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Usher syndrome is the most common cause of hereditary deaf-blindness. The 

most severe type of Usher syndrome, type 1 (USH1), can be caused by mutations in any

one of 7 genes. Individuals with USH1 are born deaf and have progressive vision loss. 

One of the seven causative USH1 genes, USH1G, encodes the protein Ush1g. This 

thesis will refer to the gene USH1G as SANS, and the protein Ush1g as Sans because of 

the previous works describing them as such. Sans has many protein interaction domains,

enabling it to act as a scaffold for assembling multiple proteins in the same cellular 

location. Research conducted by our collaborators sought to identify proteins that 

physically interact with Sans. Using a particular domain of Sans as “bait”, they detected

an interaction with the protein Cep290. Cep290 has been implicated in a range of 

disorders involving cellular structures called primary cilia. Cilia influence the flow of 

fluids through tissues or organs, including the flow of cerebrospinal fluid, and are 

involved in the transport of molecules between distinct parts of the cell. Diseases 

resulting from genetic defects in the formation or function of cilia are known 

collectively as ciliopathies.
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Previous research in the Westerfield lab investigated how the Sans-Cep290 

interactions in zebrafish affect cilia function in eyes. The Westerfield lab had previously

generated and characterized zebrafish sans mutations that resulted in vision loss, 

hearing impairment and balance defects within the first week of life, consistent with a 

model of Usher syndrome. The sans gene in zebrafish is duplicated, named sansa and 

sansb. To investigate the interaction between Sans and Cep290, the Westerfield lab 

used the existing sans mutant lines to observe whether simultaneous impairment of the 

zebrafish cep290 gene would have a greater impact on zebrafish vision than defects in 

sans alone. While collecting these data, a body axis curvature was observed in the 

young fish with this double impairment. Because previous work with zebrafish deficient

sans had not shown this characteristic, the curvature was hypothesized to be a result of 

the new cep290 mutation. 

For my thesis research, I collected additional data on the compensatory 

relationship between zebrafish sans genes, characterized the novel cep290 mutation and

designed experiments to investigate the Cep290-Sans interaction in tissues related to 

body axis regulation. To assess how the two zebrafish sans genes work in conjunction 

to replace one another in the event that one is non-functional, we examined gene 

expression during a range of timepoints within the first week of life, and observed that 

in the absence of one functional sans gene, the level of expression of the other 

increases. To determine the cause of the body axis curvature observed in the 

sans;cep290 double mutants, we used selective breeding to segregate the cep290 

mutation from the sans mutations and then conducted genetic crosses of cep290 mutant 

carriers to observe the body axis development of the offspring. We found that cep290 
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single mutants had normal body axis development through the first week of life, but 

observed a spinal curvature at a later juvenile stage in these fish.

We investigated the exact timing of the late spinal curvature and calculated the 

standard length of cep290 mutant zebrafish offspring exhibiting the first signs of the 

defect, and performed a skeletal staining experiment on these fish to visualize the spinal

deformities. We next tested the effect of mother’s genotype on the timing of the body 

axis curvature in cep290 mutants. Although cep290 mutants from mothers with 

functional copies of cep290 were able to avoid early body axis defects, offspring from 

cep290 mutant mothers exhibited a range of early ciliopathy defects, including body 

axis curvature. Finally, we observed the expression of sansb and cep290 in wild-type 

fish at the stage of embryonic development in which the long body axis is forming, a 

process regulated by the coordinated movements of cilia within a structure called 

Kupffer’s vesicle (KV). We found that both genes are expressed in the region of KV in 

zebrafish embryos, and thus are present in the right place to play a role in this process. 

These experiments collectively support the hypothesis that the Sans-Cep290 

relationship influences body axis development in addition to retinal function related to 

USH.  
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1 Introduction

1.1 Usher Syndrome (USH)

Usher syndrome (USH), named for Scottish Ophthalmologist Charles Usher, is 

the most common cause of combined deaf-blindness. USH, a genetic disorder that 

affects 1 out of 6000 people (Kimberling et al., 2010), is characterized by vision and 

hearing defects, sometimes accompanied by balance dysfunction (Mathur & Yang, 

2014). Based on the severity and age of onset of these symptoms, Usher syndrome is 

classified into three clinical categories (USH 1-3). The most severe type, USH1, 

classifies patients as having deafness from birth, vision loss beginning in first decade of 

life, and an abnormal or absent balance response (Kremer et al., 2006; Espinós et al., 

1998). USH2, the most common, is described as having moderate to severe hearing loss

at birth with gradual vision loss detectable after the first decade of life (Dona et al., 

2018; Reisser et al., 2002). USH3 is characterized by gradual hearing loss, variable 

balance defects and onset of vision loss detectable after the second decade of life (Dad 

et al., 2009; Mathur & Yang, 2014).

Early diagnosis of USH is critical for optimal management and monitoring of 

the symptoms. Research into USH helps physicians offer more information about the 

disorder. Affected individuals and their families will have the chance to put all possible 

accommodations in place to further educational and psychosocial success and prepare 

for the progressive symptoms (Kimberling et al., 2010; Mathur and Yang, 2014).

More than a dozen different genes have been linked to Usher syndrome 

(Kimberling et al., 2010; Reiners et al., 2006). Genes contain the information to make 

proteins, which in turn perform a variety of cellular functions. Genetic mutations alter 



the protein-coding information, leading to loss of or abnormal protein function that 

manifests as disease symptoms. The specific cells affected by the loss of USH gene 

function, and the resulting disruption of the encoded USH proteins, are the 

mechanosensory hair cells of the inner ear responsible for balance and hearing, and the 

light-sensing photoreceptor cells of the retina (Kremer et al., 2006). USH1 pathology 

results from the most severe dysfunction and degeneration of these cells. 

Thus far, 7 genes have been identified as causative of USH1. The proteins 

encoded by these genes interact with each other, creating protein complexes that are 

responsible for maintaining vision and hearing. In the retina, the USH protein 

complexes are thought to function in loading molecular cargo onto the connecting 

cilium of the photoreceptors for transport (Reiners et al., 2006). The symptoms that 

result from disruption of this cilia-related function have led to USH being classified as a

ciliopathy. 

Animal models such as mouse and zebrafish have been instrumental in 

identifying the roles of USH genes in vision and hearing (Kremer et al., 2006; Dona et 

al., 2018). Mouse models of USH1 all display hearing and balance deficits, but 

relatively few exhibit a retinal phenotype (Reniers et al., 2006). Zebrafish models have 

added to our knowledge of the roles of USH genes in hearing and balance, as well as 

providing models for the retinal disorders seen in USH (Seiler et al., 2005; Phillips et 

al., 2011, Phillips et al., 2015).  

Research into Usher syndrome is essential to understand better the molecular 

interactions involved in the tissues affected in this disorder. Furthermore, most USH 

genes are expressed broadly throughout other tissues in the body, such as in the brain 
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and gut, which suggests potential roles of these genes outside of sensory cells. Research

into these genes will help demystify the complexity of genetic diseases, including the 

category of diseases known as ciliopathies.

1.2 Cilia and Ciliopathies

Because of the evidence suggesting that vision loss in USH is due at least in part

to disrupted function at the connecting cilium of photoreceptors, it is often classified as 

a ciliopathy—an extensive category of human diseases caused by dysfunction of the 

cilia. Cilia are microscopic hair like structures that are found in many cells of the body 

(Fliegauf et al., 2007). Cilia are composed of cable-like assemblies of proteins, called 

microtubules, surrounded by a membrane. Cilia fall into two categories, motile and non-

motile, or primary, cilia (Reiter & Leroux, 2017). Primary cilia function in conducting 

signals from the environment or from cell to cell and are involved in protein trafficking,

whereas motile cilia function in propelling cells and fluid flow. The coordinated beating

of motile cilia regulates the movement of fluid, such as cerebrospinal fluid (CSF). This 

fluid flow is important in embryonic patterning, including body axis development 

(Hirokawa et al., 2006; Okada et al., 2005; Grimes et al., 2016). 

There are many proteins involved with the structure, maintenance, and function 

of cilia. A mutation in any of the genes that code for these proteins leads to defective 

cilia that in turn result in diseases of various ciliated organs and tissues, known 

collectively as ciliopathies (Fig. 1). Ciliopathies range from global, affecting many 

ciliated tissues and organs, to restrictive, only affecting one or few tissues. Since global 

ciliopathies affect multiple tissues and organs, they are more severe and are potentially 

lethal (Fliegauf et al., 2007). By contrast, USH proteins localize to the connecting 
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cilium of photoreceptors in the eyes, but no other ciliary functions for USH proteins 

have been described to date, classifying USH as a restrictive ciliopathy (Kremer et al., 

2006; Soursch et al., 2014; Reiners et al., 2006). 

Figure 1: Ciliopathies impact numerous organs and systems

The figure shows organs and tissues that can be affected by ciliopathies. Ciliopathies 

can be global, having multiple tissues and organs affected, or restrictive, affecting only 

one or a couple tissues or organs. The red oval indicates the symptoms of USH, 

showing a restrictive ciliopathy. Source: Reiter and Leroux, 2017

1.3 Zebrafish as a Model Organism

Zebrafish develop rapidly, reaching a free-swimming larval stage with 

functional tissues and organ systems by 5 days post-fertilization, and sexual maturity at 

three months. Zebrafish lay large numbers of fertilized eggs in a single mating, which 

are also transparent during early growth making the developmental processes easy to 

observe. The quick development allows researchers to study disease mechanisms and 

validate the effect of developing therapies on zebrafish that mimic the mutant 
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phenotypes of a human disorder (Phillips and Westerfield, 2014). Zebrafish and human 

genomes are more than 70% similar overall, and genes corresponding to 82% of known 

human disease genes can be found in zebrafish (Howe et al., 2013). Zebrafish have been

used to examine many genetic factors that underlie human disease, including USH. 

Zebrafish models of USH1 have abnormal swimming patterns observable at 5 days old 

and do not respond to tapping stimulus, indicating dysfunctions in hearing and balance 

(Söllner et al., 2004; Seiler et al, 2005; Phillips et al., 2011; Phillips et al., 2015). USH1 

proteins are responsible for maintaining the proper shape and function of structures in 

the mechanosensory hair cells of the inner ear. Examination of the hair cells in these 

zebrafish models shows malformation of these structures, which directly causes the 

observed hearing and balance defects. Eye reflex tracking and electrophysiological tests

on zebrafish reveal further defects in animals lacking functional USH proteins, and this 

dysfunction is accompanied by degeneration of photoreceptor cells (Seiler et al., 2005; 

Phillips et al., 2011; Dona et al., 2018).

The zebrafish model of USH1F, caused by mutations in the PCDH15 gene, was 

also informative in understanding how duplicated zebrafish genes share functional roles

(Seiler et al., 2005). In about 25% of cases, zebrafish have two functional genes where 

there is only a single corresponding gene in humans (Force et al., 1999). In the case of 

PCDH15, one of the zebrafish genes, pcdh15a, functions primarily in the ear, where the 

other, pcdh15b, is important in retinal cell function.  pcdh15a mutant zebrafish have 

severe balance and hearing defects but no visual dysfunction, whereas temporary 

depletion of pcdh15b produced significant visual defects. 
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Another disorder that has been more recently investigated using zebrafish is 

idiopathic scoliosis (IS). IS is characterized by spinal curvatures that can lead to 

disfigurement, pain, limited mobility, and in severe cases heart and lung problems 

(Grimes et al., 2016). Mutations in genes associated with IS are shown to cause motile 

cilia dysfunction, causing defects in cerebrospinal fluid (CSF) flow in both humans and 

zebrafish (Hayes et al., 2014; Grimes et al., 2016). Recently, genome sequencing in a 

group of patients with IS identified variants in a number of different cilia-related genes, 

including several USH genes, which have not been previously linked to scoliosis 

(Baschal et al., 2018). This thesis will explore the potential role of the USH gene, sans, 

in contributing to the developmental events that pattern the body axis, disruptions of 

which could influence symptoms of scoliosis.   

1.4 Sans (USH1g)

Sans is the protein encoded by the USH gene SANS (Weil et al., 2003; Kremer et

al., 2006; Reiners et al., 2006). Sans protein localizes to the hair bundles of the inner 

ears and the connecting cilium of the photoreceptors of the eyes (Soursch et al., 2019; 

Caberlotto et al., 2011). Sans is composed of several different protein-protein binding 

motifs, including ankyrin repeats, a sterile alpha motif, a PDZ binding motif, and the 

central (CENT) domain (Soursch et al., 2019; Weil et al., 2003). These binding motifs 

tether the components of the USH complex together, classifying it as a scaffold protein. 

(Weil et al., 2003; Yan et al., 2010). 

Two genes corresponding to the human SANS gene are found in zebrafish, 

sansa and sansb (Phillips et al., 2015). sansa and sansb have overlapping expression in 

ear and retinal cells of young fish, and single mutations in either gene do not result in 
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USH symptoms, suggesting functional redundancy. The overlapping function of 

zebrafish sans genes is in contrast to the divided function observed zebrafish USH1F 

genes pcdh15a and pcdh15b, which have largely split the roles of this gene in the 

development and maintenance of sensory cells (Seiler et al., 2005). 

To understand more about Sans function, our collaborators Nasrin Soursch and 

Uwe Wolfrum recently investigated the CENT domain of Sans, using it as bait to detect 

potential interactions with other proteins biochemically. One of the newly discovered 

interactions with the CENT domain of Sans, summarized in Figure 2, was with Cep290.

The interaction between Sans and Cep290 was confirmed by performing the reverse 

experiment, using the domain of Cep290, indicated by the green oval in Figure 2, as bait

to bind to Sans.

This interaction was the basis for an ongoing collaboration with the Westerfield 

lab to study the interaction in our already existing sans mutants. 

Figure 2: Sans interacts with Cep290 in vitro via the CENT domain

Recent work by our collaborators has revealed that the CENT domain of Sans interacts 

with a region within the central domain of Cep290, indicated by the green oval. The 

Westerfield lab has been testing whether this protein interaction results in a genetic 

interaction using the zebrafish model.

1.5 Cep290

Cep290 is a large, multidomain protein that has been found to function in 

microtubule transport and localizes in the connecting cilium of photoreceptors as well 
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as centrosomes of dividing cells (Baye et al., 2011; Chang et al., 2006). Centrosomes 

assemble large arrays of microtubules into a structure called the spindle that aids in cell 

division during development or tissue proliferation (Frank et al., 2008). Mutations in the

CEP290 gene have been implicated in multiple ciliopathies that vary in symptoms and 

severity, sometimes acting in a restricted fashion, affecting one organ, other times 

affecting a broad range of organs. Examples of the variability of diseases caused by 

CEP290 mutations include Leber congenital amaurosis (LCA), Meckel-Gruber 

syndrome, and Joubert syndrome (Craige et al., 2010). LCA is a disorder that causes 

blindness due to a disruption in protein transport along the connecting cilium in 

photoreceptors (den Hollander et al., 2008). Joubert syndrome is characterized as a 

group of disorders that cause vision loss and defects in the brain that lead to other 

abnormalities such as loss of control of body movements and breathing (Valente et al., 

2006). The brain malformations and vision loss are both consistent with ciliopathies. 

Meckel-Gruber syndrome affects many tissues and organs, such as the liver, kidneys, 

and brain, all of which depend on cilia for proper development and function. The most 

common symptoms include abnormal growths or sacs in the covering of the brain, 

malformations in the kidneys and liver during fetal development, and the presence of 

extra fingers or toes (Frank et al., 2008). Survival beyond birth is unlikely in individuals

with Meckel-Gruber syndrome. 

A temporary loss of function of cep290 in zebrafish results in a variety of 

phenotypes including hydrocephalus, small eyes, kidney cysts, and, most notably for 

this thesis, a body curvature (Baye et al., 2011). A study that was published during my 

thesis research on the cep290 mutation also reported a body axis curvature in adult 
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cep290 mutants (Lessieur et al., 2019). Body curvature during the first week of life is a 

common characteristic of cilia dysfunction in zebrafish (Zaghloul and Katsanis, 2011). 

The curvature observed in these ciliopathy mutants is most likely due to defects in the 

ciliary movement that regulates CSF flow down the spinal cord. CSF bidirectional flow 

is important in the maintenance and development of the body axis (Okada et al., 2005; 

Grimes et al., 2016). 

A previous study investigating temporary loss of function of cep290 in zebrafish

described vision impairment and protein transport defects, and the clinical symptoms of 

humans with CEP290 mutations indicate the importance of Cep290 in cilia 

development and ciliary transport of proteins (Baye et al., 2011; Craige et al., 2010; 

Change et al., 2006). The cep290 mutant described in this thesis was generated in the 

Westerfield lab specifically to study the Sans-Cep290 interaction. 

1.6 Thesis Reasoning

The Westerfield lab previously characterized zebrafish sans function in hearing 

and vision, generating mutations in sansa and sansb to observe the symptoms, or 

phenotypes, resulting from loss of function (Phillips et al., 2015). Single mutants, sansa

or sansb, appeared to see and hear normally when evaluated in the first week of life, but

sansa;sansb double mutants displayed vision impairment along with hearing and 

balance defects observable by 5 days post fertilization (dpf). 

These sans mutants were subsequently used in collaboration with the Wolfrum 

group to validate the Sans-Cep290 interaction in an animal model. cep290 mutations 

targeted to the region involved in interactions with the Sans CENT domain were 

introduced into the sans double mutant background, producing sansa;sanb;cep290 
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triple mutant lines. A previous student in the Westerfield lab studied these fish to see 

whether zebrafish visual function would be adversely affected in triple mutants beyond 

that which had been previously observed in the sansa;sanb double mutants.

While generating these fish for analysis, the researchers observed that the 

mutant offspring displayed a curved body axis by 5 dpf. This pronounced 

developmental defect was hypothesized to be an effect of the cep290 mutation, because 

body axis curvature is a hallmark of other ciliopathy mutants in zebrafish and no such 

phenotype had been observed in the sans mutants prior to the introduction the cep290 

mutation. To test this hypothesis, fish carrying cep290 and sans mutations were mated 

to genetically normal, wild-type fish. The resulting offspring carried subsets of the 

original mutations such that the cep290 mutations segregated away from the sans 

mutations in some animals. When these cep290 carriers were bred to produce offspring 

with cep290 mutations, no body axis curvature was seen at 5 dpf. Given the body axis 

defect seen in young fish in which cep290 and sans genes were simultaneously 

disrupted, this result suggested that sans genes may play a role in cilia function beyond 

the retina. 

Thus, as a result of investigating the interactive relationship between Cep290 

and Sans in visual function, we have discovered a novel interaction in which it appears 

Sans may play a role in modifying the activity of Cep290 in regulating the function of 

primary cilia in body axis development. This thesis will test the hypothesis that the 

effects of cep290 depletion on cilia-dependent body axis patterning is enhanced by the 

simultaneous absence of sans function. As part of addressing this hypothesis, it was 

necessary to collect additional data on the individual genetic mutations. First, because 
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functional redundancy of the zebrafish sans genes was inferred based on the previous 

analysis, I performed an experiment to confirm the molecular basis of this genetic 

compensation. Next, given that the cep290 mutation in this study was generated in the 

sans mutant background and had not been evaluated on its own, characterization of 

phenotype was necessary to compare with the findings in the triple mutant. 

Previous zebrafish studies have helped develop a better understanding of the 

molecular mechanisms involved in Usher syndrome. Further characterization of sans 

and cep290 will contribute to our body of knowledge as to how USH genes interact in 

other cellular processes. Adding to our understanding of the genetic basis of disease 

provides increased information and support for individuals living with USH, as well as 

the physicians who manage their care. The extent to which USH genes may be linked to

other disorders such as scoliosis remains to be determined, but an expanded 

understanding of USH protein function and the molecular interactions they participate 

in, can lead to improved clinical tools. In the realm of genetic diagnosis, for example, 

determining the likely result of a newly discovered mutation in a known disease gene 

can provide higher quality information to both patient and doctor on which decisions 

about disease management options, candidacy for emerging therapeutic interventions, 

and family planning may be based. Likewise, precise knowledge of essential protein 

function in all relevant tissues and developmental timepoints can help to target new 

gene therapies to the appropriate cells while minimizing risk of side effects. The results 

described in this thesis are part of a global research effort to enhance our collective 

understanding of the genetic variations that influence virtually every aspect of human 

life. 
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2. Materials and Methods

2.1 Husbandry

Zebrafish were raised in the University of Oregon zebrafish facility in a 10 hour 

dark and 14 hour light cycle. All experiments performed on zebrafish were carried out 

with stringent oversight and compliance with all University of Oregon’s Institutional 

Care and Use Committee mandates. Zebrafish mutations of sansa, sansb, and cep290 

were generated using gene editing, TALENS for sansa and sansb and CRISPR for 

cep290. Adult zebrafish carrying the desired genetic mutations were set up in crossing 

tanks, which include an outer box, an inner screen, and an optional divider used to 

regulate breeding time. Strips of netting that simulate river grass were used for 

environmental enrichment to promote mating behavior. Zebrafish normally spawn at the

beginning of the light cycle. The male zebrafish swim alongside the female which 

stimulates her to release eggs, the male releases his sperm into the water to fertilize the 

eggs, which drop below the inner screen, out of reach of the adult zebrafish. Once 

embryos were observable at the bottom of the crossing cage, the adult fish were 

transferred into a new outer box filled with water. The eggs in the original outer box 

were collected by pouring the water into a tea strainer with a mesh diameter smaller 

than the eggs. The eggs were then transferred to a clean Petri dish with fish water. The 

embryos were selected and separated from nonviable eggs and debris. The selected eggs

were placed in Embryo Medium (EM). EM is a mixture of NaCl, KCl, CaCl2•2H2O, 

MgSO4•7H2O, methylene blue, and fish water. The embryos were cleaned daily to 

remove debris and add fresh EM and raised until the desired stage. Embryos raised 
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beyond one week of age were moved to the nursery tanks where the fish were fed 

multiple times a day with regular water changes. 

2.2 Reverse Transcription-PCR

Reverse Transcription polymerase chain reaction (RT-PCR) was performed to 

analyze RNA expression in sans single mutants. The steps taken were in accordance to 

the manufacturer’s instructions of the RT-PCR kit (ThermoFisher). 10 embryos per 

sample were euthanized by rapid cooling before being flash-frozen at -80°C to preserve 

RNA integrity prior to processing. RNA was extracted from frozen embryos using 250 

l of Trizol-Reagent per sample. Trizol-Reagent isolates RNA, DNA, and proteins. The 

samples were homogenized using an electric pestle. 

The samples were incubated at room temperature for 5 minutes before adding 50

l of Chloroform. Chloroform facilitated the separation of the solution into phases. The 

solution was allowed to incubate for 5 minutes at room temperature. The samples were 

spun on the centrifuge at 12,000 rotations per minute (rpm) for 15 minutes at 4C, this 

helped further separate the phases. The aqueous phase of each sample, the watery layer 

containing the RNA, was removed to a new tube. 125 l of isopropyl alcohol was added

to the separated aqueous phase to precipitate the RNA and separate it from the aqueous 

solution. The samples were incubated at room temperature for 10 minutes and then spun

in the centrifuge at 12,000 rpm for 10 minutes at 4C. After precipitation and 

centrifugation, the RNA formed a white pellet at the bottom of the tube. 70% ethanol 

was added to the pellet and then centrifuged at 7,600 rpm for 5 minutes at 4C. Ethanol 

cleans the salts out of the precipitate. After removing the ethanol, the pellet was allowed
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to air dry at 37C. 25 l of 1:10 EDTA and RNase-free water solution was added to 

wash the pellet. 

0.5 l of Oligo(dT)s and 0.5 l of 10 mM dNTP mix were added to 4 l of 

sample solution, which facilitated the first steps of complementary DNA (cDNA) 

synthesis. The solutions were incubated at 65C for 5 minutes and then put on ice. Next,

RT-PCR mix was added to each tube (Table 1). The solutions were then incubated for 1

hour at 50C, then for 5 minutes at 85C and then put on ice. 

Reagent Volume
RT-Buffer (10X) 1 l
MgCl2 (25 mM) 2 l
DTT (0.1 M) 1 l
Supercript III (40 U/l) 0.5 l
RNaseOUT (200 U/l) 0.5 l
Total 5 l

Table 1: RT-PCR Mix

1 l of RNase H was added to the solutions and then incubated at 37C for 20 

minutes. RNase H digests the excess RNA, resulting in purified cDNA. 0.7 l of the 

cDNA was used in PCR using the mix in Table 2. cDNA is used because it is more 

stable and easier to work with during the amplification steps. The PCR program entered

into the thermocycler generates repeated cycles of temperature changes that facilitate 

DNA denaturing, annealing of the primers to the template, and elongation of the new 

DNA strands. The time of the elongation cycle was altered based on length (number of 

base pairs) of the desired PCR product. The PCR products were visualized on a 2% 

agarose gel made with SYBRSafe DNA Gel Stain (ThermoFisher), which was run for 

about 10 minutes at 150 volts. The gel was then imaged using a Digital Gel Imaging 

System The Gel Doc XR+.
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Reagent Concentration Volume

2X PCR Mix 1X 6 l

Forward Primer 0.2 M 0.25 l

Reverse Primer 0.2 M 0.25 l

dH2O 5.5 l

Total 12 l

Table 2: PCR Mix

2.3 Maternal Contribution of Cep290

Zebrafish mating pairs were chosen to produce the desired offspring genotypes, 

which included cep290 mutant females and heterozygous cep290 females. Wild-type 

zebrafish controls were also raised to compare with the mutant crosses. About 200 

embryos were analyzed.

Offspring that displayed an early curvature at 3 dpf were separated and 

photographed using a dissecting microscope fixed with a camera. 

2.4 Standard Length

Offspring from cep290 carriers were raised in the nursery for several weeks. 

Body axes were observed from day 15-22. Each day, the offspring were recorded using 

a cell phone camera in their tanks over a piece of graph paper with known grid 

dimensions. About 200 fish were analyzed for this procedure.

2.5 Analysis of images from live animals

Still images were analyzed using the ImageJ image processing software. The 

mutant offspring along with the wild-type control offspring were measured for their 
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body axis bending angles. The angle was measured in a straight line back from the tip 

of the offspring’s mouth to the distal end of the uniform bend, excluding any change in 

direction at the tip of the tail. Mutants were categorized by the degree of bending.

The recorded videos of older larvae were observed to detect the first signs of 

bending in the offspring. The length of each individual fish displaying the bend was 

measured using the grid of 7 mm squares. These measurements were recorded, and the 

average standard length and standard deviation were calculated using Excel equation 

shortcuts.

2.6 Plasmid Preparation

RNA probes for sansa, sansb, and cep290 were prepared to be used in in-situ 

hybridizations. The gene fragments used in the following ligation step were amplified 

by PCR using specific primers for sansa, sansb, and cep290, respectively, from 92 

hours post fertilization (hpf) wild-type cDNA generated in the previous RT-PCR 

experiment (section 2.3). The mixture described in Table 3 was used for ligation of the 

prepared cDNA into plasmids. The plasmids are circularized pieces of DNA engineered

to accept DNA fragments up to a certain size. The DNA code of the plasmid includes 

several antibiotic resistance genes, base sequences required to facilitate enzymatic 

reactions that cut the DNA strand, and sites to promote PCR amplification of select 

regions of the plasmid. 

Reagent Volume
cDNA 0.5-4 l
Salt solution 1 l
Water Add to total 5 l
pCRTMII-Blunt-TOPO®* 1 l
Total 6 l
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Table 3: Ligation Mixture

* Plasmid provided by ThermoFisher Scientific, Waltham, MA. USA

This reaction mix was incubated for 5 minutes at room temperature, then transferred to 

ice. These conditions promote the splicing of the gene-specific fragment into the 

plasmid vector, creating circular DNA strands containing the inserted gene fragments

12 l of competent bacterial cells (ThermoFisher) were added to a 1.7 ml 

Eppendorf tube. The competent cells were engineered to incorporate foreign DNA when

the cell walls are permeabilized. 0.2 l of the ligation mixture was added to the 

competent cells. This mixture was kept on ice while a heat block was warmed to 42°C. 

Once the heat block reached 42°C, the competent cells with the plasmid were placed in 

the heat block for 30 seconds. This increase in heat alters the bacterial cell walls to 

allow the insert-containing plasmids to be taken up into the cells. After 30 seconds the 

mixture was returned to the ice. 100 l of SOC broth was added to the tube. SOC broth 

is a nutrient-rich broth used to grow bacterial cells. The tubes were incubated at 37°C 

for 1 hour on the shaker. 1 ml of the SOC broth with bacterial growth was placed on 

plates of LB media, a broth used to grow liquid cultures of bacteria, prepared with the 

antibiotic kanamycin. The plasmid used in the ligation step carries a kanamycin 

resistance gene, which allows it to grow in the presence of kanamycin, whereas bacteria

without this antibiotic resistance conferred by the plasmid will not propagate. Beads 

were placed on the plate and swirled around to inoculate the entire plate. The plates 

were placed in a 37°C room overnight.

After growing overnight, individual colonies from these plates were removed 

with a sterile toothpick and used to inoculate 5 ml of LB media in glass test tubes mixed
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with kanamycin at a 1:4000 dilution. The cultures were incubated at 37°C overnight in 

the shaker. The cultures were retrieved from the shaker, poured into centrifuge tubes, 

and spun for 20 seconds at 14,000 rpm. The supernatant was removed, and the process 

was repeated three times until a large pellet of bacterial cells was collected. The 

supernatant was removed carefully to avoid contamination. 250 l of Buffer PI 

(Qiagen) was added to each pellet. Buffer PI is a resuspension buffer used to dislodge 

the pellets from the bottom of the tubes. The tubes were dragged along a rigid, bumpy 

surface to agitate and resuspend the pellet. 

After about 5 minutes, 250 l of Buffer P2 (Qiagen) was added to each tube. 

Buffer P2 is a lysis buffer used to break open the cells containing the plasmid. The 

tubes were inverted multiple times until a blue precipitate was seen. The blue color is 

caused by a chemical reaction between bacterial cell contents and the P2 solution, and 

signifies that cell lysis is occurring.

After another 5 minutes for the lysis process to complete, 350 l of Buffer N3 

(Qiagen) was added to each tube. Buffer N3 is a neutralization buffer that precipitates 

cellular debris, allowing only nucleic acids, including the plasmid, to be suspended in 

the aqueous solution. The tubes were spun at 4°C for 10 minutes at 14,000 rpm.

Each supernatant was poured into a purification tube, which contained a filter 

that binds the plasmid DNA while allowing salts and other substances to pass through. 

The tubes were spun at 24°C for 3 minutes at 3,000 rpm and then for 10 seconds at 

5,000 rpm.

700 l of Buffer PE (Qiagen) was added to each purification tube. Buffer PE, 

which contains ethanol, is a wash buffer used to clean plasmids of any impurities. The 

18



tubes were spun for 10 seconds at 5,000 rpm. The columns were transferred to new 

collection tubes and spun again for 1 minute at 14,000 rpm. 

The purification columns were placed in collection tubes and 25 l of Buffer EB

(Qiagen) was added directly to each filter. Buffer EB is an elution buffer that releases 

the plasmid from the filter. After the mixtures sat for 2 minutes, they were spun for 30 

seconds at 10,000 rpm. Another 25 l of Buffer EB was added to each tube, and again 

after 2 minutes the mixtures were spun for 30 seconds at 10,000 rpm. This product 

yielded the plasmids plus inserts, suspended in liquid buffer.

Excess volume of the overnight liquid cultures for each selected colony were 

used to make a glycerol stock. 500 l of LB culture was placed into an Eppendorf tube 

with 1 ml of glycerol, mixed and stored at -80°C. This was done to preserve a source of 

plasmids containing the desired cDNA insert for future experiments.

2.7 RNA Probe Synthesis

15 l of water, 10 l of plasmid, 3 l restriction enzyme buffer 3.1, and 2 l of 

restriction enzyme were mixed together to linearize each plasmid. This step is to 

facilitate the subsequent process of synthesizing an antisense RNA probe from the gene 

fragment incorporated into the plasmid. 70 l of water was added to 30 l of each 

linearized plasmid solution. 500 l of Buffer PB (Qiagen) was added to a purification 

column followed immediately by the water plasmid mixes. This buffer washes the 

linearized plasmids of the excess material. The purification columns were spun for 4 

minutes at 3,000 rpm. The excess was discarded into guanidine waste, and tubes were 

spun again for 15 seconds at 5,000 rpm.
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The purification columns were fitted with a fresh collection tube. 700 l of 

Buffer PE was added to the column and spun for 30 seconds at 5,000 rpm. Buffer PE is 

a wash buffer that rids the linearized plasmid of impurities. A new collection tube was 

added to each purification column and spun for 1 minute at 14,000 rpm. The 

purification columns were then placed in 1.7 ml Eppendorf tubes. 40 l of Buffer EB 

was added to release the plasmid from the filter and into solution. After 4 minutes the 

tubes were spun for 30 seconds at 10,000 rpm. The end product yields a linearized DNA

template that serves as a guide for the synthesis of the complementary RNA strand that 

will be used as an RNA probe for in-situ hybridization.

The probe synthesis mixture (ThermoFisher) described in Table 4 was used to 

generate the RNA probe.

Reagent Volume
10X Transcription Buffer 2 l
10X Nucleotide Mix (DIG) 2 l
DTT (0.1 M) 1 l
RNase Inhibitor* 1 l
SP6 or T7 RNA Polymerase*† 1 l
DNA Template 8 l
H2O 5 l
Total 20 l
Table 4: Probe Synthesis Mix

* Marks an enzyme which should be kept on ice

† Use the polymerase that gives you antisense plasmids (3’  5’)

The nucleotide mix included in the probe synthesis mix contains nucleotides (the 

building blocks of nucleic acids) tagged with digoxigenin (DIG). These tags enable the 

probe to be detected by an antibody binding reaction in a subsequent step, described 

below.
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This mixture was incubated for 2 hours at 37°C to allow the RNA polymerase to

transcribe RNA probes from the DNA template. 1 l of DNAse was added to the 

mixture and allowed to incubate at 37°C for 5 minutes. DNAse digests the DNA 

template without degrading the RNA probes.

The probes were then purified using purification columns. 80 l of nuclease-free

water was added to the mixtures to bring the volume to roughly 100 l. 350 l of RTL 

buffer (Qiagen) and 250 l of ethanol were added to break up any residual template and 

wash the probe. The mixtures were immediately spun at 3,000 rpm for 4 minutes. The 

flow through was disposed in the Trizol waste.

500 l of RPE buffer (Qiagen) was added to each purification column. RPE 

functions as a wash buffer to clean salts away. The tubes were spun for 1 minute at 

3,000 rpm and the purification columns were transferred to new tubes and spun again 

for 1 minute at 14,000 rpm to remove any excess RPE buffer. This step was repeated a 

second time to ensure pure probes.

50 l of Elution Buffer (Qiagen) was added to each tube and allowed to sit for 3 

minutes before it was spun at 10,000 rpm for 20 seconds, allowing the purified probes 

to release from the filter and into the flow through liquid. 95 l of pre-hybridization 

solution was added to the eluted probes to stabilize the RNA for storage. 

2.8 In-situ Hybridization

Hybridization is the term used to describe the action of the RNA probe binding 

to complementary portions of native RNA. Embryos were collected and euthanized 

before being immersed in 4% Paraformaldehyde (PFA diluted in Phosphate Buffered 

Saline containing .01% Tween-20 (PBS-T)) at 4C overnight, which preserves the 
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embryos at their developmental stages. About 10 embryos at 16 hpf were used for each 

RNA probe prepared. The fixed embryos were washed twice in PBS-T for 5 minutes 

each to remove the PFA, then washed in 100% methanol for 10 minutes. This 

dehydrates the tissue so that it can be stored in the freezer without forming ice crystals, 

which can disrupt the cellular integrity preserved by the earlier fixation step.  Once 

dehydrated, the embryos can be stored in 100% methanol at -20 C for months until 

needed. To proceed with the in situ hybridization, the embryos were rehydrated with 

gradually decreasing concentrations of methanol to PBS-T. Embryos were transferred 

from the 100% methanol to 66% methanol in 33% PBS-T, followed by a wash of 33% 

methanol in 66% PBS-T. Two subsequent washes of 100% PBS-T followed. All washes

were performed for 5 minutes on the shaker. PBS-T is a washing buffer that cleans the 

methanol off of the embryos, the increasing concentration of PBS-T to methanol 

gradually rehydrates the embryos from their dehydrated state. 

Embryos were incubated in Pre-hybridization solution (pre-hyb) for one hour at 

65C. Pre-hyb is a blocking solution that reduces nonspecific binding and protein-

protein interactions and increases the quality of the probe signal at the end of the 

process. The embryos were then transferred to hybridization mix (RNA probe diluted 

1:100 in pre-hyb) pre-heated to 65C. Hybridization mix is made up of pre-hyb 

containing the RNA probe complementary to the RNA transcript of interest. The 

embryos were hybridized overnight at 65C. This temperature is ideal for the 

hybridization of the RNA probe to the respective gene transcript because it is a 

permissive temperature for hydrogen bonding between paired nucleic acids, but 
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stringent enough that there is a low probability of mismatched base pairing that would 

result in non-specific binding of the probe to other RNAs. 

After hybridization, a series of washes were performed at 65C. Each solution 

for these washes was prewarmed to 65ºC. The washes started with 66% pre-hyb to 33% 

2X saline-sodium citrate (SSC), followed by 33% pre-hyb to 66% 2X SSC followed by 

a 100% 2X SSC wash for 5 minutes each. 2X SCC is a detergent used to control the pH 

of the solution and help preserve the RNA bond to its complementary sequence in the 

zebrafish cells and wash away other non-specifically bound probe. The tissue was 

washed with 0.2X SSC followed by two washes with 0.05X SSC for 20 minutes each. 

The decreasing concentrations of SSC are used to further control the pH of solution.

The next washes were performed at room temperature (RT) for 5 minutes each 

on a shaker. The washes were performed with gradually decreasing concentration of 

0.05X SSC to PBS-T, starting with 66% 0.05X SSC to 33% PBS-T followed with a 

33% 0.05X SSC to 66% PBS-T. The third wash was performed in 100% PBS-T. The 

decreasing concentrations of 0.05X SSC to PBS-T washes the embryos of the 0.05X 

SSC to avoid mixing the SSC with the following washes.

After these washes, the embryos were treated with blocking solution (PBS-T, 

2% sheep serum and 0.2% BSA) for 1 hour at RT on a shaker. Blocking solution helps 

to prevent background caused by nonspecific binding of antibodies. Embryos were then 

incubated overnight in anti-digoxigenin (dig) (Roche) antibody diluted 1:5000 in 

blocking solution at 4C on the shaker. The anti-digoxigenin antibody binds to the DIG 

labeled nucleotides incorporated into the RNA probe.
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A series of 5 washes with PBS-T for 5, 10, and 3x 15 minutes were performed 

on a shaker. These PBS-T washes clean the embryos of excess antibody and blocking 

solution. After these washes, a wash with colorization buffer (100 nm Tris-HCl, 50 mM

MgCl2, 100 mM NaCl, 0.1% Tween-20, sterile water) for 5 minutes was performed to 

acclimate the tissue to the higher pH of colorization solution. The samples were then 

treated with a colorization mix (45 l nitro-blue tetrazolium (NBT) stock and 35 l 5-

bromo-4-chloro-3-indolyl phosphate (BCIP) stock diluted in 10 ml of colorization 

buffer) (Roche) until a reaction pigment was visible. NBT and BCIP react with the anti-

digoxigenin antibody to create a blue/purple pigment that corresponds to the location of 

the RNA transcript of interest.

2.9 Alcian Alizarin Double Stain to Visualize Skeletal Elements

This staining was performed to visualize the orientation and location of the 

spinal curvatures in cep290 mutant fish. Alcian blue binds strongly to large molecules 

in cartilage, whereas Alizarin Red binds to positively charged metals, like calcium in 

the bone.

All of the following steps, with the exception of the bleach step, were performed

on the shaker at room temperature. 10 fish were first euthanized and then fixed in 2% 

PFA/1X PBS for 1 hour followed by a 10 minute wash in 50% ethanol to prepare the 

tissue for the ethanol-based staining solution.

The double stain was performed overnight by immersing the samples in a 

mixture of Alcian premix (0.04% Alcian Blue/10mM MgCl2/80% ethanol) with 0.5% 

Alizarin Red Stock. The mixture was made by adding 20 l of Alizarin Red Stock for 

every 1 ml of premix. 
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Following the overnight stain, the fish were washed with 80% ethanol/10mM 

MgCl2 for one hour. The fish were then rinsed with 50% ethanol followed by a 25% 

ethanol rinse, both for 5 minutes each.

The fish were exposed to 3% H2O2/0.5% KOH for 10 minutes in the fume hood. 

Potassium hydroxide (KOH) is a caustic base and should be handled with extreme care. 

KOH is used to break down soft tissues and clear pigment from the embryos to allow 

visualization of bone stains. This step was not performed on the shaker.

To remove excess staining chemicals not bound to the skeletal tissue, the 

samples were transferred to a 25% glycerol/0.1% KOH mix and checked every 15 

minutes until red pigment was observed seeping from the tissue, which indicated the 

Alizarin stain beginning to dissociate from the bones. The fish were then immersed in 

50% glycerol/0.1% KOH overnight and a fresh solution of 50% glycerol/0.1% KOH 

was added the following day for short term storage.

The stained fish were imaged using a dissecting microscope with a mounted 

camera. Lateral, ventral, and dorsal views were captured to observe the orientation of 

the spinal curvature.
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3. Results

3.1 sansb appears to be upregulated in the absence of sansa

Previous results in our lab showed single sansa or sansb mutants appearing 

normal, but sansa;sansb double mutants presenting vision loss with hearing and balance

defects. This presented the hypothesis that single sans mutant fish could compensate for

the absence of one mutated gene by increasing the activity of the duplicate gene. This 

experiment was designed to detect increased activity by visualizing the abundance of 

sans transcript at several stages of development in wild-type and mutant backgrounds. 

cDNA was synthesized from sansa mutants and wild-type controls and expression of 

sansa and sansb genes were analyzed by RT-PCR (Figure 3).
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Figure 3: A time course of sans expression during embryonic and larval development

Stage matched wild-type zebrafish serve as a control and the ladder, represented as L, 

provides a reference for the size of the amplified PCR fragments. The closest ladder 

band, marked with a blue circle, is 500 base pairs (bp). The sansa and sansb PCR 

fragments were anticipated to be between 400-500 bp. The A-primer was used to detect

the expression of sansa in wild-type and sansa mutants (A). Levels of sansa expression

appeared consistent over this five day time course in both wild type and sansa mutants. 

The B-primer was used to detect the expression of sansb in wild-type and sansa 

mutants (B). The result shows that although sansb expression levels do not vary 

through all timepoints examined in wild type, expression appears to be increasing over 

time in the sansa mutant tissue.  

The gel shows the expression of sansb being upregulated in sansa mutants. This 

provides evidence of genetic compensation in the single sansa mutants. The reciprocal 

experiment, detecting sansa transcript levels in sansb mutants, was not completed due 

to the Covid-19 lab shutdown.

3.2 Defining and analyzing the onset of late spinal curvature in cep290 mutant 

larvae

A previous student in the Westerfield lab observed body axis curvature at 5 dpf 

when studying sansa;sansb;cep290 triple mutants. When the cep290 mutation was 

removed from the sans background through selective breeding, the body axis in cep290 
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single mutants was normal at 5dpf, but a pronounced body axis curvature was noted in 

juvenile and young adult fish. 

As part of the effort to characterize the phenotype of this new cep290 mutant, 

we sought to identify the developmental timepoint in which cep290 is required for 

proper body axis maintenance.

We first investigated this developmental event by defining its onset based on 

Standard Length (SL) measurements. Throughout the first week of life, developmental 

timepoints in zebrafish raised with standard methods are invariant. However, after this 

first week, variation in nutritional uptake and other fitness factors uncouples the 

correlation between growth and age. To estimate the developmental milestones of 

zebrafish after this stage in development accurately, researchers routinely use SL rather 

than age (Parichy et al., 2011).

Embryos derived from matings between carriers of the cep290 mutation were 

raised with standard conditions for 2 weeks. From day 15 onward they were observed 

so that the length of fish when they first developed the late spinal curvatures could be 

pinpointed. A body length of 7.4 mm + 0.48 mm was identified as the stage at which the

first spinal deformities could be observed. 

A double stain was performed on wild-type fish and their cep290 mutant 

siblings to analyze the orientation of spinal curvatures. The cartilage was stained blue 

and the bone was stained red/purple. 
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Figure 4: Skeletal staining reveals the orientation of the delayed spinal curvatures

The bone and cartilage stains for wild-type (A and B) and cep290 mutant (C and D) 

were compared to visualize the orientation of the spinal curvature. cep290 mutants have

multiple bends occurring along the spine. Frame E showcases the figure used to 

describe the position of the spinal curvatures with an accompanying compass to help 

orient to the dimensions of fish anatomy. The blue arrow of the compass represents a 

lateral plane. The black bar scales 1 mm. Source of Frame E Figure: Bensimon-Brito et 

al., 2012

Analysis of the skeletal elements revealed multiple curves in the spines of cep290 

mutants. A pronounced dorsal arch was observed in the abdominal vertebrae just 

posterior to the Weberian structure, and a ventral dip in the caudal vertebrae is detected 

at the level of the anal fin (Fig. 4.C). Mutants also displayed lateral displacements of the

caudal vertebrae anterior to the tail (Fig. 4.D). 100% of the fish with this spinal 

curvature phenotype were identified by sequence analysis as cep290 mutants. The 

spinal curvatures detected are consistent with those observed in a cep290 mutant study 

that was published during our analysis of our cep290 mutant (Lessieur et al., 2019). The
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mutation in cep290 reported in that publication affects approximately the same region 

as the mutation generated in our lab, suggesting that the resulting truncated protein may 

also have impaired Sans binding.

Young fish with combined cep290 and sans mutations exhibit an earlier 

curvature than the single cep290 mutants, suggesting that there is an earlier 

developmental timepoint at which cep290 is important for body axis regulation.  

Because this early defect was not detected in our observations of offspring derived from

parents carrying one mutant copy of the cep290 gene, we hypothesized that the early 

requirement may be met by contributions from the maternal effect. We tested this 

hypothesis to characterize the molecular cause of the delayed spinal curvature further.

3.3 Maternal contribution of cep290 ensures normal early body axis patterning

The mother’s genotype is a major contributor to the outcome of early zebrafish 

development. Yolks of the eggs are preloaded with maternal transcripts and proteins, 

which are used in numerous developmental events before the embryo’s own genes are 

active. Analyzing this ‘maternal contribution’ helps to determine when certain proteins 

are required for developmental milestones. 

To assess whether spinal curvatures seen in cep290 mutant offspring with 

heterozygous cep290 mothers were delayed due to maternal contributions of cep290 

that were functional earlier in development, we observed body axis formation in  

embryos from cep290 homozygous mutant mothers compared with those from cep290 

heterozygous mothers. 

We found that the majority of offspring of cep290 mutant mothers, which lack 

functional cep290 transcripts in the yolk, displayed pronounced body axis curvatures by
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3 dpf, whereas mutant offspring of heterozygous cep290 mutant mothers were 

confirmed to have normal body axes at this stage. This supports the conclusion that the 

maternal contribution of cep290 transcripts from heterozygous mothers is enough to 

rescue the mutant offspring from body axis defects early in embryonic development. 

We hypothesize that simultaneously depleting sans along with cep290 limits the rescue 

effect of the maternal contribution and results in an earlier body axis deformity.  

Because there was significant variation in the degree of the body axis curvature, 

we defined categories based on the angle of curvature relative to the anterior-posterior 

plane (Fig. 5).
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Figure 5. Lack of maternal contribution results in variable body axis defects

The offspring were separated into groups based on the type of bend seen. All the wild-

type controls, along with 9.4% of cep290 mutants fell into Category 1, which showed 

no bending (A). 62.5% of larvae fell into Category 2, showing a mild bend from 0.01° 

up to 10.00º, the offspring in this category was measured to be 7.68° (B). Category 3 

displayed curves greater than 10.00º and under 30.00º, it held 15.6% of the analyzed 

mutants, the offspring shown was 15.31° (C). Curvatures more severe than 30.00° were 

placed under category 4, holding 12.5% of the mutants, the offspring shown was 

32.70°. The scale bar represents 250 m.

All of the wild-type embryos, and cep290 mutants with heterozygous mothers, fell into 

category 1 with no abnormal curvatures present (Fig. 5.A). Table 5 sums up the 

parameters of each category along with the percentage of cep290 mutant offspring that 

fell into each category.

Category Degree Range % of cep290 Mutant

Offspring
1 0.0° 9.4
2 0.01° - 10.00° 62.5
3 10.01° - 30.00° 15.6
4 >30.00° 12.5
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Table 5: Percentage of mutant offspring in each category of curvatures

This experiment demonstrated that although maternal contribution of cep290 is clearly 

important for early body axis establishment, there is considerable variation in this 

developmental event, suggesting a complex mechanism. 

Adding to this suggestion of complexity, the two other zebrafish studies 

examining loss of cep290 function in zebrafish also reported body axis curvature in 

larvae (Baye et al., 2011; Lessieur et al., 2019). However, the curvature reported by 

Baye and colleagues was ventral, with tail curved under the body, whereas the curvature

reported by Lessieur et al, which notably occurred in less than 30% of larvae, was 

described as sigmoidal, or s-shaped. In contrast, the body axis curvatures noted here are 

mostly dorsal, curved toward the back.

3.4 A timeline of developmental requirements for Cep290 and Sans in body axis 

regulation

The important timepoints identified in this thesis and a previous lab student’s 

thesis are summarized in the timeline (Fig. 6).
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Figure 6. Cep290 and Sans importance in zebrafish body axis development

At 3 days post fertilization (dpf) and about when the fish reach 7.4 mm in standard 

length, the Cep290 protein is critical for body axis development and maintenance. Body

axis curvature of in sansa;sansb;cep290 triple mutants is seen at 5 dpf. The blue scale 

bar measures 250 m, and the black scale bare measures 1 mm.

The cep290 mutants lacking maternal cep290 and the sansa;sansb;cep290 mutants, 

shown at 3 and 5 days old respectively, have similar curvatures early in body axis 

development. By contrast, single cep290 mutants from non-mutant mothers bypass the 

early Cep290 requirement for body axis development but exhibit defects later in larval 

development. Taken together, these findings support the hypothesis that the effect of 

cep290 depletion on cilia-dependent body axis patterning is enhanced by the 

simultaneous absence of sans function. These results suggest that cep290, sansa, and 

sansb should be expressed in similar locations during zebrafish development. The 

Kupffer’s vesicle (KV), a transient structure present during the period of embryonic 

development in which the zebrafish body axis is elongating (indicated in Figure 7), has  

well-studied roles in patterning growth and symmetry during this developmental stage.
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3.5 sansb and cep290 colocalize in the region of Kupffer’s vesicle

The hypothesis that Sans interacts with Cep290 to regulate body axis 

development during early development suggests that sans genes should be present at a 

place and time consistent with this role. cep290 expression in zebrafish was previously 

shown in the region of the KV (Baye et al., 2011). The KV is located on the ventral side

of the embryo near the tail bud, and is present from 10 hpf until about 1 dpf. Because 

investigation of zebrafish sans was previously centered on its role in Usher syndrome, 

gene expression was visualized only within cells of the eyes and ears at later timepoints.

Therefore, we tested whether sans transcripts could be detected in the KV.
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Figure 7: sansb and cep290 are expressed in the tail bud proximal to the Kupffer’s 

vesicle

In-situs were performed using a sansb (A) and a cep290 (B) probe on wild-type 

embryos at 16 hpf to visualize the expression of the genes. In addition to faint 

expression in the head (blue arrow) both sansb and cep290 transcripts are detected in 

the tail region near where the KV would be located (black arrow). The black scale bars 

represent 250 m. Frame C shows the development of the body axis in zebrafish, in 

which the KV plays an important role. The KV is marked with a red arrowhead in a 10 

hpf embryo and goes away around 24 hpf. (Source: de la Torre Canny et al., 2009)

sansb and cep290 were both detected at 16 hpf, a timepoint approximately midway 

through the period in which the KV is active in body axis patterning. Both genes are 

expressed in a region proximal to the KV. This suggests a role for Sansb outside of the 

eyes and ears, which has not been identified previously.

The in-situs performed using a sansa probe were unsuccessful and could not be 

repeated due to the Covid-19 lab shutdown.
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4. Conclusion and Discussion

This thesis sought to test the hypothesis that the effects of cep290 depletion on 

cilia-dependent body axis patterning are enhanced by the simultaneous absence of sans 

function. As a prerequisite to this investigation, additional experiments were conducted 

to provide a baseline of cep290 single mutant phenotypes and to characterize further the

functionally redundant nature of the sans duplicates in zebrafish.

The first experiment described tested the genetic compensation question 

prompted by observations of sansa and sansb single mutants compared to sansa;sansb 

double mutants. RT-PCR on transcripts from embryos and larvae throughout the first 

week of development revealed the upregulation of sansb expression in sansa mutants, 

providing evidence that compensation by one gene, when the other genes is not 

functioning, is due to changes in gene regulation.

Next, experiments were conducted to characterize the phenotype of the cep290 

zebrafish mutation when isolated from the sans mutant background. Previous to the 

beginning of my thesis work, newly isolated cep290 carriers were mated to determine 

whether the body axis curvature observed in cep290;sans mutant larvae was solely a 

result of the cep290 mutation. None of the offspring of these crosses displayed an early 

curvature, but a spinal curvature was observed later in development in a subset of fish 

that were subsequently determined to be cep290 mutants. To analyze this phenotype 

further, I conducted an experiment to identify the developmental stage at which the 

spinal curvature was first detectable, establishing a standard length measurement for 

this event. A timeline created by David Parichy provided a reference point for this 

developmental stage (Parichy et al., 2009). A figure in this publication depicting 
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increase in standard length plotted against time shows a steep slope during the third 

week of development, the period in which we observed the initiation of the spinal 

curvatures, indicating an accelerated growth period. This was of particular interest 

because of the comparative adolescent growth spurt in humans, which is when the onset

of idiopathic scoliosis is most likely to occur.

My analysis established that the standard length when body axis curvature is 

first detectable occurs at 7.4 + 0.48 mm. These curvatures were further visualized using 

a double stain and compared to stage-matched wild-type controls. Multiple regions of 

spinal curvature were observed including both dorsoventral and lateral displacements. 

All of the fish that displayed this curvature were identified as cep290 mutants by 

sequence analysis, fish that did not display curvatures were either wild-type or 

heterozygous for cep290. This phenotype is similar to that reported in the investigation 

of cep290 mutants that was published during my thesis research (Lessieur et al., 2019). 

These results indicate that cep290 mutations cause a disruption in the flow of CSF, 

presumably, by impairing the function of the cilia involved in body axis development.

When sans genes are functional, cep290 mutants survive past the early curvature

timepoint and exhibit the delayed spinal curvature. We hypothesized that the 

unremarkable early development of cep290 mutants was due to the maternal genotype. 

To test for this maternal effect, embryos from homozygous cep290 mutant mothers 

were procured and compared to embryos from heterozygous cep290 mothers. The 

offspring of the cep290 mutant mothers exhibited curvatures by 3 days old, whereas the 

offspring of the heterozygous cep290 mothers did not. This result indicated that 

maternally contributed Cep290 is active during embryonic body axis development. The 
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previous finding that a similar curvature, presumed to be the result of dysfunctional 

ciliary movement, manifests in sans;cep290 mutants in this early time period suggested 

that Sans may be playing a role in cilia function beyond the retina, in concert with 

Cep290. In-situ hybridizations were performed on wild-type embryos at 16 hpf to learn 

whether the two genes were expressed in the KV, a ciliated structure known to be 

involved in body axis establishment during embryogenesis and where cep290 has been 

previously found to localize. sansb and cep290 transcripts were both detected in cells 

proximal to the KV, consistent with the hypothesis that Sansb and Cep290 are 

interacting in this process. The late larval body axis curvature observed in cep290 

mutants with heterozygous cep290 mothers was similar to the phenotype observed in a 

study of zebrafish models of idiopathic scoliosis (Grimes et al., 2016). The phenotype 

reported in this study was thought to be a result of dysfunctional motile cilia involved in

the flow of cerebrospinal fluid (CSF). The similarity in body axis disfigurements of the 

zebrafish in this thesis compared to that of Grimes and colleagues provides further 

support for our conclusion that cep290 is important for the function of the motile cilia 

responsible for the flow of CSF in zebrafish.

My hypothesis, which states that the effect of cep290 depletion on cilia-

dependent body axis patterning is enhanced by the simultaneous absence of sans 

function, is supported by the data presented in this thesis. The results from the in-situ 

hybridization experiments and the early curvature seen at 5 dpf in sans;cep290 mutants 

which is not seen in cep290 mutants with heterozygous mothers are consistent with an 

enhanced disruption of the body axis development due to an interaction between Sans 

and Cep290.
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5. Future Studies

This thesis provides a baseline phenotype for the cep290 mutation, showing a 

delayed scoliosis phenotype at 7.4 + 0.48 mm standard length and an early body axis 

curvature by 3 days old dependent on the maternal genotype. This thesis also provides 

insight into how the two orthologs of human SANS found in zebrafish, sansa and sansb, 

can compensate for each other if one of them is non-functional. Furthermore, we 

observed that sansb and cep290 are both expressed in the KV, which, in addition to 

providing the first evidence of sans expression outside the visual and auditory sensory 

cells, supports the hypothesis that sans and cep290 interact during the development of 

the body axis.

The reciprocal RT-PCR experiment should be done to see whether sansa 

transcription is upregulated in the sansb mutant. The expected result, consistent with the

lack of phenotype in single mutants, is an increase in sansa expression.

The expression patterns of sans and cep290 should be further characterized by 

performing in-situ hybridizations in wild-type fish at expanded timepoints within and 

before the interval that the KV is present and actively patterning the body axis. 

Additional timepoint analysis could establish a critical period for the hypothesized 

interaction between Sans and Cep290 in body axis patterning circa the KV, and also 

determine whether cep290 and sans have any other areas with common expression, 

which could indicate additional interactions in other tissues. Furthermore, an in situ 

with a sansa probe should be conducted to assay the expression in the KV. 

The expression of genes dependent on proper CSF flow should also be analyzed 

by in-situ hybridizations on cep290 mutants, sans mutants, and cep290;sans mutants. 
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The fluid flow that patterns the body axis and symmetry activates a variety of 

downstream targets with further roles in embryonic development. Evaluating how the 

expression of these downstream factors is affected by the loss of sans and cep290 

function will further identify the mechanism by which the combinations of mutants in 

this study cause body axis curvatures through cilia dysfunction. These experiments will 

help to characterize further the functions of the proteins as well as their partnership.

Acetylated tubulin is a protein subunit of microtubules, which make up cilia. 

Antibodies can be used to label acetylated tubulin in zebrafish cells. Antibody staining 

of acetylated tubulin should be performed on the motile cilia, including Kupffer’s 

vesicle (KV) and the cilia in the spinal cord that regulate CSF flow later in 

development. Visualizing these structures in sans mutants, cep290 mutants, and 

sans;cep290 mutants compared to wild type would determine how each mutation or 

combination of mutations affected the formation of these cilia, a necessary step to 

determine whether the defects observed in these mutants are based on improper cilia 

formation or function.

Zebrafish have pigment spots that contain melanosomes that expand or contract 

in response to environmental light levels. The process of expanding and contracting the 

melanosomes is a microtubule based system. Therefore, melanosome transport is a 

readout of microtubule transport. Defective melanosome transport was reported in the 

previous study of loss of cep290 function in zebrafish (Baye et al., 2011) so it would be 

informative to analyze this process in sans mutants, cep290 mutants, and sans;cep290 

mutants. If dysfunction in melanosome transport is observed, this would further clarify 

the interaction between cep290 and sans as it relates to microtubule function.
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This thesis project has set up the next steps in validating the Sans-Cep290 

interaction in zebrafish. The discovery of this interaction creates a better understanding 

of how Cep290 functions in zebrafish. The validation of this interaction would 

implicate a role for Sans outside of the visual and auditory systems, and its possible 

function in body axis maintenance, which, when disrupted, can result in scoliosis. If the 

function of Sans outside of USH systems were confirmed, it would call to question the 

functions of other USH genes, leading to a new course of research to implicate them in 

other disorders and interactions they may have. This information would be useful for 

generating improved clinical tools such as gene therapies. The results described in this 

thesis are part of a global research effort to enhance our collective understanding of the 

genetic variations that influence virtually every aspect of human life.
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