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THESIS ABSTRACT 

Riley O’Darby Anderson 

Master of Science 

Department of Geography 

June 2020 

Title: High Resolution Remote Sensing of Eelgrass (Zostera marina) in South Slough, 

Oregon 

 

 Eelgrass (Zostera marina) supports aquatic biodiversity, carbon sequestration, 

aquaculture, and water quality. Eelgrass has been undergoing global decline for more 

than three decades. Lack of spatially extensive, long-term monitoring data is limiting 

eelgrass conservation and restoration projects, which have low success rates in the Pacific 

Northwest. This study compares pixel- and object-based image classification techniques 

on high spatial resolution drone and aerial imagery of eelgrass in South Slough, Oregon. 

It also quantifies change in spatial distribution and geometry over a three-year period. I 

find that low-cost imagery can recognize low eelgrass coverage in Pacific Northwest tidal 

marshes with moderate success. Both classification algorithms overestimated coverage by 

misidentifying algae as eelgrass and neither consistently performed best for eelgrass 

mapping. I detected a 44.8% net loss in coverage between 2016 and 2019. Increasing 

patch shape complexity and fragmentation in areas of decline suggest that disturbances 

are affecting landscape and patch-level eelgrass factors.  
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CHAPTER I 

 INTRODUCTION  

 

Background 

Seagrasses are a type of macrophyte that present important ecosystem services to 

their natural environment by sequestering carbon, providing habitat to marine life, and 

increasing sediment deposition (Waycott et al. 2009). These marine angiosperms consist 

of 72 species and are found on every continent except Antarctica (Short et al. 2011). 

Researchers have estimated 29% of seagrass cover has been lost since the late 1800s, 

with prominent loss occurring within the genus Zostera (eelgrass) (Waycott et al. 

2009). Zostera marina is a species native to the coasts of North America and Eurasia, 

where it serves as a carbon sink and nursery habitat for salmon in the Pacific Northwest 

Phillips 1984). More frequent and in-depth monitoring of this declining species is thus 

critical. This thesis tests the use of remote sensing using low-cost, consumer-grade 

imagery acquired from an unmanned aerial vehicle and free aerial imagery from the 

National Agriculture Imagery Program in order to improve eelgrass monitoring.  

Aside from its recent decline, eelgrass is a popular species within conservation 

given its array of ecological benefits. Eelgrass beds on an ecosystem level are indicators 

of the ecological health of estuarine habitat (Rumrill and Sowers 2008). They are a 

foundation species that improves water quality, prevents coastal erosion, shelters 

breeding fish and invertebrates, and reduces current and wave velocity (Waycott et. al 

2009). As with other seagrasses, eelgrass displays itself along a gradient, ranging from 

highly fragmented, small, sparse patches to dense, large, and continuous ‘meadows’. 
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This species in particular needs to be prioritized due to its rapid decline that began 

in the 1980s (Short et al. 1987). Suggested drivers of the decline are many: coastal 

development, increased turbidity and water temperature, presence of green crab 

(Carcinus maenas), geese grazing, eutrophication, eelgrass wasting disease, macroalgae, 

and dehydration from tidal patterns and insolation. Eelgrass decline across the globe is 

not understood yet and thus, a standard in monitoring procedures and environmental 

variables has not been established, leaving it up to each agency to decide. Field 

measurements using percent coverage and shoot density estimates within quadrats are the 

most common monitoring method, yet monitoring via airborne imagery and sonar are 

becoming common for their ability to capture larger spatial extents.  

Sparse eelgrass requires more attention and is becoming more common as 

eelgrass habitats decline in quality. In undisturbed environments, patches of eelgrass 

typically grow into meadows; when conditions prevent patches from expanding or cause 

meadows to fragment, the patches have higher sensitivity to environmental limiting 

factors than eelgrass meadows. The rhizomes of patchy eelgrass are more susceptible 

than continuous eelgrass meadows to negative effects from invasive marine species such 

as the introduced mussel Musculista senhousia or green crab (Reusch and Williams, 

1997). Small patches are more likely to be lost to a state of bare sediment from being 

pushed beyond the state threshold by both bioturbation and disturbance from wave 

velocity (Uhrin and Turner 2018, Carr et al. 2010). The spatial distribution of eelgrass 

rhizomes also affects monitoring accuracy: measuring depth limits, which is an indicator 

of the health status of the seagrass, has higher uncertainty when done in patchy areas due 

to divers having different depth estimates when crossing the depth limits at different 
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locations (Balsby, Carstensen, & Krause-Jensen 2013). Smaller spatial units of aquatic 

vegetation are distinguished less often than large meadows and sometimes omitted 

entirely when using low-resolution satellite and aerial imagery for detection (Nahirnick et 

al. 2018).  

The urgency to conserve seagrass habitats has inspired a variety of in situ 

monitoring methods, such as scuba surveys (Whippo et al. 2018), standardized ground-

based sampling for citizen-science efforts (Seagrass cit), and hovercraft-based mapping 

(Mckenzie, 2003). Remote sensing approaches are now common for estimating seagrass 

coverage and density: active acoustic remote sensing, like side scan sonar, and passive 

spectral sensors that are used on boats and kayaks (Nahirnick 2018), manned and 

unmanned aircraft (Duffy et al. 2018), or satellites. While habitat mapping of coastal 

wetlands using low spatial resolution imagery, such as Landsat (25m resolution), has 

been done before (Ward et al. 2003), higher resolution aerial imagery has been the 

standard data format for mapping eelgrass, as more complex, fragmented seascapes are 

delineable and timing of image acquisition is more flexible (Costello and Kenworthy 

2011, Uhrin and Turner 2018, EPA 2007). Furthermore, the usage of unmanned aerial 

vehicles (UAVs), commonly known as drones, are becoming increasingly preferable 

among conservation groups due to their relative low cost, flexibility of flight planning, 

and ability to capture eelgrass health indicators at fine scales (Duffy et al. 2018, Ventura 

et al. 2018).  

 Advancements in land cover classification techniques are also improving 

conservation mapping. Namely, object-based image analysis (OBIA) is now often used in 

high resolution remote sensing of complex landscapes because the objects of interest are 
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made up of multiple pixels, compared to pixel-based classification techniques applied to 

coarser spatial resolution data that represent multiple objects within one pixel. OBIA first 

groups pixels that are spectrally similar and spatially close into “objects” before 

classifying the scene, which can assist in studying vegetation patch dynamics, such as 

patch size, shape complexity and internal gap dynamics (Nahirnick et al. 2018, Barrell et 

al. 2015). Efficient means of studying landscape metrics in eelgrass habitats are important 

to establish, as they may indicate an irreversible equilibrium shift (Uhrin and Turner 

2018, Carr et al. 2010). This research applies high resolution aerial imagery and OBIA to 

eelgrass habitats in South Slough, Oregon, USA for identification of present eelgrass and 

detection of changes within patch dynamics.  

 

Study Site 

South Slough (43°20’ N, 124°19’ W) is a tidal inlet at the mouth of Coos Bay, 

Oregon. The estuarine subsystem is located within the Coos watershed (467,200 acres) 

and the 5900 acre South Slough National Estuarine Research Reserve (SSNERR), 

established in 1974. As part of the drowned river mouth Coos estuary, the slough consists 

of sand and mudflats and salt marshes that border an open water tidal channel. The mean 

tidal range at the mouth of Coos Bay is 2.3m, with the highest tides 3.3m above mean 

lower low water (MLLW) and lowest tides occurring at -0.9m below MLLW (Rumrill 

2015). Similar to other regions of the Pacific Northwest, eelgrass and benthic macroalgae 

exist as the dominant submerged aquatic vegetation in the low intertidal zone of the 

wetlands, while more diverse assemblages of emergent vegetation inhabit the middle and 

upper intertidal zones (Rumrill 2008). Salinity ranges from marine to riverine values, 

with distinct hydrographic regions existing within the slough. Historically, eelgrass could 
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be found in dense meadows in the marine and polyhaline regions, as well as the 

riverine/mesohaline region. Only sporadic 1-3 m2 patches were found in the oligohaline 

regions of the estuary (Rumrill 2008).   

Monitoring sites for eelgrass, established by researchers at SSNERR, were chosen 

to reflect the variety of ecologic and hydrographic conditions at eelgrass sites within the 

slough. The four existing monitoring locations were used as sites for this research (Figure 

1).  

 

Figure 1. Map of South Slough, Oregon (left) and the SSNERR eelgrass monitoring sites 

(right) represented by 2016 NAIP 1m aerial imagery. From a-d: Collver Point, Valino 

Island, Hidden Creek, and Danger Point. 
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The monitoring sites have permanent transect lines throughout the historic eelgrass extent 

and are accessible by foot. The accessibility of these sites was a major determining factor 

in where imagery was collected because the upstream reaches of the slough cannot be 

navigated by boat or kayak at lower tides and the UAV battery life and Federal Aviation 

Administration (FAA) rules did not allow for launching flights from hundreds of meters 

away. By selecting these sites with long-term monitoring data, I was also able to assess 

the accuracy of eelgrass classification in aerial imagery from 2016 (Chapter 2). 

Collver Point (43°19’47'' N, 124°19’8'' W), in the marine-dominated region, is a 

sandstone headland with a silty salt marsh, adjoining mudflats and cobble terrace. 

Eelgrass beds are a fringe along the edge of the tidal channel. Valino Island (43°18’50'' 

N, 124°19’5'' W), in the polyhaline region, is the only site of four sites that has expansive 

sandy tideflats. Eelgrass meadows have historically spread out across the sandflats, while 

also fringing along the edge of the deep tidal channel. Hidden Creek (43°17'28" N, 

124°19'16" W) is the third monitoring site and consists of a silty, mesohaline salt marsh 

and eelgrass patches fringing along the tidal channel. Lastly, Danger Point (43°16’58'' N, 

124°19’17' 'W) is in the riverine region of the upper 

estuary, where a narrow tidal channel passes by mudbanks and a high salt marsh. An 

eelgrass bed historically existed along the length of the channel. 

Two sites, Hidden Creek and Danger Point, have been without eelgrass since 

2017. They were included in the research to test how image resolution and classification 

methods affect the classification accuracy on landscapes within the South Slough that do 

not have eelgrass.  
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Research Questions  

This research seeks to test the effectiveness of two different image classification 

techniques, pixel-based unsupervised and supervised classification and object-based 

supervised classification, on eelgrass via aerial imagery of varying high spatial 

resolutions in South Slough. It also aims to analyze the change in the spatial metrics of 

eelgrass patches in South Slough from 2016 to 2019. Effective monitoring techniques are 

needed in South Slough and other areas experiencing major eelgrass declines in order to 

increase knowledge of eelgrass spatial ecology to better prevent and mitigate net losses. 

Furthermore, given that both UAVs and OBIA are emerging, hot topics within 

conservation mapping in this current day, it is important to understand how they can 

benefit eelgrass mapping. The overall research questions in this thesis are as follows: 

 

Question 1: How effective are classification techniques (unsupervised, supervised, 

OBIA) in mapping sparse intertidal eelgrass in South Slough, Oregon with UAV 

imagery? 

 

Question 2: How accurate is National Agiculture Imagery Program (NAIP) imagery in 

mapping eelgrass in South Slough, Oregon?  

 

Question 3: How has eelgrass distribution in South Slough, Oregon changed from 2016 

to 2019?  
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CHAPTER  II  

MAPPING EELGRASS FROM UAV IMAGERY WITH THREE IMAGE 

CLASSIFICATION TECHNIQUES  

 

Introduction 

Unmanned aerial vehicles (UAVs) have recently come into the conservation 

spotlight as a solution to the operational issues that come with species distribution 

mapping and monitoring. Historically used for military purposes, the 2010s welcomed 

new drones that have been manufactured in small, lightweight forms and are being sold at 

relatively low costs. UAVs are able to tackle the three most common obstacles in using 

remote sensing for conservation efforts: high spatial resolution needs, ability for frequent 

repeat flights, and imagery acquisition costs. Along with other agencies and 

organizations, the National Oceanic and Atmospheric Administration has recognized the 

potential for UAVs, stating that they “have the potential to efficiently and safely bridge 

critical information gaps” in data‐sparse locations “and advance understanding of key 

processes in Earth systems” (NOAA 2012). 

The use of UAVs for mapping is of particular interest to seagrass 

conservationists. Satellite imagery, especially in temperate coastal regions, is susceptible 

to cloud coverage and variable tide states that affect the ability to identify seagrass and 

perform time-series investigations. Even with fine spatial resolution satellite data, 

individual seagrass plants and shoots are not identifiable (Duffy et al. 2018). With 

pressure to monitor seagrass habitats more frequently, conservationists cannot rely upon 

aerial imagery from annual aircraft missions such as the National Aerial Imagery 
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Program from the USDA's Farm Service Agency due to the risk of poor environmental 

conditions (cloud cover, tidal state) that satellite imagery also harbor. Mapping of 

seagrass done "in the field" by UAV/spectroradiometer, or other form of photograph, was 

the fourth most utilized remote sensing approach in a 2015 review, comprising 14% of 

the published studies on seagrass mapping (Hossain et al. 2015).  

 Publications on eelgrass mapping via UAVs have arisen only since 2016. The 

only publications to focus primarily on eelgrass mapping have involved testing the effects 

of environmental conditions on mapping quality (Nahirnick et al. 2019) as well as 

comparing the performance of different classification approaches (Duffy et al. 2018). 

Nahirnick et al. (2018) classified patchy eelgrass as having a “low mapping confidence 

level” but concluded that ideal environmental conditions would allow for high confidence 

mapping of sparse eelgrass, while Duffy et al. (2018) found their more sparse site to be 

more accurately classified than a densely vegetated site. As eelgrass declines globally, 

many coastal estuaries may already have low percent cover of eelgrass. The applicability 

of UAV mapping in areas undergoing rapid declines in eelgrass coverage is still 

unknown. To advance knowledge surrounding eelgrass mapping, this research tested 

different classification approaches on UAV imagery in South Slough, Oregon, USA, 

where recent years have seen rapid declines in eelgrass cover (Wirfs and Helms, 2018).  

 

Ground Data Collection  

Permanent transect lines exist at all four monitoring sites. The lines run from the 

upland-marsh boundary (about +2.6m mean lower-low water (MLLW)) to the marsh-

mudflat boundary (about +1.4m MLLW). However, at Collver Point, the lines do not 
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meet the salt marsh transect as there are 90-110m of mudflats in between. The 50-100m 

lines at all sites are identified by stakes that mark ~20 0.25-m2 evenly spaced quadrat 

plots. I was unable to monitor at the majority of permanent plots due to the water being 

too deep for accessibility, as some plots are not exposed at low tide during certain periods 

of each month. Instead, I followed the same monitoring protocol by randomly sampling 

at accessible (i.e. exposed) locations using a 0.25m2 PVC quadrat. Per the Seagrass-

Watch protocol (Mckenzie et al. 2003), I visually estimated the percent coverage of 

eelgrass, algae, and substrate at 5% cover intervals at nine randomized quadrats at the 

two eelgrass sites (Valino Island and Collver Point). Although this protocol naturally has 

uncertainties, it is the method deployed for all eelgrass monitoring done in South Slough 

by SSNERR and is presumed to be “truth” for the purpose of this study. I used a Trimble 

Geo7x GPS to collect the GPS coordinates of each corner of each quadrat; these 

coordinates were also used for calculating the spatial accuracy error in the GPS data 

derived from the UAV. Although my sampling locations were randomly chosen, a 

weakness in this approach is that the samples are biased towards water-free locations in 

the site. The seasonal monitoring done by SSNERR at their permanent plots was included 

to add more validation points in the accuracy assessment done post-classification. 

 

UAV Flight Planning and Implementation  

Flight planning for UAVs over coastal eelgrass habitat must take into 

consideration wind speed, tidal height, cloud cover, turbidity, and sun angle. Ideal 

conditions for high confidence eelgrass mapping consist of: wind speeds below 5 km·h−1, 

<10% or >90% cloud cover, Secchi depths over 5m, and sun angles below 40° (Nahirnick 
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et al. 2019). Furthermore, the phenology of eelgrass renders the flowering periods in late 

spring and early summer to be the best time for mapping, as eelgrass biomass and density 

is most abundant then. The flight conditions are detailed in Table 1. 

I piloted a DJI Phantom 3 Professional with its 4K camera, DJI FC300X, for this 

study. The camera has 12.4 effective megapixels, an image size of 4000 x 3000 pixels, a 

sensor size of 6.17 x 4.55mm, and a lens IFOV of 94°. For the bright conditions of the 

estuary, I programmed the camera with an ISO of 100, f-stop of f/2.8, and shutter speed 

of 1/2500 sec. The number of photos collected at each site ranged from 200 (Danger 

Point) to 900 (Collver Point). The number of flights required to cover the sites ranged 

from 2 to 6 (Table 2).  

 

Table 1. Summary of environmental conditions by site. Turbidity and water depth values 

were taken from the closest water quality and weather monitoring stations to each site 

within South Slough (NERRS 2020). 

            

  

Site  

  

  

Date  

  

  

Time  

  

Sun  

 angle  

 

Water 

 depth (m)  

 

Wind 

 speed (m/s)  

  

Cloud 

 cover   

  

Turbidity (NTU)  

Danger 

 Point  

6/30/19  8:45-9:15 am  30°  1.16  2   75%  20  

Hidden Creek  7/14/19  

  

8:45-9:45 am  

  

29°  

  

 1   0.3  

  

10%  18  

Valino 

 Island  

7/30/19   7:30-8:30am  13°  1.07  0  5%  5  

  

Collver Point  8/1/19  7:00-8:30am  8°  0.57  0  5%  

  

4  

 

 

At Collver Point, Valino Island, Hidden Creek, and Danger Point, I collected 

RGB images at 10m and 20m above ground. A preliminary study done on UAV eelgrass 
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mapping in Coos Bay recommended flying at ~20m (Earth Design 2019). The report 

showed that flights at ~20m had higher spatial accuracy than ~10m flights and required 

less computational and data processing time than smaller images, yet image quality was 

best at ~10m (Earth Design 2019). Additionally, simply repeating my flights increased 

the chances of having imagery viable for structure from motion processing. 

Flight plans allow for image capture speeds, camera orientation, and UAV speed 

and path to be programmed into the device for easier flying, however poor GPS signal 

can cause the UAV to diverge entirely from the flying area (personal observation). The 

option of a flight plan for automated flying was dismissed prior to fieldwork, as housing 

along the water and thick riparian forest at the study site made any accidental digression 

from the estuary too dangerous. Consequently, I manually captured images every one to 

two seconds and maintained a 75% overlap between flight paths with the help of a visual 

observer. Overlap of successive images by at least 80% and parallel images by 60% is 

necessary for structure from motion processing to mosaic photos together through 

common points.  

 

Structure from Motion (SfM) Processing  

I used Agisoft Metashape Professional v.1.4.3 to create orthophotos from the 

images taken during the UAV flights. Agisoft Metashape Professional is a commercial-

grade structure from motion software that builds 3-dimensional data from common points 

within photographs. After removing blurry images, I aligned the photos in the software. I 

tried re-alignment of both the whole set of photos and certain batches of photos in order 

to increase the percentage of aligned photos. Alignment of all photos was not possible at 
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any of the sites; the homogeneity of features in wetland environments (water bodies, bare 

sand) makes it difficult for structure from motion software to detect the orientation of 

photos for alignment when no identifying marks such as rocks or eelgrass are present. 

Even when sufficient overlap was achieved, aquatic portions of some scenes were 

deemed unviable for mosaicking because environmental conditions such as sun glint, 

ripples in the water surface from wind, and high turbidity made overlapping regions of 

images appear nonidentical due to temporal heterogeneity. Images from high tide scenes 

consequently had to be omitted from this research. Even at low tide I was not able to 

process an orthophoto from Danger Point due to low photo counts and spectral properties 

in the narrow, low-velocity site. For scenes that successfully generated a sparse point 

cloud, I removed any points in the resulting sparse point cloud that were registering as 

outliers. Although 10m flights at Valino Island and Collver Point produced quality 

comparable to the 20m flights, the 20m imagery lost significantly less area at the edges 

than the 10m imagery, which led me to choose 20m imagery for the image analysis 

(Table 2). The dense point cloud and mesh were created from this sparse point cloud. The 

orthophotos were generated after these steps (see Figure 2). 

 

Table 2. Flight specifics for each site.  

 

Site  

 

Height above 

ground (m)  

 

Avg. flight speed 

(km/hr)  

 

Area 

(ha)  

 

Flights  

 

Spatial resolution 

(cm2)  

Hidden 

Creek  
20  10  2.4  3  3.9  

Valino 

Island   
20  10  3.2  4  3.9   

Collver 

Point  
20  10  7.65  6  3.9  
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The individual JPEGs used for generating the orthophoto have a spatial accuracy 

equal to the accuracy of the GPS onboard the UAV, which captures spatial information in 

the WGS-84 coordinate system. Ground control points taken from the quadrat monitoring 

were used to calculate error in spatial accuracy. I projected the orthophotos into NAD-83 

UTM Zone 10 for two reasons: to match imagery flown in 2016 (see Chapter 3) and 

calculate minimum mapping units and other spatial geometries with minimal distortion. 

The spatial resolution of each orthophoto was resampled to 25cm2 to decrease computing 

requirements and match 2016 aerial imagery for further comparisons, while the spatial 

accuracy of the orthophotos was calculated as 60cm2 after comparison to the in-situ 

quadrat sampling. The application of a minimum mapping unit (MMU) during 

classification solves the difference in these resolutions.  

 

 

Figure 2. UAV orthophotos of the three monitoring sites, with eelgrass and algae 

highlighted. Hidden Creek is a control site with no eelgrass present. 
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Classification 

 The classification schema for all sites consisted of four classes. At eelgrass sites, 

the classes were: substrate, water, eelgrass, and algae. At the algae-only site, the classes 

were instead substrate, water, riparian vegetation, and algae. Riparian vegetation was 

present at all sites, yet minimal differences in accuracy when riparian vegetation was 

included separately or within the algae class removed the need for a fifth class. During 

the beginning stages of segmentation and/or training, substrate was split into dry and wet 

substrate classes and eelgrass was differentiated by submerged and exposed eelgrass. At 

Hidden Creek, riparian vegetation was first identified as healthy vegetation and grasses to 

reduce spectral overlapping between riparian plants and algae.  

I used ArcGIS Pro v2.1.4. for all image classification techniques. First, I 

performed unsupervised classification on Hidden Creek, Collver Point, and Valino Island 

orthophotos. Basic unsupervised classification on true color imagery reveals what level of 

classification can be achieved when no reference data or band algebra is used to train the 

classifier. I performed this work with iso cluster unsupervised classification, which 

combines maximum likelihood classification and a modified iterative optimization 

clustering procedure. The only parameters set by the user are the number of classes, 

maximum iterations, maximum cluster merges, merge distance, minimum samples per 

cluster, and the skip factor. The iterations assign samples to clusters and assumes that the 

statistics for each class in each band are normally distributed (ESRI). 

The second classification technique was supervised classification using a support 

vector machine classifier. Supervised classification uses training samples to assign pixels 

to classes within the user’s specified classification scheme. When creating training 
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samples, each class contained ~300 pixels, following the remote sensing principle that if 

n is the number of bands in the image, training classes should contain pixels between 10n 

and 100n. I used a support vector machine (SVM) classifier for this method because 

SVM is known for being able to handle larger images than random forest classifiers and 

is less susceptible to noise and the number or size of training samples (ESRI).  

Using high spatial resolution remote sensing for classifying vegetation does not 

always benefit classification accuracy or performance. Due to the increase in spatial 

resolution, the spectral variability of classification targets can increase, which directly 

reduces the statistical separability between classes with traditional pixel-based 

classification. This can cause noise in the image (the "salt-and-pepper effect") where 

pixels of one vegetation class are assigned different classes. Deemed the "H-resolution 

problem", various pixel-based improvements have been developed, such as post-

classification processing to decrease noise through filtering, contextual classification, or 

pre-processing with filtering and texture analysis (Woodcock and Strahler 1987). Yu et 

al. (2006) point out that these solutions have apparent disadvantages when utilized for 

high spatial resolution images up to 10 m: 1) the pre-defined neighborhood window size 

does not address the different pixel window sizes that different land cover classes require, 

2) the high computational needs of these processes favor large window sizes, and 3) 

accuracy is still low for boundary pixels. 

Object-based classification, also more commonly grouped into object-based 

image analysis (OBIA), is a popular alternative to pixel-based classification because it 

addresses the H-resolution problem (Gamanya et al., 2009). OBIA is derived from 

segmentation, edge-detection, feature extraction and classification concepts that have 
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been used in remote sensing image analysis for decades (Blaschke 2010), but was not 

used extensively in geospatial applications until the 21st century (Blaschke et al. 2004). 

By segmenting objects of interest by spatial and spectral proximity, OBIA can eliminate 

the salt-and-pepper effect in high spatial resolution images that can be caused by 

shadows, gaps, or textures.   

Updates to the image classification tools in ArcGIS Desktop products in recent 

years have introduced traditional OBIA parameter setting by scale, shape, and 

compactness (ESRI 2020, Kavzoglu & Yildiz 2014). ArcGIS Pro uses the machine-

learning classifiers (random forest and support vector machine) as a less interventive and 

scene-specific alternative to rule sets that are used in other OBIA software. However, 

finding optimal parameter settings required applying a trial and error approach to each 

individual scene - a tedious but common method that is used in many OBIA projects 

where open-source segmentation parameter optimization code is not available (Zhang, 

Fritts, and Goldman 2008). Within the segmentation parameters, spatial detail 

(compactness), spectral detail (shape), and minimum segment size (scale) need to be set 

by the analyst. The spectral detail parameter determines how much influence the spectral 

characteristics of pixels have on segmentation; a high value is best for objects of interest 

that have similar colors, such as algae and eelgrass. The spatial detail parameter 

prioritizes the proximity of features and a higher value results in objects that are more 

clustered together. The minimum segment size parameter controls the scale of the 

objects, which allows analysts to set a constant MMU for the scene.  

The spectral detail parameter for all three sites was set to 19 (on a range of 0-20), 

because spectral separability of eelgrass, algae, and riparian vegetation was low. The 
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spatial detail was set to 15 (on a range of 0-20) for Collver Point and Hidden Creek and 

19 for Valino Island. The majority of algae was meters apart from eelgrass at Collver 

Point, and thus segmentation of objects was most realistic with a spatial detail setting of 

15; higher values separated eelgrass patches into multiple objects. Algae and eelgrass 

were typically less than a meter apart at Valino Island, so a value of 19 for spatial detail 

was most ideal.  

I assessed the accuracy of the three algorithms by comparing the reported eelgrass 

coverage of randomly selected points to the real-life eelgrass as documented in the 

SSNERR and pre-flight field monitoring. Half of the monitoring quadrats were used for 

creating the training samples, while the other half were utilized as validation points. 

Random automation of accuracy assessment points resulted in 80 accuracy assessment 

points per site, of which I manually classified the true land cover class. The same 

stratified random sampling design was applied for both pixel- and object-based 

classifications. Monitoring data from SSNERR validated points that fell along the 

permanent sampling transects, while other points were interpreted using visual 

inspection. Visual inspection of high spatial resolution imagery is actually quite reliable 

for assessing accuracy (Lechner et al. 2012, Nahirnick et al. 2018).  

 The effectiveness of the classifications was measured by computing accuracies in 

the form of a confusion matrix. The confusion matrices included producer’s accuracy, 

user’s accuracy, overall accuracy, and the Kappa statistic. I did not focus on the Kappa 

statistic and overall accuracy in the effectiveness of mapping eelgrass because the two 

values take into account the user’s and producer’s accuracies of all classes in the 

classification schemes. The user’s accuracy is determined by the proportion of correctly 
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classified pixels/objects within the total number of samples classified. Contrastingly, the 

producer’s accuracy is the proportion of correctly classified pixels/objects out of the 

validation points.  

 Although the accuracy was quantified using only the user’s and producer’s 

accuracies, I discuss errors in the classifications in terms of omission/commission errors 

and Type I/II errors. An omission error occurs when a pixel/object of a certain class is 

omitted from the correct class; this can also be associated as a Type II error because it is a 

false negative. Errors of commission are seen when pixels/objects are included into a 

class that they are not part of in reality (i.e. Type I – false positive error). 1 – user’s 

accuracy will reveal the Type I error (false positives) present in the classification, while 1 

– producer’s accuracy will reveal the Type II error (false negatives). 

 

Results  

The results of the analysis are summarized in Table 3 and illustrated in Figure 3. Figure 2 

showcases examples of eelgrass and algae spectral characteristics in the unclassified 

orthophotos, as the two vegetation types are difficult to distinguish with an untrained eye. 

Following, each site is addressed individually. Overall, SVM supervised classification 

performed best at two of three sites, with OBIA classification ranking second.  

 

Hidden Creek 

Imagery was acquired at Hidden Creek as a control site, to explore how effective 

classification techniques are on high resolution UAV imagery when aquatic vegetation 

consists of solely one genus instead of two or more. At low-tide, this site consists of bare 
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substrate divided by small gullies connecting Hidden Creek to the tidal channel. Flat 

layers of microalgae are clustered along the edges of these depressions and decrease in 

cover from the tidal channel to riparian banks.  

 

Table 3. Accuracy results for eelgrass at each site and algae at the control site. Shaded 

gray cells indicate the most effective classification technique for eelgrass/algae at a site.  

 

Site - Class 

 

Classification 

technique 

 

Producer’s 

accuracy 

 

User’s 

accuracy 

 

Average site 

accuracy (P/U)  

 

Valino Island - 

Eelgrass  

Iso cluster 

unsupervised 
100% 10%   

 

100/13 SVM supervised 100% 20%  

Object-based SVM  100% 10% 

 

Collver Point - 

Eelgrass 

 

Iso cluster 

unsupervised 

50% 10%  

 

50/10 SVM supervised 0% 0% 

Object-based SVM  100% 20% 

 

Hidden Creek - 

Algae 

 

Iso cluster 

unsupervised 

100% 16%  

 

98/58 SVM supervised 100% 80% 

Object-based SVM  94% 80% 

  

 

The imagery collected on July 14, 2019 revealed peculiar yellow and purple 

spectral displays (see Figure 2) in a portion of substrate after SfM processing. This 

affected all three classification performances, as the classifiers misclassified substrate as 

water and riparian vegetation in purple-toned and yellow-toned substrate. Since this did 

not affect classification of the main class of interest (algae), this issue was not pursued 

further. Similar to Valino Island results, an SVM classifier used with supervised 

classification was most effective for mapping algae, with only a 20% error of 

commission. Notably, OBIA was comparable in terms of effectiveness, with a 20% error 
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of commission and 6% error of omission. The classifiers dominantly overestimated algae 

in what was truly wet substrate. The iso cluster classifier found ‘algae’ in turbid water 

and healthy riparian vegetation, which resulted in a low probability that the mapped 

microalgae existed in those spaces in real life (16%).  

Overall, the average accuracy among the three classifications at Hidden Creek 

was the highest compared to the eelgrass sites. The classifiers correctly classified 

accuracy assessment points that were algae and struggled moderately to separate 

shadows, turbid water, and dark riparian vegetation from algae. While the lack of false 

negatives was comparable to Valino Island’s high producer’s accuracy, the average user’s 

accuracy was 58%, whereas sites with eelgrass were 10% and 13%. In terms of spatial 

variation in accuracy, errors arose most along the transition of mudflats to riparian banks 

where algae was overestimated in small depressions of water.  

 

Valino Island 

 The scene at Valino Island consisted of a patchy eelgrass bed along the tidal 

channel, extensive macroalgae along the shoreline of Valino Island, and sparse eelgrass 

and algae along the shore of the mainland (Figure 2, Figure 3). The lighter spectral 

composition of sandflats at this locale showed less contrast between submerged and 

exposed substrate, resulting in less of the glint that was common at Collver Point and 

Hidden Creek mudflats. Minor stitching errors from SfM processing (blurring, holes) 

occur only onshore within the tree canopy.  
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Figure 3. RGB orthophotos and classification results for Valino Island, Collver Point, and Hidden Creek.
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Classifiers performed more effectively on eelgrass at Valino Island compared to 

eelgrass at Collver Point. No Type II errors in eelgrass resulted from any classifiers. 

However, the high producer’s accuracy does not accurately portray the failure of all 

classifiers, most noticeably the iso cluster, to map the submerged eelgrass that surrounded 

the eelgrass bed in the deep tidal channel. Further, false positives were relatively similar 

among classifiers, with only 20% of eelgrass in the SVM supervised classification and 

10% of eelgrass in unsupervised and OBIA classifications existing on the ground. The 

areas in which macroalgae was misclassified as eelgrass - the primary driver of high Type 

I errors in this scene - occurred in the same places for all classifiers.  

 

Collver Point  

 Similar to Hidden Creek, Collver Point has extensive mudflats that create issues 

among water, substrate, and SAV separation. Overall, the SVM supervised map displays 

the most realistic rendering of land cover classes at CP due to the misclassification of 

substrate as algae or water by other classifiers (Figure 3). Ironically, this pixel-based 

supervised classification performed the worst of all nine classification tests, with high 

Type I and II errors in the eelgrass class (Table 3). Not reflected in the official accuracy 

assessment, the supervised classification did map true eelgrass in the tidal channel. 

However, the patches were so small that there was a low likelihood of the random 

assignment of accuracy assessment points choosing pixels in these outliers. Conversely, 

the isolation of eelgrass in the tidal channel benefitted OBIA and iso cluster classifiers, as 

the fragmented bed was less affected by reflection and spectral overlapping on the muddy 

substrate.  
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 OBIA performed most effectively at this site. Errors of omission were low, but 

misclassification of macroalgae as eelgrass persisted as an issue. While majority eelgrass 

at Valino Island was submerged and had less variation in spectral responses, eelgrass 

patches here varied from dark patches in the deep channel to bright, dry patches along the 

bank of the channel. The near-white reflections in these shoots potentially caused the 

overestimation of eelgrass in bright, wet substrate throughout the marsh when training 

samples were used. The small glints were not represented in OBIA given the nature of 

segmentation.  

 

Discussion 

 Moderately high success of each classification technique at the “control” site, 

Hidden Creek, reveals difficulties in mapping tidal marshes regardless of eelgrass 

presence. Darker spectral responses from depressions and small puddles in the substrate 

frequently were misclassified as algae; the salt-and-pepper effect was not solved but 

amplified with OBIA. The complex heterogeneity of mudflats make mapping with RGB 

imagery difficult and would likely fare better with multispectral imagery (Tuxen et al. 

2007). Nonetheless, accuracy assessment from Hidden Creek suggests that RGB 

vegetation classification done at non-eelgrass inhabited areas of the South Slough would 

be less erroneous and more effective than areas with mixed SAV (Table 3).  

The errors of commission in South Slough can be seen in the contrasting high 

producer’s and low user’s accuracies for Valino Island and Collver Point (Table 3). The 

OBIA and supervised classification of Collver Point vastly overestimated eelgrass cover, 

portraying eelgrass abundantly in the mudflats above the tidal channel where algae and 
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shadows in the substrate depressions were (Figure 3). Even when the segmentation 

results made the classifications appear more realistic, issues less visually noticeable, such 

as improperly defined edges between eelgrass and non-eelgrass objects or small patches 

of algae being classified as eelgrass, brought down the accuracy of the classification at 

Valino Island and Collver Point. Unsupervised classification successes comparable to 

OBIA performance in eelgrass mapping have been observed before and may be due to the 

double-edged sword of “supervision” (Duffy et al. 2018). It is possible that the choice of 

training segments prior to segmentation contributed to the OBIA performance, given the 

subjectivity of OBIA (Duffy et al. 2018).  

 The overestimation of eelgrass through misclassification of non-eelgrass also was 

reflected in pixel-based classification. User accuracies for eelgrass classification at 

Valino Island (10-20%) and Collver Point (0-20%) are significantly lower than the user 

accuracies for algae at Hidden Creek (16-80%). While algae was distributed across the 

mudflats at Hidden Creek, eelgrass was sparsely clustered at Valino Island and Collver 

Point, which naturally resulted in an overestimation of coverage at these sites. Since 

user’s accuracy for eelgrass generally failed to improve significantly once classification 

was ‘supervised’ with training samples, one can assume that spectral differences between 

eelgrass and other vegetation were not great enough for high accuracy mapping using 

solely RGB imagery. If UAV eelgrass mapping were repeated in South Slough, low tide 

imagery should be attempted with multispectral remote sensing, which can be done using 

cheaply available consumer grade technology (Baldwin 2019).  

Improvements in classification technique and imagery acquisition could make 

low-coverage eelgrass mapping more successful. Given that textural clues helped visual 
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interpretation of the scenes, the inclusion of textural layers within supervised 

classification could increase classification accuracy. Textural layers did not improve 

uncertainty values of supervised classification in eelgrass meadows in Wales, UK, but 

pixel-based texture calculation is susceptible to the boundary problem and combining 

texture analysis and OBIA has increased accuracy of sub-decimeter resolution UAV 

imagery (Duffy et al. 2018, Laliberte and Rango 2009). The addition of more spectral 

layers (e.g. near infrared) can further distinguish aquatic vegetation from substrate at low 

tide, especially because of the spectral complexity of leaves of Zostera species (Bargain 

et al. 2013).  

With OBIA performing better on just one of two eelgrass sites, this research 

mildly supports OBIA as a solution to the so-called H-resolution problem for eelgrass 

mapping. The overall findings more strongly support the emerging consensus in seagrass 

mapping that subjectivity and lack of standardization within OBIA workflows are a 

significant problem (Duffy et al. 2018, Ventura et al. 2016). The analysis will likely vary 

even among experienced analysts (Hulet et al. 2014). The recent creation of a segment 

parameter optimization tool that runs in an unsupervised manner in open-source OBIA 

mapping attempts to make a more objective parameterization process, although no 

standard, statistically correct procedure for accuracy assessment of segmented maps 

exists yet (Grippa 2016, Hossain 2016). 

Overall, classification technique effectiveness in this study reflects both issues of 

overestimation and underestimation of eelgrass. Nahirnick et al. (2018) and Barrell and 

Grant (2015) defined the underestimation of sparse eelgrass cover as the dominant error 

in their accuracy assessment. The omission errors at Valino Island and Collver Point 
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occurred primarily in submerged eelgrass, where the spectrally darker eelgrass masses 

were misclassified as water. Contrastingly, Nahirnick et al. (2018) had few issues with 

dense eelgrass and more issues with sparse eelgrass being mistaken for sparse 

macroalgae. While sparse eelgrass was originally expected to decrease effectiveness of 

classifiers in this research through omission errors, ultimately, the overestimation of 

eelgrass was the dominant error in classification of South Slough monitoring sites. This 

highlights the importance of semantics (i.e., what is the definition of ‘sparse’?) within 

conservation GIS and the need for standardization of seagrass mapping. 

Eelgrass was mapped in two long-term eelgrass monitoring sites in South Slough, 

Oregon, USA using three different image classification techniques. Varying sun angles 

and class distributions at each scene meant that neither pixel- or object-based 

classification could be consistent. With eelgrass overlapping algae in Valino Island, the 

spatial detail parameters in OBIA and cluster merge parameters in unsupervised 

classification were different from those for Collver Point. Moreso, the small coverage of 

eelgrass at both sites, along with overlapping spectral characteristics between vegetation, 

resulted in vast overestimation of eelgrass that would need to be manually re-digitized for 

higher accuracy. Compared to previous eelgrass UAV mapping using RGB imagery, the 

low coverage of eelgrass in South Slough revealed that both pixel- and object-based 

classification techniques are less suitable for declining eelgrass beds in complex tidal 

marshes at low tide. Acquisition of a multispectral sensor on the UAV platform in future 

mapping attempts has potential to set the foundation for a repeat mapping/monitoring 

routine with the benefits of high resolution imagery, low cost for repeat surveys, and 

flexibility for achieving optimal environmental conditions. Alternatively, by-hand 
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classification of eelgrass is an even lower cost option for eelgrass monitoring that is more 

common than automated classification (Hossain et al. 2015). This alternative is explored 

in Chapter 4.  
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CHAPTER III 

MAPPING EELGRASS WITH NATIONAL AGRICULTURE IMAGERY PROGRAM 

(NAIP) IMAGERY 

 

Introduction 

Prior to the introduction of UAVs for spatial ecology and conservation GIS, 

remote sensing served these fields through high spatial resolution aerial and satellite 

imagery. The 21st century welcomed a fleet of new and largely commercial satellite 

sensors that provide data at higher spatial and temporal resolutions than previous 

satellites: Quickbird, IKONOS, GeoEye-1, OrbView-3, WorldView-2, and others. Loarie 

at al. (2007) described three operational constraints that limit such data for ecological 

studies: (1) cloud contamination within scenes can obscure features of interest; (2) 

suitable repeat times frequently require oblique view angles that distort geometric and 

radiometric pixel properties; and (3) there is a high cost per scene. Moderate spatial 

resolution (MSR) satellites, which can be less expensive and have similar temporal 

resolutions, are capable of studying seagrass spatial distribution (Ferguson et al. 1997, 

Ward et al. 2003), but are biased towards seagrass meadows that are large, free from 

species intermingling, and not fragmented (Dekker et al. 2006). Although the most 

popular MSR satellite, Landsat, has been widely successful in mapping seagrass, it has 

been limiting in mapping low seagrass coverage areas (Dekker, Brando, and Anstee 

2005, Wicaksono and Hafizt 2013). Given the continuous decline in global seagrass 

coverage, conservationists must create affordable, long-term monitoring plans with 
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reliable imagery sources of higher spatial resolution. Various statewide or nationwide 

imagery initiatives may aid in these efforts.  

The National Agriculture Imagery Program (NAIP) is an effort created by the 

USDA Farm Service Agency's Aerial Photography Field office that collects imagery 

across the continental USA. With a three-year cycle, the 3-4 band orthophotography is 

gathered during the agricultural growing seasons and is typically provided free of cost to 

both the public and governmental agencies within a year. The consistency of quality, the 

1m spatial resolution, and the accessibility of NAIP imagery makes it a strong candidate 

for species distribution mapping, such as eelgrass. Since the program began in 2003, 

NAIP imagery has been dominantly utilized as an aid for georectifying other aerial 

imagery for eelgrass mapping (Tiner at al. 2010, CDFW 2016). Additionally, 2005 NAIP 

imagery had a 91% overall accuracy in classifying 2200 hectares of suitable eelgrass 

habitat in a 2008 project in Humboldt Bay, California (Gilkerson 2008). 

In South Slough, Oregon, eelgrass in the extent of the entire estuary has been 

mapped with aerial imagery in 2005 and 2016 through proprietary vendors. The imaging 

sensors onboard civilian aircraft platforms are competitive for their fine-scale capabilities 

and fast acquisition times. Nonetheless, singular, infrequent attempts to document the 

spatial distribution of eelgrass for delineating habitat boundaries are inadequate, given 

that interannual variations in eelgrass cover are common (Gilkerson 2008, Fonseca et al. 

1998). Thus, one-time expenditures to contract a vendor for imagery can be inefficient 

unless future plans are developed for further image acquisition (Anderson and Gaston 

2013).  NAIP imagery directly addresses issues with other airborne imagery sources, by 

implementing quality control rules on the amount of cloud contamination allowed and 
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being freely available to the public on a three-year cycle. Understanding the role that 

NAIP and other imagery providers can play in eelgrass conservation is vital for slowing 

its rapid decline and gaining knowledge on suitable habitat. This research explores the 

applicability of NAIP imagery towards repeat eelgrass mapping in South Slough by 

investigating the accuracy of 2016 RGB imagery in classifying eelgrass at two sites 

within South Slough. Different classification techniques (unsupervised versus supervised, 

pixel- versus object-based) in order to compare the effectiveness of different 

classification approaches. 

 

Dataset 

On June 16, 2016, NAIP acquired imagery of Coos estuary at a spatial resolution 

of 1m. Digital sensors captured the scene with no more than 10% cloud cover per quarter 

quad tile at a height of 8400m above ground level. The 4 final corrected products that 

contained South Slough were stitched together to render an orthomosaic for this study.   

An eelgrass map produced by Quantum Spatial, Inc. (QSI) in 2016 was used as a 

reference for training samples and validation points in the classifier training and accuracy 

assessment of these clipped orthophotos. The 25cm spatial resolution imagery was 

contracted through Quantum Spatial, Inc. (QSI) by the Friends of the South Slough 

(FOSS) in 2016. QSI collected orthoimagery of the Coos Estuary study area on July 6, 

2016 during low tide conditions with a sun angle >30 degrees “in order to receive ideal 

image contrast and eelgrass visibility” (Yednock & QSI Corvallis 2017). Positional 

coordinates were gathered onboard using a differential GPS unit, while two ground 

survey monuments in the flight path were referenced to support spatial accuracy. 321 
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images were gathered with 80% overlap along track and 60% sidelap between frames and 

eelgrass was classified in areas where single beam sonar transect data from David Evans 

and Associates (DEA) identified eelgrass (Yednock & QSI Corvallis 2017). The in situ 

data referenced for the original mapping consisted of monitoring data from SSNERR as 

well as the DEA sonar data. The final QSI map separates eelgrass classes into five 

confidence classes (Table 4).  

 

Table 4. Confidence classes for the eelgrass map created by QSI in 2017. Reprinted from 

“Coos Estuary, Oregon Orthophotography and Eel Grass Feature Extraction Technical 

Data Report – Revised” by Yednock, B. & QSI Corvallis. (2017).  

Category Confidence Description 

5 High Hand digitized eelgrass 

beds 

4-3 High-Medium Spectrally and contextually 

positive for eelgrass 

2 Low Spectrally or contextually 

positive for eelgrass, but 

otherwise questionable 

0/NA NA Did not register positive 

for eelgrass 

 

The orthophoto was clipped to the extent of the three study sites formulated for 

UAV mapping in 2019 (Figure 4). I projected the QSI map into NAD-83 UTM Zone 10 

in order to match the projections of the NAIP imagery and for more accurate spatial 

geometry analysis (Chapter 4). 

 

Classification 

The classification scheme for the 2016 NAIP imagery remained consistent with 

the classification scheme applied to the 2019 UAV imagery. For eelgrass sites, the 

scheme consisted of eelgrass, algae, substrate, and water. For non-eelgrass, the eelgrass 
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Figure 4. The June 2016 NAIP orthophoto (left) and July 2016 eelgrass map from QSI 

(right) with the QSI imagery as a basemap. Black polygons outline the two eelgrass sites. 

The legend refers to the confidence levels from Table 4. 

 

class was replaced with a riparian vegetation class. The classification techniques utilized 

were iso cluster unsupervised classification, support vector machine (SVM) supervised 

classification, and object-based SVM classification (OBIA). Discrepancies between these 

classifiers was discussed in Chapter 2. Training samples for supervised classification had 

~50 pixels per class. The parameters set for iso cluster training and image segmentation 

differed in both imagery sets from 2019 analysis due to differences in spatial distribution 

and continuity of aquatic vegetation. Specifically, merge distances in the iso cluster 

unsupervised classification were reduced from 5 to 3 and the spatial detail parameter in 

OBIA segmentation was decreased to values of 10 and 13 for Valino Island and Hidden 

Creek to prevent the classifier from perceiving continuous eelgrass or algae patches as 

separate objects. 

A stratified random sampling design was applied to both pixel- and object-based 

classifications within ArcGIS Pro. I assessed the accuracy of the three classifiers by 
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comparing the reported eelgrass coverage of 80 randomly selected points to the real-life 

eelgrass. Training samples and validation points were derived from the June and July 

2016 monitoring data done by SSNERR and the sonar-validated eelgrass classification 

from DEA and QSI. Only confidence levels of three and above were used to validate 

accuracy of the classifications.    

 The effectiveness of the aerial imagery for mapping eelgrass was determined by 

the classification accuracies. A confusion matrix was calculated for each study site and 

each classification technique, resulting in three confusion matrices for each site and each 

dataset. The assessment of effectiveness of the aerial imagery only included the user’s 

and producer’s accuracies because the overall accuracy and Kappa statistic incorporate 

the accuracies of other classes in the classification scheme, which are not relevant to the 

purpose of this study. Errors of commission/Type I error (measured as 1 – user’s 

accuracy %) and omission/Type II error (measured as 1 – producer’s accuracy %) are 

used interchangeably to communicate results.  

 

Results 

 The individual accuracy assessments for each study site and classification 

technique are  

compared in Table 5, while the classified maps can be viewed in Figure 5. Overall, SVM 

supervised classification performed best at two of three sites, with OBIA classification ranking 

second. Interpretation of classification results specific to each site are listed afterwards.  
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Table 5. Accuracy results for eelgrass at each site and algae at the control site. Shaded 

gray cells indicate the most effective classification technique for eelgrass/algae at each 

site. 

 

Site - Class 

 

Classification 

technique 

 

Producer’s 

accuracy 

 

User’s 

accuracy 

 

Average site 

accuracy (P/U)  

 

Valino Island - 

Eelgrass  

Iso cluster 

unsupervised 
71% 50%   

63/70 

SVM supervised 45% 100%  

Object-based SVM  75% 60% 

 

Collver Point - 

Eelgrass 

 

Iso cluster 

unsupervised 

33% 10%  

66/27 

SVM supervised 100% 50% 

Object-based SVM  66% 20% 

 

Hidden Creek - 

Algae 

 

Iso cluster 

unsupervised 

85.7% 60%  

95/50 

SVM supervised 100% 30% 

Object-based SVM  100% 60% 

 

Hidden Creek 

 Hidden Creek was included as a study site in order to explore how 

accurately 1m spatial resolution aerial imagery could map estuarine aquatic vegetation 

within tidal marshes when algae is not mixed with eelgrass. The site was imaged at low 

tide and water was found predominantly in the inundations of the tidal banks close to 

shore. Microalgae cover was extremely low and potentially underestimated due to spatial 

resolution and sun glint during image acquisition.  However, the NAIP imagery displayed 

errors of commission more so than errors of omission, with probabilities of 40-70% that 

the algae classified did not exist in such locations (Table 5). Microalgae was typically 

misperceived in wet substrate and along the transition zone between salt marsh and 

mudflat. 
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  OBIA resulted in the highest user’s and producer’s accuracies for algae 

classification, notably not misclassifying the riparian banks as algae (Table 5). However 

visual photo interpretation showed that both unsupervised iso cluster and supervised 

SVM forms of pixel-based classification portrayed more realistic results than OBIA, in 

which algae is less clumped, more fragmented, and less prevalent close to shore.   

 

Valino Island 

Unlike Hidden Creek, the Valino Island scene had both issues of commission and 

omission. Tidal heights submerged all eelgrass and algae. Ripples in the water surface 

were prevalent in both scenes, while unideal sun angles obscured the water column with 

glint in the tidal channel (Figure 5). Spectral mixing due to vegetation submersion caused 

eelgrass to be both misidentified as algae and wrongly omitted for water.   

Accuracy assessment reported that supervised pixel-based (SVM supervised) 

classification was most accurate of the three techniques for the scene. Visual inspection 

showed that unsupervised classification rendered the most accurate geometries of 

eelgrass beds compared to salt-and-pepper pattern of algae and eelgrass in the two 

supervised classifications (Figure 5).  

 

Collver Point 

June and July scenes show low tidal heights with low turbidity in the water column, 

which allowed for high producer’s accuracy in pixel- and object-based supervised 

classifications. Unsupervised classification falsely tested positive for eelgrass in the 
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Figure 5. 2016 NAIP RGB orthophotos and classification results for Valino Island, Collver Point, and Hidden Creek.  
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inundated portions of the shoreline, while supervised classifications accurately 

differentiated algae and eelgrass with no manual digitization required. Errors of 

commission were exaggerated in user’s accuracy results, as the only areas where eelgrass 

was wrongly overestimated were at the shoreline in the southeastern corner of the scene. 

The low coverage of eelgrass at the site may exacerbate the few Type I and II errors 

present to present mixed results, yet the OBIA classification was highly accurate upon 

visual inspection.  

 

Discussion  

Visual inspection of classified maps to the 2016 QSI maps showed that OBIA 

performed best at Valino Island, while iso cluster unsupervised classification identified 

eelgrass best at Collver Point. The clustering performed in the iso cluster classifier could 

have reduced the salt-and-pepper effect found in the SVM supervised classification. 

Unsupervised classification also outperformed SVM classifiers in supervised 

classification of eelgrass at spatial resolutions of 0.4cm (Duffy et al. 2018). Additionally, 

low spectral variation in algae and eelgrass training samples could have amplified the 

number of false negatives produced. Contrastingly, the minimal differences between 

unsupervised and supervised pixel classification at Hidden Creek suggest that classes 

were spectrally separable enough to be delineated without training samples.   

Although the classifier performances between 2016 NAIP (1m) and 2019 UAV 

(25cm) imagery cannot be directly compared due to differences in eelgrass coverage, the 

studies suggest that tidal conditions and habitat complexity are as important as image 

resolution. High spatial resolution imagery can decrease accuracy due to amplifications 



39 
 

of sunglint, sensor noise, light attenuation, and intra-habitat variation due to tidal 

fluctuation (Hossain et al. 2015). In 2019, the highest producer’s and user’s accuracies 

(%) for Valino Island and Collver Point were 100/20, whereas accuracies in this study 

were 75/60 and 100/50. Major differences in scene conditions were: tidal height, 

proximity of algae to eelgrass, and spectral variation in eelgrass. Higher tidal heights and 

different eelgrass placements in 2016 meant that the large within-species spectral 

variability in eelgrass was not present as it was in 2019 due to the presence of both 

exposed and submerged eelgrass, which resulted in high user error.  

The accuracy rates may have been higher if imaging had occurred at more ideal 

eelgrass mapping conditions, such as lower sun angles and wind speeds (Nahirnick et al. 

2018). The fixed frequency of NAIP imagery has a downside; the lower flexibility in 

timing of image acquisition can make eelgrass mapping in some years infeasible due to 

sunglint or tidal height. The influence of other less obvious scene conditions can be 

obscure, which can decrease objectivity and increase uncertainty in the accuracy 

assessment, especially with minimal in situ data. Metrics for testing the reliability of 

aerial imagery in benthic habitat mapping have been developed for analyzing imagery 

that may lack in situ data (Pasqualini et al. 1997, Nahirnick et al. 2018), yet the need for 

bathymetric data eliminates the possibility of using the reliability index for South Slough 

currently.  

The approach to classification and accuracy assessment in this study served to 

most objectively evaluate various traditional classification techniques for NAIP imagery. 

Despite advancements in species classification methods (e.g. OBIA), classifying seagrass 

habitats by manual delineation was the most used method in a 2015 review (Hossain et al. 
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2015). Manual object-based classification has aided in classifying seagrass where 

inconsistent radiometric properties were present, such as cloud reflectance and changes in 

sun angle (Nahirnick et al. 2018, Lathrop et al. 2006). A 2017 comparison of automated 

classification and manual digitization concluded that automated classification had no 

advantages when using high resolution (0.5m) 4 band imagery due to the fine-scale 

differences in spectral responses of eelgrass and other submerged aquatic vegetation 

(SAV) (Davenport et al. 2017). Both techniques had 73% accuracy, yet low to medium 

density eelgrass was removed from the overall comparison because of high producer 

error (Davenport et al. 2017). Although the large footprint of NAIP imagery reduces 

radiometric differences, the increased spatial complexity of eelgrass as of 2019 in South 

Slough provides an opportunity for manual digitization of eelgrass in NAIP imagery to be 

tested for viability in more fragmented environments. 

Accuracy of eelgrass classification with NAIP imagery in South Slough has been 

comparable to other seagrass mapping efforts. Species presence, biomass, and cover was 

mapped in high spatial resolution satellite data with 68-83% accuracy in similarly 

shallow and clear water in Moreton Bay, Australia (Hossain et al. 2015). Other high 

spatial resolution satellite imagery has had mixed success: 22.69% and 28.11% accuracy 

mapping eight classes with QuickBird and CASI in 2008; 65%+ accuracy with 

QuickBird, WorldView2, and IKONOS in 2014 (Hossain et al. 2015).  

NAIP imagery of 1m resolution can be as effective as higher spatial resolution 

imagery only given that there is ancillary data. The 1m imagery renders important time 

series analysis difficult due to the low distinction between eelgrass and other SAV at such 

resolution. NAIP imagery only is acquired every three years, in which a drastic decline in 
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eelgrass cover can occur. However, a three-year cycle for estuary-wide eelgrass 

monitoring is more proactive than the absence of estuary-wide monitoring or the 11-year 

difference between estuary-wide eelgrass analysis in South Slough (2005-2016). 

Moreover, the findings of these results are still applicable towards more frequent imagery 

sources of 1m or less.  

Although the focus of this analysis was testing performance of NAIP imagery, it 

is appropriate to also address the effectiveness of airborne remote sensing itself for 

eelgrass mapping. The time and resources required to gather and analyze eelgrass images 

can be unappealing when coastal organizations already have feasible in-situ monitoring 

practices in place. Seemingly efficient monitoring innovations via remote sensing may 

not be as efficient when applied to the entire spatial extent of the managed region, as 

remote sensing scientists often test their methods in a small percentage of the actual area 

of interest, as was done in this study (Andrefouet 2008). Even at relatively high spatial 

resolutions, ground sampling may still be necessary depending on the reliability index; 

high-confidence interpretation of mixed-SAV tidal marshes was not possible from 1m 

NAIP imagery without ground data from quadrat sampling and sonar imaging. As high 

spatiotemporal resolution orbital sensors (e.g. the sub-meter SkySat from Planet Labs) 

become more widely available, more frequent mappings of eelgrass will become possible 

with more spectral bands, which could eliminate accuracy concerns expressed here. 

Furthermore, the scientific knowledge gained from incorporating further spatial analysis 

(rather than simple presence/absence species distribution mapping) on gathered imagery 

may outweigh the costs of acquiring and classifying estuary-wide imagery. The utility of 

aerial image time series for spatial ecology is explored in the next chapter.  
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CHAPTER IV 

EELGRASS CHANGE IN SOUTH SLOUGH, 2016-2019 

Introduction 

Eelgrass (Zostera marina) is a marine keystone species found in the coastal 

regions of North America and Eurasia that provides one of the most productive 

ecosystems on the planet, matched with those of corn and sugar cane (McRoy and 

McMillan 1977). The species provides safe habitat for Pacific salmon (Oncoryhnchus 

spp.) following their journey to the coast, as well as provides ecosystem services to 

commercial fisheries worth up to $3500 per hectare per year (Watson Coles and Lee 

1993). Eelgrass participates in the sequestration of "blue carbon", sediment stabilization, 

and water quality enhancement (Waycott et al. 2009). 

Various factors play into the spatial distribution of eelgrass landscapes (Phillips 

1984). The landscape in intertidal and subtidal areas can range from fragmented, small, 

and sparse patches to dense and large meadows (Phillips 1984). Water depth plays a role 

in how and where eelgrass is displayed: the vegetation is limited by desiccation and 

photosynthesis from 1.8m above mean lower-low water (MLLW) to 6.6 m below 

MLLW, given that the water is clear (Phillips 1984). Wave energy also influences 

eelgrass patterns, with sheltered areas allowing for large continuous meadows and 

exposed areas portraying more fragmented and complex patches (Frederiksen et al. 

2004). 

Water quality degradation and stronger coastal storms have put increased stress 

on eelgrass, which is contributing to the global decline in seagrass ecosystems (Waycott 

et al. 2009). Eelgrass and other seagrasses have been estimated to be lost at a rate of 5% 



43 
 

per year collectively, with a total loss of 29% since the late 19th century (Waycott et al. 

2009). Other natural disturbances documented as drivers of local and regional declines 

include eelgrass "wasting disease" and bioturbation by stingrays and turtles (Uhrin and 

Turner 2018, Christiansen 2014). The most dominant drivers of the decline worldwide 

are anthropogenic disturbances: coastal development, nutrient loading in the watershed, 

dredging, and introduction of invasive species (Short and Wyllie-Echeverria 1996). 

Timely research, conservation, and restoration of the genus is crucial for the future of 

eelgrass and the organisms and abiotic processes that depend on it. 

 Monitoring and conservation of current eelgrass populations is even more 

important given that restoration has low success rates with high costs. With no national or 

international standard on eelgrass restoration and suggested research guidelines being 

only loosely followed, it is not possible to quantitatively compare restoration successes 

with confidence (Thom et al. 2008). However, Stamey (2004) calculated that only 13% of 

Pacific Northwest projects were successful in all metrics. In a 2008 gathering of Pacific 

Northwestern researchers and practitioners, the coalition reported that "the question 

remains whether eelgrass can be reliably restored" despite over half of a century of 

eelgrass and seagrass experience (Thom et al. 2008). Cunha et al. (2012) argued that the 

majority of “successful” seagrass restoration projects in Europe are biased in that their 

monitoring period was less than one year, obscuring the severity of restoration failures in 

the region. Even though early problems with suitable site identification have been solved, 

eelgrass restoration has not prevented a net loss of eelgrass habitat (Fonseca et al. 1988).  

High spatial resolution imagery has been used for temporal change detection and 

monitoring declines of eelgrass spatial distribution, as well as measuring success of 
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eelgrass restoration (Ferguson et al. 1993, Bulthuis 1995, Ward et al. 2003, Dekker et al. 

2005, Costello and Kenworthy 2009). Mapping intertidal aquatic vegetation with high 

resolution airborne imagery at low tide has been performed successfully and data 

acquisition is relatively inexpensive at large scales (Ferguson et al. 1993, Krause-Jensen 

et al. 2004). The efficiency of these methods at mapping large eelgrass landscapes 

encourages their use within eelgrass research.  Furthermore, continuous mapping of 

eelgrass decreases the likelihood that changes in spatial distribution are occurring 

undetected, a constant risk implicit in field-based methods that rely on sampling to 

represent the status of the overall seascape.  

Ecologists value high resolution aerial imagery not only for its temporal change 

detection at large scales but its ability to measure spatial metrics at higher densities and 

frequencies than possible on the ground. Aspects of seagrass landscapes, such as their 

formation of mosaics and their distributions in shallow waters that allow for analysis by 

airborne imagery, are analogous to terrestrial ecology and thus permit for adoption of 

airborne techniques used in terrestrial landscape ecology (Robbins and Bell 1994, 

McGarigal 1995). Patch dynamics such as the number of patches, patch shape, and leaf 

area index have been monitored using high resolution satellites, multispectral and 

hyperspectral airborne sensors, and recently, UAV technology (Fyfe 2003, Lyons et al. 

2015, O’Neill et al. 2013, Frederiksen et al. 2004, Barrell and Grant 2015, Ventura et al. 

2016, Duffy et al. 2018).  

In a time of widespread eelgrass loss, the incorporation of spatial ecology metrics 

into traditional eelgrass change detection benefits our knowledge of the relationship 

between spatial characteristics and system resiliency. Recent research has suggested that 
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complex and fragmented patch shapes are more susceptible to negative effects of poor 

environmental conditions and could indicate critical transitions in the landscape state 

(Carr et al. 2010, Uhrin and Turner 2018). In 2007, van der Heide et al. attempted to 

explain the loss and lack of recovery of eelgrass beds in the Dutch Wadden Sea in the 

early 20th century using the theory of alternative stable states. With the positive feedback 

system between seagrass, substrate, and light availability, seagrass ecosystems were 

suggested to have an alternative stable state which was enabled once a change in 

conditions (such as increasing turbidity) initiates decrease in resilience from seagrass and 

collapse into the alternative stable state of bare sediment. Measured wave orbital velocity 

in the latter 20th century supported the theory, as velocity was consistently too high to 

allow for a reversal of the bare sediment state to eelgrass habitat (van der Heide et al. 

2007). Identification of early warning indicators (EWIs) in eelgrass systems and 

implementation of such variables into monitoring efforts could reduce eelgrass loss on a 

global scale. 

One of Oregon’s major estuaries, Coos Bay, is a target for eelgrass research 

(Borde et al. 2003, Thom et al. 2005, Rumrill and Sowers 2008). The South Slough 

National Estuarine Research Reserve (SSNERR) has been monitoring eelgrass at three 

sites in South Slough (Collver Point, Valino Island, and Danger Point) annually since 

2004 for the NERRS Biomonitoring Pilot project to test protocols and document spatial 

distribution and seasonal dynamics of eelgrass (Moore 2009) and quarterly at Valino 

Island as part of the SeagrassNet program (Short et al. 2015). SSNERR added Hidden 

Creek to the monitoring list in 2010 for the NERRS Sentinel Site Biomonitoring program 

(Moore 2017).  Before 2016, eleven years of monitoring at Valino Island, four years of 
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monitoring at Collver Point and Danger Point (2004, 2005, 2010, 2016), and six years of 

monitoring at Hidden Creek showed relatively stable average percent cover and shoot 

density. Beginning in 2016, eelgrass cover and density decreased at Valino Island, 

Collver Point, and Hidden Creek, exposing bare mudflats and sparse patches of eelgrass 

at Valino Island. Similar declines began at Danger Point in 2018 and complete absence of 

eelgrass at Danger Point and Hidden Creek continued into 2019 (Wirfs and Helms, 

2018). No similar trends have been observed in other parts of Coos Bay monitored by 

two Oregon State University (OSU) collaborative research projects (OSU Sea Grant, 

Tomas-Nash 2015-17; OSU/OA, Magel, Chan, and Hacker 2016-18) and the Oregon 

Department of Fish and Wildlife Shellfish and Estuarine Assessment of Coastal Oregon 

(ODFW SEACOR, D’Andrea 2017).  

This research uses high spatial resolution aerial imagery to evaluate changes in 

eelgrass spatial distribution at two sites in South Slough between 2016 and 2019. The 

time lapse between scenes in this research is relatively short compared to other eelgrass 

change studies (Fredericksen et al. 2004, Ward et al. 2003, Nahirnick et al. 2018). 

Significant changes in areal coverage were found in intervals of seven years between 

photos (Frederiksen et al. 2003); however, change detection of short time periods can be 

important when an area has recently been disturbed or restored (Davenport et al. 2017). 

Traditional change detection at Valino Island and Collver Point is applied via image 

classification and overlay. Seven landscape metrics (percentage of landscape, number of 

patches, mean patch area, largest and smallest patch area, area, perimeter, and shape 

index) are calculated to assess changes in patch dynamics. The results can contribute to 
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the decision-making process of SSNERR in creating a subsequent eelgrass conservation 

plan post-2019.  

 

Imagery and Classification 

The imagery used for the analysis of spatial eelgrass distribution from 2016-2019 

consisted of QSI aerial imagery from July 2016 and UAV imagery taken for this study 

from July 2019. Both have spatial resolutions of 25cm. The orthophoto of Coos Bay in 

July 2016 was clipped to the orthophotos from the UAV flights in 2019. Training and 

validation samples were derived from quadrat monitoring data collected prior to each 

flight. ISO cluster unsupervised classification, support vector machine (SVM) supervised 

classification, and object-based SVM supervised classification was tested on imagery in 

order to find the most accurate method of remote eelgrass identification. Chapter 2 

describes accuracy assessment of 2019 imagery, while the process of identifying the best 

classifier for 2016 imagery is described here. Details of the imagery collection and 

vegetation classification can be found in Chapter 2 (2019) and 3 (2016). For the purpose 

of this research, some eelgrass segments that were originally omitted during classification 

were manually digitized using the Reclassifier tool from the ArcGIS Pro Image 

Classification toolbox to reduce errors in the change detection.  

 

Change Analysis 

Land cover classes were converted into vector polygons to calculate areal 

coverage in square meters. Net change in eelgrass coverage was reported in square 

meters, while an index of relative change was employed to quantify the change in spatial 
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distribution regardless of the direction of the change. The index adopted from 

Fredericksen et al. 2004 is:  

𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑙𝑜𝑠𝑠 + 𝑔𝑎𝑖𝑛

𝑙𝑜𝑠𝑠 + 𝑔𝑎𝑖𝑛 + 𝑐𝑜𝑚𝑚𝑜𝑛
 

Common refers to the area (m2) of eelgrass that remained in the same position 

from 2016 to 2019. An index of 0 means no change occurred, while an index of 1 means 

all eelgrass had changed. An ArcGIS Union operation was performed to visually 

represent areas of eelgrass gain, loss, and no change.  

 

Patch Geometry  

Four class-level landscape metrics (percentage of landscape, number of patches, 

mean patch area, largest and smallest patch area) and three patch-level landscape metrics 

(patch area, perimeter, and shape index) were generated to characterize the distribution 

and composition of the eelgrass at each site. I calculated the shape index (SI) of the 

eelgrass patches in order to measure the complexity of the eelgrass patch shape. The SI 

compares the patch shape to a standard square of the same area, which resolves the size 

dependency issue present in the perimeter-area ratio: an increase in the size of a constant 

shape will decrease the ratio (Forman and Godron 1986). The equation is as follows: 

S=
0.25𝑃

√𝐴
 

where P represents the perimeter and A is the area. A standard square has a SI of 1, and 

the dimensionless index increases as the shape becomes more complex. There is no upper 

limit to the index.  
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Results  

2016 

Classification accuracy of eelgrass delineation in 2016 showed that no 

classification technique was consistently best at more than one site (Table 6). Pixel- and 

object-based classification outperformed the classifiers in the 2019 imagery (see Chapter 

2), which may be due to multiple factors. Similar to 2019, OBIA performed best at 

Collver Point, with pixel-based classification performing best at Valino Island. Spectral 

similarities between riparian vegetation, algae, and eelgrass prevented an error-free 

automation of eelgrass delineation, so I manually digitized eelgrass patches that were 

unclassified using a freehand selection tool and changed the class type of algae that had 

been misclassified as eelgrass. Manual digitization of eelgrass is the most common way 

to map eelgrass (Hossain et al. 2015). The OBIA-rendered map was ultimately chosen as 

the map to detect change in eelgrass due to its relative success and ease in manually 

editing and creating eelgrass polygons (Figure 6). 

 

Table 6. Accuracy assessment results of different classification techniques for eelgrass in 

2016 QSI imagery. No classification technique was consistently best across sites. 

 

Site - Class 

 

Classification 

technique 

 

Producer’s 

accuracy 

 

User’s 

accuracy 

 

Average site 

accuracy (P/U)  

 

Valino Island - 

Eelgrass  

Iso cluster 

unsupervised 
88% 80%   

75/80 

SVM supervised 62.5% 100%  

Object-based SVM  75% 60% 

 

Collver Point - 

Eelgrass 

 

Iso cluster 

unsupervised 

0% 00%  

67/37 

SVM supervised 100% 50% 

Object-based SVM  100% 60% 
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Figure 6. 2016 QSI RGB orthophotos and classification results. 

 

In 2016, eelgrass was found in the sandflats and along the fringe of the tidal 

channel at Valino Island (Figure 7). Eelgrass coverage was 6994m2, totaling 21.4% of the 

site. The landscape metrics are listed in Table 6. The SI, as well as other spatial landscape 

metrics, are affected by the scale of the analysis. When the area of the patch nears the 

resolution of the mapped eelgrass, the indices universally approach 1 (Figure 8). Due to 

the small sample of patches in the study, no patches were excluded from the analysis.   

Eelgrass was only present along the tidal channel at Collver Point (Figure 7). As 

2016 imagery was scaled to 2019 imagery, the site size was much larger than the area of 

eelgrass (Table 7). Patch complexity was low and comparable to that of Valino Island, 

with an average SI of 1.9. 

2019  

Eelgrass at Valino Island in 2019 was estimated to be 10.5% of the total site, 

showing a loss in half of the previous distribution. The patch- and class-level metrics  
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Figure 7. Valino Island (left) and Collver Point (right) eelgrass distribution in July 2016 

(top) and July and August 2019 (bottom), represented by green polygons. 
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reflect decreases in average size and increases in fragmentation and shape complexity 

(Table 7).  

 
Figure 8. Average shape indices at Collver Point (CP) and Valino Island (VI). The 

horizontal axis is categorized by patch area classes. Shape complexity increases as the 

shape index increases. A shape index of 1 is for simple forms (i.e. a square). Mean values 

± SD. 

 

Table 7. Spatial landscape metrics for eelgrass at Valino Island and Collver Point in 

2016 and 2019.  

 

 

 

Year 

 

 

 

Site 

 

 

Area 

(m2) 

 

Percentage 

of 

landscape 

 

Patches 

 

Minimum 

patch size 

(m2) 

 

Maximum 

patch size 

(m2) 

 

Average 

patch 

size (m2) 

 

Aver

age 

shape 

index 

2016 

Valino 

Island 

 

6994 

 

 

21.4% 

 

99 

 

0.5 

 

5327 

 

70 

 

1.6 

Collver 

Point 
463 0.63% 14 2 172 33 1.9 

2019 

Valino 

Island 
3430 10.5% 537 0.5 453 30 3.3 

Collver 

Point 
682 0.89% 8 3 203 85 2.2 
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Collver Point experienced new eelgrass growth in 2019. Patches continued to 

inhabit the edge of the tidal channel with an elongated geometry. The total area increased 

from 0.63% to 0.89% of the site, and all spatial metrics had positive change (Table 7). 

However, complexity of the patch geometry had a small increase (Figure 8). 

 

2016-2019 change 

Overall, there was a 44.8% net loss of eelgrass (6794m2) across the two sites in 

South Slough. Specifically, 50.9% of eelgrass was lost at Valino Island and a 32.2% 

increase occurred at Collver Point in the three-year period. Valino Island experienced 

loss in the higher elevations of its occurrence: namely in a large bed in the sandflats, as 

well as minor losses along the tidal channel and southern shore (Figure 9). However, new 

growth was seen in similar elevations, fringing on the tidal channel and in small 

fragments around the previous extent in the sandflat. The index of relative change here 

was 0.96 on a scale of 0 to 1, due to the small amount of eelgrass that remained across the 

time period (305m2) compared to the eelgrass that died-off (6478m2) or grew in new 

areas (2915m2).  

At Collver Point, there was a migration of eelgrass into lower MSL (Figure 9). 

Large areas of new growth portray elongated geometries similar to previous big patches. 

The index of relative change was 0.45.  
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Figure 9. Eelgrass change maps for Valino Island (left) and Collver Point (right) between 2016 

and 2019. 

 

Discussion  

 Temporal change detection of a 3-year period at Collver Point and Valino Island 

revealed a loss of nearly 50% of all eelgrass habitat (~6800m2) combined. Although only 

Valino Island experienced negative net change, many documented drivers of eelgrass loss 

act at the watershed-level, so the location of Collver Point need not be excluded from 

discussion of potential drivers. In the Coos estuary, there are several changes that could 

be affecting eelgrass habitat. First, ocean water has been warmer than the 15-year 

monthly average since 2014, and water temperature is increasing in the mid and upper 

estuary, while salinity is decreasing (Beck et al. 2018). The majority of eelgrass 
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worldwide inhabits sea temperatures of 5-27°C with an optimum range of 10-20°C, while 

salinity limits eelgrass to optimal regions of 10-30ppt (Phillips 1984). The salinity 

gradient in South Slough averages from 0-33 psu (Rumrill 2015). The complete loss of 

eelgrass in 2016 and 2018 at further upstream sites Collver Point and Danger Point 

support the hypotheses that increase in water temperature and/or decrease in salinity are 

major causes of eelgrass decline. A 2012 coupled vegetation-growth hydrodynamic 

model of eelgrass in Hog Island Bay, Virginia, USA demonstrated that eelgrass meadows 

are likely to withstand sea-level rise, yet an increase in the frequency of days where water 

temperature exceeds 30°C will cause more summer die-offs by limiting meadows to 

cooler but deeper water levels, which are outside the bistable depth range (1.6-1.8 MSL) 

in which eelgrass can receive sufficient light and low turbidity levels (Carr et al. 2010). 

However, new eelgrass growth at Collver Point between 2016 and 2019 occurred at lower 

MSL (Figure 9), and average subsurface temperatures in Coos Bay do not average above 

11°C, suggesting colder temperatures may be a factor affecting eelgrass distribution in 

South Slough (Rumrill 2015). 

 Second, increased logging in the upper Coos watershed is increasing sediment 

inputs in the estuary, which can be affecting photosynthesis in the water column (Ali 

Helms (SSNERR) personal communication, February 2, 2019). The positive feedback 

system caused by seagrass, suspended sediment, and light availability can lead to critical 

bifurcation of the stable ecosystem state (van der Heide et al. 2007). Third, eelgrass 

wasting disease has been identified in the Coos estuary (Yoshioka 2019). The impact of 

the disease on the time period discussed here is unknown, but eelgrass wasting disease 

was the leading driver of the loss of 90-100% of eelgrass in the North in the 1930s 
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(Phillips 1984). Lastly, ulvoid macroalgae blooms have had negative effects on eelgrass 

density at marine and riverine locations in South Slough (Hessing-Lewis et al. 2010). 

Macroalgae was intermixed with eelgrass at Valino Island in August 2019, notably in 

locations where patch fragmentation had occurred, but was not present in Collver Point 

eelgrass patches in either year. While this research cannot explain change in eelgrass 

distribution with any certainty, these potential drivers mentioned may function as 

building blocks for a more advanced monitoring system at designated eelgrass sites in the 

slough. 

All spatial metrics at Valino Island displayed a drastic decline in eelgrass ability 

to tolerate disturbances. The site experienced a decrease in eelgrass percent cover and 

average patch size and an increase in shape complexity and fragmentation. Smaller 

patches can lead to large-scale declines due to their sensitivity to disturbances (Olesen 

and Sand-Jensen 1994). Edge effects from varying patch densities cause variation in 

ability to reduce suspended sediment, meaning that for patches of the same shape at 

Valino Island, the higher ratio of eelgrass at the edge versus eelgrass inside the patch 

causes a higher risk of an ecosystem state change than larger patches (Carr et al. 2010). 

Furthermore, the sparse and complex spatial patterns may be indicators themselves that 

such a critical bifurcation has been met: patch size distributions of seagrass have 

“moderately” supported a power law relationship in which high wave energy enables a 

state change to highly fragmented and less resilient patches (Uhrin and Turner 2018). 

Classical critical systems, in which disturbance and recovery processes initiate a system-

wide spatial pattern, have been suggested to show threshold behavior where small 

alterations in environmental factors result in rapid responses from the ecosystem 



57 
 

properties and quality, frequently preceding a transition of the landscape state (phase) at 

the threshold, or tipping point (Groffman et al. 2006). The spatial distribution of 

organisms becomes invariant when the ecosystem nears the threshold and in 2011, Solé 

discovered that the frequency distribution of cluster (patch) sizes of organisms in the 

landscape displays power law behavior where all patch sizes are present with no 

dominant size; patch size distributions that display power laws portray a linear 

relationship on a logarithmic scale. (Solé 2011).  Because power laws have revealed 

critical thresholds in the vegetation patterns of many different ecosystems (Scanlon et al. 

2007, Guichard et al. 2003, Kizaki and Katori 1999), the similar finding by Uhrin and 

Turner suggests that patch sizes of eelgrass may be indicative of an eelgrass landscape 

nearing the threshold of undergoing a landscape state change to bare sediment. More 

research is necessary as this is the first time power law distributions have been studied in 

seagrass systems (Uhrin and Turner 2018).  

 After Collver Point experienced declines in 2016 and 2018, the 32% increase in 

coverage in 2019 emphasizes that change detected in a certain year is not always 

irreversible and that spatial patterns of one year may not reflect the resiliency levels of 

the eelgrass ecosystem. Consistent long-term monitoring allows for average trends in 

spatial distribution to be differentiated from abnormal extremes (Thom et al. 2010). The 

lack of consistent annual monitoring at Collver Point prevents the differentiation of such 

thresholds. It is still worth noting that shape complexity slightly increased between 2016 

and 2019, implying that patches did not become more consolidated despite the increase in 

patch sizes.  
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 The lack of correlation between epifaunal diversity and eelgrass patch sizes 

suggest that eelgrass communities function as a network (Whippo et al. 2018), which 

should influence the approach taken to conserving and mapping eelgrass in protected and 

especially non-protected estuaries. Data on epifaunal diversity in a British Columbia 

metacommunity showed that species richness was constant throughout patches of varying 

sizes (Whippo et al. 2018, Lefcheck et al. 2016). If no alternative state of equilibrium had 

taken over, meadow size dynamics in eelgrass habitats were not negatively affecting 

biodiversity, possibly due to high connectivity and dispersal rates throughout the 

metacommunity (Whippo et al. 2018). As epifaunal diversity can be affected by patch 

characteristics of other meadows kilometers away, it is likely other intrinsic and extrinsic 

factors in eelgrass patches are influenced by metacommunity-scale processes. Thus, 

eelgrass monitoring and restoration projects should best attempt to consider the health 

status of all eelgrass within the estuary. Furthermore, time series analyses of eelgrass 

landscapes would benefit from a metacommunity perspective simply for the increase in 

data gathered, for exploratory research purposes.  

The small spatial scale of the two monitoring sites analyzed in this research 

cannot be extrapolated to represent eelgrass change in South Slough as a whole, but this 

study serves as a proof of concept for the utility of high spatial resolution remote sensing 

in detecting changes in eelgrass spatial patterns at the landscape and patch-scale. It also 

sheds light on the true logistic ease of UAV mapping in estuaries: wind, turbidity, tidal 

height, and sun angles drastically limit the window for acquiring imagery, with clear and 

sheltered waters being favorable for high accuracy mapping. Nonetheless, high spatial 

resolution remote sensing allows for studying within-meadow eelgrass heterogeneity that 
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can be more complex than simple percent cover changes. The usage of consumer-friendly 

UAVs for eelgrass mapping makes this research easier than ever before and can play a 

significant role in identifying declines in ecosystem health. The understanding of eelgrass 

patch dynamics and their relation to temporal changes in spatial distribution can aid in 

conservation and restoration efforts of this vital aquatic seagrass.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The goal of this research was to test the accuracy of three traditional classification 

techniques on eelgrass in UAV imagery, evaluate the effectiveness of using 1m NAIP 

imagery for eelgrass mapping, and assess temporal change of eelgrass spatial distribution 

and geometry in South Slough, Oregon.  

First, the classification techniques (pixel- and object-based classifiers of 

unsupervised and supervised forms) tested on high resolution UAV imagery revealed that 

effectiveness of classifiers is not consistent among sites of small scales and varying 

complexities in South Slough. Mixed results in OBIA performance suggest that less 

concern be given to pixel- versus object-based automations and more effort be applied to 

the imagery bandwidth and acquisition time. Specifically, similar spectral characteristics 

between eelgrass and other aquatic vegetation encourage the use of multispectral 

imagery, and comparison of 2016 and 2019 scenes in this study has shown that image 

acquisition at low tide can decrease accuracy if eelgrass patches are both exposed and 

submerged. The current classification methods described here are ready for 

implementation without camera updates or more rigid timing of image acquisition given 

that a seagrass specialist devotes time to quality control via visual inspection and manual 

correction of the classified imagery.   

Chapter III expanded on image classification methods in Chapter II by assessing 

the effectiveness of 2016 NAIP imagery in mapping eelgrass. NAIP imagery is a reliable 

source of imagery for eelgrass mapping at 3 year-periods and monitoring data, seagrass 
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specialists, or aerial photo reliability indices can be used as reference data. Performances 

of pixel- and object-based classifiers were mixed and dependent on site location, as in 

Chapter II. Accuracy rates of 1m NAIP imagery rivaled the performance of higher spatial 

resolution UAV imagery, but the higher coverage of eelgrass in the 2016 NAIP imagery 

may have influenced this performance. Both overestimation and underestimation were 

issues present in the analysis, and combined results from UAV and NAIP imagery 

indicate that overestimation of eelgrass presence is the most common error in mapping 

eelgrass in South Slough. Without improvement of classification methods or imagery 

bandwidth, practitioners in areas of low eelgrass coverage and mixed aquatic vegetation 

may need to resort to manual digitization of eelgrass, as was done for change detection in 

the final imagery application of this study.   

The third objective, to measure change in the eelgrass distribution of the two 

remaining eelgrass monitoring sites in South Slough, showed a net loss in eelgrass 

coverage of 44.8%. Valino Island had a cover loss of 50% between 2016 and 2019 and an 

index of relative change of 0.94. The within-patch fragmentation and increasing shape 

complexity shown by the shape indices at Valino Island suggest that disturbances are 

affecting both landscape and patch-level eelgrass factors. However, Collver Point 

diverged from recent trends with a 32% increase in eelgrass cover and aggregation of 

previously fragmented patches, despite undergoing net loss in 2016 and 2018. This is the 

first known time that spatial landscape metrics have been quantified and incorporated into 

change detection for eelgrass in South Slough, Oregon.  

This research trialed new methods for eelgrass monitoring in the form of 

classification techniques and new imagery sources and measured temporal eelgrass 
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change in an estuary that experienced unprecedented declines in eelgrass coverage. I have 

shown that relatively low-cost imagery sources such as consumer-grade UAV imagery 

and publicly available NAIP imagery can recognize low eelgrass coverage in Pacific 

Northwest tidal marshes with moderate success. I have also shown that aerial imagery 

can advance traditional eelgrass monitoring practices by quantifying and visualizing 

spatial landscape metrics such as number of patches and patch shape complexity. These 

metrics provide insight to within-patch heterogeneity that can reveal fine-scale signs of 

degradation or recovery previously unattainable by traditional monitoring methods. 

Successful methods development for eelgrass conservation can serve as a catalyst for 

increasing preventative and restorative efforts taken towards this highly valuable species. 
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