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THESIS ABSTRACT

Maria McQuillan

Master of Science

Department of Earth Sciences

June 2020

Title: Modelling Fluid Resonance in Conduit-Crack Coupled Systems: An
Application to Englacial Geometries

Englacial structures are an integral part of the glacial hydrological system,

yet the internal structure of ice sheets and glaciers remain largely unknown.

Resonance of fluids in cracks and conduits has been widely leveraged to infer the

geometry of subsurface transport networks, but has not seen a wide application

to glaciology. The range of possible englacial geometries is not well constrained.

Therefore we explore a range of possible crack geometries, including symmetric and

asymmetric tabular cracks that may intersect a conduit at an arbitrary angle. We

define the resonant modes as a function of geometry and study which modes are

excited for a given impulse forcing at the conduit surface. We find that a coupled

mode between the conduit and crack as well as Krauklis wave mode, if detectable,

constrain the geometry of hidden cracks. We finally interpret published data from

fracture resonance in the glacial system according to our model.
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CHAPTER I

INTRODUCTION

The englacial hydrological system modulates water transport from the

supraglacial environment to the subglacial system, however little is known about

the geometry of these water transport pathways. The geometry of these pathways

could dramatically impact the efficacy of water transport to the glacier base

(Fountain et al. 2005), which subsequently impacts the rate at which water is

introduced to the subglacial system (Banwell et al. 2016, Schoof et al. 2010). In

this study we investigate how fluid resonance may be used to interrogate these

hidden water transport pathways.

The most common methods to probe englacial structures are speleological,

ice penetrating radar, or in situ observations using boreholes and cameras (Vatne

et al. 2001, Catania et al. 2008, Graff et al. 2019). Through these methods we

know the englacial system could be composed of fractures, larger conduits or

possibly both (Fountain et al. 2005). However, while these methods are useful for

identifying features in isolated cases, they are limited in the sizes of features they

can identify and often fail to determine the dimensions of such features, which can

inform water storage and transport rate. We propose fluid resonance in englacial

structures may provide a more versatile and informative approach for defining

englacial pathways.

Fluid resonance occurs at distinct frequencies that can be related to

excitation mechanisms and the geometry of the resonator. Fluid resonance as

a method to define subsurface features has seen wide application in oil and gas

exploration, and is beginning to see applications in volcanology (Liang et al. 2020,

Holzhausen 1986, Mondal 2010, Molenaar et al. 2012, and others). Specifically,
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fluid resonance in fractures has proven powerful for determining fracture lengths

and widths which could be invaluable for understanding englacial water transport.

Glaciologists have just begun to scratch the surface of these methods (Lipovsky

and Dunham 2015, Roeoesli et al. 2016, Graff et al. 2019 and Podosky et al. 2020)

and this study aims to further define the limits for which fluid resonance could be

used to define simple and complex englacial geometries.

We assume an englacial geometry of a conduit connected to one or more

englacial cracks. We then model wave motion in these coupled structures to

determine the resulting resonant spectra. We interpret resulting resonant behavior

in the context of pre-existing theory for resonance in these geometries and evaluate

the limits for which they apply to the englacial environment. Finally we apply our

results to a real data set from Rhonegletscher glacier (Graff et al. 2019) in the

Swiss Alps and discuss the effectiveness of our methods.
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CHAPTER II

MODELLING THE ENGLACIAL SYSTEM

The englacial system can be a complicated active network of fluid or air

filled cracks and/or conduits. We assume a simplified englacial geometry as a

subvertical tube connected to one or more elastic fractures, as seen in Figure 1.

We assume excitation wavelengths are long compared to fracture openings and

the conduit radius. This allows us to consider pressures to be uniform in the

radial and crack opening directions. Furthermore, we assume elastic deformation

occurs much slower than elastic wave speeds in ice and thus the elastic conduit

and fracture walls respond quasi-statically to pressure and velocity perturbations,

thus we neglect any seismic radiation into the surrounding solid (Krauklis 1962,

Ferrazzini and Aki 1987). Finally, we consider fluid flow is fully developed and

that there are no changes in density due to bubble or suspended sediment in the

water. In the fully developed flow limit we assume the velocity profile can be

represented as Poiseuille flow. Our interest is in small perturbations to a static

background state, which we excite using an impulsive pressure pulse. Under these

assumptions, we use a linearized theory of wave propagation in elastic conduits

and cracks, largely following the derivation and numerical implementation in Liang

et al. (2020).

Governing Equations: Fluid Filled Conduit

We begin by considering the vertical momentum balance for an unsteady

fluid in a cylindrical conduit with radius R and length L. By limiting our study

to wavelengths larger than the conduit radius, pressure is uniform in the radial

direction (lubrication approximation) and velocity will be axisymmetric,

ρ∗(
∂v∗

∂t
+ v∗

∂v∗

∂z
) +

∂p∗

∂z
= µ

1

r

∂

∂r
r
∂v∗

∂r
(2.1)
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Figure 1. Our model of the englacial system showing multiple fractures. For this
study we mostly focus on a system with a single fracture either at the base or
in the center of the conduit. Fractures are defined by two crack lengths Lx and
Ly and an unperturbed opening w0. Conduit sections are defined by a length L
and a radius R. Fractures may also be dipping at an angle θ with respect to the
horizontal axis. The free surface is denoted by a red triangle. h(t) is the height of
the water surface in reference to an unperturbed fluid surface.

where v∗, p∗ and ρ∗ are particle velocity, pressure and density and µ is the

dynamic viscosity. Depth, z, is measured from the bottom of the conduit and r is

defined as the radial distance from the conduit center. For this study we will focus

only on systems in the Poiseuille flow limit where the velocity profile is considered

to be parabolic in the conduit (the appropriateness of this assumption will be

discussed later). We also assume wavelengths will be much larger than the conduit

radius, thus we can consider a cross-sectionally averaged vertical velocity

u∗(z, t) =
1

πR2

∫ R

0

v∗(z, r, t)2πrdr. (2.2)
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This simplifies the momentum balance to

ρ∗(
∂u∗

∂t
+ u∗

∂u∗

∂z
) +

∂p∗

∂z
= −8µ

R2
u∗. (2.3)

To round out the governing equations we present the system mass balance and

the Lagrangian equation of state for the fluid using this cross-sectionally averaged

velocity

∂ρ∗

∂t
+ ρ∗

∂u∗

∂z
= 0, (2.4)

1

ρ

∂ρ∗

∂t
=

1

K
(
∂p∗

∂t
+ u∗

∂p∗

∂z
), (2.5)

where K is the fluid bulk modulus.

Next, we linearize equations (2.3), (2.4) and (2.5) about a static background

state to focus on the response of the system to small perturbations. We represent

the total fields as a sum of the background state, denoted with an overbar, and a

small perturbation

[ρ∗, u∗, p∗] = [ρ̄+ ρ, ū+ u, p̄+ p]. (2.6)

The static background state implies

ū = 0,

p̄ = constant,

ρ̄ = constant.

(2.7)

Substituting the expressions in (2.6) and (2.7) into the governing equations and

removing non-linear terms in the perturbed quantities results in the following

linearized equations

∂ρ

∂t
+ ρ̄

∂u

∂z
= 0, (2.8)
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ρ̄
∂u

∂t
+
∂p

∂z
= −8µ

R2
u, (2.9)

1

ρ̄

∂ρ

∂t
=

1

K

∂p

∂t
. (2.10)

We can then combine equations (2.8) and (2.10) to get our simplified governing

equations

1

K

∂p

∂t
+
∂u

∂z
= 0 (2.11)

ρ̄
∂u

∂t
+
∂p

∂z
= −8µ

R2
u. (2.12)

It must be noted that these equations are only valid for systems in the fully

developed flow limit (Womersley 1955). Assuming fully developed flow simplifies

the viscosity term in the vertical momentum balance, but may provide unrealistic

viscous damping effect considering the englacial environment. We move forward

with this assumption for simplicity (Liang et al 2020) and leave a more rigorous

treatment of viscosity to future work.

Boundary Conditions. To supplement the governing equations, we

impose no slip boundary conditions on all conduit walls. At the top of the conduit

the free surface is allowed to respond freely to atmospheric pressure

p(z, t)|z=L = ρgh(t) (2.13)

where h(t) is the fluid surface displacement at the free surface forming the top of

the conduit (Fig. 1), and can be calculated using the fluid velocity at the surface

u|z=L =
dh

dt
. (2.14)
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We treat the bottom of the conduit as a pressure boundary condition to simulate

the response of an open fracture connected to the base of the conduit

dp

dz
|z=0 = −CtAu (2.15)

where Ct is the storativity of the crack (discussed below), and A = πR2

is the cross-sectional area of the conduit. In the absence of a crack or for short

excitation wavelengths, dp
dz

= 0 and the bottom boundary becomes a constant

velocity boundary condition u = 0.

Governing Equations: Fluid Filled Crack

For the fracture, we consider a 3D crack with the independent coordinate

system x, y, and ξ where x is along dip, y is along strike and ξ represents the

direction of opening of the fracture as seen in Figure 1. We begin with the

linearized equations for fluid flow in a 3D fracture (Ferrazzini and Aki 1987, Linag

et al. 2020)

∂ρ

∂t
+ ρ̄

∂vx
∂x

+ ρ̄
∂vy
∂y

+ ρ̄
∂vξ
∂ξ

= 0, (2.16)

the momentum balance in each direction is,

ρ̄
∂vx
∂t

+
∂p

∂x
= µ

∂2vx
∂ξ2

, (2.17)

ρ̄
∂vy
∂t

+
∂p

∂y
= µ

∂2vy
∂ξ2

, (2.18)

and the equation of state in the crack is

1

ρ̄

∂ρ

∂t
=

1

K
(
∂p

∂t
+ vx

∂p

∂x
+ vy

∂p

∂y
+ vξ

∂p

∂ξ
). (2.19)

Similar to the conduit case, we assume Poiseuille flow and due to the assumption

that excitation wavelengths will be much longer than crack widths we can

7



represent these equations in a width averaged description. The width averaged

velocities are expressed as

ux(x, y, t) =
1

w0

∫ w0

0

vx(x, y, t)dξ, (2.20)

uy(x, y, t) =
1

w0

∫ w0

0

vy(x, y, t)dξ. (2.21)

Re-writing our equations in terms of the width averaged description and

accounting for Poiseuille flow yields

ρ̄
∂ux
∂t

+
∂p

∂x
= −12µ

w2
0

ux, (2.22)

ρ̄
∂uy
∂t

+
∂p

∂y
= −12µ

w2
0

uy, (2.23)

∂ρ

∂t
+ ρ̄

∂ux
∂x

+ ρ̄
∂uy
∂y

+ ρ̄
1

w0

∂w

∂t
= 0, (2.24)

1

ρ̄

∂ρ

∂t
=

1

K

∂p

∂t
. (2.25)

To close our system of equations we apply no slip boundary conditions to all

fracture walls.

ux|x=0,Lx = 0,

uy|y=0,Ly = 0.

(2.26)

Elasticity. We are interested in oscillations related to fracture

deformation and thus consider crack elasticity. The elastic response of the crack

is solved using a combination of Hooke’s Law and the Okada dislocation model

8



of a mode one fracture an elastic half-space. The crack is modelled as a grid of

fracture cells where Okada’s solutions are used to calculate the overall ”stiffness”,

Ks, of the crack. This is achieved by imposing a unit opening on each fracture cell

and summing the resulting stresses on each cell by every other cell to represent the

overall stress field for the fracture as a matrix Ks. Using Hooke’s law we can relate

this stress field and the internal pressure of the fracture to the resulting fracture

opening, w.

w =
1

Ks

p (2.27)

In addition to fracture stiffness, we can also use this method to calculate the crack

compressibility. The compressibility of a crack is defined as

βc =
1

Vc

dVc
dpc

(2.28)

where Vc = Lx ∗ Ly ∗ w0 is the volume of the crack and pc is uniform pressure

over the boundary of the crack. To calculate dVc/dpc we use the stiffness matrix,

1
Ks

, mentioned above to calculate the relative opening for two different arbitrary

pressures. We then sum up the openings and multiply by Lx and Ly to calculate

the resulting volume for each pressure. Finally, we subtract the two volumes and

divide by the change in pressure to obtain fracture compressibility.

Coupling of the Conduit and Crack

Our interest is in resonant behavior in a coupled conduit-crack system. We

couple the conduit and crack system of equations through interface conditions

on both velocity and pressure at each crack. We impose pressure continuity and

a jump condition in the velocity due to the flux into the crack at each crack

interface.

p(z+
c , t)− p(z−c , t) = 0 (2.29)

9



q(z+
c , t)− q(z−c , t) = −Afu(zc, t) (2.30)

Where q is the volume flow rate above and below the crack, Af is the area of the

crack opening Af = 2πRw0, and zc is the depth of the crack in the conduit.

Next we incorporate volume flux into the crack and crack elasticity into the

governing equations. Assuming wavelengths of the perturbation are long compared

to the crack opening and combining equations (2.24) and (2.25) and (2.37) we get

1

K̄

∂p

∂t
+
∂ux
∂x

+
∂uy
∂y

=
qc
w0

δ(x− xc)δ(y − yc) (2.31)

Where 1
K̄

is the sum of the fluid and crack compressibility 1
K̄

= 1
w0Kcrack

+ 1
Kfluid

and qc is the flux into the crack from the conduit. Additionally, a delta function is

implemented at a single coupling point (xc, yc) in the fracture. This coupling point

is where the center of the conduit intersects the fracture. The right-hand-side term

represents a mass source for the fluid exchange between the conduit and the crack,

where the delta function is defined as δ(x− α) = 1
2π

∫∞
−∞ e

iω(x−α)dω. This results in

a point source excitation of qc
w0

that radiates from the coupling point.

Numerical Implementation

We solve the coupled system of equations using 6th order summation by

parts finite difference operators in space and a 4th-order additive Runge-Kutta

method in time (Erickson et al. 2019, O’Reilly et al. 2017). Boundary conditions

in the conduit are weakly enforced using simultaneous approximation terms (SAT)

and strongly enforced in the crack. The summation by parts method replaces

continuous derivatives with discrete operators. The first derivative operator is

defined as the inverse of the quadrature matrix, H, multiplied by Q, D = H−Q,

where Q is an almost skew symmetric matrix defined as Q+QT = diag[−1, 0...0, 1].

10



Summation by parts operators represent a discrete method for integrating by

parts allowing us to write a discrete energy balance that mimics the continuous

version and thus easily prove time stability and high order accuracy (Fernandez

et al. 2014). Simultaneous approximation terms provide a method to weakly

enforce boundary conditions in the SBP framework by penalizing the value at

the boundary to meet the expected boundary condition (Carpenter et al. 1994).

This method enables conservation of energy at interfaces where the solution may

be multi-valued (Fernandez et al. 2014). The equations in the conduit are solved

on regular collocated grids, while the crack requires velocity grids to be staggered

with respect to the pressure grid. This prevents a singularity at the crack center.

Additionally, to maintain high-order accuracy, the viscosity terms are solved

implicitly in time (Liang et al. 2020).

In this section we will focus only on the equations for the conduit, but

the process is very similar for the crack and can be found in Liang et al 2020.

Replacing the spatial derivatives with the SBP operators in equations (2.9) and

(2.11) and writing the boundary conditions in terms of SAT variables results in the

following discretized governing equations for the conduit

∂u

∂t
= −D

ρ̄
p+

8µ

ρ̄R2
u− σ1

ρ̄
(u0)e0 +

σ2

ρ̄
(uN)eN , (2.32)

∂p

∂t
= −DKu+Kσ3(Zu0)e0 +Kσ4(ZuN)eN , (2.33)

where u0 and uN are velocities at the boundary, e0 and eN are matrices of

the form diag[1,0,0...] and diag[...0,0,1], and Z is the acoustic impedance Z = ρc.

Using the discrete equations (2.32) and (2.33) we can prove stability at

high order accuracy by proving the energy of the system is always decreasing at

the boundaries. We begin with the continuous energy balance for the conduit. We
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multiply equation (2.11) by pressure, p and multiply equation (2.9) by velocity, u,

integrate over the entire conduit and sum the two resulting equations to get

d

dt
(Epipe − Evisc) =

d

dt

(∫ L

0

ρ̄u2

2
dz +

∫ L

0

p

2K
dz

)
, (2.34)

where Evisc =
∫ L

0
8µ
R2u

2dz and represents uniform viscous damping. The discrete

energy balance follows a similar method to the continuous problem. We multiply

equation (2.33) by pTH where H is the quadrature matrix for discrete integration,

and multiply equation (2.32) by uTH. We then transpose and sum the two

equations and use the product rule d(aTHa)/dt = aTH(da/dt) + (daT/dt)Ha

to obtain the discrete energy balance. The left hand side of this equation is

d

dt
(Epipe − Evisc) =

d

dt

(
ρ

2
uTHu+

1

2K
pTHp

)
(2.35)

and the right hand side including the boundary conditions becomes:

d

dt
(Epipe − Evisc) = p0u0 + σ1u

2
0 + +σ3Zu0p0 − pNuN + σ2u

2
N + σ4ZpNuN (2.36)

where σ1, σ2, σ3 and σ4 are the SAT penalty terms which are chosen to ensure

dEpipe

dt
is always decreasing. These terms are chosen to be

σ1 = −Z,

σ2 = −Z,

σ3 = −c/K,

σ4 = −c/K.

(2.37)

Excitation

We generate wave motion in the system using an impulsive pressure pulse.

In the englacial setting it is likely that natural excitation could come from both

impulsive, or continuous sources. Roeoesli et al 2016 observed resonant phenomena

likely occurring from a continuous source, water entering a moulin. However, Graff

et al 2019 describe impulsive excitation of crack wave modes in the basal water

12



layer. We focus on the impulsive case for this study and use a Gaussian pressure

pulse to perturb our system

fsource = Age
− t2

2 , (2.38)

where Ag is the amplitude of the Gaussian pressure signal. Figure 2 shows the

Fourier transform of our source function, where the Fourier transform and it’s

inverse are defined as

g(ω) =
1

2π

∫ ∞
−∞

f(t)e−iωtdt,

f(t) =

∫ ∞
−∞

g(ω)eiωtdω,

(2.39)

and ω = 2πf , where f is frequency. In Figure 2, We see the Gaussian pressure

pulse produces a large range of frequencies which can in-turn excite a broad

spectrum of modes. We define a wavelength scale for the Gaussian function to be

λex = c
∆fFWHM

where ∆fFWHM is the full width at half maximum of the Gaussian

in the Fourier domain. Different excitation functions can be used to broaden the

input frequency range, such as a chirp signal, but for simplicity we will only use a

Gaussian signal for this study.
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Figure 2. Figure showing the time domain and Fourier domain plots of the
excitation function with a wavelength λex = c

∆fFWHM
, where c = 1400 is the

wave speed, λex = 20m and ∆fFWHM is the FWHM of the gaussian in the Fourier

domain. The excitation function in time for this example is f(t) = e
−1
2

(
(t−2)
0.0061

)2
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CHAPTER III

WAVE MOTION AND RESONANCE

There are many different resonant modes that can be excited in our

modelled system. In this section we discuss how we can use pre-existing theory to

help identify the origin of these resonant modes in our tested geometries. We will

focus on two types of interface waves that may resonate in the englacial system,

tube waves and crack waves.

Conduit and Fracture Components

Tube waves manifest from fluid solid interactions in fluid filled tube-

like geometries. In general, the dynamic elasticity of the tube excites non-local

interface waves, such as Stonely waves, psuedo-Rayleigh waves, and Airy phase

waves, that manifest from high frequency excitation and pressure changes in the

radial direction (Sheriff 1987.). For low frequency excitation, wall deformation

occurs on time scales much longer than tube wave propagation speeds and the

walls can be considered to deform quasi-statically. This results in a local response

between the solid and the fluid in the form of compressional waves. This tube

wave is non-dispersive and travels in the fluid at a slightly slower speed than the

acoustic wave speed. For a circular borehole, this speed is modulated by the shear

modulus of the surrounding elastic solid, the bulk modulus of the fluid and the

fluid density (Biot 1952).

cT =

√
1

ρ

(
1

K
+

1

G

)−1

(3.1)

Compressional tube waves, like acoustic waves in a cylindrical pipe, will resonate

at ”organ pipe” frequencies. Where the resonant modes depend on the tube wave

speed, the boundary conditions – whether the ends of the pipe are open or closed –
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and the conduit length (Lighthill 2010).

fopen/open =
ncT
4L

(3.2)

fopen/closed =
ncT
2L

(3.3)

where n is a positive integer denoting the mode harmonic, cT is the tube wave

speed and L is the length of the pipe.

Crack waves, or Krauklis waves, are a type of guided interface wave that

manifests in fluid filled fractures. Crack waves result from coupled fluid and elastic

solid motion and are excited when wavelengths exceed an elastic coupling limit

(Krauklis 1962, Ferrazzini and Aki 1987, Dunham and Ogden 2012). This limit is

defined as

Λel =
βc
βf
, (3.4)

where βc is the compressibility of the crack and βf is the compressibility of the

fluid. When Λ << 1 wavelengths are too short and the fracture will respond

rigidly. In this case, acoustic resonant frequencies can be calculated using the

following expression (Rona 2007): fl,m,n = c
√

( l
2Lx

)2 + ( m
2Ly

)2 + ( n
2w0

)2. Where

l,m and n are positive integers denoting the mode harmonics. Lx, Ly and w0 are

the crack dimensions in x, y, and z directions respectively and c is the acoustic

wave speed.

When Λ >> 1 excitation wavelengths are long enough for the fracture to

be compliant and crack waves will manifest. Crack waves are dispersive, meaning

the speed at which the wave travels depends on the wavelength. This manifests

as unequal spacing of resonant harmonics in the Fourier domain. The complex

dispersion of crack waves also leads to complicated transcendental equations that

must be solved numerically to predict the wave speed and resonant frequencies.
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We employ a fracture transfer function derived in Liang et al 2017, to predict

crack wave resonant frequencies

F (ω) =
ρc/Af
Zf (ω)

, (3.5)

where Af = 2πw0R is the area of the fracture opening and Zf (ω) is the fracture

impedance which can be calculated by Fourier transforming the fluid flux and

pressure time series at the fracture mouth

Zf (ω) =
p̂(0, ω)

Af û(0, ω)
. (3.6)

Frequencies where the amplitude of the fracture transfer function is maximized

or minimized represent the resonant modes of crack waves as seen in panel (c) of

Figures 4, 8 and 10.

Coupled Geometries

In addition to fracture and tube wave modes, coupled modes exist in this

system between the conduit and crack. We focus on a coupled mode between a

basal crack and a conduit, referred to in Liang 2020 as the “Conduit Reservoir

mode”. We will refer to this mode as the “coupled mode” for the remainder of

this work. For the coupled mode, fluid is considered incompressible in the conduit

and the whole fluid column oscillates in the conduit due to forcing from the elastic

crack and gravity from the free surface. Liang 2020 derived this resonant frequency

accounting for fluid buoyancy due to density gradients throughout the conduit.

While water in glaciers may be very bubbly or filled with sediment, we neglect

density changes for our model and derive a simpler expression for the coupled

mode.

17



Starting from our linearized momentum balance in the conduit, we integrate

(2.9) in z from 0 to L, and assume the fluid is incompressible

ρ
∂u

∂t
+

1

L
[pL − p0] = −8µ

R2
u. (3.7)

The pressure at the surface is pL = ρgh. For very long wavelengths we can neglect

fluid inertia and viscous dissipation in the fracture, then the pressure at the crack

interface becomes

p0 = −Ah
Ct

(3.8)

Where Ct is the storativity of the crack. Storativity is generally expressed in terms

of the fluid and crack compressibilty

Ct = (βf + βc)Vc (3.9)

The compressibility of water is significantly small compared to the icy crack

compressibility, about 5 orders of magnitude smaller. If we neglect fluid

compressibility, and substitute equation (2.28) into equation (3.9) we get the

following

Ct =
dVc
dpc

= κ
L3
x

G∗
(3.10)

Additionally storativity of a square fracture can be represented in terms of the

effective shear modulus G∗ = G/(1 − ν) of ice where G is the shear modulus

ice and ν is Poisson’s ratio for ice, as well as crack length and a constant kappa.

κ depends on the aspect ratio of the crack and must be calculated numerically

by calculating dV
dp

and solving equation (3.10) for κ. This relationship shows that

storativity should scale as the crack length cubed for equal dimension fractures.

For glacial parameters, we calculate κ = 0.56388 by fitting the results of stroativity

vs crack length with cubic function and multiplying the coefficient of the cubic

term by G∗.

18



If we substitute equations (3.8) and (2.12) into equation (3.7) we get

ρ
∂u

∂t
= −h

L
(ρg +

A

Ct
)− 8µ

R2
u (3.11)

we then divide through by ρ, substitute in equation (2.13) and neglect viscosity to

obtain the equation of a simple harmonic oscillator

d2h

dt2
= − g

L
(1 +

A

ρgCt
)h (3.12)

with an inviscid frequency of

fCR =
1

2π

√
g

L
(1 +

A

ρgCt
) (3.13)

While the coupled mode is derived solely for a crack intersecting at the base

of a conduit, this mode can arise in a system with a crack intersecting anywhere

along the conduit. However energy from the incoming waves will be partitioned

between the fracture and the conduit based on the relative cross-sectional areas

of the fracture opening and the conduit. It is standard to express this energy

exchange in terms of reflection and transmission coefficients (Lighthill 2010). For

our system we use reflection and transmission coefficients derived in Liang et al.

2017.

R(ω) = − 1

1 + 2/r(ω)
(3.14)

T (ω) = − 2/r(ω)

1 + 2/r(ω)
(3.15)

with

r(ω) = − ρcT/A
ρc0/Ac

F (ω) (3.16)
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where A = πR2 is the area of the conduit and Ac = 2πw0R is the area of the

fracture opening. These reflection and transmission coefficients determine which

wavelengths will transmit past the crack and which will interact with the fracture.

If a fracture is dipping at some angle θ the cross-sectional area of the

conduit at the fracture interface becomes elliptical and this area change will

impact reflection and transmission. For simplicity we account for this area change

using an effective circular radius. This method for accounting for fracture dip was

first utilized in Tang and Cheng 1993. If we consider the semi-minor axis of the

ellipse equal to the conduit radius, the semi-major axis would be

R1 =
R

cos(θ)
+
w0tan(θ)

2
(3.17)

using the ellipticity,

e =
√
R2

1 −R2/R1 (3.18)

we can write the effective radius as,

Re =
2

πR1E(e, π
2
)

(3.19)

where E(e, π
2
) is the complete elliptic integral of the second kind: E(φ, k) =∫ φ

0

√
1− k2sin2(θ)dθ. Figure 3 shows how the effective radius scales with fracture

dip. The largest area changes occur after a dip angle of 70o. Fractures in the

englacial environment have been observed dipping at angles near vertical, which

could impact resulting fluid resonance (Fountain et al. 2005).
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Figure 3. How effective radius scales with crack dip angle (equation (3.19)).
Showing a sharp increase in effective radius as the fracture dip exceeds 70o
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CHAPTER IV

RESULTS

In this section we present the results for modelled wave motion in three

englacial geometries. We first looked at an englacial geometry with a conduit

connected to a basal crack, then a geometry with a conduit connected to a crack

located somewhere between the surface and the base and finally a multi-crack

system. We excite wave motion in these systems by initiating a pressure pulse at

the water surface, then record pressure and velocity time series at locations in the

conduit and in the crack. We then Fourier transform these time series to obtain

the resonant frequencies in the system. All model parameters for our englacial

system can be found in Table 1 and were informed by observations of conduits and

fractures in the englacial system (Fountain et al 2005, Catania 2008, Vatne 2001).

Single Crack Geometries

The simplest coupled geometry is a conduit connected to a crack at its

base. Figures 4, 5, 6, and 7 show the results from a system with a conduit of

length of 100 m, a radius of 0.1 m, a crack length of 5 m in x and y, and a crack

opening of 0.01 m. These parameters were chosen to highlight a case where crack

waves are high amplitude in the conduit, which we assume is ideal for observation

in the field. However, it should be noted that most englacial parameters for this

geometry result in much lower amplitude crack waves.

Figure 4 shows the spectral results for this system where we highlight the

resulting resonant modes and use pre-existing theory to identify their origin. The

red bar in Figure 4 highlights the fundamental mode at 0.75 Hz. This resulting

frequency is equivalent to the predicted coupled mode calculated using equation

(3.13). The next mode in the spectra is can be identified as the fundamental organ
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Table 1. Model Parameters for the englacial setting

Parameter Symbol Name Value Units
L conduit length 100 - 1000 m
R conduit radius 0.01 - 0.1 m
Lx crack length in x 1 - 100 m
Ly crack length in y 1 - 100 m
w0 crack width 1 - 200 mm
ρ fluid density 1000 kg/m3

K fluid bulk modulus 1.98 GPa
µ viscosity 1.8x10−3 Pa.s
ρs solid density 917 kg/m3

G shear modulus 3.5 GPa
ν Poisson’s ratio 0.31 -
cT tube wave speed 1125 m/s
c0 acoustic wave speed 1400 m/s

pipe mode at 5.6 Hz. Additionally, higher order harmonics of this mode can be

seen at equally spaced intervals from the fundamental organ pipe mode. This

organ pipe mode is associated with a pipe open at both ends due to the matching

pressure boundary conditions at the conduit surface and base. Finally, the grey

bars highlight crack wave resonant frequencies associated with fracture transfer

function minima that are detectable both in the crack and the conduit at about 41

Hz, 68 Hz and 103 Hz. Next, we look at the space-time domain results in Figures

5 and 6 and show the complexity of wave motion in this simple system. In Figures

5 and 6 we can see all excited wave modes that were identified in the frequency

domain. The initial pressure pulse excitation occurs at the top of the conduit at

2 seconds and at a wave speed of 1125 m/s the tube waves reach the crack at 100

m at about 2.1 seconds. When the pressure pulse reaches the crack, some energy

is reflected and some is transmitted into the fracture. This energy is then emitted

as crack waves from 2.1 seconds to 2.3 seconds. From 2.6 seconds to about 3.9

seconds we see the coupled mode with a period of about 1.3 seconds. The coupled
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Figure 4. Spectral results for a basal crack with L = 100 m, R = 0.1 m, Lx = Ly
= 5 m, w0 = 0.01 m, and a excitation wavelength of 10 m. Panel (a) shows the
Fast Fourier Transform of a pressure time series taken halfway down the conduit.
Red bars indicate the coupled frequency at 0.75 Hz. The grey bars show crack
wave modes at frequencies 41 Hz, 68 Hz and 103 Hz. All other modes are organ
pipe modes corresponding to a pipe open at both ends. Panel (b) shows the Fast
Fourier Transform of a pressure time series taken just inside the crack. Panel
(c) shows the amplitudes of the fracture transfer function, |F |, and transmission
coefficient, |T |, for this crack. We see frequencies of the crack waves in the crack
and conduit match the minima in the fracture transfer function.
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Figure 5. Pressure changes throughout the conduit in time are shown in
this space-time plot for the same englacial geometry as Figure 4. Pressure is
normalized to atmospheric pressure and is shown on the color bar. Excitation
occurs at the top of the conduit at 2 seconds and the crack location is at 100 m.
Visible modes in this figure include organ pipe modes, crack wave modes and the
coupled mode. Crack waves are first excited at about 2.1 seconds. The coupled
mode is best seen by observing the blue to red pressure transitions around the
bottom of the plot.

mode is challenging to see in Figures 5 and 6, but is more obvious when looking

at the pressure in the crack in Figure 7. Figure 7 shows a horizontal slice of the

crack where the center of the crack is at 2.5 m. In this figure the transition from

negative pressures from 2.6 to 3.3 to positive pressures from 3.3 to 3.9 represent a

full wave period for the coupled mode. We are thus able to identify and explain all

resulting resonant wave behavior for the basal crack geometry using our knowledge

from pre-existing theory.

We next consider how the coupled mode varies over the full range of

englacial parameters seen in Figure 8. Panel (a) shows how the coupled mode

varies with conduit length and crack length. For γ = A
ρgCt

< 1 we see the coupled
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Figure 6. Similar to Figure 5, we show velocity changes throughout the conduit in
space and time.

Figure 7. Pressure changes in the crack through space and time. Pressure is
normalized to atmospheric pressure and is shown on the color bar. The crack
center is located at 2.5 m. Pressure pulses from the conduit are initiated here. The
coupled mode is most easily visible in this figure, as we see a distinct 1.3 second
period of large scale pressure fluctuations.
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mode strongly depends on the crack length. For γ >> 1 we see the coupled mode

no longer depends on crack length and only varies in conduit length. Panels (b)

and (c) show how the coupled mode changes with conduit radius. Here we see the

coupled mode increases with increasing conduit radius, and we also see an increase

in radial dependence as crack length increases.

The fundamental mode for the basal crack geometry will likely always be

the coupled mode. To this extent we investigate the limits for which this mode can

provide geometric information. Equation (3.13) has two distinct limits. When γ =

A
ρCtg

>> 1 the frequency for the fundamental mode does not depend on gravity and

instead equals fel = 1
2π

√
A/ρCt

L
. For γ << 1, equation (3.13) reduces to a gravity

dependent limit, fg =
√
g/L where fracture elasticity no longer dominates the

system. Figure 9 shows how the coupled mode scales for the full range of englacial

parameters described in Table 1. The x-axis of Figure 9 is λel/L where λel = c/fel.

For x < 1 we see the data collapse onto the elastic frequency limit indicating the

data lie within the elastically dominated regime. This is followed by a transition

regime at x = 1 where γ is about equal to 1. Finally for x >> 1, the data collapse

onto the gravity dependent frequency fg plotted as the dashed lines in Figure 9.

The gravity dominated limit does not depend on crack parameters and thus it is

not possible to determine crack geometry when in this limit.

Next we look at a case where the crack is no longer at the base of the

conduit, but somewhere in the middle. Using the same conduit and crack

parameters, we place a crack at about 30 m from the base of the conduit. Figure

10 shows the spectral results for this geometry. We see similar results to the

basal crack geometry except with a conduit section above and below the crack,

we see more organ pipe modes excited. The organ pipe mode associated with
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Figure 8. Contours showing the predicted coupled mode for different crack lengths,
conduit lengths and radii. The red lines represent where γ = A

ρgCt
= 1.
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Figure 9. Plots showing how the driving forces of the coupled mode change
through the glacial parameter space. The red line represents where f/fel where

fel = 1
2π

√
A/ρCt

L
. The dashed lines represent the , fg = 1

2π

√
g
L

for conduit lengths of

100 m (black), 300 m (cyan) and 1000 m (magenta). The x axis shows the elastic
wavelength λel = c/fel normalized by the conduit length
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the top conduit section is about 8 Hz and has the largest amplitude above the

crack. This frequency is associated with a pipe open at both ends. The organ

pipe frequency associated with the bottom conduit section is about 9 Hz, and is

equivalent to a pipe open at one end and closed at the other. This is due to the no

slip boundary condition at the conduit base. The red bar in panel (b) highlights

the coupled mode for the top section of the conduit plus the crack. We do not

see a coupled mode associated with the bottom section of the conduit due to the

differing boundary conditions. The coupled mode requires a free moving surface to

manifest, so the no slip boundary condition at the conduit base prevents this mode

from being excited in this conduit section. Finally, the grey bars in panels (b) and

(c) of Figure 10 show that the crack wave modes predicted by the fracture transfer

function are still represented in the conduit for this geometry.

So far we have only considered fractures parallel to the surface, however,

englacial fractures are often observed to be dipping at fairly steep angles (Fountain

et al. 2005). Figure 11 shows how dip angle affects the flux into the crack,

represented by the reflection coefficient. Figure 11 is considering the same crack

geometry as in figure 10. The fracture transfer function for this crack is shown

in panel (c) of Figures 4, 10 and 13. Panels (a) and (b) of Figure 11 show that

overall the reflection coefficient decreases for increasing dip angle, especially for

angles greater than 70o. The amount for which the reflection coefficient is reduced

depends on the fracture transfer function. A decrease in reflection and increase

in transmission reduces the total amount of energy interacting with the fracture

and thus may decrease the amplitude of fracture related modes. Additionally,

an increase in transmission amplifies the fundamental organ pipe mode and

suppresses higher order organ pipe modes when the fracture is located in the
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Figure 10. Results for the a crack conduit system with similar parameters to the
basal crack system, except the crack is located about 70 m down the conduit
rather than at the base. Panel (a) shows pressure changes through the conduit
in time. The crack location is marked with a red star. Panel (b) shows the Fast
Fourier Transform of two pressure time series, one above the crack at about 35 m
down the conduit and one below the crack at about 85 m down the conduit. The
grey bars indicate locations where the fracture transfer function should explain the
resultant resonant mode. The red bar indicates the coupled mode associated with
top section of the conduit at about 1 Hz. Panel (c) shows the fracture transfer
function for this crack.
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middle of the conduit. This behavior can be seen when comparing Figures 10

and 12. In the space-time plots we can see an increase in the pressure amplitude

being transmitted past the fracture at about 2.05 seconds in Figure 12 compared

to Figure 10. We also see a decrease in the reflected pressure amplitude. In the

frequency spectrum the higher order organ pipe modes associated with the upper

conduit section decrease in amplitude with increasing dip, but the crack wave

modes do not appear to change amplitude for the steeply dipping fracture for this

case.

Multiple Crack Geometry

Finally we present results from a multi-crack system. Due to the linearity of

our system, we would expect more complicated systems to exhibit a superposition

of modes represented in simpler single crack geometries. We now consider a three

crack system where the cracks are located at 50 m, 100 m and at the base of

the conduit (150 m); and the cracks at 50 and 100 m have a length of 5m where

the crack at 150 m has a length of 10 m. Additionally, the crack at 50 m has a

width of 0.08 mm and the lower two cracks have widths of 80 mm. Figure 13

shows the resulting frequency spectra and space-time plot for this geometry. If

we were to consider each of these cracks seperately we’d expect to see a mode

of 0.2 Hz from the basal crack geometry, modes of 1.2 and 6 Hz from the thick

middle crack, and modes of 4 and 8 Hz from the thin middle crack. Figure 13

shows that only the modes associated with the basal crack and the thick middle

crack manifest. The opening to the thin crack is likely too small for enough energy

to be transmitted into the fracture, and thus it does not resonate. In Figure 13,

the red bar highlights the coupled mode for the 150 m conduit and the basal crack.

The green bar highlights the coupled mode for the top 100 m conduit connected
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Figure 11. Effect of crack dip angle on the reflection coefficient. Panel (a) shows
how the reflection coefficient varies with dip angle for multiple frequencies. Panel
(b) Shows how the reflection coefficient varies with frequency for various dip
angles.
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Figure 12. Similar to Figure 10, but with a crack dipping at 70 degrees. Panel
(a) shows pressure changes through the conduit in time and the crack location
is marked with a red star. Panel (b) shows the Fast Fourier Transform of two
pressure time series, one above the crack at about 35 m down the conduit and one
below the crack at about 85 m down the conduit. The grey bars indicate locations
where the fracture transfer function should explain the resultant resonant mode.
The red bar indicates the coupled mode associated with top section of the conduit
at about 1 Hz. Panel (c) shows the fracture transfer function for this crack.
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to the thick middle crack. And finally the mode at around 6 Hz is an organ

pipe mode assocaited with the top 100 m conduit. While multi-crack systems

were not rigorously explored in this study, this example shows the possibility of

explaining complicated systems as a superposition of the modes seen in the simpler

geometries. Finally we would like to note that it is likely that other coupled modes

may arise for more complex geometries, but we leave this investigation to future

work.
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Figure 13. Here we show the results of a three crack system where the cracks are
at 50 m, 100 m and 150 m down the conduit. The top two cracks have a length of
5 m and the basal crack has a length of 10 m. The top crack at 50 m has a very
small width of 0.08 mm compared to 80 mm for the remaining two cracks. In the
Fourier domain plot, the red bar denotes the coupled mode for the basal crack, and
the green bar denotes the coupled mode for the crack at 100 m.
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CHAPTER V

DISCUSSION

Fluid resonance has many promising applications in the englacial setting.

In this section, we apply our results from the previous section to inform future

experiments by providing metrics for determining englacial geometry based on

fracture resonance and further discuss the limits of its usefulness to glaciologists.

Fracture Resonance

Previous studies have used two observables to predict crack geometry, the

fundamental crack wave frequency from the fracture, and the quality factor for

this mode. Where quality factor has to do with the attenuation rate of the signal

and is defined as Q = f
∆f

, where f is the fundamental frequancy and ∆f is the

full width at half-maximum (FWHM) of the fundamental frequency. Lipovsky

and Dunham 2015 applied this method to a glacial parameter space and produced

the red and black contour lines seen in Figure 14. The red contour lines are the

fundamental frequency in Hz and the black lines are the quality factors. The

thick black line represents where the quality factor is below 1
2

and the system is

considered overdamped meaning no resonance can occur. Additionally, the data

points on this plot represent possible fracture geometries for frequencies recorded

at the Kamb and MacAyeal ice streams as well as Bering Glacier (Anandakrishnan

and Alley 1997, Winberry et al 2009, West et al 2010). The Kamb data point is

outlined in red because the observed frequencies showed equally spaced resonant

modes, indicating these modes were not dispersive and are likely not crack waves.

In Lipovsky and Dunham’s study, they assumed a fracture with only one length

dimension. We expanded this to two length dimensions and show the resulting

fundamental frequencies as the blue contours. For this study, we do not attempt

37



to revise their estimates of quality factor due to our assumption of Poiseuille flow.

This assumption likely leads to an overestimation of viscous damping and thus

an inaccurate quality factor. We leave a more detailed investigation into quality

factors for future work. If we compare our results to the previous work of Lipovsky

and Dunham, we see that neglecting one length dimension leads to over-estimating

the fracture width and length.

Additionally, we consider the effects of asymmetry on the fracture

fundamental mode. Figure 15 shows how the fundamental mode of the fracture

varies for different fracture openings and a range of crack lengths. Here the x-

axis is the log of the crack length in the x direction and the y-axis is the log

of the crack length in the y-direction. The red and blue contours denote the

fundamental crack frequency for different fracture widths. This figure shows that

crack asymmetry results in non-unique fundamental frequencies for certain crack

geometries. For example if we consider a crack length of 10 m in the x-direction.

We see that the fundamental frequency could be anywhere between 30 and 0.4 Hz

depending on the length in the y-direction. This non-uniqueness could potentially

be an issue when trying to determine the geometry of real life fractures.

Detecting Branching Fractures From a Conduit

We now apply our knowledge of the coupled mode and crack waves modes

to previously published results by Graff et al. 2019. They recorded resonant

frequencies from a borehole connected to a basal crack on Rhonegletscher Glacier

in the Swiss Alps and analyzed their results in the context of crack wave resonance

described by Lipovsky and Dunham 2015. However, with our understanding of

the coupled mode that can arise in this geometry, we interpret their results a bit

differently. Graff et al. 2019 observed two high amplitude low frequency signals
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Figure 14. Plot to relate fracture fundamental frequency to crack length and half
width for a 3D crack with two equal length dimensions. Red and blue contour
lines represent the fundamental frequency of the fracture in Hz. Red contour lines
are results from Lipovsky and Dunham 2015. They show fracture fundamental
frequency for a 2D crack with one length dimension. Blue contour lines are the
results from this study. Black contour lines represent the quality factor from
Lipovsky and Dunham’s analysis. The thick black contour represents where the
quality factor is 1/2. Below this region all frequencies are considered over-damped.
Data point locations were determined through Lipovsky and Dunham’s analysis.
Kamb ice stream is circled in red due to the fact that it exhibited equally spaced
resonant modes, indicating a lack of crack waves.
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Figure 15. Contours in blue and red denote the fundamental crack wave mode for
different fracture widths. We vary crack length on the x and y axes and show that
the fundamental mode varies with asymmetry.
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that are not related to possible organ pipe modes, and thus they interpret them as

crack waves from the fracture. However, our study suggests that the fundamental

mode should be the coupled mode we discussed earlier, we thus interpret the 1 Hz

mode to be the coupled mode and the 4 Hz mode to be the fundamental mode of

the fracture. Using equation (3.13) and a calculated kappa value of 0.56388, we

calculate the fracture length to be about 4 m, much smaller than the predicted

19.8 m predicted from the interpretation from Graff et al. 2019. Next we use the

frequency of 4 Hz as the fundamental mode of the fracture and turn to Figure 16

to predict fracture geometry using this method. For a fracture with a fundamental

mode of 4 Hz and a quality factor of about 4 (Figure 4 of Graff et al. 2019 was

used to determine the quality factor) gives us a fracture length of about 4 m and a

width of 0.8 mm. Our interpretation provides two separate crack related resonant

frequencies that predict much smaller crack lengths than previously predicted and

a reasonable crack width for the basal water layer in ice.

Graff et al. 2019 provides important insight on resonant features in the

alpine environment, but for larger ice sheets it may be possible to have kilometer

long water filled conduits connected to very large fractures. Figure 8 shows how

the coupled mode frequencies vary based on conduit length, conduit radius and

crack length. Additionally, the red line in the bottom two plots indicate where

γ = 1. These plots can help us understand when the coupled mode could be

useful for determining crack geometry in ice sheets. The middle plot in Figure

8 puts constraints on the crack lengths that the coupled mode can detect. The

red γ = 1 line indicates that after Lx = 60 m, cracks are no longer in the

elastically dominant regime, however, frequencies in the transitional regime still

have a dependence on crack length until the expected frequencies flatten out. This
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Figure 16. Similar to Figure 14, but we have included an additional frequency
contour at 4 Hz and a quality factor contour at 4. The green circle highlights the
intersection of these two contours and denotes the expected crack dimensions for
our interpretation of the Graff et al. 2019 data.

suggests that crack geometry can still be determined for cracks up to 250 m. The

bottom panel in Figure 8 suggests that conduit radii will likely need to increase

with increasing crack length to remain in the elastic limit or transitional regime.

It is possible that natural conduits connected to basal features will be moulins and

might have radii even larger than our maximum radii shown in Figure 8, indicating

this method could likely still be effective in this environment.
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CHAPTER VI

CONCLUSION

Englacial geometry is an elusive missing piece for the glacial hydrologic

system. We have investigated the extent to which fluid resonance in fractures

and conduit-crack coupled systems can inform fracture length, width and conduit

length. We present a number of tools that can be used to understand resonant

behavior in simple conduit-crack geometries and we have applied these tools to a

recent study to predict fracture length and width and produced plausible results

for the englacial environment. We also suggest that this phenomenology can be

scaled up for more complex systems with multiple fractures. In future work, we

look forward to expanding our study on multiple fracture systems, investigating

the effects of viscous dissipation for 3D fractures, and developing an experiment to

further test this method in the field.

, , , ,, , , , , , , , , , , , , , , , , , , , , , ,
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