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DISSERTATION ABSTRACT

Wesley W. Erickson

Doctor of Philosophy

Department of Physics

June 2020

Title: Lévy Motion and Cold Atoms

Lévy processes are a universal model for characterizing the behavior of

extreme events and anomalously diffusive systems. They are also important in

modeling the transport of laser-cooled atoms. This dissertation contributes to

the understanding of Lévy processes themselves, and to their application in laser-

cooled atomic dynamics.

Lévy processes are models of systems that contain extreme events. However,

since any particular event could, upon closer inspection, be composed of multiple

smaller events, what makes an event “extreme”? To answer this question it is

useful to consider the history of the event, by studying Lévy processes conditioned

to have a fixed final state at some later time. We find that events that greatly

exceed a particular threshold are more likely to be composed of many small events

and a single large event, rather than a series of comparably sized events. Analysis

of the source of this threshold helps clarify the Gaussian limit of Lévy processes,
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and serves as the foundation for a useful distinction between “short” and “long”

steps. These ideas also suggest possible experimental techniques that may be

employed for cold atoms.

Studies of anomalous diffusion in laser-cooled atoms have typically focused

on the expansion profiles of clouds of cold atoms. However, the results of

experiments and theoretical models have not been in close agreement, suggesting

that existing models are still incomplete. To address this, it is important to

develop alternative experimental approaches. One such approach is to use a single

atom as a probe of the diffusion, which allows for the collection of boundary

crossing statistics, such as the time between when an atom enters and leaves

an imaging region. Through simulations, we find that distributions of these

statistics develop peaks that correspond to atomic Lévy flights, in direct contrast

to featureless power-law distributions for atoms undergoing Brownian motion. We

find that characterizing these distributions gives information on the anomalous-

diffusion exponent and typical velocities. Furthermore, these distributions serve as

the basis for a method to directly detect Lévy flights at the level of a single atom.
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Sisyphus simulation (light blue) are shown. For D = 0.5, an α-stable
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CHAPTER I

INTRODUCTION

Universality refers to an observed tendency for a broad variety of different

systems to display remarkably similar behavior. For example, given the right

circumstances, both the motion of a molecule suspended in a fluid [2], and the

motion of a star gravitationally interacting with other stars [3], can be effectively

modeled by Brownian motion, despite the vastly different scales, composition, and

forces involved. While the microscopic details of these systems differ completely,

these details are indiscernible when the system is viewed at larger scales as the

behaviors converge to the universal ones.

This example also alludes to the property of scale invariance, where a system

at one scale behaves similarly to itself when viewed at a larger scale. It is this

property that is often present in universal systems, as the same mechanism that

relates different systems can also relate a system to itself. These universal and

self-similar relations often arise as power-law scaling relationships, characterized

by universal exponents that are independent of the system parameters. Universal

techniques are generalizable to many systems, and the resulting models are more

convenient for analysis, even if the true physical system is complex or difficult to

measure directly.

As there are many classes and subclasses of systems that exhibit universal

properties, it is essential to demonstrate concrete examples of universal processes

as well as specific applications of these principles to interesting and useful physical

systems. In this thesis we will discuss the Lévy processes, stochastic processes

constructed from a general type of random walk, which is a natural model for
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extreme events and anomalous diffusion. As Lévy processes are a generalizable

mathematical tool, we will touch on many subjects where they are applicable,

before focusing on how they can be applied in the physics of laser-cooled atomic

systems.

1.1. From Random walks to a Universal Stochastic Process

A convenient starting point for the development of random walks is the year

1900, when Louis Bachelier completed his thesis “The Theory of Speculation,”

which studied the pricing of stock options by introducing the first mathematical

model of what would later be known as Brownian motion [4, 5]. Only five years

later, the first use of the term random walk appeared in a letter to Nature in

discussion of a model of the migratory behavior of mosquitoes, which used the

same statistics as those in Bachelier’s thesis [6]. And, later that same month,

Einstein’s paper on Brownian motion was published [2], explaining that the

persistent irregular motion of particles suspended in a fluid (as earlier observed

with pollen grains by Robert Brown [7]) could be explained via atomic theory and

thermal molecular motion, again with the same random-walk statistics.

It is fascinating that such similar behavior was observed in the dynamics of

stock prices, animal migratory behavior, and diffusive atomic motion. As might be

expected, the commonality of these systems is not accidental: each system used

some form of the central limit theorem as the mechanism causing convergence

to Brownian motion in the asymptotic limit of long-times. However, while the

long time limit was used here, it is natural to ask what the limit looks like at

short times. Within 3 years of Einstein’s results, Perrin published experimental

results confirming Einstein’s theory, and thus the atomic nature of matter [8].

2



His experiment involved tracing the trajectories of particles of resin suspended in

solution. Additionally, he speculated on the actual trajectory of these particles,

and noted “. . . how near the mathematicians are to the truth, in refusing, by

logical instinct, to admit the pretended geometrical demonstrations, which are

regarded as experimental evidence for the existence of a tangent at each point of

a curve” [8]. In other words, a discrete random walk is only a partial sample of

the “true” mathematical path, an idea which foreshadows the continuous limit of

Brownian motion, known as the Wiener process.

The Wiener process is the continuous limit of a Gaussian random walk,

and though it does serve as a model for physical Brownian motion, it has some

peculiarities. The process has no inertia, it is nowhere differentiable, it is fractal-

like and scale-free, and it maintains the issues of Gaussian diffusion that allow

for arbitrarily large velocities. So, while the Wiener process can serve as natural

model for diffusion, it has a more important role as a mathematical tool and as a

foundation for many other stochastic processes. More complex processes can be

constructed using the Wiener process (e.g. the Ornstein–Uhlenbeck process, which

is in a sense a Wiener process with inertia), and it is omnipresent in stochastic

equations (e.g. Langevin equations and Feynman-Kac formulas can be written

using the Wiener process).

1.2. Lévy Statistics and Extreme Events

In the previous section we discussed the broad applicability of Brownian

motion and the Wiener process, both of which are intrinsically Gaussian random

processes. However, despite their effectiveness for modeling certain systems, they

are often applied beyond their strict regime of applicability. The central limit
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theorem that underpins the prevalence of Gaussian statistics is not applicable

in the random variables with correlations, non-stationary distributions, or heavy

tailed distributions, and applying it in these situations can be highly problematic,

though it remains a common practice.

One such example is in the Black-Scholes model [9] used in the pricing of

financial derivatives. The model assumes that the log of stock prices fluctuate as

stochastic Wiener processes with a fixed variance. That this model is heavily used,

even today, may be somewhat surprising considering that stock prices often have

strong correlations, are non-stationary, and are heavy tailed [10]. As such, the

Black-Scholes pricing model has sometimes been considered by financial experts as

putting “the wrong numbers in the wrong formula to get the right price” [11].

On the other hand, the Black-Scholes model may not accurately predict

the “right price” after all. The author of the book The Black Swan [12], where

the title refers to events that are rare and difficult to predict, was highly critical

of the uses of Black-Scholes models and Gaussian risk management by financial

institutions, and wrote “...the financial ecology is swelling into gigantic, incestuous,

bureaucratic banks (often Gaussianized in their risk measurement)—when one

falls, they all fall.” This portent of disaster was quite timely considering the

devastating 2007-2008 financial crisis that began in the months after the book

was published. Other misapplications of Gaussian statistics exist, typically with

the error being an underestimate of the importance of large but rare events.

With the potential failures of Gaussian statistics in mind, it is important

to consider alternative models that can account for extreme events. While there

is no perfect model, extreme events are commonly associated with probability

distributions with “heavy” power-law tails. Lévy processes (specifically, stable
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Lévy processes [13, 14, 15]) are a natural extension to Wiener processes to

incorporate heavy-tailed statistics.

Lévy statistics have found a wide range of uses, including modeling

atmospheric dynamics, heart beat rhythm [16], stellar dynamics, and even

quantum decay [17]. One particularly interesting result is that Lévy flights have

been shown to be an optimal foraging strategy under certain conditions [18],

partially explaining how the observed flight patterns of the albatross can be

modeled with Lévy flights [19], random walks with heavy tailed step distributions.

Based on the examples discussed here, “rare” and “extreme” events of Lévy

statistics are actually quite prevalent.

1.3. Anomalous Diffusion of Laser Cooled Atoms

Lévy processes also play a particularly important role in the understanding

of the diffusion of cold atoms, though as we will see, detailed investigations of

anomalous diffusion did not occur until relatively late in the development of laser

cooling systems. In this section we overview some of the history of laser-cooling

systems, highlighting studies involving diffusive properties of these systems, as well

as how Lévy statistics are an effective description for more recently studied regimes

of anomalous diffusion.

One of the early and most effective cooling systems developed for neutral

atoms is “optical molasses” [20, 21]. This cooling system relies on both radiation

pressure [22], where atoms interacting with light experience a force in the direction

the light is propagating, as well as the Doppler effect, where an atom in motion

will observe a shift in frequency of incident light. A cooling effect is achieved

by setting up counter-propagating beams that are red-detuned from the atomic
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resonance of the atom species to be cooled. If an atom in motion is interacting

with both beams, the beam that opposes the atom’s motion will be blue-shifted

into resonance and therefore interact more strongly. This in turn increases the

radiation pressure from the beam that opposes the atom’s motion, effectively

damping the motion. As damping the motion reduces the kinetic energy, this

can be reasonably be considered a cooling system for classical definitions of

temperature1. This general cooling effect is known as Doppler cooling, while the

setup with counter-propagating cooling beams is referred to as optical molasses as

it damps motion in all directions akin to the viscous damping in molasses.

The motion of atoms in optical molasses does not damp completely away,

however, as photons emitted through spontaneous emission give the atom random

momentum kicks, ultimately driving diffusive motion. For simple Doppler cooling,

the competing cooling effect and the heating effect of spontaneous emission reach

an equilibrium temperature known as the Doppler temperature [23]. This model

suggests that a simple diffusion model is appropriate to describe atomic motion

in optical molasses, and that the atomic motion can be used to characterize laser

cooled atoms, especially for the purpose of measuring temperatures [21].

However, it became apparent that such simple models were inadequate for

atomic species with hyperfine structure, when temperatures were measured far

below the Doppler temperature. This led to the development of more sophisticated

quantum models to explain the observed sub-Doppler cooling effect. The primary

effect leading to the unexpectedly cold temperatures was found to be Sisyphus

cooling, which is also the cooling force considered in this dissertation (see

Chapter IV for more details on Sisyphus cooling). The more detailed quantum

1In the case of a single atom, various definitions of temperature may not be well defined, but
these “cooling” systems still damp the atom’s motion.
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models also led to the development of new cooling techniques such as velocity-

selective coherent population trapping [24]. Interestingly, the cooling through

velocity-selective coherent population trapping is a diffusive process rather than

a friction force. The technique involves optically pumping slowly moving atoms

into a dark state, where the atoms effectively decouple from the driving lasers

due to destructive quantum interference. While in the dark state the atoms no

longer experience heating due to spontaneous emission, and so remain moving

slowly. Atoms which are not in a dark state still experience the typical cooling and

heating effects, until their momentum happens to be small enough such that the

atom is pumped into the dark state, where atoms tend to stick. Because the dark

state corresponds to small atomic momentum, the atoms are effectively cooled.

In addition to being an interesting diffusion-based cooling mechanism, this also

led to the first use of Lévy statistics in the description of laser-cooled atoms, as

the time that the atom remains in the dark state is random, with a power-law-

tailed distribution [25]. Significant work has been done on analyzing the Lévy

statistics for this type of cooling mechanism [26]. Our focus here, however, will

be on Sisyphus cooling.

The full quantum models for Sisyphus cooling can be complex [27, 28, 29].

As semiclassical models [30, 31] were developed, they were placed on a rigorous

footing through both perturbative calculations [32] as well as through numerical

simulations [31]. Semiclassical approximations treat the laser fields and atomic

position classically, while maintaining the quantum nature of the atomic state.

These models were often simplified further by a process of adiabatic elimination,

where changes in the atomic state are assumed to occur much more quickly than

motion of the atom, which allowed for investigation of the diffusive behavior of
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Sisyphus cooling. These semiclassical models were used to develop a detailed

theory of optical molasses, including the velocity distribution (a particular heavy-

tailed distribution known as the Tsallis distribution [33]), as well as a more

thorough investigation of the spatial diffusion properties [30].

These earlier studies still primarily focused on regimes of normal diffusion;

the anomalous diffusion that we will discuss shortly was referred to as décrochage,

or disintegration, and was generally considered undesirable as the density of

confined atoms would rapidly drop in these regimes. The rational here was due

to a major motivation behind laser cooling at the time, which was to reach Bose-

Einstein condensation. This required high atomic densities through the use of

magneto optical traps [34]; the dense atoms would then be “boiled” off through

evaporative cooling techniques [35] to reach condensation, so high atom counts

were critical. However, it was found in Ref. [30] the diffusion constant diverges

in the regime of large detuning and low intensity laser fields, and upon closer

investigation it was found that this divergence was a transition to a regime that

could be described by anomalous diffusion and the onset of Lévy flights [31].

Unlike the velocity-selective coherent population trapping, these Lévy flights2

occur in space, leading to anomalous diffusion. While regular diffusion has the

property that the standard deviation of the diffusing particles will grow as
√
t,

anomalous diffusion refers to any process where the growing width of an ensemble

distribution scales as tµ for some µ 6= 1/2.

While the onset of anomalous diffusion had been observed in Sisyphus

cooling [30], more statistical signatures of anomalous diffusion and Lévy-flight

2Technically these are known as Lévy walks, which specify that the particle velocity is always
finite. The distinction is not completely trivial (see [36]), but Lévy processes can be used to
describe Lévy flight behavior in the same sense that a Gaussian diffusion can be used to describe
physical processes even though Gaussian diffusion has no maximum velocity.
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statistics were observed by studying the motion of a single trapped ion [37]. These

results were in qualitative agreement with the theoretical work in Ref. [31], with

the onset of anomalous diffusion occurring for shallow optical potential depth,

though the optical potential depth for the onset of the diffusion did not match

theoretical values.

More recent experiments used clouds of atoms to investigate anomalous

diffusion in Sisyphus cooling [38], which again found the onset of anomalous

diffusion for shallow optical potentials. However, this cloud based experiment

characterized the anomalous diffusion exponent using multiple methods, with

results that suggested the presence of multiple distinct anomalous diffusion

exponents. For simple models of anomalous diffusion, the parameter that describes

the power law growth of the standard deviation should match the parameter

that describes the power-law tail of the position distribution. However, this

experiment found disagreement between these measured exponents. Theoretical

work studying the onset of anomalous diffusion in more depth [39] also found that

the anomalous diffusion should be characterized by a single universal exponent,

indicating that current models may be missing some key component. Moreover,

a phase transition to a regime where the anomalous diffusion exponent is fixed at

α = 3/2, known as the Obukov-Richardson phase, has been predicted but not yet

observed experimentally. This phase corresponds to integrated Brownian motion,

and is in the limit where the cooling force is negligible but the heating effect due

to spontaneous emission is still present.

It has been proposed that some of these differences between theory and

experiment may be due to loss effects via inelastic collisions and molecule

formation [39], especially since the losses themselves may contribute to the
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appearance of anomalous diffusion [40]. To circumvent such potential issues, and

to enable alternative experimental probes of Lévy dynamics of laser-cooled atoms,

in this dissertation I investigate the possibility of using experiments with single

atoms to probe the stochastic dynamics. Single-atom experiments would open

up the possibility of studying statistics not accessible to experiments with atomic

clouds, such as boundary-crossing and escape statistics. Measurements of these

statistics would complement existing measurements, which have been limited to

characterizations of the scaling behavior of ensemble densities.

1.4. Organization of this Dissertation

This dissertation is organized as follows: Chapter II introduces some basic

concepts of stochastic processes, including the Wiener and Lévy processes and

some important statistics. Building on this foundation, Chapter III explores

conditioned stochastic processes, first introducing the well known Brownian bridge

in Section 3.1, before focusing on the less common Lévy bridge in Section 3.2.

The new results of this dissertation begin in Section 3.2.3, where I find that

a conditioned displacement of the final state for the Lévy bridge experiences

a bifurcation when the conditioned length exceeds a certain threshold. The

displacement at which this bifurcation occurs defines a novel length scale

which naturally characterizes many features of the conditioned Lévy process.

Furthermore, I show that it has interesting uses such as detecting extreme events

(Section 3.2.5), generating Lévy bridges (Section 3.2.6), explaining properties of

first passage times (Section 3.2.7), and parameter inference of a Lévy process from

data (Section 3.2.8). Finally, Chapter IV reviews existing theory on the onset of

anomalous diffusion in Sisyphus cooling. Original work begins in Section 4.5 with
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a formula that characterizes the extent of power-law scaling which is useful in the

design of experiments studying Lévy behavior with laser-cooled atoms. New results

continue in Section 4.6, where through simulations I establish the existence of a

peak in the boundary-crossing statistics that is connected to the underlying Lévy-

type behavior, and derive scaling relations for its extent. These results serve as a

starting point for development of future single-atom experiments.
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CHAPTER II

STOCHASTIC PROCESSES

This chapter reviews basic, well-known background material for handling

stochastic processes, which serves as a foundation for understanding the

conditioned processes investigated in Chapter III, and for understanding the

dynamics of laser-cooled atoms in Chapter IV. There are a variety of good general

references for this material [14, 15, 41, 42, 43], as well as some with specific focus

on Lévy processes [16, 44, 45, 46].

Understanding the transport properties of cold atoms in Sisyphus cooling

requires modeling of random processes at several different levels. First, the

underlying physical process involves spontaneous emission, an inherently stochastic

process that gives random momentum kicks to the cooled atoms. Next, the motion

of the atom itself is the time integral of the momentum, and so is a sum of all

the incremental random kicks. Finally, the overall diffusive process incorporates

all possible trajectories each atom could take. These levels are each described

by different machineries in the language of stochastic processes: The underlying

physical process is modeled as an Itō stochastic differential equation for the

momentum; the motion of the atom is the stochastic integral of the momentum

equation; and the aggregate diffusive process is the evolution of a probability

distribution through a master equation. And so, in this chapter we discuss some

of the essential aspects of stochastic processes necessary for the understanding of

cold-atom transport.

The subject of stochastic processes is a broad one. It covers the analysis

of random systems, lending itself well to describing many physical systems like
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molecular diffusion and electrical noise, as well as less physical systems like

fluctuations in the stock market and animal birth-death rates [14]. Despite this

breadth in application, there are only a few fundamental random processes

from which more complex stochastic systems can be constructed. In Section 2.1

we will discuss the Wiener process, an idealized mathematical description of

Brownian motion. It is the one of the most widely used stochastic processes due

to a universality among stochastic processes, where seemingly disparate systems

ultimately have identical limiting behavior. The source of the mechanism that

causes this universality for Wiener process is the central limit theorem, one

of the most celebrated results of probability theory. We will also discuss the

basics of stochastic differential equations, some important examples, as well as

several statistics for the Wiener process. Next, in Section 2.2 we will discuss Lévy

processes. These can be thought of as an extension to the Wiener processes by

relaxing a continuity requirement to allow for systems involving rare and dramatic

events, which appear as discontinuous “jumps” in the system’s evolution. We will

also discuss a generalization of the central limit theorem that naturally leads a

certain class of Lévy processes known as the α-stable Lévy processes. We will show

that these processes are particularly important for models of anomalous diffusion,

despite their apparently pathological behaviors like discontinuous sample paths

which lead to the possibility for Lévy processes to jump across an absorbing region

without being absorbed.

2.1. Wiener Processes

The Wiener process is a continuous-time random walk that is an idealized

mathematical description of Brownian motion. While true physical processes
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differ somewhat from the Wiener processes, the Wiener process is a convenient

mathematical object, and remains an excellent approximation for many systems

exhibiting Brownian motion. To show why this is, we will start by deriving the

central limit theorem (Section 2.1.1), which underpins the the importance of

the Wiener process. Following this we will give an informal definition of the

Wiener process as a limit of a discrete random walk (Section 2.1.2), as well

some basic properties (Section 2.1.3). Finally, we will introduce several tools of

stochastic calculus, including stochastic differential equations (Section 2.1.5),

master equations (Section 2.1.6), methods for sampling stochastic processes

(Section 2.1.7), and certain key statistics for the Wiener process (Section 2.1.8).

2.1.1. Central Limit Theorem

One of the most interesting and useful results in the study of probability

and statistics is the central limit theorem (CLT), where the sum of many

random numbers from an unknown distribution has an asymptotically Gaussian

distribution. This somewhat counter-intuitive result, where the combination of

minimally described random numbers results in a precise statistical description,

is broadly applicable. It explains quite generally why so many measured statistics

appear Gaussian and is an important component of the explanation for regular

diffusive behavior in cold atoms discussed in both the introduction and in

Section 4.3.

While there are many ways of presenting the CLT, we will show a brief proof

using a random walk representation similar to proofs in Refs. [43, 47], which will

be a useful formalism for motivating the Wiener process in the following section. A

simple, one-dimensional random walk is a series of random steps ∆xi drawn from a
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distribution f∆x, such that after n steps the random walker has a position given by

xn =
∑n

i=1 ∆xi.

Using this notation, a basic statement of the CLT is as follows: If one takes n

independent random variables ∆xi drawn from an arbitrary distribution f∆x with

a known mean µ = 〈∆x〉 and variance σ2 = 〈(∆x−µ)2〉, the sum of these numbers,

xn, has the asymptotic, specific distribution given by the Gaussian

fxn(x) =
1√

2πnσ2
e−(x−µ)2/2nσ2

. (2.1)

The proof for this is simplified if we use the shifted and scaled variables

∆zi =
(∆xi − µ)√

nσ
(2.2)

which have zero mean and variance 1/n. The motivation for this choice will

become clear later, but we are essentially scaling out the expected linear growth

of variance in n. Using these variables ∆zi, the analogous sum to xn is

zn =
n∑
i=1

∆zi. (2.3)

As this is the sum of independent random variables, the probability distribution

will be given by an iterated convolution of the individual distributions. Since each

step has the same distribution, the probability distribution for zn is given by

fzn(x) = [f∆z ∗ f∆z ∗ . . . ∗ f∆z](x), (2.4)
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where we have n− 1 convolutions. From the convolution theorem, we can write the

Fourier transform for fzn as a product of Fourier transforms of f∆x, which is

F [fzn ](k) = F [f∆z](k)F [f∆z](k) . . .F [f∆z](k), (2.5)

where we have defined the Fourier transform by

F [f∆z](k) =

∫ ∞
−∞

dx f∆z(x)eikx. (2.6)

We now can expand the exponential as a sum to find

F [f∆z](k) =
∞∑
m=0

1

m!
(ik)m

∫ ∞
−∞

dx f∆z(x)xm, (2.7)

where we see that the integral is just the mth moment of f∆z. Since the mean is

zero and the variance is 1/n this expansion can be written as

F [f∆z](k) = 1− k2

2n
+O(k3). (2.8)

Putting this into our expression in Eq. (2.5) gives us

F [fzn ](k) =

(
1− k2

2n
+O(k3)

)n
. (2.9)

We now can see that terms of order km are proportional to n−m/2, which justifies

keeping only to lowest order in n in the limit n → ∞. Then, in this limit we can

use the relation ex = limn→∞(1 + x/n)n to find

F [fzn ](k) = e−k
2/2, (2.10)
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which through the inverse Fourier transform gives us

fzn(x) =
1√
2π
e−x

2/2. (2.11)

Finally, by unscaling xn as in Eq. (2.2) to we find the desired result in Eq. (2.1).

2.1.2. Definitions

The CLT gives good reason to expect many systems to exhibit Gaussian

behavior above some length or time scale, even if the underlying process is not

fundamentally Gaussian. The Wiener process, however, represents an underlying

process that explicitly consists only of infinitesimal Gaussian increments at all

scales. They can be used as an ideal mathematical object that is conveniently

manipulated to find exact results for many statistics, or as a particularly useful

model for many real-world systems when the true underlying non-Gaussian

behavior is experimentally inaccessible or irrelevant.

Informally, a Wiener process W (t) can be defined as the continuous time

analog of a discrete Gaussian random walk with n steps occurring at time intervals

∆t = t/n. The final position of such a walk is given by

xn =
n∑
i

∆xi, (2.12)

where the ∆xi are independently drawn from a Gaussian probability distribution

f∆xi(x) =
1√

2πσ2
e−x

2/2σ2

. (2.13)
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As the sum of independent Gaussian random variables is also a Gaussian random

variable, we have the distribution for final position given by

fxn(x) =
1√

2πnσ2
e−x

2/2nσ2

. (2.14)

To properly translate this discrete walk into a continuous form, we would like the

final position xn to correspond to the final position W (t) as we take the limit n →

∞. That is, we want

fW (t)(x) =
1√
2πt

e−x
2/2t (2.15)

to match Eq. (2.14), as t ∝ n. However, as we increase n we see that we must scale

σ such that the distribution for fxn does not diverge and maintains the appropriate

scaling behavior. The choice for the variance of the individual steps ∆xi that

maintains Eq. (2.14) is σ2 = ∆t. Taking this assumption we now can define the

Wiener process as the limit

W (t) = lim
n→∞

n∑
i=1

∆xi. (2.16)

Note that similarly, we have W (t) = limn→∞
∑n

i=1 σ
2. Notationally we can write

Eq. (2.16) as a stochastic integral

W (t) =

∫ t

0

dW (s), (2.17)

where dW is an infinitesimal increment of the Wiener process. The Wiener

increment dW can be thought of as a Gaussian random variable with a variance

dt. This is because the variance of W (t) must grow linearly in time to be

consistent with the CLT and with fW (t), so each of the increments dW must
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accordingly have variance dt. While we have not proven this explicitly, this

relation is known as Itō’s lemma [15] and can be written as

dW 2 = dt. (2.18)

Using the independence of Wiener increments, as well as Itō’s lemma, we can write

the variance of the Wiener process as

〈W 2(t)〉 =

〈∫ t

0

dW (s)

∫ t

0

dW (s′)

〉
=

〈∫ t

0

dW 2(s)

〉
=

∫ t

0

dt = t, (2.19)

which demonstrates some convenient manipulations commonly used to simplify

stochastic integrals. Note that we are using the angle brackets to indicate an

ensemble average.

One remaining tool for Itō calculus is a generalization of the chain rule. For a

function y(x, t) the typical chain rule can be written as

dy =

(
∂y

∂x

)
dx+

(
∂y

∂t

)
dt (2.20)

which can be thought of as a Taylor expansion of y(x + dx, t + dt), dropping terms

higher than first order. However, if dx contains a term proportional to a Wiener

increment, we can see that we must keep terms containing dW 2 since they are

actually first order in dt. This is done simply by adding the next term from the

Taylor expansion, giving us the Itō chain rule

dy =

(
∂y

∂x

)
dx+

(
∂y

∂t

)
dt+

1

2

(
∂2y

∂x2

)
dx2. (2.21)
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This covers a basic introduction to Wiener processes, which are a natural tool due

to the CLT. In the next section we discuss some essential properties of the Wiener

process.

2.1.3. Fundamental Properties

The Wiener process has several fundamental mathematical properties, which

we briefly discuss here; more detailed explanations can be found in Ref. [13, 44,

47].

1. Stationary Increments. Also known as time-homogeneity, this states that

that all Wiener process increments only depend on the current state and not

on any other variables. That is, all elements of {W (t0 + t) −W (t0) : t ≥ 0}

are independent of t0.

2. Independence of increments. For any choice of n ≥ 1 and 0 ≤ t0 < t1 <

. . . < tn, all increments from W (t0),W (t1) − W (t0), . . . ,W (tn) − W (tn−1)

must be statistically independent.

3. Infinite Divisibility. Processes that have both stationary and independent

increments are called infinitely divisible, so this property also holds for the

Wiener process. As the term indicates, the process W (t) can be split into a

sum of N independent identically distributed random variables.

4. Martingale. The martingale property is the requirement that for all t >

t0 > 0, the expectation value 〈W (t − t0)〉 = W (t0). This is essentially a

statement that there is no deterministic drift.
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5. Continuity. The Wiener process must satisfy the standard continuity

requirement: For all t and for all ε > 0 there exists a δ > 0 such that

|W (t+ δ)−W (t)| < ε.

2.1.4. Qualitative Behavior

In addition to the formal properties, there are many peculiar qualitative

behaviors of the Wiener process that are important to understand.

Sample Path Behavior. As stochastic processes depend on random

elements with multiple possible outcomes, there are many solutions for a given

stochastic process. Each possible solution to a stochastic process is known as

a sample path. As an example we have plotted 10 sample paths for the Wiener

process in Fig. 2.1. As we can see, the individual sample paths can vary greatly,

and consistent results will only occur only in distributions of possible solutions.

However, a single sample path is still useful for a qualitative understanding of the

motion, as the sample paths can actually represent the microscopic behavior of

a physical process. Furthermore, for real-world data an ensemble is not always

available, and the information available from analyzing a single sample path can

still be valuable.

Boundary Crossing Behavior. The fractal-like nature of the Wiener

process has some unusual properties when considering the crossing of a boundary.

First, if a Wiener process crosses some threshold, one might näıvely assert that

there must then be a well defined first crossing point. However, this interpretation

has issues for a Wiener process considered at a finite resolution. While one

resolution may have a crossing time at t1, any of the possible refinements (i.e.

higher resolution sample paths that hit the same points and have consistent

21



t0 1

W
o(t

)

2

-2

0

t0 91

W
o(t

)

6

-6

0

-2

2

FIGURE 2.1. Plots of 10 sample paths of a Wiener process. Both plots show
the same sample paths (indicated by colors), while scale of each plot is chosen to
indicate the qualitative self-similarity at at different scales.

statistics) of this process may have different crossing times at a distinct time

t2 6= t1 or even multiple crossing times. In fact, a true Wiener process that crosses

a boundary at least once will (almost surely) have an infinite number of crossings

in the vicinity, and any given crossing for a finite resolution sample path will

inevitably have an arbitrarily large number of nearby crossings when the sample

paths are refined.

Fortunately, the assertion that there must be a well defined first crossing

point is actually correct for the true Wiener process [48], which allows us to
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define well behaved distributions like the first passage time, which we explore

in Section 2.1.8. Still, there are some cases that are somewhat problematic. For

example, an excursion is defined as a process that starts and ends at the origin.

For a Wiener process that starts at the origin, the first passage time at the origin

is simply t = 0 since every crossing will have an infinite number of nearby

crossings. This can be problematic because excursions can play a useful role in

analyzing random walk behavior (see for instance Ref. [39], where this issue is

mitigated by considering boundaries with a size ε > 0 and take the limit ε → 0

as needed).

Fractal and Scale Free Behavior. Fractals are a broad class of self-similar

geometric objects, where the object at one scale has similarities to itself at other

scales. Since the Wiener process is fundamentally random, it is incredibly unlikely

for a Wiener sample path to have any exact self-similarity. However, the Wiener

process does have statistical self-similarity which firmly places it as an example

of a random fractal. This self-similar behavior can be seen in Fig. 2.1, where each

plot shows the same set of sample paths, but shown over different interval lengths

and at different scales. Following the variance scaling of the Wiener process, the

time axis is scaled by s while the length axis is scaled by
√
s, where s = 3. Thus,

with the appropriate scaling the qualitative appearance of these plots is similar,

even if the individual trajectories are quite different.

2.1.5. Stochastic Differential Equations

As we have seen, the Wiener process is a useful description of many random

processes due to the CLT. However, it also is useful in describing a class of random

systems beyond basic Brownian motion through appropriate stochastic differential
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equations. Thus the Wiener process is not only fundamental because of the CLT,

it also is a key building block for many other random processes.

The Itō stochastic differential equation, given by

dx = h(x, t)dt+ g(x, t)dW, (2.22)

where h(x, t) is the drift coefficient and g(x, t) is the diffusion coefficient, describes

the evolution of a process x(t) that can be computed through a stochastic integral.

As is true for all SDEs, there are many possible solutions to this equation.

We will now discuss two important examples that can be written in the form

of Eq. (2.22) that are useful for the analysis and interpretation of the diffusion in

cold atoms in Chapter IV.

2.1.5.1. Ornstein–Uhlenbeck Process

The Ornstein–Uhlenbeck process (a Wiener process plus linear damping) is a

common model for the momentum of a massive particle that results in physically

observed Brownian motion. As such, the integrated Ornstein–Uhlenbeck process

asymptotically approaches a Wiener process, but the particles in this model have

inertia and do not instantaneously change direction as happens for the true Wiener

process. It is also a successful model for some regimes cold atom diffusion, so it is

a natural system to use for comparison to diffusive regimes that have non-linear

damping.
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The Ornstein–Uhlenbeck process (dp) and the corresponding particle position

(x) is described by the pair of stochastic differential equations

dp = −γp dt+ σp dW, (2.23)

dx =
p

m
dt. (2.24)

where γ is a damping constant and σp is a momentum diffusion constant. For

convenience we use the scaled variables t→ t/γ, p→ pm, along with the definition

σ = σp/m
√
γ, which gives the dimensionless equations

dp = −p dt+ σ dW, (2.25)

dx = pdt. (2.26)

The typical method to solve this system is to notice that the homogeneous form of

Eq. (2.25) (i.e. σ = 0) has the solution

p(t) = p0e
−t, (2.27)

which in turn motivates the transformation

y = pet. (2.28)

To find the increment dy, we apply the Itō chain rule in Eq. (2.21) resulting in

dy =
(
et
)

(−p dt+ σ dW ) +
(
pet
)
dt (2.29)

= etσ dW. (2.30)
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We can now integrate this to find y(t),

y(t) = p0 + σ

∫ t

0

esdW (s), (2.31)

where p0 is an integration constant. Finally, we transform back via Eq. (2.28) to

find

p(t) = p0e
−t + σ

∫ t

0

es−tdW (s). (2.32)

This has a nice form with a transient p0e
−t that will vanish at long times, and a

second term which is simply the integral of a Gaussian random variable (and thus

is also a Gaussian with a variance that depends on t). As the mean is clearly zero,

we just need to calculate the variance of this second term to fully characterize it,

which can by found by

〈(
σ

∫ t

0

es−tdW (s)

)2
〉

=

(
σ

∫ t

0

es−tdW (s)

)(
σ

∫ t

0

es
′−tdW (s′)

)
(2.33)〈(

σ

∫ t

0

es−tdW (s)

)2
〉

= σ2e−2t

∫ t

0

e2sds (2.34)〈(
σ

∫ t

0

es−tdW (s)

)2
〉

=
σ2

2

(
1− e−2t

)
. (2.35)

While this characterizes the momentum, we still have not solved for the position

evolution. To find the position as a function of time, we must integrate Eq. (2.26):

x(t) = x0 +

∫ t

0

p0e
−sds+ σ

∫ t

0

ds′e−s
′
∫ s′

0

esdW (s). (2.36)

The second term is easy to integrate giving

∫ t

0

p0e
−sds = p0(1− e−t). (2.37)
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Since the third term in Eq. (2.36) is a Gaussian random variable with zero mean,

we only need to compute the variance σ2
x which is given by

σ2
x = σ2

〈[∫ t

0

ds1e
−s1
∫ s1

0

es2dW (s2)

] [∫ t

0

ds3e
−s3
∫ s3

0

es4dW (s4)

]〉
. (2.38)

Since the stochastic increments dW are independent random variables, all

contributions to the integral will vanish in the average unless the increments

dW (s2) and dW (s4) are the same increment. This allows us to rewrite this integral

with the replacement s4 → s2 giving us

σ2
x = σ2

∫ t

0

ds1

∫ t

0

ds3

∫ min(s1,s3)

0

e(2s2−s1−s3)ds2, (2.39)

where we have dropped all uncorrelated products of dW . Notice that the limit

for the s2 integral is the minimum of s1 and s3, as the integration limits must

be truncated to the range where each dW (s2) has a complementary dW (s4).

To continue simplifying this integral, it helps to think about it as an integral

over a subsection of a t × t × t cube, where we only include the volume of a

“quarter-pyramid”; the subsection of the cube selected by the integration limits

is equivalent to the following integral:

σ2
x = σ2

∫ t

0

ds2

∫ t

s2

ds3

∫ t

s2

ds1e
2s2−s1−s3 . (2.40)

Evaluating this, we have

σ2
x = σ2

(
t− 3

2
+ 2e−t − 1

2
e−2t

)
. (2.41)
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This gives us the expected asymptotic linear growth in the variance as well as

an exponentially damped transient. However, it is interesting that there are two

different transients proportional to e−t and to e−2t.

Finally, we can combine the results from Eqs. (2.37) and (2.41) into the

probability density

f(x, t) =
1√

2π(σx(t))2
exp

(
−(x− x0 − p0(1− e−t))2

2(σx(t))2

)
, (2.42)

which is just a Gaussian with a particular time-dependent mean and variance.

2.1.5.2. Integrated Brownian Motion

One other commonly used process that will be relevant for later analysis is

integrated Brownian motion. This is equivalent to the Ornstein–Uhlenbeck Process

with a vanishing damping coefficient, and so we have the equations

dp = σ dW, (2.43)

dx = pdt, (2.44)

which we can see leads to

dx = σ

∫ t

0

W (s)dt. (2.45)
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This has the well known variance scaling of 〈x2〉 ∼ t3, which can be seen via

x(t) = σ

∫ t

s=0

W (s)ds (2.46)

x(t) = σ

∫ t

s=0

∫ s

u=0

dW (u)ds (2.47)

x(t) = σ

∫ t

u=0

dW (u)

∫ t

s=u

ds (2.48)

x(t) = σ

∫ t

u=0

(t− u)dW (u), (2.49)

where we have changed the order of integration. Since we have a sum of Gaussian

random variables, we only need to compute the variance

〈x(t)2〉 = σ2

∫ t

0

(t− u)dW (u)

∫ t

0

(t− u)dW (u) (2.50)

〈x(t)2〉 = σ2

∫ t

0

(t− u)2dt (2.51)

〈x(t)2〉 =
σ2

3
t3, (2.52)

which gives us the expected scaling behavior.

2.1.6. Master Equations

Master equations are differential equations that describe the evolution of

a probability density. While the Itō SDEs can be thought of as describing the

evolution of an individual particle, master equations can be used to describe

either the probability of different possible outcomes for a single particle, or

evolution of the density of an ensemble of particles. In both cases the trajectory

of individual particles is not readily apparent and so this picture is more suited as

a macroscopic description of a system.
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The equivalent master equation to the Itō SDE in Eq. (2.22) is known as the

Fokker–Planck equation

∂tρ(x, t) = −∂x[h(x, t)ρ(x, t)] +
1

2
∂2
x[D(x, t)ρ(x, t)], (2.53)

where D(x, t) = g(x, t)2 is the diffusion coefficient.

As a simple example, we can look at the solution in the case of the pure

Wiener process, where we have h(x, t) = 0, D(x, t) = σ2. The Fokker Planck

equation then reduces to the heat equation

∂

∂t
ρ(x, t) =

σ2

2

∂

∂x2
ρ(x, t). (2.54)

The propagator [the solution given ρ(x, t = 0) = δ(x)] is just the Gaussian kernel

ρG(x, t) =
1√
2tσ2

e−x
2/2tσ2

(2.55)

which allows us to express the solution for an arbitrary initial distribution ρ(x, t =

0) as a convolution:

ρ(x, t) =

∫ ∞
−∞

ρG(x− x′, t)ρ(x, t = 0)dx′. (2.56)

2.1.7. Sampling and Simulation

This section outlines standard numerical methods used for integrating

stochastic differential equations involving a Wiener process. These methods

are used for producing Brownian bridge statistics in Chapter III, as well as the

diffusion simulations of the Sisyphus cooling force in Chapter IV. Methods of
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numerically solving ODEs often involve discretizing a continuous process into

finite time steps ∆t and incrementally solving for the state at each discrete time

n∆t. These methods can be employed for the numerical simulations of SDEs, but

there are some additional challenges compared to simulations for ODEs. First,

since there are a multitude of solutions, to properly sample an SDE we must

collect a series of sample paths until the statistics settle and the behavior is well

characterized. This can be substantially more computationally expensive than

simulations for ODEs. Second, the addition of Gaussian noise at each discrete

time step leads to poorer performance than similar algorithms for ODEs. Finally,

certain numerical algorithms for SDEs only have weak convergence, where the

simulation only has correct results for ensemble averages, while the individual

paths may not reflect the true process. If the behavior of the individual paths is

important (as is the case for statistics like first passage times in Section 2.1.8),

then we require the algorithm to have strong convergence.

Despite these additional concerns, some algorithms for SDEs are very similar

to algorithms for ODEs. To numerically simulate an Itō SDE of the form

dx = h(x, t)dt+ g(x, t)dW (2.57)

the simplest approach is to use the Euler–Maruyama method [14, 49]. This is done

by approximating the state x(t) at discrete time steps ∆t by xn ≈ x(t0 + n∆t)

where the xn are iteratively generated through

xn+1 = f(xn, n∆t)∆t+ g(xn, n∆t)
√

∆t Zn. (2.58)
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The Zn are independent Gaussian random numbers with zero mean and unit

variance. While similar to the Euler method for ODEs, the single-path error

for the Euler–Maruyama method is of order
√

∆t. This is worse than the linear

error for the Euler method, or ∆t4 for the (fourth order) Runge–Kutta method,

so a small time increment can be necessary. However, with the availability of

powerful graphics processors, the Euler–Maruyama method was adequate for our

simulations with sufficiently small time steps. More complex and higher order

methods for SDEs discussed in Refs. [49, 50, 51] may be useful if the Euler–

Maruyama method has problematic convergence.

2.1.8. Boundary Crossing Statistics

So far we have discussed stochastic differential equations, which describe the

evolution of a stochastic trajectory, as well as the Fokker–Planck equation, which

describes the evolution of a probability distribution for an ensemble of stochastic

trajectories. Both of these describe the evolution of the system in time, while now

we move to some more descriptive statistics that can be derived from these models.

In this section we derive crossing probabilities and first-passage distributions for

the Wiener process. These are used in Section 4.6.1 for modeling escape times of

laser-cooled atoms.

The first statistic we consider is the crossing probability. We define the

crossing probability Pcross(t) as the probability that a particle has crossed a

boundary located a distance d from the origin at a time t. To derive the crossing

probability one can imagine tagging particles as they cross a boundary and

calculate the fraction of tagged particles to find Pcross; while this is a useful

interpretation, to derive Pcross, we will use a more convenient approach by defining
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an absorbing boundary and calculating the survival probability Psurv. Then the

crossing probability is just the probability that the particles did not survive, or

Pcross = 1− Psurv.

To calculate the survival probability we employ a trick known as the method

of images1, where a required boundary condition (in this case the absorbing

boundary) is satisfied by adding equal but oppositely weighted “anti-particle” on

the opposite side of the boundary, offset by the same distance d. This guarantees

that at all times t the absorbing boundary condition f(d, t) = 0 is satisfied. Since

we know the evolution of both particles [Eq. (2.55)], the solution to the probability

density is just the superposition

f(x, t) =
1√
2tσ2

(
e−x

2/2tσ2 − e−(x−2d)2/2tσ2
)
, (2.59)

which completely accounts for the absorbing boundary when restricted to the

domain x < d. The survival probability is just the integral

Psurv(t) =

∫ d

−∞
dx f(x, t), (2.60)

which has the solution

Psurv(t) = erf

(
d√
2tσ2

)
, (2.61)

which in turn gives us

Pcross(t) = erfc

(
d√
2tσ2

)
, (2.62)

1There are many other ways to derive the survival probability. A “brute force” method using
the backwards Fokker-Planck equation is shown in Ref. [15], while a clever method using the
reflection principle is shown in Ref. [41].
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tτd0

x

d

0

FIGURE 2.2. Schematic diagram illustrating first passage times. The process
starts at d and ends when it hits the dashed line at x = 0.

where erf and erfc are the error function and complementary error function,

respectively. In the limit t → ∞, we see that Pcross → 1, showing that a random

walker will always eventually cross a given boundary. This can be related to the

“gambler’s ruin problem”—even with fair odds, a persistent gambler with fixed

size bets will eventually go bankrupt, and be unable to continue playing. It also is

sensible that as d → 0, we also have Pcross → 1, with the interpretation that if a

random walker starts at a boundary, it must cross it immediately.

A related concept to the crossing probability is the first passage time, defined

as the first time a particle crosses a threshold, as illustrated in Fig. 2.2. Since a

particle crossing the boundary gets “tagged” or absorbed only the first time it

crosses, we can see that the distribution of first passage times fτd is then just the

derivative of the crossing probability

fτd(t) =
∂

∂t′
Pcross(t

′)

∣∣∣∣
t′=t

=
d√

2πt3σ2
e−d

2/2tσ2

. (2.63)
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This distribution is shown in Fig. 2.3, which shows the same function plotted with

linear scaling (top plot) and log-log scaling (bottom plot). The cutoff at short

times is due to the low probability of the particle to exit immediately due to

the Gaussian nature of the increment (exponentially damped tails). The density

maximum is located at d2/3σ2, which serves as a transition to a t−3/2 power law,

as indicated on the log-log plot.

An extension of the first passage time for a single boundary is the escape-

time distribution from an interval of length L, when the particle is offset from one

of the boundaries by a distance d and offset from the other boundary by L − d, as

illustrated in Fig. 2.4. The derivation follows similarly to that of the first passage

time, starting by calculating the escape probability Pescape. This again uses the

method of images, but since there are two boundaries, the images themselves also

require images, and so on. The result is

Pescape(t) =
∞∑

j=−∞

(−1)j sgn(j + 0+) erfc

( |jL+ d|√
2tσ2

)
, (2.64)

and we can see that as L → ∞ this reduces to the crossing probability in

Eq. (2.62) when one boundary has a negligible effect. Now we can define the

escape time distribution fτe by

fτe(t) =
∂

∂t′
Pescape(t

′)

∣∣∣∣
t′=t

(2.65)

and find

fτe(t) =
1√

2πσ2t3

∞∑
j=−∞

(−1)j sgn(j + 0+) |jL+ d|e−|jL+d|2/2tσ2

. (2.66)
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FIGURE 2.3. Plots of the first passage time distributions for a Wiener process
with a single boundary. The top plot is scaled normally, while the bottom plot is
log-log scaled to emphasize the t−3/2 power law tail.
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L

FIGURE 2.4. Schematic diagram illustrating escape times. The process starts at
d and ends when it hits either dashed line at x = 0 of x = L.

This is plotted in Fig. 2.5 for two values of d. For d = L/100 we see that the

power law present for the first passage times still occurs at τe > d2/3σ2 but now

has a cutoff at (L − d)2/3σ2. This essentially corresponds to the time it takes for

the width of the particle density function to expand to a size L − d so that the

further absorbing boundary has a significant impact on the particle’s survival. The

power law also retains t−3/2 scaling, despite the presence of an additional absorbing

boundary. Note that this discussion is true for d < L/2; for d > L/2 the roles of

L − d and d are swapped. The plot for d = L/2 shows no visible power law since,

as we will see later in this section, the power law is caused by the interaction with

a single absorbing boundary, while when d = L/2 the particle is equally likely to

interact with either boundary.

An important relation apparent in the above first-passage distributions

is the power-law time dependence. For both the single-boundary first-passage

distribution in Eq. (2.63) and the two-boundary escape-time distribution in

Eq. (2.66), the asymptotic time behavior scales as t−3/2. These are two examples

of a universal scaling relation attributed to Sparre Andersen [48]. This scaling

37



10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

102 103 104 105 106 107 108 109

a2/3 (L−a)2/3

P
(τ

e
)

τe

fτe (t)

∼t−3/2

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

102 103 104 105 106 107 108 109

(L/2)2/3

P
(τ

e
)

τe

fτe (t)

FIGURE 2.5. Escape time plots for a Wiener process with two absorbing
boundaries. The top plot is shown for a = L/100, which has a clear power
law extending over a wide range. The bottom plot is for a = L/2 and has no
observable power law.
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behavior was proved originally for discrete random walks [52, 53], but it also

holds in the continuous limit [16]. Surprisingly, these universal relations are for all

random walks with symmetric step distributions and are not limited to Gaussian

processes.
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2.2. Lévy Processes

Lévy processes are a natural extension of Wiener processes that encompass

continuous-time random walks with drifts, heavy tailed step distributions, and

most dramatically, discontinuous sample paths. They are defined to include all

possible independent and identically distributed noise processes. Similarly to

Wiener processes, Lévy processes are important in understanding a systems from a

wide range of domains, including ecology [19], financial systems [13] such as option

pricing [54, 55] or security returns [56], transport in fluid flows [57] and chaotic

systems [58], optimal stochastic search strategies [18, 59] which can explain animal

foraging behavior [60, 61], and some more obscure areas like the statistics of cricket

games [62] or the process by which humans learn to balance sticks [63]. Also as

we will discuss in more detail in Chapter IV, they have an important role in laser-

cooled atoms [26, 31, 37, 38, 39, 64, 65, 66].

Since the CLT implies a certain universality of the Wiener process, it is

reasonable to suspect there may be a natural extension to the CLT that implies

a similar universality for the Lévy processes. This intuition turns out to be

mostly correct: one extension to the CLT is known as the generalized central limit

theorem (gCLT), and like the CLT it characterizes the how the distribution of

sums of random variables converges to a limiting Lévy random process, with a

couple caveats: First, the gCLT applies to sums of random variables with power-

law-tailed step distributions, or Lévy flights in the language of random walks.

Second, the limiting distribution of the gCLT is an α-stable distribution, which

corresponds to the α-stable Lévy processes, a subset of the Lévy processes rather

than a generic Lévy process. It is worth noting that many of the cited uses of the
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Lévy processes predominately use α-stable Lévy processes, so the gCLT and the

α-stable Lévy processes are particularly useful.

With this in mind, we will start this section by introducing the Lévy process

in general (Section 2.2.1), but we will quickly restrict ourselves to using the α-

stable Lévy processes (Section 2.2.2) because of the broad applicability due to

the gCLT. We will then cover methods for simulation of α-stable Lévy processes

(Section 2.2.4), and discuss boundary crossing statistics, including leapover

distributions and first passage distributions (Section 2.2.5).

2.2.1. Lévy Process Properties and Definitions

A Lévy process L(t) can be defined as stochastic process that satisfies the

following properties2 [44]:

1. Stationary Increments. Also known as time-homogeneity, this states that

that all Lévy process increments only depend on the current state and not on

any other variables. That is, all elements of {L(t0 + t) − L(t0) : t ≥ 0} are

independent of t0.

2. Independence of increments. For any choice of n ≥ 1 and 0 ≤ t0 < t1 <

. . . < tn, all increments from L(t0),L(t1)− L(t0), . . . ,L(tn)− L(tn−1) must be

statistically independent.

3. Stochastic Continuity. For any ε > 0 P (|L(s + t) − L(s)| > ε) → 0 as

t → 0. This is a limited form of continuity that allows for the presence of

2There are other formulations of Lévy processes that are sometimes included or excluded
in definitions of the Lévy process. This list does not include the convention of a fixed origin at
L(0) = 0.
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discontinuous jumps, as long as they occur at a random time. Deterministic

discontinuities are still excluded by this form of continuity.

4. Cadlag. This requirement states that Lévy processes must be right

continuous with left limits. This simply means that the limiting value for

the process at points of discontinuity is taken to be the value after the jump.

As we can see, the formal definition of the Lévy process has similar

properties to the Wiener process (Section 2.1.2), with the most exceptional

difference being a relaxation of the Wiener process’ continuity requirement, which

is replaced by stochastic continuity. This allows for jump discontinuities as long as

the probability for a jump goes to zero as the time interval for the jump goes to

zero. The other difference is the lack of the martingale property which allows for a

Lévy process to have deterministic drift.

Given this definition, it can be shown that any Lévy process has a

distribution f(x, t) that can be written as the Fourier transform [44]:

F [f ] (k, t) = exp

[
(t− t0)

(
ika− b2

2
k2 +

∫
dx′W0(x′)

(
eikx

′−1−ikx′Θ(1−x′2)
))]

.

(2.67)

This is known as the Lévy–Khintchine representation, with the drift coefficient

a, the diffusion rate b, and a jump transition density W0. While a and b are

constants, the transition density (or Lévy measure) W0(x) represents the expected

number of jumps of size x per unit time and satisfies

∫ ∞
−∞

(x 6=0)

dx (1 ∧ x2)W0(x) <∞, (2.68)
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where we use the notation

(1 ∧ x2) =


1 |x| > 1

x2 |x| < 1.

(2.69)

The interpretation we gave for the parameters in Eq. (2.67) is more clear if one

considers each term in the exponential separately. Recall that a distribution for

the sum of random variables is just a convolution of the individual distributions,

which in Fourier space is equivalent to a product of the Fourier transforms of the

individual distributions. Therefore, by reversing this chain of logic, each term in

the exponential directly corresponds to an independent random process: the ika

term corresponds to a linear drift at, the −b2k2/2 term becomes a Wiener process

bW (t), and the W0 term is the jump process PW0(t) (also known as a compound

Poisson process). Thus, the Lévy process can be written as

L(t) = at+ bW (t) + PW0(t). (2.70)

This representation is known Lévy–Itō decomposition. This decomposition allows

all Lévy processes to be described as the sum of a drift term, a Wiener process,

and a jump process, which is convenient and initially seems quite intuitive.

However, we will see in Chapter III that this decomposition does not capture some

of the strong similarities between Wiener processes and the stable Lévy processes.

2.2.2. Stable Lévy Processes

We will now define the symmetric α-stable Lévy process, which as we will see

in Section 2.2.3 is an important limiting process due to the gCLT. The symmetric
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α-stable Lévy process is a subset of the Lévy processes, and so can be defined by

specifying choices for the drift coefficient a, the diffusion rate b, and the transition

density W0. The α-stable processes are pure power law jump processes, meaning

both the drift and diffusion rate vanish, while the transition density is a pure

power law

W0(x) =
A

|x|α+1 (2.71)

with the stability parameter α and jump rate parameter A. Note that α must

satisfy 0 < α < 2 for Eq. (2.68) to hold. While these choices of a, b and W0 along

with Eq. (2.67) are sufficient to define the α-stable process, a more convenient

form uses the scale parameter σ, defined via the relation

A = sin(πα/2)Γ(α + 1)σα/π. (2.72)

Using this, Eq. (2.67) can be simplified into the form

fα(x; t) =
1

π

∫ ∞
0

dk cos(kx)e−tσ
αkα (2.73)

where again σ is the scale parameter and α is the stability parameter with 0 < α <

2.

In general there is no simple expression for the integral in Eq. (2.73), but this

form is still convenient as it can be easily compared to the Fourier transform of

a standard Gaussian distribution. We can see that as α → 2 the distribution is

exactly the Gaussian

f2(x; t) =
1√

4πσ2t
e−x

2/4σ2t (2.74)
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which has a standard deviation
√

2tσ. The only other α with a simple expression

is α = 1 which reduces to the Cauchy distribution given by

f1(x; t) =
σt

π (x2 + σ2t2)
. (2.75)

We can see that the Cauchy distribution has asymptotic |x|−2 tails, and similar

behavior is present for all for all α < 2, where the densities have heavy tails

with power-law behavior scaling as |x|−(1+α), matching the transition density in

Eq. (2.71).

As an example, sample paths for selected α are shown in Fig. 2.6. Long

jumps associated with rare events in the tails of the distribution are present for all

α, but the jumps tend to be increasingly important for smaller alpha, a reflection

of the heavier tails.

2.2.3. Generalized Central Limit Theorem

The generalized Central Limit Theorem (gCLT) is an expansion of the

CLT to account for sums of random variables drawn from a distribution an

infinite variance, where the infinite variance is due to the presence of power law

tails. More precisely, if a step distribution has power law tails that decay like

f∆x(x) ∼ |x|−(α+1) with 0 < α < 2, then the gCLT states that a sum of these

random variables will approach an α-stable distribution, defined by

fα(x) =
1

π

∫ ∞
0

dk cos(kx− kµ)e−σ
αkα . (2.76)

The gCLT can be motivated with a few observations: First, we can see that

the step distribution for α ≥ 2 has a finite second moment, and so would approach
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FIGURE 2.6. Plot of 10 sample paths of the α-stable Lévy process for 3 values of
α.
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a Gaussian distribution due to the regular CLT as expected. However, when α < 2

the requirements for the CLT would not be satisfied as
∫
dxf∆x(x)x2 diverges. But

while the second moment diverges for 0 < α < 2, the distribution remains sensible

as a probability distribution since
∫
dxf∆x(x) is still finite. Thus we can anticipate

the existence of some sort of limiting distribution for fxn even if the standard CLT

fails.

Proving the gCLT is similar to proving the CLT, and can be seen in

more detail in Refs. [17, 41]. Again, similar to the CLT, the gCLT gives strong

grounding for the universality of the α-stable Lévy process. As for actually

applying the gCLT in practice it is important to understand how the processes

typically converge which we discuss in the next section.

2.2.3.1. Slow Convergence to Gaussian

One concern about applying the gCLT to a system is that it is often difficult

to guaranteed that a power law tail holds indefinitely at all scales. However, it

turns out that even with a power law that only spans a finite range, the gCLT

is still useful for modeling behavior. The purpose of this section is to help

build intuition for how stochastic processes can be described by the asymptotic

Gaussian and stable Lévy distributions at finite times. It is particularly useful

for interpretation of many of the simulations shown in Chapter IV. To see how

systems can approach the asymptotic limits, we look at an example of applying

both the CLT and the gCLT to a system with heavy but truncated tails.
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n = ∞

FIGURE 2.7. Trajectories from a single truncated Cauchy random walk with
steps drawn from Eq. (2.77) with a = 105. Each plot moving to the right contains
the entire motion of the previous plot, highlighted in green. For n� a the
motion appears like a Cauchy random walk, while for n� a the motion appears
Brownian.

Consider a random walk with n independent steps drawn from a truncated

Cauchy distribution defined by

ftc(∆x) =


1

2 tan−1(a)

1

1 + (∆x)2
|∆x| > a

0 |∆x| < a

(2.77)

where the 1/2 tan−1(a) is just a normalization factor and a is a parameter

determining the truncation cutoff. This distribution has a finite second moment

σ0 = −1 + a/ tan−1(a), and so in principle the CLT is applicable. However, the

extent of the tails can be large (controlled by a), limiting the rate of convergence

to a Gaussian. In practice there can be a large range of n where the gCLT should

be applied instead. To see this qualitatively, we have plotted the trajectory of a

single random walker with a = 105 for various values of n, shown in Fig. 2.7. When

n � a, the motion appears to be Brownian motion (Brownian motion shown as

n = ∞ for comparison), however, for n < a we notice that the motion appears like

a Cauchy random walk with large jumps.
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To see this more quantitatively, we can compare how the CLT limiting

distribution, given by

fCLT(x, t) =
1√

2πσ(t)2
e−x

2/2σ(t)2 , (2.78)

compares to the gCLT limiting distribution

fgCLT(x, t) =
γ(t)

π (γ(t)2 + x2)
(2.79)

where σ(t) = σ0

√
t and γ(t) = t. The latter should be valid only as a → ∞. To

see the comparison, in Fig. 2.8 we show the position distribution of 105 random

walks with steps drawn from Eq. (2.77) with a = 105 for various numbers of steps.

For n � a the simulated distribution tends to overlap with the Lévy distribution,

while for n � a the simulated distribution tends to overlap with the Gaussian

distribution. This “slow” convergence to Gaussian behavior due to the presence of

power laws has been noted before [67, 68].

2.2.4. Sampling and Simulation

This section covers standard methods for numerical simulation of stable

Lévy processes, as well as how to sample from stable Lévy distributions. These

techniques are used for all simulations in Chapter III that involve stable Lévy

processes. To simulate an α-stable Lévy process, we write the process as a discrete

random walk with positions given by the relation

xn+1 = xn + (Kα) (∆t)1/α Xα(n) (2.80)
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FIGURE 2.8. Demonstration of the applicability of the gCLT even for step
distributions with a finite variance. Number of steps taken is indicated by the line
color: 101 (blue), 102 (green), 103 (red), 104 (teal), 105 (purple) 106 (yellow). The
second plot is scaled such that the distributions overlap with Eq. (2.79) (second
plot, black), while the third plot is scaled such that the distributions overlap with
Eq. (2.78) (third plot, black).

where Kα is an anomalous diffusion coefficient and Xα(n) is an α-stable random

variable.

As for generating the stable random variables Xα, many numerical tools and

packages often do not have built in methods. However, there is a straightforward

formula that transforms a uniform random number U on the interval
(−π

2
, π

2

)
and

an exponential random variable W with mean 1 into a stable random variable

through the transformation

X = (1 + ζ2)1/2α sin(α(U + ξ))

(cos(U))1/α

(
cos(U)− α(U + ξ)

W

)(1−α)/α

, (2.81)

where

ζ = −β tan(πα/2) (2.82)

and

ξ = arctan(−ζ)/α. (2.83)
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This is valid for all 0 < α < 1 and 1 < α < 2 [69]. When α = 1 the alternative

formula

X =
2

π

((π
2

+ βU
)

tan(U)− β log

(
πW cos(U)

π + 2βU

))
(2.84)

is used, while when α = 2 the variable X is a Gaussian random variable. While

this method is straightforward, a more numerically efficient algorithm is also

outlined in Ref. [69].

2.2.5. Boundary Crossing Statistics

In this section we will briefly discuss some important and counterintuitive

boundary crossing statistics for the Lévy processes. In Section 2.1.8 we discussed

some of these statistics for the Wiener process, which included crossing

probabilities and first passage times, however, results for Lévy processes are much

more limited.

2.2.5.1. First Passage Times

The derivations for first-passage distributions in Section 2.1.8 relied on

the method of images. However, it has been shown that this approach does not

work for the stable Lévy processes [70], and ultimately leads to erroneous results.

The breakdown of the method of images is due to the discontinuous nature of

Lévy processes. In the Brownian case, the image method works by guaranteeing

zero net probability flux across an absorbing boundary by effectively forcing the

boundary to have zero net probability at all times (see Section 2.1.8). Meanwhile,

in the Lévy case, a particle can effectively leap across a boundary, so that zero

net probability at a single point does not prevent a particle from crossing the

boundary.
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FIGURE 2.9. Schematic diagram illustrating the leapover distance l, as well as
the distinction between first passage times τp and first hitting times τh for a Lévy
process.

Because of this difficulty, there is no simple expression for the first passage

distributions for Lévy processes, and instead we only have the asymptotic τ−3/2

behavior for a single boundary, as was already guaranteed through the universal

Sparre Andersen scaling [70].

2.2.5.2. Leapovers

As discussed previously, the discontinuous nature of Lévy processes leads to

interesting behavior when assuming absorbing boundary conditions. For example,

consider an α-stable Lévy process starting at some x0 > 0 with an absorbing point

at x = 0. While a Wiener process would remain positive until it eventually is

absorbed, a Lévy process can hop between negative and positive values over the

absorbing point at the origin many times before it is absorbed [70, 71]. Again, this

is because of the discontinuous jumps permitted for Lévy processes.

This behavior also is applicable to an absorbing region, rather than an

absorbing point. For an absorbing half-line region (−∞, 0], a Lévy process again

starting at some x0 > 0 will (almost surely) penetrate some distance l into

the absorbing region before it is absorbed. This leapover length is illustrated in
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Fig. 2.9. Also illustrated in this figure is the difference in between the first hitting

time τh and the first passage time τp. While the first passage time is marked the

moment the particle crosses the boundary, the first hitting time is not marked

until the particle diffuses “into” the boundary.3

The leapover length can be characterized by the leapover distribution fl.

For an absorbing interval (−∞, 0] and a particle starting at x0 > 0, the leapover

distribution is given by [72, 73]

fl(l) =
1

π
sin
(πα

2

) x
α/2
0

lα/2(x0 + l)
. (2.85)

For a finite absorbing region [−2L, 0] and a particle starting at x0 > 0, the

leapover distribution is given by

fl(x) =
1

π
sin
(πα

2

) |L2 − (x0 + L)2|α/2

|L2 − (x+ L)2|α/2
1

|x0 − x|
(2.86)

− α− 1

πL
sin
(πα

2

)(
1− (x+ L)2

L2

)−α/2 ∫ |x0+L|/L

1

du (u2 − 1)α/2−1.

Plots for Eq. (2.86) are shown in Fig. 2.10. While the particle starts with

x0 > 0, it is somewhat remarkable that the probability is peaked near x = −2L.

This can be explained by the possibility that the particle jumps across the region

entirely, at which point it is more likely to enter the region near x = −2L on the

subsequent step.

3The criteria for a particle “hitting” the boundary can be quite subtle. While a δ absorbing
point can always be approximated by an absorbing region with a finite width, the appropriate
width of the region for a given time scale is not obvious. This is discussed more in Chapter III.
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L = 1 and x0 = 0.1 (red) and x0 = 10.0 (blue).
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CHAPTER III

CONDITIONED RANDOM PROCESSES

So far in our investigation of random processes we have assumed a stochastic

process with initial condition and predicted some expected behavior through use

of Ito SDEs, Fokker–Planck equations, and first passage distributions. However,

in certain circumstances both the initial and final condition are known, while the

history of how the transition occurred is unknown.

As an example, consider a particle within the boundaries of some imaging

system, such that scattered light from the particle is detected by a single

photodetector. A sudden drop in the photodetector signal indicates that the

particle must have escaped the imaging boundaries. However, the path that

the particle took is unknown. This example is particularly relevant to some

simulations we discuss in Chapter IV, but to investigate this type of system

generically, we study the conditioned evolution of the process. Studies of

conditioned evolution lends insight into the likely history of an atom in this

hypothetical experiment.

And so, in this chapter we will investigate conditioned random processes for

both Wiener processes and Lévy processes. The most basic conditioned process

is a stochastic bridge, where a process has known initial conditions and a known

final condition after some evolution time. The stochastic bridges represent possible

behavior of the particle between measurements, and they are important for both

understanding the qualitative behavior of the motion as well as for computation of

a variety of relevant statistics.
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In Section 3.1, we introduce some well-known properties of the conditioned

Wiener processes (Brownian bridges). Next, in Section 3.2, we introduce the

conditioned Lévy process and briefly discuss existing literature, before moving

on to some of the main results of this dissertation: In Section 3.2.3 we show

that a bifurcation arises in the most probable history of a conditioned Lévy

process, with the onset of the bifurcation occurring when the final displacement

of the conditioned processes far exceeds a certain value. The value at which the

bifurcation arises defines a novel length scale (the “bifurcation length”) which we

show has applications for detecting extreme events (Section 3.2.5), generating Lévy

bridges (Section 3.2.6), explaining properties of first passage times (Section 3.2.7),

and parameter inference of a Lévy process from data (Section 3.2.8).

3.1. Brownian Bridges

The most basic conditioned process is the the Brownian bridge—a

continuous-time Gaussian stochastic process with a fixed starting location, a

given evolution time, and a fixed final location. It also is one of the most widely

used examples of a conditioned process and has been thoroughly studied [1] and

applied in diverse areas, such as financial mathematics [74, 75], models of animal

movements [76], Monte Carlo methods in quantum mechanics [77, 78], random

interfaces and potentials [79, 80, 81], and extreme-value statistics [82].

3.1.1. Stretched Brownian Bridge

There are multiple useful ways of expressing a Brownian bridge, but a

common and convenient definition is the “stretched” Wiener path. The standard

Brownian bridge B(t) is defined on the time interval [0, 1] with both starting and
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ending points at x = 0, and can be written as

B(t) = W (t)− tW (1), (3.1)

where the bridge is compressed back to the origin by gradually subtracting off the

final position of an unconstrained Wiener process. In this definition, the bridge is

essentially a Wiener process plus a linear drift, such that the linear drift and the

Wiener process cancel out at the final time.

Surprisingly, this “stretch” method for generating bridges generates the

correct increment statistics of a Wiener process. That is, the total drift needed to

cancel the Wiener process at the final time is spread evenly over the time interval,

so that the statistics of the infinitesimal increment end up being the same as the

pure Wiener process. This aspect of the Brownian bridge can be seen by looking at

the infinitesimal increment

dB(t) = dW (t)− dtW (1). (3.2)

Since the constituent parts of dB are Gaussian noise, we know that dB must also

be Gaussian and will be characterized by its mean and variance. Then, 〈dB(t)〉 =

0 since both dW (t) and W (1) are symmetric, while

〈dB(t)2〉 = 〈dW (t)2〉+ 2dt〈dW (t)W (1)〉+ dt2〈W (1)2〉 (3.3)

which simplifies to 〈dB(t)2〉 = dt when we drop terms of higher order than dt

in the continuum limit. Since the variance is dt, the statistics in this limit are

identical to that of the Wiener process.
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We also can extend the standard bridge to stretch to an arbitrary final time

T at position L. In this case the stretched Brownian bridge is given by

B(t) = W (t)− t

T
(W (T )− L) , (3.4)

and calculating the statistics of the increment is similar to the standard bridge

case, though we now have a non zero mean increment 〈dB(t)〉 = dt L
T

, while the

variance remains 〈dB(t)2〉 = dt in the continuum limit.

3.1.2. Midpoint Brownian Bridge

While the “stretch” method is convenient for generating Brownian bridges,

it does not follow obviously from the definition of a conditioned stochastic bridge.

A more easily motivated method is to generate a Brownian bridge by iteratively

sampling the midpoint of the time interval using conditioned distributions. To

do this, we need to find the probability density for the position of the particle

at time T/2, given that the particle has a known final position L at the final

time T . For this intermediate position we use the notation x1/2 := x(T/2).

Finding the density of x1/2, which we refer to as the the midpoint density, is a

straightforward application of Bayes’ Theorem, P (A|B) = P (B|A)P (A)/P (B).

Since we are interested in the probability density that the particle passes through

(x1/2;T/2) (condition A) conditioned on the particle passing (L;T ) (condition B),

the midpoint density can be written as

fW (x1/2;T/2|L;T ) =
fW (L;T |x1/2;T/2)fW (x1/2;T/2)

fW (L;T )
(3.5)

58



where fW (x, t) is the probability density for a Wiener process to be at position

x at time t. Since the propagator only depends on the relative displacement and

duration, the first term can be simplified to find

fW (x1/2;T/2|L;T ) =
fW (L− x1/2;T/2)fW (x1/2;T/2)

fW (L;T )
(3.6)

and by using Eq. (2.55) we find that this factors into

fW (x1/2;T/2|L;T ) = fW
(
x1/2 − L/2, T/4

)
(3.7)

which is just a Gaussian centered at x = L/2. This matches the intuition that

at time T/2 the most likely position should be halfway between the starting and

ending positions (〈x1/2〉 = L/2), while the variance of the overall position of the

process is somewhat constrained due to the conditioning (at time T/2 the free

Wiener process has a variance T/2, while we see that the bridge has a reduced

variance of T/4).

To use Eq. (3.7) to generate an entire bridge, we start by generating sample

points for bridges at time T/2. Once this is done, the process is bisected into two

bridges, at which point this process can be repeated to generate sample points

in each subinterval of duration T/4. By iterating this sampling process we can

generate bridges to arbitrarily fine resolution. This process was used to generate

the Bridges shown in Fig. 3.1.

3.1.3. First Passage Times

Similarly to the free Wiener process, we can also develop first passage

statistics for the Brownian bridge. For a particle conditioned to travel from
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FIGURE 3.1. Examples of Brownian bridges generated through iterated sampling
of the midpoint distribution using Eq. (3.7). The top plot has bridges with final
displacement L = 0, while the bottom figure has bridges with L = 10.
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FIGURE 3.2. Schematic diagram illustrating the first passage time for the
Brownian bridge.

position x = 0 to x = L in a time t, the distribution of first passage times across a

boundary at x = d is given by [47]

fτd(x) =
d
√
t√

2πx3(t− x)
e−(dt−Lx)2/(2tx(t−x)). (3.8)

This process is illustrated in Fig. 3.2, which makes it clear that for L > d the

process is guaranteed to have a first passage time. For L < d it is possible that no

first passage occurs, and so Eq. (3.8) becomes unnormalized.

3.2. Lévy Bridges

Similar to the Brownian bridge, a Lévy bridge Bα(t) is defined as a Lévy

process conditioned to have a particular final position. Unlike the Brownian

bridge, however, there is relatively little literature related to Lévy bridges, which

is somewhat surprising considering the many applications of Lévy statistics (as

discussed in the introduction and in Section 2.2). Refs. [83, 84] characterize several

functionals of Lévy bridges, through as the definition used in these references
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constrains the bridge to return to the origin, the results have limited relation to

this chapter. There are also some preliminary investigations into Lévy bridges

that are not constrained to the origin in Ref. [85]; however, while the formulation

was made for general Lévy processes, the primary results were specifically for

constrained Gamma processes and Wiener processes; the results were also for

computation of certain pricing statistics. The most relevant reference to the work

in this chapter is Ref. [86], which demonstrated the construction of stable Lévy

bridges for α = 1/2 with the skewness parameter β = 1 (i.e. not a symmetric

stable Lévy process). This reference mentions in passing that the frequency of

long jumps varies as a scaling parameter is adjusted, which has some relation to

our results in Section 3.2.5 and in Section 3.2.8, though the interpretation is quite

different. It is also worth mentioning that some basic properties and constructions

for more general Markovian bridges have also been considered [87, 88, 89], though

as these processes do not even require stochastic continuity (see Section 2.2.1),

they are unlikely to find practical use for describing spatial diffusion.

While Lévy bridges are defined similarly to Brownian bridges, much of the

intuition developed for Brownian bridges does not carry over when studying

conditioned Lévy processes. This has led to a somewhat dubious definition of a

Lévy bridge [90], where the bridge is not even time symmetric. To address this

directly, we begin this section with an explicit example of how a näıve extension

of the Brownian bridge “stretch” method fails for Lévy bridges (Section 3.2.1).

We then develop a proper Lévy bridge using conditioned distributions leading to a

midpoint density that can be used to iteratively sample points of a Lévy bridge to

arbitrary accuracy (Section 3.2.2).

62



The midpoint distribution also provides surprising insight into the behavior

or Lévy processes. We find that unlike in the Brownian case, the Lévy midpoint

distribution bifurcates when the bridge exceeds a critical length Lb (Section 3.2.3).

This bifurcation length provides insight into the transition between the Lévy and

Gaussian regimes, criteria for detecting “long” jumps (Section 3.2.5), correcting

the stretched bridge method (Section 3.2.6), inferring the stability index α from a

given sample path (Section 3.2.8), and in general can be useful for the analysis of

extreme events.

3.2.1. Failure of Stretched Lévy Bridges

One of the first peculiarities of Lévy bridges is that the “stretch” method

we used for the Wiener bridge does not generalize in an obvious way to the Lévy

case [83]. This is also briefly indicated in Ref. [85], where the stretched Lévy

bridge definition is briefly considered before being rejected.

The reason for the failure of the stretch method is somewhat subtle, since

in Section 3.1.1 we saw that the method works for the Brownian case because the

increment dt is small compared to dt1/2 in the continuous limit. This argument

initially seems like it should hold for the Lévy case as well, as dt1/α is still small

compared to dt for 0 < α < 2. However, the reasoning breaks since in some sense

the drift term cannot simply be considered order dt due to the heavy tails of the

final position. Additional details related to this argument can be seen in [83, 85].

To show that the stretched bridges do not generate correct statistics, we

define the stretched Lévy bridge as

Bα-stretch(t) = Lα(t)− t

T
(Lα(T )− L) . (3.9)
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FIGURE 3.3. Examples of stretched Lévy bridges generated through Eq. (3.9)
with T = 1 and L = 0. Some of the bridges have noticeable drift, indicating that
the stretch method for Lévy bridges does not work properly.

Looking at bridges created using this approach in Fig. 3.3, we can immediately see

that they are somewhat peculiar. Roughly speaking, bridges should “appear” to

be identical to the free underlying process, except that they happen to end at a

particular location. Instead, we have that even though the bridges have B(T ) = 0

for final position, many of the bridges appear to have a strong drift present

over the entire bridge. While the bridge does return to the origin as required

(indicating that the mean increment is zero), this is apparently not sufficient,

as the typical step still has a significant drift which causes the bridge to appear

biased.

To check this more rigorously, we can consider an arbitrary function F [X ] of

a path X . The distribution of this function over all unconstrained Lévy processes

fF [Lα](x) should match the distribution over constrained processes fF [Bα-stretch|L=L′]

when integrated over all L′ and weighted by the probability of the final position
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FIGURE 3.4. Test showing the failure the equality shown in Eq. (3.10) using the
first passage time for F . The LHS of Eq. (3.10) is shown in blue, while the RHS is
shown in red. Simulations are for α = 1, with the passage boundary d = 10, time
step ∆t = 10−4, bridge constrained time T = 1, and N = 106 trajectories.

fα(L′;T ). That is the equality

fF [Lα](x) =

∫ ∞
−∞

dL′ fF [Bα-stretch|L=L′]fα(L′;T ) (3.10)

should hold if Bα-stretch is a proper bridge.

We can test this numerically by choosing F to be some easily observable

statistic. As an example we choose F to be the first passage time, with a plot of

the corresponding distributions shown in Fig. 3.4. The distribution fF [Lα](x) is

shown in blue while the distribution
∫∞
−∞ dL

′ fF [Bα-stretch|L=L′]fα(L′;T ) is shown in

red, clearly indicating significant deviations. The stretch method has a large excess

of short first passage times compared to the correct distribution.
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3.2.2. Lévy Midpoint Density

While the stretched bridges do not work for Lévy bridges, the midpoint

sampling approach from Section 3.1.2 does apply, since it follows directly from

the definition of the Lévy bridge. As we did for the Brownian bridge, the Lévy

bridge arrival point is specified as x(T ) = L for some arrival time T > 0. Then, the

intermediate position x1/2 has the midpoint density

fα(x1/2;T/2|L;T ) =
fα(L;T |x1/2;T/2)fα(x1/2;T/2)

fα(L;T )
, (3.11)

where the fα(x1; t/2) and fα(x2; t) factors are simply the free α-stable density from

Eq. (2.73). As in the Brownian case, the fα(L;T |x1/2;T/2) term can be rewritten

as fα(L − x1/2|T/2) since a Lévy process has stationary increments. This gives us

the midstep density

fα(x1/2;T/2|x=L;T ) =
fα(x1/2;T/2) fα(L−x1/2;T/2)

fα(L;T )
, (3.12)

written in terms of a product of the unconditioned density fα(x; t). Similar to

the Brownian case, the distribution is symmetric about x1/2 = L/2. However,

unlike the Brownian case, these terms do not factor, which leads to a number of

important properties, most notably that x1/2 = L/2 is not always a maximum of

the midstep distribution.

To use Eq. (3.12) for sampling Lévy bridges, we can use the same approach

as the Brownian case. Once x1/2 at time T/2 is sampled, the bridge is effectively

bisected into two bridges each of duration T/2. This allows for the midpoints of

the new bridges to be sampled, a process that may be iterated to sample the Lévy
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bridge to any desired time resolution. Bridges generated using this method with

α = 1 are shown in Fig. 3.5 for both L = 0 and L = 10. We can see that the

character of the bridges is completely different from the failed stretched bridges

in Fig. 3.3, and no notable drifts are present for either L. This is even true for

L = 10 which is somewhat surprising: a Brownian bridges with L = 10 does have

significant drifts as seen in Fig. 3.1, while the Lévy bridge with L = 10 instead

induces a long jump rather than a drift. This hints at some counterintuitive

behavior and an interesting transition, since the Gaussian case should behave

similarly to the Lévy case when α is large. In Fig. 3.6 we have simulated bridges

for α = 1.9 and L = 2, which seem to have the drift behavior that was present

in the Brownian bridges in Fig. 3.1, so we can see that the behavior of inducing a

long jump for L > 0 is not completely guaranteed for all L and α. To explain this

behavior we will need to consider the midstep distribution in more depth.

3.2.3. Lévy Bridge Probability Bifurcations

We discussed in the previous section how the midstep distribution

[Eq. (3.12)] is symmetric about x1/2 = L/2; however, there is no guarantee that the

midstep distribution is maximized at x1/2 = L/2 like it is for α = 2. In fact there is

a transition with L where the maximum at x1/2 = L/2 becomes a minimum. This

transition in the conditional probability density marks the shift from a unimodal

to bimodal distribution. We refer to this shift as a probability bifurcation,1 and

it leads to many interesting and counter-intuitive effects that we will investigate

throughout the rest of this chapter.

1The use of the term probability bifurcation has been used in a similar context in Ref. [91].
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FIGURE 3.5. Simulated Lévy bridges with α = 1 and for L = 0 (top) and L = 10
(bottom). Each bridge is generated through 10 iterations of Eq. (3.12) and has 210
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FIGURE 3.6. Simulated Lévy bridges with α = 1.9 and for L = 2. Each bridge is
generated through 10 iterations of Eq. (3.12) and has 210 steps.

3.2.3.1. Cauchy Case

While the midstep distribution cannot be written in closed form for all α,

the expression does simplify nicely for the Cauchy limit, making it a convenient

example with analytically solvable results. For α = 1 the density f1 is a Cauchy

distribution, given by

f1(x; t) =
1

πtσ
((

x
tσ

)2
+ 1
) , (3.13)

and so we can write Eq. (3.12) as

f1(x1/2;T/2|x=L;T ) =
f1(x1/2;T/2) f1(L−x1/2;T/2)

f1(L;T )
. (3.14)

A brief look at this distribution shows that it cannot be factored into a shifted

and scaled f1 as was possible for the Gaussian case. Furthermore, while the

Gaussian case had a spatial shape that was independent of L, the conditional

density for α = 1 has a shape that is strongly L-dependent. To show this we
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FIGURE 3.7. Plot of the midstep distribution for α = 1 for various L.

have plotted Eq. (3.14) for various L in Fig. 3.7. For L = 0.2 we can see that

the distribution has a single peak at x1/2 = L/2; this has a simple intuitive

interpretation: if a particle travels from x = 0 to L in time T , then the most

probable intermediate position at T/2 is L/2. This interpretation was completely

correct for the Gaussian case, and we see that it also holds true in the Cauchy

case for sufficiently small L. However, we also see the clear dependence of the

conditional density shape on L and the splitting of the single peak into two peaks

for larger values of L. This demonstrates that there is a bifurcation point Lb in the

Cauchy limit such that the midstep distribution for L > Lb becomes bimodal. The

bifurcation point Lb can be found by noting that the curvature of the midpoint

distribution evaluated at x1/2 = L/2 must change signs when the maximum

becomes a local minimum. This gives us the condition

(
∂2(

∂x1/2

)2f1(x1/2;T/2|x=Lb;T )

)∣∣∣∣∣
x1/2=L/2

= 0, (3.15)
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which due to the symmetry of f1 can be simplified to the condition

f ′′1 (Lb/2;T/2)f1(Lb/2;T/2)− f ′1(Lb/2;T/2)2 = 0 (3.16)

where the primes indicate derivatives with respect to the first argument. This

equation can be solved analytically, and we find that the bifurcation point for the

Cauchy case is given by

Lb = σT. (3.17)

Another way to solve for the bifurcation length is by finding the maxima and

minima of the midpoint distribution as a function of L using the condition

∂
∂x1/2

(
f1(x1/2;T/2|x=L;T )

)
= 0 and solving for x1/2. The 3 real solutions are

x1/2 =


L/2 L < tσ

[L± (L2 − σ2T 2)1/2]/2 L > σT

(3.18)

where there is a clear transition at the bifurcation point Lb. The solutions in

Eq. (3.18) are plotted in Fig. 3.8, showing that the most probable midpoint as a

function of L. For L < Lb we see that the most likely midpoint is L/2 as in the

Gaussian case. This means that the most likely single step refinement would be

into two steps with a size equal to L/2. However, for L > Lb the maximum splits

in a pitchfork bifurcation. Further, we can see that for L � Lb the peaks are well

separated, with maxima approaching asymptotes x1/2 ∼ 0, L. The interpretation

here is that the long jump L tends to break down into two steps: one large step of

order L and one small step. This means that a bridge with sufficiently large overall

transition length L will tend to maintain this as a single jump discontinuity.
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FIGURE 3.9. Bifurcation plot for α = 1.0

Another useful way to visualize this transition is with a waterfall chart, as

shown in Fig. 3.9, which allows for observation of the change in curvature and the

shifts in the positions of the extrema as a function of L.

So far we have only investigated the Cauchy case with α = 1, but since

bifurcation occurs for α = 1 but does not occur for α = 2, we know there must be

some transition as α → 2. To see this transition we must look at the bifurcation in

the general case.

3.2.3.2. General Case

In this section we will explore the midpoint density in the general case, and

we will see that similar structural changes to those observed in the Cauchy case

occur for all α < 2. While we cannot write down analytic expressions for the

densities, the general character of the midpoint density can be seen in the waterfall

charts in Fig. 3.10. For α = 1.5 we see that there is a single pitchfork bifurcation,
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similar to the Cauchy case, where two maxima and a minimum are born from a

single maximum. We also can see that the point of bifurcation Lb is not simply σT

as it was for the Cauchy case, but is somewhat larger.

However, if we take α closer to the Gaussian limit (both α = 1.99 and

α = 1.99999 in Fig. 3.10), we begin to see additional structure beyond what

was present for both the Cauchy case and for α = 1.5. As L is increased,

instead of the maximum splitting in a pitchfork bifurcation, we see that a pair

of side peaks form via tangent bifurcations. As L is increased further, these side

peaks begin to dominate the central peak, until finally, a central minimum forms

through reverse-pitchfork bifurcation. While the transition for these examples

is more complicated, we still see that for all α, a sufficiently large L results in

similar midpoint behavior, where the density is asymptotically bimodal with well

separated peaks.

To analyze this behavior in more detail, we will first look at the how the

central peak’s bifurcation length Lb generalizes for all α < 2. To do this, we will

first take a closer look at the more complex bifurcation structure seen for larger α

by finding the critical value of α where the more complex structure first arises, as

well as characterizing the bifurcation length for where the side peaks appear.

3.2.3.3. Characteristic Bifurcation Length

To characterize the bifurcation point for all α < 2, we define the length Lb

as the value of L for which the curvature of the midpoint density (Eq. (3.12)) at

x1/2 = L/2 changes sign (Fig. 3.13). That is, we can simply generalize the condition
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FIGURE 3.11. Bifurcation length Lb plotted as a function of α.

for the Cauchy case in Eq. (3.15) for all α, giving us the condition

(
∂2(

∂x1/2

)2fα(x1/2;T/2|x=Lb;T )

)∣∣∣∣∣
x1/2=L/2

= 0, (3.19)

which again due to the symmetry of fα can be simplified to

f ′′α(Lb/2;T/2)fα(Lb/2;T/2)− f ′α(Lb/2;T/2)2 = 0. (3.20)

This more general condition can be be solved numerically, giving us the bifurcation

point Lb as a function of α as shown in Fig. 3.11. The bifurcation point Lb can

roughly be considered the transition between “long” and “short” jumps, where for

L � Lb the displacement is more likely to be a composite of multiple small jumps,

while for L� Lb the displacement is more likely to be due to a single large jump.

Fig. 3.11 also is important in illustrating the transition to the Gaussian

limit as α −→ 2. As we can see, the bifurcation length diverges in this limit, so
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that for the Gaussian (α = 2) case, any final step L is effectively a “short step.”

This matches our intuition for Wiener processes which explicitly forbid any jump

discontinuities. To analyze this divergence further, we can make use of the the

asymptotic density

fα(x; t = 1) ∼ f2(x; 1) + δ|x|δ−3, (3.21)

which is valid for large |x| and small δ := 2 − α, and plug it into Eq. (3.12) [92].

After some simplifications, we find that Lb diverges as

Lb ≈
√

2tσ

√
−2W−1

(
−πδ

2

2

)
≈ 2σ

√
t

√
− log

(
πδ2

2

)
+ log

[
− log

(
πδ2

2

)]
, (3.22)

which can be approximated by

Lb ∼ [−4σ2T log(πδ2/2)]1/2. (3.23)

The nature of this divergence is somewhat peculiar, as even very close to

the Gaussian limit α = 2, Lb remains relatively small. This becomes especially

noticeable for large α, for instance for α = 1.99999 we have Lb ≈ 10.188473, even

though as α→ 2 we must have that Lb →∞.

3.2.3.4. Critical α, Alternative Bifurcation Lengths

As we saw in Fig. 3.10, for larger α the midpoint density does not exhibit

a simple bifurcation to a bimodal density; rather, the first sign of a transition is

the formation of side peaks through tangent bifurcations, then the side peaks grow

until they overcome the central peak, and then finally the central peak becomes a
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FIGURE 3.12. Bifurcation closeup for α = 1.99

local minimum. Thus, to characterize this more complex transition there are three

useful values for L along the transition:

1. The side peak bifurcation length Ls, the value of L where the side peaks first

originate.

2. The equal peak weight length Lp, the value of L where the side peaks have

the same peak probability as the central peak.

3. Characteristic bifurcation length Lb, the value of L where the central

maximum becomes a minimum.

These are shown in Fig. 3.12 for α = 1.99, and as a function of α in Fig. 3.13 for

α > αc. Interestingly, all the important lengths diverge in a similar manner as

Eq. (3.23), so we use Lb as it is the most straightforward to calculate.

To find the critical value αc for which these transitions first appear, it is

helpful to consider the diagram explicitly showing the shoulder bifurcation points
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(Ls) and the reverse pitchfork bifurcation (Lb), as shown in Fig. 3.12. As α is

lowered, the difference between the Ls and Lb will decrease, until they finally meet

when α = αc and merge together. The condition for this type of transition is that

both the second and fourth derivatives vanish:

(
∂2(

∂x1/2

)2fαc(x1/2;T/2|x=Lb;T )

)∣∣∣∣∣
x1/2=Lb/2

= 0, (3.24)

(
∂4(

∂x1/2

)4fαc(x1/2;T/2|x=Lb;T )

)∣∣∣∣∣
x1/2=Lb/2

= 0. (3.25)

Numerically solving these equations for the critical value gives

αc ≈ 1.7999233 (3.26)

which is curiously close to, but not equal to 1.8.

3.2.4. Conditioned Sampling

The importance of the bifurcation length can be seen by analyzing Lévy

bridges of different lengths. We will see that above the bimodal transition (L �

Lb), the typical conditioned history is biased towards containing only a single large

event, while below the transition (L � Lb) the tendency is towards a composite

of smaller events.In Fig. 3.14 we show conditioned Lévy processes for various L

and α, with the choices of L are scaled in terms of the bifurcation length Lb to

illustrate the transition.

For the α = 1.9 the bias towards preserving long jumps when L exceeds

the bifurcation length is easily evident. For L = 1.5Lb each sample path has
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FIGURE 3.14. Typical sample paths of Lévy bridges for α = 1.9, illustrating
the qualitative transition with L. Each path was generated through 10 recursive
subsamplings from the midpoint distribution (Eq. (3.12)).
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was generated through 10 recursive subsamplings from the midpoint distribution
(Eq. (3.12)).

a single long jump, while for L = 0.5Lb nearly every sample path looks akin

to Brownian motion, with a just a handful of larger jumps. The reason for this

behavior is that in each stage of sampling of the midstep distribution Eq. (3.12),

if the displacement L exceeds Lb then the entire length L is likely to be preserved

as a single jump in one of the two subintervals. Then, upon subsampling of the

subinterval containing this jump, Lb is effectively smaller due to the smaller time

interval. This means the jump length L tends to exceed Lb by an ever increasing

margin, making it progressively less likely to be split into smaller jumps.

The case for α = 1 and α = 1.5 is not quite as clear. While L > Lb

indicates that refinement is likely to have a large jump of order L persist under

refinement, it does not preclude the possibility that additional jumps may form,

which ultimately make the qualitative difference between L < Lb and L > Lb less

distinct when L is close to Lb. Ultimately through, the same behavior still holds as

long as L is much greater than Lb, as can be see in Fig. 3.15.
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3.2.5. Jump Detection

As we discussed previously, the conditioned subsampling shows that the

bifurcation length Lb is intimately related to the long jumps of an α-stable

process. We found that an observed final displacement |x(T )| � Lb most likely

corresponds to a single, similarly large jump discontinuity. Meanwhile, a smaller

final displacement |x(T )| ∼ Lb is more likely to be a composite event comprising

multiple smaller jumps. Perhaps most surprising is not this behavior itself, as Lévy

processes are well known to have long jumps, but that it implies the existence of a

distinct length scale Lb.

Through the Lévy–Khintchine representation of Lévy processes

(Section 2.2.1), as well as the pure power law jump distribution for the stable Lévy

processes (Section 2.2.2), we saw that the stable Lévy processes are inherently

scale invariant. It thus seems like a contradiction for there to be an intrinsic length

scale Lb. So how is this possible? The answer is subtle: in a sense, conditioning

introduces a time scale T , which in turn induces a natural length scale σT 1/α. If

this were the scale of the bifurcation length, the result would seem underwhelming

as it came from natural consequence of the conditioning. However, the bifurcation

length Lb differs from σT 1/α, and not by a little: Lb can be arbitrarily large as it

diverges as α → 2. This suggests that it truly is a distinct scale that captures a

different quality than the natural scale σT 1/α, namely the scale of the large visible

jumps present in the Lévy process.

To show this, we can consider comparing Lb to the individual displacements

of (finite) sample paths. As any given sample path is effectively a collection of

bridges between a set of known values, the midpoint density gives insight into

83



the likely behavior of the process in between sampled values, and the bifurcation

length Lb becomes useful criteria for detecting “long” jumps.

To demonstrate the usefulness of this Lb criteria, it’s useful to consider the

other natural alternative criteria. While the typical natural criteria for detecting

“long” jump outliers is the standard deviation, as this diverges for Lévy processes

we instead use the natural scale σT 1/α. In Fig. 3.16 we show a Lévy process with

with highlights on all increments that have ∆x > σ∆t1/α. Interestingly, the

majority of steps are highlighted, and it does not seem particularly useful for

identifying extreme events.

On the other hand, if we highlight increments that exceed the bifurcation

length Lb as in Fig. 3.16, we find that the intuitive “jumps” are clearly highlighted,

while the other motion appears almost Brownian in character. This is somewhat

peculiar, as the Lévy–Itō decomposition (Section 2.2.1) shows that stable Lévy

processes are distinct from the Wiener process. However, while the processes are

distinct, analysis using the bifurcation length has led to more grounded reasons for

the strong similarities that arise between Wiener processes and Lévy processes.

3.2.6. Corrected Stretched Lévy Bridges

In Section 3.2.1 we saw that stretched Lévy Bridges did not satisfy the

properties we want in a Lévy bridge, and generated incorrect statistics. However,

since we have a criteria that can detect if a jump is “long”, it becomes possible

to deal with excessive stretches through a rejection algorithm. The basic idea

is to generate unconditioned Lévy bridges until one of them is sufficiently close

to the intended final position, and then stretch it as before. The key is that the
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bifurcation length can serve as the criteria for “sufficiently close”, allowing for

more efficient stretched bridge generation.

The algorithm is as follows: take an unconditioned Lévy sample path L′,

and choose some threshold Lthresh. If the difference between the final position of

the generated path and the intended final position is smaller than the threshold,

that is |L′(T ) − L| < Lthresh, then the bridge is accepted; otherwise it is rejected

and a new candidate bridge is generated. In the limit that Lthresh → 0 the bridge

is exact, though such a bridge would take arbitrarily long to generate. A näıve

approach for this rejection algorithm would use σ∆t1/α as the scale for Lthresh, but

using the α-dependent bifurcation length Lb as the scale for Lthresh is much more

efficient and should still produce accurate Lévy bridges. This method has been

confirmed to work through numerical simulations [93].

3.2.7. Conditioned First Passage

In this section we analyze the first passage distributions for conditioned Lévy

processes. As we have seen, conditioned Lévy bridges have a particularly sensitive

transition as α −→ 2, which we will see is especially true for first-passage times.

An intuitive picture of the conditioned first-passage time follows from the

qualitative appearance of the sample paths for L = 1.5Lb in Fig. 3.14. In

this figure a long jump is consistently present among the paths, but not at any

particular time. This can be regarded as an outcome of recursively sampling the

midpoint density [Eq. (3.12)]. For L � Lb, a large jump likely persists under

sampling iterations, but due to the symmetry of the midpoint distribution, the

jump is equally likely to be associated with any time subinterval. Since the first-
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passage time is likely due to the long jump, the first-passage time should be

uniformly distributed.

Fig. 3.17 confirms this intuition with simulations of the first passage density.

For L = 2Lb the first passage density is indeed uniform. A small change from

α = 1.99999 to the Gaussian case yields a remarkably different distribution,

one that is approximately Gaussian and centered at t ≈ T/2. The Gaussian

result follows intuitively from since the most likely bridges in this regime are

concentrated around the ballistic path to the endpoint.

For a smaller overall jump (L = 0.1Lb), the first-passage-time densities in

the α = 1.99999 and Gaussian cases match closely. This is consistent with the

observation that for L� Lb, the conditioned Lévy bridges are qualitatively similar

to Brownian bridges. Nevertheless, the rare but important long jumps generate

remarkably non-Gaussian behavior, even close to the Gaussian limit. This result

also suggests that boundary-crossing statistics can be a particularly sensitive probe

for the presence of anomalous diffusion, which is investigated more in Chapter IV.

3.2.8. Inferring α from a Sample Path

Calculating the value of α for a sample path is a useful way to characterize

heavy tailed random walks or anomalous diffusive motion. For collections of many

sample paths, there are two common approaches to calculating the exponent from

the distributions of particle positions. First is the dynamic approach, where the

width of the distribution will grow as ∼ t1/α, which can be measured by fitting a

distribution, calculating the FWHM, or calculating measures of self-similarity. The

other approach is by analyzing the shape of the distribution, as the tails of the

distribution scale as ∼ x−α−1.
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FIGURE 3.17. Simulated conditioned first passage time distributions for
α = 1.99999 and d = L/2 are shown for L = 0.1Lb (blue/squares) and L = 2Lb

(red/triangles). Exact densities for α = 2 [1] for the same L values are shown for
comparison in each case (blue/solid and red/dashed, respectively). Simulations
averaged 107 paths, with ∆t = 2−14T .

On the other hand, it is also possible to analyze individual trajectories. For

a given trajectory with N steps ∆xi occurring every ∆t, the most straightforward

method to infer the value of α is by using maximum-likelihood estimation. For

a uniform prior α ∈ (1, 2) the maximum likelihood is found by maximizing the

function [94]

P (α|∆xi∆xN) ∝ P (∆x1|α) . . . P (∆xN |α) (3.27)

which can be written as

P (α|∆xi) ∝ fα(∆x1; ∆t) . . . fα(∆xN ; ∆t). (3.28)

Typically this is calculated via the log likelihood

log (P (α|∆xi)) = log (fα(∆x1; ∆t)) + . . .+ log (fα(∆xN ; ∆t)) + C, (3.29)
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where C is the log of the proportionality constant which is not relevant for the

maximization. While this approach is straightforward and well grounded in

theory, the downside is that it requires many evaluations of fα which can be

computationally costly.

In this section we infer α through an alternative method by analyzing the

sample path using the concept of “jumps”. We look at each step ∆x and consider

it a jump if ∆x > Lb, which can be used to create the jump rate statistic jα

defined as the number of jumps in the sample path over the total number of steps.

This proposed jump rate can be compared to the theoretical jump rate Jα,

which is defined as

Jα :=

∫ ∞
Lb

dx fα(x; t), (3.30)

and this function is plotted for reference in Fig. 3.18.

We must now numerically solve for the α such that

Jα = jα, (3.31)
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FIGURE 3.19. Effectiveness of the jump rate method (red) of alpha estimation
when compared to the maximum-likelihood method (blue). Mean differences
between the estimated and true parameter are shown with solid lines, while dashed
lines indicate the standard deviation.

which should hold for the correct choice of α when N → ∞. This approach is less

computationally intensive since there is no need to evaluate fα at n points for each

value of α considered. Instead, one only needs to evaluate the inequality ∆xi > Lb

at n points and compare it to Jα for each α considered. For this approach, only

two lookup tables are needed, one for Lb and one for Jα, compared to a lookup

table for every fα.

Results from a test of the jump based inference method compared to the

maximum-likelihood method are shown in Fig. 3.19; while the maximum-likelihood

method still has superior accuracy, the jump method still has reasonable results.
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CHAPTER IV

ANOMALOUS DIFFUSION IN SISYPHUS COOLING

Optical molasses refers to a laser cooling technique for atoms isolated in

vacuum, where counter-propagating laser fields create a region of space where the

motion of atoms is strongly damped, as if the atoms were embedded in viscous

molasses. Laser cooling of atoms in optical molasses is a complex process that can

involve multiple cooling mechanisms, including Doppler cooling, Sisyphus cooling,

and polarization-gradient cooling. Also present are lattice effects of the cooling

beams, as well as spontaneous emission, where photons are released in a random

direction, causing a heating effect. Atom losses, caused by molecule formation,

spontaneous emission to non-resonant energy levels, or simply diffusion out of the

cooling region, can also play a significant role. Altogether these effects drive a

complex diffusion process.

Despite the complexity, under some reasonable choices of parameters it

is possible to tune the optical molasses into a regime where the Sisyphus force

dominates and can be approximated as a simple stochastic differential equation

(Section 4.1). In this approximation, the system has a steady-state momentum

distribution with heavy tails known as a Tsallis distribution (Section 4.2),

indicating the possibility of anomalous diffusion. When the optical lattice depth

is sufficiently deep, the power laws tails of the momentum distribution have only

a minor impact, and the particle position can asymptotically be represented by a

simple diffusion equation (Section 4.3). But, for sufficiently shallow optical lattices,

the diffusion constant diverges, which leads to Lévy walks behavior and the onset

of anomalous diffusion (Section 4.4).
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To detect the transition between these regimes, previous experiments

have made use of cloud-expansion experiments (for instance, Refs. [21, 30, 38]).

However, as mentioned in the Introduction, this led to some conflict between

experimental and theory thought to be in part due to atom losses [39]. To

mitigate the effect of losses, single-atom experiments are particularly useful, and

have also been demonstrated to be effective at detecting the onset of anomalous

diffusion [37].

This chapter begins by introducing the semiclassical Sisyphus cooling force

in Section 4.1 as well as some of its known properties, including the steady state

momentum distribution (Section 4.2) and diffusive behavior in both the Brownian

regime (Section 4.3) and the Lévy regime (Section 4.4). Original work begins in

Section 4.5 with a formula that characterizes the extent of power-law scaling in the

Lévy regime. Next, in Section 4.6, we propose a scheme for detecting the onset of

anomalous diffusion through the use of boundary-crossing statistics. This leads

to one of our primary results, where through simulations we demonstrate the

existence of a peak in boundary-crossing statistics that is connected to the Lévy

behavior of the underlying process. To show this connection, we derive scaling

relations that characterizing the peak. These scaling relations also serve as a useful

starting point for future single-atom experiments.

4.1. Sisyphus Cooling

Sisyphus cooling is a laser cooling mechanism that arises due to coherent

pumping between ground-state Zeeman sublevels. The details of Sisyphus

cooling are complex, but we will summarize the basic mechanism (for more

details, see Refs. [27, 95]). For cooling in one dimension, Sisyphus cooling can be
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created by setting up two counter-propagating beams with perpendicular linear

polarizations (lin⊥lin configuration). The total electric field created by these

counter-propagating beams has an elliptical polarization that varies in space.

This polarization gradient in turn causes oscillations in the ground state energies.

For laser frequencies ω detuned below the atomic frequency ω0 by an amount ∆,

optical pumping will occur from the upper ground state to the lower ground state.

This alone would reduce the energy of the atom by an amount ∼ h̄∆. However,

this cycle can be repeated: for an atom in motion along the polarization gradient,

if it has already been pumped into the lower ground state, it will effectively be

moving up a potential gradient due to the oscillations in the ground state energies.

Moving up the potential gradient has a corresponding loss in kinetic energy.

Finally, at some point the atom will have moved far enough such that the lower

ground state becomes the upper ground state, and the atom will again be optically

pumped from the (now) upper ground state into the (now) lower ground state.

Roughly speaking, kinetic energy of order h̄∆ will be dissipated each cycle, with

the cycle period limited by both the optical pumping rate and the time to climb

the potential well (related to laser wavelength and the velocity of the atom).

While we have only depicted a simple model for Sisyphus cooling, the full

treatment is an inherently quantum-mechanical process. However, it has been

shown in Ref. [32] that fully quantum treatments are well approximated by the

semiclassical models discussed in Ref. [27], which has also been confirmed with

comparisons to fully quantum models [31].
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The formalism we use to describe Sisyphus cooling follows closely from

Ref. [96], which gives the semiclassical momentum evolution by the pair of SDEs

dp = − ᾱp

1 + (p/pc)2
+
√

2D(p) dW (t), (4.1)

dx =
p

m
dt. (4.2)

The parameters ᾱ is the Sisyphus friction coefficient, pc is a characteristic

momentum for the system, and

D(p) = D1 +
D2

1 + (p/pc)
(4.3)

is the momentum dependent diffusion parameter. The parameters ᾱ, pc, D1, and

D2 can be directly related to physical parameters as in Ref. [31], but there is a

more convenient form which we will derive momentarily. First, it turns out that

the asymptotic behavior for this system does not depend on D2, so for simplicity

we can set D2 = 0 [31]. We will now transform into a non-dimensionalized form by

defining new coordinates via

p = p′ pc (4.4)

t = t′/α (4.5)

x = x′pc/mᾱ, (4.6)
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where the primes denote dimensionless variables. With these substitutions and

dropping the primes for simplicity, the equations of motion become

dp = − p

1 + p2
+
√

2DdW (t) (4.7)

dx = p dt, (4.8)

where we have defined the parameter D by

D =
D1

ᾱp2
c

. (4.9)

The relation of D to physical parameters is given by

D = C
ER
U0

(4.10)

where the recoil energy ER = h̄2k2/2m, U0 is the optical potential depth, and the

dimensionless constant C depends on the particular1 atomic transition [39].

It is important to note that this model has several implicit approximations.

First, we are ignoring the effect of the potential lattice induced by the counter

propagating beams. This is valid as long as the atom’s kinetic energy is large

compared to the depth of the lattice wells. Second, we have neglected the

Doppler cooling force. This is valid for large detunings and slower atom velocities.

However, it is important to note that Doppler cooling will become relevant for

sufficiently large velocities. This sets an upper limit on the velocity, beyond which

the model in Eq. (4.7) begins to break down [31].

1Values for the constant C vary, but tend to be of of order 10. For a Jg = 1/2 → Je = 3/2
transition C = 12.3. [31, 39].
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Simulations of Eq. (4.7) are shown in Fig. 4.1 for various values of D.

Qualitatively D has a significant effect: for D = 0.01 we can see that the

trajectories are akin to Brownian motion, while for D = 0.19 the motion is mostly

Brownian in appearance, though there are occasionally some longer jumps present.

For D = 0.3 and D = 0.5 the jumps are obvious and tend to dominate the motion.

4.2. Steady-State Momentum Distribution

A straightforward statistic that characterizes the Sisyphus force is the

steady-state momentum distribution. Following Refs. [28, 30], a convenient way

to find the steady state momentum distribution is by transforming Eq. (4.7)

to the Fokker–Plank equation. Recalling from Section 2.1.6 that any stochastic

differential of the form

dx = g(x, t)dt+ h(x, t)dW, (4.11)

has a corresponding Fokker-Plank equation given by

∂

∂t
f(x, t) = − ∂

∂x
(g(x, t)f(x, t)) +

1

2

∂2

∂x2

(
h(x, t)2f(x, t)

)
. (4.12)

To find the steady state momentum distribution, we set ∂
∂t
f(p, t) = 0, g(p, t) =

− p
1+p2

, and h(p, t) =
√

2D. Rewriting Eq. (4.12) we have

∂2

∂p2
f(p) =

2

2D

∂

∂p
(g(p)f(p)) , (4.13)

where we have dropped the t dependence of both f(p, t) and g(p, t). Integrating by

p gives

∂

∂p
f(p) =

2

2D
(g(p)f(p)) + C0 (4.14)
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FIGURE 4.1. Simulated trajectories of Eq. (4.7) for various values of the diffusion
constant D.
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for some integration constant C0. The force g(p) vanishes at p = 0, and since

the distribution f(p) is an even function, ∂pf(p) must also vanish at p = 0, thus

forcing C0 = 0. Integrating once more, we have

∫ f(p)

f(0)

df
1

f
=

2

2D

∫ p

0

dp′g(p′), (4.15)

which has the solution

f(p) = f(0) exp

(
2

2D

∫ p

0

dp′g(p′)

)
. (4.16)

Performing the final integral

∫ p

0

dp′g(p′) = −
∫ p

0

dp′
p

1 + p2
= −1

2
ln
(
1 + p2

)
, (4.17)

we have

f(p) = f(0) exp

(
− 1

2D
ln
(
1 + p2

))
= f(0)

(
1 + p2

)−1/2D
. (4.18)

Finally, f(0) is just a normalization constant, which is given by

f(0) =
1√
π

Γ( 1
2D

)

Γ( 1
2D
− 1

2
)

(4.19)

Putting these together, we have the steady state momentum distribution

f(p) =
1√
π

Γ( 1
2D

)

Γ( 1
2D
− 1

2
)

(
1 + p2

)−1/2D
. (4.20)
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FIGURE 4.2. Plot of Tsallis distribution in Eq. (4.20) with D = 0.1 (red), D = 0.2
(blue), and D = 0.6 (green).

This is known as a Tsallis distribution. This distribution is normalizable for 0 <

D < 1 and is plotted in Fig. 4.2 for various values of D. We can see that for larger

values of D the distribution has particularly heavy tails.

The momentum distribution can also be helpful for interpreting the

momentum diffusion parameter D, which relates the relative magnitude of the

damping and heating effects. In Fig. 4.3 we plot the fraction of particles that have

momentum |p| > 1, which shows that D roughly tracks the fraction of particles

in the steady state momentum distribution with |p| > 1. This is useful as the

threshold p ∼ 1 is approximately where the Sisyphus force becomes nonlinear. For

smaller D, linear damping effects dominate, causing a larger fraction of particles to

be in the linear F (p) ∼ −p regime of the force. Conversely, larger D is dominated

by the heating effects, causing more particles to be affected by the F (p) ∼ −1/p

regime of the force.

While we derived the Tsallis distribution using the Fokker–Planck equation,

it is also possible to do so via the Itō SDE. This is done through calculating all
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FIGURE 4.3. The solid red line shows the fraction of particles with |p| > 1 in the
steady state distribution as a function of the diffusion parameter D. The dashed
black line is a guide line with slope 1.

of the moments of the distribution as shown in Appendix A.1, and then using

an appropriate inversion as shown in Appendix A.2. Interestingly, having both

derivations yields an inversion formula for a particular hypergeometric function.

4.3. Brownian Regime

For certain values of the momentum diffusion parameter D, through a

process of adiabatic elimination of the momentum variable, it is possible to show

that position distribution is described asymptotically by a diffusion equation, with

a diffusion constant given by [30, 39]

K2 =
1

DZ

∫ ∞
−∞

dp eV (p)/D

[∫ ∞
p

dp′ e−V (p)/Dp′
]2

, (4.21)

where Z is given by

Z =
√
π Γ

(
1−D

2D

)/
Γ

(
1

2D

)
, (4.22)
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and V (p) is an effective potential for the Sisyphus force in momentum space, given

by

V (p) =

∫
dpF (p) = (1/2) ln(1 + p2). (4.23)

This integral is finite for 0 < D < 1/5, and in this case K2 has the simplified

expression

K2 =
D(4D − 1)

(2D − 1)(3D − 1)(5D − 1)
. (4.24)

We can see that this diverges as D → 1/5, indicating the onset of the Lévy regime

and the failure of the standard diffusion equation.

In Fig. 4.4 we show simulations of atoms cooled via the Sisyphus force

compared to Gaussian diffusion simulation. For D = 0.01 the position distributions

for both simulations are nearly identical. However, for D = 0.19 we see the

presence of power laws in the tails of the position distribution for Sisyphus cooling.

While this is in the regime of Gaussian asymptotics, we see a slow convergence

to a Gaussian distribution similar to that seen in the truncated Cauchy case

(Section 2.2.3.1). This also seems consistent with the “jumps” visible in Fig. 4.1

for D = 0.19.

4.4. Lévy Regime

When the diffusion constant diverges for D > 1/5, the Sisyphus cooling

behavior is remarkably different from the Brownian regime and leads to long

correlated motion that prevents the development of asymptotic Gaussian behavior.

A qualitative explanation is that when D is large enough, the atom is more likely

to escape out of the linear regime of the Sisyphus force. For large enough p, the

asymptotic force goes as −1/|p|, with the magnitude of the damping diminishing
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FIGURE 4.4. Comparison of position distributions for Sisyphus simulations using
Eq. (4.7) and Gaussian diffusion with a diffusion constant given by Eq. (4.24). For
D = 0.01, a Gaussian simulation (green) and Sisyphus simulation (blue) are shown.
For D = 0.19, a Gaussian simulation (red) and a Sisyphus simulation (yellow) are
shown. Simulation parameters are ∆t = 0.1, T = 104, N = 220.

for larger p. This gives rise to long, correlated motions that can be modeled as

Lévy flights.

The derivation to show that this behavior leads to Lévy flights nontrivial and

is outlined in Refs. [39, 64]. The general idea is that the microscopic behavior can

be split the motion into a series of correlated “jumps” χ and jump durations τ .

The jumps and jump durations (also called waiting times) are defined to be the

displacement and time elapsed between momentum zero-crossings, respectively.

It was shown [31] that χ and τ have distributions with asymptotic behavior

given by

fχ(x) ∼ |x|−(4/3+1/3D) (4.25)

fτ (t) ∼ |t|−(3/2+1/2D) , (4.26)
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as well as correlations that scale as

χ ∼ τ 3/2. (4.27)

While the jumps and waiting times are correlated, the asymptotic behavior can

be found by approximating the joint jump-wait distribution as the uncorrelated

product

gχ,τ (x, t) ∼ fχ(x)fτ (t). (4.28)

While this ignores the correlations, ultimately the correlations are not relevant in

the asymptotic limit.

The Lévy behavior follows from this assumption after applying a specialized

Montroll–Weiss equation, which relates continuous time step distributions to the

position probability density [39]. At this point the process can be asymptotically

described by an α-stable Lévy process with

α =
1 +D

3D
, (4.29)

and an anomalous diffusion coefficient given by

Kα =
1

Z
π(3α− 1)α−1

sin
(
πα
2

)
32α−1 |Γ(α)2| , (4.30)

where again Z is given by

Z =
√
π Γ

(
1−D

2D

)/
Γ

(
1

2D

)
. (4.31)
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This is the connection that justifies the modeling of diffusion in Sisyphus cooling

with stable Lévy processes.

4.5. Power Law Extent

Interestingly, as D increases the position distribution goes through several

phases. Close to D = 0 the position distribution is Gaussian, but then it begins to

develop heavy tails for finite simulation time. For D < 1/5 these tails eventually

decay at long times, approaching asymptotically Gaussian behavior. However, for

D > 1/5 the tails persist and grow in extent as the simulation time increases. To

investigate this behavior, we want to estimate the start and end of the power law

behavior.

The onset of the power laws for D > 1/5 is given by

x0 := (KαT )−
1
α , (4.32)

which is the effective width of the Gaussian-like portion of the distribution.

Meanwhile, the cutoff of the power law for D > 1/5 is given by

x1 :=
√
DT−3/2, (4.33)

which is when correlations between χ and τ become important (for a finite

simulation time T , there is an effective maximum jump length).

If we assume a uniform position distribution with a magnitude a, followed by

the power law decay

f(x) = bx−(α+1), (4.34)
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extending from x0 to x1, we have the normalization condition

1 = ax0 + b

∫ x1

x0

x−(α+1)dx. (4.35)

This leads to

1 = ax0 −
b

α
(xα1 − xα0 ) , (4.36)

and for continuity we require

bx−α−1
0 = a. (4.37)

This in turn gives us the relation

1 = bx−α0 −
b

α
(xα1 − xα0 ) , (4.38)

allowing us to solve for b

b =
αxα0x

α
1

αxα1 + xα1 − xα0
. (4.39)

This can be used to plot the power laws as shown in Fig. 4.5.

We can see from Fig. 4.4 and Fig. 4.5, that as D is increased, the position

distribution begins Gaussian (D = 0.01), develops tails (D = 1.9), has long

tails (D = 3.0), and then the tails begin to shorten (D = 0.5, D = 0.7), in

terms of orders of magnitude spanned. To illustrate this, we look at the number

of order of magnitudes the power law extends over, specifically a plot of log10

(
x1
x0

)
,

as shown in Fig. 4.6. Looking at these plots, we find an interesting dependence:

For large enough T , a peak forms for a smaller value of D. This occurs because

the central portion of the distribution grows faster for larger D than tail of the

distribution which grows with
√
D. This implies that if visible power laws are

desired, D should be tuned to be slightly beyond the D = 0.2 threshold. This
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FIGURE 4.5. Comparison of position distributions for Sisyphus simulations using
Eq. (4.7) and anomalous diffusion with a diffusion constant given by Eq. (4.30).
For D = 0.3, an α-stable Lévy simulation (brown) and Sisyphus simulation (light
blue) are shown. For D = 0.5, an α-stable Lévy simulation (pink) and Sisyphus
simulation (orange) are shown. For D = 0.7, an α-stable Lévy simulation (gray)
and Sisyphus simulation (green) are shown. Also shown are associated power laws
given by Eq. (4.34). Simulation parameters are ∆t = 0.1, T = 104, N = 220.
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choice has two benefits: First, at any reasonable “long” time we expect further

extent of power-law behavior, and as we increase the time further, the power laws

grow in extent more quickly.

4.6. Boundary Crossing Statistics

The beginning of Chapter III considered a simple experimental setup with a

single atom and a single photodetector. As a signal on the photodetector indicates

the presence of the atom in the imaging region, changes in the signal correspond to

the atom entering or leaving the imaging region. By measuring the times at which

the atom enters or leaves the imaging region, we can therefore measure boundary-

crossing statistics.

In this section we investigate the measurement of boundary-crossing statistics

for atoms undergoing Sisyphus cooling. In Section 4.6.1 we look at simulations
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FIGURE 4.7. Schematic for escape time simulations.

of escape times (Section 2.1.8) for Sisyphus cooling in the Brownian regime,

which allows for comparison to exact formula. Next in Section 4.6.2 we look at

simulations in the Lévy regime for transit times, a statistic that can be more easily

translated into an experimental system.

4.6.1. Brownian Regime

Simulations of most boundary-crossing statistics in the Brownian regime

behave similarly to theoretical predictions for Brownian motion. As an example we

show the escape time distributions (see Section 2.1.8 and Fig. 4.7) for D = 0.1 for

various region sizes in Fig. 4.8.

4.6.2. Lévy Regime

For the Lévy regime we look at simulations of what we call transit time, τtr.

Transit times are the time it takes for a particle to cross a particular region, as

shown in Fig. 4.9. For these simulations the particle is started at the center of the

region, and is allowed to diffuse until it exits the region. Eventually, the particle
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FIGURE 4.8. Escape time distributions for D = 0.1, T = 104. Sisyphus
simulations using Eq. (4.7) (solid) and theoretical curves using Eq. (2.66) (dashed)
are shown.

will reenter the region, and the transit time is then measured as the elapsed time

between when the particle enters the region and when it leaves.

Fig. 4.10 shows simulated transit time distributions for D = 0.7 for

various region sizes. In any particular distribution as in Fig. 4.11, there is a broad

background until it is cutoff at some large time τcutoff . These distributions appear

similar to the Brownian escape times, except that there is a peak present that

extends from some time τmin to some time τmax. This peak is somewhat peculiar

since there is no obvious velocity scale for the system due to the power-law tail in

the Tsallis distribution.

To understand this peak, it is helpful to look at sample paths with particular

transit times, shown on a semi-log scale in Fig. 4.12. Since this shows trajectories

for all transit times, it gives a clearer understanding of what typical trajectories

look like for a given transit time. For very short times, the typical particle
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FIGURE 4.9. Schematic for transit time distributions. The transit time is given by
τtr = t2 − t1.

FIGURE 4.10. Transit time distributions for D = 0.7, T = 104.
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FIGURE 4.11. Escape-time anatomy for D = 0.7, T = 104.

trajectory enters the region, turns around, and leaves the region. However, for

longer times the trajectories seem to traverse across the region in a single jump

(i.e., without getting “stuck” and changing directions). Finally, for long times, the

particles occasionally become trapped, and are more or less equally likely to leave

the region at either boundary.

The transit times corresponding to particles that take the longest to cross

(τmax) are the slowest particles that cross over the entire region in a single jump.

Due to the correlations between jump length χ and jump duration τ given by

χ ∼ τ 3/2, (4.40)

the slowest particles have shorter jumps, and so the slowest particles that cross the

region in a single jump must have χ ∼ B. Therefore,

τmax ∼ B2/3. (4.41)
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FIGURE 4.12. Selected trajectories for D = 0.7, T = 104, with region size
B = 39.909. The appearance of curved trajectories is due to the semi-log scaling;
unscaled, these curved trajectories appear relatively straight.

On the other hand, the transit times corresponding to particles that take the

shortest time to cross (τmin), must be due to the fastest particles that cross over

the entire region in a single jump. Since the velocity of the fastest particles does

not depend on the region size we have the relation

τmin ∼ B/ 〈vmax〉 . (4.42)

These scaling arguments for τmax and τmin are confirmed through simulations in

Fig. 4.13 and Fig. 4.14 respectively. Further, with the observations of long, single-

direction trajectories for transits occurring between these bounds in Fig. 4.12, we

can conclude that the presence of these peaks can be used in the direct detection

of jumps due to Lévy flight behavior.
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FIGURE 4.13. Plot of τmax extracted from transit-time distributions as a function
of the region size. Parameters used: D = 0.7, T = 104.

FIGURE 4.14. Plot of τmin extracted from transit-time distributions as a function
of the region size. Parameters used: D = 0.7, T = 104.
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CHAPTER V

CONCLUSION

This dissertation began with a discussion of universality and the idea that

distinctly different systems often approach the same behavior. In some sense,

the hope was that by understanding the universal limits, we can ignore the

complexities of the individual systems. However, much discussion was devoted to

the subtleties of applying these tools, and that there is nuanced process of building

connections between abstract universal rules and concrete examples.

For example, from the development of fundamental stochastic processes,

we saw that the asymptotic behavior guaranteed through the CLT may turn

on slowly, such that the asymptotic behavior suggested by the gCLT could

be employed even though the preconditions were not satisfied. This led to a

sort of phase transition between Lévy flights and Brownian motion where both

universal behaviors were present, but at different scales. We also saw that common

techniques in the Brownian regime, such as the method of images or the generation

of stretched bridge, break down for heavy tailed processes; and yet, the seemingly

related Sparre Anderson scaling somehow still holds for both Brownian and Lévy

regimes.

Developing intuition is particularly important for heavy tailed processes,

since many abstract results are prone to error or controversy. We continue to see

the application of ill-advised Gaussian statistics in finance, even when more general

models are available [13]. As pointed out in Ref. [97], there are several examples of

erroneous results in the Lévy flight literature due to poor assumptions involving

absorbing boundary conditions for Lévy flights. Even whether animals truly
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follow Lévy flight patterns, or if such search strategies are actually optimal is not

completely clear [19, 59, 60]. Altogether, these examples suggest it is important to

develop intuitive ways of approaching Lévy processes.

One of the more significant advances on this front was further development

of conditioned Lévy processes and Lévy bridges. In particular, the observation

that the Lévy process has bifurcations in the midstep distribution, unlike the

Brownian case, and that these bifurcations lead to a new length scale that allows

for discrimination between singularly large events and composites of many smaller

events. This interpretation gives a better intuition for why sample paths appear

by eye to have discrete “jumps”, an observation unexplained by the more formal

Lévy–Khintchine representation. Since this scale naturally is visible by eye, it

seems likely that it would also arise naturally in some physical systems.

Finally, we investigated Sisyphus cooling, which represented many of the

themes discussed throughout the prior chapters. One of the more interesting

outcomes of studying boundary-crossing statistics was a surprising peak in the

transit time distribution, which corresponds to the presence of Lévy flights.

Furthermore, the scaling relationships developed to explain this peak have

relations both to the underlying physical process as well as to the asymptotic

behavior. These statistics and relations are useful for the design of future single-

atom experiments.
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A.1. Moments of Momentum Distribution

In the main text (Section 4.2) we calculated the moments of p for Sisyphus

cooling (described by Eq. (4.7)) through the typical approach of computing

〈pm〉 =

∫ ∞
−∞

dpπ(p)pm. (A.1)

However, another way of analyzing this system is via the Langevin approach. We

follow the method described in Jacobs’ Stochastic Processes for Physicists pg. 41.

As we have we have a nonlinear term in our force, we expect that our solution for

〈p2〉 will depend on all higher moments of p; however, we will see that we will still

be able to solve for the moments exactly.

First note that the force is anti-symmetric in p. This means that for

symmetric initial conditions we expect that 〈pn〉 = 0 for all odd moments. To

find the even moments, we will need to find the increment for d(pn) which can be

done using Ito’s formula,

dy =

(
∂f

∂x

)
dx+

(
∂f

∂t

)
dt+

1

2

(
∂2f

∂x2

)
dx2. (A.2)

This gives us

d(pn) = (npn−1)dp+
n(n− 1)

2
pn−2dp2 (A.3)

into which we can insert dp and dp2 to find

d(pn) = (npn−1)

(
− p

1 + p2
dt+ σdW

)
+

(
n(n− 1)

2
pn−2

)
σ2dt, (A.4)
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where we have made use of dW 2 = dt. Taking the expectation gives us

d(〈pn〉) = −n
〈

pn

1 + p2

〉
dt+

n(n− 1)σ2

2
〈pn−2〉dt, (A.5)

which can be divided through by dt and reordered into

d(〈pn〉)
dt

=
n(n− 1)σ2

2
〈pn−2〉 − n

〈
pn

1 + p2

〉
. (A.6)

Setting d〈pn〉
dt

= 0 to find the steady state, our equation for the moments becomes

〈pn−2〉 = An

〈
pn

1 + p2

〉
(A.7)

were we have defined the coefficient An = 2
(n−1)σ2 . It is tempting to distribute the

expectation brackets, but 〈
p2

1 + p2

〉
6= 〈p2〉

1 + 〈p2〉 (A.8)

since p is not a Gaussian random variable. However, we can expand this term as a

series: 〈
pn

1 + p2

〉
= 〈p2〉 − 〈p4〉+ 〈p6〉+ . . . ≈

N∑
k=n/2

(−1)k+1〈p2k〉. (A.9)

In doing this, we are assuming the existance and finiteness of the higher moments,

and that moments greater than 〈p2N〉 are negligible. This truncation has also made

this problem tractable, as we have the relation

〈pn−2〉 ≈ An

N∑
k=n/2

(−1)k+1〈p2k〉 (A.10)
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which holds for n = 2, 4, . . . , 2(N − 1), 2N . Thus there are N equations and N

unknowns (all even moments from 〈p2〉 to 〈p2N〉), so this system can be solved. To

find a recursive formula, we write a version of Eq. A.10 shifted by n→ n+ 2:

〈pn〉 = An+2

N∑
k=n/2+1

(−1)k+1〈p2k〉. (A.11)

Now, we we write another version of Eq. A.10, pulling out one term from the sum:

〈pn−2〉 = An

〈pn〉 − N∑
k=n/2+1

(−1)k+1〈p2k〉

 . (A.12)

Solving for the sum, we have

N∑
k=n/2+1

(−1)k+1〈p2k〉 = 〈pn〉 − 1

An
〈pn−2〉, (A.13)

and substituting this into for Eq. A.11 we have

〈pn〉 = An+2

(
〈pn〉 − 1

An
〈pn−2〉

)
. (A.14)

Now we can solve for 〈pn〉:

〈pn〉 =
An+2

An(An+2 − 1)
〈pn−2〉 (A.15)

Noting that 〈p0〉 = 1, this is a general formula for the moments

〈pn〉 =

n/2∏
k=1

A2k+2

A2k(A2k+2 − 1)
, (A.16)
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and substituting for An gives

〈pn〉 =

n/2∏
k=1

(1− 2k)σ2

(1 + 2k)σ2 − 2
. (A.17)

Finally, this product can be rewritten as

〈pn〉 =
in√
π

Γ
(
n+1

2

)
Γ
(

3
2
− 1

σ2

)
Γ
(
n
2

+ 3
2
− 1

σ2

) . (A.18)

The first 4 even moments are

〈p2〉 =
(1!!)σ2

(2− 3σ2)

〈p4〉 =
(3!!)σ4

(2− 3σ2)(2− 5σ2)

〈p6〉 =
(5!!)σ6

(2− 3σ2)(2− 5σ2)(2− 7σ2)

〈p8〉 =
(7!!)σ6

(2− 3σ2)(2− 5σ2)(2− 7σ2)(2− 9σ2)
,

where the double factorial (!!) is defined for odd integers N by N !! = N · (N − 2) ·

(N − 4) . . . 5 · 3 · 1.

For σ =
√

2D we have

〈p2〉 =
(1!!)D

(1− 3D)

〈p4〉 =
(3!!)D2

(1− 3D)(1− 5D)

〈p6〉 =
(5!!)D4

(1− 3D)(1− 5D)(1− 7D)

〈p8〉 =
(7!!)D6

(1− 3D)(1− 5D)(1− 7D)(1− 9D)
.
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A.2. Hypergeometric Inversion Formula

As an aside, we also can use the moments derived in Appendix A.1 to find

an alternative form for the momentum distribution. As we already solved for the

momentum distribution in Section 4.2, this amounts to deriving a formula for an

inverse Fourier transform of a particular hypergeometric function.

We first construct the moment generating function, which is just a power

series with the general form

Mp(x) =
∞∑
n=0

1

n!
〈pn〉xn, (A.19)

where the coefficients are the moments of f(p). Thus, the moments can be

generated from Mp(x) by the relation

〈pn〉 = (∂nxMp(x))
∣∣
x=0

. (A.20)

Substituting in the moments for f(p) from Eq. (A.18) and noting that the odd

moments vanish), the moment generating function is

Mp(t) = 1 +
∞∑
n=1

1

(2n)!
〈p2n〉t2n. (A.21)

Substituting in for 〈p2n〉 we get

Mp(x) = 1 +
∞∑
n=1

(−1)n√
π

Γ
(
n+ 1

2

)
Γ
(

3
2
− 1

σ2

)
Γ
(
n+ 3

2
− 1

σ2 Γ(2n+ 1)
)x2n. (A.22)

121



It turns out that this series is equivalent to the confluent hypergeometric function

given by

Mp(x) = 0F 1

(
3

2
− 1

σ2
,−x

2

4

)
. (A.23)

To find the distribution f(p) from the moment generating function, we can first

perform a Wick rotation (x → ix), which provides the characteristic function for

f(p). Finally, we take the inverse Fourier transform to recover f(p):

f(p) = F−1[Mp(ix)](p) = F−1

[
0F 1

(
3

2
− 1

σ2
,
x2

4

)]
. (A.24)

Combining this result with Eq. (4.20), we have the following inversion formula

F−1

[
0F 1

(
3

2
− 1

σ2
,−x

2

4

)]
(p) =

1√
π

Γ( 1
σ2 )

Γ( 1
σ2 − 1

2
)

(
1 + p2

)−1/σ2

, (A.25)

which can be verified numerically.
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A.3. Equivalence of Discrete and Langevin Methods

The discrete random walk takes a step ∆p in momentum every time step ∆t.

The direction of the step is determined by

P± =
1

2

(
1± 1

2D
F (p)∆p

)
, (A.26)

where P+ is the probability of a positive step and P− is the probability of a

negative step, and F (p) = −p/(1 + p2) is the Sisyphus cooling force. Notice that

the size of the time step ∆t must be related to the simulation parameters as it

determins the scattering rate Γ. The correct relation is Γ = 1/∆t = ∆p2/2D.

Meanwhile the size of the momentum step is what determines the accuracy of

the simulation, with a smaller ∆p giving better consistency with the Langevin

equation1.

To show this is equivalent to the Langevin equation, we can write this

discrete step process as a sum of two Poisson processes

dp = ∆p dN+ −∆p dN−, (A.27)

with the ensemble average of dN± given by 〈〈N±〉〉 = Γ± = P±/∆t. This

approximation is valid as long as t � ∆t, the regime where the discrete

momentum kicks are not resolvable. We can now approximate our possion

process as a drift term and a Wiener process by making the substituion dN± →

1Since photon emission and absorption events are discrete, ∆p is actually physically
determined, and the discrete method has some grounds to be a more accurate model.
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Γ± dt+
√

Γ± dW and then simplifying:

dp = ∆p (Γ+ − Γ−) dt+ ∆p
√

Γ+ dW1 + ∆p
√

Γ− dW2 (A.28)

dp =
∆p

∆t
(P+ − P−) dt+ ∆p

√
|Γ+|+ |Γ−| dW (A.29)

dp =
∆p

∆t

(
1

2D
F (p)∆p

)
dt+

∆p√
∆t

dW (A.30)

dp =
∆p2

2D∆t
F (p) dt+

√
2DdW (A.31)

dp = F (p) dt+
√

2DdW (A.32)

This is the same as Eq. (4.7).
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