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DISSERTATION ABSTRACT 
 
Jesse William Wilson 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
June 2020 
 
Title: Native Ion Mobility-Mass Spectrometry Techniques for Characterizing the 

Structure and Lipid Binding of Bacterial Pore-Forming Toxins.  
 
 
 Membrane proteins constitute a large portion of the protein and protein complexes 

found across life and perform a diverse range of critical functions such as transport of 

molecules and signaling across lipid bilayers. However, due to the instability of 

membrane proteins in solution without a membrane-like environment and the 

heterogeneity of such samples, study of these types of complexes can be incredibly 

challenging using conventional techniques such as X-ray crystallography, nuclear 

magnetic resonance, or electron microscopy. 

 In the last couple of decades, native mass spectrometry with electrospray 

ionization has emerged as an alternative technique in structural biology for the study of 

soluble and membrane protein complexes alike. The unique advantage of native mass 

spectrometry is that non-covalent interactions can be retained from solution to the gas-

phase environment of the mass spectrometer. Meaning that stoichiometry information 

from membrane proteins such as the oligomeric state and small molecule and lipid 

binding can be investigated based on the mass distributions of these complexes. When 

coupled with ion mobility spectrometry, not only is stoichiometry information obtained, 

but also size and shape information that can be utilized to better understand the structures 



 

v 

 

of biomolecules from solution and compared to structures determined using the above-

mentioned techniques. 

 Here, studies in native mass spectrometry technique development are presented in 

the investigation of bacterial transmembrane pore forming toxins. As membrane proteins, 

these complexes pose several challenges to native mass spectrometry due to the inherent 

heterogeneity and polydispersity in mass caused by the associated membrane mimetic 

used, such as detergent micelles or lipoprotein nanodiscs. Using native mass 

spectrometry αHL from Staphylococcus aureus is found to form both hexameric and 

heptameric complexes in solution simultaneously, while other structural techniques had 

predominantly identified the heptameric complex. 
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CHAPTER I 

 

INTRODUCTION 

    

While determining the primary structure of a protein is often performed by gene 

sequencing or proteomic analysis where the protein can be analyzed before translation or 

as peptide fragments,1 determining higher levels of structure including the stoichiometry 

of protein complexes requires preservation of not only the covalent bonding between 

amino acids but also the plethora of non-covalent interactions.2–5  

Membrane proteins present even further opportunities for investigating non-

covalent interactions between proteins and small molecules due to their association with 

or insertion into lipid bilayers.6 Biological membranes are composed of several different 

types of lipids and membrane proteins that are laterally heterogeneous.7 A focus of 

structural biology of biological membranes is understanding the biophysical basis for this 

lateral heterogeneity and the physiological role heterogeneity plays at the few-nanometer 

size scale between membrane proteins and lipids. The membrane raft hypothesis has been 

proposed as a model to describe the preferential association between cholesterol, 

saturated lipids, and certain membrane proteins.8,9 However, the physiological role of 

such order remains unclear and direct detection of such organization between membrane 

proteins and lipids on the nanoscale is a subject of investigation by structural biology.7 

Transmembrane proteins are unstable outside of lipid bilayers due to the 

hydrophobic character of the transmembrane region. While primary and secondary 

structural studies of membrane proteins can be performed under denaturing solution 
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conditions and through modeling.10,11 Understanding membrane protein tertiary and 

quaternary structures and their association with lipids at the nanoscale level requires lipid 

bilayers or membrane mimetics (detergent micelles or lipoprotein nanodiscs for example) 

to preserve native-like structures.12–14 The inherent heterogeneity and polydispersity these 

systems creates in terms of the types and number of protein subunits, lipids, and 

detergents is challenging to study by the traditional techniques used in structural biology.  

Many membrane proteins have been shown to have specific protein-lipid interactions that 

have a functional role.7,13,15,16 Thus, broadening the tool set of structural biology to 

handle the preservation of non-covalent interactions between membrane proteins and 

lipids at the nanoscale is of importance.  

Several biophysical techniques have been developed to probe not only the 

primary structure, but the non-covalent interactions proteins form in their folded forms 

and with small molecules, including membrane proteins with lipids. The focus of this 

dissertation is the technique development of native mass spectrometry as an emerging 

tool in structural biology for both soluble and membrane proteins, but before this 

discussion, other structural techniques should be discussed as they relate to soluble and in 

particular membrane proteins and complexes. 

 
Methods for the Study of Protein Structure 
 
 Several techniques have been established to probe protein structure; four of the 

most common techniques include X-ray crystallography17, nuclear magnetic resonance 

(NMR),18 single particle cryo-electron microscopy (cryo-EM)19,20, and mass spectrometry 

(MS).21   
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X-Ray Crystallography. The high resolution achievable by X-ray 

crystallography has made this technique the standard-bearer for structural biology for 

many years.22 The structures for thousands of soluble proteins have been solved at atomic 

resolution and deposited in the Protein Data Bank, which includes structures from other 

biophysical techniques as well (NMR, cryo-EM).23  

Determining the structure of a membrane protein by X-ray crystallography is 

notoriously difficult due to the challenge of forming membrane protein crystals and 

resolving clear protein-lipid interactions is additionally challenging. 24–30 Annular lipids 

that surround the surface of the transmembrane region of membrane proteins are often 

disordered, and thus difficult to resolve the identities of lipids surrounding the membrane 

protein. Of the membrane protein examples with crystal structures, only a few structures 

have resolved lipids.16,27,28,31,32 Recently, there have been advances in crystallization 

methods for membrane proteins using smaller sized crystals than would previously be 

feasible,25,26 and more structures are being produced with resolved lipids bound to 

membrane proteins, such as ammonia channel from E. coli with bound 

phosphatidylglycerol lipids.16  However, X-ray crystallography alone is incapable of 

producing structures for every protein complex where disorder (such as protein-lipid 

interactions or intrinsically disordered proteins (IDP)) may be of importance for 

understanding protein function. 

Nuclear Magnetic Resonance. Nuclear Magnetic Resonance (NMR) is another 

commonly used technique in structural biology and has been applied to both soluble and 

membrane proteins. In contrast to X-ray crystallography NMR is typically a solution 

based structural determination method that more readily allows for the study of ensemble 
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properties of biomolecules meaning that protein dynamics can be probed as well as 

structure.33,34 The isotopes 1H, 13C, 15N and 31P are the typical atoms probed in protein 

NMR due to their high abundance in biological molecules and isotope labeling of 

molecules aides analysis of protein-lipid interactions.35  

The versatility of NMR is exemplified in the range of sample types amenable to 

this technique as a tool for characterizing the structures, dynamics, and small molecule 

binding of proteins.13,36 NMR has been used to determine high-resolution structures of 

monomeric proteins18,37,38 and has been applied to small membrane proteins in detergent 

micelles, detergent-lipid micelles, and lipoprotein nanodiscs.36,39–41 These studies allow 

for NMR to probe structural and dynamical changes in membrane proteins based on the 

lipid environment and the identities of included lipids.40,42 Recently, solid-state NMR has 

advanced significantly as a technique to study membrane proteins in lipid-bilayers 

without detergents or other restrictions based on the membrane mimetic used for 

solubility in solution based NMR.42–44 For instance, solid-state NMR has even been used 

to determine an atomic-resolution structure of Anabaena sensory rhodopsin in a mix of 

phosphocholine and phosphatidic acid liposomes.45 

NMR of biological samples is hampered by limitations in the protein size that can 

be studied, and the high protein concentrations necessary for detection.2,46 The typical 

current size limit for high-solution NMR structural determination is about 35 kDa,47 but 

example structures from larger proteins have been produced (up to ~80 kDa).45,48 NMR 

also struggles to determine the range of stoichiometries possible for a protein complex. 

Another major hurdle for structural characterization with NMR is the concentration of 

protein necessary. Protein NMR often requires 0.5 mM or greater protein concentrations 
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that can lead to solution instability and significant challenges in protein purification for 

large complexes. Additionally, these high concentrations may lead to the spurious 

association of molecules in NMR that have no physiological relevance. 

Cryo-Electron Microscopy. Electron microscopy (EM) as a technique has been 

applied to biological samples for several decades with single-particle cryo-EM, more 

specifically, emerging as a method for protein structural characterization in the 

1980’s.49,50 Rather than determining structures from diffraction of proteins arranged in 

crystal structures, single-particle cryo-EM computationally combines images of 

individual complexes arranged in random orientations to produce three-dimensional 

structures.  

With this approach, purified proteins or complexes in buffer solutions are applied 

to holey carbon film coated EM grids. These prepared grids are then plunged into liquid 

ethane cooled by liquid nitrogen to produce a thin layer of vitreous ice that kinetically 

traps native structures and prevents dehydration of samples in the vacuum chamber of the 

electron microscope. An electron beam and camera are then used to image individual 

particles. For high resolution structures, often hundreds of thousands of images of 

particles are collected and classified based on orientation and/or conformational state and 

combined to form a Coulomb potential density map that can be interpreted similarly as 

electron density maps from X-ray crystallography.50  

Due to the imaging of single particles with cryo-EM and ever-increasing 

resolution capabilities, this method has emerged as a revolutionary tool in structural 

biology.19,51,52 Several recent atomistic structures of membrane proteins have been 

produced in various membrane mimetics such as detergent micelles and lipoprotein 
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nanodiscs that would not be feasible by crystallography or NMR.50,53–58 Many of these 

reports assign electron density to lipids binding to specific sites in these structures that 

are thought to have a functional role.54,56,59 Additionally, through classification of particle 

images in varying conformations, cryo-EM has also taken steps towards understanding 

protein dynamics, including for transmembrane ion channels.55,60 

The instrumentation costs and instrumental/computational times associated with 

cryo-EM can be limiting factors for structure determination.61 Another major limitation to 

cryo-EM is that protein complexes must be of sufficient size for a high-resolution 

structure to be determined, typically ~100 kDa, which is larger than the average size 

protein.62 To counter these size restrictions, fragment antigen binding (Fab) as a method 

to add mass and aid image alignment by formation of a stable and rigid complex between 

a Fab and a target protein.55,63 These size limitations are the opposite problem in 

comparison to NMR, where large complexes are intractable, but small proteins can have 

structures determined at high-resolution. Additionally, while some tightly bound lipids 

can be resolved with cryo-EM determining protein-lipid interactions out to a few 

nanometers remains intractable. 

 Mass Spectrometry. Broadly, MS has been applied to the study of proteins at all 

levels of structure, from determining the primary amino acid sequence and post 

translational modifications of proteins in proteomics, to studying non-covalent 

interactions of large multisubunit transmembrane complexes.15,64 MS fundamentally 

relies on the ionization of analyte molecules, including intact proteins, and measures 

mass as a ratio of the mass of a molecule (m) divided by the molecule’s charge (z). Hence 

in MS, raw mass spectra are collected with analyte ions measured in m/z, from which if 
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the charge is known (usually determinable from the mass spectrum) the mass of an 

analyte is measured.65  

 As mentioned, ionization of compounds is a prerequisite for mass analysis. There 

are several ionization methods that are commonly divided into two groupings based on 

whether the ionization process causes fragmentation of covalent bonds. Electron impact 

(EI) for example, bombards molecules with high energy electrons that often fragment 

molecules. EI is commonly applied to analysis of samples containing small molecule 

organics because these molecules fragment in reproducible patterns, and samples 

containing mixtures of organics can be separated using gas chromatography before 

ionization and analysis with MS.65 The “soft ionization” methods of matrix assisted laser 

desorption ionization (MALDI) and electrospray ionization (ESI) do not tend to fragment 

molecules upon ionization, thus allowing for analysis of intact biomolecules and 

complexes.65 Both MALDI and ESI will be further explained below because these 

ionization methods are the most used methods for analysis of biomolecules, including 

proteins.  

 With MALDI biomolecules are mixed with a matrix compound that is often a 

weak acid and dried on a plate.66 This plate is then sealed in a vacuum chamber with the 

mass spectrometer source. A pulsed laser is focused on the sample and the matrix absorbs 

the laser radiation and transfers a proton to the analyte of interest. The ionized analyte 

molecules then enter the mass spectrometer for mass analysis. MALDI is a very simple 

and fast method for protein characterization because the protein ions produced are 

typically singly charged, thus in the mass spectrum peaks appear at the mass of the 

protein being analyzed as long as the mass spectrometer is properly calibrated (this can 
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be difficult beyond a few 10s of kDa). MALDI can also be a useful method for looking at 

mass distributions of heterogenous samples that vary in the base mass, such as 

therapeutic proteins that have been labelled with polyethylene glycol groups,67 or 

polymers with various size distributions.68 With MALDI however, non-covalent 

interactions are often too weak to withstand the sample desiccation and ionization 

process, thus protein complexes and ligand binding are not typically observed with 

MALDI.69 The potential loss of non-covalent interactions limits the application of 

MALDI to structural biology.  

 With ESI biomolecules are ionized and transferred directly from solution to the 

gas phase of the mass spectrometer instrument.70 This is done by applying a voltage 

difference from a thin metal or glass capillary with solutions containing the analyte to the 

source of the mass spectrometer. The voltage difference pulls solution out of the capillary 

to form charged droplets that are rapidly de-solvated and kinetically trapped on the 

microsecond timescale as these droplets are accelerated through gas at atmospheric 

pressure and into vacuum. As the droplets evaporate charges are transferred to the analyte 

molecules forming ions that can be analyzed with the mass spectrometer. Solutions are 

normally composed of polar solvents that keep bio-analytes soluble. In comparison to 

MALDI where proteins are typically singly charged, in ESI proteins will have multiple 

charges that can vary to form a charge state distribution. Liquid chromatography is often 

combined with ESI such that complex mixtures in samples can be separated before 

ionization and mass analysis. ESI solution conditions and flow parameters can be setup to 

denature proteins and other biomolecules for simple measurement of the base mass of 

molecules (similar to MALDI experiment), or as will be described in the next section and 
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throughout this dissertation, can be applied to proteins under native conditions with the 

goal to maintain non-covalent interactions. 

Native Mass Spectrometry as a Structural Biology Technique for the Study of 

Protein Complex Stoichiometry. 

The goal of native-MS is to maintain the non-covalent interactions of 

biomolecules from solution into the gas phase of the mass spectrometer,71 Ideally this 

means biomolecules like proteins remain compact and the stoichiometry of protein 

complexes and associated ligands can be measured in native-MS.  

Native-MS commonly uses a version of ESI known as nano-ESI (nanoliter/minute 

flow rates) to ionize proteins from solution.70 Nano-ESI is done with capillaries that have 

small openings of a few micrometers, and is sometimes coupled to ultra-high 

performance liquid chromatography (UPLC). However, most commonly the 

nanoliter/minute flow rate can be established simply due to the potential difference 

between the capillary and the entrance of the instrument. Nano-ESI greatly improves the 

ionization efficiency of proteins in solution over other solution components and uses 

significantly less sample due to the low flow rates such that a few-microliters of sample 

can be sprayed for multiple hours.72  

 The combination of native-MS with other structural techniques can be a powerful 

union. An example of a native mass spectrum is shown in Figure 1 of protective antigen 

(PA) heptameric and octameric complexes. PA is a component of anthrax toxin from 

Bacillus anthracis. Anthrax toxin is a tricomponent pore forming toxin (PFT). PA 

oligomerizes to form a prepore complex that undergoes a conformational change to form 

a transmembrane β-barrel pore structure.73  
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Figure 1. Native mass spectrum of PA prepore complexes at pH 8.0 collected on a 
Thermo Exactive Extended Mass Range Orbitrap instrument. From this spectrum 
heptameric and octameric complexes are clearly identified based on the measured 
masses. Additionally, the difference in the measured masses between the identified 
heptamers and octamers corresponds to the mass of a PA monomer (63.6 kDa). For each 
oligomer a narrow charge state distribution is formed that is typical of native-MS 
suggesting a compact native-like state. 
 

X-ray crystallography had identified that PA forms heptameric rings in the 

prepore conformation and this protein complex was thought to only form as a heptamers 

for many years.74 However, cyro-EM and native-MS experiments of PA prepores 

identified an octameric complex in solution simultaneously with the heptamer.75,76 These 

experiments also found that the octameric complex played a functional role. PA 

heptamers convert to the transmembrane pore form at pH ~ 7.2 and below. Outside of a 

membrane environment the pore complex is very unstable and prone to aggregation. It 

was found using native-MS, that octameric complexes resist pore formation at lower pH 

in comparison to the heptameric complexes. This greater pH stability for the octamer 
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could be important for PA oligomerization in blood plasma, with octameric complexes 

less likely to prematurely form pore complexes.76 Crucially, this example demonstrates 

that X-ray crystallography acted as a purification method, allowing for only detection of 

the heptameric structure while excluding the octamer, while native-MS detects both 

forms simultaneously in solution. 

Ion Mobility Spectrometry. Ion mobility spectrometry (IMS) is an allied 

technique to mass spectrometry that is often combined in native and non-native MS to 

measure size and shape information about analyte ions in the gas phase, or as a separation 

technique to aid analysis of congested mass spectra.77–79 IMS is a gas-phase 

electrophoretic technique where ions are pulled with an electric field through a drift cell 

filled with a neutral gas such as nitrogen or helium. Collisions with these gas particles 

creates a drag force on ions that correlates with their size and charge, such that more 

compact or higher charge ions move faster through the drift cell than extended or lower 

charge ions. This allows for ions with the same m/z ratio to be separated by IMS before 

mass analysis.  

Additionally, the time an ion takes to traverse the drift cell can be measured 

accurately and precisely. This is called the drift time (DT), and the DT can be converted 

to a collision cross section (CCS) value, which is somewhat like the “surface area” of the 

ion and has units of area. Because ions rapidly tumble as they drift through the IM cell, 

CCS measurements are rotationally averaged values.77 A CCS measurement from IMS 

can be compared to computed CCSs from structures determined from X-ray 

crystallography, NMR, or cryo-EM to report on the compactness or conformational state 

of protein complexes in native-MS.80–83 Thus the combination of IMS with MS (IM-MS) 
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under native conditions constitutes a powerful toolset for the study of protein complexes, 

including membrane proteins, in concert with the more traditional techniques in structural 

biology of X-ray crystallography, NMR, and cryo-EM.84,85 Although in native-MS a 

high-resolution atomic structure for a protein complex cannot be obtained, native-IM-MS 

can provide stoichiometry and structural information for proteins and protein complexes 

that are very difficult to study by the other techniques mentioned, even when tens of 

hundreds of different analytes are present in the same sample.86–91 For instance 

intrinsically disordered proteins (IDP), which are notoriously difficult to study due to 

their heterogenous structures, can be probed with IM-MS to gain understanding of the 

structural dynamics of these proteins.92–94 Additionally, chemical cross-linking MS 

analysis of protein complexes has been combined with native-MS as a method to gain 

further understanding of how protein subunits may be arranged and to identify contact 

surfaces.95–97 

 Application of Native-MS to Membrane Proteins. Many studies highlight the 

power of native-MS to preserve solution structure and study non-covalent interactions in 

the gas phase of mass spectrometers.21,72,85,98–101 Over the last decade and a half native-

MS has been applied to the study of membrane proteins and protein-lipid interactions in 

several types of membrane mimetics. These studies include membrane proteins 

solubilized in detergent micelles,15,16,102–108 bicelles,109 amphipoles,109 lipoprotein 

nanodiscs,89,90,109–112 and vesicles formed from native membranes.113,114 From these 

studies, native-MS has been used to define the oligomeric state and stoichiometry of 

protein complexes,113 measure binding constants between membrane proteins and 

lipids,16,107,108,115,116 and inform other structural studies such as X-ray crystallography 
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with resolved lipids bound to a membrane protein.16 The majority of these studies were 

performed with membrane proteins that are relatively small with most complexes under 

~120 kDa (ammonia channel trimer from E. coli). However, many transmembrane 

complexes are larger and have greater variability in the stoichiometry of protein subunits.  

Although the native mass spectrum in Figure 1 is well-resolved and readily 

interpretable, this is not always the case in native-MS,87,91,117–119 especially with 

membrane protein complexes that have heterogenous mass populations due to the 

membrane mimetic used. Figure 2 below builds upon the spectrum in Figure 1 and 

highlights some of the complexities that can occur in native-MS. PA prepore complexes 

bind another protein named lethal factor (LF, note: non-toxic N-terminal binding domain 

denoted as LFN), which is one of the cytotoxic effectors of anthrax toxin. The spectrum in 

figure 2 was collected with a sample of PAx(LFN)y prepore complexes that were treated 

with high concentrations of urea to transition to the pore form for insertion into 1,2-

dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid nanodiscs.120–122 The goal of this 

spectrum is to resolve lipid association on pore form PAx(LFN)y complexes, but most of 

the mass spectrum is poorly resolved. Between ~10000-15000 m/z distinguishable peaks 

are seen allowing for charge state and mass assignment (see expansion of this region as 

the top portion of Figure 2). Three of these distributions can be assigned to octameric PA 

complexes with 2-4 LFN proteins bound. None of the identified distributions correspond 

to a possible mass distribution of the PA heptamer with LFN bound suggesting that the 

octameric complexes are in the prepore conformation and that the heptameric complexes 

have converted to the pore form and have either aggregated or are nanodisc embedded 

and are poorly resolved. Additionally, there are identified charge state and mass  
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Figure 2. Bottom: Native mass spectrum of PAx(LFN)y complexes that could be nanodisc 
embedded. The top spectrum is an expansion of the resolved complexes from the bottom 
spectrum. In this expansion of the spectrum octameric complexes with LFN are identified 
based on the measured masses. Further gas-phase collisional activation would be 
unhelpful since collisional induced dissociation of PA8(LFN)2 complexes to form PA8LFN 
complexes are already detected at ~20000 m/z (Bottom spectrum blue stars). Thus, 
increased activation would further dissociate complexes without obtaining new 
information. 
 

distributions that cannot be readily assigned based on a known stoichiometry of 

PAx(LFN)y complexes. This could be caused by the association of lipids and/or the 

membrane scaffold protein (MSP) from the nanodiscs, but further analysis is hampered 

by the low spectral resolution caused by the overlap of multiple distributions.  
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In mass spectrometry, ions can be accelerated within a collision cell in the mass 

spectrometer instrument that is filled with neutral gas particles where the ions collide 

with the gas. These collisions slowly heat ions leading to the breaking of non-covalent 

interactions and the dissociation of adducts (salts, detergents, lipids etc.). This process 

termed “collisional activation” can “clean ions” such that they have narrower mass 

spectral peaks that are easier to analyze, but this process also leads to the gas-phase 

unfolding and collision induced dissociation (CID) of protein subunits in a protein 

complex.21 The mass spectrum in Figure 2 was obtained under instrumental conditions 

with significant collisional activation such that CID of octameric complexes are already 

observed. Thus, further activation would not aid mass spectral quality and the ability to 

observe lipid binding on any pore form toxin complexes. This dissertation is focused on 

the further development of native-MS approaches to better handle the types of difficult-

to-study large membrane protein-lipid complexes exemplified in Figure 2 and the 

complications that arise with increased size (several hundred kDa) of membrane protein 

complex studied. 

 In Chapter 2, I will discuss native IM-MS experiments to study the structure and 

pore formation of α-hemolysin (αHL), another β-barrel PFT similar in structure to the PA 

pore formed in anthrax toxin that again highlights the power of IM-MS as a structural 

biology technique. This Chapter includes co-authored material from Amber D. Rolland, 

Grant M. Klausen, and James S. Prell. In Chapter 3, I discuss mass spectrometer 

instrumental modifications to extend the range of collisional activation achievable in the 

source region of Synapt “Stepwave” based mass spectrometer instruments and how these 

modifications aid analysis of membrane protein complexes. This chapter includes co-
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authored material from Micah T. Donor, Samantha O. Shepherd, and James S. Prell. 

Lastly in Chapter 4, I discuss the possibility of non-specific association of lipids to 

proteins in native-MS due to the gas-phase basicity and polar nature of common lipid 

headgroups and the ramifications of such associations, as well as present studies of lipid 

binding to αHL pores in detergent-lipid micelles and lipoprotein nanodiscs. This chapter 

will include co-authored material from Micah T. Donor, Samantha O. Shepherd, Amber 

D. Rolland, and James S. Prell. 
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CHAPTER II 

ION MOBILITY-MASS SPECTROMETRY REVEALS THAT α-HEMOLYSIN FROM 

STAPHYLOCOCCUS AUREUS SIMULTANEOUSLY FORMS HEXAMERIC AND 

HEPTAMERIC COMPLEXES IN DETERGENT MICELLE SOLUTIONS 

Includes co-authored material from: 

Wilson, J.W.; Rolland, A.D.; Klausen, G.M.; Prell, J.S. Ion Mobility-Mass 
Spectrometry Reveals that α-Hemolysin from Staphylococcus aureus Simultaneously 
Forms Hexameric and Heptameric Complexes in Detergent Micelle Solutions. Anal. 
Chem. 2019, 91, 10204-10211. 

 

Introduction 
 

At least half of all known soluble and membrane-associated proteins form 

multimeric complexes, with many of these complexes forming as homooligomers.123–125 

Most homooligomers display some form of symmetry, and evolution favors larger 

complexes due to the increased stability afforded by minimizing solvent exposure of 

hydrophobic regions and functionality constraints that require large structures.3,123–126 

However, determining the functional oligomeric form of protein complexes can be 

difficult, especially for transmembrane proteins that require suitable environments not 

easily amenable to traditional structural elucidation techniques (e.g. x-ray 

crystallography, electron microscopy, analytical ultracentrifugation, and electrophoretic 

techniques). Both oligomeric state heterogeneity127–129 and oligomeric state dependence 

on solution conditions76,130 have been reported and can further increase the difficulty of 

structure characterization. 

An example of a large homooligomer protein complex with more than one 

observed oligomeric state is alpha-hemolysin (αHL) from Staphylococcus aureus (S. 
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aureus).131 S. aureus is a common human pathogen that can cause severe skin and 

respiratory tract infections leading to extensive disease burdens in the US and 

internationally.132 αHL is a key virulence factor for S. aureus which forms a 

transmembrane β-barrel pore complex. This pore structure permeabilizes cell membranes 

in many types of host cells as well as causes a broad range of other toxic cellular 

insults.133,134 Beyond the medical relevance of studying the role of αHL pores in S. 

aureus infections, the ability of αHL to form stable transmembrane pore complexes in 

vitro has led to its development as a nanopore tool135 for molecular sensing of small 

molecules,136 nucleotide sequencing,137–139 and directed movement of nanometer-sized 

cargo within αHL pores.140 

Early experiments using electron microscopy (EM),141–143 atomic force 

microscopy,144 electrophysiology,145 and solution-based size-exclusion chromatography 

and analytical ultracentrifugation146 indicated αHL can form a hexameric complex. 

However, the first high-resolution x-ray crystal structure of αHL was heptameric,147,148 

and several other crystal structures of αHL pore complexes solved since then are 

heptameric.149–151 The heptameric state is also supported more indirectly by other solution 

studies, such as photobleaching of fluorescently-labeled αHL subunits in pore 

complexes,152 pore conductivity measurements made using electrophysiology,145 and 

experiments with covalently-linked αHL subunit dimers.153 Over the course of the last 

couple decades, with these combined studies, the consensus view has been that αHL 

forms only functional heptameric pore complexes.131,153,154 It has been proposed that the 

identification of a hexameric complex may have been due to the image processing 

techniques used in EM and that previous size-exclusion chromatography and analytical 
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ultracentrifugation studies may have lacked sufficient resolution to distinguish between 

hexamer and heptamer forms.146 

Native ion mobility mass spectrometry (native IM-MS) using nano-electrospray 

ionization (nESI) has proven a useful tool in structural biology for identifying oligomeric 

states of biological complexes due to its ability to maintain native non-covalent 

interactions upon ionization of protein complexes.155 For example, native IM-MS was 

used to determine the oligomeric states populated by anthrax toxin prepore at different 

solution pH76,130 and by the lysenin pore,156 both of which form β-barrel pore complexes 

similar to αHL. Native IM-MS has also been shown to be a powerful tool for studying 

small-molecule association with high chemical specificity and without the need for 

crystallization of membrane protein complexes.15,16,157,158 Here, we use native IM-MS of 

αHL pore-like complexes formed in two different detergent solutions (tetraethylene 

glycol monooctyl ether (C8E4) as an ether-like detergent, and n-tetradecylphosphocholine 

(FOS-14) as a lipid-like detergent), to show that αHL forms both hexameric and 

heptameric complexes simultaneously in both detergent solutions. Under the tested 

solution conditions, the heptameric complex is the dominant species, but a sizable 

population of hexameric complexes is detected, and this result was verified on two 

different mass spectrometer platforms (an IM-time-of-flight instrument and an Orbitrap 

instrument without IM). Using the phospholipid-like detergent FOS-14, αHL complexes 

embedded in nearly-intact detergent micelles are resolved enough in the native IM-MS 

data to characterize both their stoichiometry and collision cross section (CCS). These 

native mass spectra are highly congested due to hundreds of overlapped mass spectral 

peaks, but Fourier transform (FT) and Gábor transform (GT) are used to deconvolve both 
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the charge state and stoichiometry distributions of associated detergent molecules.87,88,118 

The ability of αHL to form hexameric and heptameric pore-like complexes has 

ramifications for the mechanism of αHL pore formation and the use of αHL as a 

nanopore tool.  

Methods 

Expanded method and experimental details can be found Appendix A. Briefly, 

lyophilized monomers of αHL from S. aureus were purchased from Millipore Sigma (St. 

Louis, MO, USA) and were resuspended in deionized water to a concentration of 0.5 

mg/mL. 150 µL of this 0.5 mg/mL αHL monomer solution was centrifugally 

concentrated to ~4x in the presence of either C8E4 (32 mM, CMC = 8 mM) or FOS-14 

(2mM, CMC = 0.12 mM) detergent micelles in 200 mM ammonium acetate pH 7.5 to 

induce oligomerization and pore formation.146 A portion of this sample (10 µL diluted to 

30 µL with more detergent solution) was then used to buffer exchange into 200 mM 

ammonium acetate at pH 7.5 with 2x the CMC of the appropriate detergent for mass 

analysis. Oligomer formation was also checked using SDS-PAGE (Figure A1 in 

Appendix A). As part of a detergent screen, the detergents n-dodecyl-β-D-

maltopyranoside (DDM) and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) were 

additionally tested, but under similar instrumental conditions no oligomers of αHL were 

detected. Mass spectra were acquired on either a Waters Synapt G2-Si Quadrupole–Ion-

Mobility–Time-of-Flight (University of Oregon, Eugene, OR) or Thermo Scientific 

Exactive Plus extended mass range Orbitrap (University of California, San Francisco, 

CA) mass spectrometer, and all ion mobility-mass spectra were acquired on a Waters 

Synapt G2-Si. Both instruments were equipped with a nESI source, and tuning 
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parameters can be found in the Appendix A methods. Gas-phase compaction of model 

structures for native-like pores were simulated using GROMACS v. 2016.4, and 

theoretical collision cross sections were computed using Collidoscope.82,83 

Results and Discussion 
αHL forms both hexameric and heptameric pore-like complexes in C8E4 

detergent micelles. In order to characterize effects of detergent on αHL oligomerization, 

we initially obtained a mass spectrum of αHL in detergent-free solutions. A typical native 

mass spectrum of αHL monomers (~5 µM) formed by nESI from detergent-free solutions 

using a Waters Synapt Q-IMS-ToF mass spectrometer is shown in Figure 3A. αHL 

monomer ions form a narrow charge state distribution from 10-12+ indicating that the 

monomer ions are compact. For each charge state there are two peaks of similar 

abundance attributed to the presence of the αHL monomers (33,259 ± 1 Da) and an 

unknown protein present in the commercial αHL sample (34,126 ± 1 Da; see Figure A2 

in Appendix A for more information). The measured αHL monomer mass matches well 

with the theoretical sequence mass of 33,248 Da for the mature 293 amino acid protein. 

At higher m/z (~4500-5000) there is a low-abundance distribution attributed to another 

contaminant protein with a mass that is inconsistent with any oligomeric state of the αHL 

monomers. No oligomers of αHL monomers are detected at this concentration and under 

these detergent-free solution conditions. nESI of αHL monomers concentrated in the 

presence of C8E4 detergent micelles at a concentration above the critical micelle 

concentration (CMC) (32 mM for concentration step, CMC = 8 mM) yields two higher-

order oligomeric states with masses of 199,553 ± 15 Da and 232,806 ± 16 Da and charge 

state distributions of 25-33+ and 25-37+, respectively (Figure 3B).  C8E4 was chosen 
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initially for its compatibility with native nESI and ease of removal in the gas phase of the 

 

Figure 3. Native mass spectra of αHL hexamer and heptamer complexes. (A) Mass 
spectrum of αHL monomers in detergent-free solutions of 200 mM ammonium acetate. 
The presence of αHL monomers and an unidentified co-purified protein are seen while no 
oligomers are present. Inset shows the small abundance of a second contaminant. (B) 
Mass spectrum of αHL oligomerized complexes formed in C8E4 detergent solutions with 
200 mM ammonium acetate and under the instrumental conditions of sample cone at 50 
V and trap at 75 V. (C) IM-MS spectrum under the same instrumental conditions as in 
(B) showing multiple unfolding states. 
 

mass spectrometer instrument.16,104,109 These measured masses match the expected 

masses for the hexameric (199,554 Da) and heptameric (232,813 Da) oligomeric states 

based on the measured monomer mass. By contrast, there is no evidence for the 

incorporation of the heavier (34 kDa) unidentified protein in the observed hexamers or 

heptamers.  

Native mass spectra of αHL complexes embedded in FOS-14 detergent 

micelles confirms solution hexameric and heptameric pore-like complexes. In order 

to clearly resolve the two αHL oligomeric distributions in the above experiments, 

moderately activating instrumental conditions (sampling cone 50 V, trap 75 V, transfer 5 

V) were used to strip off nearly all the detergent, as is done in the majority of native IM-

MS studies to date of transmembrane proteins embedded in detergent micelles. Figure 3C 

shows the IM-MS data under the same instrumental conditions used to obtain the mass 

spectrum in Figure 3B. Under these instrumental conditions, most of the charge states for 
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both the hexamer and heptamer have multiple unfolded conformational states. Non-native 

monomers are detected in low abundance (Figure A3 in Appendix A) that, in principle, 

could have been ejected from activated heptameric complexes, resulting in the hexameric 

distribution. To eliminate this possibility, 37+ heptamer ions were first isolated under 

conditions where the ions remained compact and folded (sampling cone 50 V, trap 25 V) 

and then these ions were activated in the trap (125 V) to dissociate them into high-charge 

monomers (14-25+) and stripped hexamers (15-24+) (Figure A4 in Appendix A). The 

drastically different drift time and charge state distributions for the collision-induced 

hexamers show that the hexameric series in Figure 3B does not arise from gas-phase 

activation of the heptamers. We also tested whether the the formation of hexamer is a 

result of early activation in the electrospray process as protein ions are transferred to the 

gas phase. Increasing the sample capillary voltage does not increase the abundance of 

hexamer ions relative to heptamer ions but does significantly diminish signal quality 

(Figure A5 in Appendix A). These combined experiments demonstrate that the hexameric 

complex is indeed an oligomeric state formed in solution. 

To more directly confirm the presence of native heptamers and hexamers in 

detergent solution, we acquired mass spectra under conditions where the detergent 

micelles surrounding the ions are largely preserved. However, obtaining resolved mass 

spectra of micelle-embedded αHL complexes in C8E4 was difficult. Detergent resolution 

was only obtained on protein complex ions under relatively high-activation conditions for 

which only a small number of detergent molecules remained adducted to protein complex 

ions (Figure 3B). αHL has been co-crystallized with each subunit bound to glycerol 

phosphocholine in a groove between the rim and stem domains of the complex.149 This 
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evidence for phosphocholine binding has been used to reason why αHL appears to bind 

and form pores preferentially to membranes containing phosphocholine lipids.159 The 

detergent FOS-14 is a lipid-like detergent with a phosphocholine headgroup, and thus it 

might be expected to form strong interactions with αHL pores that encourage more 

native-like oligomer formation than C8E4. We reasoned that detecting the hexameric and 

heptameric oligomeric states in a more phospholipid-like detergent would remove doubt 

about the hexameric state being artefactual due to the ether-based C8E4 detergent. FOS-

14 and other phospholipid-like detergents have not been reported previously as a vehicle 

for transmembrane protein native IM.  

Following a similar procedure for oligomer formation in C8E4, αHL monomers 

were concentrated in FOS-14 detergent solutions at a FOS-14 concentration (2 mM) well 

above the CMC (~0.12 mM). Under the same gentle nESI conditions, native mass spectra 

of these samples indicate oligomerized complexes associated with large FOS-14 micelles 

and much less stripping of detergent than for C8E4 (Figure 3A-D). At lower m/z a large 

distribution of protein-free detergent micelles is present at much higher abundance than 

that of the αHL micelle-embedded ions (Figure A6 in Appendix A). Due to the 

polydispersity of detergent stoichiometry in the micelles, the αHL ions embedded in 

detergent micelles have complicated distributions of peaks in the mass spectrum (Figure 

3A-B) with overlapping charge state and detergent distributions that are difficult to 

assign. However, these overlapping distributions lend themselves well to Fourier 

transform (FT) and Gábor transform (GT) based analysis developed by our laboratory 

(iFAMS software) to deconvolve the charge state and detergent distributions.87,88,118 
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Figure 4. Native mass spectrum of αHL micelle-embedded complexes in FOS-14 
detergent with 200 mM ammonium acetate with the sample cone at 150 V and trap at 50 
V from the Synapt Q-IMS-ToF instrument. (A) GT spectrogram is shown with the IM-
MS mass spectrum cutout across the top and FT spectrum down the right. Each 
individual point in the spectrogram corresponds to a charge state that is then 
reconstructed on the mass spectrum above (colored traces). For the heptameric series, 
secondary harmonics were resolved and included in the reconstruction, resulting in higher 
resolution than for the hexameric series. (B) IM-MS spectrum of αHL micelle-embedded 
complexes showing drift time overlap of hexamer and heptamer distributions that remain 
compact and folded. (C) Detailed stoichiometry analysis of mass spectrum shown in (A). 
Inset tables provide the detergent stoichiometry distributions for each individual charge 
state from the GT with the ± representing the standard deviation in the detergent 
stoichiometry. The inset shows the repeating peaks from detergent association. Colors in 
table match with their respective detergent distribution for each charge state. (D) Zero-
charge spectrum of the combined charge state data from the GT. Dashed vertical lines 
correspond to the masses calculated for detergent-stripped bare hexamer and heptamer 
oligomers based on the measured monomer mass. 
 

Under the moderately-activating instrumental conditions used to collect the mass 

spectrum in Figure 4A-D, both hexameric and heptameric oligomeric states of αHL are 

detected and separated in the GT spectrogram, which have highly overlapped 

distributions that are not easily separated or characterized using IM-MS without 
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deconvolution (Figure 4B). The GT also allows for the analysis of detergent 

stoichiometry distributions for each charge state. The charge state distributions are 

plotted with the mass spectrum in Figure 4C and as a combined “zero-charge” spectrum 

in Figure 4D. The nearly Gaussian total mass distributions in the zero-charge spectrum 

indicate that the αHL hexamer associates with 103 ± 24 FOS-14 detergent molecules 

while the heptameric complex associates with 111 ± 19 molecules of FOS-14 in these 

mass spectra, consistent with a roughly oligomer size-proportional micelle stoichiometry. 

The IM-MS spectrum in Figure 4B indicates that the αHL pore-like complexes are 

compact under these conditions, demonstrating that GT can be used to deconvolve and 

characterize these overlapped distributions without the need to strip the ions of detergent 

as in Figure 1C where concomitant protein unfolding is observed.   

αHL pore-like ion stoichiometry is consistent across mass spectrometer 

platforms. To demonstrate that the observed αHL oligomeric states are reproducible 

across mass spectrometer platforms, these samples were studied with nESI on an Orbitrap 

EMR instrument, which uses a heated ESI capillary to transfer ions into the low-pressure 

region of the instrument rather than a gentler “StepWave” ion guide as in the Synapt 

platform (Figure 5A-C). In contrast to the above-described Synapt instrument, mass 

spectra acquired on the Orbitrap instrument do not exhibit a large population of FOS-14 

only micelles on the Orbitrap instrument, which is consistent with the Orbitrap having a 

harsher source. Also, on the Orbitrap more αHL complexes completely stripped of FOS-

14 are detected under these conditions with peaks that are about half as wide in full-width 

at half-maximum compared to C8E4 detergent-stripped pore-like complexes on the Synapt 

instrument at ~7500 m/z (Figure A7 inset in Appendix A).118 The signal for stripped 
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complexes clearly indicates both hexamer and heptamer oligomeric states for αHL pore-

like complexes with masses that closely match the detergent stripped complexes in C8E4 

(hexamer: 199,577 ± 4 Da, heptamer: 232,845 ± 6 Da).  

Under the least activating conditions we used on the Orbitrap instrument, 

detecting signal for the hexameric micelle-embedded complexes is difficult in 

comparison to the heptamer (Figure A7 A-C in Appendix A). When the mass spectrum in 

Figure A8A in Appendix A is processed with FT in iFAMS using only charge states 23-

25+, which are well separated in the frequency domain, signal of hexameric complexes in 

detergent micelles is more clearly observed. Under these instrumental conditions, the 

 

Figure 5. Native mass spectrum from the Orbitrap instrument of αHL micelle-embedded 
complexes in FOS-14 detergent with 200 mM ammonium acetate and under the 
instrumental conditions of source CID 100 V and HCD at 50 V. (A) GT spectrogram is 
shown with the mass spectrum across the top and the FT down the right. (B) Detailed 
stoichiometry analysis of mass spectrum shown in (A). Tables provide the detergent 
stoichiometry distributions for each individual charge state pulled from the GT with the ± 
representing the standard deviation in the detergent stoichiometry. (C) Zero-charge 
spectrum of the combined charge state data from the GT. Dashed vertical lines 
correspond to the masses calculated for detergent-stripped bare hexamer and heptamer 
based on the measured mass of the monomer. For the middle overlapped distribution, the 
number of FOS-14 units associating with the micelle-embedded hexamers and the nearly 
detergent-stripped heptamers is given. 

 

hexameric ions are determined to contain 112 ± 32 detergent molecules while the 

heptameric ions associate with 121 ± 30, which is consistent with the number of 
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detergent molecules associating with the heptamer on the Synapt instrument under the 

least activating instrumental conditions used (Figure A9 A-D in Appendix A). Increasing 

the degree of in-source activation removes a small number of detergent molecules (~10) 

and significantly increases peak resolution yielding the mass spectrum and GT 

spectrogram seen in Figure 5A-C. The GT spectrogram contains three distinct 

distributions of αHL pore-like complexes that are hard to separate using FT alone and 

would be extremely difficult to analyze by conventional methods. In the GT, the most 

abundant distribution with the highest overall frequency values represents the heptameric 

αHL complexes embedded in detergent micelles that associate on average with 111 ± 17 

FOS-14 molecules. The middle distribution corresponds to two strongly-overlapped 

distributions of nearly detergent-stripped heptamers and micelle-embedded hexamers 

with overlapped charge states and very similar mass distributions that are difficult to 

distinguish from the GT spectrogram. (Coincidentally, the 25+ micelle-embedded 

hexamer and 29+ micelle-embedded heptamer distributions have nearly identical 

abundance and m/z ranges and would be exceptionally difficult to deconvolve with other 

methods.) Based on the mass distribution width and average for each charge state in the 

middle series of Figure 5A, charge states 23-26+ are predominantly micelle-embedded 

hexamers, while charge states 27-29+ are attributed mostly to nearly detergent-stripped 

heptamer complexes. Under these conditions the micelle-embedded hexamers associate 

with 94 ± 15 FOS-14 molecules. The third, lowest-frequency distribution is attributed to 

nearly detergent-stripped hexameric complexes that on average have ~5 remaining 

detergent molecule adducts. Overall, these values for the masses of the stripped αHL 

pore-like complexes and the detergent stoichiometries for the micelle-embedded 
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complexes are highly consistent with data acquired on the Synapt instrument and further 

corroborate the existence of both hexameric and heptameric pore-like complexes in 

solution. 

Due to the size of these complexes and the similarity in molecular identity, it is 

unlikely the nESI ionization efficiencies of the hexamer and heptamer are drastically 

different. Thus, the abundance ratios seen from the mass spectrum likely reflect the 

abundance ratios of the hexameric and heptameric complexes in solution. The heptameric 

state is clearly favored at a measured ratio of detergent-stripped heptamer to hexamer of 

~5:1 in both FOS-14 and C8E4 detergents as determined by fitting Gaussian detergent 

stoichiometry distributions to each charge state in Figure 3B and Figure A7A in 

Appendix A and totaling the abundances of each oligomer, or by using Unidec (a 

Bayesian deconvolution algorithm) to estimate the abundances of each oligomer 

population.90,160,161 Determining the abundance ratios for each oligomeric state for the 

micelle-embedded αHL complexes on the Synapt and Orbitrap instruments is more 

complicated. From the zero-charge spectrum acquired on the Synapt (Figure 4D) the ratio 

of micelle-embedded heptamer to hexamer is ~10:1 in comparison to that of the Orbitrap 

(Figure 4C) of ~2:1 (including signal for detergent-stripped heptamers). This difference is 

likely due to the significantly better resolution of the mass spectra acquired on the 

Orbitrap instrument, which should result in more reliable reconstructed relative 

abundances. Based on this we conclude the abundance ratios of heptamer to hexamer in 

the micelle-embedded complexes are likely closer to that of the detergent-stripped 

complexes, i.e., ~5:1 heptamer : hexamer. Therefore, as has been previously reported by 

multiple techniques, the heptameric oligomer is the predominant species under these 
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conditions, but αHL also forms a large population of hexameric complexes in detergent 

solutions. 

IM-MS collision cross section measurements and MD-simulated collision 

cross section calculations of stripped heptameric and hexameric complexes reveal 

compact native state. The native mass spectra of FOS-14 micelle-embedded αHL pore-

like complexes show that both the hexameric and heptameric oligomers are native  

 

Figure 6. Comparison between collision cross section measurements in both detergents 
and computationally derived CCSs. (A) IM-MS spectrum of nearly-detergent-stripped 
αHL pore-like complexes in C8E4 detergent micelle solutions under instrumental 
conditions (sampling cone 50 V, trap 25 V) where no unfolding is seen. (B) Same as in 
(A) except using FOS-14 as the detergent (sampling cone 25 V, trap 50 V, transfer 25 V). 
(C) αHL heptameric pore crystal structure (orange mesh, PDB: 7AHL) and vacuum MD 
simulated structure showing gas-phase compaction (solid blue surface). (D) Comparison 
between measured CCSs for αHL heptamer and hexamer ions in C8E4 and FOS-14 
detergent and for CCSs predicted from MD structures. The measured CCS value in 
parentheses for FOS-14 is the 36+ charge state which was the highest charge state 
observed. 
 

oligomeric states for αHL complexes in detergent solutions, but these data alone 

do not reveal much about the structure or conformation of the oligomeric complexes.82     
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To determine whether the αHL oligomers survive in pore-like structures upon 

transfer to the gas-phase, triplicate IM-MS measurements of αHL hexamer and heptamer 

complexes formed with C8E4 were collected under activation conditions for which each 

charge state for both oligomers remained compact. Under these instrumental conditions 

more C8E4 molecules remain attached to each oligomer and the hexameric and 

heptameric ion distributions partially overlap both in m/z and drift time (Figure 6A, 

Figure A10 in Appendix A). αHL hexameric complexes were determined to have CCS 

values ranging from 90-96 nm2 for charge states 29-33+, while the heptamers had CCS 

values ranging from 100-109 nm2 for charge states 30-37+ indicating that the hexamer is 

~6/7 the size of the heptamer. Together these results suggest that these detergent-stripped 

hexameric and heptameric complexes have globally similar compact structures. 

IM-MS experiments on compact αHL pore-like complexes formed with FOS-14 

resulted in similar CCS values to complexes formed in the detergent C8E4. Using IM-MS, 

signal for stripped heptameric complexes could be detected and separated from FOS-14 

clusters that overlap in m/z, but have different drift time distributions (Figure 6B). For the 

heptameric series with charge states 30-36+ the measured CCS is 99-106 nm2, indicating 

there is no significant difference in the size of the stripped heptamer ions formed using 

either of the two detergents tested.  

It is well-known that native-like protein and protein complex ions often compact 

(by as much as 22%) in native IM-MS during the nESI process in comparison to their 

condensed-phase structures82 but that much tertiary and even secondary structure can be 

preserved.162 We recently showed that performing vacuum MD simulations using the 

GROMOS96 43a2 force field results in ion structures having calculated CCSs within 4% 
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on average of experimental IM-MS data for a set of globular and transmembrane proteins 

and protein complexes commonly used as IM-MS calibration standards.82 To enable more 

confident comparison of experimental IM-MS data presented here for the putative 

hexameric and heptameric αHL pore-like complexes, vacuum MD simulations were 

performed at 300 K with the GROMOS96 43a2 force field for both the crystal structure 

of the heptameric pore (PDB: 7AHL) and a model of the hexameric pore produced by 

Furini et al.145 Figure 6C shows the crystal structure 7AHL as a mesh surface with the 

aligned vacuum MD simulated structure as a solid surface. These vacuum MD simulated 

structures were then used to calculate CCS values in N2 gas using the Trajectory Method 

in Collidoscope. After MD relaxation in vacuum, a small degree of compaction (~12%  

 

Figure 7. Compilation of all measured and computationally predicted CCS values for 
αHL hexamers and heptamers. Vacuum MD CCS for the 33+ hexamer and the measured 
CCS for the 33+ hexamer are slightly offset because they are nearly identical. CCSs for 
αHL micelle-embedded complexes in FOS-14 determined from Fig. 4B and A7 in 
Appendix A. CCSs for αHL bare complexes formed in C8E4 determined from Fig. 6A. 
 
for the heptamer and ~18% for the hexamer) is predicted. Figure A11 in Appendix A 

shows models of the hexameric pore and vacuum MD-simulated structures.  
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Figure 6D compares the measured and computed CCS values. The calculated 

CCS for the hexamer averaged 96 nm2 for charge states 29+, 31+, and 33+ and 107 nm2 

for the 30+, 34+, and 37+ heptamer. These simulated CCSs fall inside the range of 

experimentally measured CCSs for both the bare hexameric and heptameric pore-like 

complexes and are within the expected range of error (± 4%) of the charge-state-averaged 

experimental CCSs for both oligomers (93/105 nm2 for the hexamer/heptamer). Figure 7 

summarizes all the native IM-MS CCS measurements and the computationally-derived 

CCS values for the uncompacted and MD compacted hexamer and heptamer structures. 

The detergent-stripped bare pore-like complexes and the micelle-embedded complexes 

overall have linear CCS trends as a function of charge state with similar slopes and differ 

by only a few nm2, which we attribute to the presence or absence of the detergent 

micelles. Although CCS measurements do not provide direct evidence of a “pore” in the 

physiological sense (i.e., a channel capable of permeabilizing lipid bilayers), these results 

indicate that the native IM-MS conditions used here preserve not only the stoichiometry 

but also structure consistent with the crystal and model structures of the heptameric and 

hexameric pores from solution into the gas phase. 

Conclusions 

Here, αHL from S. aureus is observed to adopt two oligomeric states, a hexamer 

and a heptamer in solution that are preserved upon transfer to the gas phase, using two 

different types of detergent and two different types of mass spectrometer platforms. For 

both the ether-based and phospholipid-like detergent used, both hexameric and 

heptameric detergent-stripped complexes are detected at a ratio of ~5:1 heptamer to 

hexamer. Based on native IM-MS results, these detergent-stripped complexes have CCSs 
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within 4% of their respective vacuum MD simulated structure. All these observations and 

measurements point to the coexistence of hexameric and heptameric pore-like complexes 

of αHL in the condensed phase.  

The native mass spectra of micelle-embedded pore-like complexes reported here 

illustrate the powerful capabilities of FT and GT to deconvolve charge state and mass 

information to allow for interpretation of these types of challenging samples without 

requiring detergent removal. These results also demonstrate the utility of FOS-14 as a 

detergent in native mass spectrometry, which has the same phosphocholine headgroup as 

many of the most common physiological lipids. With FOS-14, intact membrane protein 

micelle complexes could be transferred to the gas phase with high enough resolution for 

analysis with FT and GT to determine the charge state, mass, and stoichiometries of 

associated detergent and protein oligomeric state. The results also illustrate advantages of 

FT- and GT-based deconvolution methods for CCS and structure determination based on 

IM data, for which accurate charge states and mass determination are prerequisites. These 

same methods could be used to aid oligomeric state determination of other membrane 

protein complexes for which resolving oligomeric states may be difficult. FT and GT 

analysis can as well be extended to other applications that inherently produce 

complicated mass spectra with repeating subunits. In this case, detergent is the repeating 

subunit, but this type of analysis could be extended more generally, for example, to lipid-

containing complexes, proteins with multiple bound isobaric glycans, and polymers.  

The propensity for intact FOS-14 micelle-embedded membrane protein 

complexes to be transferred to the gas phase of mass spectrometer instruments highlights 

the significant differences in gas phase behavior between FOS-14 and C8E4. As observed 
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here, C8E4 has been demonstrated to be readily removable from protein complexes in the 

gas phase, in contrast to other detergent groups such as maltosides (e.g. DDM).16 Reading 

et al. argued that the ease of detergent removal may relate to the protein stability within 

the detergent micelle and may suggest that the ease of a detergent’s release is inversely 

correlated with its ability to substitute for lipid association.104 Here, with FOS-14 being a 

phospholipid-like detergent, once the micelle-embedded pore-like complexes reach the 

gas phase of the mass spectrometer instrument, it is more difficult to remove all the 

detergent with tuning conditions available on the Synapt instrument. Only minimal 

detergent loss and charge stripping are seen under a wide range of activation conditions 

(Figure A12A-C in Appendix A), suggesting these micelle-embedded pore-like 

complexes are indeed highly stable.  

In these experiments, αHL pore-like complexes are made through direct 

association with detergent micelles. In vivo, αHL monomers have specific cell surface 

binding interactions with the protein ADAM10 at nanomolar concentrations of 

toxin.163,164 At higher concentrations (~1 µM) αHL monomers have been shown to 

associate with phosphocholine lipids and to oligomerize and form pores in an analogous 

fashion to how pore-like complexes were formed in detergent in these 

experiments.159,163,165 An exciting future direction of research is to use native IM-MS 

techniques similar to those described here to investigate effects of protein receptor 

models or lipid headgroups on the oligomeric state distribution of αHL complexes or 

other pore forming toxins (such as anthrax toxin). Additionally, different oligomeric 

states of αHL pores almost certainly have different pore diameters and thus different 

channel conductance properties.145,153 Tailoring the oligomeric state of αHL pores by 
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manipulating solution conditions or membrane environment, informed by IM-MS studies, 

could therefore enable broader control of pore diameter and conductance in applications. 

In comparison of the FOS-14 micelle-embedded αHL complexes between the 

Synapt and the Orbitrap mass spectrometer instruments it became clear that the Orbitrap 

instrument not only has higher resolution due to the nature of its ion detection system, but 

is also better at desalting or stripping detergent from protein ions in the source region. 

This can be clearly seen in comparing the αHL complexes in Figure 4 to Figure 5 as well 

as Figure 6B to Figure A7 inset in Appendix A. In both cases the Orbitrap instrument is 

more activating in the source region allowing for easier interpretation of the complicated 

data due to the high level of ploydispersity in the micelle-embedded complexes. While 

the Synapt has a less activating source, the key advantage of this instrument is the power 

of IM-MS such that the compactness or unfolding of protein complexes can be monitored 

and overlapped ion distributions in m/z can be filtered. The ideal scenario is combining 

the more activating source of the Orbitrap with the IM-MS capability of the Synapt. 

In Chapter III I discuss simple instrumental modifications to the Synapt that 

increase the range of collisional activation achievable in the source region. This was done 

by using source sampling cones that have smaller apertures and therefore increase ion 

heating as ions are transferred from atmospheric pressure to the vacuum of the 

instrument. I demonstrate that these smaller aperture source cones reproducibly increase 

desalting of soluble protein complexes and strip FOS-14 detergents from αHL without 

drastically decreasing the total ion abundances for these complexes or causing premature 

protein unfolding. Swapping these source cones is a facile process that does not require 
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venting of the instrument and allows for the source activation characteristics to be tuned 

in a controllable fashion based on the aperture size. 
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CHAPTER III 

INCREASING COLLISIONAL ACTIVATION OF PROTEIN COMPLEXES USING 

SMALLER APERTURE SOURCE SAMPLING CONES ON A SYNAPT Q-IM-TOF 

INSTRUMENT WITH A STEPWAVE SOURCE 

 

While the material included here is primarily my own work, Micah T Donor and 

Samantha O. Shepherd aided analysis with protein ion simulations and James S. Prell 

contributed to experimental design and interpretation. This work was recently submitted 

as an Application Note to the Journal of the American Society for Mass Spectrometry for 

publication with the above named as co-authors.  

Introduction 

 A significant challenge of native ion mobility-mass spectrometry with nano-

electrospray ionization is that cosolutes from solution adduct to protein ions.21,72,166,167 

This causes peak broadening that can obscure ligand binding and hinder accurate mass 

determination.21 Typically, native-like protein ions are accelerated into neutral buffer 

gases either in the relatively high-pressure instrument source or in a collision cell within 

the instrument to aid desalting or to cause unfolding/dissociation. Previous generations of 

the Waters Q-IM-TOF Synapt instruments used a source “extraction cone” for nozzle-

skimmer activation, which can be very effective for desalting and detergent removal from 

membrane proteins.168,169 More recent generations of the Synapt instrument replaced the 

extraction cone with a wide-diameter traveling wave “Stepwave” ion guide between the 

source region and quadrupole. The Stepwave, which operates in standard configuration at 

a pressure of ~3.0 mbar for the first segment and ~9.0e-3 mbar at the source turbo pump, 
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is used in combination with a larger sampling cone (SC) than in earlier Synapt series 

instruments to increase sensitivity at the expense of decreasing the maximum degree of 

ion activation and desalting for large ions.  

It is known that ions generated by ESI can undergo collisional heating, cooling, or 

both upon transfer into the vacuum of the instrument interior.170,171 Acceleration into the 

decreasing gas pressure gradient between the exterior and source converts kinetic energy 

of collisions into internal energy, whereas solvent and salt evaporation can remove 

internal energy from the ion. The pressure of the source region is a key determinant of the 

extent of collisional cooling or heating ions experience.72,168,171–173 High pressures (low 

mbar) in the instrument source increase collisional cooling to slow protein ions for 

efficient transfer.172,173 However, excessive collisional cooling leads to increased salt 

adduction.72,168 Thus, a balance must be struck such that pressure is sufficient to transmit 

large ions, but not so high as to prevent adduct removal. Figure 8A shows a theoretical 

scenario where low and medium pressures (red and green) would completely desalt the 

protein (and could begin unfolding the protein in the case of the red curve line) in the 

source region while high pressure (blue) would not. Desalting a protein in the source 

region prior to the quadrupole may aid experiments performed in the collision or IMS 

cells. For example, a protein could be fully desalted prior to an unfolding and dissociation 

experiment, allowing the full range of collision cell voltages to be accessed that would 

otherwise be necessary to first desalt before substantial unfolding and dissociation.  

Landreh et al. demonstrated that reducing the source pressure on the Synapt G1 

HDMS with an adjustable valve between the source region and its dedicated pumping 

line reduces collisional cooling to aid activation of membrane proteins.168 This method 
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typically also raises the pressure throughout the instrument, therefore efficacy is limited 

by the operating pressure of the TOF region. The Synapt G2-Si does not have a dedicated 

source pump line. Thus we sought a facile, “hot-swappable” approach to increase ion 

heating in the source of a Waters Synapt G2-Si instrument by reducing the pressure with 

smaller aperture source SCs, that do not affect pressures in the rest of the instrument (see 

Table A1 in Appendix B for SC-specific instrument pressures).  

Methods: 

 GroEL was purchased from Millipore-Sigma and prepared using established 

protocols.169 αHL monomers were purchased from Millipore-Sigma and oligomerized in 

n-tetradecylphosphocholine (FOS-14) detergent solutions as described previously in 

Chapter II and the supplemental methods in Appendix A. Waters Synapt G2-Si 

instrumental parameters are listed in the Supplemental Methods in Appendix B.91 GroEL 

mass spectral peaks were analyzed using Igor Pro (WaveMetrics) to determine excess 

mass, peak fwhm, and integrated abundances for each charge state. Mass spectra for αHL 

heptamers were deconvolved using iFAMS.87,88,118  

Ion heating and cooling simulations were performed as previously described.174 A 

pressure (from 3.0 mbar to 9.0e-3 mbar for the large SC) exponential decay length of 2.5 

mm was assumed as ions are accelerated from the Stepwave through a differential 

aperture into an ion guide in the source. Because the exact pressure decay length is not 

known, we also modeled results for shorter (1.25 mm) and longer (5 mm) decay lengths 

(see Figure A1 in Appendix B). Simulation details are further described in the 

Supplemental Methods in Appendix B.  

Results and Discussion: 
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GroEL 14-mer (sequence mass 800,770 Da) is a common protein complex in 

native MS for assessing instrumental figures of merit for transmission of large ions and  

 

Figure 8: GroEL desalting and unfolding with each source sampling cone aperture size.  
(A) Simple model of protein ion heating/cooling (effective ion vibrational temperature, 
Tint (solid lines) after ions are accelerated in the instrument source (with initial laboratory-
frame kinetic energy KEion(dashed lines)) under varying source pressures to demonstrate 
the balance between ion heating, desalting, and unfolding/dissociation at low (red), 
medium (green), and high (blue) pressures (note: not to scale). Excess mass (B) and 
weighted average DT (B) for GroEL70+ as the SC potential is raised with each SC size. 
Data were collected in triplicate on separate days with error bars representing one 
standard deviation. Inset table for (B) provides aperture size for each cone and 
corresponding instrument pressure readbacks. 
 



 

42 

 

various types of ion activation.21,72,99,175 We used GroEL to benchmark effects of ion 

activation in the instrument source with each SC diameter. The “large” cone refers to the 

standard 0.8 mm i.d. cone for the Synapt G2-Si, while the “medium” and “small” cones 

refer to 0.67 and 0.45 mm i.d. SCs from Waters Xevo instruments to reduce the backing 

and source pressures. Instrument pressures beyond the source are unaffected (Table A1 in 

Appendix B). Experimentally determined excess mass (Figure 8B), drift time (DT) 

(Figure 8C), peak width (Figure A2A in Appendix B), and ion abundance (Figure A2B in 

Appendix B) were used to assess GroEL activation with each SC as the cone potential 

was incrementally raised from 10-200 V. At low cone potentials, little difference is 

measured between the cone sizes. Above 60 V, ion activation increases as the cone 

aperture decreases, with the small cone the most activating and the large cone the least. 

Selected mass spectra of the GroEL 14-mer for each cone are shown in Figure A3 in 

Appendix B. The greatest difference in excess mass between the large and small cone is 

~4 kDa at 90 V, whereas the medium cone at 100 V leads to ~2 kDa less excess mass 

than the large cone. Thus, the small cone provides the equivalent of an extra 50 V cone 

potential beyond the standard configuration (large cone), and the medium cone 30 V. 

These trends are paralleled in the peak width measures (Figure A2A in Appendix B), 

with the smaller cones leading to narrower peaks (more desalted) at lower potentials. The 

smaller cone leads to 20-30% reduction in GroEL ion signal as compared to the standard 

cone (Figure A2B in Appendix B) but greatly improves adduct removal capabilities.  

The DT distributions (Figure 8C) for GroEL activation with each SC exhibits the 

same trend with aperture size. The potential at which unfolding begins with each SC 

decreases with decreasing cone aperture (large: 190 V, medium: 150 V, small: 130 V). 
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Independent of aperture size, GroEL unfolding begins with ~400 Da of excess mass 

remaining,72,169 suggesting that the smaller SCs do not cause such rapid heating that a 

different unfolding pathway is followed. At high SC potentials (170-200 V) the medium 

and small cones can cause dissociation of GroEL (Figure A4 in Appendix B) without 

additional activation in the trap, whereas the large cone does. Interestingly, the DT 

distributions for GroEL with each SC indicate aperture-dependent maximal degrees of 

ion compaction before the unfolding onset voltage (Figure 8C).82 Together, these GroEL 

experiments demonstrate that the “hot-swappable,” smaller aperture SCs improve 

desalting in the source region of the Synapt instrument. 

 

Figure 9: Simulated ion heating of BSA15+ under pressure conditions that match 
those produced by each SC diameter (pressures indicated in inset table Figure 8C) as a 
function of acceleration potential. 

 
Lower pressure in the instrument source can decrease the amount of collisional 

cooling ions undergo upon transfer from atmospheric pressure to vacuum.72,168,171,173 To 

further explore increased ion activation at lower pressures, protein ion heating and 

cooling simulations were performed at pressures and potentials that replicate those 

produced at the exit of the Stepwave as ions are accelerated across a differential aperture 
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into a conjoined ion guide. From these simulations (Figure 9) of bovine serum albumin 

(BSA15+) ions, little difference in effective ion internal temperature is predicted as a 

function of pressure at low cone potentials. However, the slopes of the ion heating trends 

increase as the pressure is reduced with the medium (slope 1.5x large) and small (slope 

2.25x large) cones. This means as the cone potential is raised at lower pressures, a higher 

percentage of collisions are net heating leading to a more efficient conversion of kinetic 

to internal energy, consistent with the GroEL experiments.  

 

Figure 10: Overlaid mass spectra of αHL complexes in FOS-14 micelles with each 
source sampling cone at a cone potential of 150 V. Lower m/z portions of the mass 
spectra are truncated for clarity due to increasing signal from empty FOS-14 micelles. 
The highest-abundance charge state for each spectrum is indicated.  

 

To demonstrate the advantages of smaller SCs when working with a membrane 

protein complex that requires significant collisional activation for analysis, we used αHL 

heptamers formed in FOS-14 detergent.91 We previously demonstrated that stripping the 

lipid-like detergent FOS-14 from αHL complexes is difficult, and that dramatic charge 
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reduction occurs when FOS-14 molecules are removed. For each SC, mass spectra were 

collected at cone potentials of 25 V (Figure A5A in Appendix B), 100 V (Figure A5B in 

Appendix B), and 150 V (Figure 10). Mass spectra of αHL FOS-14 micelle-embedded 

complexes are highly congested and require deconvolution using Gábor Transform 

analysis in iFAMS.88 The average mass, charge, and number of associated FOS-14 

molecules are reported in Table A2 in Appendix B. At 25 V the mass spectra for αHL 

complexes in FOS-14 micelles heavily overlap. By 100 V the charge and FOS-14 

distributions for αHL complexes with each cone are shifted relative to one another, with 

the medium and small cone removing more FOS-14 and charge. At 150V, the large cone 

produces an average charge state of 23.4+ with 116 ± 23 FOS-14 molecules associating 

with αHL heptamer complexes, while the medium cone has an average charge of 19.8+ 

with 108 ± 23 FOS-14 molecules, and the small cone strips the most FOS-14 and charge 

to 16.7+ and 104 ± 19 FOS-14 molecules. These experiments are consistent with the 

GroEL data, showing that the medium and small SCs are more activating than the large 

cone, and that this increase in collision energy can be useful for removing adducts like 

detergents and lipids from membrane proteins without altering pressures in other regions 

of the instrument. 

Conclusions: 

 Here, we demonstrated and quantified the collisional activation effects of using 

source SCs with smaller apertures on protein ions on a Waters Synapt G2-Si instrument. 

Protein ion activation follows the trend of increasing activation with decreasing SC 

aperture size, with only a modest reduction in total ion signal. The increase in activation 

is caused by the concomitant decrease in source pressure with the smaller SCs, which 
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reduces collisional cooling of protein ions in the instrument source.72,168,171–173 Based on 

excess mass and DT measurements of GroEL, the medium and small cones provide ~30 

and ~50 V additional SC potential than the large cone, respectively. This increase in 

collision energy can be used to strip difficult-to-remove adducts such as detergents and 

lipids from membrane proteins with the Synapt G2-Si’s otherwise very gentle ESI source, 

as demonstrated here with αHL heptamer complexes in FOS-14 micelles. Distinct 

additional advantages of these smaller SCs are that they are inexpensive, can be quickly 

exchanged without venting the instrument, and do not significantly affect pressures 

beyond the instrument source. 

 The ability of FOS-14 to significantly strip charge away from αHL micelle-

embedded ions in the gas phase as well as the salt or zwitterionic character of lipid 

headgroups lead us to investigate the possibility of lipids to adduct non-specifically to 

protein complexes in the gas-phase. As mentioned in Chapter II and this chapter, FOS-14 

detergent has a phosphocholine headgroup that is the same as any other phosphocholine 

lipid found in nature. Since FOS-14 readily strips charge from protein ions, this suggests 

phosphocholine lipids may also strip charge from membrane proteins in the gas phase 

when activated from detergent-lipid micelles or lipoprotein nanodiscs. This may have 

significant ramifications for native-MS studies of membrane protein-lipid binding 

interactions where the strength of such interactions is of interest, and leads to the 

important question of, to what extent does the abundance and strength of these gas-phase 

interactions reflect membrane protein-lipid binding affinities in solution? 
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CHAPTER IV 

 

NON-SPECIFIC BINDING OF LIPID HEAD GROUPS TO SOLUBLE PROTEINS 

AND α-HEMOLYSIN LIPID BINDING IN DETERGENT-LIPID MICELLES AND 

LIPOPROTEIN NANODISCS 

 

While the material included here is primarily my own work, Micah T. Donor, Amber D. 

Rolland, and Samantha O. Shepherd assisted with sample preparation and analysis. James 

S. Prell contributed to experimental design and interpretation. This work will form 

portions of manuscripts to be submitted in the future, with the above named as co-

authors. 

Introduction 

 Over the last decade native-MS has expanded dramatically to the application of 

membrane protein systems.21,85 Using native-MS to determine the strength of interactions 

between membrane proteins and various lipids is of particular interest to structural 

biology due to the difficulty of studying these interactions by the more traditional 

techniques mentioned in Chapter I, and the importance these interactions have on some 

membrane proteins.15,16,54,56,106,176 The key advantage of native-MS in this respect is that 

membrane protein-lipid interactions can be studied from solutions that contain 

biologically relevant concentrations of components and the native-like structure and 

stoichiometry of these interactions can be maintained.  

The Robinson, Laganowsky, Marty, Klassen, and Wysocki groups have pioneered 

native-MS techniques to study membrane protein-lipid interactions in a broad range of 
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membrane mimetic systems such as detergent-lipid micelles,16,102,106,157,177,178 lipoprotein 

nanodiscs,89,90,109,112,179–181 and even from native membrane vesicles.113,114 In several of 

these studies, based on relative abundances of apo or ligand bound states collected from 

native mass spectra, apparent dissociation constants or mole fraction binding affinities 

were measured between membrane proteins and lipids or other small molecules or 

peptides.16,106,108,116,182 These measurements are then used to demonstrate solution-based 

phenomena such as allostery between lipid binding events or propose gating mechanisms 

in ion channels based on lipid binding.108,182 

However, as exemplified in Chapter III, there may not be an exact correlation 

between association of molecules measured in the gas phase with solution phase 

interactions. Non-specific association between two species can be an artefact of the nano-

electrospray ionization (nESI) process as species in the same droplet form a complex as 

the droplet evaporates, when the concentrations of species is sufficiently high.183–185 This 

is commonly seen between proteins and salts in nESI experiments. Even though native-

MS typically uses the volatile salt ammonium acetate in solution to suppress non-volatile 

salt adduction, sodium ions are almost always detected on compact native-like proteins. 

As shown in Chapter III the strength of interaction between native-like protein complexes 

and salts in the gas-phase can prove to be robust, requiring significant gas-phase 

activation for removal of these non-specific interactions.  

The non-specific association between lipids and membrane proteins in detergent 

micelle solutions should be considered as a possibility in nESI experiments due to the 

µM concentrations of proteins and lipids used. Landreh et al. considered this possibility 

when they compared nESI lipid binding between a membrane protein and bovine serum 
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albumin (BSA, a soluble protein that should not readily bind lipids in solution) from 

detergent-lipid micelle solutions.186 They found significantly higher levels of lipid 

binding with the membrane protein in comparison to BSA using nESI and concluded the 

association between the membrane protein and lipids was located at sites along the 

transmembrane region and not along unrelated charge sites where lipid headgroups could 

non-specifically adduct. While this experimental framework does support that non-

specific association between proteins and lipids is unlikely to be a considerable 

contribution to initial binding in nESI experiments, it does not however, account for the 

relative strength of protein-lipid binding interactions in the gas phase and the significant 

amount of gas-phase activation typically required to remove the detergent micelle from 

membrane proteins. The ideal scenario for translating observed gas-phase association in 

terms of physiologically-relevant protein-lipid interactions is that trends in lipid binding 

in the gas phase mimics solution phase binding affinities and is not merely a gas-phase 

phenomenon due to the chemistry of the lipid headgroup.16,89,106,116,182  

 Common lipid tails have no readily ionizable bonds, but lipid headgroups are 

polar and either negatively charged or zwitterionic in solution at neutral pH. The acidic 

phosphate and/or basic amine groups of the common biological lipids could form shared-

proton bonds with basic residues on the protein surface where proteins are thought to be 

typically charged in the ESI process.187 The strength of these shared proton bonds relies 

upon the gas-phase basicity (GB) values of both species, with stronger interactions 

forming when the GB values of each species are similar, than when one species is more 

basic than the other. A recent study of the GB of common biological lipids from my 

colleagues in the Prell and Donald groups demonstrated that the phosphatidylcholine and 
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sphingomyelin lipids are the most basic in the gas phase (highest GB value) of any small 

biomolecule measured to date and significantly more basic than arginine.188 They also 

found that phosphatidylserine and phosphatidylethanolamine have GB values very 

similar to the basic amino acids lysine and histidine, and that phosphatidic acid and 

phosphatidylglycerol are the least basic, but still more basic than alanine. This means 

that, for protein-lipid complex ions with a net positive charge, phosphatidylcholine and 

sphingomyelin should form rather weak shared proton bonds with acidic amino acids, 

while the other lipids should form stronger interactions in the gas phase, with 

phosphatidylserine and phosphatidylethanolamine the strongest. Another prediction from 

these studies is that lipids with a phosphocholine headgroup (i.e., sphingomyelin and 

phosphatidlycholine) should act as charge reducing reagents upon gas-phase activation, 

such that if phosphatidylcholine associates with a protonated site on a protein using ESI, 

upon gas-phase dissociation, the phosphatidylcholine lipid should dissociate as a 

protonated species. 

 To experimentally test these predictions for the gas-phase behavior of protein-

lipid complexes, I used soluble proteins and lipid headgroups (without acyl chains in 

order to increase their solubility) aqueous solutions. This experimental framework allows 

for the interrogation of only non-specific interactions between proteins and lipid 

headgroups without the need for detergents or nanodiscs required with membrane 

proteins and full lipids. In this chapter I demonstrate that lipid headgroups can indeed 

non-specifically associate with proteins through nESI and that the general extent and 

strength of binding follows the outlined predictions with phosphoserine and 

phosphoethanolamine strongly binding to proteins in the gas phase and the ability of 
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phosphocholine to act as a charge reducing reagent. These results demonstrate the 

importance in considering the GB of lipid headgroups when studying membrane protein-

lipid interactions with native-MS and indicate that current protocols for identifying 

physiologically relevant interactions with native-MS may be insufficient.106,107,115,176,189 I 

also include αHL lipid binding experiments in detergent-lipid micelle solutions and 

lipoprotein nanodiscs with the goal of how these complexes can continue to be studied 

based in light of solution experiments that predict the preference for phosphocholine lipid 

binding by αHL complexes. 

Methods 

 Sample preparation. The lipid headgroups phosphoserine (PS), 

phosphorylethanolamine (PE), glycerolphosphocholine (GPC), and glycerol 1-phosphate 

sodium salt (PG), as well as the proteins transferrin and αHL monomers were purchased 

from Millipore Sigma. The soluble lyophilized protein transferrin was reconstituted in 

ultrapure 18 MΩ water and buffer-exchanged into 200 mM ammonium acetate pH 7.5. 

Lipid headgroups were similarly dissolved in the same 200 mM ammonium acetate 

solutions. For the transferrin experiments the final concentration of protein was 5 µM 

with 0.5 mM of one lipid headgroup, or in mixed headgroup solutions, 0.5 mM of each 

headgroup.   

 αHL monomers were oligomerized in C8E4 micelle solutions as described in 

Chapter II and Appendix B. For detergent-lipid micelle solutions, lipids dissolved in 

chloroform were dried under a stream of dry nitrogen and weighed. The dried lipids were 

then reconstituted with sonication in 16 mM C8E4 micelle solutions as 5 mg/mL lipid 
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stocks. The lipid concentration could then be further diluted as needed for lipid binding 

experiments. 

 Additionally, αHL monomers oligomerized in C8E4 micelle solutions were 

attempted to be inserted into single lipid lipoprotein nanodiscs with either MSP1D1 

(diameter ~10 nm) or the larger MSP1E3D1 (diameter ~ 12 nm) membrane scaffold 

proteins (MSP). This was done following standard protocols.190,191 Briefly, the membrane 

scaffold proteins were expressed in E. coli (BL21(DE3)).192,193 Lipid and sodium cholate 

stocks were made at 50 mM lipid to 100 mM sodium cholate. The nanodisc assembly 

mixture included 12 µM MSP, the appropriate ratio of lipid needed based on the surface 

area of the lipid (for instance 80:1 DMPC to MSP1D1),190 additional sodium cholate (to 

maintain 20 mM concentration in excess of the critical micelle concentration), and αHL 

complexes oligomerized in C8E4. The concentration of αHL complexes was assumed to 

be 1-2 µM in the final assembly mixture but is difficult to measure due to protein 

impurities in the raw sample and the presence of αHL monomers still in solution. 

Assuming these concentrations of toxin complexes approximately 1:6 to 1:4 nanodiscs 

made are toxin embedded. After incubation for at least one hour, samples were dialyzed 

overnight on biobeads (at the melting point transition temperature of the lipid used) to 

remove the cholate in a buffer containing 50 mM Tris, 100 mM NaCl, and 0.5 mM 

EDTA at pH 7.5. The next day samples were then dialyzed overnight into 200 mM 

ammonium acetate pH 7.5. Samples were then either ready for use as is or were further 

purified using a size-exclusion chromatography to enrich for αHL nanodisc inserted 

complexes over empty nanodiscs. Control nanodiscs without αHL complexes were also 

made to ensure the nanodisc procedure worked accordingly. Samples were additionally 
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analyzed using SDS-PAGE to check for the presence of αHL and the MSP, as was done 

with αHL detergent micelle complexes from Chapter II and in Appendix B. 

 Native IM-MS. Most mass spectra were acquired using a Synapt G2-Si (Waters 

Corp.) quadrupole-ion mobility-time-of-flight mass spectrometer with a nESI source. 

Where stated, some additional mass spectra of αHL nanodisc complexes were acquired 

on a Thermo Scientific Q-Exactive Ultra High Mass Range (UHMR) Orbitrap mass 

spectrometer also with a nESI source. For both instruments, nESI emitters were pulled 

from 0.78 mm i.d. borosilicate capillaries to a final i.d. of ~1-3 µm with a Flaming-

Brown P-97 micropipette puller from Sutter instruments. Pulled emitters were filled with 

3-5 μL of sample and spray was initiated with a platinum wire inserted into the sample 

solution and a spray voltage of 0.7-1.0 kV. 

 For the lipid headgroup studies with transferrin, the Synapt source was held at 

ambient temperature. The nitrogen, helium, and argon gas flow rates were 50, 100, and 5 

mL/min, respectively. The IMS traveling wave velocity was set to 400 m/s and a wave 

height of 20 V. For collision induced dissociation experiments the trap potential was 

incrementally raised in 10 V steps from 10-100 V while the source sampling cone 

potential was held at 25 V. For each transferrin-lipid headgroup combination tested the 

activation series was performed with isolation of the 19+ charge state at a LM resolution 

of 4. This allowed for charge stripping to be readily detected upon dissociation of the 

lipid headgroup. Some additional mass spectra were acquired without quadrupole 

isolation at 10, 50, 70, and 100 V of trap activation. 

 Data analysis. Native mass spectra of transferrin with each lipid headgroup were 

deconvolved using Unidec160,161 to determine the charge state and mass distributions. 
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This also aided assignments of lipid headgroup adducts across charge states. 

Deconvolved mass spectra were then further analyzed using Igor Pro (Wavemetrics) in a 

similar way as in Chapter II and III. αHL complexes embedded in nanodiscs were 

analyzed with iFAMS using GT as outlined in Chapter II.87,88,118  

Results and Discussion 

 Lipid headgroups readily adduct to native transferrin protein ions in nESI. 

The lipid headgroups phosphoserine (PS), phosphorylethanolamine (PE), 

glycerolphosphorylcholine (GPC), and glycerol 1-phosphate (PG) are some of the most 

common biological headgroups and their structures are shown in Figure C1 in Appendix 

C. GPC was used instead of phosphorylcholine (PC) because without the glycerol group 

PC and PS headgroups have a mass difference of ~1 Da and would be difficult to 

differentiate in mixed lipid headgroup experiments. Transferrin was selected as a model 

soluble monomeric protein due to its rather large size of 79.6 kDa (of the same order as 

many membrane protein complexes) and homogeneity in base mass with no identified 

isoforms. Transferrin, and iron-binding protein with homologs found in many organisms, 

has no known physiologically relevant interactions with lipids. Native mass spectra of 

transferrin are shown in Figure C2 in Appendix C at 10, 50, or 70 V of trap activation. 

Figure 11 depicts native mass spectra of solutions containing 5 µM transferrin and 0.5 

mM of each lipid headgroup tested individually at a low trap activation of 10 V (Figure 

11A) and a moderate trap activation of 70 V (Figure 11B). At low trap activation 

transferrin with each headgroup forms a narrow charge state distribution of 17-21+ (most 

abundant charge state 19+) with ~1200 Da of excess mass. 
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Figure 11. Native mass spectra of transferrin and common lipid headgroups. nESI of 
solutions containing 5 µM transferrin and 0.5 mM of either PS, PG, GPC, or PE. (A) 
Overlaid mass spectra with each headgroup at a low trap activation of 10 V. (B) Overlaid 
mass spectra with each headgroup at a moderate trap activation of 70 V. Substantial 
charge stripping is observed of transferrin as GPC adducts are dissociated. (C-F) 
Comparison of transferrin19+ with each lipid headgroup under the same instrumental 
conditions. Stars mark the transferrin19+ base peak with no adducts and the circles mark 
the first resolved adduct from a given lipid headgroup. 
 

Distinct adducts are not resolved under these light activating conditions. Around a 

trap potential of 50 V, resolution of individual adduction states is detected with clear 

resolution by 70 V with all headgroups except for PG (Figure 11 B). At this trap 

activation charge stripping is seen in the mass spectra of transferrin with GPC as 

adducted GPC is dissociated. This supports the prediction that the GPC headgroup, with 

its high GB value can act as a charge reducing agent upon dissociation. No clear charge 

stripping is detected from the other lipid headgroups upon dissociation.  

Figure 11C-F shows mass spectra of transferrin19+ complexed non-specifically 

with each type of lipid headgroup. The extent of binding at this level of trap activation on 
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transferrin19+ follows the trend PS > PE ≥ PG > GPC. Under these conditions the most 

abundant adduction state of transferrin19+ is 5 PS adducts in comparison to 1 PE adduct, 

while the unadducted base peak for transferrin19+ is the most abundant in GPC solutions. 

Due to the anionic character of PG, these solutions include sodium, which additionally 

adducts in nESI and obscures clear individual adduction states of PG. This trend in 

binding is again in line with the predictions made based on the GB of each lipid 

headgroup where the similarity in GB of PS the basic residues lysine and histidine leads 

to strong gas-phase interactions, while the high GB of GPC leads to weaker interactions. 

To gain a better understanding of the extent and gas-phase strength of these 

associations, Figure 12A-D depicts charge-state deconvolved (Unidec) mass spectra of 

 

Figure 12. Deconvolved native mass spectra of transferrin with common lipid  
headgroups. Overlaid deconvolved (using Unidec) native mass spectra using of 
transferrin with (A) PS, (B) PE, (C) PG, or (D) GPC as the trap activation voltage was 
raised from low (10 V) to high (100 V). 
 
transferrin with each lipid headgroup under the given trap activation voltage (10, 50, 70, 

and 100 V). Charge state deconvolution allows for analysis of the headgroup adduction 
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state across all the charge states present in each mass spectrum as the activation level is 

raised. PS clearly forms the strongest interactions with transferrin. At a trap potential of 

100 V, several PS adducts remain bound. With transferrin alone at 100 V much of the 

protein has undergone dissociation (Figure C3 in Appendix C), showing that these PS 

adducts are very robust. Several PE adducts are resolved by 50 V, but for PG mass 

spectral resolution remains poor. For both PE and PG, headgroup adducts are stripped 

from transferrin by 100 V, while GPC adducts remain bound. At first glance these 

remaining GPC adducts seem to counter the predictions made that GPC should weakly 

associate to proteins based on GPC’s high GB value. However, the observed adduction at 

100 V is due to the high degree of charge stripping that occurs upon GPC dissociation. 

The charge-stripped ions have lower Coulomb repulsion between their remaining charge 

sites, which reduces the propensity to further strip GPC adducts.112,194,195 This 

observation is additionally supported by the higher degree of adduction on the lower 

charge state transferrin ions in Figure 11B.  In the case of lipid binding studies to 

membrane proteins, this implies that gas-phase binding thermodynamics may 

dramatically affect which lipids remain bound to the protein as lipids and other adducts 

are removed in the gas phase, leading to the heightened possibility of incorrect 

interpretation of these data in terms of physiologically relevant membrane protein lipid 

specificity if extreme caution is not exercised. In a mixed lipid situation these 

observations would additionally predict that PS headgroup lipids would likely be the 

lipids resolved if substantial gas-phase activation is required to resolve lipid binding. 

Mixed lipid headgroup studies reveals PS outcompetes other lipid 

headgroups for transferrin association. It is important to consider competition in lipid 
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headgroup binding to proteins as the gas-phase collisional activation is incrementally 

raised. Often in native-MS experiments of membrane proteins in nanodiscs or detergent-

lipid micelles a mixture of lipids may be used with the goal of understanding which type 

of lipid binds more strongly to the membrane protein than others.89,108 In these 

experiments stepwise collisional activation is used to incrementally strip off excess lipids 

and/or detergents that are loosely bound till only a few lipids remain. These most tightly 

bound lipids are typically interpreted to be structural lipids bound between protein 

subunits or annular lipids that directly surround the membrane protein.16,89,106 Based on 

the strength of PS headgroup adducts displayed in Figures 11 and 12 it is clear that, in 

some cases, PS adducts can outcompete other lipid headgroups for binding in this type of 

gas-phase collisional activation experiment in a way that could be interpreted, according 

to current protocols,176 as specific interactions from solution.  

 To test this prediction, solutions containing 5 µM transferrin were mixed with 0.5 

mM of two lipid headgroups and investigated using nESI with incremental steps in trap 

collisional activation. Transferrin19+ ions with multiple lipid headgroup adducts were 

isolated to additionally track charge loss upon dissociation of any lipid headgroups. 

Figure 13A shows deconvoluted transferrin19+ with PS alone as the trap collision energy 

is scanned from 10-100 V, while Figure 13B-D shows the combination of PS with the 

other lipid headgroups tested. In every combination of PS with GPC (13B), PE (13C), or 

PG (13D), at high collisional activation PS adducts are resolved and the other lipid 

headgroup is either never resolved (PE and PG) or is removed by 100 V in the trap 

(GPC). In the case of transferrin with PS and GPC at 80 V the deconvolved mass 
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distribution shows some evidence of PS and GPC (lower abundance) binding, but at 100 

V only PS adducts are resolved. With PS and PE, only PS adducts are ever resolved at 60 

 

Figure 13. Selected deconvolved mass spectra of transferrin19+ with PS alone (A), PS and 
GPC (B), PS and PE (C), and PS and PG (D) as the trap is incrementally raised from 10-
100 V in 10 V steps. In each case of mixed lipid headgroups, PS adducts are observed at 
high activation in support that PS forms the strongest shared protein bonds with proteins 
in the gas phase. The mass difference between the lighter and heavier lipid headgroup is 
given with every combination. 
 
V and above. With PS and PG there is a small mass difference (13.0 Da) between the two 

headgroups and the addition of extra sodium with PG frustrates adduct resolution. 

However, comparing the mass distributions of transferrin with PS alone and PG alone to 

the mixed combination demonstrates that the poorly resolved adducts in the PS and PG 

headgroup mixture are likely PS adducts at 100 V of trap activation (Figure C4 in 

Appendix C).  
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These mixed-lipid headgroup experiments demonstrate that PS forms stronger 

shared proton bonds with positively charged protein ions in the gas-phase than do the 

other lipid headgroups tested. These results indicate that extreme caution should be used 

in interpreting survival of PS-membrane protein interactions in native-MS collision-

induced dissociation experiments as being physiologically important.16,106,115 By 

extension, these results also indicate that quantitative solution-phase lipid-binding 

affinities for membrane proteins as currently determined by native-MS protocols may 

often reflect artifacts of gas-phase binding thermodynamics.115,176,189,196 

Only GPC removes charge when dissociated and is consistent across 

mixtures of headgroups. While Figure 11 demonstrates that GPC dissociation can cause 

significant charge stripping, it is important to make sure that other lipid headgroups do 

not display the same behavior as predicted based by their respective GB values and to 

understand to what extent charge stripping occurs with GPC. Since the experiment 

described above was performed with quadrupole isolation of transferrin19+ with adducts, 

changes in the weighted average charge state and width of the charge state distribution 

were tracked as the trap activation was raised. Figure 14 shows the weighted average loss 

of charge from these isolated transferrin19+ ions as they are activated in the trap and lipid 

headgroups dissociate. Every lipid headgroup-transferrin solution tested with GPC alone 

or in combination with another lipid headgroup yielded charge loss as GPC dissociated 

from transferrin. With GPC alone at 100 V on the trap, the weighted average charge state 

is 16.3 ± 1.6 demonstrating a loss of 2.7 charges from transferrin19+ on average. In 

comparison to transferrin with PS at 100 V trap activation, transferrin maintained an 

average weighted charge state of 19.0 ± 0.57 (small amount of transferrin18+ detected, 
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likely from imperfect isolation in the quadrupole due to overlapping precursor m/z 

distributions). Figure 14 demonstrates that only GPC leads to charge stripping while the 

other lipid headgroups do not cause measurable loss of charge upon dissociation. On 

 

Figure 14. Weighted average loss of charge of isolated transferrin19+ as lipid headgroups 
are dissociated as the trap activation was incrementally raised in 10 V increments from 
10-100 V. Error bars represent one standard deviation of the charge state distribution. 
Only incorporation of GPC leads to significant charge stripping and broadening of the 
charge state distribution as GPC is dissociated from transferrin.  
 
average 2-3 charges are consistently lost when GPC is used along with other lipid 

headgroups across the range of activation tested. This experimentally confirms that the 

GPC lipid headgroup, which has a high GB, can effectively act as a charge reducing 

reagent when dissociated from protein ions in the gas phase. In contrast, the other lipid 

headgroups studied do not strip charge upon gas-phase ion activation.  

 Lipid binding studies of αHL complexes oligomerized in C8E4 detergent 

micelles. The above experiments using a non-membrane protein establish that artefactual 

association of lipid headgroups to proteins in the gas-phase using nESI can display 

patterns that can be misinterpreted according to current protocols as evidence of solution 

preference-phase lipid preference. We next investigated this effect using membrane 
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proteins and full lipids (i.e., including acyl tails). Figure 15 shows native mass spectra of 

αHL complexes oligomerized in C8E4 with 1 mM 1,2-Dimyristoyl-sn-glycero-3-

phosphocholine (DMPC) lipid. Here, as the cone potential was held at 75 V and the trap 

 

Figure 15. αHL complexes oligomerized in C8E4 detergent micelles with 1 mM DMPC 
lipids added. By a cone potential of 75 V and a trap potential of 35 V the detergent 
micelle is stripped leaving αHL complexes with bound DMPC lipids. Increasing the trap 
collisional activation to 75 V dissociates several DMPC lipids and reduces the average 
charge state distribution. The inset shows the 35+ heptamer ions with up to 3 DMPC 
lipids bound at 35 V in the trap and fewer bound lipids at 100 V. 
 
collisional activation was raised stepwise from 25 V to 75 V. Beginning at a trap 

potential of 35 V, the detergent micelle has been removed revealing, up to 3 DMPC lipid 

adducts (see inset on right side of figure). The ions in this mass spectrum had a weighted-

average charge state of (33.5 ± 1.9)+. As the trap collisional activation was raised to 75 

V, DMPC lipid adducts are stripped (see inset spectrum) and the average charge state is 
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reduced to (31.3 ± 2.7)+. This experiment indicates that DMPC lipids, which have PC 

headgroups, can strip charge from a membrane protein and dissociate as positive ions. 

There are a few caveats to this experiment, however. Namely, the lipid concentration 

used here is higher than typical of native-MS experiments of detergent-lipid micelles, 

which are commonly done around 200 µM or below.16,108 Additionally, a more decisive 

demonstration of charge-stripping capability of DMPC and other PC headgroup lipids 

would to use similar isolation experiments are outlined with transferrin19+ ions with lipid 

headgroup adducts. (Such experiments were planned, but not possible to execute, due to 

the shelter-in-place order in Oregon in response to the 2020 COVID-19 pandemic.)  

 
Figure 16. αHL complexes oligomerized in C8E4 detergent micelles with 200 µM of the 
designated lipid added to solution. Instrument conditions were the same for each lipid 
tested with 50 V collision potential applied to the cone and trap. This level of collisional 
activation is sufficient to remove the detergent micelle and reveal lipid binding. Each 
lipid tested associates with αHL, including the non-PC headgroup lipid POPE. The inset 
shows the 32+ heptamer with each lipid with up to 3 binding events detected. 
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Nevertheless, this experiment demonstrates the charge stripping potential of the PC 

headgroup on a full lipid when bound to a membrane protein. 

Figure 16 displays four different lipid binding experiments to αHL complexes at 

200 µM lipid. Three of these lipids share the PC headgroup (1-palmitoyl-2-oleoyl-

glycero-3-phosphocholine (POPC), N-stearoyl-D-erythro-sphingomyelin (SM), and 

DMPC), while one has the PE headgroup (1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (POPE)). At 200 µM lipid concentration, αHL complexes are 

found in these native-MS experiments to bind each of these lipids to varying extents. As 

mentioned in Chapter IV, αHL is thought to have lipid preference for PC headgroup 

lipids with specific binding sites between the rim and stem domains of the 

complex.149,159,165 Based on these mass spectra and the abundances of the lipid bound 

states, there is a higher degree of association between αHL complexes and the PC 

headgroup lipids over POPE (see inset of 32+ heptamer ions with lipids bound). 

αHL lipoprotein nanodisc complexes The above-described transferrin 

experiments with lipid headgroups demonstrate that the GB of lipids may lead to 

artefactual gas-phase derived affinities in detergent-lipid micelle experiments, thus it is 

important to study membrane proteins with as many lipids still bound as possible and as 

little gas-phase activation as necessary to resolve and interpret their mass spectra. Ideally 

this would be achieved using lipid bilayer mimics, such as nanodiscs, rather than 

detergent micelles as hosts for the membrane protein complex. Further, limiting gas-

phase activation can prevent loss of lipids that may be physiologically important in 

solution but may not bind as tightly in the gas-phase, such as lipids containing PC/SM 

headgroups. Interpreting mass spectra of membrane proteins with far more lipids bound 
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than is currently done in lipid-affinity native-MS work should therefore be a more 

reliable way to investigate physiologically relevant lipid-binding and -recruiting 

preferences.  

Nanodiscs are commonly used as a membrane mimetic in condensed-phase 

studies, as they can often be closer to a physiological membrane environment than are 

detergent micelles.40,89,90,179 Depending on the size of the membrane scaffold protein 

(MSP) used, nanodiscs can contain ~100-400 lipids with membrane protein complexes, 

 

Figure 17. αHL complexes inserted into POPC MSP1D1 nanodiscs and ejected 
using 5% glycerol carbonate. (A) Mass spectrum collected on UHMR Orbitrap 
instrument with high in-source activation to strip away the MSP and most of the POPC 
lipids. (B) Gábor Transform of mass spectrum in (A). (C) shows the deconvolved mass 
distrubutions from the GT. (C) Zero-charge mass spectrum from the GT. Vertical dashed 
lines mark the mass positions of bare hexameric and heptameric complexes. 

 
in contrast to the handful of lipids per micelle used in detergent-lipid micelle 

experiments. The Marty and Prell labs recently reported using chemical additives in 

solution that dramatically increase the charge states of proteins in ESI to destabilize 

membrane protein nanodisc complexes.90 Adding 5% glycerol carbonate (GC) in positive 
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ionization mode resulted in ejection of intact membrane protein complexes from the 

nanodisc with a few bound lipids such that lipids binding directly to the membrane 

protein could be detected and the mass spectra were resolved enough for detailed 

interpretation. This method allows for the investigation of annular lipids that bind around 

the surface of the membrane protein. 

Assembly of αHL complexes inserted into lipoprotein nanodiscs (αHL NDs) has not 

heretofore been reported in the literature. I developed a protocol for nanodisc insertion 

based around forming αHL complexes in C8E4 detergent solutions as in Chapter II, to 

which the nanodisc components solubilized in cholate detergent were added to form 

nanodiscs once the cholate is removed through dialysis.190,191 This is schematically 

depicted in Figure C5 in Appendix C and supported by SDS-PAGE analysis (Figure C6 

in Appendix C). Importantly, this protocol produces 2-3x the number of empty nanodiscs 

than αHL complex-embedded nanodiscs with the goal that all αHL complexes survive the 

nanodisc insertion procedure leading to complications in separating mass spectral signals 

corresponding to empty nanodiscs from complex embedded nanodiscs 

Figure 17A shows a mass spectrum of αHL ND complexes formed with POPC lipids 

collected on a UHMR Orbitrap mass spectrometer. To this solution 5% (vol/vol) GC was 

added to dissociate the nanodisc and release αHL complexes with POPC lipids bound. 

Most of the signal detected in Figure 17A (m/z ~8000-12000) corresponds to MSP1D1 

and POPC lipid clusters that are being dissociated from the NDs. At higher m/z (~13000-

20000) ejected αHL complexes are detected with bound lipids. Analyzing this portion of 

the mass spectrum would be very challenging by hand. Using GT (Figure 17B) as 

outlined in Chapter II and III allows for analysis of this congested mass spectrum. In the 



 

67 

 

GT frequency signals corresponding to the hexamer and heptamer can be separated and 

analyzed individually across all the charge states detected. Figure 17C shows the 

reconstructed mass spectrum from the inverse GT and highlights the overlap of the 

hexamer and heptamer distributions in the mass spectrum. Each charge state distribution 

is then combined in the deconvolved zero-charge spectrum in Figure 17D. From this 

deconvolved spectrum both the heptamer and hexamer are detected with about the same 

number of bound POPC lipids with an average of ~8 and up to 20 associated lipids. This 

mass spectrum demonstrates that αHL complexes can be inserted into lipoprotein 

nanodiscs with many more associated lipids than in detergent-lipid micelle solutions. The 

assembly protocol developed here sets the stage for future study of lipid binding using a 

membrane mimetic platform that may be much less prone to gas-phase artefacts than 

state-of-the-art protocols using detergent micelles and extensive gas-phase collisional 

activation. 

Conclusions 

 The non-specific association between several of the most common biological lipid 

headgroups and the soluble protein transferrin was investigated in light of the GB 

measurements and calculations that were recently performed.188 Each lipid headgroup 

tested readily bound to transferrin using nESI and the strength of these interactions 

followed the pattern PS > PE ≥ PG > GPC. PS adducts proved to be very robust to gas-

phase activation. In comparison, GPC headgroups were found to readily strip charge from 

transferrin upon dissociation leaving the charge stripped transferrin ions less prone to 

further dissociation of GPC adducts. These trends correlate well with the GB measures of 

each lipid headgroup. Since PS has a GB value similar to lysine, PS can form a strong 
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shared proton bond that resists dissociation. In comparison, the high GB value of GPC 

leads to rather weak shared proton bonds with amino acids, and to charge stripping upon 

dissociation. This leaves PE and PG headgroups in-between the two extremes. PE seems 

to more readily adduct to transferrin than PG, but this may be due to the difficulty of 

resolving PG adducts by the addition of sodium with PG. 

 Since the GB of lipid headgroups clearly affects the extent and strength of non-

specific association with proteins in the gas phase it is important to extend these results to 

membrane proteins with full lipids. αHL complexes in detergent-lipid micelles provides a 

potential platform for these studies. With high concentrations of DMPC lipids and 

sufficient gas-phase activation, DMPC does seem to dissociate from αHL complexes with 

a positive charge, supporting the GB measures.  

X-ray crystallography and solution studies suggest a preference for αHL binding to 

PC headgroup lipids.149,159,165 Experiments with αHL complexes in detergent-lipid 

micelles shown here demonstrates that lipids will associate with αHL in native-MS 

experiments, including the non-PC headgroup lipid POPE. It would be interesting to test 

mixed lipid binding experiments between PC and PS lipids and demonstrate which lipid 

stays bound upon significant gas-phase activation. If the PS lipid remains bound over the 

PC lipid this would indicate that membrane protein-lipid binding native-MS experiments 

should be interpreted with extreme caution. Additionally, this chapter outlines the 

potential of studying αHL lipid interactions in lipoprotein nanodiscs instead of detergent-

lipid micelles. Studying membrane protein-lipid interactions using lipoprotein nanodiscs 

may prove to be a better membrane mimetic platform than detergent-lipid micelles due to 

the higher similarity between nanodiscs and biological lipid-bilayers and the possible 
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artefacts caused by the gas-phase activation needed to strip the detergent micelle before 

lipid binding is observed. 



 

70 

 

OUTLOOK 

 

 Native mass spectrometry has emerged as a powerful tool for structural biology to 

investigate non-covalent complexes between proteins and small molecules like lipids. 

The study of membrane protein interactions with lipids is a notoriously difficult problem, 

but specific protein-lipid interactions have been demonstrated to be of physiological 

importance. This dissertation presents methods and analysis to further expand the 

frontiers of native mass spectrometry to investigate membrane protein detergent and lipid 

interactions as applied to bacterial pore forming toxins.   

 While recent X-ray crystallography, electron microscopy, and other solution-

based techniques had predominantly identified the pore forming toxin αHL from S. 

aureus to form only heptameric complexes, using native mass spectrometry as outlined in 

Chapter II, demonstrated that αHL forms both hexameric and heptameric complexes 

simultaneously. This was additionally confirmed in two very different detergent micelle 

solutions, including the detergent FOS-14, which is lipid-like. This work in FOS-14 

solutions highlighted the power of Gábor Transformation techniques to aid interpretation 

of congested mass spectra, and thus reduces the need to strip away the detergent micelle 

in order to determine the oligomeric state of membrane proteins in native-MS 

experiments. This chapter also pointed to the capability of native-MS to maintain 

compact native-like protein structures in the gas phase using ion-mobility and 

demonstrated the accuracy of simple MD simulations to predict the amount of 

compaction protein complexes undergo upon transfer from solution to vacuum.  
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 In Chapter III simple instrument modifications were introduced to aid desalting 

and detergent or lipid removal in the source region of the Synapt “Stepwave” based mass 

spectrometer. This work used source sampling cones with smaller apertures to reduce the 

source pressure, and thus increase ion heating in the source region to dissociate non-

specific salts and adducts. Using these smaller sampling cones greatly reduced the cone 

potential needed to reach the same level of desalting, while maintaining similar signal 

levels, without causing higher degrees of protein ion unfolding. This work also 

exemplified the charge reducing capability of the phosphocholine headgroup of αHL 

FOS-14 detergent micelle complexes when FOS-14 is dissociated through gas-phase 

activation. 

 Chapter IV continued this work to study the non-specific association between 

lipid headgroups and the soluble protein transferrin as well as the association between 

lipids and αHL complexes in detergent-lipid micelles and lipoprotein nanodiscs. This 

work was grounded in predictions made based on the gas-phase basicity values of lipid 

headgroups. The lipid headgroups phosphoserine and phosphoethanolamine were found 

to form strong gas-phase interactions with transferrin, while phosphocholine weakly 

associated and stripped charge from transferrin upon dissociation. These observations are 

consistent with predictions made based on the GB values of the headgroups tested, and 

thus sound a note of caution to the native-MS community in interpreting the 

physiological role of protein-lipid interactions from gas-phase experiments. Chapter IV 

also outlined the potential to further probe protein-lipid interactions using αHL 

complexes in detergent-lipid micelles and lipoprotein nanodiscs and the role GB plays 

with these interactions based on solution studies that demonstrate αHL preference for 
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phosphatidylcholine lipids. In light of the GB of lipid headgroups using lipoprotein 

nanodiscs, with 100-400 lipids, is likely a better platform for native-MS experimentation 

to study protein-lipid interactions than detergent-lipid micelles that only contain a few 

lipids per a micelle. 
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APPENDIX A 

SUPPLEMENTAL INFORMATION FOR CHAPTER II 

 

Expanded Experimental Methods 

Sample Preparation. Lyophilized monomeric alpha hemolysin (αHL) from S. 

aureus was purchased from Sigma-Aldrich (St. Louis, MO, USA). αHL monomers were 

concentrated in the presence of detergent micelles to induce oligomerization and pore 

formation.146 Detergents tetraethylene glycol monooctyl ether (C8E4) and n-

tetradecylphosphocholine (Fos-14) were purchased from Anatrace (Maumee, OH, USA). 

To produce αHL pores, lyophilized monomers were resuspended in water to a 

concentration of 0.5 mg/mL. 150 µL of this solution was then mixed with appropriate 

amounts 100 mM detergent stock to reach a final detergent concentration of 32 mM in 

the case of C8E4 (64 µL added, ~4x CMC) or 2 mM for Fos-14 (4 µL added, ~17x CMC) 

and enough ammonium acetate solution to reach a total sample volume of 200 µL. This 

mixture of αHL monomer and detergent was then concentrated in a 3 kDa cutoff 

centrifugal concentrator to an approximate volume of 35-40 µL. After concentration, the 

sample was aliquoted to 10 µL aliquots and used immediately or frozen and stored at −80 

°C for future use. Before use, each 10 µL aliquot was diluted with 20 µL of either 32 mM 

C8E4 or 2 mM Fos-14 in 200 mM ammonium acetate, pH 7.5. Then the sample was buffer 

exchanged using a centrifugal desalting column equilibrated with 2x the CMC (16 mM 

C8E4, or 0.25 mM FOS-14) of the appropriate detergent in 200 mM ammonium acetate 

pH 7.5. MS analysis was performed immediately after buffer exchanging samples. 

Instrument settings 
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Waters Synapt G2-Si. IM-MS spectra were acquired using a Waters Synapt G2-

Si Quadrupole-Ion-Mobility-Time-of-Flight (Q-ToF) mass spectrometer. Borosilicate 

glass capillary emitters (1.0 mm o.d./0.78 mm i.d., Sutter Instruments) were pulled using 

a Flaming/Brown micropipette puller (Model P-97, Sutter Instruments) to a tip size of ~2 

µm, measured using a scanning electron microscope (FEI Quanta 200 ESEM/VPSEM 

Microscopes). Nano-electrospray was initiated by applying a 0.6-0.9 kV potential to a 

platinum wire inserted into the capillary and in contact with the sample solution. Once 

spray was initiated, the potential was dropped to the lowest stable value between 0.6 and 

0.9 kV where spray could be maintained. For C8E4 αHL pore samples the sample cone 

potentials ranged between 25 and 50 V, and a “trap” collision cell potential from 25 to 

100 V was used with an Argon gas flow rate of 10 mL/min. FOS-14 αHL samples 

required higher levels of activation. For these FOS-14 samples the cone potential ranged 

from 50-150 V and the trap potential from 50-150 V. The transfer cell was held at 5 V for 

all experiments except for the mass spectrum in Figure 4B of 25 V. The source 

temperature was held at 150 °C, and the backing pressure in the source region was ~3.5 

mbar. For ion mobility experiments the helium flow rate was 50 mL/min in the helium 

cell. Nitrogen was used as the drift gas at a flow rate of 100 mL/min. A quadrupole 

profile (typically set at 3,000, 6,000, and 10,000 m/z) was used to more efficiently 

transmit large ions and reduce signal intensity for small detergent clusters.  

 Ion mobility arrival time data were calibrated according to established literature 

procedures for each replicate using calibrant proteins alcohol dehydrogenase (ADH), 

pyruvate kinase (PYK), and glutamate dehydrogenase (GDH).78,197 For αHL pores in 

C8E4 the settings were as follows:  
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Trap wave velocity: 300 m/s 

Trap wave height: 1.0 V 

IMS wave velocity: 500 m/s 

IMS wave height: 18 V 

Transfer wave velocity: 100 m/s 

Transfer wave height: 2.0 V 

For αHL pores in FOS-14 the settings were the same except an IMS wave velocity of 400 

m/s was used. 

 Simple Molecular Dynamics simulations to account for gas-phase collapse of 

protein ions on transfer to the gas phase were conducted in GROMACS using the 

GROMOS 43a2 force field. After a short vacuum relaxation step, 5-ns production runs 

were computed using a modified Berendsen thermostat at 300 K as described 

elsewhere.82 Collision cross sections for initial and collapsed structures were calculated in 

Collidoscope using the Trajectory Method after identifying low-energy charge state 

isomers with the Charge Placement algorithm.81 Nitrogen was used as the buffer gas, and 

all other settings were set to their default values. 

Orbitrap Exactive Plus Extended Mass Range. Mass spectra of αHL pores in 

Fos-14 were collected on a Thermo Scientific Exactive Plus extended mass range 

Orbitrap with an m/z range up to 20,000 and a nanoESI source. Electrospray voltages 

were set between 1.2-1.5 kV for stable spray. The capillary source was heated to 250 °C 

to aid desolvation of analyte ions. Source CID voltages were tuned to 50-100 V. The S-

lens ion guide was held at an RF level of 200 V for efficient transfer of large complexes. 

The voltage settings for the transport multipoles were tuned as follows to maximize 



 

76 

 

signal of large complexes (C-trap entrance lens; 0 V, bent flatapole DC; 8 V, inter-

flatapole DC; 4 V, injection flatapole DC; 4 V). The HCD cell was held at 50 V with a 

trapping gas setting of 10.  
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Figure A1. SDS-PAGE of αHL monomers in detergent-free solutions and oligomers 
formed in C8E4 detergent solutions. No oligomers are observed for detergent-free 
solutions but are observed upon concentrating in the presence of C8E4 detergent micelles. 
The high molecular weight oligomer band is SDS-resistant as long as the sample is not 
boiled.146  
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Figure A2. In order to identify the co-purified protein with αHL monomers, sample 
solutions were mixed with 5% sulfolane and 0.05% formic acid to cause supercharging 
and unfolding of proteins during ESI. The 15+ co-purified protein ion was then isolated 
and fragmented in the trap to sequence a portion of the protein. This yielded a series of 
1+ fragment ions that allowed for the determination of a set of possible sequences. Based 
on the determined sequence and mass of fragment ions the co-purified protein is not a 
form of αHL monomer. Basic local alignment search tool (BLAST) analysis of possible 
sequences did not yield an obvious candidate protein. 
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Figure A3. Mass spectrum of high-charge non-native αHL monomers formed in the 
process of detergent stripping in Fig. 3B and Fig. 3C. 
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Fig A4. IM-MS of isolated 37+ αHL heptamer ions formed in C8E4 under light activation 
(sampling cone: 50 V, trap: 125 V) and high instrumental activation conditions (sampling 
cone: 50 V, trap: 125 V). Upon gas-phase activation by collisions with neutral argon gas, 
native heptamers produce hexamers with charge states complementary to those of the 
high-charge, unfolded monomers. These results indicate that the native hexamers (most 
abundant charge state 30+) are not formed by gas-phase dissociation of the heptamers. 
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Figure A5. Native mass spectra of αHL oligomers formed in C8E4 detergent under 
typical nESI spray conditions (capillary voltage 0.62 kV) and with elevated spray 
conditions (capillary voltage 0.9 kV). Increasing the capillary voltage significantly 
diminishes signal quality and signal level for αHL oligomers but does not increase the 
abundance of hexamer relative to heptamer. This demonstrates that the hexamer is not a 
consequence of dissociation in the electrospray process before complete transfer to the 
gas phase.  
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Figure A6. Representative mass spectrum showing relative abundance of (proteinless) 
FOS-14 cluster ions and FOS-14 micelle-embedded αHL pore ions acquired on Synapt 
instrument with the sampling cone at 50 V and the trap at 50 V.  
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Figure A7. Native mass spectrum and Fourier transform (FT) analysis of FOS-14 
embedded αHL oligomer ions acquired on the Orbitrap instrument under the least 
activating conditions (source CID: 50 V and HCD: 50 V). (A) Mass spectrum of αHL 
detergent-stripped complexes and micelle-embedded complexes. The inset shows the 
signal for detergent-stripped complexes that are hexameric and heptameric. The inset 
table provides the detergent stoichiometry distribution for each individual charge state 
data from the FT (B) for heptameric micelle-embedded pores with the ± representing the 
standard deviation in detergent molecule stoichiometry. (C) Zero-charge spectrum of the 
combined charge state data. Dashed vertical lines correspond to the masses of detergent-
stripped bare hexamer and heptamer pores. Overlap of charge states (26-30+) in the 
frequency domain (B) causes some ringing artefacts in the zero-charge spectrum, making 
signal of micelle-embedded hexamers difficult to detect confidently from these data. 
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Figure A8. (A) Native mass spectrum and (B) corresponding Fourier spectrum of αHL 
oligomers formed in FOS-14 micelles on the Orbitrap instrument under the least 
activating conditions as in Fig. A4. Only charge states 23-25+ are analyzed because these 
charge states are well separated in the frequency domain, which allows for more 
confident identification of micelle-embedded hexamers in the zero-charge spectrum 
above the level of ringing artefacts (C). 
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Figure A9. Native IM-MS data from the Synapt Q-IMS-ToF instrument under the least 
activating conditions (sampling cone: 100 V, trap: 50 V) of αHL micelle-embedded pores 
in FOS-14 detergent with 200 mM ammonium acetate. (A) The Gábor transform (GT) 
spectrogram is shown with the IM-MS cutout mass spectrum across the top and the 
Fourier transform down the right. Under these instrumental conditions only signal for 
micelle-embedded heptamers can be detected due to the strong overlap of charge state 
distributions. (B) IM-MS spectrum of micelle-embedded αHL. (C) Detailed 
stoichiometry analysis of mass spectrum shown in (A). The inset table provides the 
detergent stoichiometry distributions for each individual charge state pulled from the GT 
with the ± representing the standard deviation of detergent molecule stoichiometry. (D) 
Zero-charge spectrum of the combined charge state data from the GT. Dashed vertical 
lines correspond to the masses of detergent-stripped bare hexamer and heptamer pores 
based on the measured monomer mass. 
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Figure A10. Native IM-MS data for αHL oligomers formed in C8E4 detergent micelles 
under minimal gas-phase activation conditions where complexes remain compact. 
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Figure A11. Representative structures of the αHL hexamer and heptamer pore with their 
respective relaxed vacuum MD structure. The initial hexamer structure is a model from 
Furini et al.145 
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Figure A12. Native mass spectrum and FT analysis of αHL micelle-embedded pores in 
FOS-14 detergent acquired on the Synapt Q-IMS-ToF instrument under highly-activating 
conditions (sampling cone: 50 V, trap: 150 V). (A) Mass spectrum of αHL oligomers. 
Inset tables provide the detergent stoichiometry distributions for each individual charge 
state extracted from the FT (B), with ± representing the standard deviation of detergent 
molecule stoichiometry. (C) Zero-charge spectrum of the combined charge state data. 
Dashed vertical lines correspond to the masses for detergent-stripped bare hexamer and 
heptamer pores. Overall, significant charge stripping with minimal detergent removal is 
observed from micelle-embedded pores in comparison to lower activation levels. 
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APPENDIX B  

SUPPLEMENTAL INFORMATION FOR CHAPTER III 

GroEL mass spectral acquisition and data analysis: 
 

For each trial day (1-3), previously prepared frozen aliquots of GroEL were buffer 

exchanged using a centrifugal desalting column equilibrated with 200 mM ammonium 

acetate, pH 7.5. After sample preparation, 3 µL of sample was loaded into a 

nanoelectrospray ionizations (neSI) capillary. Spray was initiated with a Pt wire inserted 

into the sample solution at a capillary voltage of ~1.0 kV. The capillary voltage was then 

reduced to ~0.65 kV for data collection. Before the start of every trial the nESI capillary 

was positioned such that the maximum GroEL signal was achieved for each cone. 

Typically, the highest signal was reached with the capillary positioned 1-2 mm from the 

sampling cone, and, over this range of distances, no significant effect on excess mass or 

desalting was observed GroEL mass spectra were recorded for each source sampling cone 

(in mixed order across trial days) with the same instrumental parameters (see below), 

while the sampling cone voltage was raised from 10-200 V in 10 V increments. At each 

sampling cone voltage step, a 1-minute acquisition was acquired and summed so that 

GroEL signal abundances could be compared for each cone and trial day. When 

exchanging each sample cone for the next trial, the new cone was allowed to equilibrate 

temperature with the rest of the source block for ~5 minutes and a new nESI capillary 

with GroEL sample was used. 

IM-MS spectra for each trial day were then analyzed with Gaussian multi-peak 

fitting in Igor Pro to determine the average mass, peak width (fwhm), and abundances of 
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each charge state. The entire drift time profile for each charge state was extracted and the 

average weighted drift time was calculated for a given charge state so that compaction 

and/or unfolding could be observed across source sampling cones and sampling cone 

potentials. 

 
Synapt G2-Si instrument parameters: 
Source Temperature: 100 °C 

Source sampling cone voltage: 10-200 V with 10 V steps 

Quadrupole profile was set to: 3000, 6000, 10000 

Trap voltage: 10 V for GroEL experiments, 50 V for αHL experiments 

Transfer voltage: 5 V for all experiments 

Trap Argon gas flow rate: 10 mL/min 

Helium cell flow rate: 50 mL/min 

IMS Nitrogen flow rate: 100 mL/min 

Traveling Wave settings for GroEL experiments: 

Trap wave velocity: 300 m/s 

Trap wave height: 1.0 V 

IMS wave velocity: 400 m/s 

IMS wave height: 18 V 

Transfer wave velocity: 100 m/s 

Transfer wave height: 2.0 V 

Traveling Wave settings for αHL experiments performed in ToF mode without IM: 

Trap wave velocity: 300 m/s 

Trap wave height: 1.0 V 
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Transfer wave velocity: 100 m/s 

Transfer wave height: 2.0 V 

Simulations of in-source ion activation 

 Simulations were conducted according to the method described in Donor et al.,174 

with limited modifications to model the conditions in the source region. The collision 

physics remained the same, however, changes to the ion acceleration, pressure profile, 

and time step were implemented due to the different pressures for these simulations. The 

ions are accelerated across the ~1 mm gap between the exit of the Stepwave and the 

differential aperture, an area with gas pressure in the mbar range (estimated using the 

Backing pressure readback, ~3.0 mbar for the large SC). Thus, rather than assume that 

the ions reach a kinetic energy equal to the charge multiplied by the acceleration 

potential, the acceleration was modeled explicitly in these simulations. The ions were 

assumed to have an initial velocity equal to their RMS thermal velocity at 298 K (~10 

m/s), and the change in kinetic energy for a time step was taken as the charge multiplied 

by the change in potential over the distance traveled during that time step. Once the ions 

travel 1 mm, they enter the Source ion guide (~9 mm in length) and experience only the 

traveling-wave potential (wave velocity of 300 m/s and wave height of 1 V) for the rest 

of the simulation. The pressure differential between the Stepwave and Source ion guides 

was assumed to follow an exponential profile, with a characteristic decay length equal to 

the diameter of the differential aperture (~2.5 mm). Shorter (Fig. B1a, 1.25 mm) and 

longer (Fig. B1b, 5 mm) exponential decay lengths of the pressure do not change the 

trends in the slopes of the ion heating plots, but the slopes do get closer together for the 

1.25 mm decay length and further apart for the 5.0 mm decay length due to 
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decreased/increased cooling, respectively. The time step (t.s.) while the ions are being 

quickly accelerated was determined using the original method:  

 

In order to reduce simulation time, for the remainder of the simulations the time 

step was determined at each step using the current velocity: 

 

Acceleration voltages of 25, 50, 75, 100, 125, 150, 175, and 200 V were 

simulated for each of the three pressures. Bovine serum albumin (BSA) was used as the 

model protein for the simulations, because, at the pressures used, GroEL may experience 

simultaneous collisions, which our model does not explicitly account for. A charge state 

of 15+ was used, corresponding to the most abundant charge state for BSA 

electrosprayed from native-like solution conditions. 
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Supplemental Figures and Tables  
 
Instrument Pressures with each sampling cone 
Normal (0.8 mm) cone instrument pressures (mbar) 
 Backing Source Trap Helium Cell IMS Transfer ToF 
ToF mode 3.5 9.0e-3 3.6e-2 8.3e-4 1.0e-3 3.7e-2 1.5e-6 
IMS mode 3.5 9.2e-3 4.2e-2 1.9 1.8 4.3e-3 1.7e-6 
 
Medium (0.67 mm) cone instrument pressures (mbar) 
 Backing Source Trap Helium Cell IMS Transfer ToF 
ToF mode 2.4 6.2e-3 3.6e-2 8.3e-4 1.0e-3 3.7e-2 1.6e-6 
IMS mode 2.4 6.4e-3 4.2e-2 1.9 1.8 4.3e-3 1.7e-6 
 
Small (0.45 mm) cone instrument pressures (mbar) 
 Backing Source Trap Helium Cell IMS Transfer ToF 
ToF mode 1.4 3.6e-3 3.6e-2 8.2e-4 1.0e-3 3.7e-2 1.7e-6 
IMS mode 1.4 3.8e-3 4.3e-2 1.9 1.8 4.4e-3 1.8e-6 
 
Table B1. Instrument pressures for each source sampling cone in TOF mode and IMS 
mode. Each sampling cone provides a reproducible backing and source pressure reading, 
while all regions beyond the source are unchanged (from Trap to TOF). 
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       a 

 
      b 

 
 
Figure B1: Simulated ion heating of BSA15+ under the same pressure conditions as in 
Fig. 2 except with shorter (a, 1.25 mm) and longer (b, 5.0 mm) pressure decay lengths as 
the ions are accelerated across a differential aperture from the Stepwave to the conjoined 
traveling-wave ion guide. At a pressure (from ~3.0 mbar down to ~9e-3 mbar for the 
large SC) exponential decay length of 1.25 mm the slopes of the ion heating trends are 
closer together due to increased collisional cooling, while at 5.0 mm the slopes diverge 
due to less collisional cooling. 
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Figure B2: Peak width analysis for GroEL70+ ions (a) and total GroEL signal abundances 
with all charge states included (b). GroEL signal abundance for each point is normalized 
to that when using the large sampling cone at a cone potential of 10 V. Note, with the 
medium and small cones, CID of GroEL 14-mers occurs from 170-200 V, which further 
reduces the signal.  
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Figure B3: Selected mass spectra of GroEL 14-mers for each sampling cone overlayed at 
a sampling cone potential of 10 V (a), 100 V (b), and 200 V (c). Note: in (c) mass spectra 
slightly offset to aid differentiation.  
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Figure B4: IM-MS spectrum of GroEL with the small cone at a cone potential of 200 V. 
Here activation in the source region is sufficient to cause CID of the GroEL 14-mer to 
produce high-charge monomer and GroEL 13-mer distributions.  
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Figure B5: Overlaid mass spectra of αHL complexes in FOS-14 micelles with each 
sample cone size at a sampling cone potential of 25 V (a) or 100 V (b). Lower m/z 
portions of the mass spectra collected with the medium and small cones are truncated for 
clarity due to increasing signal from empty FOS-14 micelles. The highest-abundance 
charge state for each spectrum is indicated. At low sampling cone potentials (25 V) little 
difference in the charge state and FOS-14 distributions are seen. As the potential is raised 
(100 V) the medium and small cones are more activating (strip more FOS-14 and charge) 
than the large cone.
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Cone 
Potential 

Cone 
Size 

Average 
Mass 
(kDa) 

Average 
Charge 

Bound  
FOS-14 

Molecules 

Standard Dev. 
FOS-14 

Molecules 
     

25V large 279.9 31.6 124 20 
 medium 280.3 30.8 125 15 
 small 280.7 30.6 126 22 
      

100V large 279.0 27.7 122 21 
 medium 276.7 24.3 116 18 
 small 274.0 19.9 109 19 
      

150 V large 276.7 23.4 116 23 
 medium 273.8 19.8 108 23 
 small 272.2 16.7 104 19 

 
Table B2. GT analysis results for αHL heptamers in FOS-14 micelles with each sampling 
cone. 
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APPENDIX C  

SUPPLEMENTAL INFORMATION FOR CHAPTER IV 

 

 
Figure C1. Structures of several common biological lipid head groups (a) 
glycerophosphorylcholine, GPC (b) phosphorylcholine, PC (c) phosphorylethanolamine, 
PE (d) glycerol 1-phosphate, PG and (e) phosphoserine, PS. 
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Figure C2. Native mass spectra of 5 µM transferrin in 200 mM ammonium acetate 
solutions with no lipid headgroups at the given trap potentials of 10, 50, or 70 V. 
Transferrin produces clearly resolved mass spectra with a homogenous base mass. 
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Figure C3. Quadrupole isolated transferrin19+ at a trap potential of 100 V without the 
presence of any lipid headgroups. At this high activation level significant dissociation of 
transferrin is produced. 



 

103 

 

 

 
Figure C4. Comparison of deconvolved mass spectra of transferrin with PS, GP, and the 
mixture of PS and GP at 100 V of trap activation. The dashed line corresponds to the base 
mass of transferrin with no lipid headgroup adducts. With GP alone (gold) at 100 V no 
lipid headgroups are resolved and the mass position is near the base mass of transferrin. 
With PS (black) at 100 V several PS adducts are resolved on transferrin marked by the 
gold stars. With the mixture of the two lipid headgroups at 100 V (red) broad peaks are 
partially resolved that are more closely spaced with the mass of PS than GP suggesting 
the adducts here correspond to PS adducts and not GP adducts. 
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Figure C5. Brief schematic of αHL nanodisc insertion procedure. Below: CHARMM 
GUI model structure of the αHL heptamer embedded in a MSP1E3D1 nanodisc witn 200 
POPC lipids. MSP1E3D1 produces larger nanodiscs (~12 nm in diameter) in comparison 
to MSP1D1 nanodiscs (~9-10 nm in diameter). 



 

105 

 

 

 
Figure C6. SDS-PAGE analysis of the sample used to produce Figure 17 in Chapter IV. 
The gel suggests αHL complexes remain stable through the nanodisc insertion process 
and are nanodisc-embedded. 
 



 

106 

 

 

REFERENCES CITED 

(1)  Steen, H.; Mann, M. The Abc’s (and Xyz’s) of Peptide Sequencing. Nat. Rev. Mol. 
Cell Biol. 2004, 5 (9), 699–711. 

 
(2)  Marsh, J. A.; Teichmann, S. A. Structure, Dynamics, Assembly, and Evolution of 

Protein Complexes. Annu. Rev. Biochem. 2015, 84 (1), 551–575.  
 
(3)  Levy, E. D.; Erba, E. B.; Robinson, C. V; Teichmann, S. A. Assembly Reflects 

Evolution of Protein Complexes. Nature 2008, 453, 1262. 
 
(4)  Curry, S. Structural Biology: A Century-Long Journey into an Unseen World. 

Interdiscip. Sci. Rev. 2015, 40 (3), 308–328.  
 
(5)  Dobson, C. M. Biophysical Techniques in Structural Biology. Annu. Rev. 

Biochem. 2019, 88 (1), 25–33. 
 
(6)  Cournia, Z.; Allen, T. W.; Andricioaei, I.; Antonny, B.; Baum, D.; Brannigan, G.; 

Buchete, N.-V.; Deckman, J. T.; Delemotte, L.; del Val, C.; Friedman, R.; Gkeka, 
P.; Hege, H.-C.; Hénin, J.; Kasimova, M. A.; Kolocouris, A.; Klein, M. L.; Khalid, 
S.; Lemieux, M. J.; Lindow, N.; Roy, M.; Selent, J.; Tarek, M.; Tofoleanu, F.; 
Vanni, S.; Urban, S.; Wales, D. J.; Smith, J. C.; Bondar, A.-N. Membrane Protein 
Structure, Function, and Dynamics: A Perspective from Experiments and Theory. 
J. Membr. Biol. 2015, 248 (4), 611–640.  

 
(7)  Sezgin, E.; Levental, I.; Mayor, S.; Eggeling, C. The Mystery of Membrane 

Organization: Composition, Regulation and Roles of Lipid Rafts. Nat. Rev. Mol. 
Cell Biol. 2017, 18, 361.  

 
(8)  Lingwood, D.; Simons, K. Lipid Rafts As a Membrane-Organizing Principle. 

Science (80-. ). 2010, 327 (5961), 46–50.  
 
(9)  Simons, K.; Gerl, M. J. Revitalizing Membrane Rafts: New Tools and Insights. 

Nat. Rev. Mol. Cell Biol. 2010, 11 (10), 688–699.  
 
(10)  Whitelegge, J. P. Integral Membrane Proteins and Bilayer Proteomics. Anal. 

Chem. 2013, 85 (5), 2558–2568.  
 
(11)  Chou, K.-C. Some Remarks on Protein Attribute Prediction and Pseudo Amino 

Acid Composition. J. Theor. Biol. 2011, 273 (1), 236–247.  
 
(12)  Frey, L.; Lakomek, N.-A.; Riek, R.; Bibow, S. Micelles, Bicelles, and Nanodiscs: 

Comparing the Impact of Membrane Mimetics on Membrane Protein Backbone 
Dynamics. Angew. Chemie Int. Ed. 2017, 56 (1), 380–383. 



 

107 

 

 
(13)  Yeagle, P. L. Non-Covalent Binding of Membrane Lipids to Membrane Proteins. 

Biochim. Biophys. Acta-Biomembranes 2014, 1838 (6), 1548–1559.  
 
(14)  Zhou, H.-X.; Cross, T. A. Influences of Membrane Mimetic Environments on 

Membrane Protein Structures. Annu. Rev. Biophys. 2013, 42 (1), 361–392. 
 
(15)  Zhou, M.; Morgner, N.; Barrera, N. P.; Politis, A.; Isaacson, S. C.; Matak-

Vinkovic, D.; Murata, T.; Bernal, R. A.; Stock, D.; Robinson, C. V. Mass 
Spectrometry of Intact V-Type ATPases Reveals Bound Lipids and the Effects of 
Nucleotide Binding. Science (80-. ). 2011, 334 (6054), 380–385.  

 
(16)  Laganowsky, A.; Reading, E.; Allison, T. M.; Ulmschneider, M. B.; Degiacomi, 

M. T.; Baldwin, A. J.; Robinson, C. V. Membrane Proteins Bind Lipids Selectively 
to Modulate Their Structure and Function. Nature 2014, 510 (7503), 172–175.  

 
(17)  Parker, M. W. Protein Structure from X-Ray Diffraction. J. Biol. Phys. 2003, 29 

(4), 341–362.  
 
(18)  Markwick, P. R. L.; Malliavin, T.; Nilges, M. Structural Biology by NMR: 

Structure, Dynamics, and Interactions. PLOS Comput. Biol. 2008, 4 (9), e1000168. 
 
(19)  Fernandez-Leiro, R.; Scheres, S. H. W. Unravelling Biological Macromolecules 

with Cryo-Electron Microscopy. Nature 2016, 537 (7620), 339–346.  
 
(20)  Ognjenović, J.; Grisshammer, R.; Subramaniam, S. Frontiers in Cryo Electron 

Microscopy of Complex Macromolecular Assemblies. Annu. Rev. Biomed. Eng. 
2019, 21 (1), 395–415. 

 
(21)  Marcoux, J.; Robinson, C. V. Twenty Years of Gas Phase Structural Biology. 

Structure 2013, 21 (9), 1541–1550.  
 
(22)  Shi, Y. A Glimpse of Structural Biology through X-Ray Crystallography. Cell 

2014, 159 (5), 995–1014.  
 
(23)  Protein Data Bank: The Single Global Archive for 3D Macromolecular Structure 

Data. Nucleic Acids Res. 2018, 47 (D1), D520–D528.  
 
(24)  Carpenter, E. P.; Beis, K.; Cameron, A. D.; Iwata, S. Overcoming the Challenges 

of Membrane Protein Crystallography. Curr. Opin. Struct. Biol. 2008, 18 (5), 581–
586.  

 
(25)  Hunter, M. S.; DePonte, D. P.; Shapiro, D. A.; Kirian, R. A.; Wang, X.; Starodub, 

D.; Marchesini, S.; Weierstall, U.; Doak, R. B.; Spence, J. C. H.; Fromme, P. X-
Ray Diffraction from Membrane Protein Nanocrystals. Biophys. J. 2011, 100 (1)  

 



 

108 

 

(26)  Parker, J. L.; Newstead, S. Membrane Protein Crystallisation: Current Trends and 
Future Perspectives. Adv. Exp. Med. Biol. 2016, 922, 61–72.  

 
(27)  Lee, A. G. Lipid–Protein Interactions in Biological Membranes: A Structural 

Perspective. Biochim. Biophys. Acta - Biomembr. 2003, 1612 (1), 1–40.  
 
(28)  Lee, A. G. Biological Membranes: The Importance of Molecular Detail. Trends 

Biochem. Sci. 2011, 36 (9), 493–500.  
 
(29)  Birch, J.; Axford, D.; Foadi, J.; Meyer, A.; Eckhardt, A.; Thielmann, Y.; Moraes, 

I. The Fine Art of Integral Membrane Protein Crystallisation. Methods 2018, 147, 
150–162.  

 
(30)  Moraes, I.; Evans, G.; Sanchez-Weatherby, J.; Newstead, S.; Stewart, P. D. S. 

Membrane Protein Structure Determination — The next Generation. Biochim. 
Biophys. Acta - Biomembr. 2014, 1838 (1, Part A), 78–87.  

 
(31)  Hite, R. K.; Li, Z. L.; Walz, T. Principles of Membrane Protein Interactions with 

Annular Lipids Deduced from Aquaporin-0 2D Crystals. Embo J. 2010, 29 (10), 
1652–1658.  

 
(32)  Vinothkumar, K. R. Structure of Rhomboid Protease in a Lipid Environment. J. 

Mol. Biol. 2011, 407 (2), 232–247.  
 
(33)  Hong, M.; Zhang, Y.; Hu, F. Membrane Protein Structure and Dynamics from 

NMR Spectroscopy. Annu. Rev. Phys. Chem. 2012, 63 (1), 1–24.  
 
(34)  Kay, L. E. NMR Studies of Protein Structure and Dynamics. J. Magn. Reson. 

2011, 213 (2), 477–491.  
 
(35)  Dikiy, I.; Clark, L. D.; Gardner, K. H.; Rosenbaum, D. M. Chapter Two - Isotopic 

Labeling of Eukaryotic Membrane Proteins for NMR Studies of Interactions and 
Dynamics. In Biological NMR Part A; Wand, A. J. B. T.-M. in E., Ed.; Academic 
Press, 2019; Vol. 614, pp 37–65.  

 
(36)  Opella, S. J.; Marassi, F. M. Applications of NMR to Membrane Proteins. Arch. 

Biochem. Biophys. 2017, 628, 92–101.  
 
(37)  Marion, D. An Introduction to Biological NMR Spectroscopy. Mol. &amp;amp; 

Cell. Proteomics 2013, 12 (11), 3006 LP – 3025.  
 
(38)  Cavalli, A.; Salvatella, X.; Dobson, C. M.; Vendruscolo, M. Protein Structure 

Determination from NMR Chemical Shifts. Proc. Natl. Acad. Sci. 2007, 104 (23), 
9615 LP – 9620.  

 
 



 

109 

 

(39)  Liang, B.; Tamm, L. K. NMR as a Tool to Investigate the Structure, Dynamics and 
Function of Membrane Proteins. Nat. Struct. Mol. Biol. 2016, 23 (6), 468–474.  

 
(40)  Hagn, F.; Nasr, M. L.; Wagner, G. Assembly of Phospholipid Nanodiscs of 

Controlled Size for Structural Studies of Membrane Proteins by NMR. Nat. 
Protoc. 2018, 13 (1), 79–98.  

 
(41)  Hiller, S.; Wagner, G. The Role of Solution NMR in the Structure Determinations 

of VDAC-1 and Other Membrane Proteins. Curr. Opin. Struct. Biol. 2009, 19 (4), 
396–401.  

 
(42)  Huster, D. Solid-State NMR Spectroscopy to Study Protein–Lipid Interactions. 

Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 2014, 1841 (8), 1146–1160.  
 
(43)  Park, S. H.; Das, B. B.; Casagrande, F.; Tian, Y.; Nothnagel, H. J.; Chu, M.; 

Kiefer, H.; Maier, K.; De Angelis, A. A.; Marassi, F. M.; Opella, S. J. Structure of 
the Chemokine Receptor CXCR1 in Phospholipid Bilayers. Nature 2012, 491 
(7426), 779–783. 

 
(44)  Ladizhansky, V. Applications of Solid-State NMR to Membrane Proteins. 

Biochim. Biophys. Acta - Proteins Proteomics 2017, 1865 (11, Part B), 1577–
1586.  

 
(45)  Wang, S.; Munro, R. A.; Shi, L.; Kawamura, I.; Okitsu, T.; Wada, A.; Kim, S.-Y.; 

Jung, K.-H.; Brown, L. S.; Ladizhansky, V. Solid-State NMR Spectroscopy 
Structure Determination of a Lipid-Embedded Heptahelical Membrane Protein. 
Nat. Methods 2013, 10 (10), 1007–1012.  

 
(46)  Campbell, I. D. The March of Structural Biology. Nat. Rev. Mol. Cell Biol. 2002, 3 

(5), 377–381.  
 
(47)  Yu, H. Extending the Size Limit of Protein Nuclear Magnetic Resonance. Proc. 

Natl. Acad. Sci. 1999, 96 (2), 332 LP – 334.  
 
(48)  Saio, T.; Guan, X.; Rossi, P.; Economou, A.; Kalodimos, C. G. Structural Basis for 

Protein Antiaggregation Activity of the Trigger Factor Chaperone. Science (80-. ). 
2014, 344 (6184), 1250494. 

 
(49)  Kourkoutis, L. F.; Plitzko, J. M.; Baumeister, W. Electron Microscopy of 

Biological Materials at the Nanometer Scale. Annu. Rev. Mater. Res. 2012, 42 (1), 
33–58.  

 
(50)  Cheng, Y. Single-Particle Cryo-EM at Crystallographic Resolution. Cell 2015, 161 

(3), 450–457.  
 
 



 

110 

 

(51)  Bai, X.; McMullan, G.; Scheres, S. H. W. How Cryo-EM Is Revolutionizing 
Structural Biology. Trends Biochem. Sci. 2015, 40 (1), 49–57.  

 
(52)  Rawson, S.; Davies, S.; Lippiat, J. D.; Muench, S. P. The Changing Landscape of 

Membrane Protein Structural Biology through Developments in Electron 
Microscopy. Mol. Membr. Biol. 2016, 33 (1–2), 12–22.  

 
(53)  Gao, Y.; Cao, E.; Julius, D.; Cheng, Y. TRPV1 Structures in Nanodiscs Reveal 

Mechanisms of Ligand and Lipid Action. Nature 2016, 534 (7607), 347–351.  
 
(54)  Autzen, H. E.; Myasnikov, A. G.; Campbell, M. G.; Asarnow, D.; Julius, D.; 

Cheng, Y. Structure of the Human TRPM4 Ion Channel in a Lipid Nanodisc. 
Science (80-. ). 2018, 359 (6372), 228–232.  

 
(55)  Coleman, J. A.; Yang, D.; Zhao, Z.; Wen, P.-C.; Yoshioka, C.; Tajkhorshid, E.; 

Gouaux, E. Serotonin Transporter–Ibogaine Complexes Illuminate Mechanisms of 
Inhibition and Transport. Nature 2019, 569 (7754), 141–145.  

 
(56)  Duan, J.; Li, J.; Chen, G.-L.; Ge, Y.; Liu, J.; Xie, K.; Peng, X.; Zhou, W.; Zhong, 

J.; Zhang, Y.; Xu, J.; Xue, C.; Liang, B.; Zhu, L.; Liu, W.; Zhang, C.; Tian, X.-L.; 
Wang, J.; Clapham, D. E.; Zeng, B.; Li, Z.; Zhang, J. Cryo-EM Structure of 
TRPC5 at 2.8-Å Resolution Reveals Unique and Conserved Structural Elements 
Essential for Channel Function. Sci. Adv. 2019, 5 (7).  

 
(57)  Wang, L.; Zhou, H.; Zhang, M.; Liu, W.; Deng, T.; Zhao, Q.; Li, Y.; Lei, J.; Li, 

X.; Xiao, B. Structure and Mechanogating of the Mammalian Tactile Channel 
PIEZO2. Nature 2019, 573 (7773), 225–229.  

 
(58)  Jiang, J.; Pentelute, B. L.; Collier, R. J.; Zhou, Z. H. Atomic Structure of Anthrax 

Protective Antigen Pore Elucidates Toxin Translocation. Nature 2015, 521 (7553),  
 
(59)  Gao, Y.; Cao, E.; Julius, D.; Cheng, Y. TRPV1 Structures in Nanodiscs Reveal 

Mechanisms of Ligand and Lipid Action. Nature 2016, doi: 10.10.  
 
(60)  Bonomi, M.; Vendruscolo, M. Determination of Protein Structural Ensembles 

Using Cryo-Electron Microscopy. Curr. Opin. Struct. Biol. 2019, 56, 37–45.  
 
(61)  Alewijnse, B.; Ashton, A. W.; Chambers, M. G.; Chen, S.; Cheng, A.; Ebrahim, 

M.; Eng, E. T.; Hagen, W. J. H.; Koster, A. J.; López, C. S.; Lukoyanova, N.; 
Ortega, J.; Renault, L.; Reyntjens, S.; Rice, W. J.; Scapin, G.; Schrijver, R.; 
Siebert, A.; Stagg, S. M.; Grum-Tokars, V.; Wright, E. R.; Wu, S.; Yu, Z.; Zhou, 
Z. H.; Carragher, B.; Potter, C. S. Best Practices for Managing Large CryoEM 
Facilities. J. Struct. Biol. 2017, 199 (3), 225–236. 

 
 
 



 

111 

 

(62)  Liu, Y.; Huynh, D. T.; Yeates, T. O. A 3.8 Å Resolution Cryo-EM Structure of a 
Small Protein Bound to an Imaging Scaffold. Nat. Commun. 2019, 10 (1), 1864.  

 
(63)  Wu, S.; Avila-Sakar, A.; Kim, J.; Booth, D. S.; Greenberg, C. H.; Rossi, A.; Liao, 

M.; Li, X.; Alian, A.; Griner, S. L.; Juge, N.; Yu, Y.; Mergel, C. M.; Chaparro-
Riggers, J.; Strop, P.; Tampé, R.; Edwards, R. H.; Stroud, R. M.; Craik, C. S.; 
Cheng, Y. Fabs Enable Single Particle CryoEM Studies of Small Proteins. 
Structure 2012, 20 (4), 582–592.  

 
(64)  Zhou, M.; Robinson, C. V. When Proteomics Meets Structural Biology. Trends 

Biochem. Sci. 2010, 35 (9), 522–529.  
 
(65)  El-Aneed, A.; Cohen, A.; Banoub, J. Mass Spectrometry, Review of the Basics: 

Electrospray, MALDI, and Commonly Used Mass Analyzers. Appl. Spectrosc. 
Rev. 2009, 44 (3), 210–230.  

 
(66)  Zenobi, R.; Knochenmuss, R. Ion Formation in MALDI Mass Spectrometry. Mass 

Spectrom. Rev. 1998, 17 (5), 337–366. 
 
(67)  Seyfried, B. K.; Siekmann, J.; Belgacem, O.; Wenzel, R. J.; Turecek, P. L.; 

Allmaier, G. MALDI Linear TOF Mass Spectrometry of PEGylated 
(Glyco)Proteins. J. Mass Spectrom. 2010, 45 (6), 612–617.  

 
(68)  Räder, H.; Schrepp, W. MALDI-TOF Mass Spectrometry in the Analysis of 

Synthetic Polymers. Acta Polym. 1998, 49 (6), 272–293.  
 
(69)  Chen, F.; Gülbakan, B.; Weidmann, S.; Fagerer, S. R.; Ibáñez, A. J.; Zenobi, R. 

Applying Mass Spectrometry to Study Non-Covalent Biomolecule Complexes. 
Mass Spectrom. Rev. 2016, 35 (1), 48–70.  

 
(70)  Kebarle, P.; Verkerk, U. H. Electrospray: From Ions in Solution to Ions in the Gas 

Phase, What We Know Now. Mass Spectrom. Rev. 2009, 28 (6), 898–917.  
 
(71)  Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization 

Mass Spectrometry. Mass Spectrom. Rev. 1997, 16 (1), 1–23.  
 
(72)  Sobott, F.; Robinson, C. V. Characterising Electrosprayed Biomolecules Using 

Tandem-MS—the Noncovalent GroEL Chaperonin Assembly. Int. J. Mass 
Spectrom. 2004, 236 (1), 25–32. 

 
(73)  Collier, R. J. Membrane Translocation by Anthrax Toxin. Mol. Asp. Med. 2009, 30 

(6), 413–422.  
 
(74)  Petosa, C.; Collier, R. J.; Klimpel, K. R.; Leppla, S. H.; Liddington, R. C. Crystal 

Structure of the Anthrax Toxin Protective Antigen. Nature 1997, 385 (6619), 833–
838.  



 

112 

 

 
(75)  Kintzer, A. F.; Thoren, K. L.; Sterling, H. J.; Dong, K. C.; Feld, G. K.; Tang, I. I.; 

Zhang, T. T.; Williams, E. R.; Berger, J. M.; Krantz, B. A. The Protective Antigen 
Component of Anthrax Toxin Forms Functional Octameric Complexes. J. Mol. 
Biol. 2009, 392 (3), 614–629.  

 
(76)  Kintzer, A. F.; Sterling, H. J.; Tang, I. I.; Abdul-Gader, A.; Miles, A. J.; Wallace, 

B. A.; Williams, E. R.; Krantz, B. A. Role of the Protective Antigen Octamer in 
the Molecular Mechanism of Anthrax Lethal Toxin Stabilization in Plasma. J. Mol. 
Biol. 2010, 399 (5), 741–758.  

 
(77)  Gabelica, V.; Marklund, E. Fundamentals of Ion Mobility Spectrometry. Curr. 

Opin. Chem. Biol. 2018, 42, 51–59.  
 
(78)  Bush, M. F.; Hall, Z.; Giles, K.; Hoyes, J.; Robinson, C. V; Ruotolo, B. T. 

Collision Cross Sections of Proteins and Their Complexes: A Calibration 
Framework and Database for Gas-Phase Structural Biology. Anal. Chem. 2010, 82 
(22), 9557–9565. 

 
(79)  Canzani, D.; Laszlo, K. J.; Bush, M. F. Ion Mobility of Proteins in Nitrogen Gas: 

Effects of Charge State, Charge Distribution, and Structure. J. Phys. Chem. A 
2018, 122 (25), 5625–5634.  

 
(80)  Lee, J. W.; Davidson, K. L.; Bush, M. F.; Kim, H. I. Collision Cross Sections and 

Ion Structures: Development of a General Calculation Method via High-Quality 
Ion Mobility Measurements and Theoretical Modeling. Analyst 2017, 142 (22), 
4289–4298.  

 
(81)  Ewing, S. A.; Donor, M. T.; Wilson, J. W.; Prell, J. S. Collidoscope: An Improved 

Tool for Computing Collisional Cross-Sections with the Trajectory Method. J. Am. 
Soc. Mass Spectrom. 2017, 28 (4), 587–596.  

 
(82)  Rolland, A. D.; Prell, J. S. Computational Insights into Compaction of Gas-Phase 

Protein and Protein Complex Ions in Native Ion Mobility-Mass Spectrometry. 
TrAC Trends Anal. Chem. 2019, 116, 282–291.  

 
(83)  Prell, J. S.; Barceló, D. Modelling Collisional Cross Sections. Compr. Anal. Chem. 

2019, 83, 1–22. https://doi.org/https://doi.org/10.1016/bs.coac.2018.08.001. 
 
(84)  Calabrese, A. N.; Radford, S. E. Mass Spectrometry-Enabled Structural Biology of 

Membrane Proteins. Methods 2018, 147, 187–205.  
 
(85)  Bolla, J. R.; Agasid, M. T.; Mehmood, S.; Robinson, C. V. Membrane Protein–

Lipid Interactions Probed Using Mass Spectrometry. Annu. Rev. Biochem. 2019, 
88 (1), 85–111.  

 



 

113 

 

(86)  Pukala, T. Importance of Collision Cross Section Measurements by Ion Mobility 
Mass Spectrometry in Structural Biology. Rapid Commun. Mass Spectrom. 2019, 
33 (S3), 72–82.  

 
(87)  Cleary, S. P.; Thompson, A. M.; Prell, J. S. Fourier Analysis Method for 

Analyzing Highly Congested Mass Spectra of Ion Populations with Repeated 
Subunits. Anal. Chem. 2016, 88 (12), 6205–6213.  

 
(88)  Cleary, S. P.; Prell, J. S. Liberating Native Mass Spectrometry from Dependence 

on Volatile Salt Buffers by Use of Gábor Transform. ChemPhysChem 2019, 20 
(4), 519–523.  

 
(89)  Marty, M. T.; Hoi, K. K.; Gault, J.; Robinson, C. V. Probing the Lipid Annular 

Belt by Gas-Phase Dissociation of Membrane Proteins in Nanodiscs. Angew. 
Chemie-International Ed. 2016, 55 (2), 550–554.  

 
(90)  Keener, J. E.; Zambrano, D. E.; Zhang, G.; Zak, C. K.; Reid, D. J.; Deodhar, B. S.; 

Pemberton, J. E.; Prell, J. S.; Marty, M. T. Chemical Additives Enable Native 
Mass Spectrometry Measurement of Membrane Protein Oligomeric State within 
Intact Nanodiscs. J. Am. Chem. Soc. 2019, 141 (2), 1054–1061.  

 
(91)  Wilson, J. W.; Rolland, A. D.; Klausen, G. M.; Prell, J. S. Ion Mobility-Mass 

Spectrometry Reveals That α-Hemolysin from Staphylococcus Aureus 
Simultaneously Forms Hexameric and Heptameric Complexes in Detergent 
Micelle Solutions. Anal. Chem. 2019, 91 (15), 10204–10211.  

 
(92)  Testa, L.; Brocca, S.; Santambrogio, C.; D’Urzo, A.; Habchi, J.; Longhi, S.; 

Uversky, V. N.; Grandori, R. Extracting Structural Information from Charge-State 
Distributions of Intrinsically Disordered Proteins by Non-Denaturing Electrospray-
Ionization Mass Spectrometry. Intrinsically Disord. Proteins 2013, 1 (1), e25068.  

 
(93)  Pagel, K.; Natan, E.; Hall, Z.; Fersht, A. R.; Robinson, C. V. Intrinsically 

Disordered P53 and Its Complexes Populate Compact Conformations in the Gas 
Phase. Angew. Chemie Int. Ed. 2013, 52 (1), 361–365.  

 
(94)  Beveridge, R.; Chappuis, Q.; Macphee, C.; Barran, P. Mass Spectrometry Methods 

for Intrinsically Disordered Proteins. Analyst 2013, 138 (1), 32–42.  
 
(95)  Sinz, A.; Arlt, C.; Chorev, D.; Sharon, M. Chemical Cross-Linking and Native 

Mass Spectrometry: A Fruitful Combination for Structural Biology. Protein Sci. 
2015, 24 (8), 1193–1209.  

 
(96)  Wittig, S.; Haupt, C.; Hoffmann, W.; Kostmann, S.; Pagel, K.; Schmidt, C. 

Oligomerisation of Synaptobrevin-2 Studied by Native Mass Spectrometry and 
Chemical Cross-Linking. J. Am. Soc. Mass Spectrom. 2019, 30 (1), 149–160.  

 



 

114 

 

(97)  Liu, F.; Lössl, P.; Rabbitts, B. M.; Balaban, R. S.; Heck, A. J. R. The Interactome 
of Intact Mitochondria by Cross-Linking Mass Spectrometry Provides Evidence 
for Coexisting Respiratory Supercomplexes. Mol. &amp;amp; Cell. Proteomics 
2018, 17 (2), 216 LP – 232. 

 
(98)  Ruotolo, B. T.; Giles, K.; Campuzano, I.; Sandercock, A. M.; Bateman, R. H.; 

Robinson, C. V. Evidence for Macromolecular Protein Rings in the Absence of 
Bulk Water. Science (80-. ). 2005, 310 (5754), 1658–1661.  

 
(99)  Li, H.; Nguyen, H. H.; Ogorzalek Loo, R. R.; Campuzano, I. D. G.; Loo, J. A. An 

Integrated Native Mass Spectrometry and Top-down Proteomics Method That 
Connects Sequence to Structure and Function of Macromolecular Complexes. Nat. 
Chem. 2018, 10 (2), 139–148. 

 
(100)  D’Antona, A. M.; Xie, G. F.; Sligar, S. G.; Oprian, D. D. Assembly of an 

Activated Rhodopsin-Transducin Complex in Nanoscale Lipid Bilayers. 
Biochemistry 2014, 53 (1), 127–134.  

 
(101)  Albanese, P.; Tamara, S.; Saracco, G.; Scheltema, R. A.; Pagliano, C. How Paired 

PSII–LHCII Supercomplexes Mediate the Stacking of Plant Thylakoid Membranes 
Unveiled by Structural Mass-Spectrometry. Nat. Commun. 2020, 11 (1), 1361.  

 
(102)  Barrera, N. P.; Di Bartolo, N.; Booth, P. J.; Robinson, C. V. Micelles Protect 

Membrane Complexes from Solution to Vacuum. Science (80-. ). 2008, 321 
(5886), 243–246. 

 
(103)  Allison, T. M.; Landreh, M.; Benesch, J. L. P.; Robinson, C. V. Low Charge and 

Reduced Mobility of Membrane Protein Complexes Has Implications for 
Calibration of Collision Cross Section Measurements. Anal. Chem. 2016, 88 (11), 
5879–5884. 

 
(104)  Reading, E.; Liko, I.; Allison, T. M.; Benesch, J. L. P.; Laganowsky, A.; 

Robinson, C. V. The Role of the Detergent Micelle in Preserving the Structure of 
Membrane Proteins in the Gas Phase. Angew. Chemie Int. Ed. 2015, 54 (15), 
4577–4581.  

 
(105)  Pliotas, C.; Dahl, A. C. E.; Rasmussen, T.; Mahendran, K. R.; Smith, T. K.; 

Marius, P.; Gault, J.; Banda, T.; Rasmussen, A.; Miller, S.; Robinson, C. V; 
Bayley, H.; Sansom, M. S. P.; Booth, I. R.; Naismith, J. H. The Role of Lipids in 
Mechanosensation. Nat. Struct. Mol. Biol. 2015, 22, 991–998.  

 
(106)  Marcoux, J.; Wang, S. C.; Politis, A.; Reading, E.; Ma, J.; Biggin, P. C.; Zhou, M.; 

Tao, H.; Zhang, Q.; Chang, G.; Morgner, N.; Robinson, C. V. Mass Spectrometry 
Reveals Synergistic Effects of Nucleotides, Lipids, and Drugs Binding to a 
Multidrug Resistance Efflux Pump. Proc. Natl. Acad. Sci. 2013, 110 (24), 9704 LP 
– 9709. 



 

115 

 

 
(107)  Liu, Y.; Cong, X.; Liu, W.; Laganowsky, A. Characterization of Membrane 

Protein–Lipid Interactions by Mass Spectrometry Ion Mobility Mass 
Spectrometry. J. Am. Soc. Mass Spectrom. 2017, 28 (4), 579–586.  

 
(108)  Patrick, J. W.; Boone, C. D.; Liu, W.; Conover, G. M.; Liu, Y.; Cong, X.; 

Laganowsky, A. Allostery Revealed within Lipid Binding Events to Membrane 
Proteins. Proc. Natl. Acad. Sci. 2018, 115 (12), 2976–2981.  

 
(109)  Hopper, J. T. S.; Yu, Y. T. C.; Li, D. F.; Raymond, A.; Bostock, M.; Liko, I.; 

Mikhailov, V.; Laganowsky, A.; Benesch, J. L. P.; Caffrey, M.; Nietlispach, D.; 
Robinson, C. V. Detergent-Free Mass Spectrometry of Membrane Protein 
Complexes. Nat. Methods 2013, 10 (12), 1206–1208.  

 
(110)  Hoi, K. K.; Robinson, C. V; Marty, M. T. Unraveling the Composition and 

Behavior of Heterogeneous Lipid Nanodiscs by Mass Spectrometry. Anal. Chem. 
2016, 88 (12), 6199–6204.  

 
(111)  Marty, M. T.; Zhang, H.; Cui, W. D.; Gross, M. L.; Sligar, S. G. Interpretation and 

Deconvolution of Nanodisc Native Mass Spectra. J. Am. Soc. Mass Spectrom. 
2014, 25 (2), 269–277.  

 
(112)  Townsend, J. A.; Keener, J. E.; Miller, Z. M.; Prell, J. S.; Marty, M. T. Imidazole 

Derivatives Improve Charge Reduction and Stabilization for Native Mass 
Spectrometry. Anal. Chem. 2019, 91 (22), 14765–14772.  

 
(113)  Chorev, D. S.; Baker, L. A.; Wu, D.; Beilsten-Edmands, V.; Rouse, S. L.; Zeev-

Ben-Mordehai, T.; Jiko, C.; Samsudin, F.; Gerle, C.; Khalid, S.; Stewart, A. G.; 
Matthews, S. J.; Grünewald, K.; Robinson, C. V. Protein Assemblies Ejected 
Directly from Native Membranes Yield Complexes for Mass Spectrometry. 
Science (80-. ). 2018, 362 (6416), 829 LP – 834.  

 
(114)  Chorev, D. S.; Tang, H.; Rouse, S. L.; Bolla, J. R.; von Kügelgen, A.; Baker, L. 

A.; Wu, D.; Gault, J.; Grünewald, K.; Bharat, T. A. M.; Matthews, S. J.; Robinson, 
C. V. The Use of Sonicated Lipid Vesicles for Mass Spectrometry of Membrane 
Protein Complexes. Nat. Protoc. 2020.  

 
(115)  Allison, T. M.; Reading, E.; Liko, I.; Baldwin, A. J.; Laganowsky, A.; Robinson, 

C. V. Quantifying the Stabilizing Effects of Protein–Ligand Interactions in the Gas 
Phase. Nat. Commun. 2015, 6, 8551.  

 
(116)  Cong, X.; Liu, Y.; Liu, W.; Liang, X.; Russell, D. H.; Laganowsky, A. 

Determining Membrane Protein–Lipid Binding Thermodynamics Using Native 
Mass Spectrometry. J. Am. Chem. Soc. 2016, 138 (13), 4346–4349.  

 
 



 

116 

 

(117)  Wörner, T. P.; Snijder, J.; Bennett, A.; Agbandje-McKenna, M.; Makarov, A. A.; 
Heck, A. J. R. Resolving Heterogeneous Macromolecular Assemblies by Orbitrap-
Based Single-Particle Charge Detection Mass Spectrometry. Nat. Methods 2020, 
17 (4), 395–398.  

 
(118)  Cleary, S. P.; Li, H.; Bagal, D.; Loo, J. A.; Campuzano, I. D. G.; Prell, J. S. 

Extracting Charge and Mass Information from Highly Congested Mass Spectra 
Using Fourier-Domain Harmonics. J. Am. Soc. Mass Spectrom. 2018, 29 (10), 
2067–2080.  

 
(119)  Stengel, F.; Baldwin, A. J.; Bush, M. F.; Hilton, G. R.; Lioe, H.; Basha, E.; Jaya, 

N.; Vierling, E.; Benesch, J. L. P. Dissecting Heterogeneous Molecular Chaperone 
Complexes Using a Mass Spectrum Deconvolution Approach. Chem. Biol. 2012, 
19 (5), 599–607.  

 
(120)  Katayama, H.; Wang, J.; Tama, F.; Chollet, L.; Gogol, E. P.; Collier, R. J.; Fisher, 

M. T. Three-Dimensional Structure of the Anthrax Toxin Pore Inserted into Lipid 
Nanodiscs and Lipid Vesicles. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (8), 3453–
3457.  

 
(121)  Akkaladevi, N.; Hinton-Chollet, L.; Katayama, H.; Mitchell, J.; Szerszen, L.; 

Mukherjee, S.; Gogol, E. P.; Pentelute, B. L.; Collier, R. J.; Fisher, M. T. 
Assembly of Anthrax Toxin Pore: Lethal-Factor Complexes into Lipid Nanodiscs. 
Protein Sci. 2013, 22 (4), 492–501.  

 
(122)  Hardenbrook, N. J.; Liu, S.; Zhou, K.; Ghosal, K.; Hong Zhou, Z.; Krantz, B. A. 

Atomic Structures of Anthrax Toxin Protective Antigen Channels Bound to 
Partially Unfolded Lethal and Edema Factors. Nat. Commun. 2020, 11 (1), 840.  

 
(123)  Goodsell, D. S.; Olson, A. J. Structural Symmetry and Protein Function. Annu. 

Rev. Biophys. Biomol. Struct. 2000, 29 (1), 105–153.  
 
(124)  Forrest, L. R. Structural Symmetry in Membrane Proteins. Annu. Rev. Biophys. 

2015, 44 (1), 311–337. 
 
(125)  Levy, E. D.; Pereira-Leal, J. B.; Chothia, C.; Teichmann, S. A. 3D Complex: A 

Structural Classification of Protein Complexes. PLOS Comput. Biol. 2006, 2 (11), 
e155.  

 
(126)  Levy, E. D.; Teichmann, S. A. Chapter Two - Structural, Evolutionary, and 

Assembly Principles of Protein Oligomerization. In Progress in Molecular Biology 
and Translational Science; Giraldo, J., Ciruela, F., Eds.; Academic Press, 2013; 
Vol. 117, pp 25–51.  

 
 
 



 

117 

 

(127)  van Breukelen, B.; Barendregt, A.; Heck, A. J. R.; van den Heuvel, R. H. H. 
Resolving Stoichiometries and Oligomeric States of Glutamate Synthase Protein 
Complexes with Curve Fitting and Simulation of Electrospray Mass Spectra. 
Rapid Commun. Mass Spectrom. 2006, 20 (16), 2490–2496.  

 
(128)  Spinozzi, F.; Mariani, P.; Mičetić, I.; Ferrero, C.; Pontoni, D.; Beltramini, M. 

Quaternary Structure Heterogeneity of Oligomeric Proteins: A SAXS and SANS 
Study of the Dissociation Products of Octopus Vulgaris Hemocyanin. PLoS One 
2012, 7 (11), e49644.  

 
(129)  Beam, M.; Silva, M. C.; Morimoto, R. I. Dynamic Imaging by Fluorescence 

Correlation Spectroscopy Identifies Diverse Populations of Polyglutamine 
Oligomers Formed in Vivo. J. Biol. Chem. 2012, 287 (31), 26136–26145.  

 
(130)  Kintzer, A. F.; Thoren, K. L.; Sterling, H. J.; Dong, K. C.; Feld, G. K.; Tang, I. I.; 

Zhang, T. T.; Williams, E. R.; Berger, J. M.; Krantz, B. A. The Protective Antigen 
Component of Anthrax Toxin Forms Functional Octameric Complexes. J. Mol. 
Biol. 2009, 392, 614–629.  

 
(131)  Berube, J. B.; Wardenburg, B. J. Staphylococcus Aureus α-Toxin: Nearly a 

Century of Intrigue. Toxins (Basel). 2013, 5 (6), 1140–1166.  
 
(132)  Tong, S. Y. C.; Davis, J. S.; Eichenberger, E.; Holland, T. L.; Fowler, V. G. 

Staphylococcus Aureus Infections: Epidemiology, Pathophysiology, Clinical 
Manifestations, and Management. Clin Microbiol Rev 2015, 28 (3), 603–661.  

 
(133)  Lubkin, A.; Torres, V. The Ever-Emerging Complexity of α-Toxin’s Interaction 

with Host Cells. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (46), 201519766.  
 
(134)  Popov, L. M.; Marceau, C. D.; Starkl, P. M.; Lumb, J. H.; Shah, J.; Guerrera, D.; 

Cooper, R. L.; Merakou, C.; Bouley, D. M.; Meng, W.; Kiyonari, H.; Takeichi, 
M.; Galli, S. J.; Bagnoli, F.; Citi, S.; Carette, J. E.; Amieva, M. R. The Adherens 
Junctions Control Susceptibility to Staphylococcus Aureus α-Toxin. Proc. Natl. 
Acad. Sci. 2015, 112 (46), 14337–14342.  

 
(135)  Ayub, M.; Bayley, H. Engineered Transmembrane Pores. Curr. Opin. Chem. Biol. 

2016, 34, 117–126.  
 
(136)  Gu, L.-Q.; Braha, O.; Conlan, S.; Cheley, S.; Bayley, H. Stochastic Sensing of 

Organic Analytes by a Pore-Forming Protein Containing a Molecular Adapter. 
Nature 1999, 398 (6729), 686–690.  

 
(137)  Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization of 

Individual Polynucleotide Molecules Using a Membrane Channel. Proc. Natl. 
Acad. Sci. 1996, 93 (24), 13770–13773.  

 



 

118 

 

(138)  Deamer, D. W.; Branton, D. Characterization of Nucleic Acids by Nanopore 
Analysis. Acc. Chem. Res. 2002, 35 (10), 817–825.  

 
(139)  Bayley, H. Nanopore Sequencing: From Imagination to Reality. Clin. Chem. 2015, 

61 (1), 25–31.  
 
(140)  Qing, Y.; Ionescu, S. A.; Pulcu, G. S.; Bayley, H. Directional Control of a 

Processive Molecular Hopper. Science (80-. ). 2018, 361 (6405), 908–912.  
 
(141)  Arbuthnott, J. P.; Freer, J. H.; Bernheimer, A. W. Physical States of 

Staphylococcal Alpha-Toxin. J. bacteriol. 1967, 94 (4), 1170–1177. 
 
(142)  Olofsson, A.; Kavéus, U.; Thelestam, M.; Hebert, H. The Projection Structure of 

α-Toxin from Staphylococcus Aureus in Human Platelet Membranes as Analyzed 
by Electron Microscopy and Image Processing. J. Ultrastruct. Mol. Struct. Res. 
1988, 100 (2), 194–200.  

 
(143)  Ward, R. J.; Leonard, K. The Staphylococcus Aureus α-Toxin Channel Complex 

and the Effect of Ca2+ Ions on Its Interaction with Lipid Layers. J. Struct. Biol. 
1992, 109 (2), 129–141.  

 
(144)  Czajkowsky, D. M.; Sheng, S.; Shao, Z. Staphylococcal α-Hemolysin Can Form 

Hexamers in Phospholipid Bilayers. J. Mol. Biol. 1998, 276 (2), 325–330. 
 
(145)  Furini, S.; Domene, C.; Rossi, M.; Tartagni, M.; Cavalcanti, S. Model-Based 

Prediction of the α-Hemolysin Structure in the Hexameric State. Biophys. J. 2008, 
95 (5), 2265–2274.  

 
(146)  Bhakdi, S.; Füssle, R.; Tranum-Jensen, J. Staphylococcal Alpha-Toxin: 

Oligomerization of Hydrophilic Monomers to Form Amphiphilic Hexamers 
Induced through Contact with Deoxycholate Detergent Micelles. Proc. Natl. Acad. 
Sci. 1981, 78 (9), 5475–5479.  

 
(147)  Gouaux, J. E.; Braha, O.; Hobaugh, M. R.; Song, L.; Cheley, S.; Shustak, C.; 

Bayley, H. Subunit Stoichiometry of Staphylococcal Alpha-Hemolysin in Crystals 
and on Membranes: A Heptameric Transmembrane Pore. Proc. Natl. Acad. Sci. 
1994, 91 (26), 12828–12831.  

 
(148)  Song, L.; Hobaugh, M. R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J. E. 

Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. 
Science (80-. ). 1996, 274 (5294), 1859–1865.  

 
(149)  Galdiero, S.; Gouaux, E. High Resolution Crystallographic Studies of α-

Hemolysin–Phospholipid Complexes Define Heptamer–Lipid Head Group 
Interactions: Implication for Understanding Protein–Lipid Interactions. Protein 
Sci. 2004, 13 (6), 1503–1511.  



 

119 

 

 
(150)  Banerjee, A.; Mikhailova, E.; Cheley, S.; Gu, L.-Q.; Montoya, M.; Nagaoka, Y.; 

Gouaux, E.; Bayley, H. Molecular Bases of Cyclodextrin Adapter Interactions with 
Engineered Protein Nanopores. Proc. Natl. Acad. Sci. 2010, 107 (18), 8165–8170.  

 
(151)  Tanaka, Y.; Hirano, N.; Kaneko, J.; Kamio, Y.; Yao, M.; Tanaka, I. 2-Methyl-2,4-

Pentanediol Induces Spontaneous Assembly of Staphylococcal α-Hemolysin into 
Heptameric Pore Structure. Protein Sci. 2011, 20 (2), 448–456.  

 
(152)  Das, S. K.; Darshi, M.; Cheley, S.; Wallace, M. I.; Bayley, H. Membrane Protein 

Stoichiometry Determined from the Step-Wise Photobleaching of Dye-Labelled 
Subunits. ChemBioChem 2007, 8 (9), 994–999.  

 
(153)  Hammerstein, A. F.; Jayasinghe, L.; Bayley, H. Subunit Dimers of α-Hemolysin 

Expand the Engineering Toolbox for Protein Nanopores. J. Biol. Chem. 2011, 286 
(16), 14324–14334.  

 
(154)  Otto, M. Staphylococcus Aureus Toxins. Curr. Opin. Microbiol. 2014, 17, 32–37.  
 
(155)  Liko, I.; Allison, T. M.; Hopper, J. T. S.; Robinson, C. V. Mass Spectrometry 

Guided Structural Biology. Curr. Opin. Struct. Biol. 2016, 40, 136–144.. 
 
(156)  Podobnik, M.; Savory, P.; Rojko, N.; Kisovec, M.; Wood, N.; Hambley, R.; Pugh, 

J.; Wallace, E. J.; McNeill, L.; Bruce, M.; Liko, I.; Allison, T. M.; Mehmood, S.; 
Yilmaz, N.; Kobayashi, T.; Gilbert, R. J. C.; Robinson, C. V; Jayasinghe, L.; 
Anderluh, G. Crystal Structure of an Invertebrate Cytolysin Pore Reveals Unique 
Properties and Mechanism of Assembly. Nat. Commun. 2016, 7 (11598), 1–10.  

 
(157)  Barrera, N. P.; Isaacson, S. C.; Zhou, M.; Bavro, V. N.; Welch, A.; Schaedler, T. 

A.; Seeger, M. A.; Miguel, R. N.; Korkhov, V. M.; van Veen, H. W.; Venter, H.; 
Walmsley, A. R.; Tate, C. G.; Robinson, C. V. Mass Spectrometry of Membrane 
Transporters Reveals Subunit Stoichiometry and Interactions. Nat. Methods 2009, 
6 (8), 585–587.  

 
(158)  Laganowsky, A.; Reading, E.; Hopper, J. T. S.; Robinson, C. V. Mass 

Spectrometry of Intact Membrane Protein Complexes. Nat. Protoc. 2013, 8 (4), 
639–651.  

 
(159)  Watanabe, M.; Tomita, T.; Yasuda, T. Membrane-Damaging Action of 

Staphylococcal Alpha-Toxin on Phospholipid-Cholesterol Liposomes. Biochim. 
Biophys. Acta-Biomembranes 1987, 898 (3), 257–265.  

 
(160)  Marty, M. T.; Baldwin, A. J.; Marklund, E. G.; Hochberg, G. K. A.; Benesch, J. L. 

P.; Robinson, C. V. Bayesian Deconvolution of Mass and Ion Mobility Spectra: 
From Binary Interactions to Polydisperse Ensembles. Anal. Chem. 2015, 87 (8), 
4370–4376. 



 

120 

 

 
(161)  Reid, D. J.; Diesing, J. M.; Miller, M. A.; Perry, S. M.; Wales, J. A.; Montfort, W. 

R.; Marty, M. T. MetaUniDec: High-Throughput Deconvolution of Native Mass 
Spectra. J. Am. Soc. Mass Spectrom. 2018.  

 
(162)  Seo, J.; Hoffmann, W.; Warnke, S.; Bowers, M. T.; Pagel, K.; von Helden, G. 

Retention of Native Protein Structures in the Absence of Solvent: A Coupled Ion 
Mobility and Spectroscopic Study. Angew. Chemie Int. Ed. 2016, 55 (45), 14173–
14176.  

 
(163)  Hildebrand, A.; Pohl, M.; Bhakdi, S. Staphylococcus Aureus Alpha-Toxin. Dual 

Mechanism of Binding to Target Cells. J. Biol. Chem. 1991, 266 (26), 17195–
17200. 

 
(164)  Wilke, G. A.; Wardenburg, J. B. Role of a Disintegrin and Metalloprotease 10 in 

Staphylococcus Aureus α-Hemolysin–Mediated Cellular Injury. Proc. Natl. Acad. 
Sci. 2010, 107 (30), 13473–13478. 

 
(165)  Tomita, T.; Watanabe, M.; Yasuda, T. Influence of Membrane Fluidity on the 

Assembly of Staphylococcus Aureus Alpha-Toxin, a Channel-Forming Protein, in 
Liposome Membrane. J. Biol. Chem. 1992, 267 (19), 13391–13397. 

 
(166)  Rostom, A. A.; Robinson, C. V. Detection of the Intact GroEL Chaperonin 

Assembly by Mass Spectrometry. J. Am. Chem. Soc. 1999, 121 (19), 4718–4719.  
 
(167)  Sobott, F.; Hernández, H.; McCammon, M. G.; Tito, M. A.; Robinson, C. V. A 

Tandem Mass Spectrometer for Improved Transmission and Analysis of Large 
Macromolecular Assemblies. Anal. Chem. 2002, 74 (6), 1402–1407.  

 
(168)  Landreh, M.; Liko, I.; Uzdavinys, P.; Coincon, M.; Hopper, J. T. S.; Drew, D.; 

Robinson, C. V. Controlling Release, Unfolding and Dissociation of Membrane 
Protein Complexes in the Gas Phase through Collisional Cooling. Chem. Commun. 
2015, 51 (85), 15582–15584.  

 
(169)  Freeke, J.; Robinson, C. V; Ruotolo, B. T. Residual Counter Ions Can Stabilise a 

Large Protein Complex in the Gas Phase. Int. J. Mass Spectrom. 2010, 298 (1–3), 
91–98.  

 
(170)  Gabelica, V.; Pauw, E. De. Internal Energy and Fragmentation of Ions Produced in 

Electrospray Sources. Mass Spectrom. Rev. 2005, 24 (4), 566–587.  
 
(171)  Krutchinsky, A. N.; Chernushevich, I. V; Spicer, V. L.; Ens, W.; Standing, K. G. 

Collisional Damping Interface for an Electrospray Ionization Time-of-Flight Mass 
Spectrometer. J. Am. Soc. Mass Spectrom. 1998, 9 (6), 569–579.  

 
 



 

121 

 

(172)  Chernushevich, I. V; Thomson, B. A. Collisional Cooling of Large Ions in 
Electrospray Mass Spectrometry. Anal. Chem. 2004, 76 (6), 1754–1760.  

 
(173)  Tahallah, N.; Pinkse, M.; Maier, C. S.; Heck, A. J. R. The Effect of the Source 

Pressure on the Abundance of Ions of Noncovalent Protein Assemblies in an 
Electrospray Ionization Orthogonal Time-of-Flight Instrument. Rapid Commun. 
Mass Spectrom. 2001, 15 (8), 596–601. https://doi.org/10.1002/rcm.275. 

 
(174)  Donor, M. T.; Mroz, A. M.; Prell, J. S. Experimental and Theoretical Investigation 

of Overall Energy Deposition in Surface-Induced Unfolding of Protein Ions. 
Chem. Sci. 2019, 10 (14), 4097–4106.  

 
(175)  Zhou, M.; Jones, C. M.; Wysocki, V. H. Dissecting the Large Noncovalent Protein 

Complex GroEL with Surface-Induced Dissociation and Ion Mobility–Mass 
Spectrometry. Anal. Chem. 2013, 85 (17), 8262–8267.  

 
(176)  Bolla, J. R.; Corey, R. A.; Sahin, C.; Gault, J.; Hummer, A.; Hopper, J. T. S.; 

Lane, D. P.; Drew, D.; Allison, T. M.; Stansfeld, P. J.; Robinson, C. V; Landreh, 
M. A Mass Spectrometry-Based Approach to Distinguish Annular and Specific 
Lipid Binding to Membrane Proteins. Angew. Chemie Int. Ed. 2020, 59, DOI: 
10.1002/anie.201914411.  

 
(177)  Bechara, C.; Robinson, C. V. Different Modes of Lipid Binding to Membrane 

Proteins Probed by Mass Spectrometry. J. Am. Chem. Soc. 2015, 137 (16), 5240–
5247. 

 
(178)  Harvey, S. R.; Liu, Y.; Liu, W.; Wysocki, V. H.; Laganowsky, A. Surface Induced 

Dissociation as a Tool to Study Membrane Protein Complexes. Chem. Commun. 
2017, 53 (21), 3106–3109.  

 
(179)  Walker, L. R.; Marzluff, E. M.; Townsend, J. A.; Resager, W. C.; Marty, M. T. 

Native Mass Spectrometry of Antimicrobial Peptides in Lipid Nanodiscs 
Elucidates Complex Assembly. Anal. Chem. 2019, 91 (14), 9284–9291.  

 
(180)  Han, L.; Kitova, E. N.; Li, J.; Nikjah, S.; Lin, H.; Pluvinage, B.; Boraston, A. B.; 

Klassen, J. S. Protein–Glycolipid Interactions Studied in Vitro Using ESI-MS and 
Nanodiscs: Insights into the Mechanisms and Energetics of Binding. Anal. Chem. 
2015, 87 (9), 4888–4896.  

 
(181)  Zhang, Y. X.; Liu, L.; Daneshfar, R.; Kitova, E. N.; Li, C. S.; Jia, F.; Cairo, C. W.; 

Klassen, J. S. Protein-Glycosphingolipid Interactions Revealed Using Catch-and-
Release Mass Spectrometry. Anal. Chem. 2012, 84 (18), 7618–7621.  

 
(182)  Liu, Y.; LoCaste, C. E.; Liu, W.; Poltash, M. L.; Russell, D. H.; Laganowsky, A. 

Selective Binding of a Toxin and Phosphatidylinositides to a Mammalian 
Potassium Channel. Nat. Commun. 2019, 10 (1), 1352.  



 

122 

 

 
(183)  Sun, J.; Kitova, E. N.; Sun, N.; Klassen, J. S. Method for Identifying Nonspecific 

Protein−Protein Interactions in Nanoelectrospray Ionization Mass Spectrometry. 
Anal. Chem. 2007, 79 (21), 8301–8311.  

 
(184)  Kitova, E. N.; El-Hawiet, A.; Schnier, P. D.; Klassen, J. S. Reliable 

Determinations of Protein–Ligand Interactions by Direct ESI-MS Measurements. 
Are We There Yet? J. Am. Soc. Mass Spectrom. 2012, 23 (3), 431–441.  

 
(185)  Kitov, P. I.; Han, L.; Kitova, E. N.; Klassen, J. S. Sliding Window Adduct 

Removal Method (SWARM) for Enhanced Electrospray Ionization Mass 
Spectrometry Binding Data. J. Am. Soc. Mass Spectrom. 2019, 30 (8), 1446–1454.. 

 
(186)  Landreh, M.; Costeira-Paulo, J.; Gault, J.; Marklund, E. G.; Robinson, C. V. 

Effects of Detergent Micelles on Lipid Binding to Proteins in Electrospray 
Ionization Mass Spectrometry. Anal. Chem. 2017, 89 (14), 7425–7430.  

 
(187)  Roscioli, J. R.; McCunn, L. R.; Johnson, M. A. Quantum Structure of the 

Intermolecular Proton Bond. Science (80-. ). 2007, 316 (5822), 249–254.  
 
(188)  Miller, Z. M.; Zhang, J. D.; Donald, W. A.; Prell, J. S. Gas-Phase Protonation 

Thermodynamics of Biological Lipids: Experiment, Theory, and Implications. 
Anal. Chem. 2020, in revision. 

 
(189)  Gupta, K.; Li, J.; Liko, I.; Gault, J.; Bechara, C.; Wu, D.; Hopper, J. T. S.; Giles, 

K.; Benesch, J. L. P.; Robinson, C. V. Identifying Key Membrane Protein Lipid 
Interactions Using Mass Spectrometry. Nat. Protoc. 2018, 13 (5), 1106–1120.  

 
(190)  Bayburt, T. H.; Sligar, S. G. Membrane Protein Assembly into Nanodiscs. Febs 

Lett. 2010, 584 (9), 1721–1727.  
 
(191)  Denisov, I. G.; Sligar, S. G. Nanodiscs in Membrane Biochemistry and 

Biophysics. Chem. Rev. 2017, 117 (6), 4669–4713.  
 
(192)  Denisov, I. G.; Grinkova, Y. V; Lazarides, A. A.; Sligar, S. G. Directed Self-

Assembly of Monodisperse Phospholipid Bilayer Nanodiscs with Controlled Size. 
J. Am. Chem. Soc. 2004, 126 (11), 3477–3487. https://doi.org/10.1021/ja0393574. 

(193)  Denisov, I. G.; Baas, B. J.; Grinkova, Y. V; Sligar, S. G. Cooperativity in 
Cytochrome P450 3A4: LINKAGES IN SUBSTRATE BINDING, SPIN STATE, 
UNCOUPLING, AND PRODUCT FORMATION . J. Biol. Chem.  2007, 282 
(10), 7066–7076. 

 
(194)  Sinelnikov, I.; Kitova, E. N.; Klassen, J. S. Influence of Coulombic Repulsion on 

the Dissociation Pathways and Energetics of Multiprotein Complexes in the Gas 
Phase. J. Am. Soc. Mass Spectrom. 2007, 18 (4), 617–631.  

 



 

123 

 

(195)  Hall, Z.; Politis, A.; Bush, M. F.; Smith, L. J.; Robinson, C. V. Charge-State 
Dependent Compaction and Dissociation of Protein Complexes: Insights from Ion 
Mobility and Molecular Dynamics. J. Am. Chem. Soc. 2012, 134 (7), 3429–3438.  

 
(196)  Cong, X.; Liu, Y.; Liu, W.; Liang, X.; Russell, D. H.; Laganowsky, A. 

Determining Membrane Protein–Lipid Binding Thermodynamics Using Native 
Mass Spectrometry. J. Am. Chem. Soc. 2016, 138 (13), 4346–4349. 
https://doi.org/10.1021/jacs.6b01771. 

 
(197)  Salbo, R.; Bush, M. F.; Naver, H.; Campuzano, I.; Robinson, C. V; Pettersson, I.; 

Jørgensen, T. J. D.; Haselmann, K. F. Traveling-Wave Ion Mobility Mass 
Spectrometry of Protein Complexes: Accurate Calibrated Collision Cross-Sections 
of Human Insulin Oligomers. Rapid Commun. Mass Spectrom. 2012, 26 (10), 
1181–1193.  

 


	A DISSERTATION
	DISSERTATION APPROVAL PAGE
	Student: Jesse William Wilson
	Title: Native Ion Mobility-Mass Spectrometry Techniques for Characterizing the Structure and Lipid Binding of Bacterial Pore-Forming Toxins.
	Original approval signatures are on file with the University of Oregon Graduate School.
	Degree awarded June 2020
	CURRICULUM VITAE
	NAME OF AUTHOR: Jesse William Wilson
	GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
	University of Oregon, Eugene
	DEGREES AWARDED:
	AREAS OF SPECIAL INTEREST:
	PROFESSIONAL EXPERIENCE:
	GRANTS, AWARDS, AND HONORS:
	PUBLICATIONS:
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	1. Native mass spectrum of PA prepore complexes  10
	2. Native mass spectrum of PAx(LFN)y complexes.  14

