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DISSERTATION ABSTRACT 
 
Kentaro E. Hoeger 
 
Doctor of Philosophy 
 
Department of Physics 
 
September 2020 
 
Title: Imaging Bacterial Interactions with Small Objects 
 
 

Microbes have been found to inhabit  a myriad of natural and artificial 

environments on earth, many of which are chemically complex and physically anisotropic 

– such as wet soils, the oceans, or mammalian guts. In order to navigate these environments 

many bacteria rely on self-propulsion to expand their colonies or traverse chemical 

gradients. While swimming through these viscous environments, they encounter physical 

anisotropies such as other swimming cells, and steric objects across a wide range of sizes. 

At high densities, bacteria display behaviors which are distinct from dilute 

individual motion and are often better described by the collective motion of the bulk 

population yet are defined by the motion of individuals within the bulk. In natural systems, 

inter-species and intra-species diversity is the norm within cell populations. To study the 

effects of phenotypic diversity, we imaged the collective motion of wild-type Bacillus 

Subtilis with varied concentrations of a non-motile mutant doped into the population. We 

observed a transition from turbulent behavior to constrained semi-ballistic motion as the 

fraction of non-motile cells increased and found evidence for a non-linear relation between 

mean cell speed and the fraction of non-motile cells. 

Swimming bacteria couple hydrodynamically to large, flat planar and low-

curvature convex surfaces that create an attractive force that deviates their trajectories. 
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Current hydrodynamic models reproduce this behavior but their validity when 

considering small obstacles is unknown. We developed a novel method for the 

fabrication of microfluidic devices to overcome key limits presented by classic ‘soft 

lithography’ devices to image hundreds-of-thousands of high-curvature scattering 

interactions between swimming bacteria and micro-fabricated pillars with radii from ~ 1 

to ~10 cell lengths. The results of these interactions were poorly described by current 

hydrodynamic models but well-fit by a sterics-only model we developed. Thus, we 

conclude that on these length scales cell-surface interactions are primarily steric and as 

curvature decreases, hydrodynamics begins to play an increasingly important role. We 

also observed cell motion in triangular arrays of such pillars and found that at high 

density, these pillars tightly constrained the direction of motion highlighting the 

importance of obstacle placement in their effects on cell motility. 
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CHAPTER I 

 

BACTERIAL MOTILITY, INDIVIDUAL AND COLLECTIVE 

 

1.1 Introduction 

It is estimated that there are  1031 bacteria living on Earth comprising roughly 5 x 1014 

kg of carbon making their biomass on par with that of plant life [1]. Bacteria are ubiquitous 

microorganisms found in all environments that host life, from soils [2], [3], to oceans [4], 

[5], to human-fabricated systems [6], and even within larger organisms [7]–[9]. They play 

fundamental roles in these ecosystems providing sources of nutrients or influencing host-

organism health [10]. Many bacteria explore their complex habitats using self-propulsion 

to expand into new environments and find recourses. Motility, in particular flagellar 

motility, can play a crucial role in the large-scale effects bacteria have on systems they 

inhabit such as invasion and infection of hosts via medical equipment [11], [12] or driving 

the sequestration of carbon from the atmosphere into the ocean via attractive motion 

towards particles [13]. Bacteria often interact in dramatic ways with attributes of the 

environments they are exploring, whether that be chemotaxis, the attraction toward higher 

nutrient concentrations [14]; rheotaxis, directed motion due to bulk fluid flow [15];  

attraction to and/or collision with surfaces [16], [17]; or swarming in high-density 

populations of cells [18]. Understanding the physical response of cells to these 

perturbations to canonical free-fluid motility is essential to understanding how bacteria 

navigate their environments. 



2 
 

My thesis work focused on measuring interactions between bacteria and their physical 

surroundings by creating controlled environments in which to observe the motion of 

Bacillus Subtilis and Escherichia Coli bacteria. Chapter I (this chapter) broadly introduces 

a subset of the mechanisms underlying bacterial motility, cell hydrodynamics, and the 

collective motion of high-density populations of bacteria. Chapter II describes work 

measuring the distinct forms of motility observed in high-density, mixed-phenotype 

populations of motile and non-motile B. Subtilis. Chapter III describes the atypical 

microfluidic devices used in multiple chapters, contrasting the advantages and 

disadvantages of typical  fabrication methods with the novel fabrication technique I 

developed to overcome limitations in typical device design. Chapter IV describes work 

using our atypical microfluidic devices to study the physical mechanisms underlying the 

interaction between bacteria and small, high-curvature convex surfaces. Chapter V 

examines the effects that arrays of small pillars have on cell motility. Chapter VI discusses 

possible future work and includes concluding remarks. 

1.2  Bacterial Motility 

Motion in aqueous fluid on microbial scales is  characterized by low Reynolds number 

hydrodynamics (≪ 1) [19]. The Reynolds number is a dimensionless ratio of inertial forces 

to viscous forces for a moving body within a fluid, broadly describing whether fluid flow 

is expected to be laminar (≲ 1) or turbulent (≳ 1), and does not account for any aspects of 

diffusion [20]. It is defined by 

𝑅𝑅𝑅𝑅 =
𝑢𝑢𝑢𝑢
𝜈𝜈

(1.1) 



3 
 

where u is the flow speed, L is the characteristic length (e.g. cell length, whale body length), 

and ν  is the kinematic viscosity of the fluid ( 𝜈𝜈 ≈ 10−6 𝑚𝑚2/𝑠𝑠  for water at room 

temperature). High Reynolds number systems are dominated by inertial forces and thus 

Newtonian kinematics, and fluid motion  is characterized by eddies, vortices, and other 

chaotic flow instabilities. Low Reynolds number systems are dominated by viscous forces 

that result in smooth, non-chaotic fluid motion, frequently dissipating energy so rapidly 

that kinematic acceleration is no longer accurately described as being proportional to force, 

rather force and velocity are proportional Bacterial motion (𝑢𝑢 ≈ 10−5 𝑚𝑚/𝑠𝑠, 𝐿𝐿 ≈ 10−6 𝑚𝑚) 

occurs at very low Reynolds number 𝑅𝑅𝑅𝑅 ≈ 10−5 meaning that inertia (and conservation of 

energy and momentum) is not an important kinematic concept at these scales; for a cell to 

be in motion, it must be actively propelling itself forward (thus expending metabolic 

energy) A simple kinematic calculation shows that  upon ceasing to propel itself, a 

bacterium will come to a halt within a fraction of an angstrom. 

B. subtilis and E. coli are both examples of pusher-type microswimmers that propel 

themselves by rotating multiple flagella that bundle behind the cell body and generate 

forward motion by moving fluid backward [21]–[23].  Flagella are hollow helical tubes 

made of proteins that are attached to motor proteins imbedded in the cell 

membrane/envelope [24]. The helical structure introduces chirality and thus breaks 

symmetry, allowing for forward motion in low Reynolds number environments [19]. When 

these helical flagella are rotated counterclockwise (CCW), they form a bundle that propels 

the cell forward in straight (ignoring diffusion and morphological asymmetries) trajectories 

– often referred to as a ‘run’. When the flagella are rotated clockwise (CW), they instead 

splay out and randomly reorient the cell – often referred to as a ‘tumble’ [25]. These types 
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of bacteria explore their environments primarily in a biased random walk via ‘run-and-

tumble’ motion. In the absence of attractant or repellant chemical gradients, such bacteria 

perform an unbiased random walk by running for a random amount of time and then 

tumbling into a new direction of motion. In the presence of a chemical gradient cells alter 

the mean period between tumble events in response to changes in local chemical 

concentration thereby generating a biased random walk that ascends favorable gradients. . 

If a cell is going against the preferred gradient (down for attractants, up for repellants), it 

will decrease the mean run time and vice versa [14] increasing the probability of travel in 

the preferred direction. 

Many bacterial environments – like soils or a mammalian gut – are structurally 

complex, wherein exploration of their environment requires interaction with objects and 

surfaces of varying shape, size, and curvature. Even in bulk fluid environments like the 

ocean, cells encounter, and are often chemotactically attracted to, particles that range in 

size from single to hundreds of microns [13], [26]. Recent work showed that in order to 

maintain efficient chemotactic motion E. coli actively decrease their tumbling rates when 

moving through environments that contain obstacles [27]. Rashid et al. showed that in a 

rectangular grid of circular and square obstacles, bacteria were able to maintain similar 

rates of chemotaxis regardless of the density or size of obstacles. However, in that work, 

no distinction was drawn between flagellar tumbling and changes in trajectory due to 

interactions with obstacles, thus the mechanism(s) by which cells maintain efficient 

chemotaxis in structurally complex environments remains unclear. 
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1.3 Bacterial Hydrodynamics 

 Bacteria propel themselves forward by creating a toroidal  flow field around the 

cell body via flagellar rotation [28]. The CCW rotation of flagella produces a flow field 

that is well approximated by the field produced by a force dipole made up of two opposite 

force monopoles [28]. The monopole used is referred to as a ‘Stokeslet’, that is a Green’s 

function solution of Stokes flow (fluid flow where inertial forces are negligible) [29]. By 

tracking small passive fluorescent tracers, this hydrodynamic model has been shown to be 

accurate up to tens of microns away from the cell body, except in the immediate side and 

rear of the cell where the force dipole model significantly overestimates the magnitude of 

flow [28]. This study also showed that when cells are within a few microns of each other, 

or of steric boundaries, hydrodynamic forces and Brownian angular diffusion likely 

dominate motion, but ‘long-range’ (>4 um) hydrodynamics have negligible effects on cell 

motion. From this starting point, current models of bacterial interaction with surfaces 

assume that viscous hydrodynamic forces alone describe deviations to cell orientation, and 

thus the direction of motion [30]–[32]. Steric interactions with surfaces are treated as a 

hard-core repulsion that acts to keep the cell body from overlapping with an object [31]. 

These models reproduce the deviations to trajectories produced by cell-surface interactions 

for large (low convex curvature) surfaces such as planes and large spheres and pillars (R > 

20 µm). When close to a planar surface (< 0.5µm), viscous forces,  arising from the cellular 

flow field coupling with the surface (a no-slip boundary), create a force perpendicular to 

the direction of motion. This causes cells to swim in approximately circular trajectories 

that are restricted to  motion along the 2D surface for tens to hundreds of seconds [16]. 

Similarly, bacteria are attracted to large circular pillars with sufficiently low (convex) 
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curvature where the pillar surface is assumed to be flat when considering hydrodynamic 

coupling [30]. This attraction maintains motion around the curved surface via torque on 

the cell body and flagellar bundle that orients the cell toward the pillar surface at a small 

contact angle [30]. [check what I said here] Finally, experiments show that attractive 

interactions  cause rod-shaped Janus particle microswimmers to swim around spheres of 

sufficient size [33]; a mechanism underlying this effect was reported using the method of 

images to explicitly calculate the hydrodynamic coupling between cells and spheres [31], 

[32]. These models used different methods and assumptions, but both predict  cell capture 

around a sphere whose radius is above a critical value. For spherical radii smaller than the 

critical radius the models predict the angular deviation to cell trajectories as they ‘scatter’ 

from the sphere. An early model proposed by Spagnolie et al. [31] gives extreme non-

physical results as the sphere radius approaches the cell length.  A recent model by Zhang 

et al. [32] attempts to rectify those issues by removing the assumptions of constant force 

and velocity. However, this model’s predictions for small-obstacle interactions have yet to 

be experimentally tested. One study showed that the majority of interactions between cells 

and 3 µm diameter spheres led to ‘forward scattering’, defined as interactions for which 

the magnitude of the scattering angle was less than π/4 [34].  This appears to disagree with 

the model proposed by Zhang et al., which predicts that for such small obstacles most 

interactions should result in scattering angles greater than π/4, but the experimental data 

lack the resolution to perform a quantitative comparison. Interactions with such small 

obstacles are biologically relevant, as wet soil types contain a majority of particles (by 

number) with radii less than 30 μ𝑚𝑚 [35], [36]. In order to better understand the physical 

mechanisms that underlie interactions between swimming cells and small obstacles, we 
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studied bacterial collisions with small circular pillars, which I discuss further in Chapter 

IV. 

1.4 Collective Motion 

Collective behavior is seen across many scales in active-matter systems ranging from 

flocking starlings [37], [38],  ants [39], schooling fish [40], locusts [41], and bacterial 

suspensions [42]–[45]. High density populations of bacteria are an ideal model system for 

the study of collective motion. A wide variety of genetic and chemical tools are readily 

available to manipulate cell phenotypes including morphology, motility, and chemotactic 

response, among others. Also, their high reproductive rate and small size allow for high-

throughput experimentation, especially when compared to macro-organisms (i.e. schooling 

fish, flocks of birds). As cell density increases, hydrodynamic and steric interactions 

between neighboring cells become more frequent, to the point that a cell trajectory can only 

be described in the context of the collective motion of the population. The swarming 

motility of B. Subtilis colonies on sufficiently wet surfaces exemplifies this type of motion. 

Classically, swarming motility is defined by high-speed multicellular movement of 

bacteria propelled by flagella across a surface [45]. When swarming, cells up-regulate 

flagella number [18] and by secreting a surfactant draw fluid from the surface which allows 

individual cell motion and creates surfactant gradients that drive colony expansion through 

Marangoni flows [46]–[50]. Individual cells within a high-density swarm cannot move in 

the ‘normal’ run-and-tumble way as their motion is dominated by ‘turbulent’ interactions 

with other cells [51]. By observing a subpopulation of fluorescent cells imbedded within a 

larger population of non-fluorescent, but otherwise identical cells Ariel et al. were able to 

collect high resolution trajectory data of individual cells in swarms. They showed that 
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individuals migrate around the population in a Lévy walk [52]. A Lévy walk is a random 

walk where actors move with a fixed speed making sharp reorientations at random times, 

where the period between reorientations is drawn from a power-law distribution [53]. 

Swarming dynamics can also impact the diffusive properties with an environment. For 

instance, Be’er and Harshey observed the upper super-diffusive dynamics in the fluid-air 

boundary of a fluid layer containing swarming bacteria [54]. Swarming motility is a 

common phase of bacterial collective motion [55], but models have postulated the 

existence of other motile phases. By modeling bacteria as self-propelled steric rods moving 

in two dimensions, Wensink et al. proposed the existence of multiple phases of bacterial 

motion (or non-motion) as a function of cell density and cell-body aspect ratio [51]. Be’er 

et al. showed that increasing cell aspect ratio (making cells longer while keeping cell 

diameter constant) above a threshold value shifts the phase of collective motion. At low 

aspect ratios, the cell density distributions are unimodal, indicative of being in the 

swarming state. At high aspect ratios, the cell density distributions are a superposition the 

low-density and high-density population [55]. Both of these studies also suggest that at 

sufficiently high cell densities a jammed phase should emerge in which cellular motion 

ceases due to  confinement by neighboring cells. While this phase was not explicitly shown 

in their experiments [51], [55], work in the Ursell Lab (on which I was an author) [50] 

provided strong evidence for the existence of such jammed states, as well as active 

transitions between jammed and collectively motile phases. In the unimodal density 

swarming state, Be’er et al. observed statistics of motion that were insensitive to  changes 

in cell density (up to a limit) and insensitive to relatively small perturbations in the aspect 
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ratio. This suggests that swarming motility is a robust mode of collective motility that plays 

an important role in the natural motion and spread of bacterial colonies on surfaces. 

Previous experiments primarily used isogenic and isophenic cell populations to better 

understand how specific parameters like cell density, environmental geometry, and cell 

morphology govern group motility [48], [50], [55], [56]. However in natural systems, 

cellular heterogeneities in morphology, phenotype, and even species are the norm [57], 

[58]. While small changes in cell aspect ratios do not seem affect swarming motility, it 

remains unclear how the composition of motile phenotypes within a collective affect 

collective motion and behaviors. We explore this by studying the motility of mixed 

populations of motile and non-motile B. subtilis in Chapter II. Some of the work described 

in this dissertation is based on co-authored material, especially Chapter IV which, at the 

time of writing, was recently submitted for peer review.  
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CHAPTER II 

 

COLLECTIVE MOTION IN BACTERIAL POPULATIONS WITH MIXED 

MOTILITY GENOTYPES 

 

2.1 Collective Motion of Bacteria 

The motion of large, densely packed groups of organisms is often qualitatively 

distinct from the motion of individuals, yet hinges on individual properties and behaviors. 

Such collective behaviors are seen across many scales in active-matter systems from 

starling flocks [37], [38] to ants [39], [59], [60], and to bacterial suspensions [42], [61], 

[62]. High density populations of bacteria are an ideal model system for the study of 

collective motion for numerous reasons: (i) their high reproduction rate and numbers 

enable high-throughput experimentation, (ii) their size allows for low-cost fabrication of 

physically and chemically controlled environments in which to observe their motion, and 

(iii) it is possible to genetically modify bacteria to vary both morphological and phenotypic 

cell properties. At sufficiently high densities, the motion of individual cells is perturbed by 

interactions with other cells such that their trajectories are often better described by the 

bulk motion of the collective. The collective motion of bacteria (of which there are many 

kinds) has been observed in different environments such as hard surfaces [52], [63], bulk 

suspensions [64], [65], thin fluid suspensions [50], [66], and artificial devices in a variety 

of geometries [67]–[69]. These studies observed strong effects between the physical 

environment (especially confinement) and the bulk motility of swarming cell populations. 
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Many of these studies were conducted using rod-like cells in the ‘swarming’ state of 

collective motion, which is characterized in open environments by dense cellular packings 

with high-velocity turbulent bacterial flow [51]. However, other states of collective motion 

have been predicted by modeling and observed experimentally as a function of cell density 

and the aspect ratio of rod-like cell bodies. Using a self-propelled rod (SPR) model, 

Wensink et al. proposed the existence of six states of collective motion ranging from the 

low-density ‘dilute’ state where swimmers act independently; the medium density 

‘swarming’ state characterized by large spatial and temporal density fluctuations; the high 

aspect-ratio ‘laning’ phase where cells achieve global alignment (i.e. high nematic order); 

the ‘bio-nematic’ phase where vortices and jet structures coexist; the ‘turbulent’ phase 

characterized by chaotic motion and velocity correlations on the order of ~5μ𝑚𝑚; to the 

‘jammed’ state in which low aspect-ratio cells are so tightly packed (i.e. high packing 

fraction) that they cannot move [51]. Some of these states have been shown to exist 

experimentally by adjusting the aspect ratio of cells and their overall density. Be’er et al. 

showed that increasing the cell aspect ratio above a critical value shifted cells from a 

swarming, turbulent state to two different states depending on cell density. At low density, 

they observed a state characterized by small clusters of these long cells moving together 

while at high density, they observed these clusters grew to the size of the viewing frame. 

These states are reminiscent of the ‘swarming’ and ‘laning’ phases predicted by the SPR 

model [55]. These studies highlight the control that cell density and morphology have over 

the collective behaviors of high-density cell populations. 

Previous experiments primarily (and reasonably) used isogenic and isophenic cell 

populations to better understand how specific parameters – like environmental geometry, 
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cell density, and morphology – influence collective behavior [48], [50], [55], [56]. 

However, in natural systems, multiple distinct cellular phenotypes (of the same species) 

are often found coexisting within bacterial populations [57], [58]. Thus we hypothesized 

that the phenotypic ratio of a bacterial population would also be a distinct parameter that 

affects collective motility and might produce additional, distinct phases of motion. To 

characterize how different motility phenotypes affect each other and group motility, we 

imaged the collective dynamics of wild-type Bacillus subtilis with varied concentrations 

of a non-motile mutant doped into the population. In these mixed motility-phenotype 

populations, we observed a transition from turbulent behavior to highly constrained semi-

ballistic motion as the fraction of non-motile cells increased – we call this new phase ‘ant 

trailing’, for reasons that will become clear below. We also observed an exponential decay 

in the mean speed of the group as the fraction of non-motile cells increased. This work 

illuminates the role that individual cell behaviors play in the emergence of collective 

motion.  It also suggests that phenotypic mixture within a population may shift material 

transport properties into qualitatively distinct regimes. 

2.2 Methods 

These experiments used (i) wild-type (WT) Bacillus subtilis (3610 parent strain) 

labeled with cytoplasmic GFP DK1203 and (ii) DS1677 Δhag, a non-flagellated mutant 

strain (from 3610 parent strain) with a genomic deletion that abolishes filament assembly 

– hence the cells are (nearly) metabolically wild-type, but are immotile. Agar plates 

containing Terrific broth (TB) (Sigma Aldrich) and 100 μ𝑔𝑔/𝑚𝑚𝑚𝑚 spectinomycin (for the 

GFP labeled cells), or simply TB and agar (for the unlabeled Δhag cells) were streaked 

from frozen stocks to produce single colonies. Prior to experiments, GFP labeled cells were 



13 
 

picked from single colonies taken from the agar plates, and grown in TB with 100 μ𝑔𝑔/𝑚𝑚𝑚𝑚 

spectinomycin for six hours, shaken at 37℃. The unlabeled and unflagellated (non-motile) 

mutant divides at a higher rate, thus the two cultures were density matched prior to mixing 

by measuring optical density (OD620) with a NanoDrop 2000 Spectrophotometer. We then 

mixed each of the matched cultures at a known ratio to create 1 ml of mixed-motility culture 

– two independent variables were controlled at this point: (i) the overall number density of 

all cells in solution and (ii) the ratio of motile to non-motile genotypes.  This suspension 

was then pelleted in a centrifuge at 1000g for three minutes and resuspended in 50 𝜇𝜇𝜇𝜇 of 

TB to increase overall cell density. From this high density suspension a 5 𝜇𝜇𝜇𝜇 droplet was 

deposited onto a small (~19 mm diameter??) circular Luria broth (LB) agar pad. The pad 

was cast in a silicone isolator (Grace Bio-labs), and allowed to cool and solidify at RT for 

three minutes. A thin #1 coverslip was laid over top, and sealed against the silicone, 

forming a closed viewing chamber. This created a thin (1.5 – 2 µm) fluid environment 

where we observed large regions containing cells that were constrained to quasi-2D motion 

in a single monolayer of cells. We imaged cell motion in phase-contrast with an automated 

Nikon Eclipse TI-E fluorescence microscope using a 40x CFI Plan Fluor DLL Ph2 

objective with an optional 1.5x multiplier tube. Images were collected with an Andor iXon 

EMCCD camera. When capturing images using the full resolution of the CCD, the 

maximum capture frame rate was 21.45 frames per second. When motile cell fraction (and 

hence mean cell speed) was high, we increased the frame rate of image acquisition by using 

a smaller region of interest (ROI) on the CCD, which increases maximum framerate by 

decreasing the read-time. Due to an unknown (and we believe still uncharacterized) 

reaction, B. subtilis cells reacted to GFP illumination light (blue light) by ceasing motility 
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within seconds, thus we imaged all motion in phase contrast. Due to randomness in the 

mixture and the inherent difference in motility between the two genotypes, the ratio of 

motile to non-motile cells between viewing frames was often different from the overall 

mixture ratio. To measure the local ratio of genotypes we first captured a fast (>20 fps) 

image series over the course of minutes using phase-contrast to measure motility; we then 

captured a single GFP image of the tagged motile DK1203 B. subtilis to measure the local 

concentration of motile cells. 

At the highest cell-number densities, and owing in part to the high auto-

fluorescence of LB agar, individual cell identification required to measure collective 

motion in phase-contrast and GFP fluorescence was difficult and unreliable. Therefore, in 

order to measure genotype concentrations we instead counted pixels. First, we examined 

the phase contrast images and defined a threshold below which pixels were defined as cell 

pixels, brighter pixels were considered background pixels – this defined the fraction of 

pixels (ρ1) that corresponded to a cell of either genotype. Second, we captured a single 

GFP image and measured the fraction of pixels (ρ2 ) whose intensities were above a 

threshold. That threshold corresponded to segmentation of contiguous pixels groups whose 

size and shape approximately matched the known dimensions of the fluorescent cells. Thus, 

the number-density of cells is proportional to ρ1 and the ratio of motile / immotile cells is 

𝜌𝜌2/(𝜌𝜌1 − 𝜌𝜌2). To identify pixels in phase-contrast images that belonged to cells we used a 

thresholding algorithm. We smoothed the image with a 3 x 3 pixel median filter, then fit 

the distribution of pixel intensities to a double-Gaussian distribution with one Gaussian 

corresponding to the (brighter) background pixels and the other to the (darker) cell pixels. 

In phase-contrast cells appear darker than the background, thus the threshold was set by 
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calculating the mean of the cell-intensity distribution and adding two standard deviations 

– pixels above this limit were considered background. For GFP images, we applied the 

extra step of removing low frequency noise (the illumination profile) by subtracting from 

the original image a copy whose intensities were filtered with a 300-pixel radius Gaussian 

convolution. The threshold was set at two standard deviations above the mean of the 

background. The resulting binary images were visually inspected, and found to be 

consistently accurate for the phase-contrast images. Due to high auto-fluorescence in the 

media and differences in cell brightness, the GFP images were of variable quality, accuracy 

of the thresholding method has an unknown but nontrivial uncertainty. We used Particle 

Image Velocimetry (PIV) (specifically the PIVlab MATLAB tool [70], [71]) to measure 

collective motility in these 2D cell monolayers. This resulted in spatial maps of time-

dependent velocity vectors associated with bulk cell motion. PIV algorithms generally 

work by excising small portions (e.g. 32 x 32 pixels) of the image, then computing the 

correlation matrix of that interrogation area within a zone of nearby pixels in neighboring 

frames across time, thus allowing calculation of a displacement vector. To increase 

computational speed, PIVlab performs a discrete Fourier transform on the image in order 

to compute the correlation matrix in frequency space [71]. With PIV, we measured the 

velocity at points with spacing 2.6 μ𝑚𝑚 in a grid across our image. Velocity values from 

grid points on the image edge were ignored.  

In the following sections we limit our analysis to 14 individual image stacks in 

which cell-number density was constrained to 0.6 ≤  𝜌𝜌1 ≤ 0.7. 
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2.3 Results 

To understand the effects that non-motile cells have on swarming bacterial 

populations, we measured the local cell velocities of high-density mixed-motility 

populations within a narrow window of cell density. First, we looked at the mean speed 

⟨|𝑣𝑣|⟩  of these collectives as a function of the fraction of non-motile cells  within the 

population, Φ. A  naïve hypothesis was that this value would scale linearly, from the mean 

speed of swarming WT B. Subtilis, to zero (or some small value corresponding to the noise 

floor) when the entire population was non-motile. Such a hypothesis ignores interactions 

between motile and non-motile cells, and assumes that the mean speed is proportional to 

the total force applied by cells within the population. This is a reasonable (naïve) 

assumption because in low Reynolds-number contexts, like this, the velocity of an object 

is proportional to the applied force. Therefore, if the force for motion is generated by a 

subpopulation of cells and is then ‘shared’ by all cells (motile and non-motile) the mean 

speed of the population would be proportional to the mean force per cell 

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑁𝑁𝑊𝑊𝑊𝑊𝐹𝐹𝑊𝑊𝑊𝑊 = (1 −Φ)𝐹𝐹𝑊𝑊𝑊𝑊 (1) 

𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑁𝑁𝑊𝑊𝑊𝑊

𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇
𝐹𝐹𝑊𝑊𝑊𝑊 = (1 −Φ)𝐹𝐹𝑊𝑊𝑊𝑊 (1) 

where 𝐹𝐹𝑊𝑊𝑊𝑊  is the force applied by a single wild-type cell. Swarming motility is 

characterized by nearly constant cell-cell interactions [51], and observations by eye of all 

our collected images clearly showed cells sterically (among other mechanisms) interacting 

with each other. When a single motile cell collides with a single non-motile cell, we saw 

the motile cell’s velocity decrease, owing to either a portion of the propulsion force pushing 

the non-motile cell or the motile cell being unable to push a larger mass of non-motile cells 
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and thus temporarily halting. However, instead of a simple linear relation between ⟨|𝑣𝑣|⟩ 

and Φ we found that the data was approximately described the exponential function 

⟨|𝑣𝑣|⟩ = 𝑣𝑣𝑜𝑜𝑒𝑒−Φ/Φ𝑜𝑜 

with 𝑣𝑣𝑜𝑜 = 27 μ𝑚𝑚/𝑠𝑠 being the mean collective swarming speed when all cells are motile, 

and Φ𝑜𝑜 = 0.23  being the characteristic density of non-motile cells that results in 

significant slowing of group motility (Fig. 2.1).  We found these parameters by performing 

a linear fit to the natural logarithm of the mean speed versus the fraction of non-motile 

cells. These data (fig. 2.1) do not match the linear prediction above, rather they hint at more 

complex interactions between motile and non-motile genotypes. 

 

 
Figure 2.1: Plot of the time-averaged speeds of bulk cell populations versus the fraction 
of motile cells present, across 14 imaging data sets. The exponential fit has a decay constant 
of Φ𝑜𝑜 = 0.23 and maximum speed 𝑣𝑣𝑜𝑜 = 27 μ𝑚𝑚/𝑠𝑠. Mean speeds in a square grid with 
vertices 2.6 μ𝑚𝑚  apart were acquired with Particle Image Velocimetry (PIV) using the 
MATLAB PIVlab tool [70]. The fraction of motile cells was determined by calculating the 
number of pixels belonging to cells via thresholding the phase-contrast images, then 
calculating the number of pixels belonging to motile cells via thresholding the GFP images. 
There are significant but unknown errors in the values these fractions and thus error bars 
were omitted. 
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Figure 2.2: Heat maps of the spatial distributions of mean speeds from PIV velocity 
vectors found from data sets at six different values of non-motile cell fraction Φ as labeled. 
The scale bars are 50 μ𝑚𝑚. The variation in image size reflects the different ROI’s required 
to capture data at higher frame rates. The mean speed decreases as Φ increases, clearly 
seen from the individual heat maps, which are plotted at different scales to highlight spatial 
structure of the velocity field. Across all densities, there were clear divisions between areas 
of low mean velocity (darker areas) and areas of high mean velocity (brighter areas). 
Within areas of low mean velocity, we observed clusters of non-motile cells surrounded by 
motile cells that are sterically forced to move around these stationary clusters. 

 

We also saw distinct changes in the trajectories of the WT cells as we increased the 

fraction of non-motile cells present within the population. As the fraction of non-motile 

cells increased, we saw larger and more frequent areas of low mean velocity (Fig. 2.2). 

These areas, while largely composed of nonmotile cells, also appear to contain some motile 

cells that become stuck in the larger mass of nonmotile cells. Thus, we see a clear spatial 
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pattern of high and low motion which persists across time (i.e. in the time-averaged 

velocity magnitudes) (Fig. 2.2). Once Φ rose above ~0.9, a new kind of collective motility 

emerged. Motile cells repositioned non-motile cells to carve paths that were then 

subsequently reinforced by other motile cells traversing those same (or very similar) paths, 

producing the ‘web’ pattern of higher mean speeds seen in figure 2.2 F. Frequently, when 

motile cells collided with non-motile cells, non-motile cells are forced apart creating a way 

forward and simultaneously leaving an open path where they passed. These paths persisted 

for seconds and frequently had multiple motile cells pass through them, as such routes offer 

the path of least resistance to motion. These subsequent motile cells reinforce the paths (i.e. 

keep them open) until, after ~5 – 10s, the persistent paths were closed by the bulk 

movement of non-motile cells created by other motile cells creating new paths through the 

bulk of non-motile cells in another location (Fig. 2.3). Motion in these paths appears to be 

semi-ballistic in nature as the paths themselves are seen to be relatively straight segments 

of open space. This is in stark contrast to the highly turbulent motion observed in the low 

Φ swarms as seen by us and previously described in (e.g.) [52], [55], [72].   

 

2.4 Conclusion and Discussion 

 We explored a previously unstudied aspect of active matter: the mixing of 

motile and nonmotile agents. To do this we analyzed the spatial velocity fields of dense 

Bacillus subtilis populations across a range of relative concentrations of motile and non-

motile cells. We found evidence for an exponential relation between the mean population 

speed and the fraction of motile cells in high density cell populations. 



20 
 

 
Figure 2.3: A time-lapse of path creation, persistence, and destruction in high a Φ 
population. (A) The first cell (green) encounters a mass of nonmotile cells. (B) The green 
cell forces its way through them creating an open path behind it.  It is then followed by the 
second cell (red). (C) The first and second cells (green and red) continue to the edge of the 
frame while more cells (magenta) follow the persistent open path. (D) After 5 seconds, the 
path has been (mostly) closed due to random motions of the non-motile cells caused by 
other motile cells. 

 

 

We also observed what appears to be a smooth transition between turbulent swarming 

motility and highly constrained semi-ballistic motion in these mixed populations as the 

fraction of motile cells decreased toward zero. While these measurements were made with 

B. Subtilis, the physical context that results in these observations may make these findings 
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applicable to not only other microorganisms but generally to active-matter systems of 

‘swimming’ rod-like particles with mixed motility behaviors. 

This work was limited in its scope due to difficulties inherent in the experimental 

setup. First, due to the inherent difference in motility between the two sub-populations, 

there was very little control over the fraction of motile cells in a given observation window. 

This forced us to estimate motile fraction by eye during an experiment, and then 

quantitatively measure the fraction post facto by analyzing the brightfield and GFP images 

as described previously. As a consequence, data acquisition across Φ was not systematic. 

Second, we had a similar lack of control over the number-density of cells, and again could 

only rely on rough estimates during experiments to guide data acquisition. Thus, number-

density was also measured post facto, resulting in our data spanning a range of density 

(0.4 ≤ 𝜌𝜌1 ≤ 0.8). However, cell density has strong effects on fundamental aspects of 

collective motion, like mean cell speed and mean-squared displacement [55]. Therefore, to 

isolate the effects of motile cell fraction on collective motion, it was necessary to maintain 

a nearly constant number-density while comparing variations in Φ – this restricted our 

analysis to a subset of our acquired data. Third, to create our quasi-two dimensional 

environment we used an agar pad cast in a silicone isolator and sealed with a glass slide. 

This created an environment of non-uniform height, as agar surfaces have nontrivial 

roughness. Thus areas of the device that where the height was between 1.5 and 2 um (and 

hence motion was quasi-2D) were limited. Lastly, due to the high auto-fluorescence of rich 

media, our fluorescence images of GFP-labeled motile cells were of variable quality 

leading to unknown but nontrivial uncertainty in our measure for Φ. These experimental 

uncertainties spurred us to develop microfluidic devices within which we could exert 
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superior control over these key variables. This led to our development of a novel method 

for the creation of microfluidic devices (chapter III) and led to our experiments on cell-

obstacle interactions (chapters IV and V). However, despite these difficulties, we observed 

previously unseen behaviors in bacterial motion and evidence for exponential scaling of 

mean speed with respect to the fraction of non-motile agents in an active matter system. 
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CHAPTER III 

 

FABRICATION AND DESIGN OF MICROFLUIDIC DEVICES 

 

3.1 Introduction 

 To overcome many of the problems we encountered in our previous experiments 

outlined in Chapter 2, we began designing and fabricating microfluidic devices using 

photolithography. Microfabrication of microfluidic devices allows for the creation of 

highly controlled environments in which to live-image microorganisms. For example, one 

can create chambers of arbitrary and unique shapes within which bacteria explore and 

interact [61], [68], [73], [74]. They allow for the fabrication of steric objects such as posts 

of various shapes [27], [30], [75] and moveable objects such as spheres or even micron-

scale gears [34], [76]. Pumps control fluid pressure across the device with high precision 

to test the effects of fluid flow on bacterial motion [77]–[79] and colonization of surfaces 

[74], [80], [81]. Chemical gradients across the device can be created to precisely test the 

chemotactic response in motile bacteria [82]–[84]. The confinement and isolation of fluids 

loaded into microfluidic devices also allows for precise control over cell density. When 

studying the dynamics of single-cell behavior, it is important have low enough cell density 

to keep cell-cell interactions at a minimum while maximizing the number of observed cells 

to efficiently collect data. On the other hand, when observing higher density swarms and 

how cell-cell interactions affect the dynamics of collective motion, precise control of cell 

density can help eliminate a major source of noise in data collection. Frustrations over the 
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lack of control over cell density when conducting the phenotypic mixing experiment 

(chapter 2) led to a renewed effort to design microfluidic devices to observe cells. The 

ability to fabricate small steric obstacles down to length scales of a single cell length 

enabled our cell-pillar scattering research outlined in Chapter 4. This chapter first outlines 

classic soft lithography techniques for fabricating microfluidic devices, and the 

disadvantages and limitations these devices have, which led us to develop a novel 

technique for microfluidic device fabrication. The chapter then gives a detailed description 

of our novel fabrication technique and explores the advantages and disadvantages of these 

devices. 

3.2 Soft Lithography 

Typically, microfluidic devices are made using a technique generally referred to as ‘soft 

lithography’ [85]. The general makeup of these devices is molded Polydimethylsiloxane 

(PDMS), bonded to a glass substrate. PDMS is a silicon-based organic polymer which has 

a few key traits that make it ideal for soft lithography. Before curing, PDMS is viscoelastic 

and will conform to the surface that it is poured onto over a large area with sub-micron 

precision [85] and after it has been cured, its elasticity allows for relatively easy release 

from the molding substrate. Second, it is chemically inert which ensures that cells’ only 

interaction with the surface is mechanical. Third, it is optically transparent which makes it 

ideal for imaging with both bright-field (including phase-contrast) and fluorescence 

microscopy. Fourth, the materials involved are cheap and fabrication can be completed in 

hours which allows for iterative prototyping. However, these devices are difficult to clean 

well and, in many contexts, are single use devices which makes the low cost essential. Last, 

it can be UV or plasma oxidized to alter the surface chemistry to allow for chemical 
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bonding to glass substrates [86]. When purchased, PDMS typically comes in two parts, the 

elastomer base, and the elastomer curing agent. For normal use, these are mixed 10:1 base 

to curing agent by weight and increasing the amount of curing agent can increase the post-

cured PDMS stiffness [87]. This tunable stiffness, and the relatively low stiffness of PDMS 

overall, is an essential component of more complex microfluidic devices which use 

multiple layers to create valves and pumps within the device itself [88]. Once the two parts 

are mixed together and heated to  100 °C, the curing agent will crosslink the polymer into 

its hardened form within an hour. 

 To create the molded PDMS, first the negative of the desired final pattern was 

fabricated on a silicon wafer using photolithography (photolithography described in detail 

in section 3.3) to create a ‘master mold’. This master mold must be treated with 

trichlorosilane to make the surface hydrophilic and thus reduce adhesion between it and 

the hydrophobic PDMS. Once the master mold was treated, new, uncured and well-mixed 

PDMS was poured onto the mold. To increase optical clarity, it is important to degas the 

PDMS in a vacuum chamber to remove microscopic air bubbles which can disrupt the light 

path. The degassed PDMS was then placed in an oven to crosslink for an hour, left to cool, 

and carefully removed from the master mold. Next, to bond the molded PDMS to a glass 

substrate (often a microscope slide) the PDMS and glass surfaces were activated using a 

UV-Ozone oven with no heat for 1 hour. Once activated, the surfaces were mechanically 

compressed by resting a small weight (~100g) on them and heated on a hot plate for 30 

minutes at 90 °C. Once bonded, the device can withstand some positive pressure, but over-

application can cause leaks in the device.  
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 Soft lithography supports  a limited range in the aspect ratio (height : width) of 

structures and gaps between structures in the device. We found that creating high aspect 

ratio structures, (greater than 5:1) especially when those structures are small (<5 µm radius) 

becomes difficult and unreliable. First, removal of the structure from the mold became 

unreliable as many of these structures were stuck in the mold and torn from the bulk PDMS 

device. Second, high aspect-ratio structures (like our smallest pillars) tended to bend or 

collapse before they could be bonded to the glass substrate causing deformations in the 

desired structure of the device, frequently rendering whole regions useless. On the other 

hand, the aspect ratio of space between structures has a minimum threshold. We saw that 

when the gaps between structures are more than ten times the device height, there was a 

high risk of device collapse due to the low stiffness of PDMS. This is especially 

problematic when negative pressure was applied to flow media through the device (which 

is the norm to maintain the bonded seal). In our research observing bacterial interactions 

with small, high-curvature steric objects (Chapter 4) we required structures with a radius 

less than or equal to 5 µm with a small device depth (<20 µm) to be able to capture the 

entire z-depth when imaging. We also required the device depth to be a minimum height 

in order to keep hydrodynamic resistance low enough to flow media through the device . 

When device height falls below 10 um (?) flow resistance and internal surface tension 

effects prevent full-device flow.   

The hydrodynamics of microfluidics is well described as an analogy to electrical 

circuits. Fluid flow replaces electric current, the applied pressure replaces voltage, and the 

hydrodynamic resistance due to the geometry of the flow channels and fluid viscosity 
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replaces electrical resistance. In a rectangular channel whose height is less than the width, 

hydrodynamic resistance is well approximated as 

Rh ≈
12μL

wh3 �1 − 0.63 h
w�

 

where 𝑅𝑅ℎ is the hydrodynamic resistance, μ is the fluidic viscosity, L is the channel length, 

w is the device width, and h is the device height [89].Thus, the resistance of devices with 

typical dimensions (w = 0.1 mm, L = 1 mm) and small heights (ℎ ≤ 5 𝜇𝜇𝜇𝜇) is such that to 

create a modest flow rate of 10 nL/s, the pressure required becomes greater than 1 atm and 

is therefore impossible with application of negative pressure (and positive pressure above 

~ 1 atm unseals the device). In order to maintain low resistance and remain within the 

depth-of-field of our Plan Fluor ELWD 20x Ph1 ADM microscope objective we chose a 

15 µm device height. Given this, we were still presented with two problems. First, with a 

15 µm height, the maximum gap width between structures was 150 µm; this presented 

difficulties when collecting control data (in feature-less areas) of bacterial trajectories on 

the length scale of motion persistence . Second, our smallest features pushed the bounds of 

reliability in molded PDMS device creation. In our early designs, we had very low success 

rates with the creation of features with R < 5 µm.  

To overcome these limits, we developed a novel method for the creation of 

microfluidic devices that involves creating device features directly onto a silicon or glass 

substrate using photolithography (Fig. 3.1). These devices were sealed with a thin (< 100 

µm) layer of PDMS bonded to a glass slide which acts as a uniform, stiff gasket. With this 

technique, it was possible to create high aspect-ratio structures beyond the limits of typical 

PDMS construction, and the increased stiffness of thin PDMS bonded to glass allowed for 
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significantly larger (> 0.5 mm) featureless areas. This device relied on two separate 

unbonded pieces that remain sealed only when negative pressure was applied but was easily 

separated post-experiment and thoroughly cleaned for reuse (described in section 3.4). The 

structures made from photoresist have the ‘feature’ of being mildly auto-fluorescent, 

enabling detection of surface structures without significant degradation in signal-to-noise 

of cellular intensities. A key disadvantage with this method was that it was only capable of 

creating single layer microfluidic devices which prevented creating many of the complex 

and interesting components of microfluidic designs (i.e. valves and pumps). 

 

Figure 3.1: A simple schematic of our atypical microfluidic devices consisting of  SU-8 
photoresist directly patterned onto a Silicon wafer or glass substrate, then sealed by a 
PDMS gasket adhered to a glass top-piece. Direct patterning of SU-8 allows for higher 
spatial resolution and higher aspect-ratio structures. The thin layer of PDMS bonded to 
glass creates an airtight seal whose with high  effective stiffness  supports large open areas 
within the device without risk of collapse. 

 

 

3.3 Novel Fabrication Method: Substrate and Features 

 To begin fabrication, the desired features of the microfluidic device (chambers with 

and without pillars, flow channels, etc.) were created directly in photoresist on a silicon or 
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glass substrate using standard photolithography. Generally, photolithography is the process 

of fabricating micro/nano structures using a light-activated polymer. Light is shined (either 

through a patterned mask or with a laser) onto the photoresist and then the exposed (if 

negative photoresist) or unexposed (if positive photoresist) resist is rinsed off the sample.  

Our devices used SU-8 2000 negative photoresist manufactured by Kayaku Advanced 

Materials. SU-8 photoresist is primarily Bisphenol A Novolac epoxy dissolved in an 

organic solvent and up to 10% (by weight) Triarylsulfonium/hexafluoroantimonate salt 

which acts as the photoacid. First, we covered the substrate with photoresist by spin coating 

a thin, defined, and largely uniform layer of photoresist onto the substrate. Spin coating is 

a process by which rotating the substrate with photoresist poured on creates different layer 

thickness based on the viscosity of the resist which is controlled by the ratio of epoxy to 

solvent. For thicker layer resists ( ≥ 10 µm) there is often an over-thick ring of resist at the 

edge of the substrate (commonly referred to as an ‘edge bead’), which we removed using 

a lint-free disposable wipes soaked in acetone. This ensured good contact with the 

patterned center of the substrate in later steps and in the final product. We first used SU-8 

2000.5 to create a 0.5 µm base layer and patterned SU-8 2015 on top of the base layer to 

create our 15 µm tall features. The base layer was used to increase the resolution of pattered 

structures and to increase adhesion of small features onto the substrate (especially 

important on glass substrates). The base layer was made by simply using the manufacturers 

guide to fabrication – the photoresist iss spun-coat at 3000 RPM for 30 seconds, soft baked 

at 95 °C for one minute, exposed for a total dose of 60 mJ/cm2, post-exposure baked (PEB) 

for 1 minute at 95 °C, and then hard baked for 10 minutes at 200 °C (these steps are 

described in greater detail below). The SU-8 2015 was also deposited by spin coating at 
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3000 RPM for 30 seconds with the edge bead manually removed. Next, the sample was 

‘soft baked’ for five minutes at 95 °C on a hot plate to evaporate solvent and harden the 

photoresist to ensure that it kept its shape and did not stick to the photomask. If the substrate 

was thick (such as a glass microscope slide) soft bake times were increased to ensure that 

the photoresist reaches temperature. The soft bake can create stress on the photoresist 

causing wrinkling and other deformities, and in thick ( > 50 µm) layers of resist, the 

solvents may evaporate quickly from the top trapping solvent in the lower layer causing z-

axis asymmetry in features. In this event, the temperature must be ramped from 65 to 95°C 

over the course of several minutes. Next, the photoresist was exposed to ultraviolet light 

with a SUSS MicroTec MJB4 mask aligner which uses an Hg lamp as its UV source to 

initiate crosslinking of the polymer. A mask aligner has two main components, the UV 

light source with associated optics, and the sample stage underneath the photomask mount. 

For a negative resist like SU-8, the photomask is the negative image of the desired pattern 

of developed resist. UV photons which pass through the mask react with the salt to create 

hexafluoroantimonic acid which protonates the epoxide groups in the resin monomers [90] 

which is the first step in the crosslinking that hardens the SU-8 leaving the desired features 

after development.  

When exposing the photoresist, it was necessary to filter-out wavelengths of UV 

light below 360 nm to avoid a common deformation known as ‘T-topping’,  which is 

characterized by a larger, overdeveloped top-layer on features (fig. 3.2). SU-8 has high 

absorbance of high-frequency ultraviolet light which causes the top few microns of 

exposed SU-8 to absorb nearly all of the high-frequency light, leaving the lower section to 

absorb UV wavelengths greater than 360 nm. 
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Figure 3.2: EM images of fabricated pillars. (A) 15μ𝑚𝑚 tall SU-8 pillar showing T-topping 
exposed using a Hg lamp without a filter. The T-topping is characterized by the 
overexposed and thus oversized top of the structure. For the pillar shown, the base is 
~5.5μ𝑚𝑚 in diameter while the top is ~6.6μ𝑚𝑚 in diameter. (B) 15μ𝑚𝑚 tall SU-8 pillar made 
with a Hg lamp through a Hoya L-37 long-pass filter. Note the vertical sidewalls and 
uniform diameter across Z.  

 

The high-frequency UV naturally carries more energy which causes the top layer to become 

significantly overdeveloped and creates an overabundance of acid in the top layer. The acid 

diffuses outward, leading to poor resolution and increased size on the top few microns 

while the rest of the feature resolves as designed. To fix this problem, we put a Hoya L-37 

long-pass filter in the exposure light-path directly over the mask. In order to create our 

smallest features (R < 10 µm) and to achieve straight, symmetric features in general, it was 

necessary to increase exposure of the resist, beyond the manufacturer-provided dosage, to  

240 mJ/cm2 on the silicon substrate (Fig. 3.3). To expose the resist in our desired pattern 

and achieve appropriate resolution in our smallest features we used chromium photomasks 

(described in detail in section 3.5). 
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Figure 3.3: Electron microscope (EM) images of typical SU-8 polymeric pillars within our 
microfluidic devices. Pillar radii were measured using EM images for subsequent 
experiments (chapters 4-5). 

 

  

After the SU-8 was exposed, it was heated at 95°C for four minutes to complete 

polymerization of the exposed photoresist. Samples were then placed in SU-8 developer 

and mildly agitated (stirred) for three minutes, dissolving the unexposed (non-

polymerized) SU-8 photoresist, and thus leaving only the exposed structures. The sample 

then underwent a ‘hard bake’ at 200°C for 10 minutes to increase structural stability. 
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3.4 Novel Fabrication Method: PDMS Gasket and Sealing 

Next, the cover piece, which sealed the patterned device, was made using a thin 

layer of PDMS bonded to a glass slide. The glass slide first had inlet and outlet ports (~1.5 

mm) drilled through it using a diamond drill bit submerged in water (to eliminate airborne 

powdered glass). The drilled slide was then thoroughly cleaned by sonication in acetone 

for 10 minutes, then rinsed with isopropyl alcohol (IPA), dried using nitrogen gas, and 

finally baked in a UV ozone oven for one hour at 150°C to remove remaining microscopic 

organic matter. Liquid PDMS was deposited on the surface and then sandwiched between 

the drilled slide and another, treated glass slide. Thin spacers (~100 um) were placed at the 

corners of the treated class slide (1cm x 1cm squares of packing tape at each corner). To 

ensure that the PDMS bonded only to the drilled slide, the spacer slide was treated with 

trichlorosilane, which, as described earlier, reduces adhesion to PDMS. Treated slides were 

placed in a closed petri dish with a 1 µL drop of trichlorosilane on a separate glass slide 

and left in a chemical hood (trichlorosilane must be handled with care as it is both volatile 

and toxic). Overnight, vapors deposit trichlorosilane onto the glass. The PDMS was then 

prepared (mixed and degassed) and poured onto the spacer slide. The drilled slide was then 

compressed onto the spacer/PDMS slide, and the ‘sandwiched’ three-layer structure was 

cured in an oven at 100°C for ~1 hour. The drilled slide with bonded PDMS was then 

removed from the spacer slide using a razor blade inserted at the corners with extreme care, 

as drilling the inlet/outlet holes reduces the structural integrity of the glass slide. Excess 

PDMS was then removed from the inlet-outlets with a 1 mm biopsy punch (VWR) and 

these holes are covered using press-fit tubing connectors (Grace Bio-Labs). 
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When preparing the device for use, the inlet and outlet ports of the patterned surface 

were aligned with the drilled holes and compressed by hand with moderate finger pressure. 

This created a relatively weak but sufficient seal that was long-term stable when negative 

pressure was applied across the two ports. Flow through the device was achieved by 

inserting 1.59 mm OD / 0.305 mm ID PTFE fluidics tubing (Grace Bio-Labs)  directly into 

the press fit connectors, with the inlet line connected to the cell suspension and the outlet 

line connected to a sterile syringe. For crude control, the syringe was pulled manually, or 

for precise constant flow rates, the syringe was placed in a syringe pump. Once the 

microfluidic device was loaded with cell suspension, we halted any global flow within the 

device by disconnecting the lines and sealing the ports with lab tape. Devices made on a 

silicon wafer substrate could only be imaged using fluorescence microscopy as the wafer 

substrate is optically opaque and the bright-field source is superior to the device.  

After use, silicon devices were easily cleaned for reuse. The devices were pulled 

apart and each half was rinsed with bleach to remove cells, rinsed with DI water, sprayed 

with acetone, then IPA, and finally blow dried room-temperature with filtered air. 

Frequently, features patterned onto a glass substrate do not adhere strongly enough and are 

destroyed when the device is taken apart, and thus are not suitable for reuse. 

3.5 Mask Fabrication 

Photomasks are generally either patterned chromium on a quartz or soda-lime-glass 

substrate, or a thin plastic sheet on which the pattern is printed in black ink. Film masks 

are significantly cheaper and can be ordered quickly but offer a minimum resolution of 10-

30 µm features. Chromium masks offer significantly higher resolution but ordering these 
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is expensive and can take several days to be manufactured. Chromium masks on a quartz 

substrate allow for single-micron resolution and high broadband transmittance of light.  

Fortunately, we were able to fabricate our own masks in the University of Oregon’s shared 

equipment facility CAMCOR. In a relatively simple process we were able to fabricate new 

device-design prototypes in a single day. A blank quartz mask consists of the quartz 

substrate and a thin chromium layer covered with AZ photoresist (Merck KGaA); a positive 

photoresist commonly used for thin (< 1 µm) photolithography. The AZ photoresist was 

exposed at 140 mJ/cm2 with a 420 nm laser using a SUSS MicroTec LI6 Laser Imager, 

which yields single-micron feature resolution. The exposed photoresist was then lifted off 

with AZ 7226 MIF developer, leaving exposed chromium in the intended areas. The 

exposed chromium was then wet etched, a process to which AZ is highly resistance. After 

leaving exposed quartz and developed AZ photoresist with chromium underneath. Finally, 

the remaining AZ was rinsed off with acetone, leaving a negative chromium image of the 

original exposure on quartz; that is the final photomask. 

3.6 Conclusion 

This novel technique for microfluidic device creation by no means replaces soft 

lithography, as, for instance, it eliminates the possibility of multilayer microfluidic devices 

required by many complex designs.  However, it does enable the creation of devices that 

are valuable in certain experimental contexts. The increased stiffness of the device allows 

for millimeter (and possibly larger) gaps between features without device collapse. 

Structures fabricated directly with photoresist enable fabrication of tall (h > 10 µm), small 

(R < 5 µm) features, with which bacteria can interact. Development and iterative design of 
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these new devices was a lengthy process that ultimately led to the high-throughput and 

high-precision experiments presented in the following chapter. 
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CHAPTER IV 

 

BACTERIA SCATTER OFF SMALL HIGH CURVATURE SURFACES VIA NON-

HYDRODYNAMIC STERIC INTERACTIONS 

 

 This chapter contains co-authored material; it has been adapted from K. Hoeger, 

T. Ursell, “Scattering of Rod-like Swimmers in Low Reynolds Number Environments” 

currently in submission at Nature Physics. In this work, I contributed to designing the 

research, performing the research, analyzing the data, and writing the paper. 

4.1 Introduction 

Microbes inhabit chemically complex and physically anisotropic environments – 

like wet soils or a mammalian gut – often using self-propulsion to find resources and 

expand into new territory. In these low Reynolds number settings drag quickly dissipates 

kinetic energy into heat, such that microbes must continually propel themselves to maintain 

persistent forward movement, and thus their kinematics conserve neither momentum nor 

energy. Across multiple length scales, swimming microbes interact with their physical 

environment in ways that alter their trajectories [14], [15], [30], [34], [50], [91]–[93]. For 

instance, hydrodynamic forces near surfaces potentiate relevant biological phenomena 

including cell adhesion [94], biofilm formation [95], [96], or colonization of medical 

devices like catheters [11], [12]. These physical interactions also present opportunities for 

influencing the motion of micro-swimmers using micro-fabricated environments [75], 

[97]–[99], for instance to deflect cells from surfaces [100], to passively concentrate them 
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in certain regions [17], or to enhance their motility via flow [101]. Sipos et al. [30] used 

micro-fabricated pillars to show that when swimming near convex surfaces with 

sufficiently small curvatures, hydrodynamic forces ‘trap’ cells in ~2D trajectories within 

~1 cell diameter of the surface. Similarly, bacteria propelled by helical (and hence chiral) 

flagella have been observed to swim in approximately constant-curvature trajectories 

staying close to flat surfaces for minutes at a time [102], with the direction of trajectory 

rotation linked to flagellar helicity [16]. However, above a critical curvature, entrapment 

decreases, and for pillars of radius less than ~50 µm the fraction of trapped cells rapidly 

decreases to zero [30]. Further, such surface trapping was reduced by collisions with small 

colloids (r  = 1.5 µm), which increased the rate of forward scattering and hence increased 

trajectory persistence [34].  

Current theory describes swimming cells as force dipoles with a surrounding 

toroidal ‘Stokeslet’ flow field [28] extending more than 10 µm from the cell surface, thus 

trajectory alterations that arise from interactions with steric obstacles are thought to be 

primarily hydrodynamic [31].  Model predictions vary due to differences in physical and 

geometrical assumptions, but generally reproduce the attractive trapping exhibited by low-

curvature surfaces. However, it is unknown whether such models accurately describe 

alterations in trajectories upon interaction with small obstacles on the order of 1 to 10 cell 

lengths. These size scales are relevant, for instance, in (wet) soil types where measured 

particle-size distributions indicate that the majority of particles (by number) with which a 

swimming microbe will interact are less than 10 cell lengths [35], [36]. Further, 

experimental results from [34] suggest that interactions with particles in the 1-10 cell length 
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range lead to scattering angles that are significantly smaller than those predicted by 

hydrodynamic models in similar geometries [31], [32].  

Thus, while interactions with high curvature surfaces favor forward scattering, the 

relative roles of hydrodynamics and sterics in the switch between entrapment and forward 

scattering remain unclear. In this work, we probed high-curvature scattering by imaging 

hundreds-of-thousands of interactions between flagellar-propelled fluorescent Escherichia 

coli and convex surfaces with positive curvature between 1 and 10 inverse cell lengths. We 

fabricated microfluidic devices in which bacteria swam among arrays of vertical pillars 

ranging in size from R = 3.4 µm to 31 µm. We computationally analyzed images to identify 

trajectories of individual bacteria and characterized scattering events by their impact 

parameter with respect to a pillar’s center. With that data, we calculated the probability 

distribution of scattering angles for the range of impact parameters −𝑅𝑅 ≤ 𝑏𝑏 ≤ 𝑅𝑅. We did 

not observe hydrodynamic trapping in this range of convex curvatures, but we did observe 

forward scattering across all measured impact parameters and radii. Across the range of 

pillar sizes tested, we found that the measured mean scattering angle, exit angle, and 

interaction time was in quantitative agreement with a relatively simple, fit-free sterics-only 

model. Our data support a hybrid sterics-hydrodynamics framework for understanding – 

and potentially controlling – swimmer-surface interactions. Together with previous work, 

our results underscore that in real-world environments – like ocean particulates [13], soils 

[35], [36], or a mammalian gut [26], [103] – micron-scale objects influence microbial 

motion, with potential effects on navigation and subsequent resource acquisition. Further, 

a physical understanding of how steric objects alter microbial trajectories presents 
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opportunities to design environments that control and/or affect their movements and 

resulting population dynamics. 

 

4.2 Characteristics of cell scattering from high curvature pillars 

As cells navigate through real-world environments, like wet sediments or a mammalian 

gut, they encounter solid, steric objects that alter their trajectory due to both hydrodynamic 

and steric forces. We wanted to understand the relative role that steric forces play in altering 

bacterial trajectories at scales about the length of a cell (3.75 µm) to about 10 cell lengths. 

We built microfluidic devices that present swimming cells with an array of micro-

fabricated steric pillars with sizes ranging from R = 3.4 to 31 µm. Cells were 

cytoplasmically labeled with GFP and their motion was imaged using a fluorescence 

microscope (see 4.X Methods). We imaged hundreds-of-thousands of interactions between 

swimming bacteria and these steric pillars. To each trajectory we applied custom object 

tracking algorithms to measure the impact parameter, b. We then calculated the outgoing 

trajectory vector and compared the angle between incoming and outgoing vectors to 

calculate the scattering angle 𝜃𝜃 (Fig. 4.1A/B). In Figs. 4.1, 4.3, and 4.8 C-E we show data 

for R = 8.3 µm; data for other pillar radii are shown in figure 4.2, 4.9, and 4.10. 
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Figure 4.1: (A) Schematic showing the impact parameter b for a cell impacting a pillar of 
radius R at an angle αo and then scattering from the pillar with an outgoing angle θ. As it 
slides along the pillar surface, the cell rotates and leaves contact with the pillar when its 
direction of motion, characterized by α, is tangent with the pillar surface, leading to a 
scattering angle θ. (B) Examples of maximum intensity projections of bacterial trajectories 
interacting with a pillar (drawn in grey) for clockwise (green) and counter-clockwise 
(magenta) paths. The arrows indicate the direction of movement and the scale bar is 10µm. 
(C) Heat map showing probability density per radian of an interaction yielding a scattering 
angle θ for a given dimensionless impact parameter (b/R), here R = 8.3 µm. Each column 
is a normalized distribution. Cells with positive impact parameter tend to slide around the 
pillar in the CW direction leading to a positive scattering angle (right lobe), while cells 
with negative impact parameter tend to slide CCW leading to a negative scattering angle 
(left lobe). A small fraction of trajectories for each lobe traverse the pillar with the ‘opposite’ 
handedness (e.g. right lobe for b/R < 0). Fig. 2 examines the scattering distributions for the 
indicated values of b/R (light vertical bars). 

 

 For each range of the impact parameter we classified trajectories as either 

going clockwise (CW) or counter-clockwise (CCW) around the steric pillar, producing 

normalized probability distributions for scattering angle. The sum of the CW and CCW 

scattering angle distributions for R = 8.3 µm is shown in Fig. 1C. These distributions 

exhibited common characteristics across all measured pillar radii. The two ‘lobes’ of the 

probability map are produced by the two chiral directions of motion, with the majority of 

CW paths corresponding to positive impact parameter and the majority of CCW paths 

corresponding to negative impact parameter (Fig. 4.1B/C). Each lobe has a negative slope, 
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where increasing the magnitude of b monotonically decreases the mean scattering angle, 

which is almost always acute. As the impact parameter approaches the object size (|𝑏𝑏| →

𝑅𝑅) the mean scattering angle approaches, but does not cross, zero, consistent with a lack of 

hydrodynamic trapping. We are not aware of previous hydrodynamic models that examine 

our exact scattering geometry (i.e. an upright cylinder between two large, flat surfaces), 

however, hydrodynamic models of force-dipole swimmers interacting with spherical 

obstacles (i.e. a similar geometry and similar length scale) [31] predict a wider range of 

angular deflections that cross 𝜃𝜃 = 0 . Further, we observed that the maximum mean 

scattering angle increased with pillar radius (SI Fig. 5), which is in contrast to 

hydrodynamic models that predict longer interaction times, and hence smaller scattering 

angles for increasing radius of curvature [31]. Likewise, the observed behavior differs from 

the longer interaction times during surface trapping around flat or low curvature objects 

[30].   

Consistent with previous measurements [34], the vast majority of steric interactions 

led to forward scattering (−𝜋𝜋 4� < 𝜃𝜃 < 𝜋𝜋
4� ). However, when b/R was positive we 

measured a significant (minority) fraction of swimmers that rotate CCW, extending the 

CCW-rotator distribution beyond the b = 0 centerline, with that fraction decaying to 0 as 

𝑏𝑏/𝑅𝑅 → 1 (Figs. 4.1C and 4.3). 
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Figure 4.2 Column normalized scattering angle distributions as a function of 
dimensionless impact parameter b/R, for all pillar radii measured. We see the characteristic 
double lobe corresponding to CW and CCW motion around the pillar. The separation 
between lobes increases with pillar radius. For the two largest pillars, noise begins to 
dominate as we have significantly few interactions captured. The red lines show the 
predictions from our sterics-only model. 

 

Similarly, when b/R was negative we measured the same effect mirrored across the b = 0 

and 𝜃𝜃 = 0 lines. In either case, we refer to these as ‘counter-rotator’ trajectories – these 

forward scattering events correspond to trajectories that traverse the pillar the ‘long way’ 

around. We discuss a potential mechanism underlying this effect in the modeling section 

below. 
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Figure 4.3: Each column (A, B, C) shows the aggregated scattering data for ~2000 
interactions for different values of b/R, as indicated on the plots on the bottom row. (top 
row) Aligned interaction trajectories for a bacterium (shown approximately to-scale in 
orange) scattering from a pillar with R = 8.3 µm. Green trajectories / histograms correspond 
to CW paths and magenta trajectories / histograms correspond to CCW paths. In the top 
row, the color intensity reports on the fraction of trajectories that passed through a given 
pixel; color saturation was chosen to show a maximum fraction of all trajectories. (bottom 
row) Each plot shows the normalized distribution for CW (green) and CCW (magenta) 
scattering angles, with the number of trajectories written on each distribution.  The MLE 
fits to a modified von Mises distribution are shown as the dashed lines, with corresponding 
CW probabilities and 95% confidence intervals shown CW in each plot. In general, as 
b/R → 1, 𝑝𝑝𝐶𝐶𝐶𝐶 → 1 and 〈𝜃𝜃〉 → 0. 

 

In Figure 4.3, we examine the trajectories and chiral angle distributions for three 

distinct ranges of the impact parameter, again for R = 8.3 µm.  The top row of Fig. 4.3 

shows the probability that a trajectory passed through a given XY position (pixel) – in any 

Z-plane – during a scattering interaction, with CW trajectories shown in green and CCW 
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trajectories shown in magenta. These scattering maps are formed by setting a pixel to one 

if a trajectory passes through it (zero otherwise) and then averaging over all such binary 

images for the given range of b.  This visualizes the general trend between 𝑏𝑏/𝑅𝑅 and 𝜃𝜃, the 

statistical nature of these scattering events (i.e. the ‘spray’ of trajectories that result from 

distinct ranges of 𝑏𝑏/𝑅𝑅), and the spatial distribution of counter-rotator trajectories.  

For each chiral direction within a narrow bin of 𝑏𝑏/𝑅𝑅 the observed scattering angles 

were well described by a von Mises distribution with a constant offset 

ρ(θ; ⟨θ⟩,σ, c) =
c

1 + 2πc
�1 +

e
cos(θ−<θ>)

σ2

2πcI0(σ−2)�
(1) 

where  𝜃𝜃  is the measured scattering angle, 𝜎𝜎  the width of the distribution in radians 

(analogous to the standard deviation of a gaussian), ⟨𝜃𝜃⟩ is the mean scattering angle, c is 

the offset parameter, and 𝐼𝐼𝑜𝑜 is the modified Bessel function of the first kind (Fig. 4.3 bottom 

row). The offset accounts for the small fraction of cells whose interactions with a pillar 

lead to a uniform, random scattering angle about the unit circle, referred to in [34] as 

‘tumble-collisions’ (see Fig. 4.4). We used maximum-likelihood estimation to fit the mean, 

width, and offset parameters for these scattering angle distributions as a function of 𝑏𝑏/𝑅𝑅, 

and to determine confidence bounds for those parameters (e.g. see Fig. 4.5). Those fits are 

shown as dashed lines in Fig. 4.3 bottom row. We calculated the fraction of trajectories 

that scattered CW (𝑝𝑝CW) as a function of impact parameter, and found a smooth and chirally 

symmetric transition from majority CCW to majority CW as 𝑏𝑏/𝑅𝑅 increased from -1 to +1, 

with larger radii producing a steeper transition (see Fig. 4.6).  In the bottom row of Fig. 4.3 

we show the corresponding values of 𝑝𝑝CW with 95% confidence bounds. For each binned 
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range of b/R, the width of the scattering distribution was approximately constant (~0.3 

radians across all data) and chirally symmetric (see Fig. 4.7). There are likely multiple 

factors that contribute to this spread in scattering angle, including: rotational and 

translational diffusion of the cell as it swims; variations in cell length, shape, and axis-of-

propulsion; micro-scale surface roughness; and imaging imprecision. Distinct from those 

sources, the model described below offers a quantitatively consistent mechanism for the 

observed spread in scattering angle across b/R, that relates to the existence of the counter-

rotator trajectories. 

 

4.3 Modeling Cell Scattering 

 Hydrodynamic forces are known to significantly alter bacterial trajectories near flat 

and low-curvature surfaces [16], [30]. We wanted to know if steric forces alone could 

account for the observed interactions between swimming cells and steric pillars. We 

developed a model that adheres to the following assumptions: (i) hydrodynamic forces and 

torques between swimmer and pillar surfaces are negligible, (ii) friction between cell and 

pillar surfaces is negligible (see SI), (iii) the cell is propelled from the rear by a fixed 

propulsion force F, in-line with its long-axis, (iv) the cell is a thin (𝑅𝑅cell/𝐿𝐿 ≪ 1) stiff rod 

of length L, measured from the center of its flagellar bundle to the cell tip [30], (v) free-

swimming motion has a persistence length much larger than the interaction zone, and (vi) 

that forces that generate rotation of the cell in the plane of the microfluidic device (FR) are 

due to contact between that cell and the solid pillar. 
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Figure 4.4: Plot of the von Mises offset parameter (called c above) as a function of b/R 
across the four smallest radii. The data are the modes from the MLE fits for the parameter 
estimation. The offsets are roughly constant across |b/R| and approximately chirally 
symmetric, indicating that the frequency of random scattering events is independent of 
|b/R| and not related to direction. There is also a rough upward trend in the offset with 
increasing pillar radius, indicating that random scattering is more common around larger 
pillars. This may be related to the fact that larger pillars correspond to longer interaction 
times, and hence a higher probability of a random event (e.g. chemotactic tumble) during 
the interaction. It may also result from increased hydrodynamic trapping at larger radii, 
which causes cells to follow trajectories around the pillar for much longer times than 
steric scattering, but with a random detachment time, and hence random angle. 
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Figure 4.5: Example output of the MLE fitting. (A) A CW chiral scattering distribution 
with the MLE fit in red. (B) The natural log of the MLE fit surface for all data in the 
histogram, showing the mode values for all fit parameters. (C) The probability 
distribution for the measured value of hθi showing the mode and 95% confidence 
interval. (D) The probability distribution for the measured value of σ – the width of the 
scattering distribution – showing the mode and 95% confidence interval. 
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Figure 4.6: Fraction of cells that rotate clockwise around a pillar as a function of 
dimensionless impact parameter. Assuming the pillar is centered on a local Cartesian 
coordinate system, clockwise rotation was defined by cell trajectories that crossed the 
center-line (x = 0) with y > 0 in the rotated frame. The I expectation from the steric model 
is that this would be an increasing step-function at b/R = 0. Based on visual inspection of 
imaging data, as well as quantitative analysis of breaking the model assumption that the 
initial contact angle (α𝑜𝑜) is set purely by b, R, and δ, we hypothesize that fluctuations in 
cell orientation upon impact are what produce trajectories that traverse the pillar the ‘long 
way’ around (i.e. opposite to the chirality predicted by the steric model). Such fluctuations 
are caused by translational and rotational diffusion of the cell body, as well as variations 
in cell morphology that affect initial contact angle. If those fluctuations in orientation due 
to diffusion and morphology are rotationally isotropic, then we expect (and observe) that 
these curves are symmetric upon flipping about b/R = 0 and 𝑝𝑝𝑐𝑐𝑐𝑐= ½, regardless of radius. 

 

Typical Reynolds numbers for swimming bacteria are 10−4 −  10−3 , indicating that a 

constant propulsion force results in a constant cellular velocity (here measured to be ~23 

µm/s from the mean free-swimming speed). 
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Figure 4.7: Plot of the von Mises width parameter (called σ above) as a function of b/R 
for R = 8.3 µm. The data are the modes from the MLE fits and the bounds are 95% 
confidence intervals on the parameter estimation. The width parameter is approximately 
constant across all values of b/R and is approximately chirally symmetric. 

 

We model the drag force on each end of the cell by a spherical Stokes drag with particle 

radius equal to cell radius (0.5 µm) and fluid viscosity equal to that of water. The length of 

the cell L does not change and so its motion is completely described by the motion of each 

end point P1 and P2 which are parametrically described by ( x1(t) , y1(t) ) and ( x2(t) , y2(t) ). 

Assuming that viscous drag is the primary constraint on motion, we assume that all 

velocities are proportional to net force with a fixed mobility σ. 

𝑣𝑣 = 𝐹𝐹σ (2) 
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 The propulsion force F, independent of any state of motion can be decomposed into a 

component that is parallel to the scattering surface F|| and a component normal to the 

surface F⊥, such that given the angle between the cell orientation and tangent surface α: 

F⊥ = F sin(α) (3) 

F|| = F cos(α) (4) 

We set the coordinate origin to the circle’s center and hence 

x2 = −R cos(ϕ) (5) 

y2 = R sin(ϕ) (6) 

and thus 

x2̇ = ϕ̇R sin(ϕ) (7) 

y2̇ = ϕ̇R cos(ϕ) (8) 

Using the parallel force we can also write: 

y2̇ = F|σ cos(ϕ) = Fσ cos(α) cos(ϕ) (9) 

x2̇ = F|σ sin(ϕ) = Fσ cos(α) sin(ϕ) (10) 

These equations both dictate that 

ϕ̇ =
Fσ
R

cos(α) (11) 

with the initial condition related to the impact parameter by 

ϕo = sin−1 �
b
R�

(12) 
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and the initial value of 𝛼𝛼 is  

αo =
π
2
−ϕo (13) 

because we assume the cell impacts in a flat orientation (i.e. y1 = y2). Then the rate of 

change of 𝛼𝛼 due to mechanical torque is 

α𝑇̇𝑇 = −
𝐹𝐹𝑅𝑅σ
𝐿𝐿

(14) 

where 

FR = F|| cos �
π
2
− α� = F|| sin(α) = F cos(α) sin(α) (15) 

And the rate of change of 𝛼𝛼 due to the surface curvature is 

αĊ = −ϕ̇ = −
Fσ
R

cos(α) (16) 

Therefore, 

α̇ = αṪ + αĊ =
Fσ
L

cos(α) sin(α) −
Fσ
R

cos(α) (17) 

This model predicts that if the cell is perpendicular to the surface (𝛼𝛼 = 𝜋𝜋/2) then 𝛼̇𝛼 = 0 

and we assume that at this point the microswimmer leaves the surface. We then numerically 

solve eqn. 17 for 𝛼𝛼 for the time 𝑡𝑡𝑓𝑓 and angle 𝜙𝜙𝑓𝑓 that occur when the cell leaves the surface. 

From that, the scattering angle is given by 

θ =
π
2
−ϕ. (18) 

This model also predicts that there is a non-zero critical angle 
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αc = − sin−1(ρ) → ρ < 1 (19) 

that results in a stable orientation with respect to the surfaces, but the fact that this angle is 

negative means that this only occurs for cells on the ‘inside’ (i.e. negative curvature), which 

may be part of the consistent orientation of motile Bacillus Subtilis cells observed on the 

inside curvature of a circle [104].  

An interaction with a pillar of radius R was computationally triggered when a 

bacterium came within 𝑅𝑅 + 𝛿𝛿 of the pillar center, where 𝛿𝛿 is the radial zone around the 

pillar inside of which we measured interactions, usually 2 – 3 μ𝑚𝑚 from the pillar surface.  

Thus, for a given value of b, the initial straight line path from entry into the interaction 

zone until contact with the pillar has a length 

s1 = R ���1 +
δ
R
�
2

− �
b
R
�
2

− �1 − �
b
R
�
2

� (20) 

which given our assumption of a constant swim speed v gives us a transit time of 

𝑡𝑡1 =
𝑠𝑠1
𝑣𝑣

(21) 

and the distance between the cell losing contact with the pillar and the interaction zone exit 

point is 

𝑠𝑠3 = 𝑅𝑅��1 +
δ
𝑅𝑅�

2

− 1 (22) 

which again gives us a transit time 

𝑡𝑡3 =
𝑠𝑠3
𝑣𝑣

(23) 
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Given the time spent interacting with the pillar 𝑡𝑡2 from our numerical solution to equation 

17, the total time spent within the interaction zone is 

ttot = 𝑡𝑡1 + 𝑡𝑡2 + 𝑡𝑡3 = 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑜𝑜 (24) 

which we compare to our data in figure (b vs time). In our data processing, we subtract a 

constant length of 1 𝜇𝜇𝜇𝜇 from 𝑠𝑠1 to account for the offset between the position of the tip 

which contacts the pillar and the position of the cell centroid. It is worth noting that the 

assumptions of this model apply to other rod-like microswimmers propelled on-axis from 

the rear, including abiotic Janus particles [105]. Likewise, while the differential equation 

above describes the interactions with a convex surface of constant radius, the component 

of the rate of change of 𝛼𝛼 with respect to the surface (eqn. 17) can be adapted to other 

convex surfaces.  

 This model has no fit parameters as cell length is externally known (𝐿𝐿 = 3.75 𝜇𝜇𝜇𝜇, 

which accounts for the propulsion force acting from part-way into a typical flagellar bundle 

[30]), pillar radius is measured from electron microscopy of our microfluidic devices (see 

Fig. 3.2), the fluid viscosity is that of water, the initial contact angle is directly related to b, 

and the average swim speed is measured with our image analysis (and hence application of 

Stokes drag gives the average propulsion force F). We used these known parameters and 

numerically solved eqn. 17 for the interaction time, exit angle (β), and scattering angle (θ). 

In figure 4.8B, we compare the model predictions for mean scattering angle to measured 

data across four different radii. In figure 4.8 C-E we compare the measured distributions 

for scattering angle, exit angle, and interaction time to the model predictions for 𝑅𝑅 =

8.3 μ𝑚𝑚 with other radii shown in figures 4.2, 4.9, and 4.10.  
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 Overall, we find good quantitative agreement between the sterics-only model and 

the measured scattering distributions over the range −𝑅𝑅 ≤ 𝑏𝑏 ≤ 𝑅𝑅, especially for pillar radii 

≲ 20 μm. We note, however, that as the radius of the cell approaches the radius of the 

pillar (i.e. for 𝑅𝑅cell~𝑅𝑅) the model assumption of the cell represented by a thin stiff rod 

breaks down for small impact parameters, leading the model to underestimate the scattering 

angle for small b. Likewise, assuming that a cell impacts the pillar surface with its long 

axis parallel to the incoming scattering vector (e.g. as drawn in Fig. 1A), the steric model 

predicts all trajectories with b > 0 should go CW, while all trajectories with b < 0 should 

go CCW, or said differently, the fraction of CW trajectories would be an increasing, 

discontinuous step function at b = 0. However, as described earlier the existence of counter-

rotator trajectories is in contrast to this prediction. Correspondingly, we did not measure a 

sharp step-function in the fraction of CW rotators vs. 𝑏𝑏/𝑅𝑅, though across all radii that 

function was chirally symmetric, montonically increasing with 𝑏𝑏/𝑅𝑅, and crossed 𝑝𝑝CW =

1/2 at b = 0, as expected for any mechanism that obeys the relevant symmetries (see SI 

Fig. 10). 

Our model assumed that initial contact angle (𝛼𝛼𝑜𝑜) was strictly determined by 𝑏𝑏/𝑅𝑅 (i.e. the 

cell swims straight after entering the interaction zone). To explain the existence of counter-

rotator events, we explored the model’s predictions when the initial contact angle was 

offset by an amount ∆𝛼𝛼 (see SI Fig. 13A), corresponding to a non-contact rotation of the 

cell immediately before impact. This approach was motivated by our imaging data, in 

which we observed cells whose variations in shape and/or axis-of-propulsion caused 

precession about the long axis as it swam toward a pillar – this produced an overall 

persistent path, but a ‘wobbling’ cell axis. 
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Figure 4.8: Comparing the steric model to experiments. (A) A schematic representation of 
the forces and geometrical factors described by the sterics-only model. The propulsion 
force F is generated by the rotation of helical flagella. The length L is the distance – from 
force-center to cell tip – of the straight, stiff 1D element that F acts on in tangent (orange 
dashed line). The initial contact angle (αo) is found from the impact parameter b. The model 
assumes that when the angle α → 0 the cell ceases to interact with the pillar. The inset 
schematic shows the relationship between a trajectory and its exit angle β, as well as the 
interaction time, 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖 . (B) ⟨θ⟩  vs. b extracted from MLE fits of the Von Mises 
distributions with 95% confidence intervals, plotted on top of the sterics-only model 
predictions with L = 3.75 µm. (C – E) Scattering angle (θ), exit angle (β), and interaction 
time distributions as a function of dimensionless impact parameter b/R, with R = 8.3 µm. 
The red lines show the model predictions for the respective measurables. 

 

Likewise, chemotactic tumble events within the interaction zone could also produce such 

rotations. Lacking specific knowledge about the distribution of ∆𝛼𝛼 (our imaging cannot 

reliably resolve this momentary shift in orientation), we made the simplest assumption – 

that ∆𝛼𝛼 was a flat distribution, symmetric about zero with a single parameter specifying its 

width.   
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Figure 4.9: Interaction zone exit angle distributions (β) as a function of dimensionless 
impact parameter b/R, across a range of pillar radii (same type of data as Fig. 3D). The red 
lines show the model predictions for ⟨β⟩ given the listed radii. Model predictions were 
calculated by using the first cell trajectory point (in the rotated frame) outside of the 
interaction radius upon exit. All calculations use the same exogenously specified cell length 
of L = 3.75 µm. Notably, the ‘signal-to-noise’ ratio of measured data decreases with 
increasing pillar radius because the the number of pillars and hence number of interactions 
we can observe in a single field-of-view decreases faster than R−2 . 

 

We chose an angular width of 0.5 radians, or about 1 cell diameter rotating about the cell’s 

center (𝐿𝐿/2), in either direction. The model predictions for evenly distributed values of ∆𝛼𝛼 

are shown in SI Fig. 13B for R = 8.3 µm.  Laid over the measured data, the model predicts 

shifts in the chiral discontinuity point in 𝑏𝑏/𝑅𝑅 , a distribution of scattering angles that 

changes with 𝑏𝑏/𝑅𝑅, and concentrations of counter-rotator trajectories that are all consistent 

with the measured data.  
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Figure 4.10: Interaction time distributions as a function of dimensionless impact parameter 
b/R, across a range of pillar radii. The red lines show the model predictions, which were 
calculated by adding: (i) the transit time from interaction zone entry to pillar contact using 
the average cell speed, (ii) the time spent in contact with the pillar using integration of the 
differential equation, and (iii) the transit time from tangency to exiting the interaction zone 
using the average cell speed. Rotational diffusion shortens the sliding time as trajectories 
approach b/R → 0, in a way that is not accounted for in the sterics-only model. Notably, 
the ‘signal-to-noise’ ratio of measured data decreases with increasing pillar radius because 
the the number of pillars and hence number of interactions we can observe in a single field-
of-view decreases faster than R−2 . 

 

For larger pillar sizes (𝑅𝑅 ≥ 20 µm), the general trend between impact parameter 

and scattering angle is well-described by the model, but the model consistently 

overestimates the mean scattering angle (SI Fig. 14). Our model does not easily account 

for this effect, but these trends are consistent with scattering interactions from lower 

curvature surfaces being subject to increased hydrodynamic torque that ‘over rotates’ the 

cell during the interaction relative to the steric model. 
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Figure 4.11: Sensitivity of chirality and scattering angle on initial impact angle αo + ∆α. 
(A) Schematic showing the definition of the offset impact angle (∆α). The model fits shown 
in the main text and preceding figures 4.2, 4.9, and 4.10 assume ∆α = 0, in other words that 
b and R are the only parameters needed to determine αo. However, all of our scattering data 
showed trajectories that circumvented the pillar the ‘long way’ around, that is, with a 
chirality opposite to what is predicted by the steric model – these are the highlighted lobes 
in (B). We hypothesized that a combination of rotational diffusion and asymmetries in 
cellular morphology could lead to significant rotation of the cell body between entry into 
the interaction zone (which defines b) and contact with the pillar (which defines αo). We 
accounted for this possibility in the model by adding a constant offset (∆α) to the initial 
impact angle (αo), and then calculated the resulting scattering angle ⟨θ⟩. (B) As an example, 
we compare these scattering angle functions over a uniform range of offset impact angles 
(∆α) (see colored lines and legend) to the measured data for R = 8.3 µm. We found that (i) 
the lobes of measured, atypical chiral probability could be explained by reasonable values 
of ∆α, and (ii) that the observed spread in measured scattering angle for a particular value 
of b/R could result from the same variations in ∆α. Likewise, varying ∆α also shifts the 
discontinuity (dashed vertical lines) along the b/R axis in a way consistent with the 
observed probability distributions. 

 

For instance, it was shown previously that when cells interact with pillars of radii 20 to 30 

µm, hydrodynamic coupling causes a significant fraction of cells (~20%) to be trapped in 

trajectories that go around the pillar, with interaction times ten-fold longer than our 

measured interaction times [30]. Thus, our data and model are consistent with the 

hypothesis that for cells scattering from pillars whose radius of curvature is 1 to 10 cell 
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lengths and whose cellular geometry meets the thin-rod condition, the forces and torques 

that govern scattering are primarily steric in origin. 

 

 

 
Figure 4.12: Comparison of the model predictions (solid lines) to the measured data for 
mean scattering angle with 95% confidence intervals around the mean, for the two largest 
pillars measured. The model overestimates the mean scattering angle at these larger radii, 
consistent with hydrodynamic forces near these low curvature surfaces over-rotating the 
cell relative to a sterics-only mechanism, and thus causing a smaller scattering angle. 

 

 

4.4 Discussion 

 We measured a primarily forward-scattering interaction between swimming E. coli 

and surfaces with radii of curvature comparable to cell length and generally larger than cell 

radius, to determine the relative importance of sterics at these length scales. Various aspects 

of the mean behavior deviate significantly from hydrodynamic models of similar situations 
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[31], [32] but are well described by a steric model that excludes cell-surface hydrodynamic 

coupling. This provides strong evidence that swimmers interacting with small, high 

curvature surfaces are primarily subject to steric forces and that hydrodynamics do not play 

a significant role in these situations. We did see a significant deviation from our steric 

model as pillar radii increased, which supports previous experimental findings that 

hydrodynamic forces play a significant role in describing the motion of bacteria near larger 

convex surfaces. Taken together, these data suggest that the question of whether swimmer-

surface interactions are governed primarily by sterics or hydrodynamics, is one of length 

scales rather than absolutes.   

The sterics-only model makes the additional prediction that swimmers interacting 

with negative curvature surfaces (concave and where 𝐿𝐿/𝑅𝑅 < 1) have a stable non-zero 

contact 𝛼𝛼𝑐𝑐 = −sin−1(𝜌𝜌). This effect might be relevant in related studies of the motion of 

another rod-like flagellated bacterium Bacillus subtilis [104]. In that work, swimming cells 

were contained within a circular hole of radius R, effectively presenting the negative 

curvature analog of a pillar.  Their motions were shown to exhibit stable angular 

orientations with respect to the surface of the circular hole, as measured by the same angle 

𝛼𝛼. 

We note that our experimental setup has a number of limitations that cannot be 

circumvented by straightforward engineering. First, the pillar surface is fully characterized 

by the radius R, but it is also a two-dimensional surface described by two principle 

curvatures, 0 and 1/R.  It may be that surfaces whose principal curvatures and/or Gaussian-

curvature vary produce distinct scattering behavior, potentially (though not necessarily) 

still well-described by sterics at these length scales. Second, our microfluidic devices had 
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a depth of ~15 µm which has the advantage of permitting full Z imaging. However, it is 

worth noting that swimmer-surface hydrodynamic effects depend on fluid dimensions, 

because the Stokeslet that describes the propulsive flow-field of flagellated bacteria [28] 

extends >10 µm microns from the cell surface. Third, the three-dimensional nature of the 

device also means that incoming trajectories toward a pillar are not necessarily strictly 

parallel with the plane of the device. These non-parallel scattering interactions likely 

contribute to both the width of the scattering distributions and potentially as an additional 

source of counter-rotators. Finally, swimming bacteria are known to exhibit 

hydrodynamically coupled, chiral motion on surfaces [16]; a small fraction of trajectories 

exhibited this surface-coupled behavior but not in sufficient numbers to influence 

scattering statistics. 

Interaction times from the steric model agree better with measurements as |𝑏𝑏/𝑅𝑅| →

1; near b = 0, however, the initial contact angle approaches |𝜋𝜋/2| where the model predicts 

zero net torque on the cell, resulting in very long interaction times. While the data does not 

show this spike in interaction times about b = 0, this is not surprising because both simple 

rotational diffusion and/or non-zero offset impact angles (∆𝛼𝛼) remove the portion of the 

contact trajectory that takes the longest, thus the model tends to overestimate the average 

interaction time near b = 0. 

Overall the strong, measured correlation between impact parameter and scattering 

angle suggests that – regardless of the mechanism – the placement of pillars or other steric 

objects could be used to alter transport properties of cells that are associated with their 

trajectory [101]; for instance, net directionality, spatial concentration, path persistence 

length, or mean-squared displacement. Thus, by choosing appropriate values for object size, 
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shape, and position, cells may exhibit distinct patterns of trajectories through arrays of 

steric objects, allowing experimentalists to influence biologically important aspects of cell 

motion through the design of micro-fabricated environments. 

4.5 Methods 

 Experiments used wild-type Escherichia coli (HMMG 1655 parent strain) 

labeled with cytoplasmic monomeric super-folder green fluorescent protein (GFP) under 

kanamycin selection. Cells were grown from frozen stock in Luria broth with 50 µg/mL 

kanamycin for 4 hours at 37°C. In order to control chemical inputs to cellular motility and 

decrease auto-fluorescence of the media, 25 µL of the liquid culture were diluted into 500 

µL of a defined minimal media composed of 10 µM thiamine, 100 mM galactose, and 1 

mM each of methionine, threonine, and leucine, in a buffer composed of 0.79 mM 

magnesium chloride, 45 µM Calcium Chloride, 12 µM Ferric Nitrate, 0.34 mM sodium 

citrate, 7.6 mM Ammonium Sulfate, 27 mM potassium phosphate dibasic, and 12.8 mM 

potassium phosphate monobasic. We adjusted the dilution, and hence cell density (1 cell / 

~1000 µm2), so that the majority of interactions were between a single pillar and a single 

cell. These interactions were imaged in atypical microfluidic devices (described in detail 

in chapter 3) that supported significantly larger device aspect ratios than are possible in 

typical soft polydimethylsiloxane (PDMS) lithography devices [106]. Pillars with radii 

between 3.4 and 31 µm were patterned onto flat silicon surfaces using SU-8 photoresist 

(Kayaku Advanced Materials Inc.) exposed with a Hoya L-37 long-pass filter (see SI for 

fabrication details). To cover and seal the device, we cast a ~100 µm layer of PDMS 

adhered onto a glass slide which was then mechanically compressed onto the patterned 

substrate for the duration of image acquisition. The increased stiffness of thin PDMS on 
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glass allowed us to create wide, support-free areas in the device while maintaining a thin 

fluid layer without the risk of device collapse. Devices consisted of a single chamber 8 mm 

x 6 mm with a depth of ~15 µm. The device surface was divided into six regions, each 

patterned with a triangular array of pillars of constant radius with R = 3.4, 5.8, 8.3, 10.6, 

20.5, and 31 µm (see SI Fig. 12), and an open control region without pillars. Each pillar 

was spaced at least 10 µm edge-to-edge from neighboring pillars to ensure that each 

interaction was hydrodynamically independent of nearby pillars. Before loading cells, we 

loaded the device with minimal media plus 5% (by weight) Bovine Serum Albumin (BSA) 

and left for five minutes. This coats the device surfaces with BSA which decreases cell-

surface adhesion. The devices were loaded by pulling the diluted suspension of GFP-tagged 

E. coli via a single inlet, single outlet device layout, and subsequently sealing those ports 

to halt global flow. We imaged bacterial motion at 21.5 frames per second, for 5 – 10 

minutes at a time, with an automated Nikon Eclipse TI-E fluorescence microscope using a 

Plan Fluor ELWD 20x Ph1 ADM objective and an Andor iXon EMCCD camera. This 

ultrasensitive camera allowed us to capture images with sufficient signal-to-noise at low 

illuminations, thus minimizing phototoxic effects on cell physiology and motion. The 

depth-of-field of the 20x objective allowed us to image cells across the entire Z-range of 

the device. The chamber height constrained cells to move primarily in two dimensions, and 

thus we did not track vertical motion. Cell segmentation and subsequent XY motion 

tracking were performed by applying a background-subtracted, standard deviation 

threshold to identify contiguous pixel blocks and their centroids that corresponded to cells. 

Around each pillar we defined a zone of fixed width (𝛿𝛿 = 2.2 µm); entry of a cell centroid 

into that zone defined the ‘start’ of an interaction and exit from that zone defined the ‘end’ 
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of an interaction. Valid trajectories (those used in the Results) had 10 XY positions (10 time 

points, ~0.5 s) before entering the interaction zone – these points were used to calculate the 

impact parameter b – and 10 XY positions after exiting the interaction used to calculate exit 

angle 𝛽𝛽 and scattering angle 𝜃𝜃 (Fig. 1). Trajectories were further filtered to exclude cases 

where: (i) more than one cell was in the interaction zone during the duration of an 

interaction, (ii) the interaction duration was greater than a cutoff (indicative of possible 

surface adhesion or physiological issues), or (iii) the trajectory was highly erratic upon 

entry or exit – defined by a threshold in the absolute curvature of the path immediately 

before entry or immediately after exit, respectively. We collected between ~30,000 and 

100,000 valid interactions per pillar radius yielding a roughly even distribution of sampled 

impact parameters across −𝑅𝑅 < 𝑏𝑏 < 𝑅𝑅 . We validated the entire data acquisition and 

processing pipeline by measuring trajectories of cells in open regions of the microfluidic 

device devoid of pillars. We defined fictitious pillars (𝑅𝑅fict) and interaction zones and 

applied our image processing to the motion of cells through those regions. Across the range 

of impact parameters −𝑅𝑅fict < 𝑏𝑏 < 𝑅𝑅fict we measured the distributions of scattering angle, 

exit angle, and interaction duration for bacterial trajectories, subject to the same filtering 

requirements discussed above. We then compared the means of the scattering angle, exit 

angle, and interaction duration to a fit-free free-swimming model of dynamics through the 

fictitious circular interaction zone, with quantitative agreement between the two (Fig. 4.13). 

 



66 
 

 
 

Figure 4.13: Comparison of data and null-model predictions in the case of no steric 
interaction. We collected imaging data in a featureless area of our microfluidic device and 
calculated the same relationships for scattering angle (A, θ), exit angle (B, β), and 
interaction time (C), assuming a nominal fictitious pillar size of R = 5.8 µm with an 
interaction zone of δ = 2.2 µm. We used the full data collection and analysis pipeline 
employed with ‘real’ steric interaction data to this scenario that lacked steric interactions 
(call this the ‘null model’). The null model makes specific, quantitative predictions of the 
(mean) relationships between dimensionless impact parameter (b/R) and, respectively, 
scattering angle (θ), exit angle (β), and interaction time. The heat maps are the measured 
control data, the red lines are the zero-fit predictions of the null model, again assuming the 
same L = 3.75 µm. The points (white in A and B, black in C) are the means of the measured 
control data suitable for comparison to the null model. Note that the predictions for ⟨θ⟩ and 
⟨β⟩ under the null model are starkly, qualitatively distinct from the predictions of the steric 
model. These mean values show a mild systematic deviation from the null model as |b/R| 
→ 1 that lies within a standard deviation of the mean of the data (vertical data bars). We 
speculate that this results from differences in path length and number-density of paths 
exiting the interaction zone along its circular boundary. Such deviations break the null-
model assumption of persistence length λ ≫  (R + δ), producing an asymmetry that 
progressively grows as |b/R| increases. 
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Figure 4.14: Based on the symmetries present in the propulsion of the bacteria and within 
the microfluidic device, the distribution of scattering angles as a function of dimensionless 
impact parameter should be – regardless of mechanism – symmetric when mirrored about 
both the θ = 0 and b/R = 0 axes. Using the MLE fits to a modified von Mises distribution, 
here we plot ⟨θ⟩ vs. b/R with 95% confidence intervals, with the appropriate mirroring to 
plot the CW and CCW trajectories overlaid. Across the range of b/R, the data appear 
approximately symmetric, with mild systematic asymmetry for some radii. These slight 
chiral asymmetries are likely due to a combination of (observed) systematic asymmetries 
in the radius of the pillars with height due the fabrication process (see Fabrication Details 
and electron microscopy images, chapter 3). 
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CHAPTER V 

 

SCATTERING INTERACTIONS IN OBSTACLE ARRAYS GUIDE BACTERIA 

 

5.1 Introduction: Bacterial Motion in Anisotropic Environments 

Bacteria have been found to inhabit a myriad of natural and artificial environments 

on Earth, from hydrothermal vents in the deep ocean [107], [108], the guts of macro-

organisms [7]–[9], and even medical equipment such as catheters [12]. In order to navigate 

these chemically and physically heterogeneous environments many bacteria rely on self-

propulsion to expand their colonies or to traverse up nutrient gradients and down repellent 

gradients. The physical surfaces these bacteria interact with fundamentally alter the ways 

in which bacteria move. Pusher-type bacteria that propel themselves by rotating their 

flagella, hydrodynamically couple to large, flat surfaces causing semi-circular trajectories 

with radii of curvature typically ~10-20 μm, that persist for tens of seconds to minutes [16], 

reducing the persistent motion of cells, affecting, for instance, the formation of biofilms on 

surfaces. On the other hand, patterning a concave boundary on such surfaces reduced cell 

accumulation on surfaces by more than 50% relative to the flat surfaces [100]. 

Alternatively, the introduction at low density ( 2%  coverage by area) of small 3μm 

diameter spherical obstacles on a flat surface was found to enhance the persistence of 

surface-bound cells via a forward scattering interaction with the obstacles [34]. It has also 

been proposed that E. coli are able to decrease their tumble rate in environments containing 
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50 µm square or 50 µm diameter circular pillars in order to maintain their mean rate of 

motion up an attractant gradient [27]. 

In our own work (presented in chapter IV) we studied the interaction between 

swimming E. coli and high-curvature convex surfaces and presented evidence and a 

theoretical model that the underlying physical mechanisms are primarily steric in nature. 

In that experiment, we observed the effect these interactions had on outgoing cell 

trajectories as a function of the incoming trajectory. The strong correlation between impact 

parameter and scattering angle suggests that on lengths much longer than cell or pillar size, 

the placement of pillars could be used to alter the transport properties of cells associated 

with their trajectory, specifically their path persistence length and their mean-squared 

displacement. Thus, by choosing appropriate values for pillar placement and size, cells may 

exhibit distinct patterns of trajectories through arrays of pillars, allowing experimentalists 

to shift the balance between ballistic, diffusive, and sub-diffusive motions of swimming 

cells in different microfabricated environments. To probe the aggregate effects of many 

such cell-pillar interactions on cell motility, we created devices that contained multiple 

triangular arrays of pillars across a range of pillar lattice constants and measured cell 

trajectories within these arrays. We found that the mean squared displacement (MSD) of 

cell trajectories was largely unaffected by pillars across densities with minor deviations at 

the highest pillar densities measured. However, we observed that at the highest pillar 

densities the direction of motion was tightly constrained along particular directions, greatly 

enhancing the persistence length. 

 

 



70 
 

5.2 Methods 

 To study cell motility in obstacle arrays, we used wild-type Escherichia coli 

(HMMG 1655 parent strain) labeled with cytoplasmic monomeric super-folder green 

fluorescent protein (GFP) under kanamycin selection. These cells were grown from frozen 

stock in LB and 50 μ𝑔𝑔/𝑚𝑚𝑚𝑚 kanamycin for 4 hours at 37° C. 10 μ𝐿𝐿 of this culture were then 

mixed into 500 μ𝐿𝐿 of defined minimal media (described in section 4.5) to control cell 

density, environmental chemical composition, and to reduce autofluorescence. We used a 

low cell density (~106 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑚𝑚𝑚𝑚) in order to minimize cell-cell interactions and thus 

ensure that measured effects were due to cell interactions with the obstacle arrays. Device 

surfaces were coated in Bovine Serum Albumin (as described in section 4.5) to decrease 

cell-surface adhesion. The cellular suspension was loaded into microfluidic devices which 

were created using the atypical method described in Chapter 3. These devices were 

approximately 15μ𝑚𝑚  deep and were patterned with eight large triangular arrays each 

spanning a 1mm x 8mm area. All arrays contained pillars with radius R = 8.3µm and each 

array varied the gap widths (w) between pillar surfaces w = 2, 5, 8, 13, 19, 28, 48, 73µm. 

These gap widths correspond to pillar densities ρ =0.726, 0.5415, 0.4194, 0.2912, 0.2022, 

0.1294, 0.0620, and 0.0324 where ρ is the fraction of area covered by pillars. The device 

also contained two separate areas each 2mm x 4mm which contained no pillars. We imaged 

the cells with fluorescence microscopy at ~21.5 frames per second with a Nikon Eclipse 

TI-E fluorescence microscope using a Plan Fluor ELWD 20x Ph1 ADM objective and an 

Andor iXon EMCCD camera. Using the 20x objective we were able to image the entire 

15μm depth of the device and it gave us a 665 x 665μm viewing frame which allowed us 

to capture long cell trajectories, with some cells remaining in-frame for hundreds of 
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seconds. We imaged areas for  four minutes at a time with low illumination power to reduce 

autofluorescence and phototoxic effects on cell motion. We acquired individual cell 

trajectories using a custom MATLAB data analysis pipeline developed for and outlined in 

chapter 4.5. 

 

5.3 Bacterial Motility in Arrays 

Using the measured cell trajectories, we compared distinct aspects of cellular 

motility between each array. First, we found that except for at the highest density, the pillar 

arrays did not have a significant effect on the mean cell speeds when compared to the cells 

in a no-pillar space (fig. 5.1). For these arrayed areas (and open areas), we found ⟨|𝑣𝑣|⟩ ≃

23 μ𝑚𝑚/𝑠𝑠,but the cells in the tightest array had ⟨|𝑣𝑣|⟩ ≃ 16.5 𝜇𝜇𝜇𝜇/𝑠𝑠. This drop in velocity is 

due to frequent interactions with pillars that (as shown in our model in chapter IV) cause a 

decrease in cell speed during cell-pillar interactions. Similarly, the mean squared 

displacements (MSD) of cells in the pillar arrays were strikingly similar across gap widths 

with a small deviation for cells in the 2 µm gap width arrays (ρ =  0.73)  (Fig. 5.1). We 

first looked at the scaling of MSD in terms of the power law  (𝑡𝑡α) at short (t < 1-3s) and 

long (t > 10s) times. In canonical Brownian motion, at short times, a particle moves 

ballistically (α =  2) on the time scale of the path-persistence length divided by the mean 

velocity. At long times, the ballistic segments of motion are punctuated by random 

reorientations that sum to diffusive motion (α =  1). As shown in figure 5.1, at small times 

(t < 3 seconds) we find that the MSD scales ballistically across all but the 2 µm gap arrays 

including the no pillar control. In the highest density array (2 μ𝑚𝑚 gap), we found that across 
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these shorter time-scales α ≈  1.85, meaning that while the trajectories are super-diffusive 

at early times, they are  sub-ballistic. For all arrays, we found that for moderate times (6 <

𝑡𝑡 < 20 seconds) the MSDs were roughly diffusive with α ≈ 1 (figure 5.1). However, for 

time scales greater than  ~20 seconds, trajectories appeared sub-diffusive with all but the 

highest density array scaling with  𝛼𝛼 ≈ 0.4. Cells in the highest density array displayed 

motion closer to diffusion with 𝛼𝛼 ≈ 0.7 . For the larger gap arrays (and no pillar 

trajectories), this sub-diffusive behavior is most likely due to the significant fraction of 

cells which are coupled to one of the two planar surfaces which cause the cells to move in 

circles. Uncoupled cells, moving in largely straight lines,  remain in the viewing frame  for  

20-50 seconds, thus weighting the long-time population with circular trajectories which 

appears as sub-diffusive motion in the MSD. It appears that frequent cell-pillar interactions 

in the highest density arrays (𝑤𝑤 = 2 and 5μ𝑚𝑚) suppress the circular motion. As shown in 

Chapter 4, interactions with small (𝑅𝑅 < 20μ𝑚𝑚) pillars lead to forward scattering (scattering 

angles −π/4 < θ < π/4) which is in agreement to the results of a previous study which 

showed that cells coupled to a planar surface which interact with small spheres 

overwhelmingly scatter forward [34]. When pillar gap sizes are smaller than the radius of 

curvature of hydrodynamically induced circular motion, our data suggest that frequent 

forward scattering events dominate  cell trajectories. This is further supported by an 

analysis of the mean direction of motion displayed by cells within these arrays. Across all 

MSDs, regardless of pillar density, we see transitions from super-diffusive to diffusive, to 

sub-diffusive motion which occur at roughly the same times [that didn’t make sense as 

written]. We also saw that apart from the highest density array, all other arrays showed no 

effect on mean cell speed.    
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Figure 5.1: Mean-squared displacement as a function of time for cell trajectories in 
triangular arrays of 8.3µm radius circular pillars with varied pillar densities ρ. We see no 
major differences in MSD until our maximum density (dark blue line). The difference in 
mean cell velocity is seen as the gap between the ρ = 0.73 array MSD and the rest. MSDs 
of cells in all spaces are approximately ballistic at small times (𝑡𝑡 < 3s), diffusive at 
moderate times (6 < 𝑡𝑡 < 20𝑠𝑠), and sub-diffusive (α < 1) at long times (𝑡𝑡 > 20𝑠𝑠).  

 

We observed a strong effect on the overall direction of cell movement in high 

density pillar arrays (ρ ≥ 0.5). We smoothed cell trajectories with a locally weighted 

scatterplot smoothing (LOWESS) local regression method using the malowess MATLAB 

function. From these smoothed trajectories, we looked at the displacement of cell positions 

that were 20 μ𝑚𝑚 apart in trajectory arclength and found the angle of these displacements 

in the device reference frame. The probability distribution of the angle of cell 

displacements shows clear peaks in six directions (fig. 5.2 B) set by our array geometry. 

We arranged the pillars in a triangular lattice, and thus there are three axes along which 

cells experience relatively large mean-free paths between collisions, specifically at π/6, 
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𝜋𝜋/2 , and 5𝜋𝜋/6  radians (Fig. 5.2A). At sufficiently high pillar densities, the frequent 

forward scattering events act to restrict cell motion almost exclusively along these 

‘crystallographic’ directions. In the two highest density arrays, cell movements along these 

directions (±5∘) were more than 2.5 times as likely compared to the no-pillar distribution. 

As pillar density decreases, the scattering interactions decrease in frequency and their 

directional guiding effects diminish as angular diffusion, run-and-tumble dynamics, and 

cell-plane hydrodynamic coupling dominate in determining cell trajectories. This is seen 

in figure 5.2A as the peaks in the movement-angle distribution gradually broaden and 

decrease in magnitude as pillar density decreases, until the distribution is indistinguishable 

from the no-pillar distribution. Starting from ρ = 0.73, we see that as ρ decreases to ρ =

0.42, there are still peaks evident in the array directions, but the probability that cell 

movements are aligned with the array directions is only 1.6 times greater than the no-pillar 

control distribution. 

With these dramatic increases in directionality of motion we correspondingly 

observe an increase in persistence length as pillar array density is increased (fig. 5.3). To 

find the persistence length, we measured the angle β between cell displacements as a 

function of arc length L. Using the typical definition of persistence length [109], we then  

measure the persistence length by fitting to 

⟨𝑐𝑐𝑐𝑐𝑐𝑐(β𝑖𝑖)⟩ = 𝑒𝑒−�
𝐿𝐿𝑖𝑖
𝑃𝑃� (5.1) 

where P is the persistence length. For all low pillar densities ρ ≤ 0.13, the path 

persistence is well-described by eqn. 5.1 with 𝑃𝑃 ≈ 25μ𝑚𝑚. 
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Figure 5.2: (A) Fluorescence images of three pillar arrays, ρ = 0.73, 0.54, and 0.29 with 
lines drawn along the directions of preferred motion. (B) Probability density function of 
the cell displacement angles in the image frame. Cell trajectories were smoothed, and the 
angles of cell displacements that were 20 µm apart in arclength were found. Clear peaks 
are present for trajectories in array densities ρ ≥ 0.2, and below this density the angle 
distribution is flat and indistinguishable from trajectories in an open environment. The 
peaks are found at ± π/6, 𝜋𝜋/2, and 5𝜋𝜋/6 radians, which correspond to the three lines of 
symmetry in the lattice. 
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This constant persistence length in addition to the similarities seen in MSD and the flat 

distribution in the direction of cell displacements lead us to conclude that at these lower 

densities, the pillars have little effect on overall cell trajectories. However, we found that 

for trajectories in the high-density pillar arrays (ρ ≥ 0.2) the decay angular correlation fit 

poorly to a single exponential, but was well-described by the double exponential function 

⟨𝑐𝑐𝑐𝑐𝑐𝑐(β𝑖𝑖)⟩ = 𝐶𝐶𝑒𝑒−�
𝐿𝐿𝑖𝑖
𝑃𝑃1
� + (1 − 𝐶𝐶)𝑒𝑒−�

𝐿𝐿𝑖𝑖
𝑃𝑃2
� (5.2) 

which suggests that these trajectories have two characteristic length scales of motion (Fig. 

5.3). The shorter persistence length 𝑃𝑃1 appears to correspond to the gap widths between 

pillars. The longer persistence length 𝑃𝑃2 corresponds to the highly persistent motion along 

the three array axes of relatively unimpeded motion (fig. 5.4).  At the higher pillar densities 

we also see an oscillation in the angular correlation decay (fig. 5.5 B), which for 𝜌𝜌 =

0.73 (𝑤𝑤 = 2𝜇𝜇𝜇𝜇) has a period of 21𝜇𝜇𝜇𝜇 (fig. 5.5B) and for 𝜌𝜌 = 0.54 (𝑤𝑤 =  5 𝜇𝜇𝜇𝜇) has a 

period of 23μ𝑚𝑚. The oscillation periods were found by examining peaks in the difference 

between the double exponential fit of the angle decay and the data. This oscillation period 

corresponds to two-times the distance cells travel between scattering off successive pillars. 

This value increases with gap width but is larger than the gap width because cells move to 

the next pillar following the tangent line to the previous pillar’s surface (fig. 5.5A). Pairs 

of these forward scattering events create a ‘zig-zag’ pattern in cellular motion, which in 

turn causes a mild increase in their angle correlation that creates this added oscillation (fig. 

5.5). 
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Figure 5.3: The mean cosine of the angle between displacement (unit) vectors 𝛽𝛽 as a 
function of arc length between those vectors. We fit either a single (C and D) or double (A 
and B) exponential function to find the characteristic persistence length(s) of bacterial 
trajectories in arrays of four different pillar densities. For high densities (A and B), we see 
that single exponentials (red) fit poorly suggesting two characteristic lengths for the 
trajectories. The shorter persistence lengths (𝑃𝑃1) correspond to the typical distance traveled 
between consecutive pillar collisions which work to guide the cells in these high-density 
arrays. The oscillations seen in (A) and (B) are discussed in figure 5.4.  (A) The best fit 
double exponential is 𝑃𝑃1 = 3.4,𝑃𝑃2 = 38.7,  and 𝐶𝐶 = 0.47 . (B) The best fit double 
exponential is 𝑃𝑃1 = 5.2,𝑃𝑃2 = 51.4, and 𝐶𝐶 = 0.35. (C) The best fit double exponential is 
𝑃𝑃1 = 6.7,𝑃𝑃2 = 34.3,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 030. (D) The best fit is 𝑃𝑃 = 25.1. We see little variance for 
the pillar densities between ρ = 0.42 and ρ = 0.  
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Figure 5.4: A random sampling of cell trajectories observed which were tracked for at 
least 10 seconds within the highest density pillar array (A) and no pillar array (B). (A) 
The cells move in a distinct ‘zig-zag’ pattern as cell-pillar collisions reorient the cell into 
consecutive pillars. The persistent motion of cells along the lines of symmetry of the 
pillar array can be clearly seen. (B) Cells which are hydrodynamically coupled to one of 
the planar surfaces can be seen moving in circular trajectories. Uncoupled cells move in 
typical run-and-tumble fashion. Scale bar 200 μ𝑚𝑚. 

 

5.4 Conclusion 

We have shown that over a broad range of obstacle densities, motion of cells in pillared 

environments remains largely unchanged from motion in non-pillared environments. The 

mean velocity of cells and the exponents characterizing the mean-squared displacement 

of cells and the crossover times between the exponents are constant across pillar density 

until extremely high pillar density (𝜌𝜌 > 0.73). This is in apparent disagreement with 

previous work that showed that even at relatively low (𝜌𝜌 = 0.12) obstacle densities there 

was a marked difference between MSD of cell trajectories [34]. 
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Figure 5.5: (A) A maximum intensity projection of 1.9 seconds of a cell moving in the 
typical ‘zig-zag’ pattern in a ρ = 0.73 array. The red line segments are all 10.5μ𝑚𝑚 long. 
(B) The difference between the double exponential fit of the angle decay and the data 
shown separately in figure 5.2A. The green line segments are 21μ𝑚𝑚 long and show that 
the period of the oscillation is double equal to two times the distance traveled by the cell 
between pillar interactions. 

 

 

However, their study only looked at cell trajectories within a small area, a 25𝜇𝜇𝜇𝜇 radius 

circle, and placed obstacles randomly. Their viewing area is too small to capture large-

scale motion, including the full circular trajectories of cells which are coupled to the planar 

surface. Also, they studied the motion of cells when interacting with randomly placed 

obstacles. Our data shows that the direction of motion of cells was tightly bound by 

frequent interactions with pillars to the three axes of symmetry defined by the triangular 

lattice used to place pillars. Therefore, the placement of obstacles clearly has a clear effect 

on cell motion which could also explain differences between our results and previous 
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results. Given the observed strong directional preferences as a function of pillar density, it 

is unclear how such environments, with frequent forward scattering interactions, would 

affect the ability for cells to chemotax. In order to successfully execute a directed random 

walk, bacteria must modulate their tumble rate in response to multiple chemical 

measurements across time. Recent work has proposed that E. coli are able to decrease their 

tumble-rate in environments containing large obstacles (~50 µm sided squares or 50 µm 

diameter pillars) in order to increase their rates of favorable gradient ascent [27]. However, 

this study defined a “tumble” by observing cumulative angle difference and thus conflates 

circular motion due to hydrodynamic torque from the planar surfaces with ‘true’ flagellar 

tumbles. They also used square grids of pillars in a larger rectangular enclosure and our 

results suggest that array geometry plays a key role in directing cell motion. 
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Motion of Microswimmers 

 The previous chapters described work on experiments and a novel method for 

microfluidic device creation, all of which point toward promising avenues of further work. 

This chapter will summarize the work presented in previous chapters and then describe 

future work related to their research directions. Generally, the work presented in this thesis 

examines the individual or collective motion of bacteria, how interactions with other cells 

or obstacles of similar size affect their motion, and the underlying physical mechanisms 

behind some of these interactions. While this work was done using bacteria, much of what 

was discussed has applications to other active-matter systems, especially abiotic 

microswimmers. 

6.2 Collective Motion of Mixed Phenotype Populations 

 Chapter 2 described work exploring the high density collective motion of mixed 

motility-phenotypes of Bacillus subtilis to shed light on the effects that non-motile agents 

have on active-matter systems. This work was limited by an inability to precisely control 

the key variable of cell density, as well as limitations of image analysis. Our current image 

analysis techniques were unable to reliably identify and track single cells in these high 

density collectives, thankfully the dense packing of cells – with intensity variations linked 
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to cell positions – was amenable to extraction of quantitative information using Particle 

Image Velocimetry (PIV). With advances in machine-learning based image analysis 

techniques, robust single-cell tracking may be achievable even at these high densities. The 

resulting large volumes of high-resolution cell trajectory data would enable rigorous 

characterization of the effects of non-motile cells (or other objects) on collective motility. 

For instance, as a function of cell density and genotypic ratio one could:  (i) probe 

individual cellular motions (of both genotypes) to calculate dispersal rates that differ by 

genotype, (ii) characterize and classify the ‘phase diagram’ of resulting motile behavior at 

the level of the group and the level of the individual, and (iii) examine the collective motion 

of other mixed-genotype populations that, for instance, vary morphological characteristics 

of cells.  

6.3 Steric Interactions with Small Obstacles 

 Chapter 3 described a novel method for the creation of single-layer 

microfluidic devices that consisted of patterned photoresist chambers and features sealed 

by a thin layer of PDMS bonded to glass. This method allowed us to create devices with a 

number of unique properties, including increased feature resolution,  resulting from  the 

use of patterned photoresist, and massively increased size of stable, unsupported areas 

within the device as compared to typical soft lithography techniques. These devices were 

subsequently used to study the interactions between individual Escherichia coli and small, 

high-curvature obstacles. Chapter 4 described the main body of this work in which we 

acquired large-number high-resolution data of cell-pillar interactions. These data showed 

that for obstacle sizes a few cell lengths or less, hydrodynamic models fail to describe the 

interactions well, rather such scattering is well modeled as a purely steric interaction. 
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Importantly, while this work was done using E. coli, the experimental results and the 

corresponding model are likely generalizable to artificial and natural elongated pusher-type 

microswimmers, such as rod-shaped Janus particles or many other species of 

microorganism. Chapter 5 then described the results from our work studying the 

cumulative effects that these scattering interactions have on overall cell motility. We found 

that at high pillar densities, frequent scattering constrained cell motion along the axes of 

the triangular array of pillars, highlighting the importance of obstacle placement. Below 

these high densities, motion was dominated by typical run-and-tumble dynamics or 

hydrodynamic coupling to large planar surfaces, and thus was largely unaffected by the 

pillars.  

 The previously described experiments (chapters 2,4 and 5) and our ability to 

fabricate appropriate microfluidic devices (chapter 3) presents numerous opportunities for 

further study. First, our fabrication techniques allow us to create steric obstacles of nearly 

arbitrary shape across a wide range of sizes. With an experimental and data analysis process 

similar to Chapter 4, we could characterize – and potentially model – cell-object 

interactions across changes in object shape, size, and placement.. Specifically, we would 

start by examining interactions with negative curvature (concave) surfaces and probe the 

interplay between steric and hydrodynamic forces in such interactions – characterizing 

scattering processes and comparing to expanded versions of the sterics-only model. Second, 

we saw that the placement of pillars  potently affects cell trajectories and persistence length 

(chapter 5).  Our devices allow arbitrarily placement of pillars and thus enables quantitative 

measurements of the effects of obstacle placement on cell trajectories. Pillars could be 

positioned in various regular patterns or with different random placement algorithms to 
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mimic physical anisotripies found in natural systems - like wet soil or ocean particulates - 

thus enabling controlled observation of cell motility in artificial and controlled models of 

these natural environments. Additionally, we currently have a working prototype of a 

microfluidic device that creates a stable linear chemical gradient across a wide channel in 

which structures can be patterned. With these devices, the Ursell Lab plans to examine the 

effects of obstacle-bacteria interactions on the ability of cells to chemotax in physically 

heterogeneous environments, while varying gradient strength and structural parameters (i.e. 

size and placement of obstacles). High precision measurements  of cellular flux up the 

nutrient gradient could be made with  the same imaging and analysis used in Chapter 4 to 

reveal how object size, shape, and placement (among other parameters) affect chemotaxis. 

For instance, high resolution cell trajectory data could be used to distinguish flagellar 

tumbles from directional reorientations due to cell-surface interactions or angular diffusion. 

Data of this kind is currently unavailable and would help elucidate how cells chemotax in 

heterogenous environments as the adjustment of tumble rate is the key mechanism which 

enables chemotaxis [14], [110]. 

 Our microfluidic devices can also be used for further experiments involving the 

high density collective motion of cells. Microfluidic devices provide precise control over 

cell density, which had been a key issue in our work presented in Chapter 2.  The turbulent 

cellular flow of swarms likely is also substantially perturbed by obstacles of varied shape, 

size, and placement. By inoculating the population with a small number of fluorescent cells 

(as done by Ariel et al. [52]) one could measure the effects of such obstacles on the 

movement of individual cells within swarm, and similarly, PIV vector-field analysis could 

be used to measure the dependence of mixing Lyapunov exponents (a scalar measure of 
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mixing) on the shape, size and placement of obstacles.. Similarly, by doping the swarm 

with 20 nm diameter fluorescent tracer beads, the fluid flow can be quantitatively 

characterized by the same PIV algorithms. The developments that were made in device 

fabrication and cell tracking algorithms provide excellent opportunities for expanding on 

the research presented in this thesis. My thesis work generally studied  interactions between 

the motion of self-propelled flagellated microorganisms and other cells and small obstacles 

of varying size. Due to their relatively simple behaviors, bacteria present an excellent 

model to study the physics of motion at low Reynolds number and further discoveries about 

the motion of self-propelled bacteria will lead to a more comprehensive understanding of 

bacterial microbiology.  
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