driven paradigm does not discriminate based on data size or quality 

and the sheer size of big data makes it much harder to track biases. We argue that to 

understand bias in quantitative analyses, there needs to be more serious review of the data 

themselves - the underlying processes and the mechanisms for biased results. While 

progress has been made in understanding the dangers of too much data and 

quantification, we lend another perspective suggesting that there actually are not enough 

data in areas that would benefit historically marginalized groups. For example, there 

wasn’t any comprehensive data on people killed by the police until activists demanded it 

(Onuoha [2016] 2019).  

With respect to our focus here on accessible transportation, a dearth of data on 

key safety features such as curb cuts, cross controls and cross walks has material 

consequences for the safe routing of persons with disabilities while also reducing the 

power of the ADA. This deficiency in transportation data persist despite rapid advances 
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in similar areas - high quality routing applications (for those without physical 

impairments) having become free and ubiquitous, and many of us worry that our phones 

are starting to collect too much information about where we’ve been and where we’re 

going. Within this transportation data deluge – which both helps us navigate and 

threatens our privacy – what are the barriers to collecting and creating tools around data 

that would expand the independence and safety of persons with disabilities in their urban 

travel? 

In this work we fill that gap by looking at the relationship between legislation, 

municipal data practices, and the consequences for persons with disabilities.  Specifically, 

we trace the history of the ADA and open data. We look at the open data practices of a 

regionally stratified sample of municipalities to reveal the interplay between “common 

sense” data priorities, political power, and routine injustices. We confirm that there is a 

dearth of data on accessible transportation across a wide range of municipalities in the 

United States and suggest alongside artist Mimi Onuoha that these data are missing 

because those who have the resources to collect data lack the incentive to and are actually 

more incentivized to hide or obscure it due to complex enforcement of the ADA ([2016] 

2019).   

 Opening the Americans with Disabilities Act 

The Americans with Disabilities Act of 1990 was landmark legislation and a great 

achievement for the disability rights movement. The movement rhetorically shifted 

understandings of disability from purely medical to questions of social justice and design. 

The social model of disability situates disability as the product of disabling environments 

and attitudes. These barriers, which include physical environments, lack of assistive 
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technologies, negative attitudes, and public policies transform impairments into 

disabilities. This model has been adopted by the World Health Organization, Centers for 

Disease Control, and United Nations (World Health Organization 2001; Siebers 2008). 

ADA legislation aims to reduce these barriers in the areas of employment (Title I), public 

accommodations and services (Titles II & III), and telecommunications (Title IV) in the 

United States. 

 Title II of the ADA bans disability-based discrimination in state and local 

governments. This legislation comes with many guidelines for the accessibility of 

pedestrian right of ways including curb ramps, removal of obstructions, and safe road 

crossings. New accessible infrastructure standards were released in 2010. The regulations 

also require that local governments: (1) perform a self-evaluation; (2) notify the public 

about ADA compliance; (3) designate an employee to carry out ADA responsibilities; (4) 

develop a procedure for resolving complaints; and (5) develop a transition plan for 

achieving ADA compliance.  

 Directly after the ADA’s passage, municipalities struggled to comply in order to 

avoid a $50,000-$100,000 fine (Mills 1995).  However, the Unfunded Mandate Reform 

Act of 1995 restricted the federal government’s enforcement ability and ADA 

compliance has since then largely been enforced by citizens through complaints and 

lawsuits. A recent study of New England municipalities found that less than 1 in 10 

municipalities were compliant with Title II requirements (Brault et al. 2019). When asked 

why, many participants responded that they had not had issues or did not think it was 

necessary. In fact, lack of knowledge or personnel were the most common reasons for 

ADA non-compliance, followed by money and time (ibid).  
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 The administrative requirements of Title II to perform a self-evaluation, inform 

the public, and develop a transition plan all require data and data sharing. While open 

data is only mandated at the federal level through the OPEN Government Data Act 

(passed January 14, 2019), many municipalities have followed suit with their own 

policies or initiatives. The term “open data” describes data that can be freely accessed, 

used, modified, and shared for any purpose. The open data movement, active since the 

mid-2000s, attempts to bring data to more people in the interest of transparency, 

accountability, and innovation. Advancements in transparency and inclusion in data 

analysis have facilitated the identification of built-in bias in data sets and systems. Open 

data are a rich source not only for innovation, but transparency and accountability, too. 

That is, their value lies both in what they measure, and in what they ignore, giving 

citizens a metric for understanding their city’s priorities and its blind spots.  

There are no established metadata standards for open data and few guidelines 

about what to include, making them a wild west of localized quantification. Limited 

public funding for technology and open data infrastructure has often resulted in data 

openness without context. These dumps of “zombie data” are accessible and open but 

without provenance, meaning, or purpose (D’Ignazio and Klein 2020). Out of context, 

data cannot “speak for themselves” as many have claimed. The biases mentioned in the 

preceding section are only amplified when analyzed by persons unfamiliar with data 

collection practices and context. For example, if a person unfamiliar with police profiling 

aimed to garner insights from data provided by a police department with a history of 

profiling, the data might confirm their own racial bias.  
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 These issues reveal the messy relationships between information, infrastructure, 

legislation, social justice, and American ideals. There is a scarcity of empirical work on 

data quality and bias. This includes a lack of systematic analysis of what data are missing 

and what the social consequences might be of that missingness. In the case of 

accessibility, the lack of information about transportation infrastructure not only impacts 

an individual’s safety and ability to navigate the world freely, but also has implications 

for political power, legislative enforcement, and governmental transparency. For 

example, a municipal transportation database that collects information about street 

conditions such as potholes but not about the presence of curb cuts on sidewalks is a 

technical infrastructure that has potentially positive impacts for some (drivers who can 

avoid pothole-ridden routes or lobby for local street repair) and potentially negative 

impacts for others (wheelchair users who cannot plan safe curb access routes to new 

destinations or lobby for such access). Such data collection practices also result in a 

prioritization of one traveler over another, whether intended or not. 

 The early years of the big data revolution ushered in legal, political, and social 

debates centered around the risks of inclusion, i.e. privacy and civil liberties concerns.  

While we do not discount the merits of those concerns, we argue that exclusion from big 

data represents a substantial injustice as well.  Specifically, the exclusion of ADA and 

other accessible features from transportation databases is a systematic and systemic 

exclusion of people with disabilities from these databases.  In the following pages we 

present our empirical exploration of this missingness.    
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Methods 

Our overall goal was to identify the extent to which municipalities make publicly 

available databases that include features that represent facilitators to environmental 

access for people with disabilities.  Our process involved the collection as well as 

scoring/evaluation of municipal databases throughout the United States.  We then looked 

for patterns in their collection practices to better understand the conditions for inclusion.  

Study Area and Data Collection 

 
Figure 1. Municipality Sample 

 

We used a regionally stratified sample of open data portals across 178 United 

States municipalities to answer the question: to what extent do municipalities collect and 

maintain open-source data on environmental features that impact accessible travel for 
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persons with disabilities? The sample of 178 municipalities is based on 2010 U.S. Census 

population counts and includes: all municipalities with populations over 150,000, the 10 

most populous municipalities for each census subregion, and the most populous 

municipality of each state (see figure 1). 

Open data are freely available to access, share, and use. While it is conceivable 

that physical versions of open data might be freely available within a library, for 

example, the standard is increasingly that they are downloadable over the internet (Open 

Knowledge Foundation 2020). To ascertain the presence of an open data portal, we 

conducted internet searches9 from June 2019 to March 2020. Search terms included the 

municipality name and “open data”, “data”, or “gis.” If nothing promising resulted from 

those searches, we would investigate the municipalities’ website for any information on 

data or transparency. We gave municipalities with no open data portal a score of 0 (the 

lowest score in our evaluation scheme; see below). We checked all municipalities with 

scores of 0 again at the end of the review period (April 2020) as some municipalities 

were in the process of developing a portal.  

Database Scoring 

Following the data collection, we then reviewed the existing open data portals for 

their inclusion of data on 14 environmental features that are barriers to or facilitators of 

safe travel for disabled pedestrians. The list of features is based on a two-year empirical 

study by Lobben and Perdue (in progress) in which interviews, focus groups, and national 

 
 

9 Using Google and DuckDuckGo search engines.  
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surveys identified environmental features that represented either barriers or facilitators to 

environmental access for people with disabilities. These features were identified as most 

impactful for safe routing across four impairment types: vision, hearing, electric 

wheelchair, and non-electric wheelchair.  Table 1 combines Lobben and Perdue’s 14 

environmental features (left column) with ADA standards (McNally 2011; Department of 

Justice 2010).  

Table 1. Environmental data types for accessibility & ADA standards   

Feature ADA Requirement 

Cross control Pedestrian push button requirements 

Audible cross control  

Flashing cross 

control 
 

Vertical obstructions 
Pedestrian ROW must be unobstructed 

Ground obstructions 

Curb ramps 
Connecting every path of travel; Width: >36”; Cross slope: <2%; 

Running slope: <8.33% 

Slope Recommendations for sidewalks 

Crosswalks  

Sidewalks 

Pedestrian ROW must be unobstructed Sidewalk material 

Sidewalk condition 

Streets 
If new construction pedestrians right of ways must comply with 

ADA 

Street number of 

lanes 
 

Street speed limit  

 

Our scoring process was based on simple presence or absence of the features of 

interest.  Therefore, a “perfect” score of 14 was achieved if the database included fields 

and data for all 14 features.  Again, an absence of publicly available data resulted in a 
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score of 0.  Most municipalities included some combination of data on the 14 possible 

features (see supplementary data).   

We then  took a closer look at the metadata and fields for sidewalks, cross 

controls, curb ramps, and crosswalks as these features fall under ADA accessible design 

standards (Department of Justice 2010, see table 1). This was based on an emerging 

observation of a relationship between ADA compliance efforts and open data 

completeness. Possible fields included feature type (point, line, polygon), slope, ADA 

compliance, and signal type.  

Demographic data for correlation analysis came from the American Community 

Survey 2018 5-year estimates for census designated places.  

Analysis 

Using these data, we compiled descriptive statistics of overall scores and each of the 14 

accessibility features. We focused only on municipalities with an open data portal and at 

least one feature of interest (n=107). To better understand the score, we broke it into 

quartiles. We then looked at the rate of inclusion for each accessibility feature. To 

understand the relationship between data completeness and inclusion of features, we also 

calculated the rate of inclusion of each feature based on score. For example, 92 percent of 

municipalities with a score of 2 included spatial information about streets in their open 

data portal.  

 Next, we looked at the Pearson correlations between the presence of feature 

information, score, and demographics across the entire sample (n=178). We did this to 

look for a relationship between demographic or spatial characteristics of cities and their 

open data practices. In exploratory analysis, we looked at a variety of municipality 
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characteristics including median age, income, poverty rate, disability rate, housing 

insecurity, median income, population size, latitude, and longitude. We also explored 

spatial correlations.  

 Based on the Pearson correlations, we ran a basic linear regression on each 

municipality’s data inclusion score. The independent variables were municipality median 

income, population size, latitude, and longitude10. We conducted analysis of the outliers 

using regression residuals and standard deviation of the residuals. The residual is the 

difference between the actual and predicted value. We looked at all municipalities with 

predicted value residuals at least 1 standard deviation above or below the actual value. 

Results: Accessibility and Access 

The results reported here include both the entire municipality sample (n=178) and the 

municipalities with an open data portal and at least one accessibility feature (n=107). 

Tables 2 to 4 and figure 2 cover the more limited sample because we are looking at trends 

in those municipalities with data online. Tables 5 to 7 and figure 3 cover the entire 

sample to capture the relationships between municipality characteristics and score.  

Data Inclusion 

Just under 78 percent of the 178 municipalities sampled had an open data portal (138 

total). Among these, 107 municipalities had information on at least one of the features we 

were looking for (77.5 percent). Half of those municipalities had data on 3 or fewer 

 
 

10 Latitude and longitude were used to capture geographic variability in open data practices. We observed 

that northern cities were more likely to have more inclusive open data portals.  
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features and only the top quartile had more than half of the 14 features (23 municipalities 

had 7 or more, see table 2). 

  

Table 2. Quartiles of Municipality Scores (n=107) 

Quartile Score Range 

1st 6-13 

2nd 3-6 

3rd 2-3 

4th 1-2 

 

Table 3. Feature Inclusion Rate (n=107)  

Feature % 

Streets 90 

St: Speed 53 

Slope 44 

Vertical Obstructions 37 

St: Lanes 36 

Sidewalks 34 

Ground Obstructions 30 

Crosswalk 19 

Swk: Condition 18 

Curb Ramp 17 

Cross controls 17 

Swk: Material 14 

CC: flashing beacon 14 

CC: audible 7 

 

Ninety percent of municipalities with information on at least one accessibility 

feature had spatial information about streets (see table 3). Just more than half had 

information about the speed limit on streets (53%), followed by slope (44%), vertical 

obstructions (37%), number of lanes in streets (36%), sidewalks (34%), ground 

obstructions (30%), crosswalks (19%), sidewalk condition (18%), curb ramps (17%), 
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cross controls (17%), sidewalk material (14%), flashing beacon cross controls (14%) and 

audible cross controls (7%)11. 

 

Table 4. Feature Inclusion Rate (%) by Score 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

N 71 15 26 15 13 7 6 8 6 2 2 3 3 1 

Streets 0 67 92 100 85 86 100 100 100 50 100 100 100 100 

St: Speed 0 0 38 53 69 71 67 63 100 50 100 100 100 100 

St: Lanes 0 0 8 27 38 57 83 75 67 50 100 67 100 100 

Sidewalks 0 0 12 7 23 57 33 88 83 100 100 100 100 100 

Swk: Material 0 0 0 0 8 29 17 13 33 100 50 67 67 100 

Swk: 

Condition 
0 0 0 0 8 29 17 63 0 100 100 100 67 100 

Curb Ramps 0 0 0 0 8 0 0 50 67 50 50 100 100 100 

Cross 

Controls 
0 0 0 0 8 14 50 38 50 50 50 33 100 100 

CC: Audible 0 0 0 0 8 14 33 25 33 50 50 33 100 100 

CC: Flasher 0 0 0 0 8 0 50 13 0 0 0 33 0 100 

Crosswalks 0 0 0 7 0 29 17 50 33 50 100 100 100 100 

Slope 0 13 15 33 54 71 50 63 100 100 50 100 100 100 

Vertical Obs. 0 7 15 33 54 14 33 50 83 100 100 100 100 100 

Ground Obs. 0 13 19 40 31 29 50 13 50 50 50 67 67 0 

 

Looking at municipality score by inclusion of data, we found street information in 

most municipalities with scores under 5 (see table 4 and figure 2). Sixty-seven percent of 

the municipalities with a score of 1 have street information, 92 percent of those with 2, all 

of those with 3, 85 percent of those with 4 and 86 percent of those with a score of 5 (see 

table 4). Only among those with 8 or more features, do features other than streets appear 

in equal proportions. For those municipalities, there are an even number with information 

on streets, speed limit, and slope (6 municipalities, see figure 2). For scores higher than 8, 

 
 

11 From this point forward we will mostly refer to the feature (rather than ‘data about said feature’) for 

conciseness. For example, we will refer to ‘curb ramps’ and in doing so we do not mean the ramps 

themselves but rather the presence of information about them.  
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there are almost equal numbers of municipalities with each feature and few municipalities 

had those scores (see N in table 4). Information on curb ramps, an important part of ADA 

design requirements, are only found in one municipality with a score of 4 (Los Angeles) 

and this information is incomplete and only includes ramps installed in 2014. Otherwise, 

curb ramp information was only included in municipalities with scores of 7 or higher. 

Notably, the most common feature with any application to ADA compliance is 

crosswalks or sidewalk condition, both found in less than 20 percent of municipalities 

with information on any feature of interest.  

 

 

Figure 2. Municipality Score by Feature Inclusion 
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Patterns and Relationships 

There are significant Pearson correlations between inclusion of feature information and 

score (see table 5). For example, audible cross controls are a descriptive field within a 

cross control dataset so there is a strong correlation between the two (0.904). There are 

also correlations between less-related features. For example, between data on curb ramps 

and cross walks (0.648) and curb ramps and sidewalks (0.527). The strongest feature 

correlation with score is between score and sidewalks (0.750), meaning municipalities 

with more accessibility features (higher score) were more likely to include sidewalks.  

 

 

Figure 3. Municipality Scores (those with scores of 7 or more are labeled) 
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Table 5. Pearson Correlations (n=178)  

 Mean, SD^ 1 1a 1b 2 3 4 5 5a 5b 6 7 7a 7b 8 9 

1.Cross controls 0.10 -               

1a. audible 0.08 0.90 -              

1b. flashing beacon 0.04 0.60 0.56 -             

2. Crosswalk 0.11 0.47 0.40 0.20 -            

3. Curb ramp 0.10 0.44 0.37 0.12 0.65 -           

4. Ground obs. 0.18 0.13 0.07 0.06 0.25 0.28 -          

5. Sidewalks 0.20 0.34 0.35 0.11 0.53 0.53 0.17 -         

5a. Condition 0.11 0.37 0.42 0.21 0.57 0.49 0.08 0.69 -        

5b. Material 0.08 0.17 0.20 0.04 0.53 0.50 0.17 0.60 0.62 -       

6. Slope 0.26 0.26 0.23 0.01 0.39 0.43 0.18 0.52 0.37 0.42 -      

7. Streets 0.54 0.24 0.20 0.13 0.29 0.27 0.32 0.35 0.21 0.16 0.43 -     

7a. Lanes 0.22 0.36 0.38 0.17 0.29 0.32 0.21 0.51 0.43 0.28 0.39 0.49 -    

7b. Speed 0.32 0.29 0.23 0.11 0.29 0.37 0.18 0.40 0.23 0.23 0.46 0.63 0.57 -   

8. Vertical obs. 0.22 0.31 0.32 0.099 0.41 0.49 0.274 0.399 0.337 0.37 0.47 0.36 0.33 0.38 -  

9. Score 2.58, 3.16 0.62 0.59 0.32 0.69 0.70 0.41 0.75 0.66 0.59 0.68 0.65 0.69 0.67 0.66 - 

10. Med. income 29090, 6903 0.22 0.20 0.11 0.28 0.34 0.03 0.29 0.17 0.11 0.17 0.06 0.18 0.17 0.17 0.28 

11. Population size 423177, 739484 0.27 0.30 0.04 0.23 0.14 0.10 0.28 0.31 0.01 0.19 0.20 0.25 0.14 0.22 0.31 

12. % disability 12.14, 2.81 -0.08 -0.06 0.01 -0.10 -0.13 -0.03 -0.11 -0.08 -0.06 0.02 -0.04 -0.13 -0.12 -0.04 -0.11 

13. Latitude 36.83, 5.37 0.07 0.07 0.08 0.19 0.22 0.08 0.15 0.10 0.24 0.17 0.00 0.05 0.09 0.18 0.19 

14. Longitude -97.25, 18.05 -0.01 -0.03 0.02 0.01 -0.05 0.01 0.07 0.09 -0.01 0.08 -0.02 0.15 0.05 0.10 0.06 

^Included where meaningful, not for binary measures. p<0.001 p<0.01 
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There are also relationships between characteristics of municipalities and score. 

There is a significant positive relationship between score and median income (0.281, 

p<0.001), population size (0.310, p<0.001), and latitude (0.185, p<0.05). Northern cities 

tend to have higher scores (see figure 3). While disability rate is correlated with income (-

0.586, p<0.001) and latitude (0.176, p<0.05), there is no correlation with score. There is a 

significant negative correlation between disability and inclusion of information about 

curb cuts, albeit at a higher p-value (-0.132, p<0.1). Given other correlations, this 

relationship is likely spurious. It is notable because it is the opposite of what we might 

hope – as the rate of disability goes up, the likelihood of inclusion of information about 

curb ramps goes down.  

 

Next, we ran a linear regression to understand how municipality characteristics 

come together to predict score. Fitted to a linear regression, median income, population 

size, latitude, and longitude predict about 21% of the variation in score (see table 6). The 

coefficients for median income, population, and latitude follow the same patterns 

observed in the Pearson correlations.  

 

Table 6. Linear Regression Results (n=178) 

 coefficient (standard 

error) 

β (p-value) 

Intercept -3.219 (1.994) ----  (0.108) 

Median Income 0.000 (0.000) 0.281 (0.000) 

Population 0.000 (0.000) 0.291 (0.000) 

Latitude 0.094 (0.040) 0.160 (0.020) 

Longitude 0.020 (0.012) 0.115 (0.105) 
 

R2: 0.205 

F-statistic: 11.185 

Standard Error of Estimate: 2.852 
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Table 7. Regression Residuals for Municipalities with Scores of 6 or More 

Municipality Score Residual # of σ 

Seattle, WA 13 7.389 2.591 

Sioux Falls, SD 12 8.713 3.055 

Portland, OR 12 8.445 2.961 

Washington, DC 12 6.299 2.209 

Denver, CO 11 6.941 2.433 

Boston, MA 11 6.696 2.348 

San Francisco, CA 11 5.694 1.996 

Madison, WI 10 6.580 2.307 

New York, NY 10 -3.497 -1.226 

Nashville, TN 9 5.762 2.020 

Columbus, OH 9 5.325 1.867 

Oakland, CA 8 5.337 1.871 

Aurora, CO 8 5.044 1.768 

Elk Grove, CA 8 4.908 1.721 

Austin, TX 8 4.420 1.550 

Virginia Beach, VA 8 4.094 1.435 

Philadelphia, PA 8 3.781 1.326 

Cape Coral, FL 7 5.526 1.938 

Spokane, WA 7 4.415 1.548 

San Antonio, TX 7 4.264 1.495 

Indianapolis, IN 7 3.597 1.261 

Raleigh, NC 7 3.450 1.210 

Charlotte, NC 7 3.321 1.164 

Minneapolis, MN 7 3.305 1.159 

Arlington, VA 7 -0.835 -0.293 

Tucson, AZ 6 4.832 1.694 

Tampa, FL 6 4.242 1.487 

Charleston, NC 6 3.872 1.357 

Detroit, MI 6 3.709 1.300 

Norfolk, VA 6 3.635 1.275 

Rancho Cucamonga, CA 6 3.463 1.214 

 

Notably, every city with a score over 6 (except for New York and Arlington, VA) 

is an outlier with the predicted value at least one standard deviation below the actual 

score (see table 7). According to the model, we would expect New York to have a higher 

score – 13.5 instead of 10. The model predicted Arlington, VA fairly accurately (7.8 



27 
 

compared to an actual score of 7). Sioux Falls is the largest outlier with a score over 3 

standard deviations larger than expected (the model predicts a score of about 3 compared 

to 12 in actuality). Portland, Seattle, Denver, Boston, Madison, Washington, DC, 

Nashville, and San Francisco all have scores above 9 that are at least 2 standard 

deviations higher than expected based on location, population size, and median income. 

Discussion 

As shown above, open data on key environmental accessibility features such as curb 

ramps, cross controls, and cross walks is rare across most municipalities in the United 

States. Indeed, cities with robust data on these features are outliers in our regionally 

stratified sample of the largest cities in the country. Missing data on the accessibility of 

US municipalities is a significant barrier to environmental access and safe routing for 

persons with disabilities. Not only does this lack of information preclude safe route 

planning for disabled pedestrians, leave them to fend for themselves with insufficient 

apps like Google Maps as their guide, but it also reduces the effectiveness of the 

Americans with Disabilities Act. Information is power, and public infrastructure 

evaluations would give advocates the tools to push for enforcing the infrastructural 

requirements of the ADA. In the following pages, we look at possible reasons for data 

missingness and the consequences of this data gap.   

Formats 

Early on in this research, we asked a software engineer at Google why their routing 

application (or any mainstream routing application for that matter) could compile the data 

for routing cyclists but not wheelchair riders. He gave a simple and sensible answer – a 
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wheelchair is not a mode of transportation. According to Google Maps and the American 

Community Survey, modes of transportation include walking, biking, taking a taxi, 

driving, public transit, flying, and other (see figure 4).  

 

Figure 4. Modes of Transportation 

 Why are these the only modes of transportation? What is the difference between 

riding a bicycle or a wheelchair? According to the 2009 National Household 

Transportation Survey in the United States, fewer than 11% of daily trips were made by 

walking and only about 1% by bicycle (Kuzmyak and Dill 2012). The American 

Community Survey suggests these numbers have not changed very much in 10 years. In 

2010, 0.5 percent of workers biked, and 2.8 percent walked to work. In 2018, these 

patterns were the same (considering the margin of error) - 0.6 percent biked, and 2.7 

percent walked to work (ACS 2010/2018, Florida 2019). In contrast, 12.6 percent of the 

U.S. population has a disability and 7 percent of the population has an ambulatory 

disability (over 20 million people). These commuting and demographic data suggest that 

there are likely at least 10 times more wheelchair riders than cyclists. Yet, the 
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municipalities in our sample are over 4 times more likely to have information about 

bicycling infrastructure than curb ramps (74 compared to 18). 

 While the focus of this research was not on modes of transportation and we did 

not do a thorough review of public transit datasets, our results do point to trends based on 

generally accepted ideas that municipal governments and corporate enterprises have 

about what constitutes a relevant mode of transportation. Information for drivers (car, 

bus, taxi) was more likely to be included than information for cyclists (96 municipalities 

compared to 74). Information for cyclists was almost twice as likely to be included as 

information for pedestrians. Sidewalk information was found in 36 municipalities. And 

half as many municipalities included information about accessibility (curb ramps, 18). 

These findings reveal that how we define and delimit modes of transportation influences 

the data collected and planning priorities.  

Blank Spots 

The Americans with Disabilities Act was a hard-won piece of legislation, which banned 

infrastructural discrimination based on disability. This 30-year-old legislation requires 

municipalities to implement accessible design in transportation infrastructure including 

curb ramps, sidewalks, and cross controls. However, implementation has largely been 

pushed along by complaints and lawsuits (squeaky wheels) rather than municipal 

initiatives.   

 In Mimi Onuoha’s, visual art installation, The Library of Missing Datasets, she 

describes missing data as the “blank spots that exist in spaces that are otherwise data-

saturated” (2020). She suggests that what we ignore reveals more than what we give 

attention to, and that these blank spots can illuminate subtle biases and indifferences. 
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Why are data missing? Drawing from Onuoha, we suggest four possibilities: (1) Those 

who have the resources to collect the data lack the incentive to do so (and possibly, have 

incentives not to (Hamraie, 2018)12); (2) the act of collection involves more work than 

the benefit the presence of data is perceived to give; (3) The data resist quantification; or 

(4) there are advantages to nonexistence ([2016] 2019).  

 In application to municipal data in our sample, the first three explanations likely 

apply. First, if municipalities collect data that reveals their compliance or non-compliance 

with ADA standards, it would either force an immediate fix or provide thorough 

documentation for a citizen complaint. We are not suggesting mal intent, only that the 

incentive is not there for those in the best position - city governments - to collect the data. 

This relates to reason three - the act of collection involves more work than the perceived 

benefit - particularly for those who do not depend on accessible infrastructure. Again, this 

is likely not done maliciously but rather ignorantly. According to a recent assessment of 

ADA implementation in New England, the top reasons given for non-compliance were 

lack of personnel (41 percent) and lack of knowledge (36 percent) (Brault et al. 2019). 

Further, the data resist quantification - not because they are unquantifiable (e.g. slope of 

curb ramp) but because they do not easily fit into our ideas about modes of transportation 

and officials are often ignorant or overwhelmed by the requirements.  

 These trends reveal biases in what data we deem worthy of collection, and the 

unforeseen consequences for inequality. It is difficult to fully extrapolate why every city 

with a high score was an outlier in our predictive model. However, there is evidence that 

 
 

12 Consider the example of police departments compiling data on officer involved shootings. 
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these municipalities either had a culture of accessibility or had collected data in response 

to high profile ADA compliance complaints or lawsuits. For example, the model 

predicted a score of 4 for Boston compared to the actual score of 11. Boston was also the 

location of the first ever Disability Pride March in 1990. Similarly, San Francisco also 

had a score of 11 which was about 6 points higher than expected. In the 1960s at 

Berkeley, the independent living movement was launched with attention to curb cuts for 

wheelchair riders. San Francisco was also the location of one of the most noteworthy 

protests of the disability rights movement, the 504 Sit-in in 1977. Recently a class action 

lawsuit was filed against the city and county – Kirola v. City & County of San Francisco 

in 2017. While the suit was not successful due to insufficient evidence, it did expand the 

city’s understanding of their responsibilities under ADA. Sioux Falls, the greatest outlier 

with a score of 12 instead of the expected 3, undertook ADA compliance after a resident, 

Charles Santee, filed a 26 page complaint with the Federal Highway Administration, 

alleging that the city’s infrastructure was dangerous to wheelchair riders and non-

compliant with the ADA (K. Smith 2016). The Federal Highway Administration 

investigated and agreed with the complaint, giving the city 90 days to respond. The very 

thorough data collection on their open data portal is direct result of that action. Other 

high-profile cases include Reynoldson et al. v. City of Seattle (2017), Denny v. City & 

County of Denver (2016), and Hines et al. v. City of Portland (2018). All these actions 

were settled with the allocation of financial resources toward evaluating the 

infrastructure, sharing the results with the public, and coming up with a transition plan.   
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Conclusion 

The lack of data on accessible transportation features has a profound effect on the safety, 

inclusion, and independence of people with disabilities. Further, this data gap likely has 

an impact on the overall quality of life for entire urban communities. Universal design 

principles have consistently been found to have far-reaching and unexpected social 

benefits (Hamraie 2017; 2018). This finding is known as the ‘curb cut effect’, a phrase 

coined by Angela Glover Blackwell, a long-time advocate for social, racial, and 

economic justice. The term points to these unforeseen benefits (and beneficiaries) of 

efforts at increasing equality and opportunity for any ‘second-class’ citizens – women, 

minorities, disabled persons, etc. The phrase is a reference to the mass introduction of 

curb cuts in American cities, and their unexpected use by parents pushing strollers, 

pedestrians rolling their groceries, and children cycling to school on sidewalks. In an 

ironic twist, the same tech companies who have largely ignored the needs of disabled 

pedestrians in routing have recently begun to pay attention to accessible infrastructure as 

an asset to their nascent robotic delivery experiments, which have thus far actually 

succeeded in making wheelchair travel more difficult, by presenting error-prone 

autonomous moving sidewalk obstacles (Ackerman 2019; Girma 2020; Hsu 2019). 

Various scholars have pointed to the ways that data are not objective, are 

embedded in long histories of social prejudice written into the formats and codify bias 

into complex algorithms (D’Ignazio and Klein 2020; Koopman 2019; Perez 2019). Data 

are infrastructure even when they are about it – embedded, out of sight, only obvious 

when they fail (Star 2016) – but fail for whom? And who decides? 
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Koopman writes that resistance can be conducted from the ground up and 

encourages questioning the most mundane:  

By inserting ourselves into those fissures, we can perhaps redirect enough of that 

hot heat so that tomorrow might be transformed. Where do we resist? In the 

forms, formats, and information. How do we assemble the competencies to resist 

these forms and formats? By learning how to reformat them. By understanding 

how to redesign them. By interrogating the manifold technologies with which they 

have been designed and redesigned (2019b, 195).  

From here we might imagine and begin to build a different world. Accessibility mappers 

at the Critical Design Lab posit that we must do more than show the environment as it is 

but use that information to imagine it differently (Hamraie 2018).  

 The fight for disability rights, like other civil rights movements, has been one of 

zigzagged, sometimes stalled progress. The United States is a country of strong ideals 

and incomplete promises. Legislation and decrees are but tools – not the final goal. 

Infrastructure, including data infrastructure, is embedded and powerful beneath the 

surface. While the ADA was landmark legislation, its implementation has fallen far short 

of ushering in universal design in American cities. A first step to understanding where 

infrastructure is non-compliant might be a modification to the ADA which requires a plan 

for publishing and maintaining infrastructure evaluation data – namely on sidewalks, curb 

ramps, cross walks, and cross controls. In the field of data science more widely, we need 

to institute better audit practices for identifying our biases and assumptions. Starting from 

the subjectivity of data, it should be common practice to question who decides what is 
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counted, and who benefits? Further, we ought to take up the credo of the disability rights 

movement in every research project – “nothing about us without us.” 
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CHAPTER III 

OUTLIER BIAS: AI CLASSIFICATION OF CURB RAMPS, OUTLIERS, AND 

CONTEXT 

 

In 2018, three years after Uber started experimenting with autonomous vehicles (Metz 

and Conger 2020), Elaine Herzberg was walking her bicycle across the street in Tempe, 

Arizona, and was struck and killed by one of Uber’s self-driving cars (Wakabayashi 

2018). The algorithms detected her but classified her as a vehicle, then a bicycle, then 

other, and on and on until it was too late. How did this happen? The algorithm trained to 

recognize pedestrians wasn’t taught to look for jaywalkers and had never seen anyone 

walking a bicycle (Whittaker et al. 2019; Marshall and Davies 2019). Delivery robots on 

city sidewalks have similarly failed to recognize pedestrians. Haben Girma, who is blind 

and walks with a service animal, was blocked on the sidewalk by a delivery robot (Girma 

2020). Emily Ackerman, a power wheelchair rider, had a similar experience with a robot 

in Pittsburg. As she writes, “The robot was sitting motionless on the curb cut on the other 

side of Forbes Avenue. It wasn’t crossing with the rest of the pedestrians, and when I 

reached the curb, it didn’t move as the walk signal was ending. I found myself sitting in 

the street as the traffic light turned green, blocked by a non-sentient being incapable of 

understanding the consequences of its actions” (Ackerman 2019). These examples point 

to artificial intelligence’s (AI) potentially-deadly inability to deal with context, nuance, 

and outliers.  

While their unintended consequences can range from merely annoying to fatal, 

these technologies also promise to increase the mobility, freedom, and inclusion of 

people with disabilities in urban environments. Autonomous vehicles, which use deep 
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learning to sense the environment in real time (Y. Li et al. 2020), would give people who 

cannot drive the ability to go wherever they like. The same AI sensing technology powers 

delivery robots, which could similarly improve quality of life by bringing prescriptions or 

groceries to people who otherwise hire someone to do those errands. Other scholars have 

used AI tools to examine the accessibility of the transportation environment, including: 

sidewalk assessment (Bolten et al. 2015; H. Li et al. 2018; Luo et al. 2019; V. Smith, 

Malik, and Culler 2013), ADA compliance evaluation (Abbott et al. 2018; Ai and Tsai 

2016; Goldchain 2017; Saha et al. 2019), and crosswalk identification in aerial images 

(Ahmetovic et al. 2017; Berriel et al. 2017; Ghilardi, Jacques Jr, and Manssour 2018; 

Shioyama et al. 2001).  

At the core of this contradiction between the benefits of AI and harms are two 

timeless questions – what kind of world do we want to live in? And who has the right to 

the city? AI has amplified certain visions of the world and the city13. These 

sociotechnical imaginaries – “collectively held, institutionally stabilized, and publicly 

performed visions of desirable futures, animated by shared understanding of forms of 

social life and social order attainable through, and supportive of, advances in science and 

technology” (Jasanoff and Kim 2015, 4) – are widespread, but not yet completely 

cemented in.  

In this paper, I argue that the key strength of algorithms – powerful classification 

and prediction on big datasets – is also a harmful weakness. The related areas of big data 

and algorithms have been critiqued from all sides for their biases – harmful and 

 
 

13 See Zuboff’s (2015; 2019; 2021) work on the relationships between capitalism, surveillance, and big 

data/AI.  
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systematic errors – but this literature largely overlooks the harms that arise from AI’s 

inability to handle nuance, context, individuality, and exception. Using the case of curb 

ramp classification across 2 algorithms, multiple data sources, and 9 cities – I examine 

how error varies across context in ways that are not systematic, and thus cannot just be 

coded in. I propose a kind of rich or thick description of data error, which is slow, 

tedious, and subjective, but direly needed if we truly intend to develop equitable AI.  

AI & Science 

Big data and AI have shifted many disciplines to a new knowledge paradigm, data-driven 

science (Hey 2009). This paradigm is undergirded by the belief that big enough data are 

exhaustive, objective, and that with the right algorithmic mediation, they can reveal 

reality without human subjectivity (Hey 2009; Prensky 2009; Anderson 2008). Big data - 

data high in volume, velocity, and variety (Laney 2001) - are inextricably linked with AI, 

because the deluge of information that is “big data” cannot be processed without 

algorithmic mediation (Kwan 2016). AI encompasses any case of a machine learning to 

imitate human behavior. Data (information), features (things to look for), and algorithms 

(processes) 14 are needed for computers to learn.  

Machine learning and deep learning are nested subsets of AI (see figure 5).  While 

AI encompasses all tasks that require something like human intelligence, machine 

 
 

14 An algorithm is simply the steps taken to perform a task (Onuoha and Nucera 2018). For example, we 

probably all have personal algorithms for how we clean our rooms. However, for the more complex 

manifestations that are spoken about in the news, infrastructure provides an apt metaphor. Like 

infrastructure, algorithms are embedded out of view (Star 2016) and attract attention only when they fail 

(Hommels 2016). These complex algorithms are sociotechnical or “assemblages of institutionally situated 

code, practices, and norms with the power to create, sustain, and signify relationships among people and 

data through minimally observable, semiautonomous action” (Ananny 2016, 93) 
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learning includes tasks that humans cannot really do, such as combing through billions of 

records for patterns or trends and predicting outcomes (Onuoha and Nucera 2018). 

Unlike classic statistical analysis (such as linear regression analysis), in machine 

learning, a human provides the tools (e.g., data, concepts, parameters) and the machine 

chooses the exact algorithm. Deep learning algorithms, in contrast with the more general 

machine learning algorithms, involve the machine learning from itself over many 

iterations. It is near impossible to understand the mechanisms for improvement, which is 

to say, what the program is actually learning in deep learning applications.  

 

 
Figure 5. Artificial Intelligence 

 

AI & Error 

Machine learning with big data has brought a revolution in data science, and rightfully so. 

In classification and prediction tasks across a range of fields, high levels of accuracy can 

be achieved – where accuracy is simply the ratio of correct predictions or classifications 

out of the total possible. But this rapid and massive adoption of new techniques 

Artificial 
Intelligence

Machine 
Learning

Deep 
Learning
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necessitates a matching increase in scrutiny and review, if we are to build responsibly. As 

machine learning applications have increasingly been used in ways that impact all areas 

of social life, critics have pointed to the systematic errors or biases in these predictions or 

classification which unfairly harm some populations. That is, a machine learning 

algorithm can achieve a high level of global accuracy while achieving very low accuracy 

among certain population segments. This type of error causes real-world harm. For 

example, facial recognition software less accurately identifies female and non-white faces 

(Buolamwini and Gebru 2018), people of color are more likely to be labeled criminals by 

policing algorithms (Selbst 2017) and more likely to receive longer jail sentences (Julia 

Angwin 2016), and families in poverty are more likely to be targeted by algorithms for 

child welfare investigations (Eubanks 2018).  

 These kinds of systematic and harmful errors could have been caught before they 

did harm by simply looking for patterns in model error. Google’s ethical AI team 

released a paper in 2019 that amply covers a framework for doing just that. Their 

framework, “model cards for model reporting” suggests conducting “benchmarked 

evaluation in a variety of conditions, such as across different cultural, demographic, or 

phenotypic groups” (Mitchell et al. 2019). While the standardization of such ethical 

reporting is more complex in practice, the solutions are straightforward.  

  However, there is another class of errors which are potentially more pernicious 

because they are not so cleanly systematic. I call these kinds of errors outlier bias 

because they systematically exclude or harm any person or event that falls outside of a 
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social or algorithmic conception of ‘normal.’15 People with disabilities are an expansive 

constituency group and the kinds of algorithmic errors that negatively impact this group 

could not be coded out of an algorithm easily.  An algorithm used for employment 

screening, for example, has been shown to disproportionately harm people with 

disabilities (Engler 2019; Whittaker et al. 2019). Even recognizing this, weeding it out is 

almost impossible. As Shari Trewn, an accessibility researcher at IBM states, “The way 

that AI judges people is with who it thinks they’re similar to—even when it may never 

have seen anybody similar to them—is a fundamental limitation in terms of fair treatment 

for people with disabilities” (Engler 2019). The encounters with autonomous vehicles and 

robots outlined above fit this kind of non-systematic outlier error within machine 

learning.  

 The problem with outlier error is that it is intrinsic to what machine learning is 

good at doing – powerful and globally accurate prediction and classification. Pattern and 

prediction – the major domains of machine learning - are hindered by and incompetent at 

understanding disorder, irregularity, heterogeneity, and uniqueness. As Onuoha and 

Nucera succinctly state in A People’s Guide to AI, “…computers tend to be pretty bad at 

the things that we’re good at, like understanding context and nuance…if you try to ask a 

computer to clean your room, it won’t know what you mean, because it doesn’t know 

what it means to ‘clean’, the equipment needed to ‘clean’ or even what a room is” (2018, 

34).  

 
 

15 There is a rich body of work in the disabilities literature critiquing the use of normal and abnormal as 

socially constructed categories for distinguishing between people with or without disabilities (Kafer 2013; 

Linton 1998). 
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 Despite claims of objectivity, values undergird AI and its applications. Living in 

this world with AI requires a more careful consideration of context and error. Such 

consideration cannot be conducted with numbers and formulas, but rather requires 

conscientious and reflexive work that is more akin to ethnography or thick description. 

As Ponterotto outlines, “thick description involves accurately describing and interpreting 

social actions within the appropriate context in which the social action took place” (2006, 

542). I posit replacing “social action” with algorithm error in Ponterotto’s definition, 

meaning we ought to describe the error within the context in which it took place to better 

understand the mechanisms and potential consequences. Accuracy is, by definition, 

“freedom from mistake or error” and “conformity to truth or to a standard” (Merriam-

Webster, Inc 2021). If we are to robustly understand nuance and context, a step away 

from sole dependence on measures of conformity is essential.  

 In the following pages, I apply these ideas to one case – curb ramp classification 

in nine urban environments across the United States.  I use two machine learning 

algorithms for classification, and examine error and accuracy in the results through 

traditional error and accuracy metrics - something akin to geographic and algorithmic 

benchmarking, and something like thick description of error. This work contributes not 

only to infrastructure classification, AI, and data ethics, but a more robust consideration 

of the role of geographers and qualitative scientists within data-driven science.   
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Methods 

Study Area & Data 

 
Figure 6. Sample Locations 

 

AI methods require training data. I created a training set based on the open data about 

curb ramps for nine cities across the United States (see figure 6): Arlington, Boston, 

Denver, Indianapolis, Nashville, San Francisco, Seattle, Spokane and Washington DC. 

Based on previous work assessing the open data practices across U.S. municipalities 

(Deitz, Lobben, and Alfarez Forthcoming), these nine cities were the only ones with both 

adequate data on curb ramp locations (for labeling), LiDAR point cloud data that were 

open and spatially/temporally proximate to the curb ramp data, and aerial imagery. These 

data were sourced from the USGS (USGS 2020) (see table 8). The LiDAR point clouds 

had densities ranging from 4 to 45 points per meter. Data on the location of streets and 

landmarks came from the Census’ TIGER/line shapefile program (US Census Bureau 
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2020). I classified ground points in the LiDAR data using the standard algorithm in 

ArcGIS. This algorithm has a tolerance for slope variation that allows it to capture 

gradual changes in topography (ESRI 2020). With the street data, I created a point feature 

for intersections by finding all locations where two streets crossed.  

 

Table 8. Data Source and Year of Measurement* 

municipality aerial imagery LiDAR curb ramp locations 

Arlington 2016 2018 (Arlington County, VA 2020) 

Boston 2016 2013 (City of Boston 2014) 

Denver 2015 2013 (City of Denver 2018) 

Indianapolis 2014 2016 (City of Indianapolis 2018) 

Nashville 2014 2016 (City of Nashville 2019) 

San Francisco 2016 2018 (City of San Francisco 2020) 

Seattle 2015 2016 (City of Seattle 2020) 

Spokane 2015 2015 (City of Spokane 2020) 

Washington, DC 2015 2014 (City of Washington, DC 2010) 

*all TIGER/line data are from 2020 

 

I then created a tessellation of hexagons across each city. Each hexagon has an 

approximate area of 50,000 square feet (see figure 7). I selected one of these hexagons 

per city as my training sample for a total of nine hexagons. This was done to reduce data 

size and to have a balanced sample16 area from each city. I created a second sample of 

10,000 square foot hexagons as the validation set for each city.  

Within these nine hexagons, I created a second hexagon tessellation of equal areas 

of about 50 square feet. This was done for multiple reasons – to capture the areal nature 

of a curb ramps in real life, to create a balanced sample of labeled points, and to add 

spatial contiguity to the balanced sample. While a curb ramp is not necessarily a discrete 

 
 

16 By balanced, I mean an equal number of ramp features and non-ramp features.  



44 
 

entity (but rather a sloped and blended area connecting paths), most curb ramps do not 

extend beyond 50 square feet17. These smaller hexagons were clipped to the LiDAR 

labeled ground locations because a curb ramp is not going to be found, for example, on 

the top of a building or in a tree (see figure 8).  

 

Figure 7. Training and validation samples 

 

 
Figure 8. Ground hexagon samples 

 

Next, I created a sample of the smaller hexagons with equal numbers of ramps and 

non-ramps across the training and validation areas of each city. In total, this resulted in 

25,822 hexagons for training, and 5,054 for validation. These hexagon locations were 

used to clip the point data from the LiDAR point cloud. The point dataset had 1,117,930 

points for training and 251,131 for validation. Within the point training and validation 

 
 

17 These choices show the interaction between data and algorithmic constraints or needs and how those 

limit the kinds of results that are possible.  
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set, I calculated the distance to the nearest: street, intersection, and landmark. I also 

summarized the DEM and aerial image raster information at the point (see figure 9). 

 
Figure 9. Data Cleaning 

Machine Learning 

To test the impact of algorithm choice on the results across different contexts, I 

ran a random forest regression model and a Point CNN model (see figure 10). The 

random forest is a classic machine learning algorithm, and the Point CNN is a newer deep 

learning algorithm.  
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Figure 10. Ramp point classification 

Random Forest Classification 

Random forest classification is one of the oldest machine learning methods. It was 

developed by Tin Kam Ho in 1995 and improved by Leo Breiman in the early 2000s (Tin 

Kam Ho 1995; Breiman 2001). The random forest regression method simply involves 

running multiple models or decision trees through a set of training and prediction data 

and allowing them to vote on the answer for each location. I ran the random forest using 

the Scikit Learn library for python in Google Colab. The variable to predict or classify 

was a binary ramp value, and the potential explanatory variables were distance to street, 

distance to intersection, distance to landmark, elevation (from DEM), and raster value 
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across all 4 aerial imagery bands. The random forest model is spatially unaware, in the 

sense that it does not account for or weight for neighboring features. The distance 

measures and raster values were added as predictors to manually give the models spatial 

information.  

Point CNN 

Point CNN is a deep learning model using convolutional neural networks (Yangyan Li 

[2017] 2021; Yangyan Li et al. 2018). Convolutional Neural Networks, or CNNs, are a 

promising advancement in object detection using AI, and have been used extensively on 

autonomous vehicles. At the basic level, a CNN scans over the input data and breaks it 

into smaller parts. The CNN runs through alternating convolutions and further 

subsampling. This process changes the information from sparse to dense iteratively. Over 

the process, the feature size is reduced but information is added (see top of figure 11).  

An apt metaphor for understanding a CNN is the act of playing with a cotton ball. Picture 

taking a round and condensed cotton ball out of a bag and absent mindedly and iteratively 

pulling it apart and pushing it back together. If this continues, we might reach a point 

where all the once uniform parts are separated into individual strands giving us a richer 

idea of the cotton balls composition. Classic CNNs work better on uniform data such as 

the gridded pixels in photographs (raster images). Point CNN is especially suited for 

LiDAR data because it accounts for the irregular and unordered nature of point clouds 

(see bottom of figure 11). Point CNN first weights and permutes the input features 

through a process called x-conv. X-conv involves a series of operations on processed 

point cloud blocks including sampling and normalization with K-Nearest Neighbors. That 

is, using a subsample of points, this process finds the nearest neighbors or most similar 
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points and recursively aggregates them to represent a smaller set of points richer in 

information. Following the x-conv step, point CNN then conducts a set of classic 

convolutions.  

 

 
Figure 11. CNN and Point CNN Convolution Process (Yangyan Li et al. 2018) 

 

I ran Point CNN using the ArcGIS deep learning frameworks and Jupyter 

notebooks. I set up my model with one hundred epochs, early stopping18, and a one cycle 

learning rate. The one cycle or cyclical learning rate method lets the learning rate cycle 

between reasonable boundaries and has been shown to achieve improved classification 

accuracy over fewer iterations without a need for further tuning (L. N. Smith 2017). Extra 

features (beyond x, y, and z) used for learning included LiDAR intensity, scan angle, and 

return number. The validation loss stopped decreasing at 11 epochs.  

 
 

18 Meaning the algorithm should run for 100 epochs or until the validation loss stopped increasing. 
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Error & Outlier Analysis 

I analyzed the success of these models on the classification task according to classic 

accuracy metrics, contextual benchmarking, and a qualitative process of ground-truthing 

Google street view imagery.  

Performance metrics 

As stated above, machine learning results are predominately evaluated in terms of overall 

accuracy and by class (see table 9). Overall accuracy is simply the proportion of correct 

classifications over all possible classification locations. Precision is used to understand 

the proportion of positive identifications that were correctly classified. Recall accounts 

for the number of false negative classifications or the number of actually positive 

classifications that were correctly identified.  I calculated all three performance metrics 

for each model across the entire sample.  

Table 9. Performance metrics 

Accuracy Precision Recall 
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑡𝑝) + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝑡𝑛)

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
 

𝑡𝑝

𝑡𝑝 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑓𝑝)
 

𝑡𝑝

𝑡𝑝 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑓𝑛)
 

 

 

I also looked at the rate of agreement between models and the original training 

data. There were 8 possible combinations of results (see table 10). The first two were that 

all were correct (all 0, all 1: all0, all1). The second two were that all were incorrect (all 

false negative, all false positive: allFN, allFP). The next four were combinations of only 

one model or the other making a false classification (Point CNN false negative, Point 

CNN false positive, random forest ramp false positive, random forest ramp false 

negative: (pcnnFP, pcnnFN, rfFP, rfFN).  
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Table 10. Possible Classification Result Combinations 

short name ramp rf pcnn19 

all0 0 0 0 

all1 1 1 1 

allFN 1 0 0 

allFP 0 1 1 

pcnnFP 0 0 1 

pcnnFN 1 1 0 

rfFP 0 1 0 

rfFN 1 0 1 

 

Contextually Benchmarking 

I then looked at error in a way similar to that proposed in “model cards for model 

reporting.” That is, “benchmarked evaluation in a variety of conditions” (Mitchell et al. 

2019). In this case, my conditions were geographic area and model. I calculated the 

overall accuracy by city and model as well as the agreement between models by city.  

Qualitative Analysis  

Finally, I used satellite imagery (Google street view) and cartographic visualizations to 

better understand the error and look for potential non-systematic outliers. I mapped the 

model predictions on an aerial image and found the locations in Google street view. 

Pairing the results, aerial imagery, and street view imagery allows for thicker description 

of the performance measures and contextual benchmarking. This method allows for the 

identification of outliers, surprise trends, and the act of showing rather than just telling 

and reporting opens the process up to other interpretations and observations. The results 

of this qualitative work are presented in the discussion section below.   

 
 

19 For brevity, I will sometimes refer to the original label from the municipal open data as just “ramp”, the 

random forest ramp classification as “rf”, and the Point CNN ramp classification as “pcnn”.  
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Classifying Curb Ramps  

Performance Metrics 

Across all cities, the random forest model performed much better than the Point CNN in 

terms of accuracy – 88% compared to 56% (see table 11). The precision on the random 

forest model was slightly better than the recall because the number of false positive 

classifications was slightly smaller than the number of false negatives (89.8% compared 

to 89.4%). The recall on the Point CNN model classifications is much better than 

precision (71.9% compared to 59.9%), meaning there were more false positives than false 

negatives values.  

Table 11. Classification Accuracy 
 validation (n) accuracy precision recall 

Random Forest (rf) 
251,131 

88.0% 89.8% 89.4% 

Point CNN (pcnn) 56.0% 59.9% 71.9% 

 

The Point CNN included information about LiDAR intensity, scan angle, and return 

number, but there is no way of calculating the importance of each variable. Importance 

metrics in random forests are generated by calculating each time the variable is 

responsible for a split or decision in each decision tree. In the random forest, distance to 

street intersection and distance to street (two closely related variables) were the most 

important variables (see table 12). Street intersection was responsible for a split 47% of 

the time and distance to street 17% of the time. Elevation was the next most important 

variable (9.6%), followed by distance to landmark (7.1%), and then the aerial image 

bands.  
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Table 12. Variable Importance, Random Forest 

Variable 

Responsible for a Split in 

Random Forest (%) 

Distance to landmark 07.1 

Distance to street intersection 47.4 

Distance to street 17.1 

Elevation 09.6 

Aerial Image 

   band one 04.6 

   band two 04.6 

   band three 05.1 

   band four 04.4 

Contextual Benchmarking 

Algorithmic context 

Across all the models, there were 8 different combinations of possible results (including 

the initial ramp label used for training from the municipal open data). Just over half of the 

points (50.1%) were classified correctly by both models (12.9% all 0, and 37.2% all 1, 

see table 13). Only 6.1% were classified incorrectly by both models (1.8% all false 

negative and 4.3% all false positive). The point CNN model falsely classified almost a 

quarter of the points as ramp (23.4) and falsely classified 14.4% as non-ramp – these 

were points that the random forest model correctly classified. The random forest model 

classified 5.8% of the points incorrectly when the point CNN classified them correctly 

(1.6% FP and 4.2% FN).  

Table 13. Classification results across all models 

 

 
ramp, rf, pcnn total points % 

all 0  0, 0, 0 32,456 12.9% 

all 1 1, 1, 1 93,413 37.2% 

all FN 1, 0, 0 4,601 01.8% 

all FP 0, 1, 1 10,733 04.3% 

pcnn FP 0, 0, 1 58,943 23.4% 

pcnn FN 1, 1, 0 36,188 14.4% 

rf FP 0, 1, 0 4,011 01.6% 

rf FN 1, 0, 1 10,786 04.2% 
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Spatial context 

The classification accuracy varied widely across cities and models (see table 14). The 

average accuracy for the random forest model was 88% across all cities. Arlington 

(91%), Denver (96%), San Francisco (90%), Seattle (94%), and Spokane (92%) 

performed better than average. Boston (87%), Indianapolis (74%), Nashville (85%), and 

Washington, DC (85%) performed worse than average. The classification accuracy of the 

point CNN model was higher than average in Boston (62%), Denver (67%), Nashville 

(58%), Spokane (75%), and Washington, DC (60%). It was lowest in Arlington (41%), 

followed by Indianapolis (53%), San Francisco (45%), and Seattle (45%). Since the data 

are balanced between ramp and non-ramp classes, a model could predict every point as 

either ramp or non-ramp and achieve better accuracy than Arlington, San Francisco, and 

Seattle. In summary, Denver and Spokane performed better than average across both 

models, and Indianapolis performed worse.  

Table 14. Accuracy across models and cities  

location rf pcnn 

Overall 88.0% 56.0% 

Arlington 91.2% 41.1% 

Boston 87.2% 61.9% 

Denver 96.3% 66.7% 

Indianapolis 73.8% 52.8% 

Nashville 85.0% 58.0% 

San Francisco 90.4% 45.4% 

Seattle 93.5% 45.0% 

Spokane 92.0% 74.8% 

Washington, DC 84.8% 59.9% 
*above average values highlighted. 
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Spatial & algorithmic context 

In the same way that accuracy varied by city, the agreement between algorithms also 

varied across cities (see table 15). Arlington (38%), Boston (32%), Denver (48%), 

Indianapolis (30%), Nashville (48%), and San Francisco (42%) had above average 

agreement between models on non-ramp classifications (all0). The remaining cities – 

Seattle (39%), Spokane (70%), and Washington, DC (47%) had above average model 

agreement on positive ramp classification (all1). All models falsely classified ramp 

locations as non-ramp (allFN) more than average in Arlington (6%), Boston (4%), 

Indianapolis (10%), Nashville (6%), and San Francisco (6%). In Spokane (5%) and 

Washington, DC (6%) a slightly higher proportion of points were falsely labeled as ramps 

across models (allFP). The random forest model performed worse than average by falsely 

labeling ramp points as ramps (rfFN) in Washington, DC (7%). On average, 2% of the 

points were falsely classified as ramps by only the random forest model – this was higher 

in Arlington (3%), Boston (5%), Indianapolis (15%), Nashville (7%), and San Francisco 

(4%). The performance of the PointCNN in false negative and positive classifications 

was widely varying across cities. The rate of false negative classifications was higher in 

Arlington (53%), Boston (28%), Denver (24%), Indianapolis (34%), Nashville (23%), 

and San Francisco (49%). The number of false positive classifications by the Point CNN 

was nearly double average in Seattle (49%) and slightly higher than average in 

Washington, DC (26%).  
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Table 15. Classification results across models by city 

location 
all 0 all 1 

all 

FN 

all 

FP 

rf 

FN 
rf FP pcnn FN pcnn FP 

overall 12.9% 37.2% 1.8% 4.3% 4.3% 1.6% 14.4% 23.5% 

Arlington 38.4% 0.1% 6.3% 0.0% 0.0% 2.5% 52.6% 0.1% 

Boston 31.7% 23.5% 4.1% 2.0% 2.1% 4.5% 28.2% 3.8% 

Denver 47.5% 17.9% 0.6% 1.8% 0.4% 0.9% 24.1% 6.9% 

Indianapolis 30.3% 6.4% 9.7% 0.5% 1.3% 14.7% 34.2% 2.8% 

Nashville 48.1% 2.3% 6.4% 0.9% 0.5% 7.1% 22.5% 12.1% 

San Francisco 41.6% 0.1% 5.9% 0.0% 0.0% 3.7% 48.8% 0.0% 

Seattle 3.5% 38.9% 0.1% 3.7% 2.5% 0.2% 1.9% 49.3% 

Spokane 1.8% 70.0% 0.2% 4.8% 2.7% 0.3% 4.6% 15.6% 

Washington, DC 5.2% 46.6% 0.9% 6.2% 7.1% 1.0% 7.5% 25.5% 

*above average values highlighted. 

 

Discussion  

The results of this study confirm that machine learning algorithms are generally good at 

learning classifications. The random forest model was more accurate than the deep 

learning point CNN model at curb ramp classification in this context20.The random forest 

classified ramp locations with 88% accuracy and the Point CNN achieved only 56% 

accuracy. The point CNN model’s classifications were only slightly better than assigning 

every point as a ramp. This is a surprising result because point CNN is a spatially aware 

machine learning model and tends to be better suited for spatial applications such as this.  

These models likely differed in performance in part because they had different 

information to learn from. The random forest model had information about streets and 

intersections, which proved to be important variables for random forest decisions or 

 
 

20 With three times more data, the Point CNN achieved 69% accuracy, suggesting that giving it more 

information might improve performance. These results are not reported here because scaling up makes it 

more difficult to understand error.  



56 
 

splits. Distance to street intersection accounted for 47% of the random forest decisions 

and distance to street accounted for 17%.  

The importance of street design in what the random forest learned about 

classifying curb ramps is also apparent by looking at maps of the cities that performed 

best compared to the others. The classification accuracy in Denver was 96% - the city, or 

at least the portion of the city used for training and validation is almost perfectly gridded 

(see figure 12). The random forest also performed better than average in Seattle, 

Spokane, Arlington, and San Francisco. These cities are less perfectly gridded than 

Denver but certainly more than Washington, DC, Nashville, Boston, or Indianapolis.  

 

  
Figure 12. Street design by city 
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While this result seems obvious – machine learning was better at prediction on 

municipalities with predictable or uniform design – the implications are important. If AI 

only works on cases that are similar, predictable, and dominant, this has serious social 

implications for human uniqueness, variability, and individuality. Disability scholars 

have long pointed to the harmful effects of categories like “normal” and “abnormal” 

(Goggin, Steele, and Cadwallader 2017; Saltes 2013; Shakespeare 2007). AI further 

produces and reflects a normative vision of the world – where outliers are at best ignored 

and at worst disadvantaged.  

In Denver, the random forest produced 167 false positive predictions and 62 false 

negatives (2.7% and 1.0% of the city’s validation points respectively). Figure 13 shows a 

few of the outliers that were not correctly classified in the random forest model. In gray 

are areas where the random forest incorrectly classified points as ramp (a, c in figure 13). 

In image a, it appears that the location is misaligned to where there is a ramp (see image 

a.1.), and rather, located at the path from someone’s house (see image a.2.). This path has 

most of the characteristics of a curb ramp but no gradual slope which makes it not 

functionally a curb ramp. It appears that the random forest classified the part that is like a 

ramp as a curb ramp, and the edge where there is no transition as non-ramp (see green 

area of the hexagon in quadrant a). Functionally, a location that is almost a ramp in this 

way is missing the key functionality – transition from a higher to lower path.  Location c 

points to a location where there is a ramp, but it appears to be misaligned in the data. 

Quadrant b in figure 13 is a location with a ramp that was labeled by all models as non-

ramp. This could be because it looks different than a typical ramp with the parallel dips 

running down the slope. Quadrant d is the most interesting for considering outliers. These 
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locations were labeled falsely by all models as non-ramp. However, the area to the left is 

similar to quadrant a.2, in that it has all the characteristics of a ramp, but no transition to 

the street – it is just a path to the curb. Like a.2, this location should not be classified as a 

ramp because it is functionally not adequate. The hexagon area to the right in quadrant d 

is functionally a curb ramp but transitions very gradually, and ends in a kind of gravel 

surface. 

 

 

Figure 13. Denver Ground Truth Each of the four quadrants (a, b, c, d) shows the hexagon data 

area with colors representing the kinds of point prediction that occurred at that location (I aggregated 

similar predictions back to a polygon from a point). The base of the map is an aerial satellite image. The 

images labeled 1-5 are from Google street view at that location.   
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In Arlington, the behavior of the Point CNN model is the most surprising, and 

appears to have influenced the above average rate of agreement on non-ramp 

classifications and above average all false negative predictions. Figure 14 shows 5 

locations where points were labeled falsely as non-ramps (green hexagons). Locations a, 

b, and e are all pedestrian curb ramps with red warning material. These ramps feed into a 

crosswalk and appear to have gradual elevation changes from sidewalk into the street. 

There is a very small portion of location e that was falsely labeled as non-ramp by the 

random forest (gray). In this case, the random forest was likely correct in the 

classification (recall that representing a ramp as a hexagon is not a perfect choice, but one 

made under the data and algorithm constraints). Locations d and c are slightly more 

difficult. Location d is a connector between streets and pedestrian pathways; however, it 

does not have an elevation change. The areas in purple mean that both models labeled the 

area as non-ramp. That the random forest labeled any points in that location as non-ramp 

is surprising; perhaps it picked up the warning material color or proximity to the street 

intersection. Location c appears to be misaligned; however, like location d, the points that 

the random forest model labeled as ramp (green) do not make a lot of sense visually 

unless the model was picking up the brightness of the crosswalk. These results are 

interesting because they suggest a disconnect between what a pedestrian curb ramp is by 

definition and function. Further, ramps a, b, e, and c all have similar design 

characteristics (red warning material, gradual slope change) so it is unclear why the 

random forest was correct about locations a, b, and e but mostly incorrect on c. This 

location is an outlier in some way that is not visually apparent.  
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Figure 14. Arlington Ground Truth This is one intersection with 5 ramp locations (hexagons) and 

Google street view imagery showing a more the view on the ground. Letters a-e connect the imagery to the 

hexagon locations.  

 

In contrast to Arlington, in Seattle, the rate of false positive classifications from 

the Point CNN model alone (pcnnFP) is much higher than average (49% of points). In 

figure 15, the orange areas (a, c, and d) mostly had agreement between models in 

correctly identifying ramp locations. Those ramps are slightly weathered, but have 

distinct transitions from flares to landing. Location e was falsely labeled as a ramp by the 

point CNN and location b was falsely labeled by both models (pink). These locations are 

not ramps, but narrow driveways that gradually change in elevation towards the street. 

Narrow driveways are a very common feature in Seattle’s design. These locations could 

functionally be used by people with disabilities as curb ramps but might be less safe 

because of the likelihood of cars entering and exiting. Recall, machine learning 

algorithms look for features that are most similar to each other. In this case, narrow 

driveways fit the “normal” characteristics of a curb ramp and are functionally like 

pedestrian curb ramps. At the same time, they could be more dangerous because use will 

be shared with automobiles.  
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Figure 15. Seattle Ground Truth This visual is set up like figure 14.  

 

These results reveal the diversity of model error. This error is not bias in that it is not 

systematic. Machine learning is an excellent tool for classification and prediction. It can 

achieve accuracy and process large data far better than any human. This tool also makes 

systematic errors which are likely to disproportionately affect categories of people and 

there is a rich body of work on addressing bias (see for example Crawford 2017; 

Friedman and Nissenbaum 1996; Eubanks 2018). But another, equally pernicious kind of 

error cannot just be calculated out or benchmarked. This kind of error, the kind of error 

that led to the death of Elaine Herzberg and the stalled mobility of Haben Girma and 

Emily Ackerman, cannot be solved with computation nor code, but requires the slow and 

messy human work of observation, description, and contextualization to unravel.  
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Conclusion 

This case focused on classifying curb ramps, an infrastructural feature that is very 

important to the safe travel of people with disabilities, and which has improved the lives 

of many others (e.g. people walking with children in strollers). But this case also reveals 

something very important about the relationships between AI and the rights of people 

with disabilities. Notions of normality have long been tied to power and dominance at the 

exclusion of people with disabilities. Machine learning is simply faster and more efficient 

at categorizing and identifying normality. This means that anyone who falls outside of the 

norm – who is an outlier in statistical terms based on how and what environmental 

features they require for access, is likely to experience unforeseen harms. As scholar Jutta 

Treviranus recounted of her tinkering with autonomous vehicle models, “When I 

presented a capture of my friend to the learning models, they all chose to run her over…I 

was told that the learning models were immature models that were not yet smart enough 

to recognize people in wheelchairs…When I came back to test out the smarter models 

they ran her over with greater confidence” (Whittaker et al. 2019, 12). Behind the scenes, 

the model was likely trained to recognize wheelchair riders as pedestrians, but even then, 

it would learn a “normal” or average profile of a wheelchair rider. What then of the safety 

of a wheelchair rider with glow sticks on their wheels and a cat in their lap? These kinds 

of outliers and exceptions cannot be coded in.   

 There is a glut of work and reporting revealing bias in AI and proposing solutions, 

but bias itself is socially constructed, contextual, and varying. Who gets to decide what is 

fair and who benefits? Even if we were to agree on what bias is, under what conditions 

does it exist? And as these results highlight, what happens when the bias is bias towards a 
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heterogenous group such as people with disabilities? Importantly, these outliers represent 

lives at stake, not simply observations in a dataset. I propose that, to address this kind of 

error or bias, we need to look to qualitative methodologies. Consider replacing social 

action with machine learning or AI: “Thick description involves accurately describing 

and interpreting social actions within the appropriate context in which the social action 

took place” (Ponterotto 2006, 542). To rephrase, what AI needs is descriptions and 

interpretations in context. In this paper, I have made a first attempt at this kind of 

description through ground truthing model error. There is much more work to be done in 

this area.  

Academics are abuzz with discussions about the impacts of the data-driven paradigm 

and AI on their discipline and on science itself. This is important work, but we also need 

to consider how academic disciplines might shape AI. For example, defining the field of 

geoAI, has been a core concern of geographers in recent years. Definitions have mostly 

focused on the application of AI to geographic problems (Hu et al. 2019; Janowicz et al. 

2020; W. Li 2020; VoPham et al. 2018). But what is desperately needed is to bring a 

distinctly geographic perspective to the interpretation and use of AI. Geographers are, at 

the most basic level, scientists of context, and contextualization is a key weakness of AI. 

Future work should analyze AI, bias, and error in context, in order to better understand 

the implications of these technologies on society and to imagine more just uses.  

In the context of these results, I return to the questions - what kind of world do we 

want to live in? And who has the right to the city? Failing to think critically about these 

questions means that dominant narratives or imaginaries win the day. As Jasanoff and 

Kim write, "[w]hat we ‘see’ in familiar surroundings looks right, epistemically as well as 



64 
 

normatively. So the socially conditioned eye can take for granted that all-male orchestras 

or all-black passengers on the backseats of buses, or even scenes of filth and abject 

poverty simply represent the rightful order of things" (2015, 14). As Turnbull writes, 

“[i]n the long run, social and cultural complexity cannot be winnowed away; it’s all there 

is” (2003, 227). Valuing outliers is not the domain of AI, but I argue that we can still 

mobilize the power of machine learning if we also work to value exception and outliers 

through qualitative approaches. This is a different kind of imaginary about what 

technology can do and what we would like it to do. This work is hard and slow. It 

requires open eyes, reflexivity, and wading through messes of big data, but to fail to try 

to contextualize and understand AI is to fail to take responsibility for shaping the world 

we live in.  
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CHAPTER IV 

REPLICABILITY, RELEVANCE, AND STUDY DESIGN 

 

The phrase “let the data speak for themselves” has been bandied about with giddy 

excitement in recent years as big data, powerful algorithms for processing big data, and 

computational power for both are increasingly available on regular desktop computers 

(Anderson 2008; Hey 2009; Prensky 2009). In response to this, numerous scholars have 

cautioned that increasing data size and analysis complexity does not mean that data can 

suddenly speak for themselves (see for example, (Barocas and Selbst 2016; Boyd and 

Crawford 2012; D’Ignazio and Klein 2020; Kwan 2016). I take a different approach. 

Considering AI as a learning collaborator in the research process – I ask, if data and AI 

want to speak, what do they have to say and what are the implications for scientific 

replicability and social relevance?  

I answer these larger questions by looking at the impact of different data inputs and 

the subsequent machine learning classifications of curb ramp locations in Seattle, WA. 

On the way to thinking about replicability and relevance, I consider key aspects of the 

scientific method and the impact of new data and algorithms on these processes.  

Specifically, I look at the implications for scientific knowledge of abandoning careful and 

reflexive conceptualization, operationalization, and measurement. I argue that because of 

complexity, big data and AI do in fact “speak” and careful consideration of what they 

have to say is important.  
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Big Data and Study Design  

Conceptualization, operationalization, and measurement are vital aspects of research 

design. Traditionally, researchers first articulate shared meanings of abstract concepts 

(conceptualization), look for variables in the world to capture those definitions 

(operationalization), and then attach data to the variables (measurement) (see figure 16). 

For example, I could start by defining disability as the result of barriers in the 

environment (conceptualization). These barriers could be operationalized in various ways 

such as inaccessible physical environments or negative attitudes towards people with 

disabilities. I then might measure the accessibility of physical environments by mapping 

curb ramp locations and route connectivity. As the example illustrates, this is a narrowing 

process.  

In spatial data science, cartographic representation is intertwined with 

measurement (Dodge, Kitchin, and Perkins 2011; Fairbairn et al. 2001; Robinson et al. 

2017). Geographic information is always uncertain, vague, and imperfect. That is, 

“observations are imperfect in the sense that they can never fully or correctly reflect all 

aspects of reality” (Duckham et al. 2001). This is not dissimilar to the uncertainties 

inherent in quantitative data writ large. While geographers are aware of the uncertainty 

and error in geographic information, the data-driven paradigm in geography21 and its 

dependence on accuracy and precision metrics has mostly abandoned these concerns to 

 
 

21 I am using data-driven geography to refer to several other trends in geography that have come about due 

to big data and machine learning. For example, algorithmic geography (Kwan 2016) and geoAI (Hu et al. 

2019; Janowicz et al. 2020; W. Li 2020; VoPham et al. 2018).  
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focus on the potentialities of new knowledge using big data and complex machine 

learning algorithms. 

 

Figure 16. Study design and the data-driven paradigm 

 

   The data-driven paradigm, suggests that big data and complex algorithms can 

provide meaning without all the slow, messy, difficult, and reflexive work of 

conceptualization, operationalization, and measurement – “the data can speak for 

themselves.” Data (measurement and representation) come first in this paradigm (see 
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figure 16). But data formats are the product of conceptualization, operationalization, and 

measurement somewhere we just don’t necessarily know where or when. For example, 

bureaucrats, not social engineers, have largely mainstreamed American gender as a 

binary choice through the birth certificate and thus shaped identity in unintentional ways 

(Koopman 2019b; 2019a). Or drawing from the example above (figure 16), if I start with 

my data on curb ramps – which is already imperfectly represented as a point – and work 

my way up to then defining the social model of disability22 as the presence or absence of 

curb ramps, much has been lost in translation intellectually. While, putting it this way 

makes it seem absurd, consider for a moment how the robust meaning of gender has been 

mostly distilled to the binary male/female categories that we check on census forms or 

driver’s license applications. Data-determined study design is a big enough problem but 

one that is exacerbated by the mediation of learning algorithms.  

In order to learn, machine learning algorithms need training and validation data. 

Training data are data with labeled features and attributes for grouping similar features 

together. The AI only works if it is given information to learn from. Validation data are 

data that the AI does not see information about but can check its predictions against as it 

learns. With enough training and validation data, carefully specified parameters, and 

sufficient computing power, machine learning algorithms are highly efficient at accurate 

classifications and predictions.  

 
 

22 The social model of disability situates disability as the product of disabling environments and attitudes. 

These barriers, which include physical environments, lack of assistive technologies, negative attitudes, and 

public policies transform impairments into disabilities. This model contrasts with the medical model of 

disability which sees disability as purely a physical condition intrinsic to the individual.  
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The key weakness of machine learning algorithms is that they learn to maximize 

accuracy (as ratio of correct predictions to sample size) and thus do not function well 

when prediction classes are imbalanced. For example, curb ramps make up 1% or less of 

the ground area in Seattle. So, a machine learning model could achieve 99% accuracy by 

not classifying anything as a ramp. This problem is more widespread than that because 

most of the things that are interesting to predict or classify are rare (e.g. identity theft, 

crime, natural disasters, disease, terrorist attacks).  

Various methods have been proposed for improving and creating balance within 

imperfect training data (Tajbakhsh et al. 2020; Haixiang et al. 2017; Platanios et al. 2020; 

More and Rana 2017). The focus of that literature is to streamline big data processing and 

improve machine learning accuracy metrics. The problem with these techniques is that 

they involve cleaning or clustering data in ways that require pre-existing knowledge of 

the feature of interest. These strategies cannot be easily replicated in new cases where 

nothing is known about the feature.  

Replicability and Relevance 

Barriers to scientific replication and reproducibility arise from data and researcher 

uncertainties that propagate into conceptualization, measurement, analysis, and 

communication (Kedron et al. 2019). Reproducibility – using the same data and methods 

to get the same results – is important to science and politically challenging but the 

solutions are technically simple. Research reproducibility could be achieved if 

researchers were incentivized to and provided the infrastructure for sharing all study data 

and carefully documenting their analysis and code through an open-source platform 

(Kedron et al. 2019; S. Li et al. 2016).  
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Replicability is the ability to use similar data and methods to get similar results in 

a similar case. Data-driven science, which suggests starting from the data and algorithms 

and exploring what might be found, poses unique challenges to replicability. One 

challenge is that studies using big data and algorithmic mediations are largely black-

boxed – the processes are too complex, the data are too big, and the mechanisms for 

learning are unknown (Pasquale 2015; Latour 1988). Relatedly, without careful study 

design it is impossible to really know what a similar case might be (Lund 2014). In the 

example given above of curb ramp locations, is it really a case of analyzing accessibility 

or is it a case of transportation modeling?  

Asserting what a study is a case of is reflexive work that is at odds with the 

reverence for objectivity that is inherent in most data driven work. This reflexive work is 

closely related to relevance which I posit is inherent to replicability. Social relevance, 

from a scientific perspective is “an influence or benefit (realized or expected) from the 

results of research activity to the research community or to society at large” (Scaratti et 

al. 2017). Considering social relevance contributes to understanding what a similar case 

might be and why the work is being done. These are the kinds of questions that data and 

AI cannot and should not answer for us.  

In the following pages, I examine the impact of unbalanced and imperfect data on the 

results of machine learning classifications through one case - curb ramp locations in the 

city of Seattle. This case contributes to understanding social relevance and scientific 

replicability as challenges tied to conceptualization in machine learning and data-driven 

science.  
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Methods 

Data & Cleaning 

 

Figure 17. Data sources 

 

In service of replicability, this analysis draws only on open data – data that are freely 

available for anyone to access. Information about the location of curb ramps came from 

the city of Seattle’s open data portal and was current at the time of download (March 

2020) (City of Seattle 2020)23. Aerial imagery came from the USGS national map 

download center (USGS 2020). The aerial image was taken on August 7, 2015. The 

LiDAR point cloud data came from the Department of Natural Resources in Washington 

State (Washington State Department of Natural Resources (DNR) 2021) and were 

 
 

23 About 18 other cities collect and maintain open data on curb ramps (see Chapter 2).  
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captured in 2016. The street and landmark layers are TIGER/line shapefiles (US Census 

Bureau 2020). I derived street intersections from the street layer. Aerial imagery, LiDAR 

data, and the TIGER/line shapefiles have near national coverage in the United States.  

I classified ground points in the LiDAR point cloud and those locations became 

the sample features. This was done to reduce the data size and reduce the noise in 

training. Non-ground points such as buildings and trees would also appear in the aerial 

imagery and they would add unnecessary information to the models – all curb ramps are 

on the ground. I then joined attributes of the other data to those points (see figure 17). 

These included the closest distance to a street, intersection, or landmark and the pixel 

values of the raster for each of the 4 bands at the point location. Labeling points in the 

sample as curb ramp locations was slightly more complicated due to the representation of 

curb ramps in Seattle’s open data.  

The curb ramp feature was represented as a point in the open data. A curb ramp is 

not a discrete point in real life (see figure 18). The ADA requires ramps to be at least 3’ 

wide and the flares, landing, and potential warning material are all parts of a curb ramp 

that take up more space. The area that curb ramps cover is varying and non-uniform. 

Therefore, I created a tessellation of 50ft2 hexagons across the city and labeled those with 

a ramp point within them as ramp locations. As I will describe below, this was done to 

retain as much of the ramp locations in the data as possible and for reasons related to 

sampling and the needs of the machine learning algorithm used.  
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Figure 18. Curb ramp representation based on available data and algorithm data 

requirements  

 

Learning algorithms require training and validation data. I created two large 

hexagon areas – 50,000 square feet for training and 10,000 square feet for validation 

(20% of training area) (see figure 19). No ramp locations in the training or validation data 

were more than 60 feet from a street. I clipped the data further to only points within 60 

feet of a street, reducing the training data size from 21,083,268 to 12,825,712 points.  

 
Figure 19. Train and test samples  

 

Sampling 

Machine learning algorithms learn from their success. If a feature class is rare in a 

dataset, a machine learning algorithm can achieve high accuracy by ignoring the rare 

class.  Balanced samples are needed for machine learning algorithms to work. In this 

context, balance means equal representation in the data of feature classes (e.g. ramp, non-
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ramp). To create balanced samples, I used the hexagon tessellation that I created for 

labeling ramp points. I used the hexagon areas to balance the data for two reasons: First, I 

did not want to lose any ramp points since they were already rare in the data (only 1% of 

the ground area). Second, features that are near in space are more similar to those that are 

further away (Tobler 1970), so clusters of ramp points with scattered non-ramp points 

would introduce a different kind of data imbalance. I randomly deleted non-ramp areas 

by generating random numbers until there were equal proportions of ramp and non-ramp 

areas24. There are many advanced algorithmic techniques for balancing samples that 

likely would have achieved better classification accuracy, but the goal of this project was 

to look at the relationship between data and algorithms in a few controlled contexts 

without introducing further complexity.  

 

Figure 20. Training and validation samples 

 
 

24 The balanced samples had slightly more ramp points than non-ramp points because of differences in 

point density within the hexagons (see table 16 and table 17).  
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 I created four types of samples across the training and validation datasets (see 

figure 20, tables 16 and 17). These included balanced and unbalanced points across the 

entire ground surface within 60 feet of a street and a subset of those that were within 20 

meters of a street intersection. All but 2.7% of the ramp locations were within 20 meters 

of an intersection. 

Table 16. Training samples 

sample  total points ramp points % ramp 

ground (unbalanced) 12,825,712 130,286 01.02% 

     randomly balanced 235,908 130,143 55.17% 

intersection (unbalanced) 3,590,404 126,752 03.53% 

    randomly balanced 228,941 126,609 55.30% 

 

 

Table 17. Validation samples 

sample  total points ramp points % ramp 

ground (unbalanced) 2,979,367 19,711 00.66% 

     balanced 35,694 19,669 55.10% 

intersection (unbalanced) 754,753 19,039 02.52% 

    randomly balanced 35,259 18,987 53.85% 

 

Random Forest Classification 

The random forest machine learning algorithm was used to classify curb ramp points and 

test the impact of various sampling strategies. The random forest regression method 

simply involves running multiple models or decision trees through a set of training and 

prediction data and allowing them to vote on the answer for each location (Breiman 2001; 

Tin Kam Ho 1995). Each model or decision tree creates a prediction for each potential 

location and the majority prediction or vote becomes the final result. The variable to 

classify was a binary ramp value. The potential predictor variables were: distance to 

street, distance to street intersection, distance to landmarks, elevation, and raster image 

value for each of the 4 bands in the aerial imagery (see figure 17).  
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 I evaluated the results based on overall accuracy, precision, the number of false 

positive classifications, and the number of false negative classifications. Accuracy is 

simply the proportion of correct classifications over all possible classification locations. 

Precision is used to understand the proportion of positive identifications that were 

correctly classified.  

Iteration I 

 10 different models were run over 2 iterations. The first iteration included 3 

combinations of the ground unbalanced and balanced training and validation data and 

parallel combinations for the street intersection data (see figure 21).  

 

Figure 21. Iteration I Models 
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I did not train on the unbalanced data and validate on the balanced data because 

that is not a replicable test in a case where nothing is known about the area to classify25. 

That is, data balancing requires knowledge of the feature distributions in the validation 

set and pre-existing knowledge removes the need to test classification unless the goal is 

to test it for model development. In the same way, models 3 and 6 are not actually 

replicable but were run to compare the results with those of unbalanced sets.    

Iteration II 

Using the results of the first 6 models, I ran 4 more combinations. These combinations 

were validated on a sample that had been reduced by the results of iteration I. 

Specifically, I deleted all points that were not classified as ramp by model 2 and 5 (the 

models with low numbers of false negative classifications). Considering the case of curb 

ramp locations, a false positive classification (ramp classification when no ramp is 

present) is worse than a false negative classification. That is because it would be more 

dangerous for someone who needs curb ramps for safe travel to expect to find one and 

not than for them to be pleasantly surprised by a curb ramp. However, in terms of data 

loss, where the goal is to retain ramp locations and reduce non-ramp locations, false 

negative classifications are worse.  

 Before deleting the points that were falsely classified as non-ramp by model 2 or 

5, I ground truthed the locations using Google street view imagery. As I report in the 

results, only three of these locations were actually curb ramps. Models 7-10 were 

 
 

25 It is also not useful information. A model trained on unbalanced data and validated on balanced data will 

likely perform even worse than a model trained and validated on unbalanced data.  
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validated on the points classified as curb ramp by model 2 or 5 and trained on the 4 

original training samples (see table 18 and figure 21) 26.  

Table 18. Training and Validation Samples 

Iteration # Training  Validation  

1 

1 No change (OG) OG 

2 Randomly balanced (RB) OG 

3 RB RB 

4 Points within 20 feet of intersections (INT20) INT20 

5 INT20 randomly balanced (INT20r) INT20 

6 INT20r INT20r 

2 

7 RB Ramp classification 

on #2 or #5 (2&5) 

8 OG 2&5 

9 INT20 2&5 

10 INT20r 2&5 

  

Results 

The validation sample had almost 3 million points or was 23% the size of the training 

sample (see table 16). 19,711 were ramp points in the unchanged dataset. Only 3.4% of 

the ramp points (672) were not within 20 meters of a street intersection. The randomly 

balanced sample is made up of about 55% ramp points and the balanced intersection 

sample is made up of 54% ramp points. The percentage of ramp points can serve as a 

basic benchmark for the classification models. Since the original sample had only 0.66% 

ramp points, for example, a classification model validating on the unbalanced original 

data (models 1 and 2, see table 18) could result in 99.34% accuracy while classifying 

every point as non-ramp.  

 
 

26 I ran a third iteration using the ramp classifications from model 7 and 10. The results were not useful. 

The models trained on balanced data predicted almost every point was a ramp and the model trained on 

unbalanced data predicted almost every point as a non-ramp.  
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Relationship between ramp and predictor variables 

Across the training and validation samples there were 149,997 ramp points. The average 

distance from ramp locations to a landmark was 591.67 meters (see table 19). The 

average distance to a street was 4.85 meters and the average distance to a street 

intersection was 10.38 meters. The average elevation was 300.51 meters. The average 

pixel values of the aerial imagery were 109.21, 116.50, 112.71, 121.49 from band one to 

four.  

Table 19. Predictor variables at ramp locations 

 minimum maximum mean (standard deviation) 

distance to (m)    

   landmark 24.51 1254.74 591.67 (268.86) 

   street 0.00 14.14 4.85 (2.24) 

   intersection 0.04 114.36 10.38 (7.38) 

elevation 79.88 429.90 300.51 (62.22) 

aerial image    

   band 1 22.36 233.94 109.21 (45.66) 

   band 2 45.00 234.40 116.50 (36.78) 

   band 3 60.00 230.76 112.71 (28.37) 

   band 4 38.00 218.47 121.49 (39.85) 

 

 Between the training and validation data there were 15,805,079 point features, 

and all Pearson correlations between the predictor variables used in the random forest 

were significant (p<0.001, see table 20). Distance to intersection had the largest 

correlation with the binary ramp value (-0.114). Distance to landmark was most 

correlated with elevation (0.368). Distance to street was most correlated with distance to 

intersection (0.184). Lastly, the first three raster bands were highly correlated with each 

other.   
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Table 20. Pearson Correlations 

 
ramp Dist2lm Dist2st dist2int DEM b1_AER b2_AER b3_AER b4_AER 

ramp          

Dist2lm -0.001 1        

Dist2st -0.030 -0.003 1       

dist2int -0.114 .057 .184 1      

DEM 0.017 .368 .007 -.073 1     

b1_AER 0.027 -.057 -.091 -.022 -.159 1    

b2_AER 0.027 -.065 -.091 -.022 -.163 .982 1   

b3_AER 0.031 -.075 -.124 -.037 -.160 .950 .954 1  

b4_AER -0.008 -.015 .090 .055 -.059 .491 .551 .354 1 

 

Random Forest Classification 

Iteration I 

In the first iteration or set of 6 different training/validation data combinations, model 1 

performed best based on classification accuracy, followed by 4, 3, 2, 6, and lastly 5 (see 

table 21). Based on precision in ramp classification, model 6 performed best. While 97% 

accuracy for model 4 seems good, ramps only make up about 2.5% of the data (see table 

16) and the random forest algorithm classified every point as a non-ramp (hence, 0 false 

positives). The worst performing model in terms of accuracy had the best precision on 

ramps (model 6).  

Table 21. Random forest classification results (iteration I) 
# accuracy (%) precision fp fn 

1 99.29% 0.08 1,450 19,589 

2 86.44% 0.04 402,817 1,155 

3 92.09% 0.08 1,667 1,155 

4 97.48% 0.00 0 19,039 

5 55.37% 0.05 334,825 2,001 

6 71.09% 0.69 7267 2,927 
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1.1.1.1 Ground truth false negatives (model #2 & #5) 

There were 1,021 points that I originally labeled as ramps (using Seattle’s open data and 

the 50ft2 hexagon tessellation) that were not labeled as ramp by model 2 or 5 (the two 

models validated on unbalanced data with the lowest number of false negative 

classifications). These 1,021 points were spatially clustered and aggregated to 22 polygon 

areas with a total area of almost 97 square feet.  

Of these locations, 10 were adjacent to points labeled as ramps meaning that the 

model captured a ramp at that location just in a slightly different location. Seven were not 

actually curb ramp locations (see a-g in figure 22). Among these seven were two 

connecting paths (a, b), a staircase (c), 3 driveways (e-g), and one that was just a 

sidewalk (d). Five locations were true false negatives (h-l). In two of those cases, the 

open data point was not aligned with the ground truth location (i, k).  

 
Figure 22. False negatives from model 2 & 5 This figure shows the Google street view image 

for all areas falsely labeled by model 2 or 5 as non-ramp.  
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These results suggest that only 3 ramp locations would be lost by deleting every 

point not classified as a ramp by either model 2 or 5 (h, j, and l in figure 22). Doing this 

reduced the data size and increase the proportion of points with ramp labels. This new 

validation set had 449,045 points (about half as many as the intersection validation data). 

18,690 of these points or 4.2% were ramps.  

Iteration II 

Even model in iteration II was validated with the thinned sample from iteration I. The 

models were trained using the randomly balanced original data (7), original data (8), near 

intersection data (9), and the randomly balanced near intersection data (10). The two 

models trained on randomly balanced data (7 and 10), classified almost every point as a 

ramp location and had low overall accuracy. The two models trained on unbalanced data 

(8 and 9), classified almost every point as non-ramp and achieved fairly high accuracy.  

Table 22. Random forest classification results (iteration II) 
# accuracy 

(%) 

precision fp fn 

7 14.14 0.05 385,399 152 

8 95.83 0.12 60 18682 

9 95.82 0.22 77 18668 

10 39.72 0.06 268883 1816 

Discussion 

This research is replicable27 if another researcher could use similar open data sources, 

follow the same steps, and achieve similar classification accuracy on curb ramp locations. 

The balancing strategy for validation data used in models 3 and 6 is replicable. However, 

 
 

27 Recall that replicability is using similar data and similar methods to get a similar result.  
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a relevant study would allow another researcher to use similar data, follow the same steps 

and classify curb ramp locations with similar accuracy in an area where little or nothing 

is already known about their locations. Across the 10 models run with different 

combinations of training and validation data, there is a tradeoff between replicability and 

relevance and model accuracy (see figure 23). That is, the random forest model, which 

prioritizes global accuracy, performs well with balanced data (models 3 and 6) but 

balancing data requires pre-existing knowledge of the feature of interest. So, model 3 and 

6 were highly accurate in classification but irrelevant.  

 

 

Figure 23. Models mapped by accuracy and replicability/relevance  

 

 This tradeoff between relevance and accuracy exists because curb ramps make up 

only a very low percentage of Seattle’s total ground surface area. Models 1 and 4 would 

have been preferable from a replicability and relevance perspective because they require 
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the least algorithmic mediation. A model validated on the ground surface could achieve 

99.34% accuracy by classifying every point as non-ramp. This is approximately the 

accuracy of model 1 (99.29%) which nearly classified all points as non-ramp (see figure 

24). Model 4 performed in a similar way. Models 2 and 5, which were trained on 

balanced data but validated on unbalanced data (a replicable strategy), achieved mediocre 

accuracy by labeling groupings of points (mostly surrounding intersections) as ramp 

locations. These models erred towards labeling many non-ramp locations as ramp 

locations (false positive) rather than incorrectly classifying true ramp locations (false 

negative). In fact, only three locations falsely labeled non-ramp by models 2 or 5 were 

actually ramp locations (see figure 22).  

 

 
Figure 24. Prediction results (models 1-6) 
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 In the second iteration all models were validated on the same dataset (all points 

classified as ramp by models 2 or 5). The patterns in false negative and false positive 

classifications based on sample balance increased. The models trained on balanced data 

(7 and 9), falsely classified most points as ramp locations. The models trained on 

unbalanced data falsely classified most of the study area as non-ramp (see figure 25).  

 

 
Figure 25. Iteration 2 ramp classifications 

 

Recall that a curb ramp is not a point in space but an area with varying 

characteristics. Some curb ramps have warning material at the bottom and some do not. 

The width, slope, size of landing, and size of flare all vary widely as do the materials that 

curb ramps are made from and the kinds of streets or paths that they connect. Curb ramps 
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were represented in Seattle’s open data portal as points because that is a relevant 

representation for holding information about municipal maintenance needs and routing in 

the city’s accessmap.io application. A curb ramp is also not a hexagon, but I represented 

it as a hexagon as a result of a combination of aesthetic choices, constraints in the data, 

and needs of the algorithm28. The algorithm did not represent curb ramps in the same way 

that the city of Seattle nor I had but that does not necessarily mean that the representation 

is wrong.  

 
Figure 26. Google street view of location (top), model predictions overlaid by 

original ramp point and hexagon (bottom) 

 
 

28 See Demerritt (2001) and D’Ignazio and Klein (2020) for a thorough look at the micro decisions 

(including aesthetic ones) made in complex data-driven research projects.  
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See for example, figure 26 which shows the actual location from Google street 

view, overlaid by the model classifications, hexagon used for training, and original curb 

ramp point from Seattle’s open data. The area classified as ramp by models 7 and 10 (in 

black) appears to cover the entire area where the sidewalks meet for crossing (see figure 

27).  

 

 
Figure 27. Curb ramp classification overlaid by Google street view image of curb 

ramp location  

 

 I observed this kind of result across many other intersections. For example, figure 

28 shows an area where there should have been two curb ramps. The machine learning 

model came up with two areas that cover the entire angle of the ramp or corner of the 

intersection (locations a and b in figure 28). The machine learning models also classified 

all points across the street (location c) as ramp locations. Area c is particularly interesting 
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because it is obviously not a pedestrian curb ramp but shares characteristics with 

pedestrian curb ramps that suggest something about what the models are learning. 

Location c has a slight change of elevation connecting a sidewalk to a street, is concrete, 

and is near a street intersection.  

 

 

Figure 28. model ramp classifications and Google street view imagery of the location 

 Similar to location c in figure 28, figure 29 shows three locations where 

pedestrian curb ramps were not present, but the models classified points as ramp. On the 

right (locations a and b) are two sides of an alley labeled as curb ramp. Interestingly, a 

gap of non-ramp classification was left between a and b where the alley comes through. 

The area across the street (c) is visually similar but all points across the drive have been 

labeled as ramp locations. 
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From a data-driven perspective this result is not surprising. In machine learning, 

the model uses the information and parameters it is given to classify similar groups of 

observations together. In this case, the model had information about distance to streets, 

distance to intersections, distance to landmark sites, elevation, and the pixel values of 

raster imagery. The results show that the model was actually highly effective at finding 

similar features, but these features were not necessarily curb ramps (see Figures 9-12).  

 

Figure 29. model ramp classifications and Google street view imagery of the location 

 

Returning to the interaction between data, AI, and study design, available data 

(and the way they were cartographically represented) shaped these results at every step. 

Consider that in part this study begins with something that can be measured (see 

measurement, figure 30). Curb ramp locations (which are not point features) were 
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formatted or represented as such in the open data. I then labeled training data using 

hexagon areas to capture more ramp points – this is also an inexact representation. The 

variables that were available to train the model to identify curb ramps (see 

operationalization, figure 30) were not exhaustive, but came to define the feature curb 

ramp through modeling. The model learned that a curb ramp is typically concrete, near an 

intersection or near a street, and has a slight elevation change. This is important 

information, but it is not what I meant by pedestrian curb ramp in the beginning. As 

Drummond writes, “a measure my capture something of importance but not everything of 

importance” (2006). Reflexive use of AI requires consideration of what is being 

measured or what the AI is actually “saying.” 

 

Figure 30. Data-Driven Study Design 

Conclusion 

These results point to a larger issue in machine learning and automation. Algorithms have 

been set out in the world to do ambitious things such as identifying terrorists, tagging 

inappropriate content, and stopping crime before it happens. But terrorist, inappropriate, 

and crime are all abstract social concepts. AI cannot define concepts like terrorist or 

crime or inappropriate for us, it can only identify sets of similar characteristics or 

behaviors (which are limited by the predictor variables available). For example, Deborah 

Raji was working on a computer vision model for flagging inappropriate images and 

found that people of color were being flagged at a much higher rate (Strong et al. n.d.). 
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The model was being trained to learn to identify salacious content from porn imagery and 

safe content from stock photos. As it turns out, pornography is more diverse than stock 

imagery. This is an interesting finding for the AI to stumble upon but has little to do with 

weeding out inappropriate content.   

 Further, the limitations of using quantitative data to understand the world have 

gotten lost in the hype over big data and AI. As Harold Koh said, “when you can’t 

measure what is important, you make important that which you measure” (Mezey 2002). 

There is nothing inherently wrong with doing that if scientists reflexively consider the 

limitations and clearly articulate what it is that is being measured. And what it is that the 

study is a case of. For example, it is impossible to quantify water insecurity but we can 

count the number of households without access to a flushing toilet, hot and cold running 

water, or a shower (Deitz and Meehan 2019). In this case, it might not be possible to 

actually classify curb ramp locations, but it is possible to find features with similar 

characteristics. This is a relevant outcome for narrowing the locations for ground truthing 

but irrelevant if the goal is full automation.  

At the heart of all of this is the slow and messy art of research design. AI and big 

data do not remove the need to consider these things. In fact, big data and AI only 

introduce new challenges to replicability and relevance. Data-driven discovery, when not 

conducted with care, reflexivity, and consideration will only make bad concepts louder 

and faster. To understand what is going on inside the black box of algorithmic mediation 

and big data we direly need to reconsider study design from the perspective of what data 

want to say. Concepts are always driven by social realities and contexts, even within the 
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data-driven paradigm. Ignoring this only means that problematic conceptualizations will 

be magnified in ways unknown.  
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CHAPTER V 

CONCLUSION 

 

This research is among the first to center social equity in quantitative analysis and 

develop new methodologies while also exploring the limitations of data-driven research. 

Through the careful examination of data on environmental features that promote 

accessible pedestrian transportation in the United States, I point to the inherently social 

nature of data, methodologies for filling in missing data, and the limitations of those AI 

methodologies. Running through all three papers are larger interrogations of the data-

driven paradigm which focus on who benefits and who decides? 

In response to my first research question, concerning the extent that municipalities 

collect and maintain open-source data on environmental features that impact accessible 

travel, I surveyed the open data collections of 178 municipalities across the United States. 

I found that most municipalities do not collect and maintain data on environmental 

accessibility features such as curb ramps, crosswalks, pedestrian signals, and sidewalk 

conditions. While the majority of critiques of data collection focus on privacy (Agre 

1994; Elwood and Leszczynski 2011; Nissenbaum 2009; Solove 2010), I suggest that 

exclusion from big data represents a substantial injustice as well. The lack of information 

about the accessibility of US municipalities is a significant barrier to environmental 

access and safe routing for people with disabilities and those cities with robust data on 

accessibility features were outliers in the sample. I suggest that the lack of data on 

accessibility occurs both because of our conception of what constitutes a mode of 

transportation and because those with the resources to collect and maintain the data 

(municipalities) are incentivized not to. Most of the municipalities with complete or 
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almost complete data on environmental accessibility, also faced high profile ADA 

compliance lawsuits.  

In the second paper, I explore how predictive spatial modelling can be used to 

generate data on curb ramp locations. Specifically, I use two machine learning algorithms 

to classify curb ramp locations in 9 urban areas across the United States. In this paper, I 

argue that the key strength of algorithms – powerful classification and prediction on big 

datasets – is also a harmful weakness. The related areas of big data and algorithms have 

been critiqued from all sides for their biases – harmful and systematic errors – but this 

literature largely overlooks the harms that arise from AI’s inability to handle nuance, 

context, individuality, and exception. I examine how error varies across context in ways 

that are not systematic, and thus cannot just be coded in. I conclude this paper by 

proposing a kind of rich or thick description of data error, which is slow, tedious, and 

subjective, but direly needed if we truly intend to develop equitable AI.  

The final paper is related to the second and draws from the results of various 

sampling strategies for curb ramp location classifications in Seattle, WA. This case 

illuminated key insights about the relationship between scientific replicability and social 

relevance in the data-driven paradigm. I show how AI and data-driven approaches 

reverse the process of conceptualization, operationalization, and measurement in study 

design with consequences for new knowledge generation. This analysis takes the 

statement that data can speak for themselves seriously and examines what they might 

have to say. In doing this, I reveal the limitations in data-driven science and the need for 

careful design and reflexivity.   
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In framing this research around big questions of: what data are collected, who do 

these data serve, and what can be done to ameliorate social inequities in data collection, 

privacy, and use – this research has the potential to help shift practices surrounding big 

data towards a greater awareness of social impact, and thus, a more just future. This 

work contributes to several subfields within spatial data science – interpolation, GeoAI, 

replication and reproducibility (R&R)29, and data ethics.  

 

  

 
 

29 Replicable research uses the same or similar methods and data to get the same or similar results. 

Reproducible research uses the same methods and data to get the same results (Kedron et al. 2019). 
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