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THESIS ABSTRACT 
 
Elijah Orland 
 
Master of Science 
 
Department of Earth Sciences 
 
June 2020 
 
Title: Deep Learning as a Tool to Forecast Hydrologic Response for Landslide-Prone 

Hillslopes 
 
 
Empirical thresholds for landslide warning systems have benefitted from the 

incorporation of soil-hydrologic monitoring data, but the mechanistic basis for their 

predictive capabilities is limited. Although physically based hydrologic models can 

accurately simulate changes in soil moisture and pore pressure that promote landslides, 

their utility is restricted by high computational costs and non-unique parameterization 

issues. We construct a Deep Learning model using soil-moisture, pore-pressure, and 

rainfall monitoring data acquired from landslide-prone hillslopes in Oregon, USA, to 

predict the timing and magnitude of hydrologic response at multiple soil depths for 36-

hour intervals. We find that observation records as short as six months are sufficient for 

accurate predictions, and our model captures hydrologic response for high-intensity 

rainfall events even when those storm types are excluded from model training. We 

conclude that machine learning can provide an accurate, and computationally efficient 

alternative to empirical methods or physical modeling for landslide hazard warning. 
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“Who really can face the future? All you can do is project from the past, even when the 
past shows that such projections are often wrong. And who really can forget the past? 

What else is there to know?” – Robert Pirsig 
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I. INTRODUCTION 

 
 Rainfall-induced shallow landslides pose a threat to communities situated in 

mountainous terrain. These natural hazards are deadly and can incur up to $500 million 

(USD, 2020 adjusted) in economic losses from a single event (Turner & Schuster, 1996). 

Furthermore, there are over 294,000 individual landslides identified in the conterminous 

United States, with additional mapping still needed to complete a nationwide inventory 

(Mirus et al., 2020). Assessing the potential for landslide initiation is a crucial step for 

developing an early warning system for at-risk communities, and relies on predictions of 

hillslope response to rainfall. This is often facilitated by hydrologic models characterized 

by varying degrees of complexity, such as empirical thresholds that relate rainfall and/or 

soil moisture measurements that correspond to past landslide events (e.g., Guzzetti et al., 

2008; Wieczorek & Guzzetti, 2000; Mirus et al., 2018), or deterministic, physically based 

numerical models (e.g., Bellugi et al., 2015; Montgomery & Dietrich, 1994; Simunek et 

al., 2005). There are unique advantages to each method: empirical relationships between 

soil moisture, rainfall, and landsliding provide an efficient, regional-scale means of 

characterizing landslide initiation potential, but have limited predictive accuracy 

(Bogaard & Greco, 2018; van Natijne et al., 2020). On the other hand, hydrologic 

modeling of saturated and unsaturated flow can be used to develop thresholds for 

assessing distributed landslide potential and can be extended beyond the observed record 

(e.g., Fusco et al., 2019; Thomas et al., 2018a) instead of relying solely on statistical 

analyses. Hydrologic modeling of subsurface flow is relevant for hazard assessment, as it 

provides quantitative estimates of pore pressures in soils, which can be used to 

approximate the corresponding reduction of resisting stresses on hillslopes that can lead 
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to slope failure (Lu & Likos, 2004; Lu & Godt, 2008; Thomas et al., 2018b). That said, 

models of variably-saturated hydraulic and mechanical hillslope processes require 

significant effort to parameterize and validate, and the computational burden associated 

with their solution can limit their utility for operational (real-time) warning systems. 

Further complications include the natural heterogeneity of soil structure, such as the 

presence of tree roots which add quantifiable tensile strength (Roering et al., 2003), and 

macropores that provide preferred channels of non-Darcy flow (McDonnell, 1990). 

Consequently, physical based modeling may not necessarily capture all the underlying 

physical processes in natural field settings. 

To better constrain hydrologic response to rainfall, we propose an alternative 

method based on Deep Learning (DL)—an approach that requires less physical 

parameterization and trains faster than existing multi-dimensional flow models. DL-based 

approaches have already shown significant promise in the field of hydrology (Shen et al., 

2018), and here, we propose the use of specific DL-based algorithms that can learn and 

forecast hydrologic conditions from time series. This method relies on the quality and 

abundance of in-situ soil moisture or pore-pressure measurements to provide an 

empirically derived, site-specific hydrologic dataset which implicitly captures the 

characteristics of multi-dimensional variably saturated flow. We base our DL application 

on three unique requirements that are essential considerations for integrating a DL model 

with an early warning system: (1) evaluating how well a calibrated model can perform on 

unseen data (i.e. general model performance); (2) finding a critical length of input data 

for sufficient model performance (i.e. setting minimum performance requirements); and, 

(3) how well a model can predict conditions associated with high-intensity rainfall when 
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the observation data used for model training does not include high-intensity events (i.e., 

model extrapolation capability). 

Here, we develop an explicit, data-driven analysis of these requirements for 

successful early warning system integration and demonstrate the utility of DL for 

accurately modeling 3D variably saturated flow from data representative of typical early 

warning systems. We further show how DL algorithms provide accurate forecasts of pore 

pressure response up to 36 hours in advance—a relevant timescale for landslide risk 

mitigation. While we do not suggest that DL can replace the insights gained from 

physically based models, it is a promising method for forecasting soil hydrologic 

response in highly heterogenous or otherwise complex landscapes where comprehensive 

physical modeling would be computationally prohibitive. 
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II. METHODS 

2.1 Data Source 

 We used data collected from the Knife Ridge monitoring site in the Elliot State 

Forest, Oregon, USA (Smith et al., 2014) (Figure 1a). The Oregon Coast Range is 

characterized by steep, soil-mantled hillslopes that are prone to shallow landslides that 

transition into debris flows, such as those triggered by historic storms in 1964 and 1996 

(Coe et al., 2011; Montgomery et al., 2009; Robison et al., 1999; Wiley, 2000). Previous 

studies have shown that hydrologic response in this landscape is challenging to model as 

a result of strong hydrologic connectivity between the heterogeneous soil mantle and 

shallow zones of fractured bedrock (Ebel et al., 2008; Ebel et al., 2007; Mirus et al., 

2016). The monitoring site is located within a valley axis with an upslope contributing 

area of approximately 300 m2, and features greater than 30° slopes with an average soil 

depth between 0.9-2.1m (Smith et al., 2014). The instrumental record includes hourly 

measurements of rainfall, as well as soil moisture and pore pressure (suction) at three 

depths acquired from 2009 to 2012 (Smith et al., 2014) and has been the subject of prior 

3D physically based modeling efforts (Mirus et al., 2016). 

 

2.2 Machine Learning Methods  

 Artificial Neural Networks (ANNs) have broad application to classification and 

regression-based problem solving, owing to their ability to approximate a wealth of 

mathematical relationships between input and output variables (Hornik et al., 1989). 

ANNs are already utilized in geoscience applications (e.g., DeVries et al., 2017), and 

have been used to model highly non-linear processes common in hydrology (Abrahart & 
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See, 2007). Other uses of neural networks or machine learning (ML) in hydrology 

include time-dependent ANNs capable of filling data gaps in hydrologic times series 

(Ren et al., 2019), as well as tree-based based machine learning algorithms for estimating 

soil-hydrologic parameters from physical or textural soil properties (Araya & Ghezzehei, 

2019).  

Specifically, ANNs consist of one or more hidden layers of neurons that each 

contain a set of weights that are applied to all input variables, plus an added bias. The 

weighted sum of a neuron is subsequently non-linearized by an activation function. 

Hidden layers of neurons connect input and output variables. The various combinations 

of weights and biases across all neurons are then trained by changing their values such 

that they minimize a fixed error metric like the root mean squared error (RMSE) or mean 

absolute error (MAE) to provide the proper non-linear transformation of input variables 

to a corresponding output variable or variables.  

 A variation of traditional ANNs is the Recurrent Neural Network (RNN), which is 

well suited for processing sequential or temporal data, given a RNN’s ability to 

incorporate information from the previous timestep and make predictions for the next 

timestep(s) based on weighting past and present inputs. A popular variant on the 

traditional RNN cell is the Long Short Term Memory (LSTM) cell (Hochreiter & 

Schmidhuber, 1997). By design, a LSTM cell contains an internal state which acts as its 

memory, and is iteratively adjusted and propagated through time. The internal state 

allows the cell to handle longer term temporal dependencies that traditional RNN cells 

are not able to explicitly incorporate within their architecture. 

 



 

6 

 

Figure 1. (a) Oblique view of the Knife Ridge monitoring site featuring all 
instrumented soil pits (SP), including the pit for which we model pore pressures 

(black box). As the site sits on a slope >30° located within a convergent valley axis, 
variably saturated flow takes place both laterally and vertically. Adapted from Smith 

et al. (2014). (b) Conceptual diagram showing model inputs and outputs. During 
training, a moving window slides across the input data provided to it (solid), and the 
model adjusts its parameters to produce a sequence of pore pressure values (dashed) 

from the model inputs that best matches the observed pore pressure sequence for 
those timesteps (not pictured). This process repeats until the model converges on a 
set of a parameters that produces the lowest mean squared error measured across all 

predicted and observed sequences. 
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Furthermore, LSTM-based neural networks are conceptually better suited than 

statistically-based autoregressive time series models, given a LSTM’s capacity to 

approximate non-linear relationships between input and output variables, as opposed to 

assuming linear relationships between lagged endogenous or exogeneous variables in 

most autoregressive models (Box et al., 2008). This is particularly relevant for the non-

linear physical processes that govern variably saturated subsurface flow (Richards, 1931). 

For a more in depth discussion of LSTM cells, we refer to Olah (2015), and for 

applications to hydrology, we refer to (Kratzert et al., 2018). 

 We use an LSTM-based “encoder-decoder” model with a global Luong attention 

mechanism (Luong et al., 2015)—an architecture we chose through an extensive trial and 

error-based process considering computational processing time, ease of use, and 

consistency of results. The encoder-decoder architecture consists of two parts: an 

“encoder” that reads in and learns an input sequence; and a “decoder” that receives a 

fixed representation (understanding) of the input sequence from the encoder, and learns 

the proper non-linear transformations to translate the input to an output sequence of 

variable length (Sutskever et al., 2014). For temporal data, the encoder learns the 

functional relationships of the input sequence, and the decoder learns the necessary 

transformations to translate the previous input sequence to a sequence of predicted 

values. The decoder does so one step at a time based on the input sequence itself, as well 

as the previous timestep of the prediction sequence.  

 Our model consists of 24 unidirectional LSTM units in both the encoder and 

decoder, which feed to a layer of 75 connected neurons with a 50% dropout 

regularization rate for further processing, and finally connect to a layer of 3 neurons 
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outputting a vector of 36 hourly predictions at each of the three tensiometer depths. We 

script our model in the Python programming language, utilizing the Keras frontend API 

(https://keras.io/) with a Tensorflow backend (https://www.tensorflow.org/), and the 

Adam optimizer (Kingma & Ba, 2014). We use Scikit-learn (Pedregosa et al., 2011) for 

data pre- and post-processing. As model weights are set randomly upon initialization, 

each model run typically converges on a similar, but not necessarily identical solution. 

However, training for 2000-5000 epochs consistently results in a series of weights and 

biases that lead to comparable results across model runs. Typical training time takes 

between 2-10 minutes on a single GPU processor in the Google Collaboratory scripting 

environment (colab.research.google.com). 

 

2.3 Data Preprocessing and Experimental Framework 

 Modeling steps include preparing input sequences of the previous 36 hours of data 

at 1hr resolution from all sensors (rainfall, soil moisture, tensiometer), and the measured 

maximum and cumulative rainfall for the next 36-hr interval. We represent this future 36-

hr rainfall input (herein referred to as a forecast) through 18 two-hour intervals of max 

and cumulative rainfall data. These input data pair with the corresponding pore pressure 

data within the prediction interval at each tensiometer depth, and frames our study as 

supervised learning regression problem. In doing so, we provide our model with both 

prior and anticipated hydrologic information as inputs and seek to draw an explicit link 

between these inputs and the corresponding pore pressure response within the 36-hr 

rainfall forecast period (Figure 1b). Model training then occurs by finding the best set of 

non-linearized weights and biases that apply to current and past information which most 
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closely match the observed pore pressure response. For this implementation, we choose 

the recorded rainfall data as forecasted information because it allows our algorithm to 

approximate the functional relationships between soil moisture response and rainfall. As 

such, we do not incorporate uncertainty into rainfall forecasts in this contribution. 

 To assess the efficacy of our LSTM-based model, we explicitly address the three 

requirements necessary for application in early warning systems. Specifically, we ask the 

following: (1) Given a model trained on two years of data, how well can it forecast pore 

pressure for the following year?; (2) To what extent does the length of the training dataset 

affect our ability to make accurate predictions?; and (3) If our training dataset does not 

include high intensity events, how well can we predict pore pressure for high intensity 

rainfall outside of the model’s calibrated range? For this exclusion process, we omit 

rainfall events with intensities >4mm/hr across all water years—a relatively low intensity 

value that corresponds to the mean hourly intensities of two 1996 storms that caused 

mass wasting across the Oregon Coast Range. The first question demonstrates the 

algorithm’s ability to learn from a variety of soil moisture response examples and tests 

anticipated general performance; the second question tests how much information our 

model needs to provide accurate forecasts, thus establishing a minimum requirement for 

available training data; and finally, the third question tests our algorithm’s ability to 

extrapolate response governed by highly non-linear processes and potentially predict 

response to extreme, never-recorded events. 
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III. RESULTS 

Our results demonstrate that the LTSM-based model can yield highly accurate 

predictions (RMSE < 1 kPa for positive pore pressures) for Water Year 3 (Oct 1, 2011 – 

Sept 31, 2012) in as little as two minutes (computational time) of training on Water Years 

1 & 2 using a single GPU processor, thus addressing our model’s general performance 

capacity. As an example, Figure 2a shows predictions for pore pressure (suction) at 36 

hour intervals from January 14 – February 14, 2012 (a subsection of Year 3) at all 

tensiometer depths. This one-month illustration includes many 36-hr prediction intervals 

that show a rise and decay of pore pressure in response to rainfall events. While 36-hr 

prediction intervals generally agree with the corresponding observed intervals, our model 

sometimes fails to predict periods of wetting or drying during intervals that feature 

continuous rainfall over several days. For instance, in the long sequence of rainfall events 

between January 17-21, our model incorrectly predicts drying conditions with a decrease 

in pore pressure. Nonetheless, these types of errors are infrequent and unrepresentative of 

general model performance, as the correlation coefficients between observed and 

simulated values exceed 0.96 (Supplemental Figure 1). 

To establish minimum performance requirements, we progressively resampled 

our training dataset into shorter and shorter subsets and then tested its performance for 

the third year of our record. Figure 2b shows the drop in model performance is most 

prominent when we reduce sampling to less than six months of observations, which we 

posit as a minimum sampling threshold for the dataset. While this number will vary based 

on the dataset provided, having a baseline value for training data provides valuable 
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insight for similar endeavors at other field sites and demonstrates an important minimum 

observation requirement for accurate predictions. 

 

 

  

 

 

Figure 2. (a) Predicted and observed pore pressure response from January 14 - 
February 14, 2012, delineated by each 36-hr prediction interval. (b) RMSE of 
positive pore pressure predictions as a function of available training data. Data 

subsampling occurred by randomly selecting training samples and their 
corresponding targets without replacement from a total population of training 

data from Water Years 1 & 2. This introduces possible random sampling error, 
but eliminates any bias from choosing only samples from dry or wet months. 

With a limited number of training samples, however, we suggest selecting data 
that most closely approximates the intended conditions one chooses to model. 
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Finally, to demonstrate model extrapolation capacity, Figure 3a shows 36-hr 

predictions for intervals with rainfall intensities above the 4mm/hr training threshold. 

Overall, our intensity-limited model demonstrates reasonable accuracy in estimating 

rising, peak, and falling limbs of individual prediction intervals, but shows infrequent 

areas of high inaccuracy, particularly for prolonged periods of rainfall over the 4mm/hr 

threshold. Figure 3b shows absolute prediction error between our original and intensity-

limited models at each tensiometer depth. While the intensity-limited model features the 

largest error values, overall error approximates the mean error values of our original 

model, both of which lie within or near the ± 0.5 kPa margin of instrumental tensiometer 

error (Smith et al., 2014). Thus, even constraining the model training to non-anomalous 

rainfall events still allows for accurate—if not always consistent—predictions in response 

to higher intensity rainfall events.  
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Figure 3. (a) Intensity-limited pore pressure response from January 14 - February 14, 
2012. (b) Comparison of error values based on rainfall intensity. Model absolute error 
on testing data after training on all rainfall intensities featured in Water Years 1 & 2 
(left). Intensity limited model absolute error from all rainfall intensities at or above 

4mm/hr across all water years (right). 
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IV. DISCUSSION 

  The heterogeneity of landslide-prone hillslopes poses challenges to the processes 

encoded in hydrologic models. For example, complicating factors such as tree roots, 

macropores, soil horizons and otherwise heterogeneous soil conditions limit the ability 

for a simple, single parametrization to properly characterize field conditions. Mirus et al. 

(2016) simulate pore pressure values on Knife Ridge through 3D numerical subsurface 

flow modeling. Their model parameterization includes topographic data, soil depth 

information, and five hydraulic property parameters for each of the three hydrogeologic 

units included in their study. As a result, their work provides an important physical 

analog and gives valuable insight into the controls of hydrologic response, but does not 

reach the same level of accuracy with pore pressure predictions in comparison to our DL 

model. An increase in the number of modeling scenarios such as those utilized by 

Thomas et al. (2018a) can begin to account for inaccuracies behind a single physical 

model parameterization, yet the extended processing time even for 1D infiltration 

scenarios is problematic, and this limitation will only increase with additional 

dimensions. The ML-based modeling presented here outperforms the processing time of 

the HYDRUS-1D (Simunek et al., 2005) model utilized by Thomas et al. (2018a) by as 

many as three orders of magnitude (128hrs vs 2-10 minutes). Thus, with the naturaand 

uncertainty of soil conditions for field sites, a well calibrated ML-based model has the 

capability to learn and account for site-specific characteristics without imposing a 

computational limitation. 

As our sensitivity tests demonstrate, the limits of our model’s accuracy are 

determined by the quantity and quality of the training data, which as a pre-requisite must 
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capture the underlying physical relationships we seek to model. Because our study area is 

characterized by a Mediterranean climate, training data is required during fall and winter 

months when rainfall events that promote landslides are most common. Furthermore, our 

results suggest that if training data happen to be acquired during a period lacking rainfall 

events of significant intensity, the model can approximate soil hydrologic response to 

high rainfall events, albeit with reduced accuracy. This issue of extrapolation beyond 

conditions within the period of record is common to many environmental and hazards 

research pursuits.  

 By closely approximating the timing and magnitude of rises in pore pressure 

along a variety of wetting/drying conditions, our LSTM-based model demonstrates a fast, 

accurate, and computationally efficient alternative to physically based modeling of 

landslide hazard. We anticipate that this approach can provide accurate predictions for 

integration into landslide early warning systems. Our results suggest that it is possible to 

train an algorithm that does not require the same sets of parameters as physical models, 

but uses site-specific data to capture the complexity of in situ measurements, and 

replicates the physical relationships behind 3D flow for variably saturated subsurface 

conditions.  

We present our model as a proof-of-concept for how machine learning can help 

forecast conditions for use in early warning systems. There are several modifications that 

could generate improved results, such as an increase in the length of observation data, the 

potential for additional insight from multi-head convolutional layers such as those 

utilized by Zheng et al. (2014), or adapting more advanced attention-based models such 

as the Transformer (Vaswani et al., 2017). The latter represents a promising next step. As 
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the physical significance of a neural network’s weights are challenging to interpret, a 

more in-depth study of attention in future network architectures may provide further 

insight into the influence of each physical input at each timestep. 
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V. CONCLUSIONS 

We demonstrate how an LSTM-based DL algorithm can accurately predict the 

timing and magnitude of pore pressure response to rainfall in 36-hour intervals. Our 

model is computationally efficient and can be used to provide real-time forecasts of 

hydrologic response conditions on landslide-prone hillslopes for early warning. The 

quantity and quality of the training data used for the model serves as a first-order limit on 

the model’s predictive capability. We further show that when trained on exclusively low 

intensity rainfall, our model can approximate pore pressure response to high intensity 

events. With previous work exemplifying the mathematical capabilities of ANNs to learn 

and understand physical processes in hydrology and geosciences, we present this model 

as a next step to more accurately constrain near-surface hydrologic response in naturally 

heterogeneous areas where physically based modeling is computationally prohibitive.  
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APPENDIX: SUPPLEMENTAL FIGURE 1 
 

 
 
 
 

Supplemental Figure 1. Comparison of predicted and observed soil matric 
potential (suction) values. Reference line demonstrates 1:1 fit. These data are 
inherently temporally autocorrelated; we do not suggest causality between the 
two individually and separately autocorrelated datasets, but rather highlight the 
strong agreement between observed and predicted values across all possible 
observations. 
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