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DISSERTATION ABSTRACT

Brandon H. Schlomann

Doctor of Philosophy

Physics

June 2020

Title: Learning Biophysical Rules of Gut Bacterial Communities through Live
Imaging of Zebrafish

Vast communities of microorganisms inhabit the gastrointestinal tracts of

humans and other animals, where they influence diverse aspects of animal health

and disease. Our understanding of the types of microbes present in the intestine

and the genes that they carry has grown tremendously in recent years, but despite

this progress, we are still unable to predict the abundances of microbial strains in

the gut and their impact on host phenotypes. This deficiency limits our abilities to

uncover causal mechanisms mediating host-microbe interactions and to rationally

design novel therapeutic strategies. A major barrier to achieving these goals is our

limited ability to experimentally probe the spatial organization of gut bacterial

communities, which is thought to be a key driver of microbiota dynamics, but

which is largely inaccessible in most systems. This dissertation work addresses

these knowledge gaps by combining quantitative theory with controlled experiments

in a model system that can uniquely surmount these technical challenges. The

larval zebrafish is an optically transparent, model vertebrate that is amenable

to live imaging studies, in which bacteria in the gut can be directly visualized

and studied in situ. Through this approach, we discovered that the biophysical
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properties of bacteria in the gut, especially their aggregation and swimming

behaviors, coupled to intestinal fluid flows, determine in robust but probabilistic

ways several large-scale features of whole bacterial populations. These features

include global spatial distributions of bacteria throughout the gut, bacterial

population dynamics, both at baseline and in response to perturbations like

antibiotics, and the ability of bacteria to stimulate immune responses. Through

the study and validation of phenomenological models, we argue that these effects

are generic and manifest in other animals, including humans, and suggest new

strategies to harness these effects for precision microbiome engineering.
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CHAPTER I

INTRODUCTION

1.1. Gut microbial ecosystems with important functions

Trillions of microorganisms live on and inside the human body, with the

highest densities being in the gastrointestinal tract [1]. Humans are not special:

microbial communities have been found associated with macroorganisms across the

entirety of the tree of life. Closer inspection of any of these host-microbe systems

almost always reveals deeper connections than mere co-occurrence. Specific strains

of bacteria are known to hide bobtail squid in moonlight with luminescence [2],

direct the formation of root nodules and nitrogen fixation in leguminous plants

[3], induce mating in single-celled eukaryotes [4], and much more. However, it is

the relationship between humans and our gut microbes—collectively called gut

microbiota—that has aroused the most scientific and popular interest in recent

decades.

This surge in interest is in large part due to unexpected interactions

discovered between the gut microbiota and diverse aspects of human health and

disease. Reviewing all of these interactions is beyond the scope of this work, but it

is worth noting that beyond the more plausible functions of gut bacteria, such as

aiding digestion [5] and protecting against enteric infection [6], the gut microbiota

has been shown to regulate the immune system [7], alter developmental programs

[8], modulate animal behavior [9], and other surprising feats. Understanding how

gut microbiota assemble, persist, and interact with their hosts therefore has major
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implications for both our basic knowledge of microbial ecosystems and therapeutic

applications.

Central to these problems are the notions of spatial organization and

dynamics of bacterial populations within the gut. Organization in space and time

is well-known to be important in determining species coexistence in macroscopic

ecosystems [10, 11]. Within the intestine, spatial organization and dynamics

influence both the observed abundances of various bacterial species and how these

populations interact with their animal hosts. To this end, the overarching goal of

this dissertation work is to infer, through controlled experiments and quantitative

analyses, rules that govern the spatial organization and dynamics of gut bacterial

communities.

1.2. Microbiota form: patterns of variation

The notion that gut microbiota follow any semblance of rules at all, that they

are anything but purely random collections of digesta, first appeared via large-scale

surveys of the microbial species present at different body sites [1]. These studies

revealed distinct patterns of variation incompatible with pure random sampling

from the environment. Instead, we have the following picture: the gut microbiota

is extremely dense and diverse. There are an estimated 1013 bacterial cells in the

gut—roughly one for every human cell in the body [12]—comprising thousands of

different species. This density is approximately 100 times higher than the density

of a laboratory culture of E. coli grown overnight in nutrient-rich media. The

gut microbiota assembles over the first ∼3 years of life, after which it becomes

relatively stable in composition and measurably distinct from other peoples’

[1, 13]. The gut microbiota is unique to the gut, being easily distinguishable from

2



environmental microbial communities, and even from microbial communities at

different body sites [1]. For example, in terms of microbiota composition, my

gut is almost certainly more similar to another person’s gut than it is to my own

mouth [1]. Summarized a bit more quantitatively, we can say that measures of

dissimilarity between microbiota—for concreteness say a typical variance in species

abundance—follows the following hierarchy [14]:

Varbody sites � Varpeople & Vartime. (1.1)

In words: the variance across body sites within the same person is much

greater than the variance across people at the same body site, which itself is

usually greater than the variance across time within a single body site of a single

person. This last inequality is not a strict one because although microbiota

composition appears relatively stable over time in healthy adults, large fluctuations

are observed in response to perturbations, such as antibiotic treatments or changes

in diet [15, 16, 17].

This hierarchy of variation immediately puts forth the notion that the

assembly of gut microbiota is guided by some processes or factors that are not

entirely random. If our intestines only did just sample from our local environment,

we might expect the variance across people in different environments to exceed

the variance across our own bodies. We also might expect that, as people travel

about different environments, the variance over time might equal or exceed the

variance between people even in the absence of large perturbations. Accounting for

diet and other relevant factors, no trace of these types of geographical signatures

have been found. We therefore conclude that there are likely intestine-specific rules

governing gut microbiota composition that need to be inferred, and fundamental
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questions that need to be answered. Why are certain bacteria found preferentially

in the gut? Why is one person’s gut microbiota different from another’s? What

determines microbiota dynamics, both at baseline and in response to perturbation?

After a decade of intense research efforts across the globe, these questions remain

incompletely answered.

Abstracting away the microbial community from the intestinal environment,

these questions about patterns of variation and dynamics are the same ones

that have been asked in the field of ecology for over a century. However, the

sheer vastness of gut microbiota as ecosystems, combined with the staggering

complexities of the human body, have resulted in a problem that challenges our

understanding in new and formidable ways. While attempts to understand gut

microbial communities in terms of just microbes and their interactions have been

made [18], it is becoming increasingly clear that the context of the intestinal

environment is paramount [19]. Indeed, the ordering of the variance hierarchy, with

body site dominating, suggests that to understand how the gut microbiota works,

one should peer into the gut itself and understand life there from the microbial

point of view. This is the approach taken in this dissertation.

1.3. Microbiota form: spatial organization and dynamics

Given the high density of bacteria in the gut (ρ ∼ 1011 cells/cm3 = 10−1

cells/µm3 [12]), spatial structure is likely to be a key driver of bacterial population

dynamics, and therefore microbiota composition. Indeed, a simple estimate suggests

that most bacteria in the gut (typical size ` ∼ 1 µm) are closely packed, with a

typical spacing d ∼ ρ−1/3 ∼ 101/3 µm, of order `. However, even a basic assessment

of how gut microbes are organized spatially is lacking. The questions of why they

4



are organized the way that they are, and how this organization impacts dynamics,

are even further from being understood.

These deficiencies are largely due to the hidden nature of gut microbiota.

In most animals, it is extremely difficult to know which bacteria are where while

the animal is still alive. In a notable recent paper [20], healthy human subjects

were invasively sampled at several points along the gastrointestinal tract, using a

combination of endoscopy and colonoscopy, along with bacterial DNA sequencing.

These measurements revealed distinct microbiota compositions at different

anatomical sites, a finding that mirrored previous observations made in excised

mouse intestines [21]. These patterns of composition along the length of the gut are

likely driven, at least in part, by concurrent gradients in the chemical environment,

including features like oxygen levels and pH [21], though a causative relationship

has not been rigorously established. In contrast, elegant experiments in a fluidic

“gut-on-a-chip” system and mathematical modeling clearly demonstrated that

intestinal fluid flow can reproduce observed patterns of increasing density of total

bacteria along the gut, and can also, in combination with pH gradients, generate

species-specific distributions [22].

Sequencing-based approaches have to date been limited to measuring

microbiota spatial structure only on coarse scales, with maximum resolutions being

on the order of centimeters for measurements along the length of the gut [21]. To

probe length scales closer to that of bacteria themselves, histological methods have

been developed and continue to be optimized for studying gut microbiota. In these

experiments, typically done in mice, intestines are removed from sacrificed animals,

treated with a fixative agent such as chloroform, embedded in paraffin wax, sliced

into thin sections, and then subjected to various stains for visualizing bacteria
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and other intestinal features with optical microscopy [23]. Through combinatorial

labelling, it has been possible to simultaneously label up to 15 different bacterial

strains in a mouse gut [24]. These types of studies have shown that, in the large

intestine, bacteria grow in dense clusters, with species mixing at scales down to the

single-cell level, though larger clonal clusters of some species are observed [24].

Histological approaches offer extremely high spatial resolution. However,

the extensive processing involved in preparing the sample for imaging, including

killing the animal and applying fixative, can generate serious artifacts and may

alter bacterial community structure [23]. In particular, loosely suspended contents

in the fluid center of the gut are difficult to preserve. Older studies took a simpler

approach of observing bacteria directly within human fecal samples [25]. These

studies concluded that bacteria were largely encased in 3D mucus clusters, whose

sizes spanned several orders of magnitude, and also implicated the immunoglobulin

IgA in the formation of these structures, which has been further investigated in

recent years [26]. Even apart from artifacts induced by sample preparation, the

high spatial resolution of both of these approaches comes at a cost of reduced

scope: with fairly low throughput, it is difficult to assess larger-scale spatial

patterns throughout the gut.

Similar to studies of spatial organization, studies of gut microbiota dynamics

are limited in resolution. Sequencing-based approaches using fecal samples as

proxies of the intestinal environment have a maximum temporal resolution of

around one sample per day [17]. Long-term studies have shown that gut microbiota

composition in healthy adults is relatively stable over years [27, 28, 29]. In

contrast, in response to antibiotics, the gut microbiota of healthy adults responds

dramatically within the sampling period of a day [15], indicating response dynamics
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on the scale of hours. Understanding how these timescales are connected is a major

open problem [17].

While histological methods enable bacteria-scale measurements of spatial

organization, measurements of dynamics on the scale of bacteria—minutes

and hours—are almost non-existent. Even a simple measurement of bacterial

growth rate, routine practice for lab-cultured bacteria, is near impossible in most

gut microbiota. Sophisticated metagenomic methods, which compare ratios of

read counts from DNA sequencing near and far from the origin of replication

on the bacterial chromosome, can track relative changes in growth rates, but

converting these numbers to absolute rates is often not possible [30]. Alternatively,

measuring the distribution of bacterial abundances over time in cohorts of sacrificed

laboratory animals can lead to an effective growth rate, but without knowledge

of additional processes, such as rates of bacteria entering and leaving the gut,

or competition with other microbes, it is challenging to convert this number to

an actual cell division rate. Arguably the most direct measurements of bacterial

growth rate within an intestine are from the zebrafish system discussed here, where

abundances are followed through time-lapse imaging [31, 32, 33]. Summing the

results of all these methods, we observe that bacteria replicate in the gut on scales

ranging from once an hour to once a day. Beyond these timescales, the nature of

bacterial dynamics in the gut remains underexplored.

1.4. Space, time, and microbiota function

Important for this work, the spatial organization and dynamics of gut

microbiota are likely critical to their function. Many interactions between gut

bacteria and their animal host have found to be specific to particular bacterial
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strains [34]. Therefore, the dynamics of particular strain abundances likely impact

host-bacteria interactions. In addition, how bacteria organize spatially in the gut

can influence how they are sensed by the animal host. Bacteria that can access

space close the epithelium lining of the gut, which is protected by the difficult-to-

penetrate polymer gel of intestinal mucus, can present their molecular products

more directly to the host than can other bacteria that are sequestered within the

fluid center of the gut, known as the lumen [35, 36, 37]. This process is known to

occur with several bacterial pathogens [38, 39, 40, 41], where the ability to navigate

to the epithelium is necessary for causing disease, but is less well-characterized

for members of the resident microbiota. Further, the composition of animal

cell types varies along the length of the gut [42], as does the composition of the

microbiota [21], so how bacteria are distributed longitudinally may also impact

how they interact with the host. Together, these observations imply that a general

understanding of gut microbiota spatial organization and dynamics will not only

inform our ecological view of these systems, but may also uncover mechanisms

underlying a variety of health and disease-related interactions.

1.5. Overview of experimental system

To address the gap in understanding of gut microbiota spatial organization

and dynamics, I conducted live-imaging studies in larval zebrafish, a model

vertebrate. In this section, I give a general overview of the experimental methods

used in these studies. Methodological details are also included in each core chapter

of this dissertation.
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1.5.1. Zebrafish

The zebrafish, Danio rerio, has been a prominent model organism in biology,

especially developmental biology, for several decades [43]. First developed as a

model at the University of Oregon, zebrafish have become a useful model becomes

of their combined features of (1) being a vertebrate, thereby providing a high

degree of similarity with human biology; (2) fast maturation times (∼3 months)

and high fecundity, which enables large-scale studies and screens; (3) the existence

of powerful genetic tools for editing the zebrafish genome; and, most importantly,

(4) optically transparent larvae, which allows for live imaging studies. Together,

these features enable multicellular dynamics to be directly observed in their natural

context, while simultaneously offering rigorous dissection of molecular mechanisms.

In particular, in recent years zebrafish has emerged as a powerful model

for host-microbe interactions, largely due to work conducted at the University of

Oregon. A key milestone for this research was the development of protocols for

deriving animals that are devoid of any microbes, or “germ-free”. Raising germ-free

animals allows researchers to study the effects of having a microbiota, or none at

all, on various aspects of host biology. Similar to mice and fruit flies, the absence

of a microbiota is not lethal to zebrafish, but does lead to a variety of interesting

differences, for example, in the composition of the immune system [44], in the

proliferation of certain intestinal epithelial cells [45], and in the insulin producing

capabilities of the pancreas [46]. The details of the germ-free derivation process

was reviewed in detail in [47]. This process involves sterilizing the surface of the

embryo’s chorion (a protective shell) with small amounts of bleach, iodine, and

antibiotics, and then raising the animals in sterile media. Importantly, in current

protocols for deriving germ-free zebrafish the animals are not fed, but subsist off
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of nutrients derived from their yolk sac. We raise germ-free fish in this way for a

maximum of 7 days, after which nutritional deficiencies manifest.

In addition to studying the effects of a conventional microbiota versus no

microbiota, a germ-free animal offers the opportunity to assemble synthetic, model

bacterial communities, consisting of a known set of species. Should a bacterial

species be known to colonize zebrafish, it can be simply added to the aqueous

environment of the fish flask, from where it enters the intestine likely through the

mouth and esophagus. The work in this dissertation focuses almost exclusively

on single species bacterial communities and how these populations interact with

physical aspects of the intestinal environment. Focusing on a single species at

a time allows isolation of interactions between bacteria and the host, avoiding

complications arising from inter-species competition.

1.5.2. Bacteria

All the bacteria studied in this work are species that are native to the

zebrafish gut and were previously isolated. Recently developed genetic tools [48]

have led to a large collection of zebrafish bacteria—around 10 species to date—

that are engineered with fluorescent markers, enabling observation by fluorescence

microscopy. These markers are fluorescent proteins, whose genes have been

incorporated into the bacterial genome such that they are always expressed. These

markers are extremely stable and do not interfere with normal bacterial physiology

in any way measured to date.

The ability to study bacteria that are native to zebrafish, as opposed to

coming from another source, is extremely powerful. Specifically for the purposes

of this work, by dissecting the strategies that these bacteria have evolved to thrive
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FIGURE 1.1. Summary of gut microbiota length scales.
A bacterial cell (purple, shown with flagella) is approximately 1 µm long. A larval
zebrafish, the model host organism for this dissertation work, has an intestine
that is approximately 1 mm long (dashed orange box), which is large compared to
bacteria, small compared to the length of the human gut (∼1 m), but comparable
to features of the human gut like colonic crypts. Colonic crypts are invaginations of
the epithelial boundary layer (pink) that are filled with a protective mucus barrier
(green shaded region). The length scales readily accessible by the microscopy
techniques used in this dissertation work are highlighted in blue.

in the zebrafish gut (by design, the species that have been isolated and tagged

are among the most abundant ones), we can better learn the rules that operate

there. The process of becoming a dominant species in the zebrafish gut can be

thought of as a puzzle that these bacteria have solved over the course of evolution.

By understanding how these bacteria solved the puzzle, as opposed to a foreign

bacteria that is colonizing a fish for the first time, we gain deeper insight into the

workings of resident bacterial communities.
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1.5.3. Light sheet fluorescence microscopy

Even with this ideal system of a transparent vertebrate host and fluorescent

bacteria, imaging bacteria in the larval zebrafish gut is not trivial. The imaging

system must simultaneously satisfy several technical requirements. First, the

gut has rich three-dimensional structure, so we need to be able to acquire three-

dimensional images. Second, there is a challenge of multiple length scales: the

larval zebrafish intestine is approximately 1 mm long (the width narrows from

∼200 µm in the anterior to ∼70 µm in the posterior), which is small compared

to human scales, but is large compared to bacteria (Fig. 1). To resolve individual

bacteria and simultaneously study spatial patterns on the scale of the whole gut,

we need to break up the full intestine into multiple, smaller three-dimensional

fields of view, leading to a large number of images. Third, we need to acquire

these images quickly because features in the gut move fast. The larval zebrafish

gut contracts approximately twice a minute [49], which would result in a blurred

image if it occurred during image acquisition. Even more challenging are swimming

bacteria, whose swim speeds can exceed 60 µm/s. Finally, because we want to do

time-lapse imaging for several hours and study dynamics, we need to minimize

photodamage during imaging, including the bleaching of fluorescent markers and

phototoxic effects that arise in cells that are exposed to intense laser light.

To simultaneously satisfy all of these requirements, I use a technique called

light sheet fluorescence microscopy (LSFM) [50, 51] LSFM is a type of fluorescence

microscopy in which the excitation laser light is shaped into a thin sheet. Emitted

light is captured on an axis perpendicular to this sheet, through a lens whose focal

plane is matched to the light sheet plane. This unconventional geometry offers

highly efficient light use, as regions of the sample away from the focal plane are not

12



illuminated, minimizing photodamage. Moreover, with this geometry 3D images

can be acquired rapidly by translating the sample perpendicularly through the

sheet along this single axis.

The axial resolution of a light sheet microscope is determined in large part by

the sheet thickness. Due to the diffracting properties of Gaussian laser beams, there

is a fundamental tradeoff between sheet thickness—and therefore axial resolution—

and the field of view over which the sheet is roughly planar. Given a sheet of

minimum thickness w and wavelength λ, the characteristic length over which a

sheet is planar is given by the Rayleigh length [52], `R, for Gaussian beams:

`R =
πw2

λ
. (1.2)

Therefore, in designing a light sheet microscope for a given application the

sheet thickness is chosen to optimize the balance between resolution and field

of view. Since the larval zebrafish gut is fairly large, being ∼1 mm long, and we

require resolution only on the scale of ∼1 µm to resolve individual bacteria, our

microscope uses a somewhat thicker sheet, on the order of 3 um, which results in a

Rayleigh length of ∼100 µm. In practice, the full gut is split into 4 regions which

are imaged in sequence and then registered together computationally.

A light sheet microscope for imaging bacteria in the larval zebrafish gut

was already constructed in the Parthasarathy lab when I began my dissertation

research. My contributions to the optical and electronic systems were negligible.

1.6. Summary of core chapters

This dissertation contains four core chapters. Chapter 1 describes a

comparative study of bacterial spatial organization in the larval zebrafish gut
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across seven different bacterial species. It is discovered that the degree of bacterial

aggregation, or “cohesion”, correlates strongly with localization along the length of

the gut both across and within species, indicating the presence of general principles

that govern spatial organization in the gut.

Chapter 2 presents analytic calculations for a model of bacterial population

dynamics in the gut. From previous work [32], it was known that aggregated

bacterial populations are susceptible to strong fluid transport up and down the

intestine, with large aggregates occasionally being expelled from the gut altogether.

These expulsion events register as large, abrupt, downward fluctuations in

bacterial abundance within the gut. These fluctuations are modelled as stochastic,

discontinuous jumps that arrive according to Poisson process. Coupling these jumps

to conventional, deterministic logistic growth results in a piecewise deterministic

Markov process. Exact solutions for the model’s stationary moments are derived

and various limits are computed. These analytic results provide useful insight into

how the dynamic processes of growth and stochastic expulsion generate the large

variation observed in cross-sectional abundance measurements.

Chapter 3 investigates how bacterial aggregation behavior impacts

the response of gut microbiota to low, sublethal levels of antibiotics. Such

concentrations are frequently measured in the environment as the result of runoff

from agricultural use, improper disposal in the medical sector, and pollution

from manufacturing, but their impact on gut bacterial populations are poorly

characterized. It is shown that low-dose antibiotics can enhance bacterial

aggregation in vivo, which, when coupled to intestinal expulsion, leads to large,

orders-of-magnitude reductions in bacterial abundances that are not predicted from
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in vitro responses. This effect is captured by a minimal kinetic model that connects

in vivo antibiotic responses to sol-gel transitions in soft materials.

Finally, Chapter 4 takes a genetic approach to mechanistically study the role

of bacterial swimming motility in host colonization. It is shown that swimming

motility and chemotaxis enable bacteria to counter intestinal transport and

maintain stable populations. An additional consequence of this bacterial lifestyle

is that motile cells can stimulate strong immune responses around the gut, likely

the result of swimming bacteria being able to access the epithelial boundary layer.

Therefore, bacterial spatial organization, population dynamics, and intestinal

inflammation are highly interconnected features of gut microbiota, and in this

case are all largely determined by bacterial swimming motility. Through the use

of inducible genetic switches that can toggle bacterial motility in situ, it is shown

that all of these features can by dynamically controlled, indicating a potential

application for precision microbiome engineering.

1.7. A note on movie references

Throughout this dissertation are references to supplemental movies that

accompany figures and analyses. For simplicity, these movies can be accessed

directly through the chapter’s corresponding journal website, with the journal

reference noted at the start of each chapter.
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CHAPTER II

BACTERIAL COHESION PREDICTS SPATIAL DISTRIBUTION IN THE

LARVAL ZEBRAFISH INTESTINE

2.1. Statement of author contributions

This chapter was published as [53], a co-authored publication. Co-authors

included Travis Wiles, a co-first author along with myself, Elena Wall, Karen

Guillemin, and Raghuveer Parthasarathy. My contributions included: designing

the study, performing the imaging, analyzing the data, and writing the paper.

2.2. Abstract

Are there general biophysical relationships governing the spatial organization

of the gut microbiome? Despite growing realization that spatial structure is

important for population stability, inter-bacterial competition, and host functions,

it is unclear in any animal gut whether such structure is subject to predictive,

unifying rules, or if it results from contextual, species-specific behaviors. To

explore this, we used light sheet fluorescence microscopy to conduct a high-

resolution comparative study of bacterial distribution patterns throughout the

entire intestinal volume of live, larval zebrafish. Fluorescently tagged strains of

seven bacterial symbionts, representing six different species native to zebrafish,

were each separately mono-associated with animals that had been raised initially

germ-free. The strains showed large differences in both cohesion—the degree to

which they auto-aggregate—and spatial distribution. We uncovered a striking

correlation between each strain’s mean position and its cohesion, whether quantified
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as the fraction of cells existing as planktonic individuals, the average aggregate

size, or the total number of aggregates. Moreover, these correlations held within

species as well; aggregates of different sizes localized as predicted from the pan-

species observations. Together, our findings indicate that bacteria within the

zebrafish intestine are subject to generic processes that organize populations by

their cohesive properties. The likely drivers of this relationship, peristaltic fluid

flow, tubular anatomy, and bacterial growth and aggregation kinetics, are common

throughout animals. We therefore suggest that the framework introduced here, of

biophysical links between bacterial cohesion and spatial organization, should be

useful for directing explorations in other host-microbe systems, formulating detailed

models that can quantitatively map onto experimental data, and developing new

tools that manipulate cohesion to engineer microbiome function.

2.3. Introduction

Dense and diverse communities of microbes reside in the intestines of humans

and other animals. Their large impact on processes ranging from digestion to

disease progression [5, 6, 54] motivates a great deal of work aiming to uncover

determinants of community composition and function. Because of the size and

anatomy of the gut, and because of the remarkable number of microbial species

that coexist within it—hundreds to thousands in humans—it is widely believed

that spatial organization plays an important role in orchestrating community

structure [23, 24]. In support of this, for example, recent studies have shown that

distinct groups of bacteria inhabit the lumenal space of the intestine compared to

the dense mucus layer lining the epithelium [55] and that distinct taxa are found in

different regions along the length of the digestive tract [56]. The drivers of spatial
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organization are most often considered to be anatomical, as above, or biochemical,

for example caused by variation in pH or the concentrations of nutrients, oxygen, or

antimicrobial peptides [21].

Here, we suggest and demonstrate that the biophysical character of

the microbes themselves, namely the degree to which they are planktonic or

aggregated, can be a strong predictor of their populationÕs overall position within

the intestine. In macroscopic ecological contexts, such relationships between

morphology and spatial distribution are well known. For example, animal body

mass is greater in colder regions (Bergmann’s rule), likely due to the scaling of

surface driven heat loss with size; phytoplankton aggregation is correlated with

position in the water column, due to buoyancy [57]; and seed mass varies robustly

with latitude, for reasons that are still unclear [58].

It remains an open question whether gut microbes are governed by broad,

pan-species principles linking cellular behavior and large-scale distribution, or

whether spatial structure is contingent on context- and species-specific interactions.

Investigating this requires high-resolution imaging within live animals in a

controlled setting, which has only recently become possible. Uncovering such

principles would demonstrate that despite the biochemical complexity of the

vertebrate microbiota, general biophysical principles governing the architecture

of gut microbial communities may exist.

Our study makes use of larval zebrafish (Fig. 1A, 1B), a model organism

of particular utility to investigations of host-microbe interactions due to its

anatomical and physiological similarities to other vertebrates, its optical

transparency, and its amenability to gnotobiotic techniques for the creation of fish

colonized only by particular microbial species [31, 32, 59, 60]. Zebrafish naturally
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associate with a diverse intestinal microbiome containing hundreds of bacterial

species [61, 62] that influence a wide range of host processes [8, 46, 63, 64].

Earlier work on the dynamics of two native zebrafish bacterial symbionts [32]

and a human-derived pathogen [60] showed associations between cellular growth

mode, specifically whether the bacteria are planktonic or aggregated, and spatial

distribution, specifically the location of the population along the length of the

intestine, but the robustness and generality of this association remains unexplored.

As detailed below, we find across multiple bacterial strains, and even within strains,

that greater aggregation is strongly correlated with more posterior localization.

2.4. Materials and Methods

Bacteria: All bacterial strains used in this study are listed in Table 1. Each

strain was previously engineered via Tn7-mediated insertion to constitutively

express either dTomato or sfGFP fluorescent reporters from a single chromosomal

locus [48]. Archived stocks of bacteria were maintained in 25% glycerol at -80¡C.

Prior to experiments, bacteria were directly inoculated from frozen stocks into 5ml

lysogeny broth (LB) media (10g/L NaCl, 5g/L yeast extract, 12g/L tryptone, 1g/L

glucose) and grown for 16h (overnight) shaking at 30¡C.

Animal care and gnotobiology : All experiments with zebrafish were done

in accordance with protocols approved by the University of Oregon Institutional

Animal Care and Use Committee and following standard operating procedures [65].

Wild-type (AB x TU strain) zebrafish were derived germ-free and colonized with

bacterial strains as previously described [47] with slight modification (Supplemental

Text).
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Live imaging : Live imaging of larval zebrafish was conducted using a home-

built light sheet fluorescence microscope previously described in detail [31]. The full

volume of the intestine (approximately 1200x300x150 microns) is captured in four

sub-regions that are registered in software following imaging. An entire intestine

sampled with 1-micron steps between planes is imaged in less than 1 minute. All

images were taken with an exposure time of 30ms and an excitation laser power of

5mW at 488 nm and 561 nm wavelengths.

Image analysis : Three-dimensional image stacks were analyzed using a

pipeline described in detail in [31], with minor changes (Supplemental Text). The

goal of the analysis is to identify the location and size of all bacterial clusters,

ranging from individual, planktonic cells to large multicellular aggregates. Small

objects are identified using a spot detection algorithm calibrated to over count

spots, which are then filtered using a trained classifier (Supplemental Text). Large

objects are segmented using a graph-cut algorithm [66], typically seeded with a

mask obtained by intensity thresholding. The number of cells per multicellular

aggregate is estimated by dividing the total fluorescence intensity of the aggregate

by the average intensity of single cells in the same fish host. In cases where single

cells are sparse or absent, the average is taken across all single cells for that strain.

From these estimates we compute the 1D center of population mass, i.e. the mean

position weighted by population density at each position, normalized by intestine

length (“population center”), and also calculate the various cohesion metrics

discussed in the text.

Data: To maximize statistical power, we combined newly acquired data with

a recently published image dataset obtained under identical conditions [48]. The

recently published data had been subjected to prior analysis to estimate overall
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bacterial abundances, but was reanalyzed here from scratch using the methods

described above and in the Supplemental Text. The combined dataset consisted of

N=6 fish per strain, except for Plesiomonas ZOR0011, which had N=3 fish. The

output of our computational pipeline, a text file containing the size and location of

every bacterial cluster, with identifiers for strain, fish, and dataset, is included in

Supplemental Data File 1, with details on its format in the Supplemental Text. In

addition, a spreadsheet with the cohesion and distribution metrics plotted in Figure

2 is included in Supplemental Data File 2.

2.5. Experimental Design

To investigate this putative relationship, we analyzed seven bacterial

strains representing six different species (Table 1). All were isolated from

zebrafish intestines, where they are common and abundant [62]. Each species

was previously engineered to constitutively express fluorescent proteins [48].

To deduce relationships governing species morphology and its interaction with

the gut environment, we examined animals that were sufficiently developed to

exhibit stereotypical intestinal transport, and sufficiently young to permit germ-

free derivation and handling. We first raised larvae germ-free and allowed them

to be colonized with individual bacterial strains by inoculation of the aqueous

medium for 24 hours starting at four days post-fertilization (dpf) (Methods and

Supplemental Text). During this developmental stage, until roughly 7 dpf, larvae

need not be fed and are sustained on yolk-derived nutrients, enabling maintenance

under gnotobiotic conditions. The larval intestine is, however, highly active

beginning at 3.5 days [67] and exhibits a range of motility patterns, including

coordinated peristalsis-like movements that are controlled by the enteric nervous
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strain median abundance

Aeromonas veronii ZOR0001 8.4× 102

Aeromonas caviae ZOR0002 1.2× 103

Enterobacter cloacae ZOR0014 3.5× 103

Plesiomonas ZOR0011 4.6× 103

Pseudomonas mendocina ZWU0006 3.5× 102

Vibrio cholerae ZOR0036 1.6× 103

Vibrio cholerae ZWU0020 2.0× 104

TABLE 2.1. Bacterial strains and imaging-derived estimates of mono-association
abundances in vivo.
Abundances were estimated from 3D image stacks using the computational pipeline

described in Methods and Supplementary Text

system and can act on resident bacteria [32, 49]. After the colonization period,

three-dimensional image stacks were acquired using a custom-built light sheet

fluorescence microscope described in detail elsewhere [31]. The images span the

entire larval intestine, roughly 200 x 200 x 1000 microns in extent, with single-

bacterium resolution. Additional details are provided in Methods.

2.6. Results

Imaging multiple fish per strain revealed a broad spectrum of growth modes

and bacterial distributions, ranging from the highly planktonic populations

of Vibrio cholerae ZWU0020 located within the anterior ÒbulbÓ (Fig. 1C,

top; Supplemental Movie 1) to the almost entirely aggregated populations of

Enterobacter cloacae ZOR0014 located within the midgut (Fig. 1C, bottom).

Most populations displayed intermediate mixtures of cellular growth modes and

spatial distributions, similar to that of Aeromonas caviae ZOR0002 (Fig. 1C,

middle; Supplemental Fig. 1, Supplemental Movies 2-4). As with observations of

Aeromonas strains in earlier work [32], bacterial aggregates were dense, compact,
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FIGURE 2.1. Diversity of bacterial population structures within the zebrafish
intestine.
(A) Schematic of a 5-day old larval zebrafish. (B) Schematic of a larval zebrafish
intestine with the three general anatomical regions and their approximate relative
sizes highlighted. (C) Representative images from across the range of observed
population structures. Each image is a maximum intensity projection of a full
3D image stack, except for the top right inset, which is a single optical plane.
Dashed amber lines trace the approximate boundaries of the intestine in each
image. Examples of single cells (open arrowheads), small aggregates (closed
arrowheads), and large aggregates (tailed arrowheads) are noted within insets
under “sub-region”. See also Supplementary Movies 1-4. Top row: Populations
of V. cholerae ZWU0020 localize to the anterior bulb and are dominated by
highly motile planktonic cells (Supplementary Movie 1). Inset shows V. cholerae
ZWU0020 cells in a different fish that was colonized with 1:100 mixture of green
and red variants. The dilute channel (green) is shown. Middle row: Populations
of A. caviae ZOR0002 typically contain a range of bacterial aggregate sizes, as
indicated by arrows. Inset shows a zoomed-in view of the same intestine. Bottom
row: Populations of E. cloacae ZOR0014 typically consist of small numbers of large
aggregates. Inset shows a zoomed-in view of the same intestine.
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and cohesive. The predominant difference in spatial position between species was

their location along the longitudinal axis of the intestine. We observed no strains,

for example, that localized along the radial axis, lining the gut epithelium.

We computationally identified each individual bacterium and aggregate in

each three-dimensional image stack, and also determined the number of cells in

each aggregate [31] (see Methods). For each population, we computed the center of

mass along the longitudinal axis of the intestine, normalized by the total intestinal

length, to represent its spatial distribution. We also enumerated the fraction of

the population present as planktonic cells to represent the strainÕs growth mode.

Plotting each strain’s planktonic fraction versus its population center shows a

clear and striking correlation (Fig. 2A). Linear regression of log10-transformed

planktonic fraction (log10 fp) against center of mass position (xc) gives a coefficient

of determination of R2 = 0.91, and best-fit parameters

log10 fp = (0.81± 0.32) + (−5.4± 0.8)xc. (2.1)

Making use of our image segmentation of bacterial aggregates, we examined

the relationship between mean object size and position. Defining a cluster as any

group of bacteria (so that an individual bacterium is a cluster of size one), we

find a strong correlation between each species’ average cluster size (mean cells per

cluster, Cc) and its center of mass (Fig. 2B, R2 = 0.79);

log10Cc = (−0.74± 0.47) + (4.9± 1.1)xc. (2.2)

Because Cc is proportional to the total number of cells and inversely

proportional to the number of clusters per fish (nc), the relationship in Fig. 2B
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could be caused by a dependence on either or both of these factors. However, the

total population of each species, save for V. cholerae ZWU0020, is roughly similar

(Table 1); in contrast, nc is strongly negatively correlated with position (Fig. 2C,

R2 = 0.88). Regression gives

log10 nc = (4.7± 0.5) + (−6.6± 1.1)xc. (2.3)

The slope, −6.6 ± 1.1, is close to the negative of the slope of the Cc vs xc

relationship (4.9 ± 1.1), as would be expected if Cc ∼ 1/nc with the overall

population being species-independent. Together, the Cc vs xc and nc vs xc

relationships confirm the lack of a global correlation between abundance and

location and imply instead that local interactions relate the size and positioning

of aggregates.

We next asked if the relationship between aggregation and intestinal

distribution we found between strains could be detected within individual strain

populations, which would further support its biophysical generality. For this, we

considered only clusters of two or more cells because individual cells dominate each

dataset. For each strain, excluding V. cholerae ZWU0020 because it shows almost

no aggregation (Fig. 2A), we combined measurements of cluster size and intestinal

position from all specimens. We restricted our analysis to the anterior half of the

intestine because the distal half rarely contained substantial populations (likely

FIGURE 2.2 (cont’d) (A) the fraction of the population of each strain existing as single
planktonic cells, (B) the average number of cells per cluster, and (C) the total number of clusters
plotted against the population center, the center of mass position of each strain normalized by the
length of the intestine. For the plots shown in B and C, individual cells are considered clusters of
size 1. Circles show median values for each strain, bars show 25% and 75% quartiles. Trendlines
were generated from the unweighted linear regression of log10-transformed medians.
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FIGURE 2.2. Metrics of cohesion correlate with spatial distribution across bacterial
strains.
(Continued in footnote.)
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FIGURE 2.3. Signatures of a cohesion-distribution relationship can be detected
within populations at the strain level.
For each strain shown, the size of every cluster with size 2 cells and greater across
all samples is plotted against its normalized position along the intestine (small
circles). Trendlines depict linear regressions of log10-transformed cluster sizes
against position (black dashed lines). To better highlight trends, data were binned
by position and the mean ± standard deviation of cluster sizes were overlaid on
each plot as large circles and bars.

due to frequent intestinal expulsion), limiting our statistical power in that region.

Regressing log10-transformed sizes of aggregates against their position (Fig. 3, small

circles and dashed trendlines), we found a positive correlation between aggregate

size and aggregate position for each of the six strains (Table 2). Finding this

relationship within strains, as well as across strains, suggests a generic mechanism

that spatially segregates bacterial cells based on their cohesive properties, resulting

in the localization of small aggregates to the anterior of the intestine and larger

aggregates to the posterior.
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2.7. Discussion

Harnessing the natural variation displayed by native zebrafish symbionts

and the spatial insights made possible by 3D live imaging, we have uncovered a

quantitative relationship between bacterial cell behavior and large-scale spatial

organization throughout the intestine. We found that across species and strains, the

degree to which bacterial populations are aggregated, a biophysical characteristic

we term “cohesion”, correlates strongly with their mean position along the

intestine. Moreover, looking within strains we were able to detect further signatures

of the cohesion-distribution correlation: namely, the size and location of individual

aggregates are also correlated. These findings suggest that the relationship between

cohesion and spatial structure represents a general principle that manifests across

both taxonomic and cellular scales. Intriguingly, the diverse species and strains

we examined each have well-defined characteristics, while together they span

the range from almost wholly planktonic to almost wholly aggregated, with the

corresponding range of intestinal locations. Each of these bacterial strains is a

zebrafish gut symbiont, and so it is reasonable to suspect that traits such as degree

of aggregation have evolved to enhance their fitness in the intestinal environment,

or are responses to features of that environment. Through these traits, the bacteria

have the capacity to influence how the intestine shapes their populations.

The specific mechanisms driving bacteria to aggregate may be complex.

One can imagine, for example, simple adhesion of individual cells into clumps,

assembly of aggregates through chemotaxis, and enchainment of daughter cells

after division [26]. We note that specific motility behaviors do not in themselves

explain aggregation; our data show that populations of both motile and non-motile

strains [48] are capable of generating aggregates. These aggregates are perhaps
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reminiscent of in vitro surface-mediated biofilms, but are distinct in that they form

three-dimensional clumps in the intestinal lumen rather than lining the walls, and

there is in general no simple mapping between strains’ highly context dependent in

vitro biofilm formation and in vivo aggregation. Nonetheless, investigating potential

mechanisms of aggregation would be a valuable target for future studies, especially

with an aim towards designing perturbations of cohesion.

We posit that the mechanism underlying the cohesion-distribution

relationship emerges from the interplay between physical properties of the intestinal

environment, especially its shape and peristaltic activity, and the cellular lifestyles

of resident bacteria. As in all vertebrates, the larval zebrafish intestine is roughly

tubular with a corrugated surface of villi, and transports and mixes contents

using coordinated, periodic peristaltic contractions [68]. Earlier work looking

solely at A. veronii ZOR0001 found aggregated microbes pushed and sporadically

ejected by these contractions [32]; such forces more generally affect all aggregated

bacteria. Theoretical studies of particle suspensions under low Reynolds number

peristaltic flow also show spatial segregation of planktonic and aggregated cells

[69]. These observations suggest that it should be possible to construct models

that quantitatively match in vivo measurements and that offer predictions relevant

for other animals, including humans. The development of such models will be

challenging, as they must combine fluid dynamics, anatomy, and the nucleation,

growth, and transport properties of bacterial aggregates. Aggregation kinetics are

quantifiable from in vivo time-series imaging [31], and ongoing work, from both

imaging and modeling, suggests that a robust, pan-species characterization of

cluster dynamics is possible.
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Even in the absence of such detailed models, however, it is reasonable to

believe that the general relationship uncovered here will occur in larger systems,

such as the human gut. Peristaltic transport, a tube-like geometry, and bacterial

growth are universal features of all animal intestines. Given that Reynolds and

Stokes numbers are low in both the zebrafish intestine and the much larger human

intestine, we expect that the flow fields and particle transport that result from

peristaltic contractions will be similar across scales. This similarity has already

allowed quantitative comparisons of microbial compositions driven by pH and flow

rates between in vitro fluidic devices and the human microbiome [22]. Therefore,

the longitudinal segregation of bacterial clusters by size that we observed here

may be a generic consequence of peristaltic activity. Moreover, the finer-scale

structure of crypts and folds affords still further possibilities for spatial structuring

driven by the associated flow fields and bacterial cohesion. Host anatomy, diet, and

biochemical heterogeneity will likely complicate this picture, but we suggest that a

general trend connecting bacterial morphology and intestinal position is reasonable

to expect and intriguing to search for.

The relationship between cohesion and spatial distribution described

here offers a framework for precision microbiome engineering. For example,

by manipulating cohesion it may be possible to selectively displace bacterial

populations from certain regions of the intestine or to remove them entirely.

Reflecting this point, it was recently shown in a murine Salmonella vaccine model

that antibody-mediated enchaining of bacterial cells led to aggregation and

intestinal expulsion [26]. In addition, peristaltic activity can change in response

to diet, therapeutic drugs, infection, and a range of chronic diseases. Therefore,

elaborating the link between cohesion, spatial structure, and flow may help explain
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diseases that result from microbial imbalances, and inspire methods for countering

such changes in community composition through the targeted alteration of bacterial

aggregation.

2.8. Author Contributions

BS, TW, KG, and RP designed the research. TW and EW performed

gnotobiotic procedures. BS performed the imaging. BS, TW, and RP analyzed

the data. All authors wrote the manuscript.

2.9. Acknowledgements

Research was supported through the M.J. Murdock Charitable Trust and an

award from the Kavli Microbiome Ideas Challenge, a project led by the American

Society for Microbiology in partnership with the American Chemical Society

and the American Physical Society and supported by The Kavli Foundation.

Work was also supported by the National Science Foundation under Award

1427957. Authors received funding from the National Institutes of Health (NIH,

http://www.nih.gov/), P50GM09891 to KG and RP, F32AI112094 to TJW, and

T32GM007759 to BHS. The funders had no role in study design, data collection

and analysis, decision to publish, or preparation of the manuscript.

31



CHAPTER III

STATIONARY MOMENTS, DIFFUSION LIMITS, AND EXTINCTION TIMES

FOR LOGISTIC GROWTH WITH RANDOM CATASTROPHES

3.1. Statement of author contributions

This chapter was published as [70], a single-author publication.

3.2. Abstract

A central problem in population ecology is understanding the consequences of

stochastic fluctuations. Analytically tractable models with Gaussian driving noise

have led to important, general insights, but they fail to capture rare, catastrophic

events, which are increasingly observed at scales ranging from global fisheries to

intestinal microbiota. Due to mathematical challenges, growth processes with

random catastrophes are less well characterized and it remains unclear how their

consequences differ from those of Gaussian processes. In the face of a changing

climate and predicted increases in ecological catastrophes, as well as increased

interest in harnessing microbes for therapeutics, these processes have never been

more relevant. To better understand them, I revisit here a differential equation

model of logistic growth coupled to density-independent catastrophes that arrive

as a Poisson process, and derive new analytic results that reveal its statistical

structure. First, I derive exact expressions for the model’s stationary moments,

revealing a single effective catastrophe parameter that largely controls low order

statistics. Then, I use weak convergence theorems to construct its Gaussian analog

in a limit of frequent, small catastrophes, keeping the stationary population mean
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constant for normalization. Numerically computing statistics along this limit shows

how they transform as the dynamics shifts from catastrophes to diffusions, enabling

quantitative comparisons. For example, the mean time to extinction increases

monotonically by orders of magnitude, demonstrating significantly higher extinction

risk under catastrophes than under diffusions. Together, these results provide

insight into a wide range of stochastic dynamical systems important for ecology

and conservation.

3.3. Introduction

Stochastic fluctuations are important drivers of ecological and evolutionary

processes [71, 72, 73, 74]. Understanding their consequences is essential for

ecological management, as well as for explaining observed patterns of biodiversity

[72]. Given that data is often limited, general principles of stochastic population

dynamics derived from the mathematical analysis of minimal models can be

immensely useful [72, 75]. For example, in classic work [76] Beddington and May

derive for a stochastic logistic growth model how harvesting yields become less

predictable as harvesting rates increase, a phenomenon that was suggested by

historical fisheries data at the time [77]. Extensions of this analysis have led

to threshold harvesting strategies that are proven optimal for a wide class of

stochastic growth models that include extinction [78]. Beyond harvesting theory,

analytically tractable models have led to diverse ecological and evolutionary

insights [71, 73, 79].

In these types of analyses, stochasticity is often modeled by coupling growth

to a Gaussian noise process, leading to stochastic differential equations that

are amenable to well established tools from diffusion theory [72, 80]. However,
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large, abrupt catastrophes are not captured by Gaussian models and are better

modeled by discontinuous stochastic processes. These catastrophes are increasingly

observed in a variety of ecological systems. On global scales, ecological catastrophes

have already been observed as the result of rapid warming and are expected to

become more frequent as the climate continues to change [81]. At the opposite

extreme, the intestinal microbiomes of humans and other animals are observed to

undergo abrupt compositional changes following perturbations, such as antibiotic

treatments [29, 32, 82, 83]. At all scales, efforts to understand and manipulate

ecological systems would greatly benefit from general, quantitative principles of

how perturbations and catastrophes shape population statistics.

I address this issue here by analytically and numerically studying a single-

species model of logistic growth coupled to discontinuous, multiplicative jumps

that arrive as a Poisson process, introduced in [84] and referred to here as the

Logistic Random Catastrophe (LRC) model (Figure 1A). Using the method of

moment equations [85], I derive exact expressions for the stationary moments of

the population distribution, neglecting the possibility of extinction. These results

provide a direct look into the statistical structure of the LRC model, revealing a

single, effective catastrophe parameter that largely controls ensemble statistics.

This effective parameter was recently observed empirically in computer simulations

and aided the analysis of experimental data, but there was no theoretical basis for

its existence [32].

With this insight, I then turn to an old and fundamental problem: which

dynamics, intermittent random catastrophes or continuous stochasticity, poses

a higher risk of extinction? For models of exponential growth up to a hard wall

carrying capacity in the presence of either multiplicative Gaussian noise, called
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environmental stochasticity, or random, multiplicative Poisson catastrophes, Lande

[86] derives how the mean time to extinction scales as a power law in the carrying

capacity for positive long-run growth rate, with the exponent depending on the

details of the particular model. This similarity in scaling behavior implies similar

extinction risk in a qualitative sense, but it remains unclear how to construct a

meaningful quantitative comparison, since the noise parameters of the two models

describe distinct processes.

To circumvent this issue, I propose a method that treats the models not as

distinct processes, but as extreme versions of the same process. Using functional

generalizations of the Central Limit Theorem [87] and drawing inspiration from

renormalization methods in theoretical physics [88, 89], I analytically construct the

diffusion analog of the LRC model, referred to here as the Logistic Environmental

Stochasticity model (Figure 1B), in the limit of infinitely frequent, infinitesimal

catastrophes, such that the stationary mean of the process remains constant. In

this way, the problem of quantitatively comparing two distinct models is traded

for the more straightforward problem of computing statistics of one model as a

function of parameters, specifically, along a particular limit in parameter space. I

apply this method to the comparison of extinction times and find that the mean

time to extinction increases monotonically along this limit by orders of magnitude

in a wide region of parameter space, implying significantly higher risk of extinction

under random catastrophes dynamics in general.

Taken together, these results highlight the power of analytically tractable

models of stochastic population dynamics. The expressions derived here aid the

analysis of experimental and observational data, inform the design of computer
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FIGURE 3.1. Sample paths of LRC and LES models.
A: A sample path from the LRC model. Simulation parameters: r = 1, K = 104,
λ = 0.07, f = 10−2, dt = 0.01. B: A sample path from the LES model. Simulation
parameters: r = 1, K = 104, σ = 0.53, dt = 0.01.

simulations, and reveal deep connections between distinct stochastic processes

relevant for a wide range of ecological systems.

3.4. Background on the Logistic Random Catastrophe model

Hanson and Tuckwell [84] introduce an ideal minimal model for the study

of random catastrophes in isolation from additional complications: single-species

logistic growth coupled to constant fraction catastrophes that arrive as a Poisson

process, referred to here as the Logistic Random Catastrophe (LRC) model. The

LRC model can be written analytically as an Itô Stochastic Differential Equation

(SDE):

dXt = rXt

(
1− Xt

K

)
dt− (1− f)Xt−dNt. (3.1)

The first term on the right hand side, of order dt, encodes deterministic logistic

growth with growth rate r and carrying capacity K. The second term encodes

random catastrophes with the use of a differential Poisson process, dNt, which

36



is equal to one if a catastrophe happens at time t and zero otherwise. Poisson

catastrophes arrive with a constant probability per unit time, λ, and have a size

set by f , the fraction of the population remaining after catastrophe. The notation

Xt−dNt indicates the Itô integration convention [90]. By including logistic growth,

the LRC model captures realistic density-dependent regulation; by including

catastrophes of constant fraction, it captures the realistic feature that larger

populations can experience larger losses, assuming that all individuals are equally

susceptible to the disturbance. Despite its simplicity, much about the statistical

structure of the LRC model remains mysterious, due to the combined complications

of the discontinuous Poisson process and nonlinear logistic growth.

3.5. Results

3.5.1. Deriving exact expressions for LRC stationary moments

I present here exact results for the stationary moments of the LRC model in

absence of extinction, derived with the method of moment equations. The method

of moment equations turns a stochastic differential equation into an deterministic

differential equation for the moment in question by averaging. For nonlinear SDEs

this results in a hierarchy of moment equations, in which each moment is coupled

to higher moments, that generally cannot be solved exactly. However, in the

absence of extinction, this hierarchy reduces in the steady state to an algebraic

recursion relation, which in the case of the LRC model is a simple relation between

E[Xn+1] and E[Xn] (section 3.9). This recursion relation can be iterated to express

each moment just as a function of the mean. The mean in turn can be computed

independently from the steady state condition on lnX (section 3.9), resulting in
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FIGURE 3.2. Analytic results reveal statistical structure of LRC model.
A: Analytic results for stationary cumulants agree with numerical simulations.
Time evolution of the first 4 cumulants, Cn, of the LRC model, computed
numerically (solid lines). Dashed lines indicate the asymptotic values predicted
by the analytic results, with the cumulants computed from the moments given by
equation (3). Parameters: r = 1, K = 104, λ = 0.1, f = 0.0012, dt = 0.01,
Ntrials = 5 ·105. B: Range of validity of λ ln f as an effective catastrophe parameter.
Parameters were scaled according to λ′ = βλ and ln f ′ = β−1 ln f by dimensionless
scale factor β. Dashed lines are analytic results for first 4 stationary cumulants as a
function of β. Parameters same as in A.
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E[X]LRC = K

(
1 +

λ

r
ln f

)
. (3.2)

(recall that f ∈ (0, 1), so ln f is negative for f < 1). This then determines all higher

moments:

E[Xn] = Kn

(
1 +

λ

r
ln f

) n−1∏
m=1

(
1− λ(1− fm)

mr

)
, n ≥ 2. (3.3)

The stationary variance is readily computed to be

Var[X]LRC = K2λ

r
(− ln f − (1− f))

(
1 +

λ

r
ln f

)
. (3.4)

These results agree well with simulations, as shown in Figure 2A in the

form of cumulants [91], which generally provide more intuitive information than

moments. The solid lines show the time evolution of the first 4 cumulants, Cn, of

the LRC model, computed via stochastic simulation of the Poisson process with

no absorbing state representing extinction (Materials and Methods). The dashed

lines are the analytic results, computed from the expressions for the moments in

equation (3) [91]. Each cumulant asymptotes to the analytic value.

3.5.2. A single, effective catastrophe parameter largely controls LRC

moments

These analytic results suggest that the parameter combination λ ln f plays

an important role in determining population statistics. To investigate its role, I

computed the response of the first four stationary cumulants of the LRC model to

simultaneous, reciprocal scaling of λ and ln f via a dimensionless scale factor, β.

Specifically, parameters were scaled according to
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λ′ = βλ, ln f ′ = β−1 ln f. (3.5)

In regions of parameter space where statistics depend only on the effective

parameter λ ln f , curves of cumulants as a function of β will be flat. The results

are shown Figure 2B for β ranging from 10−2 − 103. Stationary moments were

computed for each value of β using the analytic results derived above and converted

to cumulants [91]. The stationary mean is invariant under this scaling, as indicated

by equation (2). Higher order cumulants are approximately invariant for low values

of β, which correspond to rare, large catastrophes, but decay to zero for large

values of β, which correspond to frequent, small catastrophes.

The behavior of higher cumulants at low β indicates the presence of a non-

trivial limiting distribution in the limit of large but rare catastrophes. In terms

of the scaled variable X/K, we identify the limiting distribution as the binary

Bernoulli distribution: X/K takes on a value of one if there is no catastrophe, and

a value of ≈ zero if there is a catastrophe. More precisely, if we evaluate the limit

λ → 0, f → 0 in the expression for the moments in equation (3), we find that

the product terms vanish, resulting in all of the moments of the scaled variable

X/K to be equal its mean, 1 + r−1λ ln f . This feature of having all moments

equal to the mean defines the Bernoulli distribution. The mean of the Bernoulli

distribution specifies its only parameter, the probability of the variable taking on a

value of 1. Here, that parameter is 1 + r−1λ ln f , which is invariant under β-scaling.

Somewhat surprisingly, approximate forms of this invariance manifest in regions of

parameter space relevant for the experiments in [32], in which catastrophes were

large (f ∼ 10−2) but rare (λ/r ∼ 10−1). In [32], fits of stochastic simulations

of the LRC model to experimental data were empirically found to be invariant

40



under β-scaling, but it was at the time unclear why this invariance should exist.

The identification of the Bernoulli distribution as a limiting distribution provides a

theoretical basis for this observation.

The opposite limit of frequent but small catastrophes can also readily be

understood. As β increases in Fig. 2B higher cumulants decay to zero, indicating a

deterministic limit. To see this, recall that for a Poisson process, all cumulants are

equal to the mean, λt, just as all cumulants of a Poisson distribution are equal to

the mean. The nth cumulant of the scaled process (1− f)Nt is therefore (1− f)nλt.

The limit β → ∞ corresponds to λ′ → ∞ and f ′ → 1, such that λ′ ln f ′ is constant.

In this limit, −(1 − f) is well approximated by ln f , so, higher cumulants of the

scaled process decay as β−(n−1), resulting in a deterministic model. This limit is a

dynamic analog to the law of large numbers, in which the driving fluctuations of

the Poisson process limit to their mean value as the frequency of jumps grows to

infinity.

The effective parameter λ ln f has an intuitive interpretation: It is the

correction to the long-run growth rate due to catastrophes, and has been previously

identified as an important quantity in a variety of related models [86, 90, 92].

Alternatively, the ratio r−1λ ln f , can be interpreted as the ratio of the timescale

of recovery after a catastrophe of size f , −r−1 ln f , to the timescale of catastrophe

arrive, λ−1. As noted above, the existence of this effective parameter has important

consequences for analyzing experimental data. As was done in [32], fitting

ensemble statistics with the effective catastrophe parameter reduces the number

of parameters that needs to be estimated. In fact, attempting to fit both the rate

(λ) and size (f) independently results in highly unconstrained parameter estimates

[32] and should be avoided. The analytic results derived here put the use of the
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FIGURE 3.3. The diffusion limit and extinction times.
(Continued in footnote.)

effective parameter, λ ln f , on firmer ground and explicitly delineate the range of its

validity.

FIGURE 3.3 (cont’d) A: Smoothly transforming the stationary distribution of LRC model
to that of LES model in the diffusion limit. LRC model (no extinction) was simulated for
Tmax = 300 units of inverse growth rate for 5 values of the scale parameter α, rescaling
parameters according to equation (8). Frames i-v depict the stationary distribution of logX (for
visual clarity) for α = 1, 2.94, 8.66, 25.49, 75.00 respectively, estimated from 106 paths. Frame vi
depicts the stationary distribution of logX for the target LES model. Parameters: r = 0.68,
K = 6800, λ = 0.1, σ = 0.8, ln f = −σ/

√
λ, dt = 0.01. B: Mean time to extinction

increases as the LRC model is morphed into the LES model (bottom), despite the stationary
mean remaining constant throughout the transformation (top). Parameters: Same as in A but α
ranges logarithmically from 1 to 500 and σ = 1. C: Mean times to extinction for the beginning
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3.5.3. The diffusion limit shows that random catastrophes pose higher

extinction risk than environmental stochasticity

I now consider the problem of quantitatively comparing extinction risks in

the LRC model and its environmental stochasticity analog, referred to here as the

Logistic Environmental Stochasticity (LES) model. The LES model can be written

as an SDE,

dXt = rXt

(
1− Xt

K

)
+ σXt−dBt, (3.6)

with Bt the standard Brownian motion process [80, 90], whose intervals are

independent, Gaussian distributed variables with E[Bt] = 0 and Var[Bt] = t, and

σ setting the strength of the noise. Historically, there has been no obvious way of

quantitatively comparing extinction risk between the two models across parameter

space, since the noise parameter σ and the catastrophe parameters, a rate λ and

size f , describe distinct, model-specific processes [72, 86, 93].

To circumvent this issue, I propose an approach in which the LES model

is viewed not as a distinct process, but as a special case of the LRC model. This

notion has been expressed qualitatively for decades [86, 93], but, to my knowledge,

has never been made explicit. This can be done using a functional generalization of

the Central Limit Theorem (CLT) [87], which says that fluctuations of the Poisson

process about its mean converge in distribution to Brownian motion in a particular

limit of infinite jump rate and infinitesimal jump size. In section 3.9, it is shown

(purple circles) and end (green squares) points of the diffusion limit as a function of carrying
capacity. Parameters: r = 1, λ = 0.1, f = 0.01, Ntrials = 5000, x0 = 10, x∗ = 1. For LES
endpoints, σ2 = λ ln2 f . D: The exponent of this power law, obtained by linear regression, as a
function of effective noise strengths. Parameters: r = 1, f = 0.01, Ntrials = 5000, λ is varied
from 0.06 to 0.4. For each value of λ, τ vs K is computed for 10 values of K ranging from 100 to
10000. The last 5 values are used to compute ν. For the LRC model, the x-axis corresponds to
σ2 = λ ln2 f . The exponent appears to asymptotically follow a power law in σ2, consistent with
[86]
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that the relevant limits are

ln f(Nt − λt)
λ→∞, f→1−−−−−−→

√
λ ln fBt, (3.7)

such that
√
λ ln f is constant. Note that this limit is different from the limit

λ → ∞, f → 1 such that λ ln f → const. discussed above, which results in a

deterministic limit in analogy with the law of large numbers. In the present limit,

the mean drift of the scaled Poisson process diverges as
√
λ, the variance remains

finite and all higher cumulants go to zero. These are functional analogs to what

happens when a Poisson distribution limits to a Gaussian in the classical CLT.

In this case, the diverging drift—which is proportional to effective catastrophe

parameter λ ln f discussed above—is a manifestation of the fact that catastrophes

are unidirectional, whereas noise in the LES model is bidirectional. To obtain a

non-trivial limiting process, this drift must be subtracted off manually before taking

limits. This subtraction can be absorbed into a rescaling of the growth rate and

carrying capacity, similar to renormalization methods in theoretical physics [88],

such that the final transformation from the LRC model to the LES model involves

rescaling all four LRC model parameters.

The complete transformation from the LRC to LES model will be

parameterized by a dimensionless scale parameter, α. The prescription is as follows.

Start from an LRC model together with a target LES noise strength σ and fix

λ ln2 f = σ2. Then transform the LRC parameters according to

λ′ = αλ, ln f ′ = −σ/
√
λ′,

r′ = r

(
1− λ′ ln f ′

r

)
, K ′ = K

(
1− λ′ ln f ′

r

)
. (3.8)
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It is shown analytically in section 3.9 that in the limit α → ∞, the LRC model

LRC(r′, K ′, λ′, f ′) gets mapped to an LES model LES(rES, KES, σ), with σ =

λ ln2 f , rES = r(1 + (2r)−1σ2), and KES = K(1 + (2r)−1σ2). In this way, the

stationary mean of the process without extinction remains constant throughout

this transformation, fixed at K. This is chosen as a convenient way to normalize

the effects of noise. By adding constant offsets, the transformation can be tuned

to preserve other properties (section 3.9). This transformation is shown visually

in Figure 3A, which depicts numerical results for the stationary distribution of the

LRC model (in log variables for visual reasons) being transformed with α increasing

on the interval (1, 75) (Materials and Methods). The distribution approaches that

of the target LES model, shown in green in panel (vi) .

With this transformation, the question of relative risks of extinction under

the LRC model and the LES model was revisited. The mean time to extinction,

τ , was computed via stochastic simulation of the LRC model for various values of

α (Figure 3B, bottom), rescaling LRC model parameters according to equation

(8) for each α (Materials and Methods). The LRC model extinction time (purple

circles) increases with increasing α and asymptotes to the LES model extinction

time (green square). Computed numerically, the stationary population mean in the

absence of extinction does indeed remain constant throughout the transformation

(Figure 3B, top). The conclusion is again that there exists a significantly higher

risk of extinction under random catastrophe dynamics than under environmental

stochasticity dynamics.

This conclusion is robust across parameter space. Plotting the beginning

and end points of the curve in Figure 3B for various values of carrying capacity

reproduces the asymptotic power law behavior described by Lande for simpler
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models [86] (Figure 3C), though the exponents obtained by linear fitting (Materials

and Methods) are smaller for the LRC model across a wide range of effective

noise strengths (Figure 3D). Note that because the growth rate is rescaled in this

procedure, as long as the original growth rate r is positive, the long-run growth rate

[86] is positive for all values of σ. The conclusion is also insensitive to the initial

starting population, x0, as the mean time to extinction becomes independent of x0

above a critical threshold (see [72, 84] and Supplementary Figure 1). In addition

to this method based on the diffusion limit, an alternative approach, in which

the stationary means of the LRC and LES models equated simply by mapping

σ2 = −2λ ln f , leads to the same conclusion (Supplementary Figure 2, section 3.9).

3.6. Discussion

This work presented new results for the Logistic Random Catastrophe (LRC)

model, a model that serves both as a foundation for understanding the ecological

consequences of random catastrophes and as an empirical model that describes

real data [32, 84]. Exact analytic results for its stationary moments were derived

using the method of moment equations. These expressions revealed that ensemble

statistics are largely controlled by a single parameter that combines the average

catastrophe rate and size, which is both a fundamental insight into the model’s

statistical structure and a useful result for the analysis of ecological data [32]. They

also revealed the similarity in structure between the LRC model and its Gaussian

noise counterpart, the Logistic Environmental Stochasticity (LES) model, which

was exploited to construct the latter as a limit of the former. The mean time

to extinction increased monotonically along this limit by orders of magnitude in
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relevant regions of parameter space, indicating higher extinction risk under random

catastrophe dynamics in general.

This heightened extinction risk has implications for the prioritization of

conservations efforts in the face of different types of stochasticity. In the absence

of detailed information, the results derived here imply that a system subject to

random catastrophes should be considered to have higher risk of extinction than a

comparable system experiencing strong environmental stochasticity. Moreover, for

systems subject to random catastrophes, estimates of extinction risk obtained using

Gaussian noise models will likely be underestimates.

In addition, given that large fluctuations appear to be intrinsic to intestinal

microbiota [29, 32, 82], the enhanced extinction risk reported here may be

important for understanding the evolution of functional redundancy across

symbiotic taxa and of host biochemical networks that sense fluctuating microbial

products. For example, it was recently discovered that a certain zebrafish

intestinal bacterial species produces a compound that triggers the expansion of

beta cells in the pancreas [46] during larval development. The same bacterial

species has also been shown to exhibit random catastrophe dynamics driven by

peristaltic contractions [32] during this developmental period. Given these large

fluctuations, the question arises as to how the biochemical pathway that mediates

this interaction evolved to remain sensitive yet robust, so to ensure proper timing

of development. One possibility is that the sensing system effectively computes

a type of running time average on the signal to smooth out large fluctuations.

The diffusion limit of random catastrophes discussed here, with its roots in in

the Central Limit Theorem, can viewed precisely as a kind of running average, or
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coarse-graining, and so may have a direct biological realization in these types of

sensing systems.

The diffusion limit method derived here is readily applied to the study of

other statistics of the LRC model. It can also be easily adapted to other Markov

models, including multi-species models [87, 92]. These generalizations allow

for more computations, analogous to extinction times in Figure 3B, that could

provide useful insight. For one example, it would be useful to revisit optimal

control problems relevant for ecological management in the presence of random

catastrophes, such as the harvesting strategies for fisheries considered in [94], and

study how optimal policies evolve when discontinuous jumps limit to continuous

environmental stochasticity. For another, evolutionary studies of bet hedging in the

presence of catastrophes [95] could be directly mapped to the analogous problem

in the presence of continuous noise [73], connecting ecological and evolutionary

dynamics relevant for a wide variety of systems.

3.7. Materials and Methods

All code was written in MATLAB and is available at https://github.com/bschloma/lrc.

3.7.1. LRC and LES model simulations

Sample paths of the differential Poisson process were generated as Bernoulli

trials [90]. These paths were then used in the numerical integration of the LRC

model. For all calculations except for the diffusion limit calculations in Figure 3,

the logistic growth equation was integrated with the Euler method between jump

times, at which the population was reduced by a factor of f . The LES model was

integrated with a straightforward application of the Milstein method [96].
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3.7.2. The diffusion limit

In the diffusion limit, jump sizes approach the size of deterministic growth

in one numerical timestep. So, the deterministic contribution of order ∆t must be

retained, resulting in a more straightforward Euler-type integration scheme. In this

case, an adaptive timestep is used, scaling ∆t′ = ∆t/
√
α, identically to ln f , which

sets the size of the jump. This scaling will lead to numerical artifacts when the

probability of catastrophe in one timestep, λ′∆t′, approaches unity. Since λ′ = αλ,

this will occur at αc ∼ (λ∆t)−2, and so can be put off by starting with a sufficiently

small time step.

3.7.3. Extinction times

Extinction times were computed by straightforward stochastic simulation,

following population trajectories from an initial population, x0 until they reached

the extinction threshold, x∗. To extract the exponent, ν, of the asymptotic

relationship τ ∼ Kν , a linear fit to log-transformed variables was done for the

larger half of the carrying capacity values, typically 5 data points.
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3.9. Calculation details

Detailed calculation of stationary moments

In this section an expression for the nth stationary moment for the LRC

model is derived. The approach is analogous for the LES model and since the

results are already known [97], a detailed derivation isn’t given, though one remark

is made on the application of this method to diffusion processes.

LRC model

Before beginning, the chain rule for jump processes [90] is stated without

proof, for reference. Let Xt by a general process given by

dXt = f(Xt, t)dt+ h(Xt− , t
−)dNt (3.9)

with f and h deterministic functions, Nt a Poisson process with rate λ, and t−

denoting the Itô convention as in the main text. Further let Yt ≡ F (Xt, t) be a

transformed process. Then Yt is governed by

dYt = (∂tF (Xt, t) + f(Xt, t)∂XtF (Xt, t)) dt+ ∆Y jump
t− dNt (3.10)

with ∆Y jump
t− ≡ F (Xt− + h(Xt− , t

−))− F (Xt− , t
−).

Now recall the LRC model,

dXt = rXt

(
1− Xt

K

)
dt− (1− f)XtdNt. (3.11)
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The first step is to change variables to Xn
t using the stochastic chain rule for jump

SDEs. The result is

dXn
t = nrXn

t

(
1− Xt

K

)
dt− (1− fn)Xn

t dNt. (3.12)

Then, each term in this SDE is averaged. The expectation of Xn
t−dNt can be

factored: E[Xn
t−dNt] = E[Xn

t− ]E[dNt] = E[Xn
t− ]λdt. Intuitively, this is because the

two processes appear mutually independent. The Poisson process has independent

increments, and since the Itô convention was used, Xn
t− is independent of Nt, which

occurs in the future. This is certainly true for a discrete time model, but care must

be taken in the continuous limit.

A more rigorous argument can be made using the Dominated Convergence

Theorem. The case n = 1 is considered without loss of generality. Consider Xj,

a discrete partition of the continuous time process Xt, such that Xj → Xt in

probability. Then, sums of Xj converge in probability to integrals, in particular,

∑
j

Xj−1∆Nj →
∫
T

Xt−dNt, (3.13)

where ∆Nj is a partition of the Poisson process. The Dominated Convergence

Theorem says that if Xt is dominated by an integrable function on the interval

T ,

E

[∑
j

Xj−1∆Nm

]
→ E

[∫
T

Xt−dNt

]
(3.14)

in probability. Since populations in the LRC model are bounded by the carrying

capacity for all time, this is always valid. The expectation of the sum is
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straightforward, leading to the result,

E
[∫

T

Xt−dNt

]
=

∫
T

E[Xt− ]λdt, (3.15)

from which the infinitesimal version follows as a special case.

Factoring the expectation results in an ODE for the nth moment. In the

steady state, this becomes the recursion relation

E[Xn+1] = K

(
1− λ(1− fn)

nr

)
E[Xn]. (3.16)

Defining

cn ≡
(

1− λ(1− fn)

nr

)
, (3.17)

the nth moment can be expressed in terms of the mean as

E[Xn] = Kn−1

(
n−1∏
m=1

cm

)
E[X]. (3.18)

To complete the recursion relation, the mean must be computed

independently. This is accomplished by changing variables to lnXt using the chain

rule for jump processes:

d lnXt = r

(
1− Xt

K

)
dt+ ln fdNt, (3.19)

which in the steady state gives an expression for the stationary mean,

E[X] = K

(
1 +

λ

r
ln f

)
. (3.20)
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Plugging this back into equation (18) gives the final result

E[Xn] = Kn

(
1 +

λ

r
ln f

) n−1∏
m=1

(
1− λ(1− fm)

mr

)
. (3.21)

Evaluating this equation for n = 2 leads to the expression for the variance in the

main text:

Var[X]LRC = K2λ

r
(− ln f − (1− f))

(
1 +

λ

r
ln f

)
. (3.22)

LES model

The derivation is analogous for the LES model, except that Itô’s chain rule

for diffusion processes is used. Since the results are already known [97], derived

with traditional methods, a detailed computation will not be given. However, one

remark worth making concerns the expectation of Xt−dBt. The intuitive argument

outlined for the LRC model - that since the Itô convention was employed the

expectation of the product can be factored - gives the correct answer in this case,

but is in fact not generally valid. Essentially, for processes governed by equations of

the form

dXt = f(Xt, t)dt+ g(Xt− , t
−)dBt, (3.23)

the integral
∫
g(Xt− , t

−)dBt can acquire non-zero expectation if the function g

grows too quickly. A classic example is the CEV model of quantitative finance

[98], which is of the form f(Xt, t) = Xt and g(Xt, t) = Xγ
t for γ > 1. However,

one can use the fact that the exponential version of the LES model, i.e. K → ∞,

is a well known SDE for which E
[∫
Xt−dBt

]
= 0. This model is known as

Geometric Brownian Motion and describes asset prices in the Black-Scholes model

of quantitative finance [98]. Since paths of the exponential model almost surely
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dominate paths of the LES model,
∫
Xt−dBt for the LES model inherits the

martingale property from the exponential case, which implies zero expectation.

Following the same procedure as for the LRC model, factoring expectations of

Xn
t−dBt, results in

E[Xn]LES = Kn

(
1− σ2

2r

) n−1∏
m=1

(
1 +

(m− 1)σ2

2r

)
. (3.24)

Special cases of this include

E[X]LES = K

(
1− σ2

2r

)
(3.25)

and

Var[X]LES =
K2σ2

2r

(
1− σ2

2r

)
. (3.26)

The diffusion limit and the Central Limit Theorem

This section contains details of the construction of the LES model from the

LRC model in the limit of infinitely frequent, infinitesimal catastrophes, referred

to here as the diffusion limit. The complete transformation involves all four

LRC model parameters and is specified as follows. Let α be a scale parameter,

LRC(r,K, λ, f) an LRC model, and σ be the target noise-strength parameter of the

limiting LES model. Fix λ ln2 f = σ2, and scale

λ′ = αλ, ln f ′ = −σ/
√
λ′

r′ = r

(
1− λ′ ln f ′

r

)
= r

(
1 +

σ
√
λ

r

√
α

)
,
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K ′ = K

(
1− λ′ ln f ′

r

)
= K

(
1 +

σ
√
λ

r

√
α

)
. (3.27)

The claim is that in taking the limit α → ∞, the LRC model LRC(r′, K ′, λ′, f ′)

gets mapped to an LES model LES(rES, KES, σ), with σ2 = λ ln2 f , rES =

r(1 + (2r)−1σ2), and KES = K(1 + (2r)−1σ2), such that the stationary means

of both models are equal. I first motivate the form of this transformation, which

involves all four LRC model parameters, by studying the behavior of the stationary

moments. I then show how the precise form of these limits, namely λ → ∞, f → 1,

such that λ ln2 f → const., follows from functional generalizations of the Central

Limit Theorem (CLT), in which a scaled, compensated Poisson process limits to

Brownian motion. Finally, I show analytically how the full transformation maps the

LRC model into the LES model.

Motivation

As discussed in the main text, taking the limits λ → ∞, f → 1, such that

λ ln f → const. is analogous to the law of large numbers, leading to a deterministic

limit. The correct limits instead are λ → ∞, f → 1, such that λ ln2 f → const.,

which I show below is analogous to the CLT. To motivate the final four parameter

transformation, let us first consider the behavior of the LRC variance under these

limits:

Var[X] = K2λ

r
(− ln f − (1− f))

(
1 +

λ

r
ln f

)
limits−−−→ K2λ ln2 f

2r

(
1 +

λ

r
ln f

)
= K2 c

2

2r
−K2 c

3

r2

√
λ. (3.28)
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with c = const = −
√
λ ln f . In taking the limit f → 1, the relation (− ln f − (1 −

f))→ 2−1 ln2 f was used, based on a 2nd order Taylor expansion.

The variance diverges, but a part of it remains finite. The finite piece of the

variance in this limit is exactly the variance of an LES model with σ2 = λ ln2 f and

increased growth parameters KES = K(1 + (2r)−1σ2), and rES = r(1 + (2r)−1σ2).

Looking at the behavior of the mean in this limit leads to the same conclusion.

This suggests that this limit does take the LRC model into an LES model, but

one that is accompanied by a noise-induced drift that diverges as
√
λ. This is

divergence should be expected, as it reflects the unidirectionality of jumps in the

LRC model, which is absent in the LES, analogous to the divergence of the mean

of a Poisson distribution when it limits to a Gaussian. To obtain a non-trivial

limiting process, this drift needs to be subtracted off, for example, by adding a

term −λ ln fdt to the LRC model SDE. This is equivalent to rescaling the growth

rate and carrying capacity each by a factor of (1−r−1λ ln f), leading to the full four

parameter transformation.

Functional Central Limit Theorems

The form of the limits λ → ∞, f → 1, such that λ ln2 f → const., is a

direct consequence of the CLT. The classical CLT says that given a set of n random

variables, {ξj}, that are identically and independently distributed (i.i.d.) with mean

µ and finite variance σ2, the sum of the deviations of these variables from their

mean, when rescaled by
√
n, tends in distribution to a Gaussian variable as n→∞:

lim
n→∞

∑
j ξj − nµ√

n
= η ∼ N (0, σ2) (3.29)
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where N (µ, σ2) is a Gaussian distribution with mean µ and variance σ2. The

condition that the variables ξj follow identical distributions can be relaxed, but

we focus on this restricted case here.

A vast body of mathematical literature concerns the construction of

generalization of the CLT to stochastic processes. One important generalization,

which we will employ in the study of the Poisson process, is Donsker’s theorem

[87]. Donsker’s theorem dictates the limit of a sequence of stochastic process,

X
(n)
t , constructed from sums of i.i.d. random variables ξ̃j with zero mean and finite

variance via

X
(n)
t ≡ 1√

n

[ns]∑
j=1

ξ̃j, ns ≡ t. (3.30)

Here we have introduced time as multiples of a unit s, such that t = ns, and [...]

denotes the integer part. Donsker’s theorem says that as n → ∞ with s → 0 such

that ns→ t for arbitrary t, the processes X
(n)
t converge in law to Brownian motion,

X
(n)
t → Bt. (3.31)

Donsker’s theorem can be used to show the convergence of the compensated

Poisson process to Brownian motion in particular limits. The idea is to write the

Poisson process as a sum of intervals which themselves are i.i.d. random variables

that meet the criteria for Donsker’s theorem, and then scale the jump size and rate

in the ways that map onto the n → ∞ limit. This approach is based on a method

known as finite dimensional convergence, which is only applicable to processes with

independent increments [87].
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Consider breaking a scaled, compensated Poisson process, εÑt into a sum of

finite intervals,

εÑt = ε

[ns]∑
j=1

∆Ñj. (3.32)

From inspection, we see that the appropriate mapping is λ → nλ, ε = σλ−1/2, in

which case

εÑt = σ

[ns]∑
j=1

∆Ñj/
√
λ√

n
. (3.33)

Donsker’s theorem can then be applied with ξ̃j ≡ ∆Ñj/
√
λ, resulting in

εÑt
λ→∞, ε→0−−−−−−→

√
λεBt. (3.34)

In the LRC model, collapse size is forced to zero by taking f → 1. This still

leaves room for how exactly λ and f should map on to σ. One choice would be to

take ε = −(1 − f), such that σ2 = λ(1 − f)2. In this case, a quick calculation

shows that the limiting process would be an LES model with unchanged growth

parameters, (r,K), and consequently a reduced stationary mean of K(1− (2r)−1σ2),

whereas the original LRC process, after removing the divergence of λ ln f , has

a stationary mean of K. Alternatively, one could take ε = ln f , such that

σ2 = λ ln2 f . This is the case examined above, which results in an LES model with

an unchanged stationary mean, but altered growth parameters. Since our present

goal is to normalize the effect of noise to construct a fair comparison of extinction

risk, the latter choice is more appropriate.
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Convergence of LRC to LES

I now discuss the convergence of the LRC model to the LES model via the

convergence of the Poisson process to Brownian motion discussed above. General

conditions for the convergence of a pure jump Markov process to a diffusion are

given in [87]. Rather than verify these general conditions here, I’ll take a more

intuitive approach that exploits the simplicity of the present models and uses the

fact that both the LRC model and the LES model possess unique, strong solutions,

as follows from special cases of a general result derived in [92]. This allows us to

uniquely define a sequence of processes X ′t(α) ≡ F [Ñt(α); r(α), K(α), λ(α), f(α)],

where F is the solution to the LRC model depending on parameters r, K, λ, and

f , and the limit of the sequence X∗t ≡ limα→∞X
′
t(α). Existence and uniqueness of

solutions to both models allows us in principle to take the limit and then invert the

solution, recovering a diffusion SDE. In practice, we can take the limit directly in

the context of the LRC model SDE. To begin, recall the LRC model,

dXt = rXt

(
1− Xt

K

)
dt− (1− f)Xt−dNt. (3.35)

Let us expand (1 − f) in powers of ln f to second order and write the Poisson

process in terms of its mean and compensated process.

dXt = rXt

(
1− Xt

K

)
dt+

(
ln f +

1

2
ln2 f

)
Xtλdt+

(
ln f +

1

2
ln2 f

)
Xt−dÑt+O(λ ln3 f)

(3.36)

Now let us absorb the mean drift of the Poisson process as scaling factors for the

growth rate and carrying capacity
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dXt = r

(
1 +

λ

r
ln f +

λ

2r
ln2 f

)
Xt

(
1 +

Xt

K
(
1− λ

r
ln f + λ

2r
ln2 f

)) dt
+

(
ln f +

1

2
ln2 f

)
Xt−dÑt +O(λ ln3 f). (3.37)

Now we apply the transformation [19] with α finite and evaluate r′ in terms

of r and K ′ in terms of K. This has the effect of canceling all λ ln f terms, as

intended.

dX ′t(α) = r

(
1 +

λ′

2r
ln2 f ′

)
X ′t

(
1− X ′t

K
(
1 + λ′

2r
ln2 f ′

)) dt
+

(
ln f ′ +

1

2
ln2 f ′

)
X ′t−dÑ

′
t +O(λ ln3 f) (3.38)

where primed variables depend on α. Before taking the α → ∞ limit, we can

identify λ′ ln2 f ′ as σ2, a finite constant independent of α,

dX ′t(α) = r

(
1 +

σ2

2r

)
X ′t

(
1− X ′t

K
(
1 + σ2

2r

)) dt+(ln f ′ +
1

2
ln2 f ′

)
X ′t−dÑ

′
t+O(λ ln3 f).

(3.39)

We can now evaluate the α → ∞ limit, knowing how Ñt transforms: ln f ′dÑt →

σdBt in law, ln2 f ′dÑt → 0, resulting in

lim
α→∞

dX ′t(α) = dX∗t = r

(
1 +

σ2

2r

)
X∗t

(
1− X∗t

K
(
1 + σ2

2r

)) dt+ σX∗t−dBt. (3.40)
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The limiting process is an LES model with increased growth parameters

rLES = r(1 + (2r)−1σ2) and KLES = K(1 + (2r)−1σ2). Comparing this model

to the transformed LRC model of equation (38) using the analytic results for the

stationary mean equations (20) and (25) reveals that the two models do indeed

have the same stationary mean.

An alternative mapping that equates stationary means

The stationary means of the LRC and LES models can also be equated by

using the same growth rate and carrying capacities and mapping σ2 = −2λ ln f , as

is clear from equations (20) and (25). This mapping provides an alternative method

of quantitatively comparing the two models, though one that is perhaps less

meaningful than the diffusion limit approach. It can be understood intuitively by

plotting the time evolution of the mean population of both models in the presence

and absence of extinction (Supplementary Figure 2A). In the absence of extinction,

both models asymptote to the same value. In the presence of extinction, the LRC

model average decays to zero faster than the LES model average, indicating higher

extinction risk. Computed directly, the mean times to extinction for the LRC

model are significantly shorter than for the LES model (Supplementary Figure 2B),

supporting the conclusions of the diffusion limit-based method.
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3.10. Supplementary Figures
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FIGURE 3.S1. Mean time to extinction is largely independent of initial starting
population.
Mean time to extinction, τ , plotted on a shifted log scale as a function of initial
starting population, x0. Green squares denote the LES model, purple circles
denote the LRC model. The mean extinction time, defined as the first hitting
time to x∗ = 1, starts from 0 but rapidly increases to a value independent of x0.
Parameters: r = 1, K = 104, λ = 0.1, f = 0.01, Ntrials = 500.
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FIGURE 3.S2. The LRC model has higher extinction risk than the LES model for
equivalent stationary means.
A: Illustration of the mapping. Numerical results for the average population
plotted over time in the LRC (purple) and LES (green) models, showing both
the cases of no extinction (dark solid lines) and extinction (light dashed lines) via
an absorbing state at x∗ = 1. LES model has the same growth rate and carrying
capacity as the LRC model and σ is determined by σ2 = −2λ ln f , such that
the two models have equal stationary means (section 3.9). Parameters: r = 1,
K = 104, λ = 0.1, f = 0.0012, σ = 1.16, dt = 0.01, Ntrials = 5 · 105. B: Mean
time to extinction, τ , in units of inverse growth rate, for LRC (purple circles) and
LES (green squares) models as a function of noise strength, with σ2 = −2λ ln f .
Parameters: r = 1, dt = 0.01, Ntrials = 5 · 103. For LRC model, f = 0.01 and
λ was varied from 0.065 to 0.195. Inset: Mean time to extinction as a function of
carrying capacity. Parameters: r = 1, λ = 0.13, f = 0.01, σ = 1.09, dt = 0.01,
Ntrials = 5 · 103.
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CHAPTER IV

SUBLETHAL ANTIBIOTICS COLLAPSE GUT BACTERIAL POPULATIONS

BY ENHANCING AGGREGATION AND EXPULSION

4.1. Statement of author contributions

This chapter was published as [33], a co-authored publication. Co-authors

included Travis Wiles, a co-first author along with myself, Elena Wall, Karen

Guillemin, and Raghuveer Parthasarathy. My contributions included: designing

the study, performing the imaging, analyzing the data, developing the model,

performing simulations, and writing the paper.

4.2. Abstract

Antibiotics induce large and highly variable changes in the intestinal

microbiome even at sublethal concentrations, through mechanisms that remain

elusive. Using gnotobiotic zebrafish, which allow high-resolution examination

of microbial dynamics, we found that sublethal doses of the common antibiotic

ciprofloxacin cause severe drops in bacterial abundance. Contrary to conventional

views of antimicrobial tolerance, disruption was more pronounced for slow-growing,

aggregated bacteria than for fast-growing, planktonic species. Live imaging

revealed that antibiotic treatment promoted bacterial aggregation and increased

susceptibility to intestinal expulsion. Intestinal mechanics therefore amplify the

effects of antibiotics on resident bacteria. Microbial dynamics are captured by

a biophysical model that connects antibiotic-induced collapses to gelation phase
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transitions in soft materials, providing a framework for predicting the impact of

antibiotics on the intestinal microbiome.

4.3. Introduction

Antibiotic drugs induce large, long-lasting, and disease-associated alterations

in the composition of the intestinal microbiota [83, 99, 100]. Even at concentrations

well below the minimum inhibitory levels of many bacteria, antibiotics can lead to

major and highly variable changes in the gut microbiome through mechanisms that

remain mysterious [99, 100, 101]. Sublethal antibiotics can also significantly alter

animal physiology; the intentional growth enhancement of livestock is a well-known

example that may involve microbiome-mediated pathways [99]. Low concentrations

of antibiotics are often present in the environment as byproducts of unchecked

agricultural and biomedical use, generating public health concerns associated with

the emergence of drug resistance [102] as well as more direct impacts on human

health [103]. It is therefore crucial to uncover mechanisms by which sublethal

antibiotics reshape resident gut microbial communities. Understanding why

particular bacterial strains are resilient or susceptible to antibiotic perturbations

may allow us to predict the consequences of environmental contamination and may

enable tailoring of antibiotic treatments as a therapeutic tool for manipulating the

intestinal microbiome.

Conventional wisdom regarding bacterial responses to antibiotic drugs,

derived largely from in vitro assays, holds that drug tolerance is facilitated by low

growth rates and biofilm formation [104, 105]. Recent work suggests that microbes

in the vertebrate gastrointestinal tract adopt a variety of growth and aggregation

phenotypes [24, 26, 30, 53], raising the question of whether antibiotic susceptibility
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FIGURE 4.1. Two bacterial species show different extremes of in vivo aggregation
phenotypes.
A: Schematic of a zebrafish 5 days post-fertilization (dpf). B: Schematic of the
larval zebrafish intestine with numbers denoting approximate fraction of gut length.
C: Vibrio cholerae ZWU0020 in vivo. Left: a maximum intensity projection of
a three-dimensional image of the full gut. Dense, bright bacteria and dimmer
intestinal autofluorescence are evident. The orange dashed curve indicates a
coarse outline of the gut boundary. Scale bar: 200 µm. Right: a single optical
plane within the anterior bulb in a fish colonized with 1:100 green fluorescent
protein (GFP): dTomato (dTom)-expressing Vibrio, with the GFP channel shown
to highlight individual microbes in the dense swarm. The orange dashed curve
indicates the approximate contour of the intestinal epithelium. Black arrowheads
indicate examples of single planktonic cells. Scale bar: 25 µm. (See also SI Movie
1) D: Enterobacter cloacae ZOR0014 in vivo, shown as a maximum intensity
projection of the full gut (left) and a subset of the same projection in the anterior
bulb (right); bacterial aggregates are evident. The black arrowhead indicates an
example of a single planktonic cell; the white arrowhead indicates an example of a
multicellular aggregate. Scale bars same as in (C).
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in the gut bears the same relationship to kinetics and physical structure as in less

dynamic environments, or whether the strong mechanical activity and large fluid

flows present in the intestine [106] lead to fundamentally different rules.

To investigate the in vivo response of gut bacteria to low-dose antibiotic

exposure, especially the relationship between susceptibility and bacterial behavior,

we conducted live imaging-based studies of larval zebrafish (Fig. 1A, 1B), spanning

the entire intestinal volume with spatial and temporal resolutions not attainable

in humans or other model vertebrates. We focused our study on two native

zebrafish bacterial isolates, both frequently found in the intestine [62], that we

identified as representing extremes of growth and aggregation phenotypes [53].

The first, Vibrio cholerae ZWU0020, hereafter referred to as “Vibrio”, exists in

the larval zebrafish intestine primarily as dense populations of highly motile and

planktonic individuals (Fig. 1C, SI Movie 1). Vibrio grows rapidly, with an in

vivo doubling time of approximately 1 hour (exponential growth rate of 0.8 ±

0.3 1/hr) [32]. The second, Enterobacter cloacae ZOR0014, hereafter referred to

as “Enterobacter” primarily forms large, dense bacterial aggregates with small

sub-populations of non-motile planktonic cells (Fig. 1D, SI Movie 2) [48] and has

an in vivo doubling time of approximately 2.5 hours (exponential growth rate of

0.27 ± 0.05 1/hr) (SI Appendix, Fig. S1). To delineate and quantify antibiotic

responses independent of inter-bacterial competition, we studied Vibrio and

Enterobacter separately in hosts that were initially raised germ-free (Materials

and Methods). We assessed response dynamics of each bacterial population after

treatment with the antibiotic ciprofloxacin, a broad spectrum fluoroquinolone that

interferes with DNA replication by inhibiting DNA gyrase. Ciprofloxacin is widely

administered therapeutically and has been used as a model antibiotic in studies of
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human microbiome disruption [83]. Furthermore, ciprofloxacin is often detected in

environmental samples at ng/ml concentrations that are sublethal but capable of

perturbing bacterial physiology [107, 108].

As detailed below, we discovered that sublethal levels of ciprofloxacin lead

to major reductions in intestinal abundance of both Vibrio and Enterobacter that

could not be predicted from in vitro responses alone. In contrast to conventional

wisdom, the slow-growing and highly aggregated Enterobacter was impacted far

more severely than the fast-growing, planktonic Vibrio. Changes in bacterial

abundances were driven primarily by clearance from the intestine by peristaltic-

like fluid flow, which impacts aggregated bacteria more severely than planktonic

cells. Exposure to sublethal levels of ciprofloxacin shifted both species to a more

aggregated state, but for Enterobacter this state was unsustainable and led to

population collapse and extinction. Quantitative image-derived population data

motivate and are well fit by physical models originally used to describe colloidal

growth and polymer gelation, implying an antibiotic-induced phase transition

in bacterial community physical structure and revealing a general framework for

understanding and predicting intestinal antibiotic perturbations.

4.4. Results

4.4.1. Low-dose ciprofloxacin increases bacterial aggregation and

intestinal expulsion

For both Vibrio and Enterobacter, we empirically determined a ciprofloxacin

dosage that induced clear changes in bacterial physiology and behavior in vitro, but

that was below the apparent minimum inhibitory concentration. We first describe

results of antibiotic exposure, in vitro and in vivo, for the Vibrio species.
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FIGURE 4.2. Low-dose ciprofloxacin induces Vibrio aggregation and expulsion in
vivo.
(Continued in footnote.)
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From an initial survey of dose-response in rich media, we identified 10

ng/mL ciprofloxacin as an appropriate exposure for Vibrio populations. Growth of

Vibrio in lysogeny broth in the presence of 1 ng/ml ciprofloxacin closely resembles

that of the untreated control, while a concentration of 100 ng/ml is largely

inhibitory (SI Appendix, Fig. S2A). An intermediate concentration of 10 ng/ml

leads to a stable, intermediate optical density. Viability staining (Materials and

Methods) after 6 hours of incubation with 10 ng/ml ciprofloxacin identifies 30-

80% of cells as alive (SI Appendix, Fig. S3A and S3B), again consistent with this

antibiotic concentration being sufficient to perturb the bacterial population without

overwhelming lethality. Growth in the presence of 10 ng/ml ciprofloxacin induces

marked changes in cell morphology and motility: treated cells exhibit filamentation,

making them considerably longer (mean ± std. dev. 5.3 ± 3.1 µm) than untreated

Vibrio (2.9 ± 0.9 µm) (SI Appendix, Fig. S2B). Swimming speed was also reduced

compared to untreated cells (mean ± std. dev. 11.4 ± 7.2 µm/s, untreated 16.9

± 11.1 µm/s) (SI Appendix, Fig. S2C, SI Movies 3 and 4). We note also that 10

FIGURE 4.2 (cont’d) A: Schematic of the experimental timeline. B: Schematic of the
sampling scheme for plating measurements. C: Normalized abundances (number of colony forming
units (CFUs) scaled by untreated medians) of water and gut populations. N values left to right:
8, 24, 7, 20, 6, 18, 5, 20. Water N values denote number of flasks; gut N values denote number of
fish. D: Histograms of gut CFUs with pooled data from 24 and 48 h treatments. Counts indicate
the number of individual fish with a given log10 Vibrio CFUs. Dashed lines indicate the mean
of each set, showing a ∼100-fold reduction in intestinal Vibrio abundance in antibiotic-treated
fish. E: Ensemble-averaged spatial distributions of log-transformed cell density as a function
of distance along the gut axis, integrated over the perpendicular dimensions. F: Maximum
intensity projections of 3D images of untreated (top) and ciprofloxacin-treated (bottom) Vibrio
populations. Insets: Viability staining of bacteria expelled from the gut, with green and magenta
indicating living and dead cells, respectively. G-H: Dynamics of in vivo Vibrio populations
untreated (grey lines) and treated with 10 ng/ml ciprofloxacin (blue lines). G: 1D center of
mass, normalized to intestine length. H: Total image-derived Vibrio abundance. In both (G)
and (H), each curve represents a different zebrafish. Vertical dotted lines indicate the time of drug
administration to the treatment cohort, t = 0.67 hours.
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ng/ml ciprofloxacin is comparable to levels commonly measured in environmental

samples [107].

While useful for illuminating the appropriate sub-lethal concentration

to further examine, experiments in rich media conditions are not an optimal

assay for comparison of in vitro and in vivo antibiotic treatments, as the

chemical environments are likely very dissimilar. We therefore assessed effects of

ciprofloxacin on bacterial populations in the aqueous environments of the flasks

housing the larval zebrafish in comparison to populations in the intestines. In the

flask water, as in the intestine, the only nutrients are fish-derived. Oxygen levels

are comparable to those in the larval gut, due to fast diffusion and the animals’

small size. Bacteria in flask water therefore constitute a useful baseline against

which to compare antibiotic impacts on intestinal populations.

Vibrio was associated with germ-free zebrafish at 4 days post-fertilization

(dpf) by inoculation of the aqueous environment at a density of 106 cells/ml

(Materials and Methods) and allowed to colonize for 24 hours, which based on

previous studies provides ample time for the bacterial population to reach its

carrying capacity of approximately 105 cells/gut [32]. Animals and their resident

Vibrio populations were then immersed in 10 ng/ml ciprofloxacin for 24 or 48

hours, or left untreated (Fig. 2A and 2B). Vibrio abundances in the gut were

assayed by gut dissection and plating to measure colony forming units (CFUs)

(Materials and Methods). Abundances in the flask water were similarly assayed

by plating. We quantified the effect of the antibiotic treatment by computing the

ratio of bacterial abundances in the treated and untreated cases, resulting in a

normalized abundance (Fig. 2C). After a 24 hour treatment, log10-transformed

abundances in the flask water dropped by 0.98 ± 0.4 (mean ± std. dev.) compared
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to untreated controls, or one order of magnitude on average. In contrast, log10-

transformed intestinal abundances showed a more severe reduction of 1.75 ± 0.88

(Fig. 2C), or a factor of approximately 60 on average, suggesting that the intestinal

environment amplifies the severity of ciprofloxacin treatment. For the 48 hour

treatment, the declines in flask water and intestinal abundances were similarly

severe (Fig. 2C). In terms of absolute abundances, pooled data from 24 and

48 hour treatments gives a mean ± std. dev. of the log10-transformed Vibrio

population of 3.1 ± 0.9 (n = 40), compared to 4.9 ± 0.5 (n = 42) for untreated

specimens (Fig. 2D). Unpooled data are similar (SI Appendix, Fig. S3E, S3F).

To assess the possibility that the intestine makes Vibrio more susceptible to

ciprofloxacin-induced cell death, we embedded larval zebrafish in a 0.5% agarose

gel, which allowed collection of expelled bacteria. After staining expelled bacterial

cells with the viability dyes SYTO9 and propidium iodide, we imaged ejected

material. We found no detectable difference between ciprofloxacin-treated and

untreated populations (Fig. 2F, insets). Similarly sizeable fractions of viable and

non-viable cells are evident in both ciprofloxacin-treated and untreated populations;

however, co-staining of zebrafish host cells hindered exact quantification (SI

Appendix, Fig. S4). This result suggests that the ciprofloxacin-induced population

decline observed in vivo occurs independent of overt cell death and is a consequence

of the response of living bacteria to the intestinal environment. We further note

that the dose-response of the intestinal Vibrio abundance (SI Appendix, Fig. S5)

mirrors the dose-response of the in vitro growth rate, implying that the larval gut

does not significantly alter or concentrate ciprofloxacin. This is also consistent with

the widespread use of zebrafish larvae as a pharmacological screening platform, as

water soluble chemicals readily enter and leave the animal [109, 110].
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To investigate the causes of ciprofloxacin’s disproportionately large impact

on in vivo bacterial abundance, we used light sheet fluorescence microscopy to

directly monitor Vibrio populations within the intestine over several hours as

they responded to antibiotic exposure. Three-dimensional time-lapse imaging

revealed that within hours of ciprofloxacin treatment, large numbers of bacteria

became depleted from the anterior-localized planktonic and motile population (SI

Movies 5 and 10). Cells were instead found in the mid and distal regions of the

gut, where they appeared to be condensed into large multicellular aggregates prior

to being expelled from the gut altogether (SI Movies 5 and 11). After 10 hours

of exposure, Vibrio populations in ciprofloxacin-treated hosts contained large, 3D

aggregates localized to the posterior of the intestine, a feature not observed in

untreated controls (Fig. 2E and 2F) nor in all previous characterizations of this

strain [32, 53]. We note also that in vitro, antibiotic-treated Vibrio does not form

large aggregates (SI Appendix, Fig. S3 and S6, SI Movie 4)

To determine whether the bacterial aggregation observed in vivo stems from

a fundamentally different response to antibiotics at the single-cell level or different

large-scale consequences of similar cell-level response, we generated in Vibrio a

genetically encoded fluorescent reporter of the SOS pathway (SI Appendix, Fig.

S7, Materials and Methods), a DNA damage repair pathway induced by genotoxic

agents such as ciprofloxacin [111, 112]. Genes in the SOS regulon halt replication

and enable DNA repair, and also affect motility and biofilm formation [108, 113].

In vitro, we found that treatment with 10 ng/ml ciprofloxacin strongly induced

recN -based SOS reporter activity, with a heterogeneous response across individual

cells (SI Appendix, Fig. S3C and S3D). Within the intestine, SOS reporter

activity was also heterogeneous, appearing in both planktonic and aggregated cells.
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Planktonic cells that were SOS-positive appeared more filamented and less motile

compared to SOS-negative cells within the same host (SI Movie 6). The activation

of the SOS reporter in vitro and in vivo by ciprofloxacin (SI Movie 6 and Fig S3C

and S3D) suggests that in both cases a canonical SOS response is involved in the

perturbation of Vibrio physiology.

Together, these data begin to reveal a mechanism by which the intestine

amplifies the effect of low-dose ciprofloxacin. Individual Vibrio cells first undergo

an SOS response that is associated with changes in cellular morphology and

behavior. In the context of the mechanical activity of the intestine, these molecular

and cellular-level changes then give rise to population-level aggregation and spatial

reorganization throughout the entire length of the intestine, with the population

shifting its center of mass posteriorly (Fig. 2G, n = 4 per case). This process

culminates in the expulsion of large bacterial aggregates from the host, causing a

precipitous decline in total bacterial abundance (Fig. 2H).

4.4.2. Low-dose ciprofloxacin suppresses small cluster reservoirs

associated with intestinal persistence

In contrast to Vibrio, Enterobacter is slower growing, non-motile, and

naturally forms dense aggregates within the zebrafish intestine. Enterobacter

populations have an in vivo growth rate of 0.27 ± 0.05 h−1 (mean ± std. dev,

SI Appendix, Fig. S1), compared to 0.8 ± 0.3 h−1 for Vibrio [32]. Based on

conventional notions of antibiotic tolerance, we hypothesized that Enterobacter

would be less affected by ciprofloxacin treatment than the fast growing, planktonic

Vibrio. However, as detailed below, we found this prediction to be incorrect;

Enterobacter exhibits an even greater response to low-dose ciprofloxacin.
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FIGURE 4.3. Low-dose ciprofloxacin collapses Enterobacter populations and
suppresses small clusters in vivo.
(Continued in footnote.)

We first established in vitro that 25 ng/ml ciprofloxacin produces similar

effects on Enterobacter growth as did 10 ng/ml exposure on Vibrio. With the

FIGURE 4.3 (cont’d) A: Normalized abundances (number of colony forming units (CFUs)
scaled by untreated medians) of water and gut populations. N values left to right: 4, 20, 4, 20,
4, 19, 4, 20. Water N values denote number of flasks; gut N values denote number of fish. B:
Histograms of gut CFUs with pooled data from 24 and 48 h treatments. Counts indicate the
number of individual fish with a given log10 Enterobacter CFUs. Dashed lines indicate the mean
of each set, showing a ∼1000-fold reduction in intestinal Enterobacter abundance in antibiotic-
treated fish. C: Total number of bacterial clusters in the intestine, quantified from 3D images
(Materials and Methods). D: Maximum intensity projections of 3D images of untreated (top) and
ciprofloxacin-treated (bottom) Enterobacter populations. Insets: Viability staining of bacteria
expelled from the gut, with green and magenta indicating living and dead cells, respectively.
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identical inoculation procedure used for Vibrio, log10-transformed Enterobacter

abundance in the flask water dropped by 1.2 ± 0.4 (mean ± std. dev.) compared

to untreated controls after 24 hours, and dropped by 1.8 ± 0.2 after 48 hours (Fig.

3A). These values match well the values for Vibrio: 0.98 ± 0.37 for 24 hours, 1.81

± 0.5 for 48 hours. Assays in rich media show a similarly reduced density between

the two species (SI Appendix, Fig. S8) and an even lesser degree of cell death and

damage in vitro for Enterobacter as compared to Vibrio, with a viable fraction of

approximately 95% (SI Appendix, Fig. S9A and S9B). As with Vibrio, in vitro

growth measurements and viability staining both imply that low-dose ciprofloxacin

treatment of Enterobacter induces growth arrest rather than widespread lethality.

Strikingly, low-dose ciprofloxacin treatment of fish colonized with Enterobacter

(Materials and Methods) resulted in even greater reductions in abundance than in

the case of Vibrio, with the majority of populations becoming nearly or completely

extinct during the assay period (Fig. 3A and 3B). Inoculation, treatment,

dissection, and plating were performed as for Vibrio (Materials and Methods).

Compared to untreated controls, log10-transformed intestinal abundances were

reduced by 2.3 ± 1.1 after 24 hours, and by 3.2 ± 1.0 after 48 hours (Fig. 3A).

These reductions in intestinal abundances greatly exceeded the reductions of

bacterial abundances in the flask water (Fig 3A). In terms of absolute abundances,

pooled data from 24 and 48 hour treatments gives a mean ± std. dev. of the log10-

transformed Enterobacter population of 1.5 ± 1.0 (n = 40), compared to 4.0 ±

1.0 (n = 39) for untreated specimens (Fig. 3B); unpooled data are similar (SI

Appendix, Fig. S9C and S9D).

Live imaging of intestinal populations at single time points revealed

approximately 40% of treated hosts to be devoid or nearly devoid of Enterobacter,
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consistent with the plating-based measurements. In hosts that contained

appreciable bacterial populations we observed a clear difference between treated

and untreated specimens: Enterobacter populations in ciprofloxacin-treated

hosts contained fewer small bacterial clusters and fewer individual planktonic

cells than untreated controls (Fig. 3C and 3D). We quantified this distinction

using computational image analysis to identify each cluster (Materials and

Methods), defining a single cell as a cluster of size one. Bacterial populations

in ciprofloxacin-treated animals contained ∼80x fewer clusters than untreated

animals (Fig. 3C). Viability staining showed that there were no obvious differences

in the viable fractions of bacteria expelled from the intestines of untreated and

treated hosts (Fig. 3D, insets, SI Appendix, Fig. S10). As with Vibrio, these

observations suggested that the reduction in Enterobacter ’s intestinal abundance

was independent of cell death.

Previous studies of other naturally aggregated bacterial species have revealed

that large bacterial aggregates are highly susceptible to expulsion from the gut

[32, 60]. To establish whether this is also the case for Enterobacter in the absence

of low-dose ciprofloxacin treatment, we performed time-lapse 3D imaging (Materials

and Methods). Indeed, in 2 out of 5 hosts imaged for 3.5 hours each, we observed

events in which the largest bacterial aggregate was abruptly expelled from the

intestine (Fig. 4A and SI Movie 7). These time-lapse movies also showed clear

examples of cluster aggregation (SI Movie 8), in which single cells and small

aggregates appear to come together and fuse, a process that is likely due to the

rhythmic intestinal contractions that occur between frames. Importantly, smaller

aggregates and planktonic cells that preferentially localize to the intestinal bulb are
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relatively undisturbed during these expulsion events, save for a few clusters that

become incorporated into the large mass during its transit (SI Movie 7).

Our observations suggest an explanation of how low-dose ciprofloxacin can

lead to dramatic drops in Enterobacter abundance that moreover illuminates the

more general question of how naturally aggregating bacterial species can persist

in the vertebrate gut in spite of transport-driven expulsion. We provide both a

qualitative and a quantitative description of the relevant dynamics, beginning

with the following conceptual model: single cells of Enterobacter replicate to form

small clusters, which then aggregate to form larger clusters under the influence

of intestinal flow. Large clusters are transported by the rhythmic contractions

of the gut [32, 60, 114] and are stochastically expelled from the host [32, 60].

The individual bacteria and small clusters that remain within the intestine serve

as a reservoir that reseeds the next population, and the process of replication,

aggregation, and expulsion repeats. Therefore, persistence within the intestine

requires processes that generate single cells or small clusters, otherwise transport

will eventually lead to extinction. This reseeding could take the form of (i)

immigration of new cells from the environment, (ii) passive fragmentation of

clusters, or (iii) active fragmentation in which single cells break away from a cluster

surface during cell division. Immigration from the environment likely occurs even in

established populations, but measurements in larval zebrafish suggest very low rates

of immigration [115]. We therefore suspected that more robust mechanisms must

promote persistence. Supporting the active fragmentation mechanism, we found in

untreated hosts examples of Enterobacter populations that contain an abundance

of single cells, a single large aggregate, and a lack of mid-sized aggregates (SI

Appendix, Fig. S9E). Following low-dose ciprofloxacin treatment, the planktonic
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FIGURE 4.4. Small bacterial clusters are required for recovery after large expulsion
events.
(Continued in footnote.)

cell reservoir associated with resilience to intestinal transport is depleted (Fig. 3C),

most likely due to stalled Enterobacter division (SI Appendix, Fig. S8), leading to

collapse of the resident bacterial population (Fig. 3A and 3B).

4.4.3. A quantitative model of bacterial cluster dynamics

FIGURE 4.4 (cont’d) A: Maximum intensity projections of untreated Enterobacter
populations before (top, t = 2 hours from the start of imaging) and after (bottom, t = 3 hours)
an expulsion event (See also SI Movie 5). Scale bar = 200 µm. B: Schematic of a kinetic model of
bacterial cluster dynamics, illustrating its four constituent processes. C: Image-derived time-series
of Enterobacter abundance in five untreated hosts showing sporadic large expulsion events.
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To solidify and test our conceptual picture, we developed a predictive

mathematical model of bacterial cluster dynamics. We describe the framework of

the model, its validation, and general insights it provides into perturbations and

population stability. Drawing on ideas from non-equilibrium statistical mechanics

and soft matter physics, we constructed a general kinetic model that describes the

time evolution of a collection of bacterial clusters with varying sizes, illustrated

schematically in Fig. 4B. We posit that four processes govern cluster dynamics:

aggregation, fragmentation, growth, and expulsion. Each is described by a kernel

that specifies its rate and size dependence: (1) aggregation of a cluster of size n and

a cluster of size m occurs with rate Anm; (2) fragmentation of a cluster of size n+m

into clusters of size n and m occurs with rate Fnm; (3) growth (due to cell division)

of a cluster of size n occurs with rate Gn; (4) expulsion (removal by intestinal

transport) of a cluster of size n occurs with rate En. Note that condensation of

the population into a single massive cluster poises the system for extinction, for

any nonzero En. The model is non-spatial and is inspired by well established

frameworks for nucleation and growth phenomena such as polymer gelation and

colloidal aggregation [116]. For example, sol-gel models describe a transition

between dispersed individual units (“sol”) and a system-spanning connected

network (“gel”) in materials capable of polymerization. In the thermodynamic limit

of infinite system size, the model can be studied using standard analytic techniques

[116]. However, unlike polymer solutions and other bulk systems for which the

possible number of clusters is effectively unbounded, our intestinal populations are

constrained to have at most a few hundred clusters (Fig. 3C), necessitating the use

of stochastic simulations (Materials and Methods).
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In its general form, the model encompasses a wide range of behaviors that can

be encoded in the various functional forms possible for the rate kernels Anm Fnm,

Gn, and En. Based on our observations and theoretical considerations elaborated

in the Materials and Methods section, we made the following assumptions: (1) the

rate of aggregation between two clusters is independent of their size, Anm = α;

(2) fragmentation occurs only by separation of single cells and with a rate that

is independent of cluster size, Fnm = β for m = 1 and Fnm = 0 otherwise;

(3) growth is logistic with a global carrying capacity, Gn = rn(1 − N/K) with

N the total number of cells, r the per capita growth rate, and K, the carrying

capacity; (4) expulsion is independent of cluster size, En = λ. This model contains

as special cases various simple models of linear polymers [117] and also resembles

recent work modelling chains of Salmonella typhimurium cells in the mouse gut

[118]. As discussed in the SI Appendix, these choices constitute the minimal model

consistent with theoretical constraints and experimental phenomenology. More

complex models are of course possible, but the requisite increase in the number of

adjustable parameters would result in a trivial but meaningless ability to fit the

observed data.

Even with the assumptions described above, the model needs 5 parameters:

rates of aggregation, fragmentation, growth, and dispersal, and a global carrying

capacity. However, all of these parameters can be set by experimentally derived

values unrelated to cluster size distributions. We measured Enterobacter ’s per

capita growth rate by performing time-lapse imaging of initially germ-free hosts

that had been exposed to Enterobacter for only 8 hours, capturing the exponential

increase of a small founding population (SI Appendix, Fig. S1, SI Movie 9),

yielding r = 0.27 ± 0.05 hr−1 (mean ± std. dev across n = 3 hosts). We identified
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expulsion events as abrupt collapses in Enterobacter abundance from time-lapse

images (Fig. 3C, SI Movie 7) and set the expulsion rate equal to the measured

collapse rate, λ = 0.11± 0.08 hr−1 (mean ± standard error, assuming an underlying

Poisson process (Materials and Methods)). The model can be simulated to provide

the mean and variance of the log10-transformed abundance distribution at a given

time for a given set of parameters. Using this approach, we fit static bacterial

abundance measurements from dissection and plating at 72 hours post-inoculation

(Materials and Methods) to determine the carrying capacity, K, and the ratio

of fragmentation and aggregation rates, β/α. As discussed in the Materials and

Methods section, the cluster dynamics should depend primarily on the ratio of

β/α rather than either rate separately. This yielded log10K = 5.0 ± 0.5 and

log10 β/α = 2.5± 0.4.

The model therefore allows a parameter-free prediction of the size distribution

of Enterobacter aggregates, plotted in Fig. 5A together with the measured

distribution derived from three-dimensional images, averaged across 12 untreated

hosts. The two are in remarkable agreement. We also plot, equivalently, the

cumulative distribution function P (size > n), the probability that a cluster will

contain greater than n cells, again illustrating the close correspondence between

the data and the prediction and validating the model. We emphasize that no

information about the cluster size distribution was used to estimate any of the

model parameters. We further note that the cluster size distribution is a stringent

test of the model’s validity. Other cluster models predict different forms, typically

with steep tails [117, 118]. The linear chain model of [118], for example, leads to an

exponential distribution of cluster sizes that does not match the shallower, roughly

power-law form of our data.
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FIGURE 4.5. A stochastic kinetic model predicts bacterial cluster sizes and
generates a phase diagram for in vivo abundance.
(Continued in footnote.)

4.4.4. The abundance phase diagram and extinction transition

Our kinetic model provides insights into the consequences of low-dose

antibiotic perturbations on gut bacterial populations. We consider a general phase

diagram of possible growth, fragmentation, aggregation, and expulsion rates, and

then situate Enterobacter in this space. For simplicity of illustration, we consider a

two-dimensional representation with one axis being the ratio of the fragmentation

and aggregation rates, β/α, and the other being the ratio of the growth and

FIGURE 4.5 A: The distribution of image-derived Enterobacter cluster sizes (grey circles)
along with the prediction of our stochastic model (purple line). There are no free parameters in
the fit; values were fixed by abundance, growth, and expulsion rate measurements independent of
cluster size. Parameters: r = 0.27 hr−1, λ = 0.11 hr−1, α = 0.1 hr−1, β = 101.5 hr−1, K = 105.
Error bars on experimental data are standard deviations across hosts. Shaded confidence intervals
for the model prediction are bounds from parameter uncertainties. Inset: The same experimental
data and model plotted without binning as a reverse cumulative distribution. B: Phase diagram
of the log-transformed abundance, 〈log10(N + 1)〉, showing the extinction transition (white
dashed line). From best fit parameter estimates, the in vivo state of untreated Enterobacter is
overlaid as a grey circle, and 25 ng/ml ciprofloxacin-treated Enterobacter as an orange circle; both
circles are marked with “e”. Untreated Vibrio is located off the scale, indicated by the arrow, 10
ng/ml ciprofloxacin treated Vibrio is overlaid as a cyan circle marked with “v”. The doses for
Enterobacter and Vibrio were established to be approximately equivalent in vitro. Parameters:
λ = 0.11 hr−1, α = 0.1 hr−1, K = 105 were fixed; r and β were varied on logarithmic grids.
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expulsion rates, r/λ (Fig. 5B). As noted above and in the Materials and Methods

section, the model in the regime studied should depend on the ratio β/α rather

than on β or α independently. However, the roles of r and λ are not simply

captured by their ratio. The expulsion rate nonetheless provides a scale to which

to compare the growth rate, r, and we plot Fig. 5B using r/λ calculated for fixed

λ = 0.11 hr−1, the measured value. For completeness, we show a three-dimensional

r, λ, β/α phase diagram as SI Appendix, Figure S11E and S11F. We numerically

calculated the steady state phase diagram of the model (Materials and Methods)

and show in Figure 5B the mean log-transformed abundance, 〈log10(N + 1)〉. The

regime of extinction (N = 0) is evident (dark purple, with dashed white boundary

).

The data-derived parameter values place untreated intestinal Enterobacter

fairly close to the extinction transition (Fig. 5B). An antibiotic-induced growth

rate reduction of approximately 5x is sufficient to cross the boundary to the

N = 0 regime (i.e. to extinction), moving downward in Fig. 5B. This growth

rate reduction, or an equivalent increase in death rate, reflects the conventional

view of antibiotic effects. An approximately 300x reduction in the balance between

fragmentation and aggregation spurs an alternative path to extinction, moving

leftward in Fig. 5B, reflecting a distinct mechanism resulting solely from changes

in physical structure. The extinction transition in this direction corresponds to the

condensation of the population into a single cluster, reminiscent of gelation phase

transitions in polymer systems. As described above, low-dose ciprofloxacin causes a

strong reduction in the number of small bacterial clusters, lowering β and possibly

also r if fragmentation and individual cell division are linked. Conservatively

assuming an equal effect along both axes, and fitting simulations to the 24 hour
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treatment abundances (Materials and Methods), we find that the antibiotic reduces

r and β/α by ∼10x. This drives the bacterial system through the phase boundary

and well into the extinction regime (Fig. 5B, orange circle), consistent with our

observations.

In contrast to Enterobacter, treatment of Vibrio with ciprofloxacin does not

lead to widespread extinction after 48 hours, suggesting that treated populations

either lie safely at a new steady state away from the extinction boundary, or are

close enough to the transition so that dynamics are slow. To estimate model

parameters for ciprofloxacin-treated Vibrio, we performed a two parameter fit of

(β/α, r) to the 24 hour treatment abundances. Because of Vibrio’s large population

size (∼ 105 clusters), we modified the stochastic simulation procedure using

a tau-leaping algorithm (Materials and Methods, SI Appendix, Fig. S12). We

indeed find ciprofloxacin-treated Vibrio is located close to but safely inside the

extinction boundary (Fig. 5B). Untreated Vibrio populations show no appreciable

multicellular aggregation and are located off-scale far to the upper-right side of the

phase diagram (Fig. 5B, arrow).

4.5. Discussion

We have discovered that sublethal levels of a commonly used antibiotic

can reduce the intestinal abundance of bacterial populations much more severely

than would be predicted from in vitro responses, and that this amplification is a

consequence of drug-induced changes to the bacterial groups’ spatial architecture.

Contrary to conventional notions of antibiotic tolerance, largely derived from

in vitro studies, reductions in bacterial abundances were greater for the slow-

growing, aggregated Enterobacter species than for the fast-growing, planktonic
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Vibrio. Live imaging revealed drug-induced increases in bacterial cohesion that,

coupled to gut mechanical activity, lead to the expulsion of viable bacterial cells.

The microscopic details of this cohesion, likely involving cell wall characteristics,

mechanical compression by the gut wall and fluid flows, and perhaps intestinal

mucus rheology, remain to be explored.

Notably, the underlying processes of bacterial aggregation and host

intestinal transport are found throughout the animal kingdom, suggesting a

general relevance beyond zebrafish that may explain, for example, data on weak

antibiotics having strong effects on mammalian microbiomes [99, 100]. Of course,

chemical perturbations in more anatomically complex animals or non-gnotobiotic

animals that house hundreds of resident bacterial species will undoubtedly

involve additional processes beyond those uncovered here. We note, however, that

responses to intestinal flow will influence bacterial population dynamics regardless

of ecological complexity, and that our choice of model bacterial species spans

the extremes of highly planktonic and highly cohesive strains, further implying

generality. In the larval zebrafish, enhanced bacterial susceptibility to transport

leads to expulsion from the gut. In larger or more complex intestines this may

take the form of displacement from one region to a more distal region, with a

corresponding shift in local nutrients or competitors, in addition to expulsion from

the gut altogether.

The concentrations of ciprofloxacin examined here are commonly found

in environmental samples, indicating a potentially widespread perturbation of

animal gut microbiota due to antibiotic contaminants. In addition, the expulsion

of live, antibiotic-exposed bacteria from animal intestines through the aggregation-

based processes described here suggests a potential mechanism for enhanced
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spread of antibiotic resistance. This possibility is bolstered by our observation

that in addition to aggregation, ciprofloxacin-treated cells undergo an active SOS

response, which has been shown to promote mutation and horizontal gene transfer

[119, 120, 121]. Together, these observations underscore recent concerns about the

public health risk posed by antibiotic contaminants in the environment [103].

Our biophysical model of aggregation, fragmentation, growth, and expulsion

describes our data well and provides testable predictions. It is remarkable, given

the chemical and morphological complexity of even the larval zebrafish gut, that

such a minimal model can accurately predict emergent properties such as the size

distribution of bacterial aggregates. That this works is an indication of the power

of theories of soft condensed matter physics, whose generality may prove useful in

understanding the gut microbiome. Furthermore, our model supplies a framework

for a quantitative understanding of gut microbial homeostasis in general. Like

recent work modelling antibody-mediated enchaining of Salmonella cells in the

mouse gut [118], our model implies that the physical processes of bacterial cluster

formation and fragmentation play central roles in large-scale microbiota stability.

We suggest that our cluster-dynamics model, validated by quantitative agreement

between predictions and in vivo data (Fig. 5A), may prove useful in less tractable

host species such as mice and humans. Without live imaging or non-invasive

sampling, it is challenging to estimate kinetic properties of microbial populations,

such as aggregation rates. However, advances in histological sample preparation [23]

can preserve bacterial aggregates and yield cluster size distributions; inverting our

model, such distributions can reveal the underlying in vivo bacterial kinetics.

Regarding antibiotics, the main prediction of our model is that naturally

aggregated, slow growing bacteria will be impacted more severely than fast
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growing, planktonic species by equivalent low-dose antibiotic perturbations. This

is contrary to conventional wisdom that links bacterial tolerance to reduced

growth and increased aggregation [104, 105], which stems from studies of antibiotic

exposure in static or well-mixed environments. We find that in the intestine,

where bacteria can be removed through fluid flow, there exist critical values of

aggregation, fragmentation, growth, and expulsion rates, beyond which sustainable

colonization becomes impossible (Fig. 5B). Naturally aggregated and slow-growing

species are situated closer to this extinction phase boundary and are therefore

more easily driven to population collapse by low-dose antibiotic perturbations.

Intriguingly, new meta-omics methods [30] can be used to estimate in vivo growth

rates of mammalian gut microbes, which would be interesting to correlate with

antibiotic responses. We note in addition that inter-bacterial competition in

the gut can be influenced by clustering and susceptibility to intestinal transport

[32, 60], suggesting that competition outcomes could be altered by antibiotic

treatment if changes in aggregation properties are different for different species.

A final prediction of our model is that intestinal transport, which has been linked

to microbiota composition [106], will influence the effects of low-dose antibiotic

perturbations on microbial community composition. Combining pharmacological

manipulations of intestinal transport with antibiotic treatments may therefore lead

to novel strategies for precision engineering of the gut microbiome.
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4.6. Materials and Methods

4.6.1. Animal care

All experiments with zebrafish were done in accordance with protocols

approved by the University of Oregon Institutional Animal Care and Use

Committee and following standard protocols [65].

4.6.2. Gnotobiology

Wild-type (AB×TU strain) zebrafish were derived germfree (GF)

and colonized with bacterial strains as previously described [47] with slight

modifications elaborated in the SI Appendix.

4.6.3. Bacterial strains and culture

Vibrio cholerae ZWU0020 and Enterobacter cloacae ZOR0014 were originally

isolated from the zebrafish intestine [62]. Fluorescently marked derivatives of

each strain were previously generated by Tn7 -mediated insertion of a single

constitutively expressed gene encoding dTomato [48]. We note that all plating- and

imaging-based experiments performed in this study were done using fluorescently

marked strains, which carry a gentamicin resistance cassette, with the exception

of experiments in which fluorescent dyes were used to assess viability of cells.

Archived stocks of bacteria were maintained in 25% glycerol at -80◦C. Prior to

experiments, bacteria were directly inoculated from frozen stocks into 5 ml LB

media (10 g/L NaCl, 5 g/L yeast extract, 12 g/L tryptone, 1 g/L glucose) and

grown for ∼16 hours (overnight) shaking at 30◦C.
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4.6.4. Culture-based quantification of bacterial populations

Dissection of larval guts was done as described previously [122], with slight

modifications elaborated in the SI Appendix. To compare the effect of ciprofloxacin

on populations in the intestine and in the flask water, we normalized treated

abundances by the corresponding untreated median abundance (Fig. 2C and 3A).

To account for variation in untreated bacterial dynamics between weekly batches

of fish, we performed the normalization within each batch. Unnormalized data is

available in the SI Dataset.

4.6.5. Light sheet fluorescence microscopy of live larval zebrafish

Live imaging of larval zebrafish was performed using a custom-built light

sheet fluorescence microscope previously described in detail [31], with slight

modifications elaborated in the SI Appendix.

4.6.5.1. Viability staining of expelled aggregates:

Germ-free larval zebrafish were colonized with wild type Vibrio or

Enterobacter (without fluorescent markers) for 24 hours and then mounted into

agarose plugs using small glass capillaries identically to the imaging procedure

(above). Individual capillaries were suspended into isolated wells of a 24-well

tissue culture plate filled with embryo media containing anesthetic or anesthetic +

ciprofloxacin (10 ng/ml for Vibrio, 25 ng/ml for Enterobacter) and the larvae were

extruded from the capillaries. Fish remained mounted for 24 hours, during which

expelled bacteria remained caught in the agarose plug. After treatment, fish were

pulled back into the capillaries and transferred to smaller wells of a 96 well plate

containing embryo media, anesthetic, and the LIVE/DEAD BacLight Bacterial
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Viability stains SYTO9 and propridium iodide. Fish were stained according to

kit instructions, with the exception of the incubation period being extended from

15 to 30 min to account for potential issues with the aggregate nature of the cells

[123]. Following staining, fish were pulled again into the capillaries and transferred

to the light sheet microscope for imaging. As shown in the SI Appendix, Figures

S4 and S10, zebrafish cells stain in addition to bacterial cells, precluding accurate

quantification of viable fractions.

4.6.6. Image analysis

Bacteria were identified in three-dimensional light sheet fluorescence

microscopy images using a custom MATLAB analysis pipeline previously described

[31, 53], with minor changes elaborated in the SI Appendix.

4.6.7. Kinetic model and stochastic simulations

Simulation details are provided in the SI Appendix. In brief, Gillespie’s direct

method [124] was used to simulate stochastic aggregation, fragmentation, and

expulsion events, while growth was treated as deterministic. To simulate Vibrio

populations, direct stochastic simulation becomes intractable due to the large

number of clusters (∼ 105 single cells). We therefore implemented a modified

tau-leaping algorithm [125] that facilitates large simulations. We opted for a

straightforward fixed τ method and empirically determined an optimal value of

τ = 0.001 h (SI Appendix, Fig. S12A,B). All simulations were written in MATLAB

and code is available at https://github.com/bschloma/gac.
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4.8. Supporting Materials and Methods

Animal care

All experiments with zebrafish were done in accordance with protocols

approved by the University of Oregon Institutional Animal Care and Use

Committee and following standard protocols [65].

Gnotobiology

Wild-type (AB×TU strain) zebrafish were derived germfree (GF)

and colonized with bacterial strains as previously described [47] with slight
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modifications. Briefly, fertilized eggs from adult mating pairs were harvested

and incubated in sterile embryo media (EM) containing ampicillin (100 µg/ml),

gentamicin (10 µg/ml), amphotericin B (250 ng/ml), tetracycline (1 µg/ml),

and chloramphenicol (1 µg/ml) for 6 hours. Embryos were then washed in EM

containing 0.1% polyvinylpyrrolidone-iodine followed by EM containing 0.003%

sodium hypochlorite. Sterilized embryos were distributed into T25 tissue culture

flasks containing 15 ml sterile EM at a density of one embryo per milliliter and

incubated at 28 to 30◦C prior to bacterial colonization. Embryos were sustained on

yolk-derived nutrients and were not fed during experiments. For bacterial mono-

association, bacteria were first grown overnight in lysogeny broth (LB) with shaking

at 30◦C and were prepared for inoculation by pelleting 1 ml of culture for 2 min

at 7,000×g and washing once in sterile EM. Bacterial strains were individually

added to the water column of single flasks containing 4-day-old larval zebrafish

at a final density of 106 bacteria/ml. For antibiotic treatment, drugs were added at

the indicated working concentration directly to flask containing animals that had

been colonized 24 hours prior.

Bacterial strains and culture

Vibrio cholerae ZWU0020 and Enterobacter cloacae ZOR0014 were originally

isolated from the zebrafish intestine [62]. Fluorescently marked derivatives of

each strain were previously generated by Tn7 -mediated insertion of a single

constitutively expressed gene encoding dTomato [48]. We note that all plating- and

imaging-based experiments performed in this study were done using fluorescently

marked strains, which carry a gentamicin resistance cassette, with the exception

of experiments in which fluorescent dyes were used to assess viability of cells.
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Archived stocks of bacteria were maintained in 25% glycerol at -80◦C. Prior to

experiments, bacteria were directly inoculated from frozen stocks into 5 ml LB

media (10 g/L NaCl, 5 g/L yeast extract, 12 g/L tryptone, 1 g/L glucose) and

grown for ∼16 hours (overnight) shaking at 30◦C.

Generation of a fluorescent SOS reporter

To identify a suitable promoter within the Vibrio ZWU0020 genome

(https://img.jgi.doe.gov/m/, IMG genome ID: 2522572152) for creation of

a genetically encoded fluorescent DNA-damage ‘SOS’ reporter, we scanned the

upstream regions of each gene for consensus gammaproteobacterial ‘SOS boxes’

(CTGTN8ACAG) that serve as binding sites for the repressor LexA (Fig. S7A and

S7B) [111]. Of the genes identified, the promoter of the gene recN (IMG gene ID:

2705597027) was an ideal candidate for three main reasons: 1) it contains multiple

SOS boxes (2 consensus and 2 with 2 mismatches), which is an arrangement that is

potentially associated with tight/graded regulation [112]; 2) the recN promoter

is highly conserved among closely related V. cholerae strains as well as other

non-Vibrio gammaproteobacterial lineages, suggesting that recN is a bona fide

representative of the SOS response; and 3) recN is one of the most highly expressed

genes in response to DNA damaging agents in both E. coli and V. cholerae

[126, 127], likely due to its multiple near-consensus -10 promoter sequences.

We rationally designed a recN -based fluorescent SOS reporter by fusing the

100bp recN promoter region to an open reading frame (ORF) encoding superfolder

green fluorescent protein (sfGFP) (Fig. S7C). In addition, we incorporated an

epsilon enhancer and consensus Shine-Dalgarno sequence within the 5’ untranslated

region (UTR) to help ensure robust translation of the reporter gene [48, 128, 129],
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and incorporated the synthetic transcriptional terminator L3S2P21 into the 3’ UTR

[130]. We built the construct using polymerase chain reaction (PCR) and synthetic

oligonucleotides. Primer WP97 (containing the recN promoter and 5’ UTR; 5’-TGA

ATGCATTAAAAGTGACCAAAAAATTTTACCTGAGTGACTTTACTGTATAAAGAAACAGTATAAACTGT

TTAAACATACAGTATTGGTTAATCATACAGGTGCAAACTTAACTTTATCAAGGAGACTAAATCATGAG

CAAGGGCGAGGAGCT-3’) and primer WP98 (containing the 3’ UTR; 5’-TGAACTAGTAA

AACGAAAAAAGGCCCCCCTTTCGGGAGGCCTCTTTTCTGGAATTTTTATCACTTGTACAGCTCGTCCA

TG-3’) were used to PCR-amplify sfGFP from the source plasmid pXS-sfGFP [48].

Engineered restriction sites flanking the amplicon (NsiI and SpeI) were then used

to insert the construct into a variant of the Tn7 delivery vector pTn7 xKS, which

also harbors a constitutively expressed dTomato gene for tracking all bacterial cells

(Fig. S7D) [48]. The resulting dual-reporter construct was then inserted into the

ZWU0020 genome as previously described [48]. To verify reporter activity, disk

diffusion assays were performed on agar plates with the genotoxic agent mitomycin

C and, as a control, the cell wall-targeting beta-lactam antibiotic ampicillin (Fig.

S7E). Mitomycin C induced robust expression of sfGFP whereas ampicillin did not.

In vitro characterization of antibiotics

Growth kinetics: Growth kinetics of bacterial strains in vitro were measured

using a FLUOstar Omega microplate reader. Prior to growth measurements,

bacteria were grown overnight in 5 ml LB media at 30◦C with shaking. The next

day, cultures were diluted 1:100 into fresh LB media with or without the indicated

antibiotic and dispensed in quadruplicate (200 µl/well) into a sterile 96-well clear

flat-bottom tissue culture-treated microplate. Absorbance at 600 nm was then

recorded every 30 min for ∼16 hours at 30◦C with shaking. Growth rates were
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estimated by fitting a logistic growth curve to OD values, starting at manually

defined points marking the end of lag phase.

Viability: Cultures of Vibrio ZWU0020 or Enterobacter ZOR0014 were grown

overnight in LB at 30◦C with shaking. The next day, 1:100 dilutions were made in

fresh LB media containing either ciprofloxacin (Vibrio: 10 ng/ml, Enterobacter : 25

ng/ml) or no drug. Cultures were incubated at 30◦C with shaking for 6 hours prior

to being stained using a LIVE/DEAD BacLight Bacterial Viability Kit according

to manufacturer’s instructions. Culture/stain mixtures were diluted 1:10 in 0.7%

saline and imaged using a Leica MZ10 F fluorescence stereomicroscope equipped

with a 2.0X objective and a Leica DFC365 FX camera. Images were captured

using standard Leica Application Suite software. Bacteria were identified in images

with intensity-based region finding following difference of gaussians filtering. Cells

stained in both SYTO9 and propidium iodide were identified as overlapping regions

in the two color channels. Analysis code was written in MATLAB.

Cell length and swimming speed : Dense overnight cultures of Vibrio

ZWU0020 were diluted 1:100 in fresh LB media alone or with 10 ng/ml

ciprofloxacin and incubated at 30◦C with shaking for 4 h. Bacteria were then

imaged on a Nikon TE2000 inverted fluorescence microscope between a slide

and a coverslip using a 60X oil immersion objective and a Hamamatsu ORCA

CCD camera (Hamamatsu City, Japan). Movies were taken within 60 seconds of

mounting at an exposure time of 30 ms, resulting in a frame rate of 15 frames/sec,

and had a duration of approximately 7 seconds. Bacteria in the resulting movies

were identified with intensity-based region finding and tracked using nearest-

neighbor linking. Analysis code was written in MATLAB. Five movies were

taken per treatment case. For untreated length analysis, n = 2291 bacteria were
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quantified; for ciprofloxacin-treated length analysis, n = 963. For untreated speed

analysis, n = 833 bacteria; for ciprofloxacin-treated speed analysis, n = 531.

Vibrio SOS reporter activity: Vibrio ZWU0020 carrying the fluorescent SOS

reporter was grown overnight in LB at 30◦C with shaking. The next day, 1:100

dilutions were made in fresh LB media containing either 10 ng/ml ciprofloxacin,

400 ng/ml mitomycin C, 10 µg/ml ampicillin, or no drug. Cultures were then

grown overnight (∼16 h) at 30◦C with shaking. The next day, cultures were

diluted 1:43 in 80% glycerol (as an immobilizing agent) and imaged with a Nikon

Eclipse Ti inverted microscope equipped with an Andor iXon3 888 camera using

a 40x objective and 1.5x zoom. Bacteria were identified in images with gradient-

based region finding, using a Sobel filter, following difference of gaussians filtering.

Analysis code was written in MATLAB. As expected, the two DNA targeting

drugs, ciprofloxcain and mitomycin C, induced the SOS response in subpopulations

of cells, while the cell-wall targeting drug ampicillin did not. In computing SOS-

positive fractions, filamented cells were counted as single cells.

Culture-based quantification of bacterial populations

Dissection of larval guts was done as described previously [122]. Dissected

guts were harvested and placed in a 1.6 ml tube containing 500 µl sterile 0.7%

saline and ∼100 µl 0.5 mm zirconium oxide beads. Guts were then homogenized

using a bullet blender tissue homogenizer for ∼25 seconds on power 4. Lysates

were serially plated on tryptic soy agar (TSA) and incubated overnight at 30◦C

prior to enumeration of CFU and determination of bacterial load. Typically an

overnight incubation is sufficient to recover all viable cells; however, we note that

ciprofloxacin treatment results in delayed colony growth on agar plates (likely due

97



to growth arrest induced by DNA-damage). We empirically determined that, in

the case of ciprofloxacin treatment, an incubation period 72 hours was required

for complete resuscitation of viable cells on agar plates. For all culture-based

quantification of bacterial populations in this study, the estimated limit of detection

is 5 bacteria/gut and the limit of quantification is 100 bacteria/gut. Plating data

plotted are pooled from a minimum of two independent experiments. Samples with

zero countable colonies on the lowest dilution were set to the limit of detection

prior to plotting and statistical analysis. Enumeration of flask water abundances

by plating was performed identically to gut abundances, including the 72 hour

incubation period.

Comparing antibiotic treatments between intestinal populations and flask water populations:

To compare the effect of ciprofloxacin on populations in the intestine and in

the flask water, we normalized treated abundances by the corresponding untreated

median abundance (Fig. 2C and 3A). To account for variation in untreated

bacterial dynamics between weekly batches of fish, we performed the normalization

within each batch. Unnormalized data is available in the Supplemental Data File.

Light sheet fluorescence microscopy of live larval zebrafish

Imaging intestinal bacteria:

Live imaging of larval zebrafish was performed using a custom-built light

sheet fluorescence microscope previously described in detail [31]. Larvae are

anesthetized with MS-222 (Tricane) and mounted into small glass capillaries

containing 0.5% agarose gel by means of a metal plunger. Larvae are then

suspended vertically in an imaging chamber filled with embryo media and
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anesthetic and extruded out of the capillary such that the set agar plug sits in

front of the imaging objective. The full intestine volume (∼1200 × 300 × 150

microns) is imaged in four subregions that are registered in software after imaging.

The imaging of a full intestine volume sampled at 1-micron steps between z-

planes is imaged in ∼45 seconds. Excitation lasers at 488 and 561 nm wavelengths

were tuned to a power of 5 mW prior to entering the imaging chamber. A 30 ms

exposure time was used for all 3D scans and 2D movies. Time lapse imaging was

performed overnight, except for the 3.5 hour imaging of Enterobacter (Fig. 3C),

which occurred during the day.

Viability staining of expelled aggregates:

Germ-free larval zebrafish were colonized with wild type Vibrio or

Enterobacter (without fluorescent markers) for 24 hours and then mounted into

agarose plugs using small glass capillaries identically to the imaging procedure

(above). Individual capillaries were suspended into isolated wells of a 24-well

tissue culture plate filled with embryo media containing anesthetic or anesthetic +

ciprofloxacin (10 ng/ml for Vibrio, 25 ng/ml for Enterobacter) and the larvae were

extruded from the capillaries. Fish remained mounted for 24 hours, during which

expelled bacteria remained caught in the agarose plug. After treatment, fish were

pulled back into the capillaries and transferred to smaller wells of a 96 well plate

containing embryo media, anesthetic, and the LIVE/DEAD BacLight Bacterial

Viability stains SYTO9 and propridium iodide. Fish were stained according to kit

instructions, with the exception of the incubation period being extended from 15 to

30 min to account for potential issues with the aggregate nature of the cells [123].

Following staining, fish were pulled again into the capillaries and transferred to
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the light sheet microscope for imaging. As shown in Figures S4 and S10, zebrafish

cells stain in addition to bacterial cells, precluding accurate quantification of viable

fractions.

Image analysis

Bacteria were identified in three-dimensional light sheet fluorescence

microscopy images using a custom MATLAB analysis pipeline previously described

[31, 53], with minor changes. In brief, small objects (single cells and small

aggregates) are identified using difference of Gaussians filtering. False positives are

rejected with a combination of intensity thresholding (mostly noise) and manual

removal (mostly host cells). Large aggregates are identified with a graph cut

algorithm [66] that is seeded with either an intensity-based mask or a gradient-

based mask. The average intensity of a single cell is estimated as the mean

intensity of small objects, which is then used to estimate the number of cells

contained in larger clusters by normalizing the total fluorescence intensity of each

cluster. Spatial distributions along the length of the gut are computed using a

manually drawn line drawn that defines the gut’s center axis.

Kinetic model and stochastic simulations

Choosing rate kernels:

Our approach to choosing the size dependence of the rate parameters was to

pick the simplest kernels consistent with key experimental observations. The first

key observation, made in past work [31, 32], was that in between the expulsion

of large aggregates population growth is well-described by a deterministic logistic

function. Therefore, we chose a logistic growth kernel. The second key observation
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was that we occasionally encountered populations consisting of just a single,

large aggregate and many single cells (Fig. S9E), which suggests that active

fragmentation of single cells, most likely during growth phases, is the dominant

fragmentation process. This notion is supported by time-lapse images of initial

growth (Supplemental Movie 9) that depicts the creation of single cells during

growth, in addition to the growth of three dimensional aggregates. Based on

these observations, we made the assumption that single cell fragmentation is

the sole fragmentation process, leading to what is known in other contexts as a

“chipping” kernel [116]. Beyond the chipping assumption, we had little evidence

that informed how single cell fragmentation depends on the size of the aggregate, so

we opted for the simplest choice of a constant, size-independent rate. Similarly for

aggregation and expulsion, the size dependence of the rates is likely determined by

complicated and uncharacterized fluid mechanical interactions of bacterial clusters

in peristaltic-like flow, which we parsimoniously replace with a simple constant

kernel for both processes. In aggregated populations, since it is only the loss of

the largest clusters (of size O(K)) that significantly impacts the system, we expect

that it is the expulsion rate for these largest clusters that matters, rather than how

the expulsion rate scales with cluster size. To test this notion, we ran simulations

in which the expulsion rate scaled as a power of the cluster size, n, according to

λ(n) = λ(n/K)ν , and varied the exponent ν. This ansatz keeps the expulsion

rate of clusters of size K fixed for all values of ν. The result is that the cluster size

distribution does not change within uncertainty values (Fig. S13), indicating that

this approximation is valid.

For reference, we note that with these choices the model can be summarized

by the following Smoluchowski equation, which describes the time evolution of the
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concentration of clusters of size n, cn, in the thermodynamic limit of infinite system

size:

ċn =
α

2

n∑
m=1

cn−mcm − αcn
∞∑
m=1

cm + β(cn+1 − cn) + βδn,1

∞∑
m=1

cm

+ r

(
1−

∑∞
m=1mcm
K

)
[(n− 1)cn−1 − ncn]− λcn. (4.1)

The four rate parameters are α (aggregation), β (fragmentation), r (growth), and

λ (expulsion), and K is the carrying capacity. In the last term of the first line, δn,1

is the Kronecker delta with second argument equal to 1. Of note, the first line of

equation (1), containing just aggregation and fragmentation terms, was previously

studied as a model of polymer chains and was shown to exhibit interesting non-

equilibrium steady states and scaling behaviors that are due to the breaking of

detailed balance by the chipping kernel [117]. In our system detailed balance is also

broken, but for a different reason: our “monomers”—single cells—are alive and self-

replicating.

Simulations : As each zebrafish intestine contains at most a few hundred

bacterial clusters, finite size effects and stochasticity impact cluster statistics, so we

implemented the model as a hybrid deterministic-stochastic simulation that follows

the time evolution of individual clusters. Gillespie’s direct method [124] was used

to simulate stochastic aggregation, fragmentation, and expulsion events. Growth

was treated as deterministic. Once the time until next stochastic reaction, τ , was

determined according to the Gillespie algorithm, integration was performed with

the Euler method from time t to t+ τ using a time step ∆t = min(τ, 0.1 hr).
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To simulate Vibrio populations, direct stochastic simulation becomes

intractable due to the large number of clusters (∼ 105 single cells). We therefore

implemented a modified tau-leaping algorithm [125] that facilitates large

simulations. We opted for a straightforward fixed τ method and empirically

determined that a value of τ = 0.001 h produced no observable differences in

cluster size and abundance distributions compared to direct stochastic simulation

(SI Appendix, Fig. S12A,B).

All simulations were written in MATLAB and code is available at

https://github.com/bschloma/gac.

Parameter inference

The kinetic model presented in the main text has 5 parameters: rates of

growth, expulsion, aggregation, and fragmentation, along with an overall carrying

capacity. As discussed in the main text, we directly measured Enterobacter ’s

growth rate and expulsion rate through time-lapse imaging. The uncertainty of the

expulsion rate was estimated by the standard error, using the previously validated

assumption that the expulsion of large aggregates follows a Poisson process [32]:

SEλ =

√
mean number of expulsions

(imaging time)×
√

number of fish
. (4.2)

For the remaining parameters, we developed a method to infer them from

the distribution of abundances obtained from dissection and plating assays. In a

regime where aggregation and fragmentation are fast compared to expulsion, we

expect the system to locally reach a quasi-steady state in between expulsions of the

largest aggregates. As such, we expect cluster statistics to depend primarily on the

ratio of fragmentation to aggregation, β/α, rather than on each rate independently.
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This confirmed in simulations (Fig. S11A and S11B). Therefore, the number of

parameters to be estimated is reduced to two: β/α and K.

Untreated Enterobacter : We fixed α = 0.1 hr−1 and performed a grid search

in β and K on a logarithmic grid, simulating the model multiple trials for each

pair of (β,K). The number of trials decreased with increasing β, from 1000 to

10. Each simulation started from 10 single cells and ran for a simulated time of 64

hours, modeling our 72 hour colonization data with an 8 hour colonization window.

To model static host-host variation, we drew each carrying capacity from a log-

normal distribution with a standard deviation of 0.5 decades. This is the standard

deviation of the untreated Vibrio abundance distribution (Fig. S3F), which is an

appropriate measure of static host-host variation because untreated Vibrio does not

form large aggregates and therefore does not experience large, stochastic population

collapses due to aggregate expulsion. We then compared the mean (µ) and variance

(σ) of the simulated, log-transformed abundances log10(N + 1) with the values for

our plating data (µ̂ and σ̂, respectively), quantifying error using

χ2 = (µ− µ̂)2 + (σ − σ̂)2. (4.3)

A heat map of χ2 shows well-defined edges for the minimum values of the

fit parameters (Fig. S11C). However, the inference is poorly constrained for

carrying capacities larger than 105 and for log10 β/α greater than 2.5. This poor

constraint is due primarily to the insensitivity of the abundance distribution to

increasing values of these parameters. For example, moving to the far right side of

the abundance phase diagram in Fig. 5B, the contours become flat in β/α.

To further constrain our estimates, we place upper bounds on these

parameters with simple estimates of physical limits. To bound the carrying
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capacity, we note that a larval zebrafish intestine have a volume of roughly

1 nl, or 106 µm3. Taking the volume of a bacterium to be roughly 1 µm3, we

estimate a maximum bacterial load of 106 cells, consistent with the largest Vibrio

abundances (Fig. S3F). As we find no Enterobacter populations above 105.5, and

in our simulations we draw carrying capacities from a log-normal distribution

with a standard deviation of half a decade, we constrained our best fit estimate

to log10K = 5.0. To bound the fragmentation rate, β, we considered the time-

lapse movie that showcases the greatest degree of cluster fragmentation observed

(Supplemental Movie 9). This movie depicts the initial growth phase, in which

both the size of aggregates and the number of single cells increase. Because

the aggregates visibly grow in size, we know that the fragmentation rate must

be bounded by the absolute growth rate of the population, β < rN ; if the

fragmentation rate were larger, cells would break off of the aggregate faster than

they would be produced by cell division, and the aggregates would shrink in size.

Taking, roughly, r ∼ 10−1 and N ∼ 103 (Fig. 4D), we estimate that β < 102,

or, with α = 10−1, β/α < 103. With this bound, we constrain our best fit

estimate to log10 β/α = 2.5. We took the uncertainties of the best fit estimates,

σlog10K and σlog10 β/α, to be the inverse of the local curvatures of χ2 at the best fit

values: σθ = 1/|∂2θχ2|, for θ = log10K, log10 β/α, resulting in σlog10K = 0.5 and

σlog10K = 0.4.

Ciprofloxacin-treated Enterobacter : To estimate the change in Enterobacter ’s

parameters upon antibiotic treatment, we conservatively assumed equal effects

on growth and fragmentation/aggregation and modeled treatment parameters as

r′ = εr and β′ = εβ. We then performed a single parameter grid search of ε

values, ranging from 10−1.75 to 10−0.5. We modeled the antibiotic treatment as
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a parameter quench with a 6 hour buffer time, in which the antibiotics entered

the intestine and began to take action on the bacteria. The value of 6 hours was

chosen based on the Vibrio time series data. Each simulation was initialized with

a cluster configuration drawn randomly from the imaging-derived dataset of actual

untreated Enterobacter populations. The parameters r, λ, and K were set to their

best fit or measured values, α was again fixed at 0.1 hr−1, and r and β were both

scaled by the same factors of ε. We then ran simulations for a modified simulation

time 24 − 6 = 18 hours and fit the mean and standard deviation of shifted log-

transformed abundances measured in the 24 hour treatment plating assays. A plot

of χ2 vs ε shows a clear minimum at ε = 10−1 (Fig. S11D).

Untreated Vibrio: Untreated Vibrio populations are comprised of almost

entirely single cells and therefore represent an extreme limit of the kinetic model.

In this regime, fragmentation is so thorough that even dividing cells immediately

separate and there is no appreciable aggregation. Because multicellular clusters are

extremely rare, our data are insufficient to extract numerical estimates of model

parameters. However, one can estimate a lower bound for the fragmentation rate,

β, by equating it to the total growth rate, rN , where N is the total population size;

i.e. clusters do not grow without fragmenting. This estimate yields β & 105. For

the expulsion rate, if we assume the same rate as Enterobacter (positing unchanged

intestinal mechanics), we obtain r/λ ∼ 7 These values place untreated Vibrio off-

scale in the phase diagram of Fig. 5B.

Ciprofloxacin-treated Vibrio: We performed a two-parameter fit to (β/α,

r), using the measured expulsion rate for Enterobacter (λ = 0.11 h−1 and the

typical untreated Vibrio abundance for a carrying capacity of K ∼ 105. We

observed that in approaching the extinction transition from above, simulated
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abundance distributions transition from unimodal to bimodal in shape, with a

peak emerging near N = 0 representing populations that suffered large, abrupt

collapses. As such, fitting just the mean and variance as was done for Enterobacter

produced inaccurate estimates. Therefore, we implemented full maximum likelihood

estimation using 100 simulated replicates to estimate the likelihood. While the fit

to treated Vibrio resulted in less-constrained parameter estimates in the r − β

plane compared to the Enterobacter fit, it did yield a clear maximum (Fig. S12C)

and a best-fit abundance distribution that matched experimental data within

uncertainties (Fig. S12D). Like with Enterobacter, we can attempt to assess the

validity of this model by comparing the now-parameter-free prediction of the cluster

size distribution with the image-derived data. Due to the rarity of large clusters

and to limited data, the experimental distribution is severely undersampled. It

shows, however, qualitative agreement with the model prediction (Fig. S12E).

Finally, to confirm that our choice of the simulation timestep τ did not affect

our parameter estimation, we decreased τ by a factor of 2 from 0.001 h to 0.0005

h and found no change in the best-fit cluster size distribution within sampling

uncertainties (Fig. S12F). Because our parameter grid used in the fit was coarse,

we estimate the uncertainty of our best-fit parameters as the grid spacing. Our

uncertainty values are therefore likely overestimated.
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4.9. Supplementary Figures

FIGURE 4.S1. Measurement of Enterobacter growth rate.
Image-derived quantification of initial growth dynamics in three zebrafish hosts.
Imaging began approximately 8 hours after inoculation.

FIGURE 4.S2. In vitro characterization of Vibrio response to ciprofloxacin.
A: In vitro growth curves of Vibrio in rich media (lysogeny broth) with different
ciprofloxacin concentrations. B-C: Effects of ciprofloxacin on Vibrio cell length
and speed, with grey indicating experiments without antibiotic treatment and
blue indicating exposure to 10 ng/ml ciprofloxacin. B: Distribution of Vibrio cell
lengths. Insets show representative fluorescence microscopy images of untreated and
10 ng/ml ciprofloxacin-treated cells; inset heights = 3.5 µm. C: Distribution of in
vitro swimming speeds of individual bacteria.
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FIGURE 4.S3. Additional Vibrio data
(Continued in footnote.)

FIGURE 4.S3 (cont’d) A: Representative masks of fluorescence microscopy images of in
vitro viability staining. Top row, untreated, bottom row, 10 ng/ml ciprofloxacin-treated cells
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(6 hour treatment). SYTO9, shown in green (left panel), indicates intact cells, propridium
iodine (PI), shown in magenta (middle panel), indicates dead cells. Double positive cells indicate
damaged but viable cells [131], shown in white in the merged, right panel. Scale bar = 100 µm.
B: Quantification of in vitro viability staining by fraction of cells corresponding to each case.
Mean and standard deviation across 2 replicates shown. C: Representative fluorescence microscopy
images of the SOS response in untreated (top row) and 10 ng/ml ciprofloxacin treated (bottom)
cells. Constitutive dTom expression is shown in magenta (left), recN -linked GFP expression in
green (middle), merged images shown in right panel. Scale bar = 50 µm. D: Quantification of
SOS response in fraction of SOS+ cells (Materials and Methods), mean and standard deviations
shown, n > 4 per treatment, total number of bacteria > 120 cells per treatment. E: Timeline of in
vivo antibiotic treatment. F: In vivo abundances of untreated and 10 ng/ml ciprofloxacin-treated
cohorts by day. Each small circle corresponds to a single host, black lines indicate medians and
quartiles.
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FIGURE 4.S4. Viability staining of Vibrio cells expelled from the gut shows that
ciprofloxacin does not induce widespread bacterial death in vivo.
(Continued in footnote.)
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FIGURE 4.S5. In vivo ciprofloxacin dose response for Vibrio:
Vibrio was mono-associated with germ-free larval zebrafish for 24 hours prior to
being left untreated, or treated with either 1, 10, or 100 ng/ml ciprofloxacin for an
additional 24 hours. Vibrio abundances were determined by dissection and plating.
Each circle corresponds to a single host intestine, black lines indicate medians and
quartiles. Data for the ‘untreated’ and ‘cipro 10 ng/ml’ groups were included in
Figure 2D and Supplemental Figure 2F, where they were combined with repeated
experiments.

FIGURE 4.S4 (cont’d): Three examples of fish stained with SYTO9, which indicates live
bacteria, and propidium iodide (PI), which indicates dead bacteria, for both untreated (A) and
10 ng/ml ciprofloxacin-treated (B) Vibrio. Images were obtained by light sheet fluorescence
microscopy and are maximum intensity projections of 3D images stacks. The field of view is
around the vent region, as shown in the fish schematic at the top of the figure. The approximate
boundary of the fish is indicated by the dashed orange line. Zebrafish cells also stain and
constitute the bulk of the fluorescence in the images. Examples of zebrafish cells are indicated
by white arrow heads. Examples of bacterial cells are indicated by the cyan arrows.
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FIGURE 4.S6. Vibrio does not form large aggregates in vitro in response to
ciprofloxacin.
(Continued in footnote.)
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FIGURE 4.S7. Design and construction of fluorescent SOS reporter.

FIGURE 4.S6 (cont’d) Representative fluorescence microscopy images of untreated (A) and 10
ng/ml ciprofloxacin-treated (B) Vibrio cells. Sample preparation and treatment are described in
the Cell length and swimming speed portion of the Materials and Methods section.

FIGURE 4.S7 (cont’d) A: Alignment of 100bp recN promoter region plus start codon for
the closely related V. cholerae strains ZWU0020 (zebrafish isolate used in this study, IMG
gene ID: 2705597027, locus tag: ZWU0020 01601), ZOR0036 (zebrafish isolate, IMG gene ID:
2705599600, locus tag: ZOR0036 00266), and El Tor N16961 (human pandemic isolate, IMG gene
ID: 637047325, locus tag: VC0852). B: Alignment of 100bp recN promoter region plus start codon
of the V. cholerae consensus recN promoter, Aeromonas veronii (zebrafish isolate, IMG gene
ID: 2526373590, locus tag: L972 03073), and E. coli HS (human commensal isolate IMG gene
ID: 640921890, locus tag: EcHS A2774). For panels A and B, SOS boxes are shaded based on
their conservation to the consensus gammaproteobacterial sequence (CTGTN8ACAG); ‘ATG’ start
codons are bolded; putative ribosome binding sites are boxed; and putative, near-consensus -10
promoter sequences (TATAAT) are bolded and underlined. C: Schematic of recN -based fluorescent
SOS reporter. Promoter comprises the consensus V. cholerae recN promoter region (PrecN ),
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FIGURE 4.S8. In vitro growth curves (in lysogeny broth) of Enterobacter with
varying concentrations of ciprofloxacin.

which was derived from the sequence alignment in panel A. The synthetic 5’ untranslated region
(UTR) contains an epsilon enhancer and consensus Shine-Dalgarno sequence. The open reading
frame (ORF) encodes superfolder green fluorescent protein (sfGFP). And the 3’ UTR contains
the synthetic transcriptional terminator L3S2P21. D: Schematic of assembled SOS reporter
in the context of the Tn7 tagging construct. Tn7L and Tn7R inverted repeats flank the Tn7
transposon. The SOS reporter was inserted upstream of a dTomato gene that is constitutively
expressed from a synthetic Ptac promoter. A gene encoding gentamicin resistance (gentR) was
used to facilitate genetic manipulation. E: Disk diffusion assays verifying SOS reporter activity.
Vibrio ZWU0020 carrying the SOS reporter was spread onto agar plates using glass beads at a
density that would give rise to a lawn of growth. Circular disks of Whatman filter paper (amber
dashed lines) loaded with either the genotoxic agent mitomycin C or the cell wall-targeting beta-
lactam antibiotic ampicillin were then placed in the center of the agar plates. After overnight
incubation at 30◦C, plates were imaged using a fluorescence stereomicroscope. In the presence
of mitomycin C, cells adjacent to the zone of inhibition (i.e., the area where there is no bacterial
growth) robustly expressed sfGFP whereas in the presence of ampicillin they did not.
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FIGURE 4.S9. Additional Enterobacter data.

FIGURE 4.S9 (cont’d) A: Representative fluorescence microscopy images of in vitro viability
staining. Top row, untreated, bottom row, 25 ng/ml ciprofloxacin-treated cells (6 hour treatment).
SYTO9, shown in green (left panel), indicates intact cells, propridium iodine (PI), shown in
magenta (middle panel), indicates dead cells. Double positive cells indicate damaged but viable
cells [131], shown in white in the merged, right panel. Scale bar = 100 µm. B: Quantification
of in vitro viability staining by fraction of cells corresponding to each case. Mean and standard
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deviation across 2 replicates shown. C: Timeline of in vivo antibiotic treatment. D: In vivo
abundances of untreated and 25 ng/ml ciprofloxacin-treated cohorts by day. Each small circle
corresponds to a single host, black lines indicate medians and quartiles. E: Maximum intensity
projection of untreated Enterobacter population showing an example of a population containing a
single large cluster and several single cells. Scale bar = 200 µm.
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FIGURE 4.S10. Viability staining of Enterobacter cells expelled from the gut shows
that ciprofloxacin does not induce widespread bacterial death in vivo.
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FIGURE 4.S10 (cont’d) Three examples of fish stained with SYTO9, which indicates live
bacteria, and propidium iodide (PI), which indicates dead bacteria, for both untreated (A)
and 25 ng/ml ciprofloxacin-treated (B) Enterobacter. Images were obtained by light sheet
fluorescence microscopy and are maximum intensity projections of 3D images stacks. The field
of view is around the vent region, as shown in the fish schematic at the top of the figure. The
approximate boundary of the fish is indicated by the dashed orange line. Zebrafish cells also stain
and constitute the bulk of the fluorescence in the images. Examples of zebrafish cells are indicated
by white arrow heads. Examples of bacterial cells are indicated by the cyan arrows.
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FIGURE 4.S11. Additional model details.

FIGURE 4.S11 (cont’d) A-B: Simulated heatmap of mean (A) and standard deviation (B) of
log10(abundance + 1) for varying values of aggregation and fragmentation rates. Both mean and
standard deviation depend primarily on the ratio of fragmentation to aggregation rates, rather
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than on each rate independently. Dashed magenta line in (A) represents α = β. Parameters:
r = 0.27 hr−1, λ = 0.11 hr−1, K = 105, simulation time = 64 hours, number of trials
decreased logarithmically with β from 1000 to 10. Units of α and β are hr−1. C: Heatmap of
χ2 for untreated Enterobacter fit to 7 dpf abundances (Materials and Methods). Parameters:
r = 0.27 hr−1, λ = 0.11 hr−1, α = 0.1 hr−1, simulation time = 64 hours, number of trials
decreased logarithmically with β from 1000 to 10. D: χ2 for fit to 6 dpf ciprofloxacin-treated
Enterobacter abundances as a function of the scaling parameter ε, which scales the growth and
fragmentation rates simultaneously according to r → εr and β → εβ. A clear minimum is seen
at ε = 0.1. Parameters: r = 0.27 hr−1, λ = 0.11 hr−1, α = 0.1 hr−1, β = 101.5 hr−1, simulation
time = 64 hours, number of trials decreased logarithmically with β from 1000 to 10. E: 3D phase
diagram of log10(abundance + 1) with axes fragmentation/aggregation (β/α), growth rate (r), and
expulsion rate (λ). Blue isosurface represents log10(abundance + 1) = 0.5 ± 0.5, yellow isosurface
represents log10(abundance + 1) = 5.5 ± 0.5. Parameters: α = 0.1 hr−1, simulation time = 64
hours, number of trials decreased logarithmically with β from 1000 to 10. Units of α and β are
hr−1. F: Slices through the 3D phase diagram in (E) for different values of λ.
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FIGURE 4.S12. Tau leaping simulations and Vibrio parameter inference.

FIGURE 4.S12 (cont’d) A-B: Comparison of direct stochastic simulation (“ssa”, gray circles)
and our fixed-tau leaping (“tau”, purple diamonds) algorithm with τ = 0.001 h. Simulations
using both methods were run with the best-fit parameters for untreated Enterobacter and 100
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FIGURE 4.S13. Model cluster size distributions are independent of how expulsion
rate scales with cluster size.

replicates. Both the cluster size distribution (A) and abundance histogram (B) show excellent
agreement between the two methods. C-E: Details of model fit to ciprofloxacin-treated Vibrio 24
h abundances. C: Heat map of log-likelihood. A manual grid search was performed over growth
rate (r) and fragmentation rate (β). D: Comparison of the best-fit abundance distribution (purple
line) to experimental data (blue circles). E: Comparison of the predicted cluster size distribution
(purple line) to experimental data (blue circles). Here, all model parameters were fixed at their
previously determined, best-fit values; there were no additional free parameters. The experimental
data distribution is severely undersampled, estimated from just 4 fish. F: Confirmation that the
best-fit solution is independent of our choice of τ , indicating that simulations were performed with
sufficient resolution. Simulations were run with the best-fit parameters but with τ decreased by
a factor of 2, from τ = 0.001 h (purple circles) to τ = 0.0005 h (green diamonds). Distributions
agree with one another within sampling uncertainties.

FIGURE 4.S13 (cont’d) Simulations were run with the expulsion rate depending on cluster
size according to En = λ(n/K)ν , with K the carrying capacity, and the exponent ν was varied.
This ansatz keeps the expulsion rate of clusters of size K constant. The resulting cluster size
distributions agree with one another within sampling uncertainties, which are smaller than the
marker size. This result justifies our use of the simple constant form of the expulsion kernel,
En = λ.
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4.10. Supplemental Movie captions

Supplemental Movie 1

Light sheet fluorescence microscopy movie of untreated Vibrio swimming in

a 6 dpf zebrafish gut. The density of cells is highest on the left (anterior), where

single cells cannot be resolved and the population appears as a single bright region

(see also Figure 1C). On the right (posterior), single cells are more easily resolved

and are seen swimming in and out of the intestinal folds. Each frame is from the

same optical plane. Scale bar = 50 µm.

Supplemental Movie 2

Animated z-stack of light sheet fluorescence microscopy images of untreated

Enterobacter in a 6 dpf zebrafish gut. Bacterial clusters (bright white puncta)

of diverse sizes are evident, from single cells up to a single cluster containing

thousands of cells that appears at a z depth of ∼ 70 µm. Hazy reflection of light

off of the fish’s swim bladder can be seen outside the intestinal boundary in the

upper right section of the images. Scale bar = 50 µm.

Supplemental Movie 3

Fluorescence microscopy movie of untreated Vibrio swimming between a glass

slide and a coverslip (Materials and Methods). Scale bar = 20 µm.
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Supplemental Movie 4

Fluorescence microscopy movie of Vibrio treated with 10 ng/ml ciprofloxacin

swimming between a glass slide and a coverslip (Materials and Methods). Cells

have undergone filamentation. Scale bar = 20 µm.

Supplemental Movie 5

Time-lapse light sheet fluorescence microscopy movie of an established Vibrio

population responding to 10 ng/ml ciprofloxacin. Each frame is a maximum

intensity projection of the full 3D intestinal volume. The time between frames

is 20 min. Initially, the population consists of a dense collection of individual,

motile cells (Supplemental Movie 1, Figure 1C). Antibiotics are added after the

second frame of the movie. Following motility loss, cells leave the swarm and are

compacted into aggregates, which are subject to strong transport down the length

of the intestine and are eventually expelled. Scale bar = 200 µm.

Supplemental Movie 6

Light sheet fluorescence microscopy movies of Vibrio in fish treated with 10

ng/ml ciprofloxacin. The left panel movie shows constitutive dTom expression. The

right panel movie was taken immediately after the left panel movie and shows a

GFP reporter of the SOS response (Materials and Methods), which is expressed

in cells strongly affected by ciprofloxacin (Fig. S3C and S3D). GFP-positive cells

swim slowly or are aggregated. Each frame is from the same optical plane. Scale

bar = 25 µm.
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Supplemental Movie 7

Time-lapse light sheet fluorescence microscopy movie of an untreated

Enterobacter population showing an example of the expulsion process. Each frame

is a maximum intensity projection of the full 3D intestinal volume. Time between

frames is 10 min. The population is initially comprised of many small bacterial

clusters and a single large cluster. Over time, small clusters are incorporated into

the large one and the mass is transported down the length of the gut and expelled.

Image intensities are log-transformed. Scale bar = 200 µm.

Supplemental Movie 8

Time-lapse light sheet fluorescence microscopy movie of an untreated

Enterobacter population showing an example of the aggregation process. Each

frame is a maximum intensity projection of the full 3D intestinal volume. Time

between frames is 10 min. A collection of initially disconnected bacterial clusters on

the left (anterior) side of the field of view gradually combine into a single cluster.

Image intensities are log-transformed. Scale bar = 200 µm.

Supplemental Movie 9

Time-lapse light sheet fluorescence microscopy movie of an untreated

Enterobacter population showing examples of the growth and fragmentation

processes. Each frame is a maximum intensity projection of the full 3D intestinal

volume. The time between frames is 20 min. The movie begins 8 hours after

the initial exposure to Enterobacter, by which time a small founding population

has been established. Over time, the aggregates grow in size as cells divide,

and new single cells also appear in the vicinity of the aggregates, likely due to
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fragmentation. Individual cell divisions from planktonic cells are also visible. Image

intensities are log-transformed. Scale bar = 200 µm.

Supplemental Movie 10

Light sheet fluorescence microscopy movie of Vibrio in a fish treated with

10 ng/ml ciprofloxacin for ∼18 hours. Each frame is from the same optical plane,

which spans the anterior-most region of the intestine known as the intestinal bulb

(Fig. 1B). The bright signal in the left (anterior) side of the frame is a dense,

motile swarm of planktonic cells (Supplemental Movie 1 and Fig. 1C). Moving

from left to right (anterior-posterior) across the field of view, cells exhibiting

filamentation and reduced motility are evident, along with the beginnings of small

aggregates. Scale bar = 50 µm.

Supplemental Movie 11

Light sheet fluorescence microsocopy movie of Vibrio in a fish treated with 10

ng/ml ciprofloxacin for ∼18 hours. Each frame from the same single optical plane

that captures a portion of the midgut (Fig. 1B). The bright signal is an aggregate

of Vibrio cells that nearly fills the width of the midgut lumen. Two cells are seen

swimming near the end of the movie. Scale bar = 25 µm.
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CHAPTER V

SWIMMING MOTILITY OF A GUT BACTERIAL SYMBIONT PROMOTES

RESISTANCE TO INTESTINAL EXPULSION AND ENHANCES

INFLAMMATION

5.1. Statement of author contributions

This chapter was published as [132], a co-authored publication. Co-authors

included Travis Wiles, a co-first author along with myself, Elena Wall, Karen

Guillemin, and Raghuveer Parthasarathy. My contributions included: designing

the study, performing the imaging, analyzing the data, and writing the paper.

5.2. Abstract

Some of the densest microbial ecosystems in nature thrive within the

intestines of humans and other animals. To protect mucosal tissues and maintain

immune tolerance, animal hosts actively sequester bacteria within the intestinal

lumen. In response, numerous bacterial pathogens and pathobionts have evolved

strategies to subvert spatial restrictions, thereby undermining immune homeostasis.

However, in many cases, it is unclear how escaping host spatial control benefits gut

bacteria and how changes in intestinal biogeography are connected to inflammation.

A better understanding of these processes could uncover new targets for treating

microbiome-mediated inflammatory diseases. To this end, we investigated the

spatial organization and dynamics of bacterial populations within the intestine

using larval zebrafish and live imaging. We discovered that a proinflammatory

Vibrio symbiont native to zebrafish governs its own spatial organization using
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swimming motility and chemotaxis. Surprisingly, we found that Vibrio’s motile

behavior does not enhance its growth rate but rather promotes its persistence by

enabling it to counter intestinal flow. In contrast, Vibrio mutants lacking motility

traits surrender to host spatial control, becoming aggregated and entrapped within

the lumen. Consequently, non-motile and non-chemotactic mutants are susceptible

to intestinal expulsion and experience large fluctuations in absolute abundance.

Further, we found that motile Vibrio cells induce expression of the proinflammatory

cytokine TNFα in gut-associated macrophages and the liver. Using inducible

genetic switches, we demonstrate that swimming motility can be manipulated in

situ to modulate the spatial organization, persistence, and inflammatory activity of

gut bacterial populations. Together, our findings suggest that host spatial control

over resident microbiota plays a broader role in regulating the abundance and

persistence of gut bacteria than simply protecting mucosal tissues. Moreover,

we show that intestinal flow and bacterial motility are potential targets for

therapeutically managing bacterial spatial organization and inflammatory activity

within the gut.

5.3. Introduction

Humans and other animals foster diverse microbial communities within

their intestines. Although these symbiotic consortia support vital aspects of host

biology, they can also harbor proinflammatory pathogens and pathobionts, which

are indigenous members of the microbiota that have latent pathogenic potential

[38, 133]. Understanding how hosts normally constrain the virulent activities of

resident bacteria and the mechanisms by which disease-causing lineages escape this
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control will open new opportunities for developing microbiome-based therapies to

improve human and animal health.

One way hosts keep potentially pathogenic bacterial lineages in check

within the intestine is by imposing widespread restrictions on microbiota spatial

organization. The most recognized spatial control measures employed by the host

are mucus, immunoglobulins, and antimicrobial peptides, which act to confine

bacteria to the intestinal lumen, away from mucosal surfaces [35, 36, 37]. In turn,

it is thought that intense competition for resources pushes bacteria to evolve

strategies for subverting host control and occupying new spatial niches [134, 135].

In line with this idea, several prototypic pathobionts undergo blooms in abundance

that are coincident with shifts in intestinal biogeography [38, 39, 40, 41]. A

potential trait underlying this behavior that is common to many pathobionts—as

well as numerous bona fide pathogens—is flagella-based swimming motility

[136, 137, 138].

Swimming motility, together with chemotaxis, gives bacteria the agency

to govern their own spatial organization and access niches that are typically

thought to enhance growth and survival [139, 140, 141, 142]. The connection

between motility and gastrointestinal colonization has historically been studied

in the context of pathogens such as Helicobacter pylori, Campylobacter jejuni,

Vibrio cholerae, and Salmonella Typhimurium [137]. With S. Typhimurium in

particular, it has been found that this pathogen uses motility and chemotaxis

to associate with and invade the intestinal mucosa, induce inflammation, and

facilitate growth [142, 143, 144]. In several instances it has also been shown that

flagellin, the protein subunit comprising the bacterial flagellum, can be a major

driver of inflammation [145, 146, 147]. Highlighting the importance of curbing
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the pathogenic potential of motile bacteria, studies in mice have revealed several

mechanisms by which hosts detect and quench flagellar motility to maintain

intestinal homeostasis [36, 145, 148, 149]. In total, significant progress has been

made in understanding the role motility plays in the infectious lifestyles of

pathogens and its proinflammatory consequences for the host. However, a broader

view of how motility behaviors might be shaping the lifestyles of resident gut

bacteria remains limited and largely unexplored.

Insights into this question have started to emerge from our studies on how

diverse bacterial taxa colonize the zebrafish intestine. The optical transparency

and small size of larval zebrafish make them an ideal vertebrate model for probing

how bacteria use motility to spatially organize their populations within a living

animal. With light sheet fluorescence microscopy (LSFM) it is possible to capture

the full three-dimensional architecture of bacterial populations at single bacterial

cell resolution across the entire length of the larval intestine [51]. In addition, the

spatiotemporal dynamics of bacterial and host cells can be followed in real time or

over the course of many hours. Using LSFM, we have found that for many non-

inflammatory commensal bacteria native to the zebrafish microbiome, the bulk of

their populations are non-motile and reside as dense multicellular aggregates within

the intestinal lumen [48, 53]. Notably, this pattern of bacterial spatial organization

is consistent with histological data from both the mouse and human intestine [24,

25, 150, 151]. We discovered that in this aggregated regime, bacteria are extremely

vulnerable to intestinal flow. Consequently, aggregated bacterial populations can be

stochastically expelled from the host in large numbers, producing punctuated drops

in abundance [32, 33].
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In contrast, unlike most zebrafish gut bacteria studied thus far, we have

identified an isolate of non-toxigenic V. cholerae (strain ZWU0020, further referred

to as “Vibrio” for brevity) that exhibits pathobiont-like characteristics and

assembles intestinal populations made up of planktonic cells displaying vigorous

swimming motility [32, 61]. This particular Vibrio strain was originally isolated

from the intestine of an apparently disease-free zebrafish and does not encode

cholera toxin or toxin-coregulated pilus [62]. The mass swimming behavior of

Vibrio populations gives them a liquid-like space-filling property that promotes

frequent and close contact with the intestinal mucosa [32]. This attribute appears

to make Vibrio highly resistant to intestinal expulsion. As a result, Vibrio stably

colonizes the intestine and reaches absolute abundances that are up to ten times

higher than other zebrafish symbionts [33]. Vibrio’s unique intestinal lifestyle is

also potentially linked to its pathobiont character, which is marked by its ability to

supplant established, naturally aggregated bacterial populations [32], and induce

intestinal inflammation and exacerbate pathology in susceptible hosts [44, 61].

In the present work we used Vibrio as model gut symbiont to investigate

the mechanisms by which its motility behaviors control its colonization and

contribute to its proinflammatory potential. By combining live imaging, host and

bacterial mutants, and in situ manipulation of motility behaviors, we were able to

disentangle Vibrio’s requirements for motility during multiple stages of intestinal

colonization. We found that for Vibrio, swimming motility and chemotaxis do

not enhance exponential growth rate but rather enable cells to physically resist

intestinal expulsion and maintain stable, highly abundant populations. We also

found that host tissues—namely, gut-associated macrophages and cells within the

liver—are acutely sensitive to bacterial motility and spatial organization within the
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intestine. Together, our work expands the scope of bacterial swimming motility

during intestinal colonization by revealing how motility can shape the large-

scale spatial organization and dynamics of gut bacterial populations. Our study

further shows that intestinal mechanics are a host spatial control measure capable

of regulating the abundance and persistence of gut bacteria. Ultimately, our

work yields new mechanistic insights into the form and function of the intestinal

ecosystem and highlights that bacterial motility and the factors controlling the

spatial organization of resident microbiota are potential targets for therapeutic

manipulation of the gut microbiome.

5.4. Results

5.4.1. Loss of swimming motility or chemotaxis attenuates intestinal

colonization and interbacterial competition

To dissect the role of flagellar motility during intestinal colonization, we

generated two motility-deficient Vibrio mutants (S1A Fig). To test swimming

motility in general, we deleted the two-gene operon pomAB that encodes the polar

flagellar motor (creating a swimming motility-deficient Vibrio mutant we refer to as

“∆mot”). To test Vibrio’s ability to spatially organize its populations in response

to environmental cues, we deleted the gene cheA2, which encodes a histidine kinase

necessary for chemotaxis (creating a chemotaxis-deficient Vibrio mutant we refer to

as “∆che”). In vitro, ∆mot exhibited complete loss of swimming motility whereas

∆che had a run-biased behavior with swim speeds comparable to wild type but

failed to chemotax in soft agar (S1B Fig). Both motility mutants displayed normal

growth and assembled a single polar flagellum similar to wild type (S1C and S1D

Fig).
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We first assessed the absolute abundances of each strain over time by gut

dissection and cultivation. We inoculated equal amounts of wild-type Vibrio, ∆mot,

and ∆che individually into the aqueous environment of four-day-old germ-free

larval zebrafish. Vibrio rapidly colonized germ-free animals to high abundance,

reaching a maximal carrying capacity of 105–106 cells per intestine by 24 h post-

inoculation (hpi) and maintaining a high-level of abundance through 72 hpi (Fig

1A). In contrast, ∆mot and ∆che displayed attenuated intestinal colonization

phenotypes (Fig 1A). Both mutants were slow to access the zebrafish intestine and

reached maximal abundances at 24 hpi that were 10–100-fold lower than wild type

(Fig 1A). This observation suggests that each mutant has a reduced immigration

rate, which is in line with previous work indicating that bacterial motility traits

may facilitate dispersal and initial colonization of the zebrafish intestine [115, 152].

Importantly, differences in intestinal abundances did not appear to be due to

differences in the water environment because the levels of each strain outside the

fish remained constant and comparable over the assay period (Fig 1A inset).

FIGURE 5.1 (cont’d) (A) Abundances of wild-type Vibrio, ∆mot, and ∆che during mono-
association. Plotted are medians and interquartile ranges (n ≥ 17 animals/marker). Significant
differences between each mutant and wild-type Vibrio determined by Mann-Whitney (purple
asterisks: ∆mot; cyan asterisks: ∆che). ***p < 0.0001, **p = 0.0002. Inset shows median
bacterial abundances in the water environment from each replicate experiment across all time
points. (B) Experimental timeline of Aeromonas–Vibrio competition. (C) Intestinal abundances
of Aeromonas and wild-type or mutant Vibrio strains during different competition schemes.
Aeromonas abundances while alone during mono-association are shown for statistical comparison.
Letters denote significant differences between Aeromonas treatments. Lines show paired
Aeromonas and Vibrio abundances within individual fish. p < 0.05, Kruskal-Wallis and Dunn’s
multiple comparisons test. Adjacent bars denote medians and interquartile ranges. Significant
differences based on Wilcoxon between Aeromonas and each Vibrio strain are noted below
each competition. (D) Abundances of wild-type and mutant Vibrios during competition with
Aeromonas (from panel C) normalized to abundances during mono-association at 24 hpi (from
panel A). Bars denote medians and interquartile ranges. Significant differences determined by
Mann-Whitney. Fold-decreases based on medians. Underlying data plotted in A, C, and D are
provided in S1 Data.
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FIGURE 5.1. Loss of swimming motility or chemotaxis attenuates intestinal
colonization and interbacterial competition.
(Continued in footnote.)
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We next compared the ability of wild-type Vibrio and each mutant to invade

an established population of Aeromonas veronii (strain ZOR0001, further referred

to as “Aeromonas”). Like Vibrio, Aeromonas species are abundant members of the

zebrafish intestinal microbiota [62]. Previous studies suggest that these two genera

naturally compete against one another within complex intestinal communities

[64]. In addition, we have shown that Vibrio is capable of invading and displacing

established Aeromonas populations in gnotobiotic animals [32]. Following the

competition scheme depicted in Fig 1B, we found that each Vibrio strain had

a distinct competitive interaction with Aeromonas (Fig 1C). Wild-type Vibrio

potently colonized Aeromonas-occupied intestines and induced 10–100-fold drops

in Aeromonas abundances (Fig 1C). Zebrafish colonized with the ∆mot mutant,

however, were dominated by Aeromonas, which did not experience any significant

declines in abundance compared to mono-association (Fig 1C). Invasion with the

∆che mutant had an intermediate impact on Aeromonas abundances and the

two appeared to co-exist (Fig 1C). Comparing abundances during competition to

those during mono-association showed that each Vibrio strain’s colonization was

hindered to varying degrees while invading established Aeromonas populations (Fig

1D). Wild-type Vibrio abundances were only 2-fold lower during competition than

during mono-association (Fig 1D). In contrast, ∆mot abundances were 6-fold lower

(and in several instances reduced by up to 100-fold), whereas the impact on ∆che

abundances was intermediate with a 4-fold reduction (Fig 1D). Overall, these data

show that Vibrio requires swimming motility and chemotaxis for normal intestinal

colonization and interbacterial competition.
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5.4.2. Motility and chemotaxis mutants have altered intestinal spatial

organization

We previously showed that wild-type Vibrio cells strongly localize to the

larval zebrafish foregut (Fig 2A and 2B) [53], which is an anatomical region

comparable to the mammalian small intestine (namely, the duodenum and jejunum)

[42, 153], and display a highly active swimming behavior both within the intestinal

lumen and at mucosal surfaces [32]. In contrast, zebrafish symbionts naturally

lacking motility within the gut, like Aeromonas, form populations that display

a posterior-shifted spatial distribution and a high degree of lumenal aggregation

[32, 53]. Thus, the impaired competitiveness of ∆mot and ∆che against Aeromonas

(Fig 1C) could be associated with changes in their intestinal spatial organization.

To determine how motility and chemotaxis affect Vibrio’s cellular behavior

and spatial organization within the intestine, we examined wild type, ∆mot, and

∆che in live animals using LSFM. A fluorescently marked variant of each strain

was first mono-associated with germ-free animals and then imaged at 48 hpi. In

FIGURE 5.2 (cont’d) (A) Cartoon of a 6-day-old zebrafish. Dashed box marks intestinal
region imaged by LSFM. (B) Anatomical regions of the larval zebrafish intestine. (C) Maximum
intensity projections acquired by LSFM showing the spatial organization of wild-type Vibrio
(top), ∆mot (middle), and ∆che (bottom) within the intestine. Top right inset shows a zoomed-in
view of wild-type Vibrio cells in a separate fish that was colonized with a 1:100 mixture of green-
and red-tagged variants so that the cellular organization of the dense Vibrio population could
be discerned. The dilute channel (green) is shown. Dashed lines mark approximate intestinal
boundaries. Open arrowheads: single bacterial cells; solid arrowheads: small aggregates; tailed
arrowheads: large aggregates. Arrowheads with a black stroke mark swimming cells, which
appear as comet-like streaks. (D) Cartoon showing the intestinal region pictured in panel (E).
(E) Maximum intensity projections acquired by LSFM showing transverse view of the foregut
region colonized with wild type, ∆mot, or ∆che. (F) Fraction of planktonic cells contained within
each strain’s population. Each circle is a measurement from a single intestinal population. Bars
denote medians and interquartile ranges. Letters denote significant differences. p < 0.05, Kruskal-
Wallis and Dunn’s multiple comparisons test. (G) Image-derived abundances of wild type (n =
7), ∆mot (n = 4), and ∆che (n = 5) with respect to position along the length of the gut. Shaded
regions mark confidence intervals. Underlying data plotted in F and G are provided in S1 Data.
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FIGURE 5.2. Motility and chemotaxis mutants have altered intestinal spatial
organization.
(Continued in footnote.)
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line with our previous characterizations [48, 53], wild-type Vibrio assembled dense

populations concentrated within the foregut that were almost entirely composed of

planktonic cells swimming in the lumen as well as within the intestinal folds (Fig

2C–2G, S1 and S2 Mov). A movie representation of the static image presented in

Fig 2C “wt” under “foregut region” was previously published and can be viewed

here: https://doi.org/10.6084/m9.figshare.7040309.v1 [48]. In contrast,

∆mot and ∆che assembled populations with greatly altered behavior and spatial

organization.

Populations of ∆mot were non-motile whereas ∆che had a small subset of

motile cells that could often be observed in the foregut (Fig 2C, S1 Mov). Both

∆mot and ∆che also became highly aggregated within the intestine (Fig 2C–2E)

despite exhibiting no signs of aggregation during in vitro culture (S1B and S1C

Fig). In S1 Mov we provide a live representation of ∆che within the midgut

to emphasize its aggregated form within this intestinal region. The fraction of

planktonic cells contained within each mutant population within the intestine was

>10-fold lower than wild type (Fig 2F). The aggregated cells of ∆mot appeared

to be mostly restricted to the lumen whereas the swimming cells of ∆che, like

wild type, were observed within the intestinal folds (Fig 2D and 2E, S2 Mov).

The ∆mot mutant was also largely excluded from the anterior most portion

of the foregut whereas ∆che often formed a layer of cells associated with the

anterior wall near the esophageal-intestinal junction (Fig 2C). The population-

wide aggregation of both mutants (which we refer to as cohesion) coincided with an

overall posterior-shift in distribution compared to wild type (Fig 2C and 2G). This

shift in distribution is consistent with previous findings of strong correlations across

bacterial species between cohesion and localization along the zebrafish intestine
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[53]. In total, our live imaging data show that Vibrio requires swimming motility

and chemotaxis to spatially organize its populations within the intestine. Further,

∆mot and ∆che formed aggregated and lumen-restricted populations reminiscent of

zebrafish bacterial symbionts that largely lack swimming motility in vivo [48, 53].

5.4.3. Swimming motility and chemotaxis promote persistence by

enabling bacteria to counter intestinal flow and resist expulsion

We previously found that naturally aggregated bacteria are vulnerable to

intestinal flow and expulsion from the host [32, 33]. To explore if the attenuated

colonization phenotypes of ∆mot and ∆che are connected to their perturbed

spatial organization in a way that causes increased sensitivity to the intestine’s

mechanical forces, we followed the spatiotemporal dynamics of wild-type Vibrio

and each mutant in live animals by LSFM. Prior to imaging, each strain was given

24 h to reach its respective carrying capacity in germ-free zebrafish. Despite wild-

type Vibrio showing modest declines in abundance from 24–72 hpi (Fig 1A), it

was highly uniform and stable over periods of >10 h, maintaining its abundance,

low cohesion, and foregut localization (Fig 3A, S3 Mov). We note that image-

based quantification of wild-type Vibrio abundances was performed in a concurrent

study [33] and have been replotted here. In contrast, ∆mot and ∆che underwent

dramatic fluctuations in their abundances and spatial organization (Fig 3A, S3

Mov). Cells and small aggregates in ∆mot and ∆che populations appeared to

become packed by intestinal contractions into large masses within the midgut

before being abruptly expelled. Autofluorescent material was often observed

surrounding aggregated cells, suggesting that host mucus was involved in this

process. Image-based quantification of absolute abundances showed that >90%
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FIGURE 5.3. Swimming motility and chemotaxis promote persistence by enabling
bacteria to counter intestinal flow and resist expulsion.
(Continued in footnote.)

of ∆mot and ∆che populations could be lost in a single collapse event (Fig 3A).

Following collapses, residual small aggregates in the midgut and low numbers

of planktonic cells in the foregut appeared to undergo bursts in replication that

effectively restored the abundance and spatial organization of the population before

the next collapse. Notably, this pattern of aggregation, collapse, and regrowth

mirrors other non-motile symbiont populations, namely, those formed by zebrafish-

derived Aeromonas and Enterobacter species [32, 33]. Animating the relationship

between cohesion and intestinal localization for each Vibrio strain across animals

over time showed that both mutant populations exhibit large fluctuations in spatial

organization whereas wt Vibrio populations are highly stable (S4 Mov).

FIGURE 5.3 (cont’d) (A) Image-based quantification of abundances over time for wild-
type Vibrio, ∆mot, and ∆che. Lines represent individual populations in individual fish. (B)
Cultivation-based quantification of abundances for ∆mot and ∆che in co-housed ret-/- mutant
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Our live imaging results suggested that the altered spatial organization

of ∆mot and ∆che populations, namely their increased cohesion, makes them

more susceptible to intestinal flow and expulsion, and thus is likely the cause of

their reduced abundances. This putative mechanism contrasts with the general

assumption that swimming motility and chemotaxis primarily promote bacterial

growth by facilitating nutrient foraging and avoidance of hostile environments. To

probe the likelihood of these two different mechanisms we quantified the in vivo

exponential growth rates of ∆mot and ∆che (see Methods). We found that both

∆mot and ∆che exhibit exponential growth rates within the intestine (∆mot =

0.7 ± 0.3 hr-1 [n = 2]; ∆che = 0.9 ± 0.4 hr-1 [n = 5]) that are comparable to a

previously determined wild-type Vibrio exponential growth rate of 0.8 ± 0.3 hr-1

(mean ± standard deviation) [32]. This result supports the idea that the reduced

intestinal abundances of ∆mot and ∆che are not due to attenuated growth, but

rather are a consequence of altered behavior and spatial organization that increases

susceptibility to intestinal flow and expulsion.

To test this expulsion-based mechanism more directly, we assessed whether

the abundance of ∆mot and ∆che could be rescued in ret-/- mutant zebrafish

hosts, which have reduced intestinal transport due to a dysfunctional enteric

nervous system [32, 49]. Humans with ret mutations can develop Hirschsprung

Disease, which is an affliction characterized by intestinal dysmotility and altered

gut microbiome composition [154, 155]. Strikingly, we found that the intestinal

abundances of both ∆mot and ∆che were fully rescued to wild-type levels in ret-/-

mutant animals (Fig 3B). In contrast, ∆mot and ∆che abundances in co-housed

hosts and wild-type/heterozygous sibling controls (sib). Abundances of wild-type Vibrio, ∆mot,
and ∆che in wild-type hosts (from Fig 1A, 72 hpi) are shown for comparison. Bars denote
medians and interquartile ranges. Letters denote significant differences. p < 0.05, Kruskal-Wallis
and Dunn’s multiple comparisons test. Underlying data are provided in S1 Data.
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sibling control animals mirrored those in wild-type animals (Fig 3B). Importantly,

we found that wild-type Vibrio shows no change in intestinal abundance in ret-

/- mutant animals (S2A Fig), indicating that the rescue of ∆mot and ∆che

is not due to a general overgrowth phenomenon. In addition, inspecting the

spatial organization of ∆mot in ret-/- mutant animals revealed that in some

instances ∆mot populations displayed relocalization to the anterior portion of the

foregut, suggesting that intestinal flow is responsible for ∆mot’s posterior-shifted

distribution in wild-type animals (S2B Fig). Together, these results provide further

evidence that swimming motility and chemotaxis do not promote persistence by

affecting growth per se but by enabling bacterial cells to physically resist intestinal

flow and expulsion from the host.

5.4.4. Sustained swimming motility is required for maintaining

intestinal spatial organization and persistence

Without swimming motility, Vibrio has clear defects in both immigration and

intestinal persistence. Therefore, we sought to experimentally separate the roles

motility plays during these different stages of colonization. We specifically wanted

to determine whether Vibrio requires sustained motility for intestinal persistence or

if the impaired immigration and altered assembly of motility mutant populations

was in some way responsible for their aggregated and collapsing phenotype. To

accomplish this, we built a motility “loss-of-function” switch that uses inducible

CRISPR interference (CRISPRi) to suppress transcription of the flagellar motor

gene operon pomAB (Fig 4A and S3 Fig). The motility loss-of-function switch

is based on a tetracycline induction system in which a constitutively expressed

Tet repressor protein (TetR) is used to regulate the expression of a catalytically
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FIGURE 5.4. Sustained swimming motility is required for maintaining intestinal
spatial organization and persistence.
(Continued in footnote.)

dead Cas9 (dCas9). We incorporated a constitutively expressed single guide

RNA (sgRNA) to target dCas9 to the 5’ end of the native pomAB locus where

it would block transcriptional elongation. To visually track switch activity in

bacterial populations, we co-expressed dcas9 with a gene encoding superfolder

green fluorescent protein (sfGFP) (Fig 4A). To mark all cells independent of

switch activity, we co-expressed a gene encoding dTomato with tetR. Details on

switch design and optimization are provided in the Methods and in S3A–S3D Fig.

We integrated the motility loss-of-function switch into the genome of wild-type

Vibrio (creating VibriomotLOF) and confirmed that induction of the switch with

the tetracycline analog anhydrotetracycline (aTc) robustly inactivates swimming

motility in vitro without perturbing growth (S3E and S3F Fig).

FIGURE 5.4 (cont’d) (A) Schematic of CRISPRi-based motility loss-of-function (LOF)
switch. Lower left table summarizes switch activity and bacterial behaviors plus/minus aTc.
Bent arrows denote promoters, “T” denotes transcriptional terminators. Solid lines represent
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With the motility loss-of-function switch constructed, we tested if sustained

swimming motility is required by established Vibrio populations to persist within

the intestine using both live imaging and cultivation-based measurements of

abundance (Fig 4B). For live imaging, germ-free zebrafish were first colonized to

carrying capacity with VibriomotLOF. At 24 hpi, repression of motility was induced

by adding aTc to the water of colonized zebrafish hosts. We then performed time

series imaging of multiple animals using LSFM. Initially, subpopulations emerged

that could be distinguished by their switch activation status, behavior, and spatial

organization (S5 Mov). Unswitched motile cells expressing only dTomato displayed

a foregut localization pattern typical of wild-type Vibrio (Fig 4C). In contrast, we

observed non-motile cells expressing GFP becoming aggregated and segregating

away from motile populations (Fig 4C). GFP-positive cells within aggregates were

more restricted to the intestinal lumen and their arrangement suggested they were

encased in mucus (Fig 4C and S5 Mov). By 10 hours post-induction, VibriomotLOF

displayed clear shifts in population center of mass toward the midgut together with

expulsion of multicellular aggregates (Fig 4D).

Cultivation-based measures of absolute abundances revealed that at 24 h

post-induction VibriomotLOF populations had a 2.5-fold lower median abundance

compared to uninduced controls (Fig 4E). Inducing for an additional 24 h resulted

constitutive interactions, dashed lines represent induced interactions. (B) Experimental timelines
used to investigate in situ inactivation of swimming motility. (C) A maximum intensity projection
acquired by LSFM of an animal colonized by VibriomotLOF at 6 h post-induction. Dashed line
mark approximate intestinal boundaries. An arrowhead with a black stroke marks an area of
swimming cells expressing only dTomato (magenta, “switch = OFF”). White tailed arrowheads
mark aggregated cells (green, “switch = ON”). (D) Population center of mass over time for
intestinal populations of wild-type Vibrio (gray) and VibriomotLOF (magenta/green). Lines
are single bacterial populations within individual fish. Vertical dashed line marks time of aTc
induction. (E) Abundances of VibriomotLOF at 24 and 48 h post-induction with aTc. Bars
denote medians and interquartile ranges. Significant differences determined by Mann-Whitney.
Underlying data plotted in D and E are provided in S1 Data.
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in a 5-fold reduction in median intestinal abundance (Fig 4E). Together, our

experiments using the motility loss-of-function switch demonstrate that Vibrio

requires sustained swimming motility to maintain its spatial organization and to

persist at high levels. Our results also reveal that relatively brief interruptions in

Vibrio’s swimming behavior are capable of producing rapid and dynamic changes in

spatial organization and drops in abundance.

5.4.5. Acquisition of swimming motility or chemotaxis leads to rapid

recovery of intestinal spatial organization and abundance

We next asked whether established ∆mot and ∆che populations could

recover their spatial organization and abundance if they reacquired swimming

motility or chemotaxis, respectively. Answering this question would give insight

into the capacity of resident gut bacteria and would-be pathobionts to exploit

a sudden loss of host spatial control. Using the motility loss-of-function switch

backbone, we constructed motility and chemotaxis “gain-of-function” switches by

inserting either pomAB or cheA2 in place of dcas9 (Fig 5A). The motility and

chemotaxis gain-of-function switches were integrated into the genomes of ∆mot

and ∆che, respectively, creating ∆motGOF and ∆cheGOF. In vitro tests showed

that inducing the gain-of-function switches restored wild-type swimming behaviors

in each strain without altering growth (S4A–S4C Fig). Moreover, activation of

motility and chemotaxis prior to colonization produced intestinal abundances at

24 hpi that matched the carrying capacity of wild type (Fig 5B). These functional

tests show that the motility and chemotaxis gain-of-function switches can be used

to inducibly complement the ∆mot and ∆che mutants. Moreover, these genetic

complementation experiments also show that the colonization phenotypes of ∆mot
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and ∆che were not due to off-target or polar effects resulting from our chromosomal

manipulations.

We monitored the response dynamics of activating swimming motility or

chemotaxis in established populations following similar experimental timelines as

depicted in Fig 4B. Live imaging revealed that induced populations of ∆motGOF

and ∆cheGOF underwent clear shifts in spatial distribution toward the foregut

within the first 24 h of induction compared to uninduced controls (Fig 5C).

Strikingly, ∆motGOF and ∆cheGOF showed that large-scale changes in behavior

and spatial organization could occur extremely rapidly, with both populations

becoming more space-filling and foregut-localized within hours (Fig 5D, S6 and

S7 Movs). Cultivation-based measurements of absolute abundances showed only

modest increases in median intestinal abundances in the first 24 h of induction (Fig

5E, 48 hpi). However, by 48 h post-induction the median intestinal abundances

of ∆motGOF and ∆cheGOF populations had recovered to wild-type levels (Fig

FIGURE 5.5 (cont’d) (A) Schematic of the motility and chemotaxis gain-of-function (GOF)
switches. Table summarizes switch activity and bacterial behaviors plus/minus aTc. (B)
∆motGOF or ∆cheGOF abundances 24 hpi plus/minus aTc. ∆motGOF and ∆cheGOF were
pre-induced overnight in liquid culture prior to inoculation, aTc was maintained in the water
for continuous switch activation. Abundances of wild-type Vibrio, ∆mot, and ∆che in wild-type
hosts (from Fig 1A, 24 hpi) are shown for comparison. Bars denote medians and interquartile
ranges. Letters denote significant differences. p < 0.05, Kruskal-Wallis and Dunn’s multiple
comparisons test. (C) Probability densities showing the spatial distributions of ∆motGOF and
∆cheGOF at 24 h post-induction. Magenta = uninduced, green = induced. Shaded regions mark
standard errors. Sample sizes (populations within individual animals): ∆motGOF “OFF”, n =
5; ∆motGOF “ON”, n = 7, ∆cheGOF “OFF”, n = 6; ∆cheGOF “ON”, n = 6. (D) Maximum
intensity projections acquired by LSFM from the same animal showing ∆cheGOF undergoing
rapid changes in spatial organization following induction. Dashed lines mark approximate
intestinal boundary. (E) Abundances of ∆motGOF and ∆cheGOF over time. Magenta and green
circles indicate abundances plus/minus aTc, respectively. Plotted are medians and interquartile
ranges (n ≥ 19 animals/marker). Abundances of wild-type Vibrio, ∆mot, and ∆che (from Fig 1A)
are shown for comparison. Significant differences between each mutant and wild-type determined
by Mann-Whitney (magenta asterisks: uninduced; green asterisks: induced). ***p < 0.0001, ns =
not significant. Underlying data plotted in B, C, and E are provided in S1 Data.
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FIGURE 5.5. Acquisition of swimming motility or chemotaxis leads to rapid
recovery of intestinal spatial organization and abundance.
(Continued in footnote.)
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5E, 72 hpi). Therefore, regaining swimming behavior and undergoing spatial

reorganization preceded the recovery of intestinal abundance.

Surprisingly, uninduced control populations of ∆motGOF and ∆cheGOF

also exhibited a recovery in intestinal abundance by 72 hpi (S4D Fig). In vitro

characterization and DNA sequencing revealed that this spontaneous recovery

was likely due to non-synonymous mutations in tetR that were acquired during

intestinal colonization and impaired the function of the Tet repressor protein, thus

resulting in constitutive switch activation. While unexpected, we surmise that the

extremely rapid sweep of “evolved clones” carrying disabled switches—which were

rarely observed in induced populations or the aqueous environment outside the host

(S4E Fig)—is evidence of strong selective pressures for motility traits within the

gut.

5.4.6. Motile bacterial cells within the intestine induce local and

systemic tnfa expression

We next set out to connect Vibrio’s motility-based lifestyle to its pathogenic

potential. We recently showed that overgrowth of Vibrio-related taxa sparks

intestinal pathology marked by increased epithelial hypertrophy and neutrophil

influx that is dependent on tumor necrosis factor alpha (TNFα) signaling [61].

We further identified that Vibrio ZWU0020 on its own can potently stimulate

inflammation [44] and exacerbate pathology in susceptible hosts [61]. To explore

the link between Vibrio’s motility behaviors and its inflammatory potential, we

used LSFM and transgenic zebrafish hosts that express GFP under the control of

the TNFα promoter (Tg(tnfa:GFP)) [156].
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Germ-free animals displayed little tnfa reporter activity in or near the foregut

where the bulk of wild-type Vibrio cells typically reside (Fig 6A). Similar to

previous findings [156], animals colonized with a conventional, undefined microbial

community also had low numbers of cells with tnfa reporter activity (Fig 6A). In

contrast, at 24 hpi wild-type Vibrio induced pronounced tnfa reporter activity

in numerous host cells within both the intestine and liver (Fig 6A). All animals

colonized with wild-type Vibrio had tnfa-expressing cells in or near the liver

whereas less than a third of germ-free and conventionalized animals had detectable

tnfa reporter activity in this area (Fig 6B). Quantifying fluorescence intensity

across the foregut region (including adjacent extraintestinal tissues and the liver)

showed that Vibrio induces an approximately 100-fold increase in tnfa reporter

activity over germ-free and conventional levels (Fig 6C). In contrast to wild-

type Vibrio, ∆mot and ∆che elicited muted inflammatory responses. Animals

colonized with ∆mot showed a pattern of tnfa reporter activity similar to germ-

free animals (Fig 6A–6C). However, despite the comparable intestinal abundances

of ∆mot and ∆che (Fig 1A), ∆che induced intermediate, although variable, levels

of tnfa reporter activity (Fig 6A–6C). This finding suggests that host tissues do

not merely sense bacterial abundances, but also their active swimming behavior

and/or proximity to epithelial surfaces. Together, these data provide evidence

that swimming motility and chemotaxis are major contributors to Vibrio’s

proinflammatory potential.

FIGURE 5.6 (cont’d) (A) Maximum intensity projections acquired by LSFM of the foregut
region of tnfa:GFP transgenic zebrafish raised germ-free, with a complex microbial community
(conventionalized), or colonized solely with dTomato-expressing (magenta) wild-type Vibrio,
∆mot, or ∆che. Animals were imaged at 24 hpi. Dashed lines mark the approximate intestinal
boundaries. Empty arrowheads mark host cells with tnfa:GFP reporter activity. Solid arrowheads
mark tnfa:GFP reporter activity in extraintestinal tissues in or near the liver. (B) Percent of
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FIGURE 5.6. Motile bacterial cells induce local and systemic tnfa expression.
(Continued in footnote.)
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We next probed the possible host cell types involved in sensing motile Vibrio

populations. The amoeboid morphology and migratory behavior of many tnfa-

expressing cells hinted that they might be immune cells (Fig 6A and S8 Mov).

Using double transgenic zebrafish carrying the tnfa reporter and expressing

fluorescently marked macrophages (Tg(mpeg1:mCherry) [157]), we quantified the

fraction of tnfa-positive macrophages within the foregut region, which we consider

here as a field of view containing the foregut and adjacent tissues such as the

liver. We found that half (54 ± 10% [mean ± standard deviation, n = 100 cells

from 4 animals]) of the tnfa-positive cells in the foregut region induced by Vibrio

were indeed macrophages (Fig 6D and S9 Mov). Nearly all tnfa-positive cells that

were directly associated with the foregut were macrophages (93 ± 12% [mean ±

standard deviation, n = 18 cells from 3 animals]). In contrast, the majority of tnfa-

positive cells associated within the liver did not appear to be macrophages based on

mpeg1:mCherry expression, nor were they neutrophils (based on experiments with

animals carrying an mpx:mCherry reporter), suggesting that they were other non-

immune cell types. Collectively, our data indicate that wild-type Vibrio populations

stimulate expression of tnfa locally within intestinal tissues as well as at systemic

sites, namely the liver. Macrophages are also one of the main cell types that is

sensitive to Vibrio colonization.

zebrafish subjected to different colonization regimes with tnfa:GFP activity in or near the liver.
>6 animals/group were blindly scored by 3 researchers. Bars denote medians and interquartile
ranges. gf: germ-free; cvz: conventionalized. (C) Total GFP fluorescence intensity across
the foregut region normalized to median gf fluorescence intensity. Bars denote medians and
interquartile ranges. Letters denote significant differences. p < 0.05, Kruskal-Wallis and Dunn’s
multiple comparisons test. (D) Maximum intensity projections acquired by LSFM of the foregut
region of a tnfa:GFP, mpeg1:mCherry (magenta) transgenic zebrafish colonized with dTomato-
expressing wild-type Vibrio (magenta). Animal was imaged at 24 hpi. Open arrowhead indicates
a tnfa+/mpeg1+ cell. Underlying data plotted in B and C are provided in S1 Data.
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5.4.7. Host tissues rapidly respond to sudden increases in bacterial

swimming motility within the intestine

To maintain homeostasis, the host must be simultaneously tolerant and

sensitive to the activity of resident bacterial populations. It is crucial for host

tissues to quickly differentiate between harmful and benign changes in the intestinal

microbiota; for example, the overgrowth of a pathobiont versus diurnal fluctuations

in commensal bacteria [158]. Therefore, we next determined if sudden increases

in bacterial motility behaviors—which are a potential signature of pathobionts

escaping host control—could elicit an equally rapid host response.

Following a similar live imaging timeline as depicted in Fig 4B, we used

LSFM to track tnfa reporter activity in response to induced populations of

∆motGOF. As expected, at time zero ∆motGOF populations displayed low

abundance, high cohesion, and a posterior-shifted distribution with little tnfa

reporter activity in host tissues (Fig 7A–7C). By 24 h post-induction, ∆motGOF

populations had begun to spatially reorganize within the foregut and contained

an increased number of swimming cells (Fig 7A). At the same time, there was

an increase in tnfa-expressing host cells near the intestine, which were likely

macrophages (Fig 7A). In one instance, we captured tnfa-positive host cells within

the mucosa adjacent to bacterial cells actively swimming near the epithelial surface

(S10 Mov). After the first 24 h of induction, the fraction of animals with tnfa-

postive cells in or near the liver did not increase appreciably (Fig 7B); however,

there was a 2.5-fold increase in median tnfa reporter activity, implying that

initial responses to changes in bacterial swimming motility occur locally within

intestinal tissues (Fig 7C). By 48 h of switch induction, ∆motGOF populations

exhibited wild-type-like space-filling properties and foregut-localization (Fig 7A).
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FIGURE 5.7. Host tissues rapidly respond to sudden increases in bacterial
swimming motility within the intestine.
(Continued in footnote.)

Likewise, tnfa reporter activity was also mostly restored to wild-type levels (Fig 7B

and 7C). Nearly all animals ( 92%, n = 17) had tnfa-positive cells in or near the

liver and the median tnfa reporter activity across the foregut region was 20-fold

higher than germ-free levels (Fig 7B and 7C). Our data reveal that host tissues are

remarkably sensitive to sudden increases in bacterial motility behaviors that occur

over relatively short time scales.

FIGURE 5.7 (cont’d) (A) Maximum intensity projections acquired by LSFM of the foregut
region of separate tnfa:GFP transgenic zebrafish colonized with ∆motGOF (magenta). Dashed
lines mark approximate intestinal boundaries. Times are hours post-switch induction. Solid
arrowhead marks bacterial aggregates, empty arrowhead marks single bacterial cells. (B) Percent
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5.5. Discussion

Our study connects the motile lifestyle of a gut bacterial symbiont to its

colonization and proinflammatory potential. All gut bacteria must contend with

host-mediated restrictions on microbiota spatial organization [21, 23, 159]. The

mechanism by which Vibrio maintains stable colonization involves resisting

intestinal flow through sustained swimming and chemotaxis. Conventional wisdom

is that motility promotes the growth of bacteria by enabling them to forage

nutrients and avoid hostile environments [139, 142, 143]. In contrast, our data

show that Vibrio’s motility behaviors within the zebrafish gut do not enhance its

exponential growth rate but rather allow it to resist intestinal expulsion. Vibrio

thus provides a model of intestinal persistence that is distinct from more familiar

examples involving adhesion to or invasion of host tissues, which are largely based

on the examination of dissected and fixed samples and do not consider large-scale

dynamics that play out across the entire gut [160, 161, 162]. Ultimately, Vibrio’s

colonization strategy uses continuous swimming to remain in place within the host’s

intestine.

Vibrio’s swimming behavior underlies many of its pathobiont characteristics,

including its ability to invade and displace resident bacteria, persist at high

abundances, and stimulate host inflammation. The basis of Vibrio’s inflammatory

activity is presently unknown. On the host side, our work implicates macrophages

of zebrafish subjected to different colonization regimes with tnfa:GFP activity in or near the liver.
>4 animals/group were blindly scored by 3 researchers. Bars denote medians and interquartile
ranges. Data from animals colonized with wild-type Vibrio (wt) or ∆mot (from Fig 6B) are
shown for comparison. Horizontal dashed lines mark gf range plotted in Fig 6B. (C) Total GFP
fluorescence intensity across the foregut region normalized to median gf fluorescence intensity
plotted in Fig 6C, horizontal dashed lines mark gf range. Bars denote medians and interquartile
ranges. Data from animals colonized with wild-type Vibrio (wt) or ∆mot (from Fig 6C) are
shown for comparison. Letters denote significant differences. p < 0.05, Kruskal-Wallis and Dunn’s
multiple comparisons test. Underlying data plotted in B and C are provided in S1 Data.
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as a host cell type that is capable of responding to Vibrio’s motile behavior through

the upregulation of TNFα, but whether the mechanism of sensing Vibrio is direct

or indirect remains to be determined. We also observed other host cells at systemic

sites, particularly within the liver, that upregulate TNFα in response to wild-type

Vibrio colonization. Transcriptional profiling (e.g., via single-cell RNA sequencing)

and transgenic animals carrying genetic reporters will be useful for probing the

identity of these additional host cell types as well as the receptor(s) and signaling

cascades involved in sensing Vibrio populations.

On the bacterial side, future work is aimed at testing how host inflammation

is connected to Vibrio’s abundance, position along the intestine, mucosal proximity,

and cellular behavior. Intriguingly, the different inflammatory activities of ∆mot

and ∆che, despite their similar spatial organizations and production of flagella,

highlights the possibility that the mechanism involves active bacterial motility.

We posit that motility allows bacteria to access epithelial surfaces, increasing

concentrations of inflammatory molecules at host cell surfaces and possibly

triggering mechanosensory pathways. For example, flagellar rotation itself has

been shown to increase the shedding of immunogenic lipopolysaccharide and

outer membrane vesicles in other Vibrio lineages [2, 163]. It is also possible that

the ∆mot and ∆che mutants differ from wild-type in their level of expression of

inflammatory flagellar components despite displaying intact flagella in vitro.

Vibrio’s colonization dynamics show how swimming motility and chemotaxis

enable gut bacteria to evade spatial constraints imposed by the host. Notably,

∆mot and ∆che reveal how bacteria with impaired motility surrender to intestinal

mechanics, which act to confine them within the lumen where they can be

periodically purged. The aggregation of ∆mot and ∆che within the intestine was
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unexpected, especially for ∆che, which displays vigorous swimming in vitro. It

is possible that both mutants experience shifts in metabolism or induce biofilm

behaviors in vivo as a consequence of their inability to effectively control their

spatial distribution. It is also possible that the aggregation of ∆mot and ∆che

stems from a defect in flagellar assembly or signaling, which could be disentangled

using mutants lacking flagella altogether. Alternatively, ∆mot and ∆che cells may

become entrapped within intestinal mucus and grow locally to produce small

clonal aggregates that are subsequently consolidated into larger aggregates by

intestinal mechanics before being collectively expelled. Corroborating this idea, it

was shown in an infant mouse model that the attenuated colonization of a human-

derived isolate of V. cholerae lacking motility can largely be reversed in animals

that are pre-treated with a mucolytic agent that disrupts mucus architecture

[164]. Furthermore, it is possible that the swimming activity of ∆che may actually

facilitate mucus entrapment. It has been shown that non-chemotactic, straight-

swimming bacterial cells that are unable to periodically redirect their swimming

trajectory can become jammed within a porous medium (such as in a soft agar

matrix commonly used to study chemotaxis in vitro) [165]. We propose that

a similar mechanism could lead to entrapment and aggregation of ∆che cells

within intestinal mucus, which wild-type Vibrio cells avoid because they are able

to actively escape from mucus through regular changes in swimming direction

mediated by chemotactic signaling.

More broadly, our study supports the idea that in addition to the intestine’s

role in transporting digesta and expelling waste, intestinal flow and mucus

dynamics also appear to exert spatial and population control over non-motile

and non-chemotactic resident microbiota. Consistent with this, our previous
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characterization of sox10 mutant zebrafish demonstrated how the enteric nervous

system can prevent microbiome-mediated inflammation and pathology by

constraining intestinal bacterial abundances and composition [61]. Further, we

recently showed that intestinal mechanics can amplify the impact of sublethal

antibiotic treatment on gut bacteria, which induces bacterial aggregation and thus,

leads to enhanced intestinal expulsion[33]. A similar phenomenon was described

in the mouse intestine, where antibody-mediated enchaining of bacterial cells

enhanced clearance of S. Typhimurium [26]. Our observation that intestinal flow

impacts the distribution of bacteria throughout the gut is also corroborated by

findings in “gut-on-a-chip” fluidic systems [22].

Given the clear advantage of motility behaviors within the gut, it is somewhat

surprising that the majority of zebrafish gut bacteria studied so far—many of

which are capable of flagellar motility—form aggregated populations made up of

mostly non-motile cells [48]. This discrepancy may be reconciled by considering

the broader ecological life cycles of gut bacteria. For example, we have found

that intestinal populations of Aeromonas grow more rapidly within multicellular

aggregates than as planktonic cells [31]. Moreover, Aeromonas also benefits from

swimming motility during interhost dispersal [115]. Aeromonas thus highlights how

aggregation and expulsion by intestinal flow may actually facilitate growth and

transmission in the context of a population of hosts [166]. Bacterial aggregation

may also be part of a bacterial strategy for preventing host inflammation and

avoiding subsequent antimicrobial responses. Supporting this idea, we recently

found that several aggregated Aeromonas species are sensitive to host inflammation

[167]. In contrast, the particular Vibrio strain used in the present work is largely
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tolerant to host inflammation [44] and thus, can stimulate host inflammatory

responses without consequence.

Further investigation of the relationship between intestinal mechanics and

gut bacterial lifestyles will open new avenues for therapeutic engineering of the

gut microbiome. Our findings suggest that manipulating bacterial motility and

aggregation may be used to induce large-scale, yet specific, changes in both

bacterial abundances and host inflammatory state. Moreover, using drug- or

diet-based modulators of intestinal flow may enhance the efficacy of antibiotics

or promote microbiome recovery and fortification following perturbation. Our

experiments using genetic switches to toggle bacterial motility and inflammatory

activity serve as a proof-of-concept for these types of manipulations. Highlighting

the potential of these interventions, human studies have shown that colonic transit

time is a top predictor of microbiome composition [168, 169]. Moreover, impaired

intestinal flow can lead to bacterial overgrowth and pathogenic changes in the

microbiome [61, 155, 170]. Considering the dynamic nature of the intestinal

ecosystem on spatial and temporal scales relevant to bacterial cells will be key to

therapeutically engineering the microbiome.

5.6. Methods

5.6.1. Ethics statement

All experiments with zebrafish were done in accordance with protocols

approved by the University of Oregon Institutional Animal Care and Use

Committee and following standard protocols (protocol number 15-98) [65]. Specific

handling and housing of animals during experiments are described in detail under

the section “Gnotobiology”. All zebrafish used in this study were larvae, between
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the ages of 4- and 7-days post-fertilization. Sex differentiation occurs later in

zebrafish development and thus was not a factor in our experiments.

5.6.2. Zebrafish lines

Zebrafish lines used in this study included: University of Oregon stock

wild-type ABCxTU; zebrafish carrying the ret1hu2846 mutant allele [32, 49];

zebrafish carrying the Tg(tnfa:GFP) transgene [156]; and zebrafish carrying

the Tg(mpeg1:mCherry) transgene [157]. Double transgenic animals included

Tg(tnfa:GFP) x Tg(mpeg1:mCherry) and Tg(tnfa:GFP) x Tg(mpx:mCherry)

[171]. Of note, ret1hu2846 is recessive and adult zebrafish carrying this mutant

allele were maintained as heterozygotes. Incrossing ret1hu2846 animals produces

ret+/+, ret+/-, and ret-/- individuals. ret-/- larvae can be visually distinguished

from ret+/+ and ret+/- larvae based on developmental features. In our study we

classified ret+/+ and ret+/- larvae together as “sibling” controls.

5.6.3. Bacterial strains and culture

5.6.3.1. General

All wild-type and recombinant bacterial strains used or created in this study

are listed in S1 Table. Archived stocks of bacteria are maintained in 25% glycerol

at -80◦C. Prior to manipulations or experiments, bacteria were directly inoculated

into 5 ml lysogeny broth (10 g/L NaCl, 5 g/L yeast extract, 12 g/L tryptone,

1 g/L glucose) and grown for 16 h (overnight) shaking at 30◦C. For growth on

solid media, tryptic soy agar was used. Gentamicin (10 µg/ml) was used to select

recombinant Vibrio strains during their creation (for both gene deletion and
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insertion variants). Ampicillin (100 µg/ml) was used for maintaining plasmids in

E. coli strains.

5.6.3.2. In vitro growth measurements

In vitro growth of bacterial strains was assessed using the FLUOstar

Omega microplate reader. Prior to growth measurements, bacteria were grown

overnight in 5 ml lysogeny broth at 30◦C with shaking. The next day, cultures

were diluted 1:100 into fresh lysogeny broth (aTc was added to the media when

switch induction was required) and dispensed in triplicate or quadruplicate (i.e.,

3–4 technical replicates) (200 µl/ well) into a sterile 96 well clear flat bottom tissue

culture-treated microplate. Absorbance measurements at 600 nm were recorded

every 30 min for 16 h (or until stationary phase) at 30◦C with shaking. Growth

measurements were repeated at least two independent times for each strain (i.e.,

two biological replicates) with consistent results. Data plotted are from a single

replicate.

5.6.3.3. In vitro motility assays

The swimming behavior of each Vibrio strain was assessed using soft agar

assays and live imaging of bacterial motility in liquid media on glass slides. For

soft agar assays, bacteria were first grown overnight in 5 ml lysogeny broth at 30◦C

with shaking. One milliliter of bacterial culture was then washed by centrifuging

cells at 7,000 x g for 2 minutes, aspirating media, and suspending in 1 ml 0.7%

NaCl. This centrifugation and aspiration wash step was repeated once more and

bacteria were suspended in a final volume of 1 ml 0.7% NaCl. One microliter of

washed bacterial cells was inoculated into swim agar plates made of tryptic soy
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agar containing 0.2% agar. In the case of ∆motGOF and ∆cheGOF, aTc was also

added to the agar at the indicated concentrations. Swim plates were incubated at

30◦C for 6 h and imaged using a Gel Doc XR+ Imaging System. For live imaging

of swimming behavior, bacteria were first grown overnight in 5 ml lysogeny broth

at 30◦C with shaking. The next day, cultures of wild-type Vibrio, ∆mot, and ∆che

were diluted 1:100 in tryptic soy broth and grown for 2 h with shaking at 30oC.

∆motGOF and ∆cheGOF were diluted 1:100 in tryptic soy broth +/– 50 ng/ml

aTc and grown for 4 h with shaking at 30oC. VibriomotLOF was diluted 1:1000 in

tryptic soy broth +/– 50 ng/ml aTc and grown for 7 h with shaking at 30oC. Prior

to imaging, bacteria were diluted 1:40 in tryptic soy broth, mounted on glass slides

with a coverslip and imaged for 10 s using a Nikon Eclipse Ti inverted microscope

equipped with an Andor iXon3 888 camera. Representative maximum intensity

projections of 10 s movies shown in S1, S3, and S4 Figs were generated in FIJI

[172]. For measurements of swimming behavior, bacteria were tracked using the

radial center algorithm [173] for object localization and nearest-neighbor linking.

Motility assays were repeated at least two independent times (i.e., two biological

replicates) with consistent results.

5.6.3.4. Scanning electron microscopy

Bacteria were prepared for environmental scanning electron microscopy

(ESEM) by first growing cells on tryptic soy agar overnight at 30oC. A sterile

inoculating loop was used to transfer 100 µl of cells to a 1.6 ml tube containing

500 µl of 3% glutaraldehyde fixative. We visually confirmed that Vibrio cells

isolated from an agar plate are highly motile and thus capable of producing flagella

during culture on solid media. Cells were fixed overnight at 4oC. The next day,
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cells were sequentially washed in increasing concentrations of ethanol: first in

plain ddH2O followed by 20%, 40%, 60%, and 80% ethanol. Each wash involved

centrifuging cells at 7,000 x g for 2 minutes, aspirating media, and suspending

in the next wash medium. A small aliquot of washed cell suspension was applied

to a silicon wafer, dried, and imaged using a FEI Quanta 200 ESEM/VPSEM

environmental scanning electron microscope provided by the University of Oregon’s

Center for Advanced Materials Characterization in Oregon (CAMCOR) facility.

5.6.3.5. Disk diffusion assays

Disk diffusion assays were often used to test and optimize dTomato and

sfGFP reporter function of genetic switches as described in S3C and S3D Fig.

Bacteria were first grown overnight in 5 ml lysogeny broth at 30◦C with shaking.

One hundred microliters of dense overnight culture were spread onto tryptic soy

agar plates to produce a lawn of growth. Prototyping was typically done using

plasmid-base switches in E. coli (as was the case in S3C and S3D Fig), thus

tryptic soy agar plates also contained ampicillin to ensure plasmid maintenance.

A sterile piece of Whatman filter paper ( 0.5 cm wide) was placed in the center

of the plate and impregnated with 2 µg of aTc. Plates were incubated overnight

at 30oC. Switch reporter activity was assessed using a Leica MZ10 F fluorescence

stereomicroscope equipped with 1.0x, 1.6x, and 2.0x objectives, and a Leica

DFC365 FX camera. Images were captured and processed using standard Leica

Application Suite software and FIJI [172].
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5.6.4. Molecular techniques and genetic manipulations

5.6.4.1. General

Recombinant strains used or created in this study are listed in S1 Table.

Plasmids used or created in this study are listed in S2 Table. Primer and oligo

DNA sequences are listed in S3 Table.

E. coli strains used for molecular cloning and conjugation were typically

grown in 5 ml lysogeny broth at 30◦C or 37◦C with shaking in the presence of

appropriate antibiotic selection to maintain plasmids. For propagation of E. coli

on solid media, LB agar was used. Unless specified, standard molecular techniques

were applied, and reagents were used according to manufacturer’s instructions.

Restriction enzymes and other molecular biology reagents for polymerase chain

reaction (PCR) and nucleic acid modifications were obtained from New England

BioLabs. Various kits for plasmid and PCR amplicon purification were obtained

from Zymo Research. The Promega Wizard Genomic DNA Purification Kit was

used for isolating bacterial genomic DNA. DNA oligonucleotides were synthesized

by Integrated DNA Technologies (IDT). Sanger sequencing was done by Sequetech

to verify the sequence of all cloned genetic parts. A Leica MZ10 F fluorescence

stereomicroscope with 1.0x, 1.6x, and 2.0x objectives and Leica DFC365 FX

camera were used for screening fluorescent bacterial colonies.

Genome and gene sequences were retrieved from “The Integrated Microbial

Genomes & Microbiome Samples” (IMG/M) website (https://img.jgi.doe.gov/m/)

[174]. Where applicable, “IMG” locus tags are provided for genetic loci, which can

be used to access sequence information via the IMG/M website.
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5.6.4.2. Construction of gene deletions

Markerless, in-frame gene deletions were constructed using allelic exchange

and the pAX1 allelic exchange vector (Addgene Plasmid #117397) as previously

described [48]. Detailed procedures and protocols can be accessed online:

https://doi.org/10.6084/m9.figshare.7040264.v1. Creation of ∆mot via

deletion of pomAB (locus tags: ZWU0020 01568 and ZWU0020 01567) (S1A

Fig) was reported previously [48]. Creation of ∆che via deletion of cheA2 (locus

tag: ZWU0020 00514) (S1A Fig) was accomplished by first constructing a cheA2

allelic exchange cassette using splice by overlap extension (SOE). The cheA2 allelic

exchange cassette was designed to fuse the start and stop codons of the cheA2 gene

(S1A Fig). PCR primer pairs WP165 + WP166 and WP167 + WP168 were used

to amplify 5’ and 3’ homology regions flanking the cheA2 gene, respectively, from

Vibrio ZWU0020 genomic DNA. The resulting amplicons were spliced together and

the SOE product was ligated into a pAX1-based allelic exchange vector, producing

pAX1-ZWU0020-cheA2 (pTW383). After subsequent subcloning steps, the final

sizes of the 5’ and 3’ homology regions were 763 bp and 845 bp.

The pAX1-ZWU0020-cheA2 vector was delivered into Vibrio via conjugation

(i.e., bacterial mating) as previously described using E. coli SM10 as a donor strain

[48]. Briefly, Vibrio and SM10/pAX1-ZWU0020-cheA2 were combined 1:1 on a

filter disk placed on tryptic soy agar. The mating mixture was incubated at 30◦C

overnight. Following incubation, bacteria were recovered and spread onto tryptic

soy agar containing gentamicin and incubated overnight at 37◦C to select for

Vibrio merodiploids. Merodiploid colonies were isolated and screened for successful

deletion of the cheA2 gene. Putative mutants were genotyped by PCR using

primers that flanked the cheA2 locus (WP0169 + CheA2.ZW20.KOconfirm.REV),

165



which produced two differently sized amplicons representing the wild-type and

mutant alleles (S1A Fig).

5.6.4.3. Design and construction of genetic switches

Customizable, plasmid-based gain-of-function (pXS-GOF-switch, pTW265)

and loss-of-function (pXS-LOF-switch, pTW308) switch scaffolds were initially

constructed and optimized using the pXS-dTomato (Addgene Plasmid #117387)

backbone, which was previously generated [48]. The general architecture of switch

elements is depicted in S3A Fig. Each element is flanked by unique restriction

sites to allow straightforward insertion of new elements by restriction cloning.

pXS-dTomato contains the “tracker” element, which comprises a constitutive Ptac

promoter (without the lac operator sequence) [48] driving the dTomato gene. The

“switch reporter” element was first inserted, which comprises a PLtetO promoter

[175] driving a sfGFP gene that was amplified from pTW168 using WP138 +

WP118. Next, the “repressor” element was inserted, which comprises a tetR gene

that was amplified from Enterobacter ZOR0014 genomic DNA using WP146 +

WP139. As described in S3B and S3C Fig, a near-random ribosome binding site

(ndrrdn) was incorporated by PCR into the 5’ untranslated region of the tetR

gene via WP146. A clone containing the ribosome binding site sequence “ctaggt”

was isolated that had strong reporter repression/induction and robust tracker

expression. Next, as described in S3B and S3D Fig, a ribozyme-based insulator

sequence (RiboJ) [176] was inserted between the switch reporter and the insertion

site designated to hold switch “cargo” genes. The RiboJ sequence was inserted

using a custom synthesized gBlock gene fragment (IDT). The resulting plasmid-

based switch scaffold—comprising a tracker, switch reporter, repressor, and RiboJ
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sequence—became pXS-GOF-switch. To generate pXS-LOF-switch, we inserted the

dcas9 gene [177] (excised from pdCAS9, Addgene Plasmid #44249) as the “cargo”

element and a constitutively expressed single guide RNA (“sgRNA” element) driven

by the CP25 promoter [178], which was inserted using a custom synthesized gBlock

gene fragment (IDT). The stock sgRNA that was inserted into the pXS-LOF-switch

is based on a previously characterized sgRNA specific for the lacZ gene of E. coli

[177], which facilitated optimization of loss-of-function switch activity in E. coli

K-12 (MG1655). To expedite insertion of the gain-of-function and loss-of-function

switches into the Vibrio chromosome, each switch scaffold was subcloned into the

previously described Tn7 delivery vector pTn7xTS (Addgene Plasmid #117389),

creating pTn7xTS-GOF-switch (pTW285) and pTn7xTS-LOF-switch (pTW317).

We note that insertion of the switch scaffolds into the pTn7xTS vector limits some

downstream customization due to restriction site conflicts.

To construct the motility loss-of-function switch, the lacZ sgRNA in the

pTn7xTS-LOF-switch was replaced with a sgRNA specific for the Vibrio pomA

gene, creating pTn7xTS-mot-LOF-switch (pTW340). The pomA sgRNA was

inserted using a custom synthesized gBlock gene fragment (IDT). To construct

the motility gain-of-function switch, the pomAB locus, including the native pomA

ribosome binding site, was amplified using WP170 + WP171 and inserted into the

cargo site of pTn7xTS-GOF-switch, creating pTn7xTS-mot-GOF-switch (pTW324).

To construct the chemotaxis gain-of-function switch, the cheA2 locus, including

the native cheA2 ribosome binding site, was amplified using WP92 + WP93 and

inserted into the cargo site of pTn7xTS-GOF-switch, creating pTn7xTS-che-GOF-

switch (pTW282).
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5.6.4.4. Tn7-mediated chromosomal insertions

Chromosomal insertion of fluorescent markers and genetic switches was done

via a Tn7 transposon-based approach using the Tn7 delivery vector pTn7xTS

as previously described [48]. Detailed procedures and protocols can be accessed

online: https://doi.org/10.6084/m9.figshare.7040258.v1. Specific pTn7xTS

vectors carrying markers or switches were delivered into Vibrio via triparental

mating using two E. coli SM10 donor strains carrying either the pTn7xTS delivery

vector or the pTNS2 helper plasmid (Addgene Plasmid #64968). Briefly, Vibrio

and SM10 donor strains were combined 1:1:1 on a filter disk placed on tryptic soy

agar. The mating mixture was incubated at 30◦C overnight. Following incubation,

bacteria were recovered and spread onto tryptic soy agar containing gentamicin and

incubated overnight at 37◦C to select for Vibrio insertion variants. Insertion of the

Tn7 transposon and the genetic cargo it carried into the attTn7 site near the glmS

locus of Vibrio was confirmed by PCR using primers WP11 + WP12.

Fluorescently marked wild-type Vibrio constitutively expressing dTomato

(ZWU0020 attTn7::dTomato) was previously generated using pTn7xTS-dTomato

(Addgene Plasmid #117391) [48]. In the current work, fluorescenlty marked ∆mot

and ∆che were constructed in the same way, creating ∆mot attTn7::dTomato and

∆che attTn7::dTomato. VibriomotLOF was created by inserting the motility loss-of-

function switch from pTn7xTS-mot-LOF-switch. ∆motGOF was created by inserting

the motility gain-of-function switch from pTn7xTS-mot-GOF-switch. ∆cheGOF

was created by inserting the chemotaxis gain-of-function switch from pTn7xTS-che-

GOF-switch.
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5.6.5. Gnotobiology

5.6.5.1. Germ-free derivation

For all experiments, zebrafish embryos were initially derived germ-free

using previously described gnotobiotic procedures with slight modification

[47]. Briefly, fertilized eggs from adult mating pairs were harvested and

incubated in sterile embryo media (EM) containing ampicillin (100 µg/ml),

gentamicin (10 µg/ml), amphotericin B (250 ng/ml), tetracycline (1 µg/ml), and

chloramphenicol (1 µg/ml) for 6 h. Embryos were then washed in EM containing

0.1% polyvinylpyrrolidone–iodine followed by EM containing 0.003% sodium

hypochlorite. Surface sterilized embryos were distributed into T25 tissue culture

flasks containing 15 ml sterile EM at a density of one embryo per milliliter and

kept in a temperature-controlled room at 28–30◦C with a 14 h/ 10 h light/dark

cycle. The germ-free status of larval zebrafish was assessed before every experiment

by visually inspecting flask water for microbial contaminants using an inverted

microscope. Culture-based assessment of germ-free status was done as needed by

plating 100 µl flask water on rich media (e.g., tryptic soy agar). Embryos were

sustained on yolk-derived nutrients and not fed prior to or during any experiments.

5.6.5.2. Bacterial associations

For bacterial associations, bacterial strains were grown overnight in lysogeny

broth with shaking at 30◦C and prepared for inoculation by pelleting the cells

from 1 ml of culture for 2 min at 7,000 x g and washed once in sterile EM. For

all experiments, except where noted otherwise, washed bacteria were inoculated

into the water of T25 flasks containing 4-day-old larval zebrafish at a final density
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of 106 bacteria/ml. For competition experiments, Vibrio strains were added to

the water of Aeromonas-colonized zebrafish (at 5-days-old) without removing the

original Aeromonas inoculum from the water. In addition, to enable enumeration of

Aeromonas and Vibrio strains on agar plates, competition experiments were done

using a previously constructed dTomato-expressing Aeromonas strain (Aeromonas

attTn7::dTomato) [48]. For loss-of-function and gain-of-function switch experiments

involving cultivation-based abundance measurements, prior to aTc-induction

zebrafish were washed and placed in sterile EM to ensure that changes in intestinal

populations were not interfered with by bacteria in the water. To conventionalize

animals (i.e., colonize with a complex, undefined microbial consortium), 0 and 4-

day-old larval zebrafish were inoculated with 100 µl of water taken from parental

spawning tanks. No difference was found between conventionalization times in

terms of host tnfa:GFP expression.

5.6.6. Cultivation-based measurement of abundances

Dissection of larval zebrafish guts was done as previously described with

slight modification [122]. Briefly, dissected guts of tricaine-euthanized zebrafish

were harvested and placed in a 1.6 ml tube containing 500 µl sterile 0.7% saline

and 100 µl 0.5 mm zirconium oxide beads. Guts were homogenized using a bullet

blender tissue homogenizer for 25 seconds on power 4. Lysates were serially plated

on tryptic soy agar and incubated overnight at 30oC prior to enumeration of

colony forming units and determination of bacterial abundances. Abundance data

presented throughout the main text and in S2 Fig are pooled from a minimum of

two independent experiments (n = 16–36 dissected guts per condition). Abundance

data presented for ∆motGOF and ∆cheGOF without aTc induction in S4 Fig are
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from a single representative experiment (n = 8–10 dissected guts per condition;

water abundances are from single measurements). Samples with zero countable

colonies on the lowest dilution were set to the limit of detection (5 bacteria per

gut). Data were plotted and analyzed using GraphPad Prism 6 software. Unless

stated otherwise, statistical differences between two groups of data were determined

by Mann-Whitney; statistical differences between two paired groups of data were

determined by Wilcoxon; and statistical differences among three or more groups

of data were determined by Kruskal-Wallis test with Dunn’s multiple comparisons

test.

5.6.7. Live imaging

5.6.7.1. Light sheet fluorescence microscopy

Live larval zebrafish were imaged using a custom-built light sheet fluorescence

microscope previously described in detail [31]. Prior to mounting, larvae were

anesthetized with MS-222 (tricaine). A metal plunger was used to mount fish into

small glass capillaries containing 0.5% agarose gel. Samples were then suspended

vertically, head up, in a custom imaging chamber containing embryo media and

anesthetic. Larvae in the set gel were extruded from the end of the capillary and

oriented such that the fish’s left side faces the imaging objective. For experiments

involving just fluorescent bacteria, the 1mm long intestine is imaged in four

subregions that are registered in software after imaging. A single 3D image of the

full intestine volume ( 200x200x1200 microns) sampled at 1-micron steps between

z-planes is imaged in 45 seconds. For experiments including the tnfa:GFP reporter,

only one subregion containing the anterior foregut region and 100 microns of tissue

anterior to the gut was captured for the majority of samples. In these image stacks,
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nearly the full extent of the fish’s left-right width was captured, approximately 400

microns in z. For time lapse imaging of genetic switch induction, fish were mounted

as normal and baseline dynamics were captured for 30-90 min depending on the

experiment. Then, the inducer aTc was added to the sample chamber media in an

approximately 1 ml solution of embryo media, MS-222, and aTc. Excitation lasers

of wavelengths 488 and 561 nm were adjusted to a power of 5 mW as measured

before the imaging chamber. An exposure time of 30 ms was used for all 3D scans

and 2D movies. Time lapse imaging was performed overnight, except for the

additional growth rate measurement for ∆che, which occurred during the day. For

color images presented within figures, autofluorescent tissues—namely, the yolk,

swim bladder, and ventral skin—were manually converted to grayscale to enhance

clarity.

5.6.7.2. Identification of fluorescent bacteria

Identification of bacteria in zebrafish images was conducted using a previously

described computation pipeline written in MATLAB [31, 53]. In brief, individual

bacteria are first identified with a combination of wavelet filtering [179], standard

difference of Gaussians filtering, intensity thresholding, and manual curation.

Then, multicellular aggregates, which are too dense to resolve individual cells,

are segmented via a graph cut algorithm [66] seeded with an intensity mask.

The number of cells per multicellular aggregate is estimated by dividing the

total aggregate fluorescence intensity by the mean intensity of single cells. These

estimates of number of cells per bacterial object in the gut are then used to

compute spatial distributions along the length of the gut, following a manually

drawn line drawn that defines the gut’s center axis.
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5.6.7.3. Measurement of planktonic fractions

Planktonic fractions were computed for each fish by dividing the number of

identified single cells by the total abundance. For wild-type Vibrio, the primary

population of motile bacteria is typically too dense for us to resolve single cells.

However, sparse labelling experiments, in which fish were colonized with GFP- and

dTomato-marked Vibrio at a ratio of 1:100 (Fig. 2C, top row, right), indicated that

this population was indeed entirely planktonic. Movies showing motility of sparsely

labelled cells were previously published [48, 53]. Therefore, to compute planktonic

fraction for wild-type Vibrio in single-labeled populations, we treated the dense,

anterior sub-population computationally just like we would an aggregate—using

our aggregate detection algorithm and estimating the number of cells present by

normalizing the total fluorescence intensity to the mean single cell intensity—but

then counted these cells as planktonic.

5.6.7.4. Measurement of in vivo growth rates

Through time-lapse imaging and the computational image analysis methods

discussed above, bacterial growth rates in the intestine can be directly measured

by linear fits to log-transformed abundances [31, 32, 33]. The in vivo growth rate

of wild-type Vibrio was previously measured [32]. The in vivo growth rate for

∆mot was measured in the time traces shown in Fig 3A, using manually defined

windows of clear exponential growth. To exclude effects of density dependence on

the growth rate, only those traces that began at least 1 order of magnitude below

the median ∆mot abundance were considered. For ∆che, the time traces in Fig

3A were insufficient for growth rate estimation, because abundances remained at

high levels for most of the experiment. Therefore, we measured the growth rate
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in populations shortly after initial colonization. Specifically, ∆che was allowed to

colonize germ-free fish for 6 hours, after which fish were mounted for time lapse

imaging. Previous work on another zebrafish gut bacterial symbiont showed that

exponential growth rates in established and nascent populations are equal [32].

Abundance data for these time traces are included in the S1 Data.

5.6.7.5. Quantification of tnfa:GFP fluorescence

Cells and tissues expressing tnfa:GFP were segmented in 3D with basic

intensity threshold-based segmentation. A pixel intensity threshold of 1500 was

empirically found to be a conservative threshold and was used for all samples.

The 488 nm excitation laser power was set at 5 mW prior to entering the sample

chamber for all samples. The camera was a pco.edge scientific CMOS camera

(PCO, Kelheim, Germany). The resulting identified objects were then filtered

by size to remove noise. GFP signal from near the ventral skin was excluded

with a manually defined cropped region created in the ImageJ software [172].

Green autofluorescence from the interior gut region rarely passed the intensity

and size thresholds to contribute to measured tnfa:GFP signal. Similarly,

in the motility gain-of-function switch experiments, we found that the GFP

reporter of switch induction never reached fluorescence intensity levels high

enough to contribute measurably to the tnfa:GFP signal. Nevertheless, this

region was automatically identified and removed via intensity threshold-based

segmentation in the red 568/620 nm (excitation/emission) color channel. Both

red autofluorescence and signal from red (dTomato) fluorescent bacteria were used

to identify this gut region. Finally, to standardize total tnfa:GFP quantification

across different samples, an operational peri-intestinal region was defined as
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containing the foregut plus all tissue 100 microns anterior of the start of the

gut, which was automatically identified in the mask generated from the red color

channel. Automatic gut segmentation and removal was not performed for the dual

tnfa:GFP/mpeg1:mCherry reporter fish.

5.6.7.6. Measuring tnfa:GFP/mpeg1:mCherry fluorescence

Red fluorescence from mpeg1:mCherry marking macrophages was segmented

analogously to tnfa:GFP signal, using basic intensity threshold-based segmentation

in 3D and size filtering. A tnfa+ object and an mpeg+ object were considered

to overlap if their centroids were separated by less than 10 microns, a threshold

empirically determined to produce accurate results as judged by eye. The fraction

of tnfa+ objects that were also mpeg+ and the fraction of mpeg+ objects

that were also tnfa+ were computed using the counts for overlapping and non-

overlapping cells.

5.6.8. Data and statistical analysis

Data were plotted using MATLAB and GraphPad Prism 6 software.

Statistical analyses were done using GraphPad Prism 6. Unless stated otherwise,

medians and interquartile ranges were plotted. Statistical tests performed are

specified in figure legends and within the Methods under “Cultivation-based

measurement of abundances”. A p-value of 0.05 or less was considered significant

for all analyses. Sample sizes are noted within the main text, figure legends, within

the Methods under “Cultivation-based measurement of abundances”, and in S1

Data (.xls). What “n” represents is specified in the main text and figure legends.
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FIGURE 5.S1. Motility and chemotaxis mutant construction and in vitro
characterization.
(Continued in footnote.)

5.8. Supporting Information

FIGURE 5.S1 (cont’d) (A) Gene diagrams depict the in-frame markerless deletion of pomAB
(∆mot construction) and cheA2 (∆che construction). “∆” denotes the mutant allele and the
DNA sequence shown below represents the resulting fusion of the start and stop codons in each
case. Black triangles represent primers used for PCR-confirmation of each mutant, and the
amplicon sizes (bp) of the wild-type (wt) and mutant (∆) alleles are provided above each locus.
DNA gels to the right of each diagram show the successful deletion of both pomAB and cheA2
from the Vibrio chromosome. We note that the ∆mot mutant was constructed in a previous
publication [48] and the DNA gel shown is a version of that already published but is included
here for continuity and thoroughness. ns: non-specific amplicon. (B) Left: Swimming motility
of wild type (wt), ∆mot, and ∆che in liquid media and soft agar. Motility in liquid media was
recorded for 10 seconds on a glass slide. Images show cellular movements over the entire 10 second
period, which illustrates each cell’s swimming trajectory. Swim distances were captured 6 h post-
inoculation of bacteria into the agar. Right: Probability densities showing the distribution of
cellular swimming speeds in liquid media for each Vibrio strain. Sample sizes (measured bacterial
swim tracks): wt = 2,962; ∆mot = 754; ∆che = 3,069. Inspection of cultures before and during
analyses provided no obvious indications of elevated in vitro aggregation for ∆mot or ∆che
compared to wild type (C) In vitro growth curves of each Vibrio strain in rich media (lysogeny
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FIGURE 5.S2. Additional wild-type and ∆mot colonization data in ret-/- mutant
hosts.
(Continued in footnote.)

broth). Line traces the average optical density (OD) from four replicate wells, bars indicate range.
Notably, smooth growth curves reiterate that ∆mot or ∆che do not exhibit elevated aggregation
in vitro (D) Scanning electron micrographs of each Vibrio strain after growth on solid media.
Images show that each strain is capable of assembling a single polar flagellum. Underlying data
plotted in B and C are provided in S1 Data.

FIGURE 5.S2 (cont’d) (A) Cultivation-based abundances for wild-type Vibrio in co-housed
ret-/- mutant hosts and wild-type/heterozygous sibling controls (sib). Abundances of wild-
type Vibrio in wild-type hosts (from Fig 1A, 72 hpi) are shown for comparison. Letters denote
significant differences. p < 0.05, Kruskal-Wallis and Dunn’s multiple comparisons test. (B)
Maximum intensity projections acquired by LSFM from a sib control host (top) or a ret-/- mutant
host (bottom). Each animal was colonized with ∆mot for 72 h prior to imaging. Dashed lines
mark approximate intestinal boundaries. Underlying data plotted in A are provided in S1 Data.
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FIGURE 5.S3. Switch design features and in vitro characterization of the motility
loss-of-function switch.
(Continued in footnote.)

FIGURE 5.S3 (cont’d) (A) Diagram depicts the customizable design of the switch scaffold.
Unique restriction sites (rs) flanking switch elements allow each component to be optimized
or replaced. The “tracker” encodes a fluorescent protein for marking all bacterial cells. The
“repressor” encodes a transcription factor that allows inducible control of “cargo” gene (e.g.,
dcas9) expression. The “switch reporter” encodes a fluorescent protein that is coexpressed with
the cargo gene to signal switch activation. A “sgRNA” is inserted when the switch is used for
CRISPRi. (B) Gene diagram indicates the locations (cyan bullseyes) of two elements that were
essential for switch function: an optimized tetR ribosome binding site (RBS) and a ribozyme-
based insulator. (C) Left: Shown are DNA sequences for the native (top) and functionally
optimized (bottom) 5’ untranslated region (UTR) of the tetR gene. Underlined cyan text denotes
the RBS. Bolded text marks the tetR start codon. The middle sequence represents the library
of tetR 5’ UTRs containing randomized RBS sequences that were screened (letters are based
on IUPAC code). Right: Switch function was assessed using disk diffusion assays in which E.
coli carrying the switch (without a cargo gene inserted) were spread at a density high enough
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to produce a lawn of growth on an agar plate. A disk impregnated with concentrated aTc
was then used to induce switch activity, thereby making the adjacent cells express GFP if the
switch was functional. Top right: Original switch prototypes failed to be induced and displayed
suppressed expression of the dTomato tracker, which we surmised was due to overexpression of
TetR. Bottom right: A library of switch clones containing random RBS sequences in the tetR
5’ UTR were screened, resulting in the recovery of a functional clone that displayed sensitive
switch activation and robust tracker expression. (D) Top row: Early switch prototypes relied on
the co-transcription of the cargo gene and sfGFP reporter. However, the insertion of large cargo
genes, such as a dcas9 or cheA2, hampered sfGFP expression compared to an “empty” switch
without a cargo gene, which was evident in disk diffusion assays. We surmised that this was due
to part-junction interference between sfGFP and the cargo, leading to poor translation of sfGFP.
Bottom row: Insertion of the self-cleaving RiboJ ribozyme insulator between sfGFP and the
cargo alleviated the apparent interference. (E) Left: Swimming motility of ∆motLOF in liquid
media plus/minus aTc (50 ng/ml). Motility in liquid media was recorded for 10 seconds on a glass
slide. Images show cellular movements over the entire 10 second period, which illustrates each
cell’s swimming trajectory. Motility was assessed 7 h post-induction. Middle: The percentage of
swimming cells in ∆motLOF populations in liquid media plus/minus aTc (50 ng/ml) from four
separate fields of view. Right: Probability densities showing the distribution of cellular swimming
speeds in liquid media for ∆motLOF plus/minus aTc (50 ng/ml). Sample sizes (measured bacterial
swim tracks): ∆motLOF -aTc = 2,677; ∆motLOF +aTc = 944. (F) In vitro growth curves of
∆motLOF in rich media (lysogeny broth) plus/minus aTc (50 ng/ml). Line traces the average
optical density (OD) from three replicate wells, bars indicate range. Underlying data plotted in E
and F are provided in S1 Data.

FIGURE 5.S4 (cont’d) (A) Left: Swimming motility of ∆motGOF and ∆cheGOF in liquid
media plus/minus aTc (50 ng/ml). Motility in liquid media was recorded for 10 seconds on a glass
slide. Images show cellular movements over the entire 10 second period, which illustrates each
cell’s swimming trajectory. Motility was assessed 4 h post-induction. Right: Motility of wild-type
Vibrio, ∆motGOF, and ∆cheGOF in soft agar plus/minus aTc (10 ng/ml). Swim distances were
captured 6 h post-inoculation of bacteria into the agar. (B) Swim distances of wild-type Vibrio,
∆motGOF, and ∆cheGOF in soft agar 6 h post-induction with different concentrations of aTc. (C)
In vitro growth curves of ∆motGOF and ∆cheGOF in rich media (lysogeny broth) plus/minus aTc
(50 ng/ml). Line traces the average optical density (OD) from three replicate wells, bars indicate
range. (D) Cultivation-based abundances of ∆motGOF or ∆cheGOF at 72 hpi either with (green)
or without (magenta) aTc induction. Abundances of wild-type Vibrio (gray), ∆mot (purple), and
∆che (cyan) (from Fig 1A, 72 hpi) are shown for comparison. Abundances of each GOF strain in
the presence of aTc are from Fig 5E and are also shown for comparison. Bars denote medians and
interquartile ranges. Letters denote significant differences. p < 0.05, Kruskal-Wallis and Dunn’s
multiple comparisons test. (E) Shown is the fraction of “evolved clones” (i.e., bacterial colonies
recovered that displayed constitutive switch activation) from the intestines of zebrafish colonized
with ∆motGOF or ∆cheGOF at 72 hpi that were either induced (green) or not induced (magenta)
with aTc. Bars denote medians and interquartile ranges. In each condition, a black dashed bar
and diamond labeled with a “w” indicates the fraction of evolved clones recovered from the water
environment. Underlying data plotted in B–E provided in S1 Data.
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FIGURE 5.S4. In vitro characterization of motility and chemotaxis gain-of-function
switches and supporting data on the evolution of gain-of-function switches in vivo.
(Continued in footnote.)
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5.9. Supplemental movie captions

S1 Mov. Montage of real time movies showing wild-type Vibrio, ∆mot,

and ∆che within larval zebrafish intestines. Movies were acquired by light

sheet fluorescence microscopy at 24 hpi. Wild-type Vibrio is highly motile and

planktonic, with swimming cells frequently making close contact with the intestinal

epithelium. The bright signal in the left side of the frame is a mass of motile cells

that is too dense for individuals to be resolved (see Fig 2C). In contrast, ∆mot

is largely aggregated and confined to the lumen. The ∆che mutant exhibits an

intermediate phenotype consisting of a motile subpopulation that is less dense than

wild-type populations. The first three fields of view shown center on the foregut

region. The fourth field of view (“che-midgut”) centers on the midgut to highlight

aggregates of ∆che cells within this region. For the fourth field of view, intensities

were log-transformed to highlight both the structure of the aggregates and the

motile, planktonic cells visible in the lower left. Scale bar = 50 µm.

S2 Mov. Montage of animated z-stacks showing wild-type Vibrio, ∆mot,

and ∆che within larval zebrafish intestines. Movies were acquired by light

sheet fluorescence microscopy at 24 hpi. Wild-type Vibrio is highly motile and

planktonic, with swimming cells frequently making close contact with the intestinal

epithelium. The bright signal in the left side of the frame is a mass of motile cells

that is too dense for individuals to be resolved (see Fig 2C). In contrast, ∆mot

is largely aggregated and confined to the lumen. The ∆che mutant exhibits an

intermediate phenotype consisting of a motile subpopulation that is less dense than

wild-type populations. The field of view centers on the foregut region. The label

in the upper-right corner denotes the depth in z (left-right) through the intestine.

Scale bar = 50 µm.
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S3 Mov. Montage of time-lapse movies showing wild-type Vibrio, ∆mot,

and ∆che within larval zebrafish intestines. Movies were acquired by light sheet

fluorescence microscopy starting at 24 hpi. Wild-type Vibrio cells, which are

highly motile and planktonic, robustly localize to the foregut region. The bright

signal in the left side of the frame is a stable mass of motile cells that is too dense

for individuals to be resolved (see Fig 2C). In contrast, ∆mot is largely aggregated,

confined to the lumen, and exhibits large fluctuations in spatial organization,

including the rapid expulsion of a large aggregate. The ∆che mutant exhibits an

intermediate phenotype, consisting of a motile subpopulation that is less dense than

wild-type populations with large, multicellular aggregates. A large aggregate of

∆che cells is expelled near the end of the movie. The field of view spans the entire

larval intestine. Scale bar = 200 µm.

S4 Mov. Animation of the spatiotemporal dynamics of wild-type Vibrio,

∆mot, and ∆che within larval zebrafish intestines. Through computational

image analysis, bacterial populations were segmented and enumerated. From

this quantification, we computed the fraction of the population that were single

cells (planktonic fraction) and computed the population center of mass along

the length of the gut (population center). Each marker represents an entire

bacterial population from an individual fish. The movie depicts the time evolution

of multiple populations in this 2-dimensional phase space. Wild-type Vibrio

populations robustly localize to the foregut region and maintain a high planktonic

fraction. In contrast, ∆mot and ∆che populations undergo large fluctuations in

aggregation and localization over time.

S5 Mov. Inactivation of swimming motility in established VibriomotLOF

populations using the motility loss-of-function switch. Shown are two examples of
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VibriomotLOF switching dynamics within the larval zebrafish intestine captured by

light sheet fluorescence microscopy. VibriomotLOF initially colonized each intestine

in a phenotypically wild-type state (i.e., switch = “OFF”) with cells expressing

only dTomato (magenta) and displaying a strong localization to the foregut

and a high fraction of motile cells. At time zero, populations were induced by

addition of aTc to the media. Both examples show the emergence of a multicellular

aggregate from the anterior population of motile cells, a posterior-shift in overall

distribution, and an increase in GFP expression signaling switch activation. Scale

bars for time-lapses are 200 µm. Each frame of the time-lapses are maximum

intensity projections of a 3D image stack across the full intestinal volume. For the

second example, we highlight the 3D structure of an emerging bacterial aggregate

(arrow) with an animated rendering (dTomato fluorescence only). Scale bar for the

rendering is 50 µm. The montage ends with a real time movie of VibriomotLOF cells

approximately 16 h post-induction showing widespread loss of motility (dTomato

fluorescence only). Real time movie scale bar = 50 µm.

S6 Mov. Activation of swimming motility in an established ∆motGOF

population using the motility gain-of-function switch. ∆motGOF initially colonized

the intestine with the motility gain-of-function switch in the “OFF” state and

therefore was non-motile and assembled a population that was aggregated and had

a poster-shifted distribution. At time zero, the population was induced by addition

of aTc to the media. The resulting switching dynamics were captured by light

sheet fluorescence microscopy. Each frame of the time-lapse is a maximum intensity

projection of a 3D image stack across the full intestinal volume. Over time, motile

cells appear and occupy the foregut region. Scale bar = 200 µm. Following the

time-lapse, we show a real time movie of a different fish at approximately 6 h post-

184



induction that captures induced ∆motGOF cells swimming within the foregut. Real

time movie scale bar = 50 µm.

S7 Mov. Activation of chemotaxis in an established ∆cheGOF population

using the chemotaxis gain-of-function switch. ∆cheGOF initially colonized the

gut with the chemotaxis gain-of-function switch in the “OFF” state and therefore

was non-chemotactic and assembled a population that was aggregated and had a

poster-shifted distribution. At time zero, the population was induced by addition of

aTc to the media. The resulting switching dynamics were captured by light sheet

fluorescence microscopy. Each frame of the time-lapse is a maximum intensity

projection of a 3D image stack across the full intestinal volume. Over time, there

is a dramatic increase in the number of planktonic and motile cells that occupy the

foregut region. Scale bar = 200 µm. Following the time-lapse, we show a real time

movie of a different fish at approximately 6 h post-induction that captures induced

∆cheGOF cells swimming within the foregut. Real time movie scale bar = 50 µm.

S8 Mov. Migratory behavior of tnfa:GFP+ cells. Time-lapse movie of a

live tnfa:GFP transgenic larval zebrafish showing the migratory behavior of

gut-associated tnfa+ cells (arrowheads). Images were acquired by light sheet

fluorescence microscopy. Each frame of the time-lapse is a maximum intensity

projection of a 3D image stack that captures the full intestinal volume. Scale bar

= 200 µm.

S9 Mov. Animated z-stack of a tnfa:GFP/mpeg1:mCherry double transgenic

larval zebrafish colonized with wild-type Vibrio. The mpeg1:mCherry reporter and

Vibrio dTomato marker were imaged simultaneously using a single excitation and

emission system, and are shown in magenta. tnfa:GFP fluorescence is shown in

green. Images were acquired by light sheet fluorescence microscopy. We first show
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an animated z-stack that depicts single planes of the light sheet with the depth

(left–right) indicated in the upper right. tnfa+ and mpeg1+ single-positive cells,

as well as tnfa+/mpeg1+ double-positive cells, are apparent. Scale bar = 50 µm.

Following the animated z-stack, we show a two-color, 3D rendering. Rendering scale

bar = 50 µm.

S10 Mov. Spatial distribution of tnfa+ host cells responding to swimming

bacterial cells within the intestine. Montage shows the foregut region of a larval

zebrafish carrying the tnfa:GFP reporter (green) colonized with ∆motGOF

(magenta) 24 h post-induction of the motility gain-of-function switch with aTc.

Images and real time movie were acquired by light sheet fluorescence microscopy.

We first show an animated z-stack that depicts single planes of the light sheet with

the depth (left–right) indicated in the upper right. Arrows indicate tnfa+ host

cells and bacterial cells. Next, we show a 3D rendering of the same intestine, which

highlights the association of tnfa+ host cells with the mucosa. The montage ends

with a real time movie of a single optical plane showing the swimming behavior

of induced ∆motGOF cells relative to tnfa+ host cells within the mucosa. All scale

bars = 50 µm.

S1 Table. Bacteria used and created in this study

S2 Table. Plasmids used and created in this study

S3 Table. Primer and oligo DNA sequences

S1 Data. File (.xls) containing all plotted numerical data

S1 raw images. File containing images of DNA gels shown in S1 Fig
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CHAPTER VI

CONCLUSION

This dissertation has investigated various topics concerning the spatial

organization and dynamics of gut bacterial communities using live imaging

approaches in larval zebrafish, a model vertebrate. Discussions of specific findings

and their impacts are included at the ends of each core chapter. To conclude this

dissertation, I end with a brief summary of the “rules” inferred in this work, detail

how these rules lead to quantitative relationships between common measurements

of bacterial populations in the zebrafish gut, and give suggestions for future

research.

6.1. Biophysical rules of gut bacterial communities

This work set out to discover general rules governing the spatial organization

and dynamics of gut bacterial communities. From examination of 7 different

bacterial species and application of various perturbations, we have deduced

the following picture for the minimal system of a single bacteria species in an

otherwise germ-free larval zebrafish intestine: most bacteria within the gut

reside within the intestinal lumen, suspended in fluid. As bacteria divide, one

or both daughter cells can either break free, resulting in new planktonic cells, or

remain close to the parent cell, resulting in the formation of multicellular, 3D

aggregates. These aggregates are likely encased in intestinal mucus, though a

complete characterization of the structural elements involved in the formation

of aggregates is lacking. As the aggregate continues to grow through cell

division, single cells may continue to break out of the aggregate, a process we

187



call fragmentation. Additionally, due to the mixing properties of intestinal fluid

flow, distinct aggregates may coalesce together to form a larger one, a process we

call aggregation. All the while, intestinal contractions push bacterial aggregates

in both directions along the gut axis, with net transport towards the posterior.

Occasionally, aggregates will be expelled from the gut altogether. The expulsion of

the largest aggregates registers as abrupt, massive drops in the bacterial abundance

within the gut.

Within this framework, we can now concretely state some rules that have

emerged from the work presented here:

1. Bacterial aggregation correlates with localization along the length

of the gut. As discussed in Chapter 2 [53], there is a strong correlation

between metrics of aggregation behaviors, such as the fraction of the

population contained in single cells, and localization along the anterior-

posterior axis. The direction of causality has not yet been rigorously

established, but perhaps the simplest explanation is that larger aggregates

are transported more strongly to the posterior by intestinal contractions. This

type of size-dependent transport has been seen in previous studies of particle

transport in peristaltic flows [69], and is supported by the motility loss-of-

function experiments of Chapter 5 [132], in which motility inhibition results

first in aggregation and then a posterior shift in center of mass.

2. Increased bacterial aggregation leads to larger fluctuations in

intestinal abundance due to expulsion. For strongly aggregated

populations, expulsion of the largest aggregate is more severe than it is

for a less aggregated population, because there are fewer single cells and

small clusters left behind to repopulate the gut. In the face of stochastic
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expulsion of bacterial aggregates, maintaining a large population of single

cells and small clusters can therefore be thought of as a form of bet hedging:

a species that puts all of its cells into a single aggregate is dangerously

poised for extinction. The large fluctuations in abundance that result

from the stochastic expulsion of large aggregates leave a signature on the

distribution of abundances measured at a single time point, marked by large

variance/mean ratios and left skew towards low abundance outliers.

3. Antibiotics can lead to larger reductions in aggregated bacteria

than planktonic bacteria through intestinal expulsion. This finding

goes against conventional wisdom of antibiotic tolerance, which states that

bacterial aggregation is often associated with enhanced tolerance. This

association is due to a variety of mechanisms, including physical protection

from antibiotic compounds and reduced metabolic activity of cells in biofilms.

While these mechanisms are all likely present in the gut, we identified a new

mechanism that has the opposite effect: enhanced aggregation and/or reduced

growth due to antibiotic exposure can deplete the reservoir population of

single bacterial cells in the gut that are required for repopulating after

intestinal expulsion events.

4. Bacterial swimming and chemotaxis can be used to counter

aggregation and intestinal expulsion and confer enhanced

population stability. While fast growth and fragmentation alone are

sufficient to allow bacterial populations in the gut to maintain stability in the

face of expulsion, motility can be an effective means of avoiding aggregation.

When combined with chemotaxis toward an anterior-localized cue, motility
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can also enable bacteria to effectively “swim upstream” and remain localized

to the anterior gut.

Of note, these rules have a markedly biophysical character. Processes like cell

aggregation and intestinal fluid flow determine in no small part a wide variety of

key properties of bacterial populations in the gut. The importance of biophysical

process to gut bacterial communities revealed here is under-appreciated in the field

of microbiota research as a whole, though during the course of this dissertation it

has been recognized in a small number of studies from other groups [22, 26, 180]. It

is worth emphasizing that live imaging was absolutely crucial to the discovery of all

of these phenomena.

6.2. Quantitative relationships between common measurements

Through the use of mathematical models, the above rules can be seen

to manifest systematic relationships between various measurements commonly

done on resident bacterial populations in the zebrafish gut. Broadly, the relevant

measurements can be grouped into three categories: spatial organization, dynamics,

and abundance. Measurements of spatial organization involve imaging multiple

fish at single time points. Dynamics refers to measuring a single fish’s bacterial

population over time. Abundance measurements are typically done by dissection

and plating of gut contents for many fish at a single time point, and involve no

imaging. Combining insights from the entirety of this dissertation, we now have a

thorough understanding of how these various metrics are connected, and in several

cases, how values of one metric can be quantitatively predicted from measurements

of others.
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First, we demonstrated that two aspects of spatial organization, the degree of

aggregation (sometimes called cohesion) and localization along the length of the gut

are highly correlated [53]. Specifically, the relationship between the typical location

of an aggregate, x, and the number of cells it contains, n, is roughly logarithmic,

x ∼ log(n). This strong correlation has the potential to be extremely useful,

because localization, typically quantified by a 1D center of mass, is far easier to

measure than the degree of aggregation, typically measured by planktonic fraction.

The center of mass can be reliably measured from images obtained with crude, low-

magnification fluorescence microscopy. In contrast, measuring planktonic fraction

requires accurate identification of bacteria in the gut with single cell resolution,

requiring high resolution imaging and sophisticated computational image analysis.

The strong correlation identified in [53] implies that one can infer the degree of

aggregation by measuring center of mass. This connection could be exploited in

studies of perturbations that are thought to alter aggregation, which if combined

with high-throughput platforms, such as 96-well plates or fluidic systems [181], and

automated image analysis, could be done on a large scale.

Second, we rigorously connected the stochastic dynamics of individual

populations, measured through time-lapse imaging, with the single-time-point

abundance distributions readily measured through dissection and plating. The

pseudorandom expulsion of large aggregates from the gut—so-called collapse

events—combined with the conventional logistic growth observed between collapses,

leads to a mathematical description of population dynamics that has the form of a

piecewise deterministic Markov process [90]: deterministic logistic growth coupled

to discontinuous jumps that arrive as a Poisson process. Jumps are multiplicative

and characterized by a fraction remaining after collapse, f , and the average arrival
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rate, λ. This model was quantitatively validated in previous work [32], which I

was a co-author on. In [32], stochastic simulations of this model with parameters

measured through time-lapse imaging, including the population growth rate, r,

and collapse parameters (f, λ), were shown to generate abundance distributions

consistent with experimental values obtained through dissection and plating.

In this dissertation work, I furthered this connection with analytic

calculations of the model’s stationary moments, which completely describe the

abundance distribution [70]. These analytic results rigorously demonstrated that

in the limit of rare but large collapses, relevant for our experimental system, the

abundance distribution can be described by a single dimensionless shape parameter,

r−1λ ln f , which controls the variance and skewness of the distribution (the overall

scale of the distribution is set by the carrying capacity, the maximum possible

abundance). This effective shape parameter can be interpreted as the ratio two

timescales: the timescale of recovery after a collapse of size f , (r−1 ln f), and the

timescale of collapse arrival (λ−1). The upshot of this is that measurements of the

abundance distribution can be used to infer the ratio of these two core timescales.

Perturbations that decrease the mean abundance but increase the variance and/or

skewness can be interpreted as either decreasing the bacterial growth rate relative

to the collapse rate, increasing the collapse rate or size, or a combination of these

effects. In ongoing, unpublished work by the Guillemin lab, this type of analysis

has already been used to track the effects of perturbations to bacterial quorum

sensing, which alters bacterial aggregation and therefore collapse size.

Finally, by developing and validating a kinetic model of how individual

bacterial clusters change size, we quantitatively connected measurements

of aggregation to collapse size, and therefore to population dynamics and
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abundance distributions. By introducing rates for bacterial cluster aggregation

and fragmentation, this model, introduced in [33], makes precise the notion that

populations that are more aggregated will experience larger collapses. The collapses

are larger because after the largest cluster gets expelled, there are fewer single

cells and small clusters left over. We demonstrated that parameters of this kinetic

model can be fit either from abundance distributions, obtained by dissection and

plating, or from cluster size distributions, obtained from single time-point images.

An analytic expression for how rates of aggregation, fragmentation, and growth

determine a typical collapse size are lacking; deriving such an expression would be

a useful future endeavor. However, by fitting or directly measuring these rates,

collapse sizes can then be measured in simulated trajectories of the population

abundance.

Combining these connections, it is now possible to gain insight into a

variety of detailed processes of gut bacterial populations through a few basic

measurements. From a few images of fish on a crude fluorescence dissecting

microscope and a handful of abundance measurements from dissection and plating,

it is now possible to estimate a variety of rate parameters describing in vivo

bacterial dynamics that themselves are far more challenging to measure directly.

I encourage all future researchers using this system to keep these connections

between measurements in mind, as they may well be useful in expediting various

inquiries.

6.3. Suggestions for future research

I end by suggesting three avenues for future research:
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1. Extend the quantitative frameworks for spatial organization and

dynamics to multispecies communities. The results presented here

on single species bacterial populations lay the groundwork for quantitative

understanding of the spatial organization and dynamics of communities of

multiple bacterial species. One specific direction is to study how the spatial

mixing of two or more species within aggregates is generated by the kinetics

of aggregation, fragmentation, growth, and expulsion. This could be done by

imaging multispecies communities with each species labeled by a differently

colored fluorophore, computing metrics of spatial correlations, and comparing

these metrics to appropriate kinetic models that can be parameterized from

measurements. One approach to modeling could be to simply extend the

mean-field kinetic model of Chapter 4 [33] to a multispecies case and compare

statistics of multispecies cluster sizes to image-derived data. Alternatively,

one could develop an explicitly spatial model and study metrics like the

cross-type pair correlation function, which is already in use in the study of

microbial biogeography [24]. A quantitative understanding of such spatial

patterns could be useful for interpreting imaging data from other host species,

such as mice, for which static imaging of multispecies communities in thin

slices of fixed gut tissue is becoming increasingly feasible [24].

2. Explore the response of gut microbiota to diverse chemical

perturbations. The finding presented here of gut bacterial populations

responding strongly to sublethal levels of antibiotics motivates the study

of other, non-lethal, chemical perturbations that may alter key biophysical

processes such as bacterial aggregation. In particular, antidepressants such

as selective serotonin reuptake inhibitors (SSRIs) are known to alter gut
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microbiota, though underlying mechanisms remain unclear [182]. Studying

their effects in our larval zebrafish system through live imaging may reveal

unexpected insights. Another relevant class of compounds is antifungals,

which are widely prescribed, but whose effects on gut microbiota are poorly

understood. Antifungal drugs are often derived from antibiotics but typically

lack widespread lethality on bacteria due to their fungi-specific mechanisms of

action [183]. However, given the close relatedness to antibiotics, it is highly

plausible that antifungals induce similar non-lethal effects to antibiotics,

such as the ones discussed here of modulating growth rates and aggregation

behaviors, making them suspect for having disproportionately large in vivo

consequences. Of note, the connection between aggregation and anterior-

posterior localization discussed above motivates a high-throughput screening

approach where many compounds can be rapidly tested for their effects of the

center of mass of bacterial populations in the gut, measured for example by

low-magnification microscopy in 96-well plates. Specialized plates designed

with 45-degree mirrors that enable a side view of larval zebrafish on an

inverted microscope would be particularly applicable.

3. Develop a quantitative understanding of the evolution

and transmission of antibiotic resistance in host-microbe

metacommunities. A natural and extremely relevant extension of the

antibiotic work presented here is the study of antibiotic resistance. An

important and largely open problem in the field is to understand which

environments place the strongest selective pressure on drug resistance

and facilitate expansion of resistant populations. Is it out in the natural

environment, in soil or water sources? Is it in hospitals? At manufacturing
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sites? Or is it within animal bodies? Understanding which environments

are the most important for driving resistance will help optimize policies

for combating it. Similarly, how antibiotic resistant organisms spread from

host to host—the epidemiology of antibiotic resistance—is a challenging yet

extremely relevant problem at present. Larval zebrafish provide a potentially

powerful model in which to study these problems, in part due to insights

gained during this dissertation work.

To easily track resistance, I suggest taking a synthetic biology approach

inspired by the motility gain-of-function (∆motGOF) switches introduced in

Chapter 5 [132]. Recall that ∆motGOF bacteria are normally non-motile, but

chemical induction of the genetic switch lifts repression of motility genes,

leading to swimming bacteria and expression of a green fluorescent protein

(GFP) marker to track switched cells. A fascinating observation made in

this study that was not followed up on is that in control experiments of

uninduced ∆motGOF populations, motile bacteria still eventually emerged

in vivo and populated the gut. Subsequent characterization showed that these

bacteria mutated parts of the synthetic genetic switch required for motility

repression, leading to swimming bacteria that constitutively expressed the

GFP marker. These mutations then rapidly swept through the in vivo

population, indicating strong selective pressure on swimming motility in

the larval zebrafish gut. For comparison, the fraction of mutated cells in the

aqueous environment outside the fish never exceeded ∼10%.

I propose that this accidental feature of the gain-of-function switch can

be intentionally used to visually map selective pressures in heterogeneous

environments. This approach is conceptually the inverse of experimental
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evolution: there, an organism is placed under a chosen selective pressure and

one tracks the traits that respond to this pressure. In the proposed approach,

a specific trait is chosen and its evolution is tracked in different environments.

By using fluorescent markers of switch induction, as in ∆motGOF cells, the

selective pressure in each environment can be visually read out.

To study the evolution of antibiotic resistance, one could engineer a similar

gain-of-function switch on a resistance gene, effectively “baiting” a resistance-

conferring mutation . Then, one could colonize a flask of zebrafish, treat

with antibiotics, and then track the frequency of resistant, GFP+ clones

both inside and outside of the fish. In a similar way, one could study the

transmission of antibiotic-resistant bacteria between fish by replacing a

fraction of colonized fish with germ-free fish, or by introducing antibiotic-

treated fish to an untreated population. With all of the measurements of

bacterial populations available in the larval zebrafish system, it should be

possible to develop a quantitative theory of evolutionary dynamics and

transmission that can make experimentally testable predictions.
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