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DISSERTATION ABSTRACT

Caleb James Holt

Doctor of Philosophy

Department of Physics

June 2020

Title: The Interplay of Neural Dynamics and Connectivity Structures in the Visual
Cortex

Here, we theoretically study how cortical networks’ synaptic connectivity

shapes their spiking activity dynamics, and in turn, how dynamics shape the

structure of synaptic connectivity.

In the first part of this work, we study rhythmic oscillations of neural

activity in the primary visual cortex (V1). These oscillations are characterized

by power-spectra with peaks frequencies anywhere from 30 to 80 Hz, the gamma

band. Gamma peaks shift to higher frequencies when V1 is stimulated by

increasing contrasts. Moreover, the peak frequency depends on the local contrast

stimulating a V1 sub-network. The local nature of this contrast-dependence would

be trivially explained if the long-range intra-cortical connections within V1 were

weak. However, experimental observations, such as the suppression of spiking rates

with increasing stimulus size, point to those same long-range connections being

functionally strong. Here we show that a model of V1 can balance the strength
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of short- and long-range connections to successfully reproduce observations of

gamma peak’s local contrast-dependence as well as “surround suppression” of

firing rates. Thus, we demonstrate how cortical network dynamics can be shaped

by connectivity structures.

Visual information is relayed to V1 from the thalamus. The patterning of

thalamocortical connections determines the location of visual space which V1

neurons respond to, their receptive field (RF). Cortical neurons moreover develop

particular RF filters from thalamocortical connections. in carnivores and primates,

particular features of those filters, such as their orientation, develop smooth maps

across the cortex. However, in those same species, the RF filters of neighboring

neurons are diverse and heterogeneous. Previous theoretical models of RF filter

development predicted that if a smooth map forms for one feature, then RF filters

should be homogeneous; failing to predict the observed co-presence. We extend

those models by properly considering cortical activity dynamics. We show that in

the presence of multiple timescales in cortical dynamics and thalamic inputs, RF

filters can develop qualitatively different feature organizations, from smooth maps

to heterogeneity. Thus, we demonstrate how cortical network dynamics shape

connectivity structures.

This dissertation contains previously published co-authored material.
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CHAPTER I

INTRODUCTION: THE BRAIN AS PHYSICS

There are three fundamental forces that physics currently knows of: the

gravitational force, the strong force, and the electroweak force. This work can be

entirely described by one half of one of the three fundamental forces, the forces of

electricity and magnetism, because, at its core, it deals with the movement and

transport of ions through atoms and molecules. Collectively these ions, atoms and

molecules make up the neuron, a nerve cell, whose membrane is full of channels

and pumps for ions to move through. However, describing that movement purely

using Maxwell’s and Schrödinger’s equations is hopelessly complex and needlessly

obfuscating. As such, in this work we develop and use phenomenological models

describing the activity of single neurons and collections of neurons that form an

interconnected network. These phenomenological models can be used to faithfully

recreate aspects of experimentally observed dynamical phenomena in biological

neural networks, and yield novel testable predictions about the mechanisms

underlying them.

In the rest of this introduction we review some key aspects of neurobiology to

give the broad relevant background for our phenomenological models in Secs. 1.1-

1.4. The reader who is familiar with that background may consider skipping ahead

to Sec. 1.5 in which we give an overview of the focus of this work and the problems

that motivate it. In Sec. 1.1 we introduce the structures of neurons and the action

potential, a key communication signal between neurons. In Sec. 1.2 we briefly

discuss the gross anatomy of the central nervous system and the brain. In Sec. 1.3,

we discuss how the synaptic connections between neurons change due to their
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activity, a process known as synaptic plasticity. In Sec. 1.4, we introduce reduced

models of the biological complexity of neural activity and synaptic connections.

In Sec. 1.5, we outline how those reduced models are applied in the remaining

chapters of this work to gain insight about two sets of neurobiological phenomena.

Lastly, we end this chapter with the abstracts for the works covered in Chs. II and

III.

1.1. Neurons and action potentials

First, let us consider a single neuron (Fig. 1.1A). Neurons are biological cells

characterized by three key compartments. The large bulbous part of the neuron

is the soma, the cell body, which contains much of the cellular machinery of the

neuron, including its nucleus and genome (Fig. 1.1A, red arrows). In Fig. 1.1A,

above the soma are extensive branching structures highlighted by blue braces.

These are the dendrites of the neuron, and function as its input channels. The

dark black branch jutting out of the bottom of the neuron in Fig. 1.1A, is the

axon, which functions as the output channel of the neuron (highlighted by green

braces). Neurons communicate via these input and output channels through

synapses, the connections between the axons of one neuron and the dendrite of

another. Before further discussing the synapses which form the communication

media, we will first give an overview of the electrical properties of neurons which

generate the communicated signals.

The lipid membrane of a neuron is largely insulating, allowing neurons to

act as capacitors (with a capacitance per unit area on the order of 1 µF
cm2 [3]) that

store electric charge. The membrane is however an imperfect and leaky insulator;

it is punctuated by special kinds of proteins called ion channels, which allow the
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FIGURE 1.1. Introductory figure to neurons, spikes, and firing rates. A: Two
examples of cortical excitatory neurons (A and B) drawn by Santiago Ramon
y Cajal [1]. The bulbous structure of each neuron is its soma or cell body (red
arrows). The branches with many small dots (little bumps called spines) around
them are dendrites (blue brace), the input channels of the neurons. The dark
black branches coming out the base of the neuron are the axons (green brace),
the neurons’ output channel. B: An example of an action potential (recorded by
L. Rutherford in the laboratory of G. Turrigiano; image from [2]). C: A cartoon
example of a voltage trace (blue) recorded from a neuron, containing many action
potentials or spikes, and the associated firing rate (red). Every time the membrane
voltage membrane crosses the spiking threshold (dashed black line) an action
potential is emitted.
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movement of charged ions in or out of the cell. If we neglect active biological

processes for the moment, the membrane can thus be approximated electrically

as a simple RC circuit, with an RC decay time (the time-scale over which stored

charge in the cell leaks out) of around 10-20 milliseconds. At the same time,

active biological devices called ion pumps (made up of other membrane proteins)

spend metabolic energy, and act as batteries that constantly charge this leaky

capacitor. Ion pumps maintain a generally negative electric potential across the

cell membrane (referred to as the membrane potential), which at baseline sits at

around −65 mV relative to the neuron’s extracellular surround [4].

If the membrane potential of a neuron is raised above a specific threshold

value, then an active positive feedback process initiates as follows. As membrane

voltage rises beyond the threshold, certain voltage-gated ion channels in the cell

membrane open up, allowing for an influx of positively charged sodium ions which

raise the membrane potential even more. This positive feedback runaway process

(with the voltage increase opening up more ion-channels and the latter causing a

further rise in the membrane voltage, and so forth) ultimately results in a sharp

and large peak in the membrane potential (with an amplitude on the order of

+100 mV, and width on the order of 1-3 ms), known as an action potential or

“spike” because of its shape (Fig. 1.1B). In general, only changes in membrane

potential large enough to produce action potentials or spikes are communicated on

to other neurons. For any change in membrane potential which does not exceed

threshold, and in the absence of inputs, the membrane voltage simply returns to

its resting potential. However, action potentials, once generated, travel down the

axon of the neuron and arrive at its axonal terminals.
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An axonal terminal is a bulge of neural membrane at the end of an axonal

branch, and makes up the “pre-synaptic” part of a chemical synapse: a connection

between two neurons. At the synapse, the axonal terminal meets with another

bulge of neural membrane, called a spine, 1 on a dendrite of the “post-synaptic”

neuron (Fig. 1.1A). The spine and the axonal terminal, together with the cleft

between the two, make up the synapse (Fig. 1.3A). Once action potentials

reach the axonal terminal of the pre-synaptic neuron, they cause the release of

neurotransmitter molecules which diffuse through the cleft and bind to synaptic

receptors on the dendritic membrane of the post-synaptic neuron. Those receptors

in turn open up ion channels which allow in a flux of ions which changes the

membrane potential of the post-synaptic cell. In this way, action potentials of a

pre-synaptic neuron affect the membrane potential of its downstream post-synaptic

partners.

As we said above, sub-threshold changes in the membrane voltage do not

communicate to other neurons. Therefore, from a computational point of view, we

can reduce the complex biological activity of a network of neurons to their spiking

activity, or “activity” for short. One important measure of a neuron’s spiking

activity and its responses to stimuli is its firing rate, which is roughly the number

of spikes fired by that neuron in a unit of time. More precisely, the instantaneous

firing rate of a neuron (Fig. 1.1C, red curve) can be derived from its spike train

(Fig. 1.1C, the spikes in the blue curve) by many means, e.g., by taking a running

average of spike counts in some sliding window. In the rest of this dissertation,

1As with everything in biology, there are many exceptions: not all chemical synapses are
formed on post-synaptic spines. Many form on spineless dendrites and yet others can target the
soma or the initial segment of axon of the post-synaptic cell.
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when referring to a neuron’s activity or response, we more precisely mean its firing

rate or a change therein.

1.2. Neocortex and sensory cortical areas

Neurons are present throughout the body, from the muscles and gut to the

central nervous system, i.e. the spinal cord and the brain. This work will focus

on studying networks of neurons within the neocortex of the brain. The neocortex

(hereafter cortex) is the outer wrinkled sheet of grey matter in the mammalian

brain composed of a six-layered structure. It was the most recent area of the brain

to evolve. Broadly speaking, different areas of the cortex have been specialized for

different functions through evolution, with areas specializing in processing sensory

stimuli lying towards the back of the head (posterior) and areas specializing in

motor control and planning towards the front (anterior).

The areas which process sensory stimuli are known as sensory cortices. Each

sense has an associated set of corresponding areas within the cortex, e.g. vision

has the visual cortices, hearing the auditory cortices, and smell the olfactory

cortices. Moreover, for each sensory modality the cortical area in which sensory

information arrives first is referred to as the primary sensory cortex, e.g. primary

auditory cortex, or primary visual cortex (also known as V1; Fig. 1.2).

Primary sensory cortices typically receive sensory information from their

corresponding sensory organ via the thalamus (the exception being the primary

olfactory cortex). The thalamus lies within a structure in the center middle part

of the brain known as the diencephalon. For example, the eyes’ retinas connect

to the lateral geniculate nucleus (LGN) of the thalamus via the optic nerves and

the optic tract; see Fig. 1.2. Through these connections, each thalamic neuron

6
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FIGURE 1.2. A sketch of the cerebral cortex (by David H. Hubel [5]) depicting
the early visual pathway. Signals from the retina are communicated along the optic
tact to the lateral geniculate nucleus (LGN) of the thalamus. The optic radiations
form the feedforward thalamocortical connections to the primary visual cortex
(V1). At the bottom and right margins, we show stylized examples of receptive
field filters for ON- and OFF-center cells in the LGN, and for orientation selective
cells in V1.

within the LGN receives information about a particular location in the visual field,

known as its receptive field (RF). Moreover, LGN neurons respond strongly to

certain visual patterns within their RF and not to others; the preferred pattern

of a cell within its RF is therefore called its RF filter. To a first approximation,

the thalamus functions as a relay center, sending signals from the sensory organs

to the cortex largely unchanged (indeed, in the LGN the RF filters are mainly

inherited from retinal cells, and thus signals from the retina are communicated to

V1 with little transformation). These signals are communicated via feedforward

thalamocortical connections (see e.g. the optic radiations in Fig. 1.2).
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As we will see in Ch. III, these feedforward thalamocortical connections

determine the RF filters of the neurons in the primary visual cortex (and similarly

in other primary sensory cortices), and thus the stimulus characteristics or features

that those neurons respond to most strongly [6, 7]. Cortical neurons thus acquire

selectivities for particular features of stimuli, and in particular develop a RF.

Moreover, nearby neurons prefer nearby regions of the visual field; their RF

locations therefore form a smooth map of the visual field across the cortex, a

property known as retinotopy. V1 neurons acquire RF filters from combinations of

the RF filters of LGN neurons (Fig. 1.2). However, the RF filters of V1 neurons

develop selectivities to features in the stimulus that are not present in the RF

filters of LGN neurons. In particular, V1 neurons prefer (or respond most strongly

to) oriented patterns of light and dark bands; as such orientation preference and

selectivity fist emerges in the visual pathway in V1.

1.3. Synaptic plasticity

As we said above, visual cortical RF filters arise from the structure of

feedforward thalamocortical connections. Feedforward thalamocortical connections

undergo rapid changes in strength during late pre- or early post-natal development

(depending on the species) [8, 9, 10]. The feature preferences which develop

during this time depend on the activity of the pre- and post-synaptic neurons

(by contrast, retinotopy in V1 seems to develop according to a genetically defined

program and in this sense is “hard-wired”) [11, 12]. The process of synapses

changing their strength based on the activity of the connected neurons is known

as synaptic plasticity. There have been many models for how synapses change with

activity, but we will rely on so-called Hebbian plasticity or Hebbian learning (see

8



Ch. III for more details) to model development in this work. Hebbian learning is

known by the aphorism that “cells that fire together, wire together” [13].

The synaptic connections between neurons come in two main types,

excitatory or inhibitory. Either an action potential arriving at the axonal terminal

causes the membrane potential of the post-synaptic neuron to increase, in which

case the synapse is excitatory as the post-synaptic neuron is more likely to fire a

spike, or an action potential causes the membrane potential of the post-syanptic

neuron to decrease, in which case the synapse is inhibitory as the post-synaptic

neuron is now less likely to fire a spike. Excitatory and inhibitory synapses

release different neurotransmitter molecules, and cannot change into one another

by synaptic plasticity. Interestingly, the synapses formed by a particular (pre-

synaptic) neuron are generally either all excitatory or all inhibitory, a principle

known as Dale’s Law or Dale’s Principle [14, 15, 16]. Moreover, long-range

connections in the brain, e.g. feedfoward thalamocortical connections, are generally

excitatory. It is generally the excitatory synapses that undergo Hebbian or

Hebbian-like plasticity.

In addition to respecting the constraints imposed by the fixed

excitatory/inhibitory type of a synapse, biologically plausible plasticity models

cannot allow for unbounded growths in synaptic strengths. In Ch. III, we explore

the development of orientation preference and other selectivities in V1, by activity-

dependent Hebbian plasticity in thalamocortical connections, under the above

constraints.
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FIGURE 1.3. Example of a chemical synapse and networks of neurons A: Diagram
of a chemical synapse (from [17]). The top part depicts the axonal terminal of
the pre-synaptic neuron, while the bottom structure is a spine on a dendrite of
the post-synaptic neurons. In the synaptic the cleft between the two, the pre-
synaptic neuron releases neurotransmitter molecules whenever an action potential
fired by the pre-synaptic neuron reaches the terminal. The neurotransmitters then
diffuse in the extracellular space and attach to receptors on the post-synaptic cell’s
membrane. Receptors of the post-synaptic then open their ion channels resulting
in a change in the membrane potential of the post-synaptic neuron. B: Example
of a recurrent network with external input from a stimulus. Stimulus inputs are
shown in red, and recurrent connections are shown in black. The network is
composed of excitatory (orange) and inhibitory (cyan) neurons, with excitatory
synapses ending in a circle and inhibitory synapses ending in a line. An example
connection from neuron 1 to 2 is labelled as W2,1.
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1.4. Reduced models of neurons and synapses

Neurons fire spikes constantly, often in an irregular noisy-looking fashion

(with an average firing rate around 5 − 10 Hz, in brain regions of interest to

this work [18]). While there is some debate as to whether the timing of spikes

versus their rate is more important for neural communication [19] (see [2] Ch. 1

for a more detailed discussion), the firing rate, or number of spikes per unit time,

is undoubtedly a key feature of neural responses. Recall that the instantaneous

firing rate of a neuron can be approximated by taking a running average of spike

counts in some sliding window (Fig. 1.1C). In this work, we adopt the commonly

held “rate coding” point of view, and will study phenomena that can be modeled

directly at the coarse-grained level of firing rates, without resolving or modeling

individual spikes (similar to hydrodynamic modeling, which does not refer to

the molecules composing a fluid). In short, we reduce the complex biological

machinery and electrophysiology of the nerve cell to a model in which the entire

neuron is represented by a single dynamical variable: its instantaneous firing rate

r(t).

Now that we have reduced the biological complexity of the neuron, we

similarly seek to reduce the complexity of the synapse. A key characteristic of

synapses is their synaptic efficacy or strength, which is measured by the change in

the membrane potential of the post-synaptic neuron resulting from a spike by the

pre-synaptic neuron. Biologically, the synaptic efficacy depends on a number of

factors, including the amount of neurotransmitter released by the pre-synaptic

terminal and the number of synaptic receptors expressed on the post-synaptic

membrane (Fig. 1.3A). In this work, the synaptic strength or weight, is defined as

the total change in the net input to the post-synaptic neuron for a unit change in
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the firing rate of the pre-synaptic neuron. Thus, we again reduce all the biological

complexity of the synapse to one number, its weight. In this work, we will denote

the weight of synaptic connections between neurons in the form Wpost,pre, e.g. W3,6

is the connection from neuron 6 to neuron 3 (see Fig. 1.3B).

Fig. 1.3B schematically shows a network of reduced rate neurons connected

by synaptic weights. Excitatory neurons are depicted in orange with connections

ending in circles in Fig. 1.3B, while inhibitory neurons are depicted in cyan with

connections ending in lines.

Broadly speaking, neurons receive two forms of connections, feedforward,

e.g. thalamocortical connections, or recurrent, e.g. connections within the cortex.

Feedforward connections go from one population to another; the connections only

go one way, e.g. the feedforward inputs in Fig. 1.3B (red arrows). Recurrent

connections, on the other hand, include reciprocal connections between neurons,

as in the connections between 2 and 3 in Fig. 1.3B. More generally, recurrent

connections can form loops, as formed, e.g., by the connections between neurons

3, 4 and 6 in Fig. 1.3B. Networks may have both feedforward and recurrent

connectivity structures. In Fig. 1.3, recurrent connections which end in circles are

excitatory, while recurrent connections which end in lines are inhibitory. In this

work, feedforward connections correspond to thalamocortical connections, while

recurrent connections correspond to intra-cortical connections within V1.

In a network of N neurons, we will arrange the firing rates of all neurons in

an N -dimensional rate vector, r(t). Similarly, the connections between neurons can

be represented as an N × N matrix, typically labelled as W , with matrix element

Wij denoting the weight of the synapse from neuron j to neuron i. In a network

respecting Dale’s law, introduced above, the weights of all synaptic projections
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from an excitatory (inhibitory) neuron are positive (negative). For example, in

Fig. 1.3, both W3,6 and W5,6 are greater than zero as both are connections from

an excitatory neuron. Mathematically, Dale’s law imposes the constraint that all

elements in each column of the weight matrix, W , share the same sign.

The total net input to a neuron is the sum of its recurrent and feedforward

inputs. We denote the latter (shown by the red arrows in Fig. 1.3B) as an

N -dimensional vector, I. The recurrent input to a neuron is the sum of the

contributions of all the other neurons inside the network. The input contribution

of neuron j to neuron i is proportional to the firing rate of the pre-synpatic

neuron, rj, and to the weight of synaptic connection it forms onto neuron i, Wij.

Thus the vector of recurrent inputs to all neurons can be written as the matrix-

vector product Wr. At steady-state, the rate of a neuron is related to its total

net input, v, by a nonlinear input/output (I/O) transfer function, f(v), which is a

biological property of the neuron. Therefore, assuming a steady-state equilibrium

exists, the network’s rate vector, r, in that steady-state must satisfy

r = f(Wr + I). (1.1)

To obtain an equation describing the dynamics outside the steady state, it is

assumed that the rate of each neuron (in isolation) would exponentially relax

towards its equilibrium value over a relaxation time τr. This leads to the following

set of coupled ordinary differential equations (or dynamical system), known as rate

equations

τr
dr(t)

dt
= −r(t) + f(Wr(t) + I(t)). (1.2)
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The neuronal I/O transfer function, f(v), is a key ingredient of firing rate

equations. Many different classes of I/O transfer functions have been used in

theoretical neuroscience, many of which saturate at an upper bound, e.g. f(x) =

1/(1 + ex), while others do not. In Ch. II, we will study how a non-saturating

I/O transfer function is particularly useful in reproducing certain features of the

dynamics of neural activity in cortex.

1.5. The focus of this work

The uniting theme of this dissertation research has been the study of how

synaptic connections and neural activity dynamics impact one another. In Ch. II,

we use a previously successful model of cortical activity to study the recurrent

connectivity structures underlying oscillations of neural activity, and thus study

how recurrent connections impact the dynamics of neural activity at fast time-

scales. Then in Ch. III, we study the development of neural selectivities via

synaptic plasticity in feedforward thalamocortical connections. Specifically, we

model how the intrinsic dynamics of the cortical network, which was not previously

considered in theoretical models of cortical plasticity and development, impacts the

development of feedforward selectivity structures through a novel mechanism. In

short, we study how the dynamics of neural activity at multiple (but relatively

fast) time-scales impact the development of connectivity structures. In the

following paragraphs, we present the relevant background to each chapter.

As we have said, a group of neighboring neurons within V1 are responsive

only to a certain location within the visual field, known as their receptive field

(RF). In experimental studies, neural responses to stimuli within their RF’s can

be recorded using a variety of techniques. In particular, some studies record from
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the local population of neurons by inserting an electrode into the extracellular

fluid surrounding the neurons. These recordings show a noisy trace of the electrical

activity of the population, and when low-pass filtered are known as the local field

potential (LFP), a measure of the population’s average activity (see [20, 21] for

examples). Populations of neurons within primary visual cortex exhibit elevated

rhythms in their LFP when stimuli are present in their RF. The rhythms with the

greatest increases in power occur in the gamma band of frequencies (30− 80 Hz).

In Ch. II we study under what spatial recurrent connectivity structures, a

model of V1 can reproduce certain experimental observations regarding gamma

oscillations. That chapter contains co-authored and published work by Caleb Holt,

and Drs. Ken Miller and Yashar Ahmadian. We show that a previously successful

model of cortical dynamics can produce gamma oscillations in its LFP. We then

show that this cortical model robustly produces these oscillations and their

dependence on stimulus strength across many parameter choices in a simple two-

population (one excitatory, one inhibitory) network. We further demonstrate that

an extended retinotopic version of this model successfully captures how gamma

oscillations depend on stimulus strength in a spatially local manner. Moreover, we

find that a particular cortical connectivity structure is key to producing the above

phenomenon.

To show that the dynamics of cortical activity at multiple time-scales are

important in shaping feedforward connectivity structure, in Ch. III we study RF

feature development in V1. That chapter contains co-authored and un-published

work by Caleb Holt, and Drs. Ken Miller and Yashar Ahmadian. During RF

feature development, the feedforward thalamocortical connections change based

on the activity of the pre- and post-synaptic neurons. Different feature selectivities
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are known to develop particular organizations across the cortex, either a smooth

map where nearby neurons prefer similar features or a disorderly (so-called salt-

and-pepper) organization where the selectivity of a neuron to a feature has little to

no correlation with its neighbors’ selectivities to that feature. Previous models

of feedforward thalamocortical development predicted that the selectivity to

every feature would develop the same type of organization across the cortex

[22]. Either all feature selectivities would develop a smooth map, or a salt-and-

pepper organization. However, in experimental studies, a mixture of selectivity

organization are observed for different features in the same visual cortex [23].

Previous theoretical models of feature selectivity development using Hebbian

learning did not consider the dynamics of the post-synaptic cortical population.

Rather, the activity of the cortical population was assumed to be always at the

fixed-point corresponding to its instantaneous LGN input. Here we show that

properly accounting for the intrinsic dynamics of V1 and the temporal variations

in the LGN input, which can both feature multiple time-scales, gives rise to

a more biologically plausible model of feedforward connectivity development.

This new theoretical model of development leads to a certain coupling between

multiple time-scales of LGN input features and cortical response dynamics.

This coupling allows selectivities to features that vary at different time-scales to

potentially develop qualitatively different organizations (e.g. smooth versus salt-

and-pepper), as is observed biologically. We show results from simulations using

our new model of feedforward development in network models with both one- and

two-dimensional retinotopy. The cortical population in these models develops

different organizations of selectivity to different input features. Additionally,

we compare how these models perform against a previous model of feedforward
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development which did not adequately account for cortical dynamics, and show

that the previous model fails to develop different organizations for the features

considered [22]. We finish this dissertation with discussions of generalizations and

future directions for research in Ch. IV.

1.5.1. Abstract for Ch.II

When stimulated, visual cortical populations exhibit fast rhythmic activity

with frequencies in the gamma band (30-80 Hz). The gamma rhythm manifests

as a broad resonance peak in the power-spectrum of recorded local field potentials

which exhibit several interesting stimulus dependencies. In particular, in macaque

primary visual cortex (V1), the gamma peak frequency increases with increasing

stimulus contrast. Moreover, this contrast dependence is local: when contrast

varies smoothly over visual space, the gamma peak frequency in each cortical

column is controlled by the local contrast in the column’s receptive field. No

parsimonious mechanistic explanation for these contrast dependencies of V1

gamma oscillations has been proposed. The stabilized supralinear network (SSN)

is a mechanistic model of cortical networks that has accounted for a range of

response nonlinearities and contextual modulations in the visual cortex and

their contrast dependencies. We first show that a reduced SSN model lacking

topography robustly captures the contrast dependence of gamma peak frequency,

and provides a mechanistic explanation for this effect based on the observed

non-saturating and supralinear input-output function of V1 neurons. Given

this result, the local dependence on contrast can trivially be captured in a

retinotopically extended SSN which lacks horizontal synaptic connections between

cortical columns, as in that case the gamma peak in a cortical column would
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be independently set by that column’s feedforward input. However, contextual

modulation phenomena such as surround suppression are known to be partly

mediated by horizontal connections. We thus explored whether a retinotopically

organized SSN model of V1 with strong excitatory horizontal connections can

exhibit both surround suppression and the local contrast dependence of gamma

peak frequency. We found that such a SSN can account for both effects, but only

when the excitatory projections are composed of two components with different

patterns of spatial fall-off with distance: a short-range component which only

targets the source column, combined with a long-range component that targets

columns neighboring the source column. We thus make a specific qualitative

prediction for the spatial structure of horizontal connections in macaque V1,

consistent with the columnar structure of cortex.

1.5.2. Abstract for Ch.III

In many mammalian species, the primary visual cortex (V1) develops

smooth maps for several receptive field features, such as preferred orientation

or spatial frequency. Such maps may be beneficial in minimizing wiring lengths

between neurons selective to similar features. Nevertheless, even in visual cortices

with smooth maps, the receptive fields of nearby neurons show considerable

heterogeneity. Correspondingly, some receptive field features are largely

uncorrelated between nearby cells, and average signal correlations between nearby

cells are near zero. Such random, “salt-and-pepper” organizations may in turn

be advantageous in reducing the response redundancy of local V1 populations

and increasing their information content. Thus a combination of smooth maps

for some features, and salt-and-pepper organizations for others, may provide both
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the benefits of wiring length minimization and informational efficiency. Previous

theoretical models have described the development of V1 feature selectivity and

maps based on activity-dependent Hebbian plasticity. However, these models

inevitably predict that V1 either develops smooth maps for all features (when

long-range recurrent cortical excitation is strong) or salt-and-pepper organizations

for all features (if cortical recurrent excitation is weak or short-range); they fail

to account for the biologically observed co-presence. We propose that this failure

is in part due to these models neglecting the intrinsic temporal dynamics of V1,

and show that if properly considered, cortical interactions at slow and fast time

scales will couple to the slow and fast features of inputs to V1, respectively. This

can lead to the development of smooth maps for slow input features and salt-

and-pepper organizations for fast input features. In particular, by simulating

1-and 2-dimensional topographic models of development of plastic feedforward

thalamocortical connections, we show that our framework can sustain both smooth

maps and salt-and-pepper organizations, providing a more biologically plausible

mechanism for receptive field feature development in V1.
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CHAPTER II

THE STABILIZED SUPRALINEAR NETWORK ACCOUNTS FOR THE

STIMULUS DEPENDENCE OF VISUAL CORTICAL GAMMA OSCILLATIONS

The simulations and analyses done in this chapter were carried out by myself

under the guidance of Dr. Yashar Ahmadian, the principal investigator who

conceived the project. Dr. Ken Miller originated some of the questions motivating

this work, and contributed to some of the conceptual solutions.

2.1. Introduction

When presented with a stimulus, populations of neurons within visual

cortices exhibit elevated rhythmic activity with frequencies in the so-called

gamma band (30-80 Hz) [20, 21]. These gamma oscillations can be observed

in local field potential (LFP) or electroencephalogram (EEG) recordings and,

when present, manifest as peaks in the LFP/EEG power-spectra. It has been

proposed that gamma oscillations perform key functions in neural processing such

as feature binding [24], dynamic communication between cortical areas [25, 26, 27],

or as a timing or “clock” mechanism that can enable coding by spike timing

[28, 29, 30, 31, 32]. These proposals, however, remain controversial.

While the functional role of gamma rhythms is not fully understood, much

is known about their phenomenology. For example, defining characteristics of

gamma oscillations, such as peak frequency, half-width, and height of the spectral

gamma peak, exhibit systematic dependencies on various stimulus parameters

[20, 21, 33, 34]. In particular, in the primary visual cortex (V1) of macaque

monkeys, the power-spectrum gamma peak moves to higher frequencies as the
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contrast of large and uniform grating stimuli is increased [20, 21]. This establishes

a monotonic relationship between gamma peak frequency and the grating contrast.

We will refer to this contrast-frequency relationship, obtained using a grating

stimulus with uniform contrast, as the “contrast dependence” of gamma peak

frequency.

Moreover, when animals are presented with a stimulus whose contrast

smoothly varies over the visual field (and hence over nearby cortical columns

in V1), it is the local stimulus contrast that determines the peak frequency of

gamma oscillations [21]. Specifically, Ref. [21] used a Gabor stimulus (which has

smoothly decaying contrast with increasing distance from the stimulus center),

and found that the gamma peak frequency of different V1 recording sites match

the predictions resulting from the frequency-contrast relationship obtained from

the uniform grating experiment when using the local Gabor contrast in that site’s

receptive field. We refer to this second effect as the “local contrast dependence” of

gamma peak frequency.

It is well-known that networks of excitatory and inhibitory neurons with

biological neural and synaptic time-constants can exhibit oscillations with

frequency in the gamma band [35, 36]. There exists a class of network models with

gamma frequency tied to the single neuronal spiking [37, 38, 39]. These models

come in two types: those that rely on recurrent connections between inhibitory

units, known as inhibitory network gamma (ING), and those that rely on recurrent

interactions between pyramidal (excitatory) and inhibitory neurons, known as

pyramidal-inhibitory network gamma (PING). However, these ING and PING

models generally produce gamma rhythms by synchronized regular spiking of

different neurons firing at the same frequency across the network. In the visual
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cortex (as well as other cortical areas), by contrast, neurons typically fire spikes

irregularly, in a Poisson-like manner [40], with a wide distribution of firing rates

[41]. Lastly these models produce very sharp gamma peaks with higher harmonics

[37], which is not seen in cortical studies (see e.g. [21]). Here, by contrast, we

develop a rate model of gamma rhythms, appropriate for modeling the asychronous

irregular state of cortical activity.

No mechanistic circuit model of visual cortex has been proposed which can

robustly account for the local contrast dependence of gamma oscillations. Ref. [20]

developed a rate model which does account for the dependence of gamma peak

frequency to changes in the global contrast. However, that model only explicitly

accounts for the interactions between a local excitatory and inhibitory population,

and thus cannot account for the local nature of the gamma peak frequency’s

contrast dependence. Moreover, even in the case of a stimulus with globally

uniform contrast, this model could only produce very small contrast-dependent

changes in peak frequency, which furthermore required the scaling of the intrinsic

time constant of the excitatory neurons depending on contrast. As such, we seek

to develop a self-contained and more parsimonious mechanistic model which can

account for changes in global and local contrast dependencies of gamma with fixed

parameters.

It is not clear how the local nature of the contrast-dependence of gamma

oscillations can be reconciled with key features of cortical circuits. This locality

would naturally emerge if cortical columns were non- or weakly interacting; in

that case each column’s oscillation properties would clearly be determined by its

feedforward input (controlled by the local contrast). However, nearby cortical

columns do interact strongly via the prominent horizontal connections connecting
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them [42]. These interactions manifest, e.g., in contextual modulations of V1

responses, such as in surround suppression [43], which are known to be mediated

partly by horizontal connections [44].

Surround suppression is the phenomena wherein stimuli outside the classical

receptive field (RF) of V1 neurons, which by themselves cannot drive the cell

to respond, nevertheless modulate the cells’ response, typically by suppressing

it. Surround suppression results in a non-monotonic “size tuning curve”, which

is obtained by measuring a cell’s response to circular gratings of varying sizes

centered on that cell’s RF: the response first increases with increasing stimulus

size, but then decreases as the grating increasingly covers regions surrounding

the RF. It is unclear whether a model of V1, featuring biologically plausible

horizontal connections, can capture both surround suppression and the local

contrast dependence of gamma oscillations.

A parsimonious, biologically plausible model of cortical circuitry which

has successfully accounted for a range of cortical contextual modulations and

their contrast dependence is the stabilized supralinear network (SSN) [45, 46].

In particular, the SSN robustly captures the contrast dependencies of surround

suppression, such as the observation that size tuning curves peak at lower stimulus

sizes with increasing stimulus contrast [45].

Being a rate model with excitatory and inhibitory neurons, we expect

the SSN to be able to exhibit oscillations similar to gamma rhythms. Gamma

oscillations do not behave like sustained oscillations, as sustained oscillations

display a sharp peak in the power spectrum, typically with subsequent harmonics.

By contrast, gamma peaks are broad, with no visible harmonics, consistent with

transient (damped) and noise-driven oscillations [47, 48, 49]. We thus studied the
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SSN in a regime that in the absence of time-dependent external inputs its firing

rates reach a steady state, but can exhibit damped oscillations when perturbed

(technically, this means the network is close to, but below a Hopf bifurcation,

i.e., a transition to a regime of sustained oscillations). When perturbed by

structureless noise that is sufficiently fast (the biological network’s irregular spiking

can provide such a noise source), these noise-driven damped oscillations manifest

as a resonance peak in the power-spectrum of network activity [49, 50]. As pointed

out previously, to capture a resonance frequency in the gamma band, it is key

to account for fast synaptic filtering as provided by the fast AMPA and GABA

receptors [36, 51]. We will thus extend the SSN model to properly account for

different synaptic currents through different receptor types, and their different

filtering timescales.

The key feature of SSN is the supralinear rectified-power law input-output

(I/O) function of its neurons. Based on intracellular recordings, this is a good

fit to the non-saturating and expansive relationship between the firing rate and

membrane voltage of V1 neurons [52]. This supralinear I/O transfer function

results in increasing gains (the slope of I/O curve) with increasing net input to

or output rate of neurons (see Fig. 2.1A), which typically go up with increasing

external drive to the network which is controlled by stimulus contrast. This

increase of gains with increasing drive, which in turns results in the strengthening

of effective recurrent connections, is the mechanism underlying SSN’s ability

to capture the contrast-dependence of contextual modulations like surround

suppression. We hypothesize that the same mechanism allows the SSN to robustly

account for the contrast dependence of gamma peak frequency.
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The aim of this work is to explore this hypothesis. We start Sec. 2.2 by

developing an extended version of the SSN which accounts for synaptic inputs

mediated by different synaptic receptor types. We then study a reduced SSN

composed of two units representing excitatory (E) and inhibitory (I) sub-

populations. We show that, for a wide range of biological parameters, this reduced

SSN model generates gamma oscillations with peak frequency that robustly

increases with increasing external drive to the network. We show that this robust

contrast dependence is indeed a consequence of the expansive and non-saturating

SSN neural nonlinearity. We next investigate the local contrast dependence using

an expanded retinotopically organized SSN model of V1, with E and I units in

different cortical columns. We show that this network is capable of reproducing the

local contrast dependence of gamma oscillations while exhibiting realistic surround

suppression, but only when excitatory projections have a certain spatial profile.

Specifically, we show that when excitatory horizontal connection strengths have

a smooth fall-off with distance between source and target cortical columns, the

network fails to capture local contrast dependence.

Accounting for the latter requires a sharp immediate fall in the strength

of excitatory projections as soon as the target column deviates from the source

column. In a finer grained model, this would correspond to two spatial scales in

the horizontal connection fall-off: a shorter length-scale on the order of the V1

mini-column size, and a longer ranged component stretching over a few mini-

columns. This “local plus long-range” spatial structure of horizontal connections

balances the trade-off between capturing local contrast dependence (requiring

short-range or weak horizontal connections) and surround suppression (requiring

the opposite). While achieving this balance requires a mild degree of parameter
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tuning, we show that it does not require fine-tuning of parameters and is robust

to parameter variations of up to ±10%, if not larger. In Sec. 2.3, we present the

details of the reduced and retinotopic models, the mathematical analyses, and

numerical simulations. In Sec. 2.4, we conclude by discussing the implications of

our findings for the structure of cortical horizontal connections and the shape of

neural input/output nonlinearities.

2.2. Results

2.2.1. Stabilized supralinear network (SSN)

In this chapter we will use the Stabilized Supralinear Network (SSN) to

model cortical dynamics, and gamma oscillations in particular. The SSN has been

a successful model of cortical response dynamics and has successfully accounted

for a range of cortical contextual modulation effects, such as surround suppression,

and their contrast dependence [45, 46].

The SSN model belongs to the firing rate equations class of models

introduced in Eq. (1.2). The key component of the SSN is its non-saturating and

expansive neuronal Input/Output (I/O) transfer function. Neurons cannot fire

action potentials beyond a certain rate (around 200 Hz, or perhaps higher) as they

enter a so-called refractory period after they fire a spike, during which they cannot

generate another action potential. However, average firing rates in cortex generally

stay quite low compared to those bounds. In fact, in V1 no saturation is observed

in the I/O function of single-neurons throughout their entire natural range of firing

rates driven by visual stimuli, including optimal preferred stimuli. Moreover, the

relationship between a V1 neuron’s output firing rate and its mean membrane

potential (measured relative to the rest potential, and used as a surrogate for the
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neuron’s mean input) is well approximated by a supralinear rectified power law

[53, 54]. Thus, in the notation of Eq. (1.2), the SSN uses the I/O transfer function

f(v) = k[v]n+ (2.1)

where v is the net input to the neuron, k is a positive constant, n > 1

(corresponding to supralinearity), and we defined [x]+ ≡ max(0, x) (denoting

rectification). See Fig. 2.1A’s inset for a plot of this I/O function for the case

n = 2.

The dynamical rate equations governing the dynamics of an SSN composed

of N neurons are thus given by [46]

T
drt
dt

= −rt + f (Wrt + It) (2.2)

where rt and It are the N -dimensional vectors of the neurons’ instantaneous

firing rates and external inputs, respectively, W is the N × N matrix of synaptic

connection weights, and f acts element-wise. These equations are thus the same as

the generic firing rate equations Eq. (1.2), with the I/O nonlinearity given by the

supralinear power law Eq. (2.1), and the following additional modification. Here

we allow for different neurons to have different relaxation times, by turning the

scalar time-constant τr of Eq. (1.2) to a diagonal N × N matrix, T, with positive

diagonal elements corresponding to the relaxation times of different neurons.

The SSN’s connectivity matrix W respects Dale’s principle (see Sec. 1.3),

meaning each neuron forms either purely excitatory (E) or purely inhibitory (I)

connections [16]. We will organize the elements of the rate vector, rt, such that the

first NE elements correspond to excitatory neurons, and the last NI = N − NE
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inhibitory cells. Further, we assume an equal number of excitatory and inhibitory

neurons, i.e. NE = NI = N/2. Thus W can be written as

W =

WEE −WEI

WIE −WII

 (2.3)

with blocks Wab (a, b ∈ [E, I]) by definition composed of non-negative elements

(in our convention, Wab denotes connections from the population of type b to the

population of type a). We note that even though so far we have been treating

the elements of the firing rate vector, rt, as representing the firing rates of single

neurons, in many applications of firing rate equations, including ours below, the

“neurons” should more accurately be interpreted as sub-populations of neurons

(or equivalently as typical or mean-field neurons in a sub-population). Thus

a component of rt should be taken as representing the average firing rate of

a neuronal sub-population. Similarly a single element, Wij, of the matrix W

represents the summed synaptic weight received by a neuron in sub-population

i from all the single neurons in population j. We thus use the terms “unit” or

“sub-population” below, instead of (or interchangeably with) “neuron”. (This

interpretation also justifies our choice NE = NI , despite the fact that in the cortex

excitatory single neurons outnumber inhibitory ones by about a factor of four.)

As shown in [46], when the external input is a constant, the dynamical

solutions of Eq. (2.2) generically converge to a stable steady state (or fixed point),

provided that the inhibitory neurons are sufficiently fast (i.e. their time-constants,

as given by the corresponding elements of T are fast relative to the time-constants
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of excitatory neurons).1 Steady-state solutions are obtained by setting the left

hand side of Eq. (2.2) to zero.

Firing rate equations can also be formulated differently by treating the vector

of net inputs to neurons, vt, as the dynamical variables, instead of rates, rt. This

leads to the equations

T
dvt
dt

= −vt +Wf(vt) + It. (2.4)

We also introduce this formulation here, as it is more closely related to the

extended SSN model that we will introduce below in Sec. 2.2.3. When the external

input is constant, it can be shown [55] that (under mild conditions on W ) the

steady-state solutions of Eq. (2.4) are equivalent to the steady-state solutions of

Eq. (2.2) via the identification r = f(v) (or equivalently v = Wr + I).

2.2.2. Gamma rhythms as noise-driven oscillations

Empirical evidence is most consistent with visual cortical gamma oscillations

resulting from noise-driven fluctuations, as opposed to resulting from sustained

coherent oscillations [47, 48, 49, 50]. Sustained oscillations would have several

defining features, such as a sharp peak in the power spectrum, likely trailed by

subsequent harmonic peaks. Such oscillations would also be auto-coherent, i.e.

have a consistent phase over several oscillation cycles, and occur with regularity

both in timing and duration. Gamma oscillations, however, display none of the

above features. They manifest as a single broad peak in power spectra [20, 21].

They are not auto-coherent either, and both their timing and their durations vary

stochastically [47, 48]. All of which suggests that gamma oscillations are the result

of filtered noise being amplified around resonance frequencies of the cortical circuit

1This is the reason behind the adjective “stabilized” in SSN.
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[49]. In the language of dynamical systems, sustained oscillations occur above a

so-called Hopf bifurcation. Indeed rate equation models of excitatory/inhibitory

networks, such as the SSN, can generically undergo such a Hopf bifurcation when

the feedback loop between the E and I neural populations is strong enough

and inhibitory neurons are relatively slow [56]. But given the above evidence,

we assume that (or rather seek parameter regimes in which) our SSN model

sits below but close to a Hopf bifurcation, where it has a stable fixed point or

steady state. In such a regime, the rate network can nevertheless exhibit damped

or decaying oscillations when perturbed away from the stable fixed point, e.g.

by input noise. These damped oscillations confer the network with a natural

“resonance” frequency, which is determined by the network’s fixed parameters

and the background rates at the operating fixed point. This resonance manifests

as a relatively broad peak in the power-spectrum of network activity fluctuations,

even when the driving noise is temporally structureless and has no such peak in its

power-spectrum.

To model such noise-driven oscillations using the SSN, we expand it, as in

[57], to include noisy inputs, but with a faster source of noise to better study

gamma oscillations than the fluctuations studied in [57]. As such, we model the

external input as consisting of two terms It → IDC + ηt, where IDC represents the

stimulus drive to the network (by a steady and time-independent stimulus), while

ηt represents the noise in the network

T
dvt
dt

= −vt +Wf(vt) + IDC + ηt (2.5)

We assume that the input noise, ηt, has independent components which are

identically distributed across different E and I units, and with zero mean. We
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further assume ηt is temporally correlated as a pink noise with an exponentially

decaying autocorrlation function with correlation times on the order of a few

milliseconds (our main results are robust to changes in this parameter; in

particular the noise can be assumed to be temporally white, which corresponds

to the limit of zero correlation time). This noise could be attributed to several

sources, i.e. feedforward noise from the thalamus, feedback from higher areas, or

even spiking noise within our network, resulting from finite-size effects (the finite

size of the implicitly-modeled neural sub-populations underlying the SSN’s units).

2.2.3. SSN with multiple synaptic current types

With the aim of modeling gamma oscillations, we also extend the SSN model

to properly account for different synaptic current types and their different receptor

kinetics. The SSN model, as introduced in Sec. 2.2.1, has so far been used to

model properties of steady-state network responses to constant inputs or stimuli

[45, 46], or to model network dynamics in the presence of noise which results

in relatively slow and shared variability across the network and the suppression

of that variability by stimuli [57]. Gamma oscillations are by comparison faster

dynamical phenomena, and as shown previously [36, 51, 58], networks of excitatory

and inhibitory spiking neurons can generate oscillations with frequency in the

gamma band when fast synaptic filtering by different synaptic receptor types is

properly accounted for.

We thus extended the SSN model beyond its original form, presented in the

previous subsections, in which each neuron is described by a single dynamical

variable: either its firing rate or its total net input. In the extended model, by

contrast, each neuron will have more than one dynamical variable, corresponding
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to its inputs through different synaptic receptor types. Concretely, we will include

the three main ionotropic synaptic receptors in the model: AMPA and NMDA

receptors which mediate excitatory inputs, and GABA A receptors (we will

shorten it to GABA) which mediate the inhibitory input.2 To model the kinetics

of different receptors, we will ignore the very fast rise-times of all receptor types

(as their corresponding time-scales are considerably faster than the time-scales

relevant to gamma oscillations), and only account for the receptor decay-times.

This decay-time leads to a low-pass filtering of the corresponding input type. For

the input of type α to some neuron (α ∈ {AMPA,NMDA,GABA}), this low-pass

filtering is described by the differential equation τα
dvαt
dt

+ vαt = uαt , where τα is the

decay-time of the receptors of type α. Here uαt and vαt denote the input of type α

at time t, before and after the low-pass filtering, respectively. If we arrange these

inputs to different neurons into N -dimensional vectors, vαt and uαt , we can rewrite

the above equation in vector form as τα
dvαt
dt

= −vαt + uαt . Just as in the original

SSN, uαt is given by the sum of recurrent and feedforward (or external) input

contributions. The only difference is that synaptic weights and external inputs

should now be decomposed into the contributions of different synaptic receptor

types. We thus have uαt = Wαrt + Iαt where rt is the N -dimensional vector of

instantaneous firing rates, Iαt is the external input entering through receptors of

type α, and Wα is a N×N matrix containing the contributions of receptors of type

α to total synaptic weight matrix, such that W =
∑

αW
α. Finally, we still assume

2The three receptor types are named after their respective specific agonist molecules: α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA),
and γ-aminobutyric acid (GABA). These ligand molecules are specific agonists of their
corresponding receptor types, in the sense that they attach specifically to receptors of that type
and activate them, which leads to the opening of associated ion-channels on the post-synaptic
membrane. GABA is actually the endogenous inhibitory neurotransmitter of the central nervous
system, while the endogenous excitatory neurotransmitter activating both NMDA and AMPA
receptors is glutamate (not NMDA or AMPA).
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that the firing rate is related instantaneously to the total net input,
∑

α v
α
t by the

rectified power law I/O nonlinearity of SSN, Eq. (2.1).3 Thus rt = f(
∑

β vβt ) where

f(·) acts component-wise. The 3N dynamical variables vαt are therefore governed

by the equations

τα
dvαt
dt

= −vαt +Wαrt + Iαt (2.6)

rt = f
(∑

β

vβt
)
, (2.7)

where α, β ∈ {AMPA,NMDA,GABA}. As in the previous subsection, we assume

that the external input is composed of a time-independent term, IαDC , which is the

contribution of the stationary stimulus, as well as a stochastic input noise term,

ηαt . The dynamics of vαt are thus governed by the following system of coupled

stochastic differential equations

τα
dvαt
dt

= −vαt +Wαf
(∑

β

vβt
)

+ IαDC + ηαt . (2.8)

Since inhibition is only mediated by GABA, the elements of WAMPA and

WNMDA on inhibitory columns (corresponding to pre-synaptic inhibitory neurons)

are zero. The opposite is true for WGABA: that matrix has zero excitatory

columns. As for the break-up of excitatory weights between WAMPA and WNMDA,

we made the simplifying assumption that in all excitatory connections the

same fixed fraction, ρ
NMDA

, of the total weight is mediated by NMDA, with the

remainder (fraction 1− ρ
NMDA

) mediated by AMPA.

3According to the analysis of [59], based on solutions of the Fokker-Planck equations
governing voltage and firing statistics of spiking neurons, this instantaneous approximation is
very accurate when the synaptic decay-times of the fast receptors are much faster than the RC
membrane time-constant, as is true for AMPA and GABA decay-times.

33



As for the external inputs, we assumed that the stimulus input and input

noise only enter through the AMPA receptors (as pertains the excitatory stimulus

input, the mixture of NMDA or AMPA is inconsequential, as this input is not

time-dependent; this assumption for the noise can be easily relaxed and will make

no qualitative difference to our results on characteristics of LFP power spectra

in the gamma band). We further assumed that input noise is independent and

identically distributed (i.i.d.) across the units or neurons in the network, but

temporally correlated as in so-called pink noise Eq. (2.43).

As we discuss below in Sec. 2.2.6, the scale of the gamma resonance

frequency in this network is set by the timescale of the faster receptor types,

AMPA and GABA. Here we used decay-times of 5 and 7 ms for AMPA and GABA

receptors, respectively, compared to 100 ms for the slow NMDA.

2.2.4. Two-population model

We start by studying a simplified two-population model of V1 consisting

of two units (or representative mean-field neurons): one excitatory and one

inhibitory unit representing V1’s excitatory and inhibitory neural sub-populations,

respectively (Fig. 2.1A). This reduced model is appropriate for studying cases

in which the spatial profile of the activity is not relevant, for example, when

the grating stimulus is very large in size, and thus we can assume the entire

V1 network is uniformly activated by the stimulus. We assume that both sub-

populations have the same rectified power law I/O nonlinearity (Fig. 2.1A, inset)

with the same parameters. These two units receive feedforward inputs, and make

reciprocal synaptic connections with each other as well as themselves. We model

increasing contrast by increasing the feedforward input, IDC to our system.
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FIGURE 2.1. Contrast dependence of the gamma peak frequency in the 2-
population model. A: Schematic of the 2-population Stabilized Supralinear
Network (SSN). Excitatory (E ) connections end in a circle; inhibitory (I )
connections end in a line. Each unit represents a sub-population of V1 neurons
of the corresponding E /I type. Both receive noisy input from the stimulus.
Inset: The rectified power law Input/Output transfer function of SSN units
(black). Red lines indicate the slope of the I/O function at particular locations. B:
Local field potential (LFP) traces, modeled as total net input to the E unit, from
the stochastic model simulations under four different stimulus contrasts (c): 0%
(black) equivalent to no stimulus or spontaneous activity, 25% (blue), 50% (green),
100% (red). The same color scheme for stimulus contrast is used throughout the
paper. C: Mean firing rates of the excitatory (orange) and inhibitory (cyan)
units as a function of contrast, from the stochastic simulations (dots) and
linearized approximation (stars). Note that the dots and stars closely overlap.
D: Reproduction of figure 1I from [21] showing the average of experimentally
measured LFP power-spectra in Macaque V1. The inset shows the dependence
of gamma peak frequency on the contrast of the grating stimulus covering the
recording site’s receptive field. E: LFP power-spectra for c = 0%, 25%, 50%,
100% (black, blue, green, and red curves, respectively) calculated from the noise-
driven stochastic SSN simulations (dots), or using the linearized approximation
(solid lines). F: Gamma peak frequency as a function of contrast, obtained from
power-spectra calculated using stochastic simulations (dots and dashed line) or the
linearized approximation (stars and solid line).
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For the first results shown in Fig. 2.1, we simulated the stochastic Eq. (2.8)

directly. Fig 2.1C (dots) shows the average firing rates found from the stochastic

simulation. We modeled the LFP signal as being the net inputs to the E sub-

population. Figure 2.1B shows examples of raw simulated LFP traces for different

stimulus contrasts. The LFP fluctuations exhibit oscillatory behavior, especially at

high contrasts. These oscillations can be studied via their power-spectra which we

calculated by taking the numerical Fourier transform of the simulated LFP traces

(Fig. 2.1E, dots). As Fig. 2.1F shows, the peak frequencies (dots) of the simulated

LFP power-spectra shift to higher frequencies with increasing contrast. Thus, a

two-population SSN can reproduce the contrast dependence of the gamma peak

frequency.

In Sec. 2.3.4 we develop a linearized approximation scheme for calculating

the LFP power-spectra. Compared to simulations of the stochastic SSN model, the

linear approximation allows us to numerically compute the LFP power-spectra

much more efficiently. More importantly, the linear approximation allows for

analytical approximations and insights, which (as we show, e.g., in Sec. 2.2.6)

elucidate the mechanism underlying the contrast dependence of the gamma peak.

To do so, we first find the steady state of our network, in the absence of

noise, by solving vα∗ = Wαf(
∑

β vβ∗ ) + IαDC . This equation can be simplified if

we define v∗ ≡
∑

α vα∗ and IDC ≡
∑

α IαDC , and sum Eq. (2.9) over α. We then

arrive at the same fixed equation for v∗ as in the original SSN in Eqn. (2.2) [46]:

v∗ = Wf(v∗) + IDC . (2.9)
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Fig. 2.1C, shows the firing rates of E and I units at the steady-state solution

Eq. (2.9) (the stars), for different values of the stimulus contrast, in excellent

agreement with the mean rates obtained from the stochastic simulation (the dots).

After numerically solving Eq. (2.9), we then expand Eq. (2.8) to first order in

the noise and noise-drive deviations around the fixed point to obtain

τα
dδvαt
dt

= −δvαt (t) + W̃α
∑
β

δvβt + ηαt (2.10)

where δvαt denote the noise-driven fluctuations of net inputs around the fixed

point, and we defined

W̃α ≡ Wα diag(f ′(v∗)) , (2.11)

where f ′(v∗) denotes the vector of slopes of the I/O functions of different neurons

at the fixed point. These I/O slopes are commonly referred to as (neural) gains

(see the red tangent lines in Fig. 2.1A inset). As we explain in the next subsection,

the gains and their dependence on the fixed point rates (themselves dependent

on the stimulus IαDC , via Eq. (2.9)) play a crucial role in the contrast dependence

of gamma peak frequency in the SSN. Given the linear and time-homogeneous

Eq. (2.10), we can use Fourier and linear systems analysis to obtain an analytical

formula for the power-spectrum of LFP under the linear approximation (see

Sec. 2.3.4).

As shown in Fig. 2.1E, the power-spectra obtained using the linear

approximation agree very well with those estimated from the direct stochastic

simulations of Eq. (2.8). Below, we thus calculate all power-spectra using the

(computationally much faster) linear approximation, instead of stochastic

simulations of Eq. (2.8).
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As Fig. 2.1F (stars) shows, the peak frequency of our LFP power-spectra

found using the linear approximation shift to higher frequencies with increasing

contrast (and again closely match those found using the stochastic simulations).

The 2-population SSN model thus captures the empirically observed contrast

dependence of gamma peak frequency, as reported in from [21] (figure 1I therein,

reproduced here as Fig. 2.1D).

The linearized approximation also allows for a qualitative understanding

of the gamma peak contrast dependence, as we explain in a subsection below.

We first show that the two-population SSN robustly reproduces the contrast

dependence of gamma peak frequency across parameter choices.

2.2.5. Robustness of the two-population model

As the insight given in the previous subsection is quite general, only relying

on the expansive and non-saturating nature of SSN’s I/O nonlinearity, we expect

that the model would be able to capture the gamma peaks’s contrast dependence

robustly, without any need for tuning of its connectivity or other parameters.

To demonstrate this robustness, we simulated 1000 different instances of the

2-population network model with randomly drawn parameters. The sampled

parameters were the connectivity strengths between the populations, i.e. E → E,

E → I, I → E, and I → I, the strength of input to both the excitatory and

inhibitory unit, and the NMDA fraction of excitatory synaptic weights (labelled

as JEE, JEI , JEI , JEI , gE, gI , ρN respectively). The parameters were chosen

uniformly from a biologically plausible range.

We sampled the parameters randomly and independently, but applied

rejection criteria to ensure the existence of a stable fixed point. For instance, we
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FIGURE 2.2. Robustness of the contrast-dependence of gamma peak frequency to
network parameter variations. One thousand 2-population SSN’s were simulated
with randomly sampled parameters, and all histograms show simulation counts.
A: Distributions of the excitatory unit’s firing rate in response to 25%, 50%, and
100% contrast stimuli (blue, green, red), plotted on a logarithmic scale. 100%
of networks shown across all contrasts. B: Distributions of the gamma peak
frequencies at different stimulus contrasts. 60.9%, 50%, 50% of networks had
gamma peaks at 25% (blue), 50% (green), and 100% (red) contrast respectively.
C: Distributions of the gamma peak half-widths at different stimulus contrasts. D:
Same as panel A, but for the inhibitory unit. 100% of networks shown across all
contrasts. E: Distributions of the change in gamma peak-frequency normalized by
the change in stimulus contrast, either 25% and 50% (cyan - 35.8% of networks)
or 50% and 100% (yellow - 48.4%). F: Same as panel E, but for gamma peak
half-width.

discarded parameter draws that would lead to unstable firing rates or to so-called

supersaturation of excitatory firing rates based on criteria in [46] (see Sec. A.1 for

details).

By and large, our simulations of randomly sampled 2-population SSN models

produced fixed-point firing rates for the excitatory and inhibitory sub-populations

that are within the biologically plausible window of values, across all contrasts.

In Fig. 2.2A and D, we show the distribution of steady state firing rates for
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contrasts at 25% (blue), 50% (green), and 100% (red). Furthermore, the two-

population networks also typically produce peak frequencies that are within the

gamma band (30 - 80 Hz) for all contrast conditions (Fig. 2.2B). The distributions

also shift towards higher frequencies with increasing contrast, suggesting that

the two-population SSN is indeed able to reproduce the contrast dependence of

gamma peak frequency robustly. To demonstrate this more directly, we show

the distributions of the changes in peak frequency normalized by the change in

contrast in Fig. 2.2E. Note that none of the networks here simulated produced

negative changes in peak frequency for positive changes in the stimulus contrast.

As a further corroboration of our model, we also studied how the half-width

of the gamma peak changed with increasing contrast. While [20, 21] did not

quantify changes in their gamma peak half-width with increasing contrast, their

results suggest that no significant change in half-width was observed (Fig. 2.1D).

Similarly, in our two-population network, changes in the gamma half-width were

often relatively small, especially when normalized by the changes in contrast

(Fig. 2.2F).

2.2.6. Intuition for the contrast dependence of gamma peak frequency

As we will show in this section, the SSN sheds light on the mechanism

underlying the contrast dependence of the gamma peak, and further pins it to

the expansive and non-saturating nature of the neuronal I/O transfer function.

Using the linearization around the fixed point, the power-spectra for the

network can be found as Eq. (2.40) (making use of the Green’s function, see

Eqns. 2.39 and 2.41). The position of the resonance frequency in the power-

spectrum is largely determined by the imaginary part of a corresponding
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FIGURE 2.3. The supralinear nature of the neural transfer function can explain
the contrast dependence of gamma frequency. A: Schematic diagrams of the 2-
population SSN (see Fig. 2.1-A) receiving a low (left) or high (right) contrast
stimulus. The thickness of connection lines represents the strength of the
corresponding effective connection weight, which is the product of the anatomical
weight and the input/ouput gain of the presynaptic neuron. The gain is the slope
(red line) of the neural supralinear transfer function (black curve), shown inside
the circles representing the E (orange) and I (cyan) units. A resonance frequency
exists when the effective “negative feedback” (gray arrow enlcosing a minus sign)
dominates the effective “positive feedback” (gray arrows enclosing positive signs),
in the sense of the inequality Eq. (2.14). As the stimulus drive (c) increases (right
panel), the neurons’ firing rates in the network’s operating point increase. As
the transfer function is supralinear, this translates to a higher neural gains and
stronger effective connections. When a resonance frequency already exists at the
lower contrast, this strengthening of effective recurrent connections leads to an
increase in the gamma peak frequency, approximately given by the imaginary
part of the linearized SSN’s complex eigenvalue, Eq. (2.13). B: The eigenvalue
formula (2.15) provides an excellent approximation to the gamma peak frequency
across sampled networks (see Fig. 2.2) and contrasts; correlation coefficient = 0.98
(p < 10−6), for all data points combined across 25% (blue), 50% (green), and 100%
(red) contrasts. C: The negative feedback loop contribution to the resonance
frequency (Eq. (2.15) with the second term under the square root neglected)
overestimates gamma peak frequency but is positively and significantly correlated
with it; correlation coefficient = 0.75 (p < 10−6).
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eigenvalue of the Jacobian matrix (which also determines the singularities in the

Green’s function for Eq. (2.10)). The Jacobian matrix, J can be obtained by

rewriting Eq. (2.10) in the standard form

dxt
dt

= J xt (2.12)

where xt is a 3N -dimensional vector formed by concatenating the three δvα

vectors together. In general, the Jacobian is thus a 3N × 3N matrix; it is 6 × 6

for the 2-population model. (In Sec. 2.3.4, below, we give the explicit form of the

Jacobian; see Eq. (2.37)). Previously, the eigenvalues of the Jacobian for an E-I

firing rate network (similar to Eq. (2.2) for the case NE = NI = 1) were analyzed

by [35], and conditions for emergence of (damped or sustained) oscillations were

found. Such a model, however, does not account for different synaptic receptor

types. In Sec. 2.3.6, we prove that in the absence of the NMDA receptors, two

of the eigenvalues of the resulting 4 × 4 Jacobian correspond to the eigenvalues

of a standard E-I rate model whose E and I neural time-constants are given,

respectively, by the decay times of AMPA and GABA receptors (the other two

eigenvalues are always real and thus cannot lead to oscillations). They are given

by:

2λ± = γE(W̃EE − 1)− γI(W̃II + 1)

±
√[

γE(W̃EE − 1) + γI(W̃II + 1)
]2

− 4γEγIW̃EIW̃IE (2.13)

where γE = 1
τAMPA

and γI = 1
τGABA

. Here, a, b ∈ {E, I} denote the E/I units,

and we defined W̃ab = Wabf
′(va∗), where Wab =

∑
α∈{AMPA,GABA}W

α
ab is the

total synaptic weight from unit b to unit a, and f ′(va∗) is the gain (the slope of
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the I/O function) of unit a at the background fixed point set by the stimulus. As

we show further in Sec. 2.3.6, even in the presence of NMDA receptors (which

are slow compared to the time-scales of gamma oscillations), Eq. (2.13) is still

approximately correct. The caveat is that the excitatory effective weights in the

formula only include the AMPA contribution (i.e., W̃ab in Eq. (2.13) are still

given by W̃ab ≡
∑

α∈{AMPA,GABA} W̃
α
ab with NMDA not contributing). Indeed our

simulations show that this approximation is very good (Fig. 2.3B)

We refer to W̃ab as the effective synaptic connection weights (or to their

matrix as the effective connectivity matrix). Unlike the raw synaptic weights, the

effective connection weights are thus modulated by the neural gains, and thereby

the firing rates in the background fixed points and thus by the stimulus input

which sets those. Note that the effective connection weights, W̃ab are dimensionless

quantities: they give the coupling strengths between the net-input fluctuations of

units a and b.

The condition for the emergence of (damped or sustained) oscillations is that

the above eigenvalues are complex (in which case the two eigenvalues are complex

conjugates). This happens when the expression under the radical in Eq. (2.13) is

negative, or

4γEγIW̃EIW̃IE >
[
γE(W̃EE − 1) + γI(W̃II + 1)

]2

. (2.14)

Qualitatively, the left hand side of the above inequality is a measure of the

strength of the effective negative feedback between the E and I sub-populations,

while the right hand size is a measure of the positive feedback in the network (self-

excitation of E population, and self-inhibition of I population), see Fig. 2.3A, gray

loops. Oscillations thus emerge when the negative feedback loop between E and I

is sufficiently strong, in the precise sense of Eq. (2.14).
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During spontaneous activity (when the external input is zero or very weak),

the rates of both E and I populations are very small. This means that the

spontaneous activity operating point sits near the rectification of the neuronal I/O

transfer functions where the neural gains are very low. Thus in the spontaneous

activity state, the dimensionless effective connections are relatively small. In the

limit of W̃ab → 0, the left hand side of Eq. (2.14) goes to zero, while its right

side goes to (γI − γE)2 which is generically positive; hence the inequality is not

satisfied. This shows that the spontaneous activity state generically does not

exhibit oscillations, in agreement with lack of empirical observation of gamma

oscillation during spontaneous activity.

On the other hand, when the condition Eq. (2.14) holds, the frequency of the

eigenmode oscillations are given by the imaginary part of the eigenvalues, i.e., by

resonance frequency =
1

2π

√
γEγIW̃EIW̃IE −

[
γE(W̃EE − 1)/2 + γI(W̃II + 1)/2

]2

(2.15)

(the division by 2π is because the eigenvalue imaginary parts give the angular

frequency). As we will discuss further below the resonance frequency (or

approximately the gamma peak frequency [Fig. 2.3B]) thus depends on the

effective connections weights and is thus modulated by the neural gains. However,

the scale (or order of magnitude) of this frequency is set by γE and γI , i.e., by the

decay times of AMPA and GABA. To see this, recall that the effective connection

weights are dimensionless and we therefore expect them to be generically order

one. Thus to determine the scale of the resonance frequency, we set the recurrent

weights to one, and moreover ignore the contribution of the “positive feedback”

term under the square root in Eq. (2.15). This yields: resonance frequency
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∼ √γEγI/(2π). For τAMPA ∼ τGABA ∼ 4 − 6 ms, this yields a resonance frequency

on the order of 30-40 Hz, matching the observed gamma frequency for intermediate

stimulus contrasts.

We now use Eq. (2.15) to provide insight into the contrast dependence of the

gamma peak frequency, see Fig. 2.3. In our two-population network, as contrasts

increase the fixed-point firing rates increase (Fig. 2.1C). Because the SSN I/O

transfer function is non-saturating and supralinear, as the rates increase the

gains (i.e., the slope of the I/O transfer functions) of the E and I cells are also

guaranteed to increase (Fig. 2.3A). The increase in the gains leads in turn to the

strengthening of the effective connection weights. When Eq. (2.14) is satisfied,

a rough approximation (Fig. 2.3C) is obtained by ignoring the positive feedback

contribution (i.e., the second term under the square root in Eq. (2.13)). With only

the negative contribution retained, it is clear that an increase in neural gains leads

to an increase in the resonance frequency (the precise conditions for this to occur

are given in Sec. 2.3.7). Thus as contrasts increase, we expect the location of the

gamma peak in the LFP power-spectrum to increase as well.

2.2.7. Retinotopic SSN

We next investigated whether the SSN can account for the local contrast

dependence of gamma peak frequency by expanding our network from two units

representing global E and I populations to many units that are retinotopically

organized. We thus model the cortex as a two-dimensional grid which has an E

and I sub-population at each grid location corresponding to a cortical column

(Fig. 2.4A). In the retinotopic SSN, the stimulus input can vary across the

network: each column can receive a different input proportional to the contrast
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FIGURE 2.4. A retinotopically-structured SSN model captures the local contrast
dependence of gamma peak-frequency, as well as the surround suppression of
excitatory and inhibitory firing rates. A: Schematic of the retinotopic grid and
inputs. At each location in retinotopic space, there exists an excitatory (orange)
and inhibitory (cyan) sub-population which receives input (green arrows) from
the stimulus (grating). Conenctions from excitatory units are shown in orange,
while connections from inhibitory units are shown in cyan. B: LFP power-
spectra of the excitatory center sub-population during different flat grating stimuli
contrast, 0% (black), 25% (blue), 50% (green), and 100%. C: Peak frequency of
the power-spectra gamma band under various flat grating contrast conditions.
D: Fixed-point firing rates for the excitatory (orange) and inhibitory (cyan) sub-
populations at the center of the retinotopic grid for increasing stimulus contrast.
E: Representation of the Gabor input to the full retinotopic grid of units. Each
square is colored according to the retinotopic receptive field of the sub-populations
represented in the grid, 0o displaced from the center (orange), 0.2o (navy), 0.4o

(green), 0.6o (magenta), and 0.8o (sky blue). F: Power-spectra of the excitatory
sub-population colored according to distance displaced from the center of the
grid. G: Gamma peak frequency of the power-spectra at increasing distance
from the center of the grid. The gray curve shows a prediction of the displaced
units’ peak frequency given their local contrast based on the shift in gamma
peak frequency of the center E sub-population as the contrast of a flat grating
changes. H: Suppression curve of the firing rates. The firing rates of the center
excitatory and inhibitory subpopulations vary non-monotonically as a flat grating
stimulus is grown in size, and their suppression indices are 0.27 for the center E
sub-population (orange), and 0.21 for the center I sub-population (cyan).
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within its receptive field. In the current study we used flat grating stimuli of

various sizes and contrasts (the stimulus in Fig. 2.4A), or a Gabor stimulus similar

to the one used in [21] (Fig. 2.4E). Flat grating stimuli are disks of oriented light

and dark bands, within which the contrast is uniform and sharply falls to zero

at the disk edge. The Gabor stimulus is a grating with a contrast profile that

decays smoothly with increasing distance from the stimulus center, according

to a Gaussian profile (see Sec. 2.3 for details). Gamma oscillations show weak

dependence on stimulus orientation [20], possibly due to the averaging of LFP

over an area larger than the size of orientation minicolumns. To keep our model

parsimonious and computationally more tractable, we thus chose the size of

our cortical columns to be roughly half the hypercolumn size in Macaque, and

neglected the orientation map structure and the dependence of external inputs and

horizontal connections on preferred orientation.

We wish to study the trade-off in the model between capturing surround

suppression of firing rates and capturing the local dependence of gamma peak

frequency, and whether parameter choices exist for which the model can capture

both of these effects.

One extreme of connectivity structure is one where the local intra-columnar

connectivity is not emphasized. In such a case, the connectivity between all units

smoothly decays with increasing distance between the units. Such a network

though, often has a gamma peak frequency shared across the grid (see Sec. 2.2.9

for more details). On the other hand, the other extreme of connectivity structure,

weak long-range connectivity, should produce the local contrast dependence of

gamma peak frequencies, but fail to produce surround suppression of firing rates.

In the limit of weak long-range horizontal connectivity, different columns in our
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grid will approximate independent two-population networks, and as we showed

above (Figs. 2.1–2.2), the two-population SSN robustly produces the contrast

dependence of gamma peak frequency. Therefore in this regime we expect the

network to trivially capture the local contrast dependence of gamma (with each

column’s gamma peak solely controlled by its direct feedforward stimulus input),

but struggle to produce surround suppression in firing rates [44].

To study the balance between the two regimes, we include parameters

which govern the spatial extent of connections within our network. Specifically,

we include a term which linearly interpolates between the two extremes of

connectivity structure λa,b, where λa,b = 0 signifies a strong horizontal connectivity

regime while λa,b = 1 signifies purely local (intra-columnar) connectivity. Here

we adopt the notation that a unit or neural sub-population can be specified by its

type a or b, which are either E or I, and location x where ‖x‖ is the distance from

the retinotopic center. We denote synaptic connections in the form post, pre, e.g.

λa,b controls the locality of connections from units of type b to units of type a, and

that Wx,y|a,b represents the connection strength from the unit of type b to the unit

of type a at locations y and x respectively.

We make a simplifying assumption consistent with the principles underlying

the SSN and assume that connections from inhibitory sub-populations to either

excitatory or inhibitory sub-populations are extremely local (2.4A, cyan lines), i.e.

that they ”synapse” only onto themselves and the associated E sub-population

at their retinotopic location. To capture the trade-off between highly local

connections among the excitatory sub-populations, which should mediate the local

contrast dependence and surround suppression, we model the scale of connection

between E to E and E to I sub-populations as a linear interpolation between an
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exponential decay and purely local connections.

Wx,y|a,b = λa,Eδx,y + (1− λa,E)e
−|x−y|
σa,E (2.16)

where δ is the Kronecker δ, and λa,E interpolates between purely local (λa,E = 1)

and purely exponentially decaying connections (λa,E = 0). Further, we allow λa,E

and σa,E to vary depending on whether the unit at x is of type a = E or a = I.

Recall that these are connections from E sub-populations.

In (Fig. 2.4A, orange lines) we show an example of how the strength

of excitatory connections scale across the retinotopic grid. We show E to E

connections on the far edge of the grid, while E to I connections are shown on

the near edge of the grid. Note the sharp peaks for self connection on the far side,

and the sharp local connection with the associated retinotopic inhibitory sub-

population. Additionally we show the highly local connections from I to E or I

to I on the right corner of the grid (Fig. 2.4A, cyan).

We found the power-spectra in our retinotopic SSN using the linear

approximation to the network’s dynamics, and found the fixed-point firing rates

via Eq. (2.9). We “present” large flat gratings with varying contrasts to our

network, which ensures that the firing rates converge, and verify that the firing

rates of the center sub-populations increase with increasing contrast (Fig. 2.4D).

Based on our previously built intuition, increasing firing rates means that

the center E sub-population’s power-spectra should demonstrate the contrast

dependence of gamma peak frequency, and it does indeed (Fig. 2.4B-C).

To study surround suppression, we “present” flat gratings at max contrast

(c = 100%) and vary their spatial size. The retinotopic SSN has steady-state firing

rates that behave non-monotonically, and suppress with increasing stimulus size
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(Fig. 2.4H). The network’s center E sub-population has a suppression index (SI) of

0.28 consistent with biologically reported values of suppression indices [34], where

the suppression index is defined as SI = 1− r∞
max(r)

with r∞ being the firing rate at

largest contrast.

To study the local contrast dependence, the network was “presented” with

a Gabor stimulus, which has spatially decaying contrast. The receptive field of

the center E sub-population is represented by the orange square on the Gabor

stimulus (Fig. 2.4E). The RFs of studied non-center retinotopic E sub-populations

are also shown with a square colored according to the of their RF displacement

from the center of the grid (navy: 0.2o, green: 0.4o, magenta: 0.6o, cyan: 0.8o)

(Fig. 2.4E). The power-spectra for all E sub-populations were calculated again

using the linear approximation, and the peak frequency from the power-spectra

were extracted (Fig. 2.4F-G, colored dots).

Reference [21] found that the LFP power’s peak frequency at each retinotopic

location was well predicted by a linear fit to the contrast dependence of the

center E sub-population. Using a similar linear fit (Fig. 2.4C, black line), the

prediction of what each retinotopic sub-population’s peak frequency should be

based on the local contrast in their RFs is shown as a gray line in Fig. 2.4. Our

linear interpolation excellently predicts the observed power spectra gamma peaks

found in Fig. 2.4F. Here we use the R2 = 1 − SSE
var

metric to classify how well

the gamma peak frequency in various RFs are predicted by the linear fit, where

SSE means the sum of squared errors (e.g.the sum of the square of the difference

between the linear fit and the found gamma peak frequencies). The denominator,

var, refers to the variance of our simulated data (e.g.the variance of our gamma

peak frequencies). Note that R2 is bounded above by 1 when the linear prediction
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perfectly matches the data, but unbounded below. In the example shown in

Fig. 2.4F, we find an R2 = 0.95, indicating a very good fit.

Thus the retinotopic SSN can produce both the surround suppression of

firing rates as well as the local contrast dependence of gamma peak frequency.

2.2.8. Robustness of the Retinotopic SSN

To show that the parameters for the retinotopic SSN were not fine-tuned,

we simulated 1000 networks with perturbed parameters. The perturbations

were drawn from uniform distributions between −10% to 10% of the parameters

previous value.

These networks produced biologically plausible center excitatory and

inhibitory firing rates for changing contrasts of the large flat grating stimuli

(Fig. 2.5A and D). The distributions correspond to contrasts at 25%, 50%, and

100% (blue, green, red). The perturbed networks also robustly produce peak

frequencies in the gamma band (Fig. 2.5B), and have peak frequencies that

generally change positively with increasing contrast (Fig. 2.5E).

If these networks also display the local contrast dependence, then the power-

spectra of the spatially displaced E sub-populations should be well predicted by a

linear interpolation of the center E sub-population’s contrast dependence on large

flat gratings. We made a similar fit as the gray line in Fig. 2.4G for each perturbed

network, and found how well it predicted the observed peak frequencies at the

displaced spatial locations. The vast majority of our networks which produced

gamma peaks show a predictable (R2 > 0.8) local contrast dependence of gamma

peak frequency (Fig. 2.5F, green bar). Relatively fewer networks which produced

gamma peaks were not predictable by the contrast dependence of their center E
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sub-population (Fig. 2.5F, red bar). The inset shows the full distribution of R2 for

all the perturbed networks. All of which shows that the SSN used in Fig. 2.4 is not

fine-tuned, but robust to pertubations of ±10%.
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FIGURE 2.5. Robustness of the retinotopic SSN to parameter perturbations.
We simulated 1000 different retinotopic SSN networks with parameters randomly
and independently perturbed up to 10% of their value in the network of Fig. 2.4.
All histograms show counts of these sampled networks. For gamma-related
histograms only the fraction of sampled networks exhibiting a gamma peak in
the relevant stimulus conditions are included. A & D: Distributions of the center
E and I unit’s firing rate (logarithmic scale) in response to uniform gratings with
contrasts 25% (blue), 50 % (green), and 100% (red). B: Distributions of gamma
peak frequency at stimulus center, for different contrasts of the largest uniform
grating (same color code as in A). (The histograms for 25%, 50%, and 100%
contrasts include 57.5%, 88%, and 99.8% of sampled networks, respectively.) C:
Distributions of the suppression index for the center E (orange) and I (cyan) sub-
populations. E: Distributions of the change in gamma peak-frequency normalized
by the change in stimulus contrast, changing from 25% to 50% (cyan) or from
50% to 100% (yellow). The histograms include 57.5% and 88% of the sampled
networks, respectively. The vast majority of perturbed networks produce positive
changes in peak frequency as the stimulus contrast grows. F: The distribution of
the goodness-of-fit, as measured by R2, of the local prediction for gamma peak
frequency (the gray line in Fig. 2.4G, but computed independently for different
sampled networks). The goodness-of-fit, R2, of the gray line in (Fig. 2.4G)
computed for many different simulations. The contrast dependence of gamma peak
frequency of the excitatory center sub-population robustly predicts (R2 > 0.8) the
peak frequency found in the spatially extended excitatory sub-populations when
presenting a Gabor stimulus to the network (green bar). There were fewer where
the contrast contrast dependence of the center E sub-population did not predict
(R2 > 0.8) the local contrast dependence (red bar). Inset: The full distribution of
R2. 57.3% of networks shown.
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2.2.9. Retinotopic SSN with a smooth fall-off of excitatory horizontal

connectivity

Here we present results from a retinotopic SSN without any excess in local

connectivity, e.g. λab = 0.

An SSN with a connectivity structure similar to [45] can robustly produce

surround suppression of firing rates, but fails to produce the local contrast

dependence of gamma peak frequency (Figs. 2.6). For networks with a smooth

fall-off of long-range horizontal connectivity, it is possible to produce gamma peaks

across the across retinotopic locations (Fig. 2.6A and C). However, the gamma

peak frequency across retinotopic locations is shared (Fig 2.6D). As such, the

contrast dependence of the center E sub-population (Fig 2.6A) fails to predict the

gamma peak frequency of retinotopically displaced units when a Gabor stimulus

is presented (Fig 2.6D, gray line). For Fig. 2.6D, the R2 � 1, and the prediction

fails. The firing rates of the center E sub-population were, however, suppressed by

increasing stimulus size (Fig 2.6B).

To test how representative these results were, we simulated 1000 networks

with non-local connectivity structures. The vast majority of networks simulated

with this connectivity structure showed some non-zero suppression index SI =

1 − r∞
max(r)

(Fig 2.7B). The power-spectra of these networks, though, often failed

to produce gamma peaks (Fig 2.7A) or had gamma peak frequencies which

decreased with increasing contrast . These networks thereby failed to reproduce

the contrast dependence of gamma peak frequency (Fig 2.7D). Moreover, the

contrast dependence of the center E sub-population failed to predict the peak

frequency at spatially extended RFs when the network was presented with a Gabor

stimulus (Fig 2.7C and E).
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FIGURE 2.6. Retinotopic SSN without an excess in intra-columnar E-connections
fails to capture the local contrast dependence of gamma peak frequency. A: LFP
power-spectra at the center cortical column, for different contrasts of the uniform
grating stimulus: 0% (black), 25% (blue), 50% (green), 100% (red). B: Firing rate
size-tuning curves of the center E (orange) and I (cyan) sub-populations, based on
responses to 100% contrast gratings. C: LFP power-spectra in the Gabor stimulus
condition at different retinotopic distances from the stimulus center: 0o (orange),
0.2o (navy), 0.4o (green), 0.6o (magenta), and 0.8o (sky blue). D: Gamma peak
frequency as a function of distance from Gabor stimulus center, for power-spectra
in C. The gray curve shows the local prediction of the peak frequency given the
local contrast in the Gabor stimulus, and the relationship (derived from the power-
spectra in A) between peak frequency at the center of the uniform grating and its
contrast.
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FIGURE 2.7. Across many parameter choices the retinotopic SSN without
an excess in intra-columnar E-connections fails to capture the local contrast
dependence of gamma peak frequency. We simulated a thousand such retinotopic
SSN’s with randomly sampled parameter sets. The histogram in panel includes B
all sampled networks, while histograms in A and C-E contain only the minority
of sampled networks which exhibited a gamma peak in the relevant stimulus
conditions. A: Distributions of gamma peak frequency at stimulus center, for
different uniform grating contrasts at 25% (blue), 50 % (green), and 100%
(red). B: Distributions of the suppression index for the center E (orange) and
I (cyan) sub-populations, extracted from size-tuning curves. C: Distributions
of the change in gamma peak-frequency normalized by the change in stimulus
contrast, from 25% to 50% (cyan) or from 50% to 100% (yellow); the respective
histograms include 17.3% and 18.2% of sampled networks. D: The distribution
of the goodness-of-fit, as measured by R2, of the local prediction for gamma peak
frequency (the gray line in Fig. 2.6D, but computed independently for different
sampled networks). E: The joint distribution of the suppression index of the center
E population and the local gamma contrast dependence (as measured by the R2

histogrammed in H). 4.5% of sampled networks are shown. No sampled network
achieved an R2 above 0.5.
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2.3. Methods

2.3.1. Synaptic SSN

To better model synaptic filtering, we must further expand the SSN to

include various receptor types within our sub-populations. We consider inhibitory

synapses to be mediated by GABA receptors, but we include both AMPA and

NMDA receptor types for excitatory units. In addition to better modelling biology,

splitting the excitatory sub-population into two receptor types also helps us

dynamically.

By including NMDA as well as AMPA and GABA, the resonant frequencies

of the network shifts to nearer the gamma band (30-80 Hz), due to NMDA

weakening the effective connectivity of the AMPA receptors. Importantly,

including these different receptor types does not change the numerical value of

the fixed-point or steady-state solution of our network. However, the stability of

that fixed point may be affected, and so we ensure our expanded networks were

stable by studying the real part of the eigenvalues of the network’s Jacobian.

In addition to weakening the effective connectivity of AMPA, including

NMDA also sufficiently slows down excitation compared to inhibition. E-I

networks fail to produce oscillations when excitation is faster than inhibition.

As AMPA receptors have a faster time scale than GABA receptors, if we only

considered those synaptic types our networks would fail to oscillate. By choosing

some percentage of our excitatory sub-populations’ synapses to express NMDA

instead of AMPA, the time-scale of excitation becomes effectively slower than

inhibtion, allowing our network to produce damped oscillations.
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Mathematically, the SSN can be expanded to include multiple synaptic types

in the following way

τα
dvαt
dt

= −vαt +Wαf
(∑

β

vβt
)

+ IαDC + ηαt (2.17)

where α, β ∈ [A,G,N ] for AMPA, GABA, NMDA respectively. Note that vα is an

N dimensional vector describing the input voltage of receptor type α to every unit

in our simulation.

The SSN expands from an N -dimensional rate equation to a 3N -dimensional

rate equation, and importantly we decompose the total connectivity matrix W into

a connectivity Wα for the three receptor types:

WA =

WA
EE 0

WA
IE 0

 (2.18)

WN =

WN
EE 0

WN
IE 0

 (2.19)

WG =

0 −WG
EI

0 −WG
II

 (2.20)

2.3.2. Modelling LFP

We assume that local field potential (LFP) recordings predominantly

measure net input fluctuations to excitatory (pyramidal) neurons, and thus in our

model LFP we study the net input to our excitatory sub-populations. In principle
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the instantaneous LFP signal at location x is

LFPx(t) ∝ eE ·
∑
β

vβt =
∑
i∈E

∑
β

vβt (2.21)

where eE is the projection operator to the excitatory sub-populations, i.e. eE,i = 1

if i ∈ NE, else eE,i = 0. Note that
∑

β vβt is the net input voltage to all N of our

units.

If we further assume that the spatial extent of the recording probe is within

a cortical column, meaning that within our network the recording is small relative

to the size of our grid, we can impose that eE,i∈NE = δi,x. Thus the LFP at x when

the recording is small relative to the grid is given by

LFPx(t) ∝
∑
β

vβx,t (2.22)

2.3.3. Two-population and retinotopic model

For the two-population model, we model V1 as two units: one for the E sub-

population, and one for the I sub-population. The LFP in this case is simply the

net input to the excitatory sub-population. We assume that each sub-population

makes connections with itself and the other. Thus there are 4 connection types in

our network: E → E, E → I, I → E, and I → I. Further, we impose that some

fraction of E synapses express NMDA as their receptor (ρN =
# of NMDA

total connections
).
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Therefore,

WA =

(1− ρN)JEE 0

(1− ρN)JIE 0


WN =

ρNJEE 0

ρNJIE 0

 (2.23)

WG =

0 −JEI

0 −JII


where Ja,b is the strength of connection from sub-population of type b to type a.

The DC input is modelled as feedforward inputs from the thalamus acting

through AMPA receptors to both sub-populations, but with varying strengths gE

and gI . The input scales linearly with increasing contrast, c.

IADC = c

gE
gI

 (2.24)

Iβ 6=ADC = 0 (2.25)

When we expand the network to study the effect of spatially varying

contrasts on gamma peak frequency, we model V1 as a two-dimensional grid

of many units with receptive fields that obey retinotopy. Hence we named this

model the retinotopic model, and each retinotopic location may be thought of as

a cortical column. At each retinotopic location there are two sub-populations,

E and I. Each unit x in our network therefore has a type (a = E or I ), and

a location (x) measured from the center of the network . The location in the

network corresponds to its receptive field center.
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We keep the same connection types in the retinotopic model as the two-

population model. In addition to the overall strengths, Jαa,b, we scale the strength

of connections with distance in receptive field centers by Wx,y|a,b. The spatial

extent depends on the types of the pre-synaptic and post-synaptic sub-population.

In particular, we scale connections from I sub-populations as a Gaussian in

the distance between the two units, x and y .

Wx,y|a,I = e
− (x−y)2

2σ2
a,I (2.26)

where a ∈ [E, I] denotes the type of the unit at x. For simplicity, we assume σII =

σEI , and that both are small with respect to the spacing between receptive fields,

dx. Hence, in agreement with experimental observations, inhibitory connections

are highly local and form connections with themselves and their retinotopic

excitatory sub-population partner only.

One simple way to get the local contrast dependence of gamma peak

frequency would be to model excitatory connections as also being extremely

local. In such a case, each retinotopic location is distinct and separate from

all the others in the network, and each location effectively is a two-population

network. Two-population networks robustly display the contrast dependence of

gamma peak frequency (Fig. 2.2E). Therefore the local contrast from the Gabor

stimulus in each retinotopic location will determine the gamma peak frequency of

that effective two-population system. Such a network should thus easily display

the local contrast dependence of gamma peak frequency, as units receiving lower

contrast will have lower frequency gamma peaks. However, such a network would

fail to show surround suppression in the firing rates [44].
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On the other hand, a network with smoothly decaying connection strength

should display surround suppression of the firing rates with increasing stimulus

size (Fig. 2.6B), but we would expect the gamma peak frequency to be shared

by all simulated units, meaning that the local contrast dependence would not be

observed (Fig. 2.6C).

To interpolate between the two regimes, we scale the strength of connections

from E sub-populations by a linear mixture of complete locality (a Kronecker-δ),

and exponential decay.

Wx,y|a,E = λa,Eδ(x− y) + (1− λa,E)e
− |x−y|
σa,E (2.27)

where a ∈ [E, I] denote the type of the post-synaptic unit. Importantly, λE,E 6=

λI,E and σE,E 6= σI,E.

The connectivity matrix W therefore has the following form:

Wα
x,y|a,b = Jαa,bWx,y|a,b (2.28)

Similarly, we assume that the feedforward input has the same relative

strengths in our retinotopic model as the two-population (gE and gI are

unchanged), but we must now model the spatial extent of the stimulus.

We model several different presentations of the flat grating stimulus. We

vary the contrast while holding the spatial size (rstim) fixed to study the contrast

dependence of gamma peak frequency. We vary the spatial sizes at max contrast to

study surround suppression of firing rates in our networks. We model the strength

62



of spatial inputs to our networks for the flat grating as

Ix = 1− 1

1 + e
− |x|−rstim

wRF

(2.29)

where wRF is the decay of receptive fields in our network.

The Gabor stimulus has a contrast envelope which decays across space with

some σGabor given by

c(x) = e
− x2

2σ2
Gabor 100% (2.30)

Therefore, when we model a Gabor stimulus being presented to our network, we

scale the strength of the spatial input to match the spatially decaying contrast of

the Gabor (we assume that it is at max contrast at the center of the retinotopic

grid).

Ix = e
− |x|2

2σ2
Gabor (2.31)

where σGabor is the Gabor’s spatial decay constant. We used σGabor = 0.5◦, as in

[21].

Again we model input as being feedforward from the thalamus through the

AMPA channel, and therefore the input to unit x of type a is

IADC,a = cgaIx (2.32)

Iβ 6=ADC,X = 0 (2.33)

2.3.4. Linear Approximation

In order to study the power-spectra, we prefer to use the linear

approximation to the network dynamics around its fixed point and study the
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frequencies of noise-driven fluctuations directly. Such an approximation is

computationally more efficient than simulating a stochastic network, and yields

greater intuition than stochastic simulation does. With small, but finite, noise we

model the system as receiving some perturbations around its fixed point, such that

vαt −→ vα∗ + δvαt when Iαt −→ IαDC + ηt, where η is some small additive noise that

is private to each sub-population, and vα∗ is the N -dimensional fixed-point of the

input voltage of receptor type α satisfying

vα∗ = Wαf(
∑
β

vβ∗ ) + IαDC (2.34)

Therefore to first order the dynamical equation describing the fluctuations, δvαt ,

around the fixed point is

τα
dδvαt
dt

= −δvα +WαΦ
∑
β

δvβt + ηαt (2.35)

where we’ve defined τα as the α receptor time constant, and the gain matrix Φ as

a diagonal matrix whose ii entries are

Φii ≡ f ′(
∑
β

vβi∗) = nk[
∑
β

vβi∗]
n−1
+ = nk

1
nr

1− 1
n

∗ (2.36)

Note that the fixed-point firing rates, r∗, can be solved using the simple E-I

network (no different synaptic types) to save on computational cost, since they

are numerically equivalent in both networks, provided stability of r∗ when using

the expanded synaptic network is checked.

To check the stability in the synaptic model we used the Jacobian of our 3N -

dimensional system, J . Recall that the Jacobian is a 3N × 3N matrix and can
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be found by concatenating Eq. (2.35) across α. As such the Jacobian written in

N ×N blocks is

J = T−1


−I +WAΦ WAΦ WAΦ

WNΦ −I +WNΦ WNΦ

WGΦ WGΦ −I +WGΦ

 (2.37)

where T = diag(τA, τN , τG) ⊗ IN×N , a 3N × 3N diagonal matrix of the synaptic

time-constants. By ensuring the eigenvalues of J have negative real part, we check

the stability of the fixed point of Eq. (2.9).

Taking the Fourier transform of (2.35), and solving for δ̃v
α

δ̃v
α
(f) =

∑
β

1
−i2πfταδα,β+δα,β−WαΦcα,β

η̃β(f) (2.38)

≡
∑

β G
α,β
v (f)η̃β(f) (2.39)

yields the fluctuation strength across frequencies, where have defined the coupling

matrix cα,β ≡ 1α1β as the matrix of all ones.

In order to solve for the power-spectra of these fluctuations, we find the

covariance of the network, Cα,β
v (f), because, in general, the power-spectra p(f)

at a particular location is given by the product of the covariance matrix with some

projection matrix P = eeT . When dealing with various synaptic types, we must

also consider coupling across populations and hence P → Pα,β = P ⊗ cα,β

p(f) = Tr(Pα,βCα,β
v (f)) (2.40)
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Since we have found the fluctuation strength across frequencies directly using the

linear approximation, we solve for the covariance across frequencies

Cα,β
v (f) ∝ 〈δ̃v

α
(f)δ̃v

β
(f)†〉

=
∑
γ

∑
ε

Gα,γ
v (f)Cγ,ε

η (f)Gε,β†
v (f)

(2.41)

where Cγ,ε
η (f) is the covariance of the input noise between synaptic populations

γ, ε. We assume that noise enters only through the AMPA channel, and hence

Cα,β
v (f) = Gα,A

v CA,A
η GA,β†

v (2.42)

Further, we assume that the noise is colored in time, but i.i.d. across units in our

network, i.e. CA,A
η (f) = Icη(f) where cη(f) is the scalar power-spectra of the

external noise. In the case of pink noise, as used here,

cη(f) = I
2τcorr

| − 2πifτcorr + 1|2
(2.43)

where τcorr is the correlation time of our noise.

In this case, instead of solving Eq. (2.40) directly, we will obtain a

formula for the LFP power spectrum that is mathematically equivalent but is

computationally more efficient. We define the N -dimensional vector

u(ω) =
∑
β

Gβ,A(f)†e
E

(2.44)

Then the LFP power spectrum will be given by

p(ω) = cη(f)u(f)†u(f) (2.45)
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This is how we evaluated the power spectra for our networks that were not

explicitly found using a stochastic simulation.

2.3.5. Definition of gamma peak

We developed our own method of defining gamma peak frequency and width

for the linear approximation power-spectra. For the stochastic simulations we

relied on the previous method which found the peak frequency as the argmax of

the difference between the stimulus presented power-spectra and the background

or spontaneous power-spectra f0 = argmax(p(f)|c>0 − p(f)|c=0) [21]. In our

exploration of parameter space using the linear approximation we found power-

spectra that were ”shoulders” rather than bumps or peaks, and this previous

method would misidentify the peak frequency. It identified the start of the

shoulder, rather than the frequency with the greatest increase of power, as being

the peak frequency, and so we developed a new method of finding peak frequency

which relies on the curvature of the power-spectra.

Generically, a peak occurs between two inflection points of a line when the

curvature of that line is downward. As such, we defined our power-spectra peak

frequency using the linear approximation method as the middle frequency of two

inflection where the power-spectra has negative curvature. The half-width we

defined as half the difference between inflection points with negative curvature.

For the stochastic simulations, which were noisier than our linear approximation

data, the inflection point method of finding the peak frequency did not work as

well as the previous method. So for the stochastic simulation we used the previous

method.
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2.3.6. Proof the spectrum of a synaptic model with only AMPA and

GABA is the same as the spectrum of an E/I rate model

Here we prove that the linearization spectrum of a synaptic model without

NMDA is the same as the spectrum of an E/I rate model, with the exchange

τAMPA → τE and τGABA → τI . This means that, in particular, the formulae of

[35] for eigenvalues in a 2-neuron/population model still hold for this model with

the above replacements.

We start by rewriting the inverse Green’s function, using the Green’s

function defined implicitly in Eq. (2.38), and also start general, allowing for q

different receptor types:

G−1(ω) = A−WΦP (2.46)

where we define

A := −iωT + I ∈ RqN×qN (2.47)

W :=



WA

WG

WN

...


∈ RqN×N (2.48)

P := IN×N ⊗ 1
T

q = (IN×N , IN×N , IN×N , . . .) ∈ RN×qN (2.49)

where T = diag(τ s)⊗ IN×N and τ s ∈ R (in our case τ s = (τA, τG, τN) or (τA, τG)),

and 1
T

q = (1, . . . , 1) ∈ Rq.

The eigenvalue spectrum correspond to values of z = −iω which make

the determinant of G−1(ω) vanish. Noting that the second term in Eq. (2.46) is

68



rank-deficient (has at most rank N , instead of full-rank qN), we make use of the

“matrix determinant lemma” to write:

det(G−1(ω)) = det(A) det(IN×N − PA−1WΦ) (2.50)

It is not hard to see that

PA−1 = (
IN×N

−iωτA + 1
,
IN×N

−iωτG + 1
,
IN×N

−iωτN + 1
, . . .) (2.51)

and therefore

PA−1W =

q∑
α=1

1

−iωτα + 1
Wα (2.52)

We now limit to q = 2 with only AMPA and GABA,

PA−1W =
1

−iωτA + 1
WA +

1

−iωτG + 1
WG = WÃ−1 (2.53)

where we have made use of the specific forms of WA and WG (namely, that

they have zero columns for inhibitory and excitatory neurons, respectively) from

Eq. (2.23), and where we have defined

W =
∑
α

Wα ∈ RN×N (2.54)

Ã := zT̃ + IN×N (2.55)

with T̃ = diag(τ̃ ) ∈ RN×N where τ̃ = (τA, . . . , τG, . . .) ∈ RN is the N -dimensional

vector with first NE components equal to τA and the last NI components equal

to τG. After identifying τA/G with τE/I , we thus see that T̃ is the same as the T

matrix of the r-model (which is N -dimensional), as is W its connectivity matrix.
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Also noting that (zT̃ + IN×N)−1 and Φ are both diagonal, we can commute them

in Eq. (2.53) to obtain:

det(G−1(ω)) = det(A) det(IN×N −WΦÃ−1) (2.56)

=
det(A)

det(Ã)
det(zT̃ + IN×N −WΦ) (2.57)

=
det(A)

det(Ã)
det(zT̃ + IN×N − ΦW ) (2.58)

(to get the last line, do a similarity transform with Φ, of the matrix in the last

determinant).

Now it is explicit that the zeros of the last determinant factor are the

eigenvalues of the N -dimensional r-system (after τA/G ↔ τE/I identification).

The first factor, on the other hand, can be written as:

det(A)

det(Ã)
=

(zτA + 1)N(zτG + 1)N

(zτA + 1)NE(zτG + 1)NI
= (zτA + 1)NI (zτG + 1)NE (2.59)

So the spectrum also has N additional real eigenvalues (in addition to those of the

r-model) with values −τ−1
A and −τ−1

G , and multiplicities, NI and NE, respectively.

(Thus in total we have 2N eigenvalues as we should.)

In particular, all oscillatory/complex eigenvalues are exactly those of the r-

model in the no-NMDA case, which in the 2-neuron case are given by the formulae

in Tsodyks et al. 1997.

2.3.6.1. Approximate statement about role of NMDA:

We consider two regimes for the effect of NMDA:
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1. when |z| or ω are very small compared to the NMDA time-constant: ω �

τ−1
N .

2. when |z| or ω are very large compared to the NMDA time-constant: ω �

τ−1
N .

The first regime is relevant for DC response and DC properties (such as surround

suppression of steady-state rates). The second regime is approximately valid for

gamma oscillations, thanks to the relatively high frequency of those.

In regime 1, it is obvious that the breakdown of E weights into the two types

doesn’t have any effects, simply because (setting ω to 0) time-scales don’t play

any role here. So the parameter ρN makes no difference to fixed point response

properties.

In regime 2, looking at Eq. (2.52), we note that the prefactor 1
−iωτα+1

for

NMDA is very small and can be ignored. This means that for high frequencies

(e.g., approximately frequencies around gamma) we can simply kill all NMDA

weights, and only consider the AMPA weight matrix, WA. In particular, the model

where WA ∝ WN , then the effect of NMDA on the gamma peak is approximately

equivalent to reducing total excitatory weights (which all affect DC properties)

by a scalar factor (which in our formalism is 1 − ρN) when it comes to gamma

properties.

2.3.7. Theorems for the two-population model

We consider now the case of a two-neuron model with one excitatory and one

inhibitory neuron (the neurons in all models of this article should be thought of

as ”mean field” neurons, each representing a statistically homogenous population

of neurons of excitatory or inhibitory type), what we have here called the two-
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population model. We will also assume no NMDA contribution (or equivalently

work in the very slow NMDA regime, and replace all excitatory weights with their

AMPA part, as explained at the end of Sec. 2.3.6).

In this case the gamma peak frequency is closely approximated by the

imaginary part of the eigenvalues of the Jacobian matrix:

J = −T−1 + T−1WΦ (2.60)

=

γE(−1 +WEEΦE) −γEWEIΦI

γIWIEΦE γI(−1−WIIΦI)

 (2.61)

where we defined γE ≡ τ−1
AMPA and γI ≡ τ−1

GABA. Noting that the trace and

determinant of J yield the sum and product of the eigenvalues, respectively, we

obtain the expression (see [35])

2λ1,2 = γE(WEEΦE − 1)− γI(WIIΦI + 1)

±
√

[γE(WEEΦE − 1) + γI(WIIΦI + 1)]2 − 4γEγIWEIWIEΦEΦI (2.62)

A gamma peak exists only if the expression under the square root is negative, i.e.

4γEγIWEIWIEΦEΦI > [γE(WEEΦE − 1) + γI(WIIΦI + 1)]2, (2.63)

in which case, for the gamma peak angular frequency ω0, we (approximately)

have

4ω2
0 = 4βEβIWEIWIE − (βEWEE + βIWII + γI − γE)2 (2.64)

where we defined βX := γXΦX for X ∈ {E, I}.
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We will now obtain a simplified expression for the derivative of ω2
0 with

respect to the contrast c, using the rectified supralinear nonlinearity of the SSN.

Using Φ∗ = nk
1
n r

1− 1
n

∗ (where r∗ is the firing rate at fixed point) we obtain

dβ∗
dc

=
n− 1

n
β∗
d ln r∗
dc

(2.65)

Then using Eq. (2.64), and defining

A := (βEWEE + βIWII + γI − γE) (2.66)

and (· · · )′ := d(··· )
dc

, we find:

n

n− 1

dω2
0

dc
= βEβIWEIWIE(ln rE + ln rI)

′

− 2A

4
(βEWEE(ln rE)′ + βIWII(ln rI)

′) (2.67)

= ω2
0(ln rE + ln rI)

′

+
1

2
A2

[
(ln rE)′ + (ln rI)

′

2
−

∑
awa(ln ra)

′

γI − γE +
∑

awa

]
(2.68)

where the sums are over a ∈ {E, I} and we defined

wa := βaWaa a ∈ {E, I} (2.69)

Analysis of the sign of
dω2

0

dc
:

Assuming that we are in the gamma oscillatory regime (i.e., ω0 is real) and

that the fixed point rates increase with contrast, then from Eq. (2.68) we find

that sufficient conditoin for
dω2

0

dc
> 0 is that the factor in the square brackets in

Eq. (2.68) is positive. In the solutions of SSN most relevant to cortical biology,
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(ln rI)
′ tends to be larger than (ln rE)′ (because excitatory rates tend to saturate or

supersaturate earlier). We thus consider two extreme cases: (ln rE)′ = (ln rI)
′ and

(ln rE)′ = 0.

In the first case, the bracket becomes (ln rI)
′
[
1−

∑
a wa

γI−γE+
∑
a wa

]
=

(ln rI)
′ γI−γE
γI−γE+

∑
a wa

, which is positive as long as γI > γE (which is unfortunately

not the case for GABA and AMPA).

In the second case, the bracket factor becomes (ln rI)
′ γI−γE+

∑
a wa−2wI

2(γI−γE+
∑
a wa)

=

(ln rI)
′ γI−γE+wE−wI
2(γI−γE+

∑
a wa)

. This is positive (as long as the denominator is positive,

which is true as long as γI > γE) if

wE − γE + γI > wI (2.70)

But the stability of the fixed point dictates that the expression on first line of

Eq. (2.62) (the real part of the eigenvalues) has to be negative and thus

wI > wE − γE − γI (2.71)

2.4. Discussion

In this work we have shown that the expanded SSN is able to robustly

display the contrast dependence of gamma peak frequency in both a two-

population and a retinotopic network. The retinotopic model successfully balances

the trade-off in horizontal connection strength such that both the local contrast

dependence of the gamma peak frequency and the surround suppression of firing

rates are observed robustly. In order to capture gamma oscillations using the

SSN, we expanded the model beyond an E-I network to a varied synaptic network
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model. Crucially, the SSN account sheds light on the mechanism underlying

the contrast dependence of gamma peak frequency and points to the key role of

the non-saturating and expansive neural transfer function, observed empirically

[52, 60], in giving rise to this effect.

Finding the power-spectra using the linearization to Eq. (2.8), helped us

make analytic simplifications. From these simplifications, we gained insights

about how the SSN may produce gamma (e.g. Secs. 2.2.6, 2.3.6, and 2.3.7). As

gains and effective connectivity increase, the imaginary part of the corresponding

eigenvalue of the Jacobian also increases. Moreover, by finding the power-spectra

via linearization, we were able to rapidly compute power-spectra which allowed

for extensive explorations of the model’s parameter space. Throughout this work,

we developed several techniques for finding parameters which robustly display the

local contrast dependence of gamma peak frequency, which could aid in future

searches looking to understand the functions underlying gamma oscillations.

In this work, partly for simplicity, we assumed an instantaneous I/O function

between net synaptic input (
∑

β vβ) and the output rate. This is based on the

approximations discussed in [59], which is valid when the fast synaptic filtering

time-constants (τAMPA and τGABA) are much smaller than the neuronal membrane

time-constants. Note that our framework, however, can easily be generalized

beyond this approximation by using the full neuronal linear response filter

obtained from the Fokker-Planck treatment of [59]. This biggest impact caused

by this treatment would be to render the gains used here frequency dependent (i.e.

Φ→ Φ(f)). We expect this dependence to be weak because we are in the regime of

fast synaptic filtering as compared to the neuronal membrane time constant, and

so we expect the transfer function to be approximately instantaneous. Therefore
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we do not expect that including the full neuronal linear response filter would

change our qualitative results.

As we have shown, the SSN produces the local contrast dependence of

gamma peak frequency and the surround suppression by balancing long-range

and local horizontal connections. The local component of the connections used

represents some elevated strength within a (micro)column relative to the long-

range connections. This predicts that there exists an elevated probability of

connection within a (micro)column in the structure of horizontal connectivity in

macaque V1. Indeed, it has been noted that anatomical findings on the spatial

profile of horizontal connections in the macaque cortex point to such a mixture

of short-range or local and long-range connections, with the local component not

extending beyond 0.4 mm (the size of our model’s columns) [61].

Rodents, however, have a very different V1 organization than macaques.

Typically rodents are thought to not have strong columnar organization across the

cortex, based mainly on the salt-and-pepper organization of orientation preference

in their V1 [7]. More recently, experimental evidence from mouse V1 suggests that

there is no elevated strength in local connections relative to long-range connections

[62]. As such, we predict that a similar experiment to [21] in mouse would find

that there is no local contrast dependence of gamma peak frequency, unlike what is

observed in macaque.
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CHAPTER III

CORTICAL DYNAMICS AT MULTIPLE TIME-SCALES DRIVE THE JOINT

GROWTH OF SMOOTH MAPS AND LOCAL CODING HETEROGENEITIES

The simulations and analyses done in this chapter were carried out by myself

under the guidance of Dr. Yashar Ahmadian, the principal investigator who

conceived the project. Dr. Ken Miller pointed out the question and the theoretical

conundrum motivating this work, and has consulted us throughout the project.

3.1. Introduction

Sensory cortices are specialized regions of the brain which process sensory

stimuli. Primary sensory cortices are cortical areas which first receive input from

their corresponding sensory organs, typically via the thalamus. Neurons within

sensory cortices of mature mammals respond selectively to certain features of the

input. Such selectivities and preferences mean that sensory cortical neurons have

the greatest response when the feature is present in the stimulus. Most response

selectivities first emerge during embryonic or early post-natal development. For

example, neurons in the early visual system only respond to stimuli in a certain

small region of the visual field, called the neuron’s receptive field (Fig. 3.1A).

Receptive fields are different for different neurons, and all together they tile the

entire visual field. Moreover, neurons within the primary visual cortex (V1)

develop selectivity to oriented patterns of light and dark bands within their

receptive field, with different neurons responding preferentially to different angles

(referred to as the neuron’s preferred orientation, see Fig. 1.2 for examples).

Similarly, neurons within primary auditory cortex develop selectivities for a
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FIGURE 3.1. Example of receptive fields and orientation selectivity. Also how
orientation selectivity develops from feedforward thalamocortical connections plus
its organization across the cortex. A: Example receptive field (red circle) of a
neuron within V1 B: Orientation selectivity example from [2] (data from [63]). C:
Example of a V1 RF in cat. Left image shows a realistic example, while the right
is a cartoon example for clarity. Left: Example of a V1 RF filter in cat. Shown is a
V1 cell making connections with 4 LGN inputs (explosion symbols bottom right).
Solid lines connect each LGN input to its RF. The RF filter of each LGN cell is
shown as two circles with solid lines (plus signs indicate ON regions, triangles
indicate OFF regions, hence these are ON-center, OFF-surround responsive cells).
The resulting RF of the V1 cell is shown as a dashed outline on top of the circles,
and connected to the V1 cell with the dashed line on the left. Taken from [6].
Right: we simplified the diagram on the left to a cartoon where the RF filter of
the LGN neurons and V1 neuron are shown. Black filled shapes correspond to
dark patches of visual input, while white filled shapes represent light patches of
visual input. D: Orientation preference map from [64]. Shown is the orientation
preference map from a tree shrew, a primate.

specific sound frequency, while neurons within the early olfactory pathway develop

selectivity to certain odorants. This work will focus on the development of neural
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selectivities and their spatial organization in V1. In principle though, the findings

of this work could be applied to any sensory cortex as long as certain parts of the

model were adjusted to match the new modality.

Moreover this work will focus on the development and organization across

cortical populations of feature selectivities through activity-dependent plasticity,

where the synaptic connections between neurons change depending on their

activity. As such, we will not study the development of “hard-coded” or genetically

determined features and organization. We will nevertheless summarize some

key points about those features here. The receptive field (Fig. 3.1A) of neurons

within V1 develops due to feedforward connections from the lateral geniculate

nucleus (LGN) of the thalamus, and encodes the feature of visual solid angle or

RF location. Feedforward connections mean that LGN cells form synapses onto V1

cells. The feature of RF location is encoded in a smooth map across the cortex,

meaning that nearby neurons selectively respond to nearby regions of visual

space; this smooth encoding of RF location across V1 is known as retinotopy.

However, the development of retinotopy does not depend on the activity of V1

or the LGN. Rather the patterning of feedfoward connections from the LGN to V1

are genetically determined such that RF location selectivity develops and forms

a smooth map in V1 as it develops in an early embryonic period [8, 65]. Thus

while the development of retinotopy is outside the scope of this work, our models

of cortex and LGN-to-V1 (thalamocortical) connections will have retinotopic

organization.

Instead, this work will focus on late pre-natal (in primates) or early post-

natal periods (in cats, ferrets), when feedforward LGN-to-V1 connections undergo

rapid activity-dependent plasticity. During this period, neurons within these
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areas develop selectivity to certain features of their input [8]. One such feature

is stimulus orientation. When presented with an oriented stimulus, like a long

bar or a stripe pattern, neurons within V1 respond with the greatest firing rate

at one particular orientation (Fig. 3.1B), known as their preferred orientation.

In the example shown in Fig. 3.1B, the cortical cell responds most strongly

when the grating is oriented at 0◦, thus 0◦ is called the preferred orientation of

this cell. Thus V1 neurons develop and apply a spatial filter to incoming visual

sensory information on top of their RF. It is known that orientation preference

and selectivity arise primarily from the patterning of feedforward LGN-to-V1

connections [6, 54, 66, 67]. Hence, LGN neurons are the pre-synaptic population

while V1 cells are the post-synaptic population. Importantly, orientation

preference is not “hard-coded” or genetically determined, but rather develops by

strengthening certain LGN-to-V1 synapses and weakening others due to the neural

activity in the LGN and V1 [8].

In contrast to V1 cells, LGN cells are not orientation selective, but do have

a RF and, moreover, an RF filter. More precisely, cells within LGN respond

strongly to differing center surround combinations. For instance, an ON-center,

OFF-surround cell responds strongly to a bright spot, surrounded by a dark spot,

while the opposite is true for an OFF-center, ON-surround cell (for brevity we will

refer to these an ON- or OFF-center cells (Fig. 3.1C). Neurons within V1 receive

synaptic connections from combinations of these ON- and OFF-center cells, which

gives rise to the oriented structure within their RF and thus their orientation

preference and RF filter [6] (Fig. 3.1C).
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FIGURE 3.2. Local diversity of receptive field structure in cat V1. A: Examples
of spatial receptive field filters for a group of neighboring V1 neurons. Red
regions are ON-responsive (meaning they respond positively to increases in local
brightness); blue regions are OFF-responsive (meaning they respond positively
to increases in local darkness). The receptive fields are arranged from left to
right, top to bottom as the corresponding cells are located in the cortex [68].
B: Distribution of preferred orientation differences across neighboring pairs of
neurons (black bars) and across randomly selected pairs of neurons (red) [23]. C:
Distribution of RF similarity indices across pairs of neighboring cells within V1
from [69]. D: Signal correlations across pairs of neighboring V1 cells for three
different stimulus classes: gratings (blue), natural movies (red), and visual noise
(green). Signal correlation is defined as the correlation coefficient of the trial-
averaged responses of two neurons across different stimulus conditions or time
bins. Shown are box-and-whisker plots of signal correlation, the boxes extend
from the 25th to the 75th percentiles; the median is indicated by the black dot.
Whiskers show the whole range of signal correlations, with outliers shown as
circles. Diamonds represent expected correlations from identical, but noisy
neurons, which serve as controls. More precisely, a single neuron’s responses in
different trials were partitioned into two sets, and the signal correlation of those
two sets of trials was calculated as if they belonged to two distinct neurons [23].
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In some species, the development of orientation selectivity occurs within

a “critical period” of development. It is known that the development of many

features or even learning of certain skills in animals have so-called critical periods.

Orientation preference finishes development during this critical period, and

moreover is stably represented in the cortex afterwards [8, 70]. If visual input is

denied or altered for the organism during this period, e.g. by over-representing a

particular orientation by putting cylindrical-lens-fitted goggles on the animal, then

development of orientation preference is irreversibly changed [71].

In mature cats and higher mammals (e.g., primates and humans), orientation

preference is encoded in a smooth map across the cortex (Fig. 3.1D and Fig. 3.2B),

such that nearby neurons have similar preferred orientations [23, 64, 72, 73, 74].

By contrast, in rodents (e.g. mice and rats) orientation preference develops a

random, or salt-and-pepper (S&P ) organization, meaning that nearby cells have

an orientation preference which is uncorrelated with their neighbors [7, 75, 76].

In this work, we will not focus on comparing the development of qualitatively

different organizations of orientation selectivity across different species. Rather,

this work focuses on the development of qualitatively different organizations of

different feature selectivities in the same visual cortex, in species with smooth

orientation maps.

Thus in V1 of higher mammals, both orientation and RF location have

smooth maps (despite their different mechanisms of development). These smooth

maps are thought to help minimize wiring lengths within the brain between

similarly tuned neurons. A possible explanation for why cats and higher mammals

have developed smooth maps of orientation preference, while rodents have not, is
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that the cortices of cats and higher mammals would be too large without them. By

minimizing the wiring lengths, cortical volume can be kept to a minimum [77].

The fact that these key feature selectivities, e.g. orientation and RF location,

develop smooth maps, despite their different mechanisms of development, may

suggest that RF filters of neighboring V1 cells are very similar. However, even in

these animals, not every V1 feature is organized in a smooth map. If that were the

case, the RF filters of neighboring neurons would indeed have a high similarity

with one another, and the response of neighboring neurons would be highly

correlated and therefore redundant. Rather, the responses of cortical neurons to

natural or artificial stimuli tend to be minimally correlated with their neighboring

neurons [23] (Fig. 3.2D), implying that certain features must be encoded in salt-

and-pepper (S&P) organization, a qualitatively different organization than a

smooth map. In S&P organizations, rather than nearby cells preferring similar

features, there is no correlation between the preferences of neighboring neurons.

This low response correlation (also known as signal correlation) minimizes the

redundancy of local cortical responses, and hence maximizes their information

content.

To a first approximation, responses of neurons in the early visual system

(retina, LGN, and the thalamorecipient layer of V1) can be approximated by linear

functions of the visual stimulus. If for the moment we ignore temporal dynamics,

the stimulus can be thought of as an image, which we denote by s(a). Here, a

denotes the location in the 2D visual field, and s(a) is the light intensity (for this

work we will ignore color) at that location. The response of the cell i, ri, can then

be approximated (up to a constant) by the inner product of the cell’s receptive

83



field filter, Fi(x), with the image stimulus as follows

ri =
∑
a

Fi(a)s(a). ≡ Fi · s. (3.1)

Recall that the receptive field filters of V1 cells are oriented patterns (see e.g.,

Fig. 3.1C) and emerge from the patterning of LGN-to-V1 connections.

Thus the low response (signal) correlation in V1 suggests that RF filters

vary from neighbor to neighbor despite having similar orientation preferences, and

indeed that is the case. Consider, for example, the work of [68] which studied RF

filters across V1. We have reproduced a set of neighboring RF filters from their

work in Fig. 3.2A. Note that the neurons prefer similar orientations but have

varying spatial shapes of their RF filters, e.g. how big the light and dark lobes

are and the location of those lobes within the RF, are very different (as opposed to

the cartoon examples shown in Fig. 1.2). As such, we will now introduce two key

measures for the similarity of RFs and neural coding, relative and absolute spatial

correlations of RF filters.

To measure relative spatial correlation we will compare the Pearson

correlation coefficient between neighboring RF filters centered at a standard

location. Previous experimental studies labeled relative spatial correlation as

the similarity index between RF filters [69]. They found that the distribution of

similarity indices between neighbors was centered on zero. This suggests that while

selectivities to certain features are organized in a smooth map, e.g. orientation

preference (Fig. 3.2B), there exist selectivities to other features which develop

a S&P organization across the cortex. These S&P organizations are thought

to keep information between neural responses and stimuli high by keeping the

correlations between responses low. As a corroborating measure, we will also study
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the absolute spatial correlation. For absolute spatial correlations we will compute

the Pearson correlation coefficient between feedforward connections of neighboring

neurons. Mathematically, then, the absolute spatial correlation is the correlation

between Fi and Fj when i and j refer to neighboring neurons. When the absolute

spatial correlation is low, we expect neighboring neurons within the primary visual

cortex to be driven by different populations of thalamic neurons. The signal

correlations between those neighboring cortical neurons should be low as they

receive different inputs. In summary, signal correlations and similarity indices near

zero imply the existence of S&P organizations, even though orientation preference

develops a smooth map across the cortex.

Therefore, a mixture of smooth maps and S&P organizations develop within

the same cortex for different features. This co-presence of different organizations

for different features may allow the cortex to “get the best of both worlds”, so to

speak, and minimize both wiring lengths and output activity correlations. Previous

theoretical models, however, predicted that the same feature organization, either

a smooth map or S&P organization, would develop for all features within the

same cortex [22, 78, 79, 80].These studies showed that the feature selectivity

organization which develops depends not on the features themselves, but on the

linear response kernel of the cortical network (which will be introduced more

mathematically in the next section). We will refer to the cortical linear response

kernel as the cortical response generally. The cortical response kernel of the post-

synaptic network describes how external input to one cortical neuron impacts

the responses of other cells in its extended neighborhood (due to intra-cortical

recurrent interactions). Furthermore, in previous works and in this work we

assume that all cortical neurons have the same cortical response kernel. When the
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spatial response kernel of the cortex is spatially broad and excitatory (positive),

then the feature preferences of nearby cells align and become more similar over

the course of development. Therefore the cortex develops a smooth selectivity map

for all of the stimulus feature selectivities. If, however, the response kernel of the

cortex was spatially narrow, meaning that external input to a cortical neuron had

little to no effect on the response of others in its neighborhood, then the feature

selectivity of nearby cortical cells would develop independently from each other.

In this case, the cortex develops S&P selectivity organizations for all features of

the input. Importantly, as a consequence of assumptions made by these models,

the same cortical response kernel was shared by all features.Hence, once the spatial

form of the response kernel was chosen for one feature, then it was set for all the

other features as well. In short, previous models predicted the development of

either a smooth map or S&P organization for all feature selectivities within the

post-synaptic population.

Here we extend and generalize those previous studies. We show that when

cortical dynamics at multiple time-scales are properly taken into account, the

response kernel of the cortex can have different spatial profiles at different time-

scales. Moreover, we show that a novel coupling mechanism emerges, wherein

features of the cortical input that temporally vary at different time-scales couple

most strongly to the cortical spatial response kernel at similar time-scales. This, in

principle, allows the development of qualitatively different spatial organizations

for selectivities to features that vary at different time-scales, within the same

cortex. We present simulations of cortical development of both one-dimensional

and two-dimensional models of cortex showing the development of qualitatively

different feature organizations under our novel coupling mechanism, and compare
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our results to biologically observed feature organizations. Lastly, we give a detailed

account of the mathematical and computational methods used.

3.2. Theoretical results

3.2.1. Background and motivation

Previous theoretical models relied on modelling activity dependent plasticity

or development under Hebbian learning and made four (I - IV) key assumptions

[22, 78, 79, 80].

I Bilinear Hebbian learning

II Linear cortical response

III Instantaneous cortical response

IV Slow plasticity relative to input

Hebbian learning is most commonly identified by the aphorism that “cells that

fire together, wire together”, meaning that synaptic connections are strengthened

when two neurons are co-active together and weakened when they are not [13, 81].

In particular, these previous models utilized a bilinear Hebbian learning rule

(assumption I), meaning that the strength of connection between two neurons

should grow proportionally with the product of the activity of the pre- and post-

synaptic neurons. Consider a single excitatory synapse, whose weight we will

denote by w. Let us further denote the activity of pre- and post-synaptic cells

for that synapse by u and v, respectively. Mathematically, the Hebb rule is then
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equivalent to the following differential equation governing the evolution of w:

dw(t)

dt
∝ v(t)u(t). (3.2)

In a modification of the Hebb rule known as the covariance rule [81], the pre- and

post-synaptic activities are replaced with the deviations of those activities from

their long-term temporal average. We will implicitly assume such a covariance rule

below, by letting v(t) and u(t) denote the deviations of pre- and post-synaptic

activities relative to their temporal means.

In this chapter we would like to model not just the evolution of a single

synapse, but of the entire collection of thalamocortical synpases connecting the

LGN to the (thalamorecipient layer of) V1. Our models will generally feature

Npre pre-synaptic LGN cells and Npost post-synaptic cortical cells. We will use

W to denote the full Npre × Npost matrix of synaptic weights connecting the

LGN cells to V1 cells, such that the matrix element Wx,a denotes the weight of

the synapse connecting the a-th LGN cell to the x-th cortical cell. We similarly

adopt a vector notation for the pre- and post-synaptic activities: we let u denote

the Npre-dimensional vector representing the activity of the pre-synaptic LGN

population, and let v denote the Npost-dimensional vector representing the activity

of the post-synaptic cortical population. We will index neurons from the pre-

synaptic population with letters from the beginning of the alphabet, e.g. a, and

index neurons from the post-synaptic population with letters from the end, e.g. x.

Under the bilinear Hebbian learning then, the feedforward connection, Wx,a, from

the pre-synaptic neuron at location a to the post-synaptic neuron at location x,
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evolves according to dWx,a

dt
∝ vx(t)ua(t), or in matrix-vector notation 1:

τW
dW

dt
= v(t)uT (t). (3.3)

Here τW denotes the time-scale of synaptic development. Note that we will use

capitalized letters to represent matrices in our formalism, e.g. W , and bold-face for

vectors, e.g. v.

Previous models also assumed that the Input/Output transfer function of

cortical cells was linear (assumption II). Consider an illustrative example with only

one post-synaptic neurons such that v → v and W → w an Npre-dimensional

vector. In that case and under the assumption of a linear I/O transfer function,

the activity of the post-synaptic neuron is determined by a linear weighted sum of

its inputs plus a decay to its resting state

τv
dv(t)

dt
= −v(t) + wu(t) (3.4)

These models further assume that the cortex is in a fixed-point of its dynamics, or

that the response of the cortex is much faster than the dynamics of the thalamus

τu � τv and so it is “slaved” to the dynamics of the thalamus (assumption III).

Under that assumption, the left-hand side of Eq. (3.4) is effectively zero, and the

activity of the post-synaptic cell may be written as

v(t) = wu(t) (3.5)

1Recall that we are defining u and v to be the deviations of the pre- and post-synaptic
population respectively from their long-term temporal average. As such, Eqn 3.3 can describe
weakening of synapses as well as strengthening.
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Substituting Eq. (3.5) into Eq. (3.3) yields

τW
dw

dt
= wu(t)u(t)T (3.6)

The last assumption these previous studies made was that synaptic plasticity

was slow relative to the dynamics of the activity τW � τu � τv (assumption IV).

This assumption prevents synapses from constantly being “re-written” by changing

activity, and is experimentally justified given that the thalamus has activity with a

time-scale on the order of milliseconds, whereas plasticity changes on the order of

seconds [82]. Hence we may average Eq. (3.6) over some time T such that

τW
dw

dt
= w

1

T

∫ T

0

dtuuT ≡ wC (3.7)

where C is the Npre × Npre matrix of zero time-delay correlations of thalamic

activity. Under these simplifying assumptions, w will grow along the eigenvectors

(principal components) of C, and the post-synaptic neuron will therefore develop a

selectivity to the eigenvectors of C. Hence, the post-synaptic neuron will respond

greatest when the input is aligned to the principal eigenvector of C, and therefore

the post-synaptic neuron will become selective to inputs that match that principal

eigenvector.

Now, consider many post-synaptic neurons. In this case, the activity of post-

synaptic populations v also has some dependence on the recurrent connectivity

within the post-synaptic population and is given by

τv
dv

dt
= −v +Wu +Rv (3.8)
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where R is the recurrent connectivity in the cortex. Imposing the same condition,

that τu � τv, and borrowing from linear response theory whereby we assume the

cortex is a “black-box” which linearly transforms its inputs, leads to

v(t) = KWu(t) (3.9)

where K is Npost × Npost matrix describing the linear response kernel at zero

time-lag of the cortex across the cortical population. Note that K is related to

the recurrence in the network R, but from here on we will model K directly and

remain agnostic as to the spatial structure of R.

Substituting Eq. (3.9) into Eq. (3.3), yields

τW
dW

dt
= KWu(t)uT (t) (3.10)

Again, we assume that plasticity is slow relative to the dynamics of the thalamus

such that τW � τu � τv (assumption IV), and average with respect to time

τW
dW

dt
= KW

1

T

∫ T

0

dtu(t)uT (t) ≡ KWC (3.11)

Fig. 3.3 shows as schematic of these models 2. The post-synaptic population is

shown as green circles, while the pre-synaptic population is shown in red. The

spatial form of the cortical response kernel K is shown above the post-synaptic

population, while the spatial shape of the input correlations,C, are shown below

2Note that we are suppressing the convolution symbol in our formalism, opting to denote
convolutions across space by

KWC = K ∗W ∗ C ≡
∑
x′

∑
a′

K(x, x′)W (x′, a′)C(a′, a) (3.12)
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Post-synaptic 
population /

V1

Pre-synaptic 
population /

LGN

FIGURE 3.3. Schematic of previous theoretical models [22]. Here we show two
one-dimensional representations of networks of neurons. Green circles represent the
post-synaptic or V1 neurons, while red represent the pre-synaptic or LGN neurons.
The spatial structure of the input correlations C is shown below the LGN. The
spatial structure of the cortical response kernel, K, of the cortex is shown above
V1. Examples of feedforward connections are shown in brown lines, except for the
connection between a and x which we have highlighted in purple. Addtionally the
spatial extent of the arbor is shown above the cortex.

the post-synaptic population. Feedforward connections are depicted as brown

lines from the pre-synaptic population to the post-synaptic population, and the

connection from a to x, Wx,a, is highlighted in purple. Importantly, W grows along

the principal eigenvalue of C, and therefore the post-synaptic population again

develops selectivity to that feature of the input. Note that only one spatial form

of the response kernel is allowed in this formalism. Now, that we have considered

many post-synaptic neurons though, the spatial form of K will determine how that

selectivity is patterned across the post-synaptic population.

If K has very short-ranged excitation, i.e. K approximates a Kronecker-

δ (Fig. 3.4-bottom left), then the post-synaptic populations can be thought
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of as many independent neurons, each of which will receive some feedforward

input governed by Eq. (3.7). Hence, each neuron in the post-synaptic population

will develop a random selectivity to the features in C determined by the initial

conditions of each individual effective w, and therefore the post-synaptic

population develops a S&P organization for all features within C (Fig. 3.4-bottom

middle). On the other hand, if K is long-range and positive (which in analogy

with recurrent connections we will call positive K excitatory), then nearby cells

positively drive each other, such that nearby cells are more likely to respond to

the same input, causing those neurons to develop similar feature preferences [22].

Hence for broad excitatory K, the post-synaptic population will develop a smooth

map for all features within C (Fig. 3.4-top). We demonstrate that a smooth or

S&P organization have developed for a given feature by studying the correlation of

preferences to that feature across the post-syanptic population. S&P organizations

will have correlation that quickly decays to zero with increasing distance,

indicating that neurons develop preferences independent of the preferences of their

neighbors, while smooth maps have long-range correlations indicating that clusters

of preferences have developed (Fig. 3.4 Right - orange line).

Critically though, these models predict that every feature within C is

governed by the same cortical response kernel K, and so all features within C

develop the same organization across the post-synaptic population. However,

biologically, a mixture of organizations is observed within the same cortex, and

so we wish to expand upon these previous models and develop a mechanism

under which a mixture of organizations for different features may occur. In

particular, we will examine the assumptions these models were based on, and
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FIGURE 3.4. Previous theoretical models predict either smooth maps for all
features of S&P organizations for all features. Shown here are two different
feedforward models with different cortical response kernel K. Left: For each
model, the pre-synaptic population is shown as red circles, and the post-synaptic
population is shown as green green cirlces. An example set of feedforward
connections, W , between the two are shown in brown. The cortical response
kernel,K, of the post-synaptic population is shown above the models. The top
model has long-range excitatory response kernel K, and the model on bottom has
a very narrow response kernel. Middle: After development, both post-synaptic
populations develop selectivity to the input feature (heat maps- each pixel shows
the selectivity of a post-synaptic neuron), but the organization of that selectivity
is very different between the two models. The top model develops a smooth map
of the feature selectivity, while the organization of the bottom model develops a
S&P organization. Right: We demonstrate the difference in the two organizations
by studying the correlation of the feature preference across the network. The
model with the broadly excitatory kernel (blue line) has long-range correlations
across the post-synaptic population indicating that nearby neurons develop similar
preferences and hence that feature forms a smooth map across that population.
While the model with the narrow response kernel (orange line) has practically
no correlations with its neighbors in the post-synaptic population indicating the
development of a S&P organization.

relax the assumption that the cortex is “slaved” to the dynamics of the thalamus

(assumption III), which is not observed experimentally.
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3.2.2. Considering cortical dynamics

Previous models of selectivity or preference organization development relied

upon four main assumptions

I Bilinear Hebbian learning: τW
dW
dt

= v(t)u(t)

II Linear cortical response: τv
dv
dt

= −v +Wu +Rv

III Instantaneous cortical response: v(t) = KWu(t)

IV Slow plasticity relative to input: τW
dW
dt

= KWC

Here we relax assumption III, which relies on cortical dynamics being much faster

than the dynamics of the thalamus τu � τv. In reality, this assumption is not

particularly well-justified, as the dynamics of the cortex happen on the same

order of time-scales as the thalamus, τu ≈ τv. By relaxing this assumption we

gain a new “degree of freedom”, and here show how features at multiple time-

scales couple strongly to response kernels with similar time-scales. This coupling

allows preferences to features at one time-scale to develop an organization that

most strongly depends on the spatial form of the response kernel at that or a

similar time-scale. Thus selectivity to a certain feature may develop a qualitatively

different organization across the post-synaptic population from a selectivity to

another feature, provided the response kernels at their respective time-scales have

different spatial profiles. Thus the post-synaptic population is no longer forced to

develop the same organization of feature preferences for all features present in the

feedforward input.

Again we will keep most of the assumptions from previous models (I, II, IV)

and assume the cortex responds linearly, but we now fully treat its dynamics,
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which allows us to make use of multiple time-scales. Assumption II allows us

to again use linear response theory, from which we know that the response of

the cortex must be a convolution of its weighted inputs. Previously we used this

theory to arrive at Eq. (3.9), however, when the dynamics of the cortex at multiple

times-scales are considered, the convolution of the weighted inputs is no longer

purely spatial, but temporal as well, leading to

v(t) =

∫ t

−∞
dτK(τ)Wu(t− τ) (3.13)

where now K(τ) is an Npost×Npost matrix that describes the linear response kernel

at some time-lag τ . As stated previously, K is related to the recurrence in the

network, but from here on we model K directly and remain agnostic about the

structure of the recurrence in the network.

Given that we still wish to use a bilinear Hebbian learning rule (assumption

I), we substitute Eq. (3.13) in Eq. (3.3) and properly treat the temporal

components to find

τW
dW

dt
=

∫ t

−∞
dτK(τ)Wu(t− τ)uT (t) (3.14)

Again we consider time-scales of plasticity that are much longer than the time-

scales of dynamics, τW � τu ≈ τv (IV). As such, we average Eq. (3.14) over time to

find

τW
dW

dt
=

〈∫ t

−∞
dτK(τ)Wu(t− τ)uT (t)

〉
t

≡
∫ ∞
−∞

dτK(τ)WC(−τ) (3.15)

96



where C(τ) is an Npre×Npre matrix which describes the input correlations at time-

delay τ , thus the input correlations also have multiple time-scales. Equivalently,

applying Parseval’s theorem to get a better sense of how C(τ) and K(τ) couple

across time-scales, we find

τW
dW

dt
=

∫ ∞
−∞

dfK̃(f)WC̃(f) (3.16)

where K̃(f) and C̃(f) are the (element-wise) Fourier transforms of K(τ) and

C(τ), respectively. Here we can see that again the post-synaptic population will

develop a selectivity to the eigenvectors (principal components) of C̃(f), and

even though C̃ will have different features across multiple times-scales, the post-

synaptic population will become selective to all of them via Eq. (3.16). Those

different features (eigenvectors) at multiple time-scales will couple to the response

kernel which has a time-scale most similar to its own. Hence at one time-scale, the

spatial form of the response kernel, K̃(f), may be broad and excitatory, causing

preference to the feature (eigenvector) which shares its time-scale to be encoded in

a smooth map across the post-synaptic population, while at a different time-scale,

the spatial form of the response kernel may be narrow, leading to the development

of a S&P organization for the preference of the feature which matches that time-

scale.

Eq. (3.16) is quite general, and may be used for arbitrary response kernels

and input correlations. Here, we will limit ourselves to the following forms of the

spatiotemporal correlation matrices and response kernels to gain more insight into
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the contribution of different correlation and dynamic times-scales.

Ca,a′(t) =
M∑
j=1

Cj
a,a′e

− |t|
τj (3.17)

Kx,x′(t) = Θ(t)
S∑
i=1

Ki
x,x′e

−γit (3.18)

where Ci
a,a′ and Ki

x,x′ are now purely spatial correlations matrices and response

kernels for the ith time-scale τi or 1
γi

, respectively. Note that K(t) is restricted

to be causal (hence the Heaviside Θ), as it should be. In general, the cortical

response kernel K(t) and input correlation C(t) may have different numbers of

time-scales, S 6= M . Note that by considering the dynamics of the cortex itself, we

essentially gain a “degree of freedom” in our Hebbian learning rule, such that the

response kernel K(t) may take many different spatial forms across multiple time-

scales. Whereas previously in Eq. (3.11), when the spatial form of K had been set

for one feature within the input correlation C, it was set for all other features as

well. Importantly though, in this new framework the post-synaptic populations

will still develop selectivity to the same features in C(t), but now each feature may

develop different organizations across the post-synaptic population depending on

the spatial form of K(t) at that time-scale.

We can now use eqns 3.17 in 3.15, or equivalently, take their Fourier

Transforms

C̃(f) =
∑M

j
2τj

|1+2πifτj |2C
j (3.19)

K̃(f) =
∑S

i
1

1+ 2πif
γi

Ki (3.20)
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and use them in Eq. (3.16).

τW
dW

dt
=

S∑
i

M∑
j

∫ ∞
−∞

df
1

1 + 2πif
γi

2τj
|1 + 2πifτj|2

KiWCj (3.21)

Note that Ki, Cj and W have no frequency dependence, and so can be moved

outside the integral. As such, we need only consider the frequency factors under

the integral.

Let us consider the integral with respect to frequency in more detail,

suppressing the sums and spatial factors. First, we find denominators that are

real

∫ ∞
−∞

df 1

1+ 2πif
γi

1− 2πif
γi

1− 2πif
γi

2τj
|1+2πfiτj |2 (3.22)∫ ∞

−∞
df

1− 2πif
γi

|1+ 2πif
γi
|2

2τj
|1+2πfiτj |2 (3.23)

The imaginary term in Eq. (3.23) is an odd function with respect to frequency,

and since the integral is over all frequencies (from −∞ to ∞), the imaginary

contribution to the integral is zero, and we are left with purely real terms (as

desired since synaptic strengths are real). Hence to find the growth of W we need

to evaluate the following integral

∫ ∞
−∞

df
2τj

|1 + 2πif
γi
|2|1 + 2πifτj|2

= 2

∫ ∞
0

df
2τj

|1 + 2πif
γi
|2|1 + 2πifτj|2

(3.24)

As the denominators are the only part of the integrand that depends

on frequency, we employ the method of partial fractions to solve this integral
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analytically

1

|1 + 2πf
γi
|2|1 + 2πfτj|2

=
A

1 + (2πf
γi

)2
− B

1 + (2πfτj)2
(3.25)

and find A = 1
1−τ2j γ2i

and B =
τ2j γ

2
i

1−τ2j γ2i
. Recall that

∫∞
0
dx 1

1+(ax)2
= 1

a
arctan(ax)|∞0 =

π
2a

, and use that identity in Eq. (3.25)

4τj

∫ ∞
0

df
1

|1 + 2πf
γi
|2|1 + 2πfτj|2

=
∫∞

0
df A

1+( 2πf
γi

)2
−
∫∞

0
df B

1+(2πfτj)2
(3.26)

→ 4τj
π

2

1

2π
[γiA−

1

τj
B] = τjγi

(
1

1−τ2j γ2i
− τjγi

1−τ2j γ2i

)
(3.27)

and simplifying we arrive at

τW
dW

dt
=
∑
i

∑
j

∫ ∞
−∞

df
1

1 + 2πif
γi

2τj
|1 + 2πifτj|2

KiWCj =
∑
i

∑
j

τjγi
1 + τjγi

KiWCj

(3.28)

Eqn 3.28 is quite general and valid for arbitrary spatial shapes of Cj and Ki

as well as arbitrary numbers of time-scales, M and S. To demonstrate that

our framework enables the development of qualitatively different organizations

for different features, we consider the simplest non-trivial case and study the

development of selectivities when there exist only two time-scales in both the input

correlations, C, and response kernels, K.

3.2.3. Two time-scale model

From here on, we restrict our framework to correlations with two time-scales,

τslow and τfast, and response kernels with two time-scales 1
γslow

and 1
γfast

. As such

we will assume that the input correlation is now given as

C(t) = Cslowe
− |t|
τslow + Cfaste

− |t|
τfast (3.29)
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and the principal eigenvectors of Cslow and Cfast will be the features that the post-

synaptic population becomes selective for (note Cslow and Cfast are purely spatial).

Likewise, the cortical response kernel of the post-synaptic population also contains

only two time-scales

K(t) = Θ(t)Kslowe−γslowt + Θ(t)Kfaste−γfastt (3.30)

and we further simplify by assuming that 1
γi

= τi.

Under these simplifying assumptions, Eq. (3.28) reduces to

τW
dW

dt
=
[1

2
Kslow +

τslow
τfast + τslow

Kfast
]
WCslow

+
[ τfast
τslow + τfast

Kslow +
1

2
Kfast

]
WCfast (3.31)

The post-synaptic population will develop selectivity to the principal eigenvectors

of Cfast and Cslow. If the time-scales of those features are widely separated, i.e.

τslow � τfast, then those feature selectivities in the post-synaptic population are

able to develop qualitatively different organizations, depending on the spatial form

of Kfast and Kslow as

τW
dW

dt
≈
[1

2
Kslow +

τslow
τfast + τslow

Kfast
]
WCslow +

1

2
KfastWCfast (3.32)

Hence the spatial form Kfast will govern the organization of selectivity to Cfast,

while the organization to the selectivity of Cslow will be governed by a mix of

Kslow and Kfast.

To control the relative strength of selectivity to the two features, we

normalize the C’s and the K’s according to some norm (see Sec. B), and factor
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out the overall norm or strength of the two terms involving the slow and fast

features, as two scalars, λslow and λfast. That way, the relative strengths of growth

along eslow and efast were more easily controlled via λslow and λfast. With this

convention

, Eq. (3.31) becomes

τW
dW

dt
= λslow

[1

2
Kslow +

τslow
τfast + τslow

Kfast
]
WCslow

+ λfast
[ τfast
τslow + τfast

Kslow +
1

2
Kfast

]
WCfast (3.33)

Note that in the one-dimensional networks as well λslow and λfast will also control

the relative strengths of the slow and fast feature, but our reported λslow and

λfast numerical values should be weighted by a combination of the eigenvalues of

Kslow and Kfast (see Sec. 3.4 for more details).

Previous theoretical models only considered input correlations with one

feature

τW
dW

dt
= λKWC (3.34)

Therefore to make more appropriate comparisons between our framework

determined by Eqn 3.33 and previous theoretical models, we adapt Eqn 3.34 such

that there are two features present within the input correlations in this framework

as well to

τW
dW

dt
= λslowKslowWCslow + `fastKslowWCfast (3.35)

where `fast 6= λfast. However, we do enforce the same spatial form of Kslow across

both frameworks. We choose the numerical values of λslow, λfast, and `fast such

that the post-syanptic network develops the same relative strength of selectivity
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to their respective features. We refer to Eqn 3.35 as the static framework as

cortical activity is entirely set by the input it receives [22] and our framework

given by Eqn 3.33 as the dynamic framework.

Here we make a further assumption that the spatial form of Kslow will be

such that it promotes the development of smooth maps and as such is long-range

and excitatory, while we impose that the spatial form of Kfast will be such that

it promotes the development of S&P organizations. This is a modelling choice

motivated by biology. We expect that at the slower time-scale input signals at one

cell will propagate out to and affect the activity of its neighbors, and hence the

slow response kernel should be long-range. By the same logic, at the fast time-

scale we expect there to be relatively little time for input signals to affect the

activity of their neighbors, and hence we expect the fast response kernel to be

spatially narrow. However, this a modeling assumption as there exists relatively

little data about the response kernels of cortical populations.

Given that we are interested in understanding the development of orientation

selectivity, in our model each “cell” or “neuron” more accurately describes a

cortical column. As such, it is natural to assume that the fast response kernel

might describe some self-excitation of the cortical column, and so we assume it is

described by a very local excitatory spatial profile. Whereas, for the slow response

kernel, we assume that it is determined by some longer-range connections in our

network, and spatially we model it as a Mexican-Hat or difference of Gaussians

(DoG) profile, similar to [22]. As long as the “excitatory” component of our

DoG response is broad enough, then [22] showed that DoG response kernels

will promote the development of smooth maps. However, these are all merely

intuitions, as the actual response kernels within the cortex remain unknown. Were
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it actually to be the reverse, e.g. such that the fast response kernel promotes

the development of smooth maps while the slow response kernel promotes the

development of S&P organizations, our model would still apply, but the spatial

forms of the response kernels should be changed to match experiment.

The only constraints we place on the spatial profiles of the feedforward

input correlations are such that their principal eigenvectors of Cfast and Cslow are

orthogonal to one another, which ensures the development of one does not directly

interfere with the development of the other. For simplicity we will also consider

their spatial forms to also be DoG, and assume that the spatial form of Cslow is

longer-range than Cfast. We assume that the correlations at the slower time-scale

are longer-range because we expect nearby LGN neurons to respond similarly on

average, while correlations on the faster time-scale should be shorter ranged due

to the noise within neural activity (e.g. spiking activity). However, if experimental

evidence showed that faster time-scale correlations are broader and longer-range,

then those spatial forms for the correlation structure could easily be used in our

model rather than what we have proposed here. We would expect the cortex to

develop selectivity to both features regardless of the actual spatial form of the

input correlations.

If W was permitted to grow without bounds, then we expect the

development of selectivity to Cslow to have no impact on the development of

selectivity to Cfast as their principal eigenvectors are orthogonal to one another.

However, W is not observed to grow without bounds, and so we include an upper

limit and a constraint on the strength of synaptic connections. Through this

mechanism, the growth of selectivity to Cslow and Cfast are no longer independent,
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but we will show that qualitatively different organizations still develop through our

simulations.

3.2.4. Normalization and Arbors

Under the proposed formulation, W would grow without bound, which is not

experimentally observed. Rather there are limits as to how strong or weak any

particular synapse can become. As such, we include in our model of W an upper

and lower bound, such that any element of W can not exceed a maximum value,

and impose that every element of W has zero as a lower bound. We chose zero

as the lower bound because long-range connections within the brain are typically

excitatory. Therefore, the feedforward connection strength W is positive semi-

definite.

Once a synapses has hit either the upper or lower bound, that synapse is

“frozen”, or unable to develop further. Experimentally orientation preference

is a relatively stable feature preference across the cortex [70], and by including

a freezing mechanism we model the critical period during which orientation

preference is set in the cortex [8, 71]. Importantly, we impose that a synapse from

one pre-synaptic cell onto a particular post-synaptic cell can only strengthen at

the expense of weakening a synapse from a different pre-synaptic cell onto the

same post-synaptic cell [22]. Through this mechanism the development of one

feature organization can impact the development of the other (see Sec. 3.4.4 for

more details).

To better model biology, we include an arbor function to enforce retinotopy

on our network as not every LGN neuron communicates with every V1 neuron,

and further modeling the development of retinotopy remains outside this work as
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retinotopy develops through genetic, rather than activity dependent, plasticity.

The arbor function, A imposes a spatial limit on the range of feedforward

connections (Fig. 3.5-red line). The arbor is such that feedforward connections

from an LGN population to a V1 column are set to zero when they are beyond the

spatial limit, and finite within it. As such, Eq. (3.28) becomes

τW
dW

dt
= A�

∑
i

∑
j

γiτj
1 + γiτj

KiWCj (3.36)

where we have signified element-wise multiplication of the arbor A with the

summed over time-scale changed in W as �. Note that the arbor function is a

Npost × Npre matrix which only depends on the relative difference in location

between the pre- and the post-synaptic neuron.

3.3. Simulation results

Here we simulate the development of selectivity organizations under the

formalism developed above considering only two-time scales within the input

correlations, C̃(f), and cortical response kernels, K̃(f). Unless otherwise noted,

we impose an arbor function, A, limiting connections from the pre-synaptic to the

post-synaptic population which enforces retinotopy in these networks. Moreover,

we impose that feedforward connections from the pre- to the post-synaptic

population, W , are bounded and normalized as above. We present results from

simulations of one-dimensional networks and two-dimensional which show that by

treating the dynamics of the post-synaptic (or cortical) population on an equal

footing with the pre-synaptic (or thalamic) population, two different features can

develop qualitatively different organizations. We first show that our framework
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predicts qualitatively different selectivity organizations to develop for the features

within Cslow and Cfast when one-dimensional networks are used to represent both

the pre- and the post-synaptic populations. Then we expand our framework to

two-dimensional grids for the pre- and post-synaptic populations and show the

selectivity to the features within Cslow and Cfast again develop qualitatively

different organizations in this expanded network simulation as well.

Further, we demonstrate our framework is capable of predicting the

development of a smooth map for orientation preference when the pre-synaptic

population is modeled as consisting of two populations, either ON-center or OFF-

center responsive neurons in analogy with the LGN. Our framework improves

upon previous models of orientation preference development by predicting more

heterogeneous receptive fields for cortical neurons. Moreover, our framework

succeeds in predicting biologically plausible receptive fields for the cortical

population when input correlations have many time-scales. Whereas the formalism

developed previously, when adapted to include a correlation structure with

multiple features, predicts receptive fields that are very weakly selective to

orientation. Importantly though, our new framework succeeds in predicting the

development of qualitatively different organizations for different features within the

same cortex, which had not been done before.

3.3.1. One-dimensional network results

We have simulated the development of feedforward plasticity between two

one-dimensional rings of neurons (Fig. 3.5 - circles), representing a pre-synaptic

population and a post-synaptic population. In analogy with the visual system,
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Post-synaptic 
population /

V1

Pre-synaptic 
population /

LGN

FIGURE 3.5. Schematic of one-dimensional networks, representing the LGN or
pre-synaptic population (red circles, early alphabet), and V1 or post-synaptic
population (green circles, end of alphabet). Shown below the LGN are the
spatial forms of the correlation at the slow (blue) and fast (orange) time-scale,
similarly, the response kernels are shown arbor V1. The arbor, the spatial extent of
connections from the LGN to V1 is shown as a red line above a set representative
connections (brown lines). Two sets of representative connections are shown from
pre-synaptic neurons a (gray) and e (brown). The connection,Wx,e from LGN cell e
to V1 cell x is shown in purple as an example of an element of W .

we consider the pre-synaptic population to be the LGN and the post-synaptic

population to be V1.

Note that we only modeled the development of feedforward connections

from the LGN to V1, and did not model the development of recurrence within

V1. Rather, we assumed that the spatial profiles of the response kernels within V1

remain fixed over time, and dominated by two time-scales, one fast and slow. We

further chose that the spatial extent of the slow kernel, Kslow, was long range and

had a DoG form (Fig. 3.5 - blue curve above V1), while the spatial extent of the
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fast kernel, Kfast, was very narrow and approximated as a Kronecker-δ function

(Fig. 3.5 - orange curve above V1).

Likewise, we assumed the input correlation structure C̃(f) only contained

the same two time-scales as the response kernel K̃(f), however, we considered

two cases of spatial correlation structure. The simple case had input correlations

with only one eigenvector each (not pictured in Fig 3.5), while for the other we

assume the spatial correlations were DoGs at both time-scales (Fig. 3.5 - curves

below LGN). We imposed no sense of retinotopy in the simple case for the input

correlations, rather we use this case to check our intuition about how selectivity

should grow under normalization. To that end, we removed possible confounds,

such as the arbor function or the possibility of non-principal eigenvectors of Cslow

being aligned with the principal eigenvector of Cfast or vice versa.

For the simple single eigenvector case, we assumed that Cslow and Cfast were

projection matrices, i.e. Cj = ej(ej)T with j ∈ [slow, fast]. In this simple case,

Cslow and Cfast are single-rank and composed of only one linearly independent

eigenvector. Moreover, eslow and efast were randomly chosen Npre-dimensional

vectors, conditioned such that eslow and efast are orthogonal (i.e. efast · eslow = 0).

For this simple case then, we ensure that the only features our post-synaptic

population becomes selective for are those eigenvectors. When we consider more

realistic DoG Cj, then both Cslow and Cfast contain many eigenvectors. We choose

their spatial shapes such that the principal eigenvectors are orthogonal to one

another, however, there exist many other eigenvectors within Cslow and Cfast when

realistic spatial shapes are used which may or may not be orthogonal. Hence for

this simple case, we choose Cj = ej(ej)T to ensure the growth of Cfast in no way

impacts the growth of Cslow, until the bounds of W are reached. Moreover, we
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also do not impose an arbor function on this condition. This is the only model

we present results for without an arbor. However, We do still impose constraints

and normalization on W . In this simple model, we ensure that the only impact to

the growth of selectivity to both the fast and slow feature, outside of Eq. (3.31),

is the normalization and constraints on W . Therefore, it is a good control to

test our intuition about how selectivity ought to develop to these features under

normalization.

Then, we model Cslow and Cfast as depending on the relative distance

between pre-synaptic neurons, and to be multi-rank. We modeled the spatial form

of the slow time-scale correlations, Cslow, as being much broader than the spatial

form of the fast time-scale correlations Cfast (Fig. 3.5A, curves below LGN). To

enforce retinotopy in this network, we restricted the spatial range of possible

connection from the LGN population by imposing an arbor, A (Fig. 3.5 - red line),

on feedforwad connections, W (Fig. 3.5-brown and gray lines).

We then simulated Eq. (3.31) according to the algorithm outlined in [22]

for these two conditions on the input correlation structure (see Sec. 3.4.5). In

particular, we simulated the growth of the feedforward connection strength W

until ≥ 90% of the synapses within the arbor saturated, meaning 90% of the

synapses had values at either the upper or lower bound. To study how selective

the post-synaptic population became after development, we modeled the selectivity

of a post-synaptic cell as the inner product of its individual wx (which can be

thought of as its RF filter Fx) with the principal eigenvector of the fast or slow

input correlation, ei where i ∈ [slow, fast]. Thus the selectivity to the ith feature

at position x, Six, can be found across the whole post-synaptic population, i.e. for
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FIGURE 3.6. One-dimensional network with two time-scale feature organization
and development for simplest input correlations, i.e. projection operators. Note
that an arbor was not used, and LGN neurons communicated with all V1 neurons.
A: The selectivity of every post-synaptic neuron is shown to the slow feature
(blue), fast feature (orange), and the control(yellow). Selectivity is defined as
W · ei with i ∈ [slow, fast, control]. Note that periodic boundary conditions are
used so the cell at -10 is next to the cell at 10. B: The time evolution of the mean
selectivity to the slow (blue), fast (orange), and control (yellow). C: The time
evolution of the nearest-neighbor difference (Roughness) of the selectivity to the
slow (blue), fast (orange), control (yellow). A higher value indicates a less smooth
map. D: The spatial correlation of the feature selectivity to the slow (blue), fast
(orange), control (yellow) features across the network.

all x, by

Si = W · ei (3.37)
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This defines selectivity because it represents how strong the input would be to a

post-synaptic neuron when the feature ei is present. If selectivity is a large and

positive value, that means the post-synaptic neuron would receive a high input

whenever the input activity matches ei, and thus respond very strongly. Hence

that post-synaptic neuron would prefer activity aligned with ei. However, if the

selectivity is a large and negative value, the post-synaptic neuron would respond

most strongly and therefore prefer when input activity is anti-aligned to ei. The

post-synaptic neuron would be un-selective for the feature, meaning its response

would not change much depending on how input activity aligns or anti-aligns with

ei, if the selectivity was zero.

Recall that we define orientation preference by the stimulus orientation which

elicits the greatest response in the cortex. In a similar way, after development, we

expect the post-synaptic population to develop a preference for the input either

aligning or being anti-aligned with ei, regardless of the form used for Ci. The post-

synaptic neuron at x either prefers the feature when wx · ei > 0 or the negative of

the feature when wx · ei < 0, or is unselective for it when wx · ei ≈ 0.

For our one-dimensional networks, we studied 1024 neurons in both the

pre-synaptic population and the post-synaptic population, ranging across

positions −10 µm to 10 µm. We are simulating the development of feedforward

thalamocortical connections, as such our initial conditions were such that all

elements of W ∈ [0.8, 1.2] randomly and uniformly. Under this initial condition,

we are imposing that the feedforward thalamocortical connections be excitatory

as observed. Imposing this excitatory condition though, introduces an artefact to

our data, as W has some nonzero mean. For the results shown in this subsection,
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FIGURE 3.7. One-dimensional network with an arbor function (retinotopy), two
time-scale feature organization and development. A: The selectivity of every post-
synaptic neuron is shown to the slow feature (blue), fast feature (orange), and the
control(yellow). Selectivity is defined as W · ei with i ∈ [slow, fast, control]. Note
that periodic boundary conditions are used so the cell at -10 is next to the cell at
10. B: The time evolution of the mean selectivity to the slow (blue), fast (orange),
and control (yellow). C: The time evolution of the nearest-neighbor difference
(Roughness) of the selectivity to the slow (blue), fast (orange), control (yellow). A
higher value indicates a less smooth map. D: The spatial correlation of the feature
selectivity to the slow (blue), fast (orange), control (yellow) features across the
network.

we removed the mean from W before calculating any related quantity, e.g. the

selectivity to certain features.

In Figs 3.6 we present results for the single-rank input correlation structure.

Recall that the input correlation used in Fig. 3.6 was chosen to ensure no
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confounds in the development of W . Therefore, we chose Cj to be single-rank and

imposed no arbor to ensure that selectivity to both eslow and efast develop under

normalization. Furthermore, we expect both to develop an organization which

depend on the spatial form of Ki that they couple most strongly to, e.g. we expect

eslow to develop a smooth map while efast develops a S&P organization. In panel

A of Fig 3.6, we show the selectivity for to the slow feature, eslow, in blue and the

selectivity to the fast feature, efast, in orange across the post-synaptic population.

We further studied the selectivity to a feature which was not present in our input

correlation, C̃(f), which we used as a control. The feature econtrol was chosen to

be orthogonal to be eslow and efast. As long as selectivity to the control feature

stays low relative to the selectivity of the fast and slow features, then we know

that the network did not just become selective to all features, instead it becomes

selective for just the features in the input. Recall that in both the projection and

the spatially dependent correlation cases the only constraint we made on the forms

of Cslow and Cfast was that their principal eigenvectors are orthogonal, thus eslow

is orthogonal to efast and econtrol. Qualitatively, the post-synaptic population did

become selective to both the slow feature and the fast feature, but stayed relatively

un-selective to the control feature for both of the considered input correlation

conditions.

The selectivity to the control feature did not substantially grow over

time for either input correlation condition (Figs. 3.6B), but did show some

change due to the normalization condition on W (not shown are results from

unbounded simulations of W when the control feature did not change over

time). Importantly, though, the selectivity to both the slow and the fast

feature did grow over time, and, moreover, developed qualitatively different
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organizations across the post-synaptic population regardless of the choice of input

correlation structure. Preference for the smooth feature becomes encoded across

the post-synaptic population in a regular repeating pattern with a relatively

small amount of variation. Clear clusters form for preferences where the input

activity pattern matches the eigenvector, eslow, versus the anti-aligned pattern,

−eslow. Importantly, preference for the fast feature has no discernible pattern

and neighbors are just as likely to prefer input activity aligned to the positive

eigenvector efast as its negative −efast.

We quantified how different the two organizations were using the nearest-

neighbor metric, meaning we studied differences in preference for the same

feature normalized by the mean selectivity to that feature between neighboring

units in our post-synaptic population which we labeled as “Roughness”

(Fig. 3.6C).Furthermore, we studied how correlated feature preferences were

across the one-dimensional network (Fig. 3.6D).We expect smooth maps to have

a low value of roughness as nearest neighbors prefer similarly valued features

and so their difference will be low, while in a S&P organization the roughness

value will be large because nearest neighbors will have no correlation in their

preferred feature values and so the difference in their preferred values will be high.

Similarly, for a smooth map we expect to see the feature correlation to be long-

range across the post-synaptic population, while for a S&P organization, we expect

the correlation to quickly fall-off to zero and be uncorrelated across the cortex.

We found that while all were maximally rough at the start of development,

the fast feature had clearly developed a much “rougher” organization than the slow

feature post-development. Further, we found preferences for the slow feature to be

highly correlated even at large spatial distances, while the preferences for the fast
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feature sharply dropped off and stayed near zero across the network. Neighboring

units therefore were equally likely to prefer anti-aligned fast features as aligned

fast features, emblematic of a S&P organization, while neighboring post-synaptic

neurons are highly likely to prefer similarly aligned slow features indicating that

a smooth map developed. Thus the preference for the slow feature within the

correlation, eslow, organizes as a smooth map, while the preference for the fast

feature within the correlation, efast, develops a S&P organization across the post-

synaptic population.

When we consider more realistic input correlations structures (Fig. 3.5 -

curves below LGN), the above results hold. In Fig. 3.7A, we show the selectivity

which develops across our post-synaptic population when an arbor and DoG

spatial forms for Cslow and Cfast were used. Recall that we choose their spatial

shapes such that the principal eigenvectors eslow and efast are orthongoal to one

another. However, in this DoG case, the input correlations are multi-rank, and

so not every eigenvector within Cslow may be orthogonal to Cfast. Moreover, in

this case, we also impose some notion of retinotopy through an arbor function, A

(Fig. 3.5 - red line), wherein we restrict the range of connections from LGN to V1.

Even with multi-rank input correlations an arbor, the post-synaptic population

develops a selectivity to eslow that is much more clustered then the selectivity

to efast, and moreover becomes more selective to efast and eslow than the control

feature, econtrol.

We quantify the development and organization of these selectivity structures

in the same way as before. Importantly, the selectivity to the slow and fast

feature become higher on average than the control feature (Fig 3.7B). The

preference to the slow feature develops a smooth map as shown by having a low
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roughness, and long-range correlation, while the preference to the fast feature

develops a S&P organization as shown by its high roughness and correlation

which quickly drops to zero (Fig 3.7C-D). Thus even with more realistic DoG

input correlations and an arbor function, qualitatively different feature preference

organizations develop across the post-syanptic population.

Pre-synaptic population/

LGN

Post-synaptic population/

V1

0 0

0 0

FIGURE 3.8. Schematic of two-dimensional grid networks with spatial forms of
the correlation and response kernels. Shapes on the left represent the LGN or
pre-synaptic population (red spheres), and V1 or post-synaptic population (green
spheres). Some representative connections from the LGN to V1 are shown in
purple, W . The spatial forms of Kslow, Kfast, Cslow, and Cfast are shown on the
right as surface plots with blue-to-cyan indicating negative values and red-to-
yellow indicting positive values.

3.3.2. Two-dimensional network results

Here we show that this formalism can be expanded to two-dimensional grids

of neurons and the same result holds (Fig. 3.8 - left); the post-synaptic population

develops qualitatively different selectivity organizations to the slow and fast feature

when expanded. Again, we impose an arbor function such that retinotopy is

enforced within the network. We maintain our simplifying assumption that there
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exist only two time-scales in the input correlation structure and response kernel,

but now we expand their spatial forms to be two-dimensional (Fig. 3.8 - right).

The spatial forms of Cfast and Cslow are again chosen to be DoG structures

with orthogonal principal eigenvectors, where we have assumed that the spatial

extent of Cslow is broader than Cfast. Similarly, we model the response kernels

within the post-synaptic population as being two-dimensional DoG structures,

where Kslow is assumed to be much broader than Kfast. We again choose the

spatial form of Kfast to approximate a Kronecker-δ. We also assume that the

slow time-scale is much much longer than the fast time-scale such that the the

development of the organizations to each feature is dominated by the similar time-

scale response kernel.

Again we simulate the development of the feedforward connection strengths

W until 90% of the synapses saturate, or have values that are either the upper

or lower bound of W . Then we study how selective the neurons across the post-

synaptic population became to the slow and fast feature. The network of post-

synaptic units develops selectivity to both the fast and the slow feature (Fig. 3.9A-

B), but does not become selective for the control feature (Fig. 3.9C). Each heat

map within Fig. 3.9 shows the full network of the post-synaptic population with

each pixel representing the selectivity of the unit at that location. The coloring of

the pixels denotes the selectivity to input activity either aligned with ei (red) or

anti-aligned with ei (blue). If a neuron is unselective for input aligning with that

feature, then its selectivity is zero (white). We again choose the control feature

to be orthogonal to both the slow and the fast feature (Fig. 3.9C), and the post-

synaptic network remains unselective for that feature. Thus the post-synaptic
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FIGURE 3.9. Two-dimensional, two time-scale cortical dynamic model develops
qualitatively different feature selectivity organizations to the slow and fast input
feature. Here each pixel represents one neuron in our post-synaptic population.
This network was simulated with the cortical dynamics being treated equally
with the thalamic dynamics. A: Heat map of the selectivity to the slow feature.
B:Heat map of the selectivity to the fast feature. C: Heat map of the selectivity
to the control feature. D: The average correlation across space for the selectivity
to the slow feature (blue), and the fast feature (red). Not shown is the average
correlation across space for the selectivity to the control feature since the
selectivity did not significantly develop

population does not become selective to all features, but only the features within

the input correlation structure.

To demonstrate that the slow feature and fast feature develop different

organizations across the post-synaptic population, we study the spatial correlations

of the different feature selectivities across the post-synaptic population. We
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have neglected studying the organization of the control feature since the post-

synaptic population remains unselective for it after development. The slow

feature selectivity is positively correlated across several post-synaptic cells, in

any direction. Moreover the selectivity to the slow feature becomes slightly anti-

correlated with neurons that are located in the negative lobe of the DoG form for

Kslow. Hence the slow feature selectivity of one unit is correlated to its neighbors

indicating that a smooth map for the selectivity to the slow feature has developed.

Whereas, the correlation of fast feature preferences quickly drops to zero beyond

its auto-correlation (Neural distance = 0). Hence the selectivity to the fast feature

has low correlations with its neighbors, and thus the fast feature preference of each

post-synaptic cell is independent of its neighbors. Therefore the fast feature is

encoded in a S&P organization.

Here again our model develops qualitatively different selectivity organizations

to different features within the same network. Showing that when cortical

dynamics are treated properly the post-synaptic population develops different

organizations to different features. Whereas, if we adapt the previous formalism

to include multiple time-scales in the correlation input structures, while still

treating the cortical neurons as being “slaved” to their inputs, e.g. Eqn 3.35,

the feature selectivities for both time-scales are encoded in the same organization

(Fig. 3.10A-B). Similar to Fig. 3.9, the whole network is represented as pixels with

coloring corresponding to selectivity of a particular feature. Here, again, the post-

synaptic population remains un-selective to the control feature. However, the slow

and the fast feature have very similar correlations across the cortex. Moreover,

the feature preference to both features is highly correlated with its neighbors,

indicating that smooth maps develop for both features (Fig. 3.10D). Hence the
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FIGURE 3.10. Two time-scale two-dimensional model without cortical dynamics
develops smooth maps of selectivity to both the slow and fast feature. Here
each pixel represents one neuron in our post-synaptic population. This network
was simulated using the formalism outlined in [22], and so cortical dyanmics
are “slaved” to the thalamic inputs. A: Heat map of the selectivity to the slow
feature. B:Heat map of the selectivity to the fast feature. C: Heat map of the
selectivity to the control feature. D: The average correlation across space for the
selectivity to the slow feature (blue), and the fast feature (organge). Not shown is
the average correlation across space for the selectivity to the control feature since
the selectivity did not significantly develop.

static framework which does not fully consider the cortical dynamics fails to

predict the development of qualitatively different spatial organizations across

the cortex, while our framework successfully develops two qualitatively different

organizations across the cortex.
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LGN

V1

OFF-center

ON-center

FIGURE 3.11. Here we show a schematic of the expanded LGN population to two
networks consisting of ON-center (yellow spheres) and OFF-center neurons (red
spheres). A representative RF filter is shown for each population type. We also
show some representative connections from the ON-center WON (yellow lines) and
OFF-center WOFF (red lines), to V1 (green spheres).

3.3.3. V1 feature development

So far we have considered rather abstract and mathematical features being

encoded in the post-synaptic population, but this work was motivated to explain

the co-presence of heterogeneity in receptive fields with smooth feature preference

maps, e.g. orientation preference develops a smooth map in the primary visual

cortex, while the RFs themselves show broad heterogeneity. In order to study the

development of receptive field features directly, we expand our model to include

ON-center and OFF-center populations in the LGN. We now consider the LGN

to consist of two networks, one consisting of neurons that respond to ON-center

stimuli and another population which responds to OFF-center stimuli (Fig. 3.11).
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We model the LGN populations such that at each retinotopic location there exist

corresponding complementary pairs of neurons, one for each population, e.g. there

exists one ON-center and one OFF-center neuron at each retinotopic location. We

thus treat the LGN as having a shared position index between the populations,

corresponding to retinotopic location. By expanding to multiple LGN populations,

we must consider correlations within population and between them, similarly

feedforward connections in this expansion originate from one specific population

but terminate at the same post-synaptic population (V1).

Hence we now consider feedforward connections which originate from one

specific population, and going forward we denote this population as a subscript

e.g. WON . Consider the development of feedforward connectivity from the ON-

center population, WON .

τW
dWON

dt
= vuTON (3.38)

We assume that both LGN populations have the same number of neurons, Npre,

and hence uON and uOFF are both Npre-dimensional. Note that v remains an

Npost-dimensional vector without a subscript since it does not belong to either

population within the LGN; it does, however, receive input from both populations.

Retaining assumption II, a linear response cortex, the activity of the cortex is

still given as a decay to a resting state plus a sum of its weighted inputs, but now

those inputs originate from two different populations as

τv
dv

dt
= −v +WONuON +WOFFuOFF +Rv (3.39)

Again we rely on linear response theory where we know that the activity of the

cortex is a convolution across time and space of its weighted inputs with its linear
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response kernel at time-lag τ

v(t) =

∫ t

−∞
dτK(τ)

[
WONuON(t− τ) +WOFFuOFF (t− τ)

]
(3.40)

Substituting back into Eq. (3.38),

τW
dWON

dt
=

∫ t

−∞
dτK(τ)

[
WONuON(t−τ)uTON(t)+WOFFuOFF (t−τ)uTON(t)

]
(3.41)

and again applying assumption IV that synaptic plasticity is slow with respect to

the dynamics of activity, we find

τW
dWON

dt
=

∫ ∞
−∞

dτK(τ)
[
WONCON,ON(−τ) +WOFFCOFF,ON(−τ)

]
(3.42)

where now Cp,q(τ) represents the correlation between populations p, q ∈

[ON,OFF ] at time-delay τ . Similarly the development for feedforward OFF-center

population connections is given by Eq. (3.42) with ON → OFF and vice versa.

Following the formalism outlined in Sec 3.2.2, we find that feedforward

connectivity from a population p (where p ∈ [ON,OFF ]) is generally governed

by

τW
dWp

dt
=
∑
i

∑
j

τjγi
1 + τjγi

Ki
[
WpC

j
p,p +WqC

j
q,p

]
(3.43)

where q 6= p, and i, j again correspond to different time-scales within our model.

Note that Cj
p,p or Cj

p,q are again the purely spatial forms of the correlations inputs

at time-scale j, and similarly Ki is the purely spatial response kernel at time-scale

i. We simplify Eq. (3.43) by assuming that Cp,q ∝ −Cp,p when q 6= p such that

the same feature (eigenvector) is shared between correlations within and between

populations. The post-synaptic population will therefore again develop selectivity
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to the features encoded in the input correlation structures, and moreover the

organization of those selectivities will be determined by the spatial structure of

the response kernel of the cortex at that time-scale.

Off

On

FIGURE 3.12. Receptive fields of 2D V1 population. The receptive field (RF)
of each cortical neuron are shown on a grid. Shown for each cortical neuron
are all connections within an arbor. An example is shown in the yellow square,
each post-synaptic neuron has a corresponding square which has dimensions of
DA × DA pixels (DA is the arbor diameter). The arbor is shown as a purple circle.
Each pixel shows the connection from the LGN populations to the corresponding
cortical neuron dominated by ON-center (white) or OFF-center (black) responsive
population. The green box highlights the example region used in later plots.

In addition to selectivity to the eigenvector features of the input, our model

will also develop biologically realistic RFs (Fig. 3.12). We study these RFs directly

through W ≡ WON − WOFF . In Fig. 3.12, we show the values of W for each

post-synaptic neuron. For each post-synaptic neuron, we show a DA × DA
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square (Fig. 3.12-yellow square) of connections from the LGN, with DA the arbor

diameter. Each pixel shows feedforward synaptic strengths that the corresponding

post-synaptic neuron receives, that are either dominated by the ON-center (white)

or OFF-center (black) population. Note that gray pixels represent zero feedforward

strength, which means that the connections at that pixel is either outside the

arbor, or receives equally strong inputs from both populations.

Recall that previously we imposed a normalization condition on the

development of W such that a synapse from the pre-synaptic population to one

cortical cell could only grow at the expense of weakening a different synapse, i.e.

the total synaptic strength onto a post-synaptic cell remains fixed across time.

Now, however, that means that connections from the LGN populations may

grow at the expense of synapses within their population but also by weakening

connections from the other population as well. The most common outcome of this

competition is that one population dominates over a patch of retinotopic locations,

resulting in the post-synaptic population becoming selective for either a light

(ON-center dominates) or dark (OFF-center dominates) patch at that retinotopic

location (Fig. 3.12), and indeed that is what we see. As a result, feedforward

inputs matching those RF patches dominated by connections from ON- or OFF-

center responsive neurons will drive cortical neurons to respond strongly; hence

the post-synaptic population develops selectivity to particular patches of light and

dark bands (Fig. 3.13). Thus the cells within our post-synaptic population now

develop selectivity or preference to particular orientations of the stimulus. We first

show that the networks developed under our dynamic framework and the static

framework develop selectivity to the particular orientations (Fig. 3.13), and then

study the organization of that selectivity across the cortex (Fig. 3.14).
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FIGURE 3.13. Orientation selectivity in a network developed under our dynamic
model versus a model with a static cortex [22], plus examples of each models’
receptive fields (RFs). A: (C:) Shown are the RFs located within the green
square from Fig. 3.12 developed under the dynamic (static) framework. Each pixel
represents a feedforward connection from the pre-synaptic population dominated
by the ON-center responsive population (white), OFF-center responsive population
(black), or neither (gray). B: (D:) Distributions or orientation selectivity index
developed under the dyanmic (static) framework. Orientation selectivity index
measures how strongly a neuron in the post-synaptic population responds to its
preferred orientation over other orientations. The dashed line shows the mean of
the distribution.

Orientation selectivity is a measure of how strongly the cortical neuron

responds to its preferred orientation over others (see Sec. 3.4.6). At one end,

weak orientation selectivity means that the neuron would respond over its baseline

activity as long as there is a stimulus inside its receptive field regardless of the
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orientation. At the other end, strong orientation selectivity means that the neuron

only responds over its baseline activity when the stimulus closely matches its

preferred orientation. Our dynamic framework does develop better orientation

selectivity than the static framework. In Fig. 3.13, we show two sets of example

cells (the cells from Fig. 3.12- green square) developed under our dynamic

framework and the static framework in A and C respectively. Qualitatively, the

example cells developed under the static framework have noisier RF filters than

the example cells developed under our dynamic framework. We would thus expect

that the cells developed under our framework to have higher orientation selectivity

indices than the cells developed under the static framework, and indeed that is

what we see (Fig. 3.13B and D). Orientation selectivity indices are a measure of

how strongly a neuron responds to its preferred orientation over other orientations

(see Sec. 3.4.6 for more details). The distributions show the orientation selectivity

index for all neurons in the post-synaptic populations developed under our

dynamic framework (Fig. 3.13B) or the static framework (Fig. 3.13D). Our

framework becomes substantially more selective than the static framework; the

mean selectivity for our framework is 0.43 while the mean selectivity for the

static framework is 0.36 (Fig. 3.13B and D, dashed lines). Thus our framework

better approximates biology than the static framework, as neurons within V1 are

typically selective to their preferred orientation [73].

However, even though our framework develops selectivity which better

approximates biology, the static framework produces a smoother organization

of its selectivity than our dynamic framework. In Fig. 3.14A (C), we show the

preferred orientation across the post-synaptic population developed under the

dynamic (static) framework. Each pixel again corresponds to a neuron within
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FIGURE 3.14. Orientation preference maps for a network developed under our
dynamic model versus a model with a static cortex [22]. A: (C:) Each pixel
corresponds to a post-synaptic neuron. The coloring of that pixel shows the
preferred orientation at that location developed under our dynamic (static)
framework. Green square is around the same example cells from Fig. 3.13. B:
(D:) Distributions of differences in orientation preference between neighbors (black
bars), and random post-synaptic neurons (red line). Differences between neighbors
being more clustered around zero indicates a smoother mapping of orientation
preference.

our post-synaptic population at that location. The coloring of that pixel shows

the preferred orientation of that neuron. We have chosen a cyclic color map as

orientations of one hundred and eighty degrees are equivalent to orientations at

zero degrees. By eye, there appear to be more uniform clusters of similar colors in

the static framework (C) than our dynamic framework, implying that smoother
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organization of orientation preference has developed in the static framework.

However in these heat maps, there is no notion of orientation selectivity.

The post-synaptic population develops selectivity to all orientations equally

in both frameworks, as the difference in preferred orientation between any two

randomly selected neurons approaches a uniform distribution (Fig. 3.14B and D,

red line). For a smooth map, we expect differences in preferred orientation between

neighboring neurons to be highly clustered around zero, meaning that preferred

orientation has just slightly changed from neighbor to neighbor. A smooth map,

then, should have a peak in the distribution near zero that is much taller than the

red line. Hence, both frameworks develop a smooth map for orientation preference

as the difference in preferred orientation between neighbors is clustered around

zero (Fig. 3.14B and D, black bars), matching experimental works [23]. However,

the static framework is more clustered around zero, and hence develops a smoother

map for orientation preference across the cortex.

By including multiple input correlation features, though, both the static

framework and our dynamic framework develop less smooth orientation preference

maps than previous theoretical models [22] for the parameter choices shown.We

have chosen these parameters, i.e. λslow, λfast and `fast, such that the same

relative selectivity to the fast and slow features of the input correlation is

observed (Figs 3.9 and 3.10). There exist parameter choices, though, for which

our framework develops significantly smoother orientation preference maps than

the static framework, but often those choices come at the expense of weakening

selectivity to the fast input correlation feature. As this work focuses on developing

qualitatively different maps for two features, we have used the parameter

130



choices that highlight this effect, at the expense of weakening the smoothness of

orientation preference.

A B

DC

FIGURE 3.15. Examples of absolute and relative connectivities plus comparisons
of Relative and absolute spatial correlation between a model with cortical
dynamics and one without [22]. A: Two example absolute connectivities developed
under our dynamic model. The absolute spatial correlation compares the
connections across the LGN network. The absolute spatial correlation between
the two examples shown is 0.028. B:Two example relative connectivities developed
under our dynamic model (same post-synaptic neurons as A). The relative spatial
correlation compares connections within the arbor to look at relative patches.
The relative spatial correlation between the two examples shown is 0.21. C:
Distributions of absolute spatial correlation between feedforward connectivity
of neighboring units in our dynamic framework (green), and the static framework
(red). B: Distributions of relative spatial correlation between neighboring RFs,
or the spatial correlation of feedforward connections within an arbor between
neighboring units developed under the dyanmic framework (green) and the static
framework (red).

Moreover, we study the spatial correlation of feedforward connections

between neighboring post-synaptic neurons as well. We compare the spatial
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correlation in the post-synaptic neurons in two ways, relative and absolute. Within

our cortical population, the absolute correlation should be clustered around zero,

which would keep the correlation in the output between cortical neurons low, as is

observed in [8]. Additionally, we would like the relative correlation to be clustered

around zero as well, as that means that each receptive field has developed a

selectivity to some spatial feature independent of its neighbors, similar to [69].

For the absolute spatial correlation, we compute the Pearson correlation coefficient

between neighboring post-synaptic neurons for all of their connections across the

LGN. Essentially, for the absolute spatial correlation, we compute the correlation

across rows of W which correspond to neighboring locations in the grid of post-

synaptic neurons. For the relative spatial correlation, we overlay the receptive

fields of two neighboring neurons and compute the Pearson correlation coefficient

between their RFs. Essentially, we shift the arbors of all post-synaptic neurons to

the same location, and compute the correlation between the arbor-connections of

neighboring post-synaptic location.

For both relative and absolute spatial correlation our dynamic framework is

clustered near zero (Fig. 3.15), performing much better than previous models [22].

Whereas the static framework is only clustered around zero for relative spatial

correlation, but remains near one for the absolute spaital correlation. Hence our

dynamic framework improves upon previous model by moving the distributions of

spatial correlation, both relative and absolute, closer to zero.

While our cortex still develops qualitatively different maps to our previously

considered features, the eigenvectors within Cslow and Cfast (Fig. 3.9) and develops

low spatial correlations as desired, it develops more of a S&P organization than

is observed in biology [8]. There remain many parameter choices in our model for
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which the biological value is unknown. Moreover, we use a relatively simplistic

model of input correlations and cortical response kernels with only two time-scales.

It is likely that biological input correlations and cortical response kernels are much

more complicated and involve many more time-scales. By considering the “full-

rank” time structure of the input correlations and response kernel, the cortex

may develop a smooth orientation preference and keep the correlation between

RFs low. The prediction of this model, though, is that features at those different

time-scales would couple strongly to the cortical response kernel with a similar

time-scale, and therefore that feature selectivity would develop an organization

across the cortex governed by the spatial shape of the cortical response kernel at

that time-scale. Hence selectivity to features which couple strongly into narrow

response kernels would develop S&P organizations while selectivity to features

which couple strongly to broadly excitatory response kernels would develop smooth

maps (Fig. 3.9). Moreover, by including the dynamics of the cortex, distributions

of spatial correlation become more closely centered on zero for both relative RF

correlations and absolute.

3.4. Methods

In order to study the development of feedforward connectivity under a

Hebbian framework, we built on previous theoretical frameworks [22], but relaxed

a key assumption, namely that the cortex responds infinitely fast to its inputs.

Recall that by relaxing that assumption, the cortical response kernel and input

correlation couple across time. WE restricted ourselves to cortical response kernels

and input correlations which had M and S time-scales respectively. Under this

new framework (see Sec. 3.2.2), we arrived at the following unconstrained equation
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for the development of feedforward connectivity

τW
d

dt
Wp = A�

M∑
j=1

S∑
i=1

γiτj
1 + γiτj

Ki
[
WpC

j
p,p +WqC

j
q,p

]
(3.44)

which contains only spatial forms for the response kernels Ki and Cj
q,p, and

the arbor A acts element-wise on the summed terms. Here, in this section, we

present our methods for simulating networks whose feedforward connections

obey Eqn 3.44. Specifically we discuss designing spatial structure of the networks

themselves, the input correlations and the cortical linear response kernels,

and lastly the functional form of the arbor. We also present how Eqn 3.44 is

constrained such that the total synaptic strength on a post-synaptic population

neuron does not change over time, and impose that Wp does not grow without

bounds. Moreover, we outline our integration method for solving the differential

Eqn 3.44, and present how receptive field properties are calculated.

3.4.1. A note on the forms of the networks

For both the one- and two-dimensional network simulations, we imposed

periodic boundary conditions. For the one-dimensional networks, this means that

both the LGN and V1 networks existed on a ring, and in Fig 3.5 the far right

and far left neurons of both populations would be next to each other. Similarly,

we imposed periodic boundary conditions on the two-dimensional networks such

that the LGN and V1 formed a torus. This was done to avoid effects from the

boundary.

Obviously the cortex does not form a torus or a ring. The cortex does

however contain many more neurons than we were able to efficiently simulate.
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Since we were unable to simulate as many neurons as the cortex contains, we

imposed periodic boundary conditions to avoid finite-size effects. Periodic

boundary conditions are not essential to our model, and the results would hold

if a larger simulation was run without periodic boundary conditions.

3.4.2. Defining the structure of Ki and Cj
p,q

Here we have chosen the spatial form of Ki to be long-range and difference

of Gaussians (DoG) in spatial form at slower time-scales, but the response kernels

approximates a Kronecker-δ at faster time-scales. Specifically in the two time-

scale we choose Kslow to be DoG, and Kfast to be a Kronecker-δ. Previously it had

been shown that a spatially broad and excitatory cortical response kernel would

cause the organization of selectivity to features in the input correlations to be a

smooth map, while a short-range or broadly inhibitory response kernel would cause

the feature selectivity to be encoded in a S&P organization. We assume that the

cortical response kernel governing slower time-scales is broader than the response

kernel at fast time-scales because it matches our intuition. We believe this to be a

valid assumption because it seems reasonable that at longer time-scales the input

signal at one cortical cell can propagate outwards and affect the activity at other

cells, but at shorter and faster time-scales we expect self-interaction to be the

biggest effect on the post-synaptic population dynamics. Further there is a lack of

experimental evidence as to the actual shape of the cortical response kernel of the

cortex. Importantly though, our model makes predictions about the organization

of selectivity features given the spatial structure of the response kernel at that

time-scale, but does not depend on the structure at certain time-scales having

certain structures. If, for instance, the response kernel at fast time-scales should be

135



found to be broad as well, then our theory predicts that the feature of fast time-

scale input correlations would also be encoded in a smooth map.

We have chosen the spatial form of Cj
q,p to be Mexican-hat, or difference of

Gaussians (DoG) at all time-scales. As such, Kslow and all Cj
p,q are defined by their

own σE and σI which set the length scale of the excitatory and inhibitory lobe for

the DoG respectively. Moreover in the two time-scale model, we construct Cslow
p,q

such that its principal eigenvalue is orthogonal to the principal eigenvalue Cfast
p,q for

all p, q. When the LGN has many sub-populations, we impose that Cj
p,p = Cj

q,q for

q 6= p, and that Cj
q,p ∝ Cj

p,p when p 6= q for j ∈ [slow, fast]. Thus we can define

Cj
D = Cj

p,p − Cj
p,q which has the same eigenvectors of the original Cj

p,p, and thus

we maintain that eslow is orthogonal to efast. Lastly, we normalize the principal

eigenvalues of Cslow
D and Cfast

D to be 1, as well as the principal eigenvalues of Kslow

and Kfast. To control the relative strength of selectivity to the slow and the fast

feature, we therefore introduce a scalar factor for both time-scales, λslow and λfast,

as follows.

τW
d

dt
Wp = A�

∑
j

[
λslow

γslowτj
1 + γslowτj

Kslow
[
WpC

j
p,p +WqC

j
q,p

]
+ λfast

γfastτj
1 + γfastτj

Kfast
[
WpC

j
p,p +WqC

j
q,p

]]
(3.45)

These scalar factors ensure that the feature selectivity at both time-scales develop

the similarly strong selectivities.

3.4.3. Arbor function

The arbor function, A, is imposed upon the feedforward connectivity such

that the pre-synaptic population only forms connections with a subset of the
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post-synaptic population. In general, A = A(x, a) a function of the presynaptic

location, a, and the post-synaptic location, x. Practically, A(x, a) is a matrix with

the a,x element given by its functional form. In order to enforce retinotopy on

our networks, though, A only depends on the difference in location of the pre- and

post-synaptic units, A(x, a) = A(x − a) (Fig. 3.5). The simplest form of an arbor

function of this type would be the “pill-box” arbor with radius RA, where

A(x− a) = 1 if ‖x− a‖ < RA (3.46)

A(x− a) = 0 otherwise (3.47)

Such a form allows all synapses to saturate at the maximum upper bound,

regardless of how far separated they are. This arbor was used in our one-

dimensional simulations.

However, such an arbor does not take into account the physical limitations

that underlie the synaptic connections from axons to dendrites. Recall that axons

are the output channels of the pre-synaptic neuron, and dendrites are the input

channel of the post-synaptic neuron. Here we are not concerned about the axons

reaching the post-synaptic population, but we do wish to study how the arbor

forms connections with the dendrites. Both axons and dendrites are defined by

a branching pattern. If we think about a cone containing all the branches of

both the axon and the dendrite, we expect the cone for the axon to be narrower

as it makes a more directed branching pattern (see Fig. 1.1A). Since we are not

concerned about how the axons reach the post-synaptic population, we will think

about the once as being just its base. Hence we can model the extents of the axon

and the dendrite as being circular.
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Furthermore, we assume that the chances of connection from a pre-synaptic

neuron to a post-synaptic neuron should scale as the overlap of those two circles.

To that end, then we define our arbor as the overlap of two circles centered on the

pre- and post-synaptic neurons. The circle centered on the pre-synaptic neuron

represents the branching extent of its axon, and similarly the circle centered on

the post-synaptic neuron represents the branching extent of its dendrites. We

normalize the arbor such that when one circles is completely contained in the other

the arbor has value one, and when the distance between the neurons is greater

than the arbor radius, RA, the arbor is zero. Specifically we choose a circle of

radius RA for the post-synaptic neuron, and a circle of radius rA = cARA to

describe the spatial extent of the axon, with ca < 1. The spatial overlap of two

circles is given by

s(r, RA, ra) = R2
A

arccos (r2 +R2
A − r2

A)

2rRA

+
arccos (r2 −R2

A + r2
A)

2rrA
− 1

2

√
(4r2R2

A − (R2
A + r2 − r2

A)2)(3.48)

The strength of the arbor at separation r = x− a is given as

A(r) = 1 if r < RA − rA

A(r) =
1

πr2
a

s(r, RA, ra) if RA − ra < r < RA (3.49)

A(r) = 0 otherwise

The effect of including a spatially decaying arbor is to limit the maximum

strength of synaptic connection of widely separated neurons, but a tapered arbor

versus a pill-box arbor does not substantially change the development of the
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FIGURE 3.16. Cross section and two-dimensional representation of the arbor
function used. On the left is shown the cross section of the arbor strength across
a subset of neural distances. On the right is shown the two dimensional form of
the arbor, and highlighted with a purple box is the line through which the cross
section is taken.

receptive fields [22]. Synapses have an upper bound given by the product of the

upper bound at no separation, Wmax, with the arbor strength at the separation

between their pre- and post-syanptic neurons, i.e. Wmax,x,a = A(x − a)Wmax (see

Sec. 3.4.4). Previous work suggests that the role of the arbor function is primarily

determined by the cutoff of its Fourier transform, or in other words the spatial

frequency at which the its Fourier transform becomes negligibly small compared

to the value at zero spatial frequency [22]. The corresponding wavelength of the

cutoff frequency gives an “effective” arbor diameter, which for the values used

here, is about 11.3.

3.4.4. Constraints and bounding

In addition to including an arbor, we also constrain equation Eqn 3.44 such

that the total synaptic strength onto a single post-synaptic unit does not change

over time. Thus we modify Eqn 3.44 to include a subtractive constraint via
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d

dt

∣∣∣∣
C

Wp(x, a) =
d

dt
Wp(x, a)− ε(x)A(x− a) (3.50)

where d
dt
Wp(x, a) represents the unconstrained derivative term, e.g. Eqn 3.44, and

ε(x) is a function which keeps the total synaptic strength at post-synaptic location

x constant and is given by

ε(x) =
1

2
∑

aA(x− a)

∑
a

[ d
dt
WON(x, a) +

d

dt
WOFF ] (3.51)

Here we have adopted the notation that the unconstrained equations are given

as d
dt
Wp, while we will always denote the constrained equations with d

dt

∣∣∣∣
C

Wp, like

Eqn 3.50. Note also that we will use letters in the early part of the alphabet to

denote locations within the pre-synaptic population, and letters from later in the

alphabet to denote the locations of the post-synaptic population, e.g. a for the

pre-synaptic population and x for the post-synaptic population. Eqn 3.51 has

been chosen such that the total change in synaptic connection strength for a post-

synaptic cell is zero

∑
a

[ d
dt

∣∣∣∣
C

WON(x, a) +
d

dt

∣∣∣∣
C

WOFF (x, a)
]

= 0 (3.52)

for all x, i.e. for all cortical cells.

Further, we impose that Wp(x, a) is bounded above by some value W0A(x −

a) (where W0 is some scalar value setting the max possible value for W ), and

below by zero. In order to do so, whenever an element of Wp grows beyond

one of those bounds, we reset the value to the bound, and further “freeze”

the development of that synapse. “Freezing” the value of that synapse aids in
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computational efficiency, but otherwise has little impact on the development of the

other feedforward connections. To ensure that Eqn 3.52 remains satisfied whenever

a particular connection Wp(x, a) is reset and frozen, we adopt the algorithm

outlined in [22].

3.4.5. Simulation algorithm

Here we present the algorithm for solving Eqn 3.50 for ON-center responsive

LGN populations which can easily be applied to the OFF-center population by

exchanging OFF for ON in all equations, and vice versa. Moreover, it is more

obvious how the expanded model can be compressed to the single LGN population

model than expanding the single population to many.

Initially all values for WON are randomly assigned a strength uniformly

sampled from (1 ± w)A(x − a), with w = 0.2 the noise in the initial connectivity

strength. The initial synaptic strengths are multiplicatively normalized via step

5 in the algorithm described below. Thereafter, each synapse was updated each

time-step via the algorith described below until the upper or lower bounds were

reached, at which point the synapse was “frozen” at the bound it reached. The

simulations continue until ≥ 90% of all the synapses with nonzero arbor reach one

of the bounds.

Step 1: Compute the right-hand-side of the unconstrained derivative in

Eqn 3.44

∆ON ≡
1

τW

[
A�

∑
i

∑
j

γiτj
1 + γiτj

Ki

[
WONC

j
ON,ON +WOFFC

j
OFF ,ON

]]
(3.53)
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Note that we have suppressed the convolution symbol in our formalism, opting

instead to denote convolutions across space by writing matrices next to each other.

KiWONC
j
ON,ON = Ki ∗WON ∗ Cj

ON,ON

≡
∑
x′

∑
a′

Ki(x,x′)WON(x′, a′)Cj
ON,ON(a′, a) (3.54)

Convolutions can be computationally costly to find, but we can significantly

expedite the simulation by utilizing a property inherent to the structure of our

cortical response kernels and correlations matrices. Given that we are assuming

each cortical or post-synaptic neuron has the same spatial form of the cortical

response which only depends on the relative spacing between cortical neurons,

Ki is a Toeplitz matrix. Similarly, since we have defined the correlations by the

relative spacing between LGN or pre-synaptic neurons, then Cj
p,q is also Toeplitz.

Toeplitz matrices have a particular property that significantly speeds up the

simulation, namely the eigenvalues of a Toeplitz matrix can found via their Fourier

transform (to be clear this Fourier transform is spatial) [83]. Hence we can take

the Fourier transform of Eqn 3.53, so that the convolutions over neural space

become simple element-by-element products in Fourier space which are relatively

easy to solve, then take the inverse Fourier transform of those products to find

∆ON .

During the first evaluation of ∆ON , we set the time step of our integration,

dt. We choose dt such that the standard deviation of change in synaptic weights is

σ∆ = 0.01 To ensure that our time-step is not too large, if dt > dt0, then we set

dt = max(dt/2, dt0), where dt0 is chosen based on the size of the arbor.
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Step 2: Modify ∆ON with subtractive constraints that conserve the total

synaptic strength over each cortical cell.

∆ON(x, a)

∣∣∣∣
C

= ∆ON(x, a)− ε(x)A(x− a) (3.55)

Step 3: Use this constrained ∆ON along with the constrained ∆ON from

previous time-steps to compute the total change in each synapse using a three-step

integration method. The three-step integration method allows larger time-steps,

dt, and speeds computation. To find the change in WON , we used

WON(t+ 1) = WON(t) + dt(23Ft − 16Ft−1 + 5Ft−2)/12 (3.56)

where Ft = ∆ON

∣∣∣∣
C

at that corresponding time step. However, this formalism is

only valid after the third time-step. The first two updates are given by

WON(t = 1) = WON(t = 0) + dtF0 (3.57)

WON(t = 2) = WON(t = 1) + dt(2F1 − F0) (3.58)

After t = 4, the step size was doubled, so that only even-numbered time-steps were

computed afterwards, i.e. WON(t+ 2) = WON(t) + dt(23Ft − 16Ft−2 + 5Ft−4)/12.

Step 4: If an element of WON reached or exceeded the upper or lower

bound, reset the element to the bound, i.e. if WON(x, a; t) < 0 or WON(x, a; t) >

WoA(x− a) reset it to WON(x, a; t) = 0 or WON(x, a; t) = WoA(x− a) respectively.

Further we “freeze” synapses at the bounds so that they no longer change over

time.
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Step 5: If any synapses are cut off or reset in the previous step, then the

total synaptic strength onto a cortical neuron will have changed. To correct for

this, we multiplicatively renormalize the synaptic strength on those cortical cells.

All synaptic strengths on those cells, excepting the synapses at the bounds, are

multiplied by

γ(x) =
2
∑

bA(x− b)∑
b

[
WON(x,b) +WOFF (x,b)

] (3.59)

which returns the total synaptic strength onto that cell to 2
∑

bA(x − b), as

previous.

Steps 2 and 5 must be updated once synapses have started saturating

at either the upper or lower bound. Let Wactive(x) be defined as the sum of all

unfrozen feedforward synaptic strengths onto the post-synaptic cell at location x,

including both ON- and OFF-center populations, and similarly define Wfrozen as

the sum of frozen feedforward strengths. Further let AON,active(x, a) = A(x, a) if

that synapse is active (or unfrozen), but AON(x, a) = 0 if the synapse is frozen.

Then for step 2, ε(x) is updated in the following way

ε(x) =

∑
b ∆ON(x,b) + ∆OFF (x,b)∑

b

[
AON,active(x− b) + AOFF,active(x− b)

] (3.60)

and for step 5, γ(x) is similarly updated via

γ(x) =

[
−Wfrozen(x) + 2

∑
bA(x− b)

Wactive(x)

]
(3.61)

Lastly we impose that 0.8 ≤ γ(x) ≤ 1.2.
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3.4.6. Determining RF features

After simulating the development of feedforward synapses, we study

the selectivity to certain features. First we define selectivity to the principal

component of Cj as being the projection of the feedforward connectivity strengths

of W onto ej,

Sj ≡ Wej (3.62)

where Sj is the Npost-dimensional vector of the selectivity. Given our construction

of the input correlations when multiple LGN sub-populations are modeled,

particularly that Cj
D has the same principal eigenvector as Cj

p,q, the same

selectivity organizations to the principal eigenvector develop when multiple LGN

sub-populations are considered as when the LGN has only one population.

Moreover when the LGN contains both ON- and OFF-center response

populations, then the post-synaptic neurons will develop selectivity to features

which correspond to experimentally observed RF features. We have defined the RF

of our post-synaptic population to be W = WON − WOFF , and mainly consider

connections with the pre-synaptic populations which are within the arbor. To find

the preferred orientation or phase of our cortical neurons, we find the response,

Rx(θ, φ), to a variety of sinusoidal gratings which have varying orientations (θ) and

phases (φ). We model the response of a post-synaptic cell as being the overlap of

the RF with a particular grating

Rx(θ, φ) =
∑
a

W (x, a) sin ([2πk · (x− a)] + φ) (3.63)
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where the orientation θ is the angle of the vector k, i.e. k = kx cos θx̂ + ky sin θŷ.

The preferred orientation and phase can then be found as the argument maximum

of Rx(θ, φ).

However, this measure gives no sense of the degree of selectivity to the

preferred orientation, known as the orientation selectivity index. Therefore, to

make a more experimentally consistent measurement of the preferred orientation,

we define Rx(θ) which is the Nθ-dimensional vector of responses of the post-

synaptic cell at location x to a grating with the above defined preferred phase.

We can find the the vector sum, vx of Rx(θ), by vx =
∑

θ e
2iθRx(θ); the orientation

selectivity is thus ‖vx‖/Nθ, and the preferred orientation is the arg(vx)/2 because

θ ∈ [0, 180] for grating orientations. The preferred phase of the post-synaptic

population can be found in a similar manner, but constructing a Nφ-dimensional

vector of responses Rx(φ) to the previously defined preferred orientation.

We found the spatial correlation of RFs across the post-synaptic population

in two different ways, one relative and on absolute. To find the relative correlation

between neighboring RFs, we shifted the RF of all post-synaptic neurons such

they all centered on the same retinotopic location, and then found the Pearson

correlation coefficient of their spatial forms. So we only considered the overlaps

between an DA × DA grid for each neuron, rather than the correlation between

their connections to the full grid which was done for the absolute RF comparison.

More concretely, when comparing the absolute spatial correlations across the

post-synaptic population, we again found the Pearson correlation coefficient but

without centering, i.e. we found the Pearson correlation coefficient between the

rows of W which correspond to neighboring locations in the post-synaptic network.
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3.5. Discussion

Here we have presented results from a theoretical model of how feedforward

thalamacortical connections develop under Hebbian plasticity. We have expanded

upon previous theoretical models [78, 79, 80] and in particular [22] by including

a more realistic treatment of cortical activity dynamics. We showed that when

properly considered, the cortical linear response kernel may have different spatial

shapes at different time-scales, essentially gaining a “degree of freedom” for our

model. Moreover, we showed that a novel coupling mechanisms emerges wherein

features of the cortical input that temporally vary at different time-scales couple

most strongly to the spatial cortical linear response kernel at similar time-scales.

The spatial shape of the cortical linear response kernel at a particular time-scale

determines the organization of the selectivity to the feature that shares that time-

scale. When the cortical linear response kernel is broad and excitatory, it promotes

the growth of smooth maps for features, but when the cortical linear response

kernel is narrow, it promotes the growth of S&P organizations. Different spatial

cortical linear response kernels may have different spatial shapes at different

time-scales. Therefore, different feature organizations may develop across the

same cortex which was not possible in previous models. We presented simulations

which bore out this mathematical result in both one- and two-dimensional network

simulations for simple input correlations and cortical linear response kernels.

In this work, we have largely restricted ourselves to thinking about the

primary visual cortex of cats and higher mammals. In principle though, Eq. (3.15)

(or equivalently Eq. (3.16)) is quite general and applicable to many species and

systems not considered here. Moreover, in this work we have considered stylized

and simplistic input correlations and cortical response kernels as a proof of
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principal. In the future, it would be interesting to see the results of this model

using input correlations and cortical response kernels from experimental studies.

We expect that there exist many more time-scales than two in the real cortex and

thalamus. At each time-scale though, we expect the organization of that feature

across the cortex to be determined by the spatial cortical response which shares its

time-scale.

Note that in this work we are not interested in studying the differences in

feedforward thalamocortical development across species. Rather, we sought to

provide an expanded theoretical framework that could describe how the cortex

in cats and primates develops a smooth map for orientation preference while

simultaneously developing heterogeneous receptive field (RF) filters. However

our work does make predictions about the spatial structures of the rodent cortical

linear response kernels. Within rodents, a S&P has been observed for orientation

preference [7, 75]. As such, we expect that their cortical response kernels are

highly local across time-scales.

In this work we also did not include recurrent plasticity within the cortex.

Such plasticity would change our cortical linear response kernels over time. We

did not include cortical plasticity partly for modeling simplicity and transparency,

but also due to experimental observations as well. There are correlated structures

within the brain of ferrets which exist before and are predictive of orientation

preference maps [84]. Such structures could likely be explained by cortical linear

response kernels. As these structures exist before orientation preference maps, then

it seems as though the cortical linear response kernels do not change much during

the developmental period studied here. As such, including small changes to the
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linear response kernels would be unlikely to change our results in a qualitative way,

and the results presented here should hold.

Our framework as described here, though, represents a significant step

forward in understanding the development of receptive fields as we have

demonstrated that by considering the dynamics of the cortex there exists a

coupling mechanism which can produce qualitatively different feature organizations

across the cortex.
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CHAPTER IV

CONCLUSIONS AND FUTURE WORK

Within this dissertation we have studied the impact of synaptic connections

on neural activity dynamics, and vice versa. We have shown that certain

connectivity structures are key when simulating oscillating neural activity,

and that the activity of the cortex could possibly play a key role in shaping

feedforward thalamocortical connectoinis. These two major works (Ch. II and III)

demonstrate that studying neural activity dynamics without properly considering

the connectivity structure or vice versa will leave an incomplete impression of

what is necessary for the brain to work the way it does. In Ch. II, we show that

the SSN is able to accurately capture the dynamics of the cortex only when a

proper horizontal connectivity structure is considered. In Ch. III we show that

the development of receptive field filters depends upon the dynamics of the

cortex to simultaneously develop a smooth map for orientation preference and

heterogeneous spatial RF filters. Thus the brain relies on this beautiful dance

where the dynamics shape the connectivity while being simultaneously being

governed by the established connectivity.

4.1. Gamma peak frequencies and surround suppression

In Ch. II, we showed that the stabilized supralinear network (SSN) provides

a mechanistic circuit model which accurately depicts the stimulus dependence

of gamma oscillations. By modelling horizontal connections as including some

strong local (intra-columnar) dependence in their connectivity profile, the SSN

can produce both the locality of contrast dependence as well as display the
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surround suppression of firing rates. Without including some elevated strength of

connections to the local population, though, the network is unable to produce both

the locality of contrast dependence but robustly produces the surround suppression

of firing rates. On the other extreme, when the network either only has local

connections or local connections are much stronger than long range connections,

we showed that the network robustly displays the local contrast dependence of

gamma peak frequency but fails to produce the surround suppression of firing

rates. However, when the proper balance is found between the two, the SSN re-

produces the locality of contrast dependence and the surround suppression of firing

rates robustly up to perturbations of ±10% . Moreover, we demonstrated how the

SSN is able to capture these effects through its non-saturating non-linearity.

Interestingly, this model was not able to capture a related effect on the

gamma peak frequency with surround suppression. [20] reports gamma peak

frequency shifts to lower frequencies as the stimulus size increases. Further,

the peak itself gets sharper and has higher power with increasing stimulus size.

Despite our numerous searches, we were never able to reproduce this effect in our

simulations of gamma peak frequency and surround suppression. What we found

instead was there were models where one effect was seen, but not the other. For

instance, the gamma peak frequency decreased with increasing stimulus size, but

the peak width got wider, or the gamma peak width got narrower and sharper,

but the peak moved to higher frequencies. This effect though, may simply be

beyond the model that we have used here. Experimental evidence has shown that

the effects on the gamma power-spectrum with increasing stimulus size are due

to feedback connections to V1 from higher visual areas [50]. As such, in order to
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include those effects, we suggest to build on the model used in Fig. 2.4, but include

a higher visual area also modelled as an SSN.

Moreover, [20] report a related effect on gamma peak frequency when

different orientations are considered. Our network does not model populations

as having an orientation preference, and rather treats each populations as a hyper-

column within V1. Thus a finer model than ours would have to be used in order to

study the effects of changing orientation on gamma peak frequency. Moreover such

a model would need to include a connection strength dependence on the relative

difference in orientation preference, as seen in [42, 64].

Lastly our model does not provide any intuition as to how gamma peak is

used by higher areas within the brain, rather it provides a mechanistic model for

producing such oscillations. More studies would need to be conducted to see what

sort of signalling mechanism, if any, gamma peak frequency provides to higher

areas.

To summarize, there many different phenomena that models of the dynamics

of cortex may explain. Here we have provided a parsimonious model which

explains several observed phenomena of cortical activity dynamics, namely the

local contrast dependence of gamma peak frequency with the surround suppression

of firing rates.

4.2. Receptive field development

In Ch. III, we showed how considering the dynamics of the cortex is essential

to developing qualitatively different organizations of selectivities or preferences to

input features. We simulated the development of feedforward connections under

two different frameworks, the dynamic framework which properly considers the
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dynamics of the cortex and the static framework which treats the cortex as being

constantly “slaved” to the input dynamics (τu � τv). Within our dynamic

framework, the post-synaptic population becomes selective to two different

features, and the selectivity to those features are organized in a qualitatively

different way across the post-synaptic (cortical) population. We showed that the

selectivity to one feature is encoded in a smooth map, while the selectivity to the

other is encoded in salt-and-pepper (S&P ) organization for a simple two-time

scale model under our dynamic framework. While the static framework has a post-

synaptic population which becomes selective to both features, nevertheless that

same post-syanptic population develops the same organization of selectivity to

both features, e.g. a smooth map for both.

Biologically a mixture of different organizations of feature selectivity are

observed. Some features, such as orientation within the primary visual cortex (V1)

of cats and higher mammals, are encoded in a smooth map. Within those same

animals though, other features, such as the relative location of the light and dark

patches within the RF filter, have a S&P organization as evidenced by the low

correlations between the spatial shapes of the receptive fields (RFs) of neighboring

cells [69]. Moreover, output correlations remain low among neighboring neurons

within V1 [23], one of the main benefits of S&P organizations.

However, while our framework can predict the co-presence of qualitatively

different organizations across the cortex to abstract and mathematical features

such as the eigenvectors of the input correlations Cfast and Cslow, the static

framework predicts a smoother organization of orientation preference in our

post-synaptic neurons. One possible expansion to our model which may help

our framework to develop a smoother orientation would be to use a non-linear
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cortex (relax Assumption II). Using a nonlinear cortex, such as the SSN power

law, may provide a level of flexibility to our network that allows the development

of heterogeneous RF filters while keeping orientation preference as smooth as

biological observations, [42, 64]. This increase in flexibility, though, comes at the

cost of losing analytic tractability.

Another possible way to improve on our results would be to use more

biologically plausible input correlation structures and linear response kernels.

Here, we used difference of Gaussian spatial forms for our linear response kernel

and input correlations, but the actual structures within the brain be much more

complicated. Moreover, The eigenvectors of the actual input correlations may

not be orthogonal, which would cause a blending of the two organizations, which

may help smooth the orientation preference map. There is also many more time-

scales than two within the brain, and considering more time-scales in our network

may provide more realistic RF structures. As such, another next step should be a

systematic study of input correlations within the lateral geniculate nucleus (LGN)

of the thalamus, and a study of the response kernels of the cortex. The framework

developed here though, shows how those many time-scales within the input should

couple to the response kernels of the post-synaptic population.

One particularly interesting avenue of exploration to this author’s eyes

remains the study of synaptic strengths beyond their weights. The weight of a

synapse is due to a host of factors, among them the number of nreceptor sites in

the membrane of the post-synaptic cell, the amount of neuro-transmitter released

by the pre-synaptic cell and more. All of those factors comprise what we have

modelled as the feedforward weight, W . However, each of those factors may have

their own dynamics happening on different time-scales which may help with
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receptive field map formation. Recent work by [85] showed that when synapses

have more factors than just a synaptic strength, networks are able to store more

memories in the synapses. Given that we have shown here how important temporal

dynamics of neural activity are to receptive field development, imagine what

possibilities may open up when the dynamics of factors beyond synaptic strength

are considered.

4.3. Parting words

These have been enjoyable projects, and the author is very glad he made the

switch to neuroscience many years ago. Partly that is because he gets to do way

more and way better math in this current work than he did previously, but it is

also because he still gets to model and study a physical system. Moreover, it has

allowed him to study and think about his own brain, which is fun. Additionally,

neuroscience seems to have a lot of growth coming its way as a field.

Even though the author remains unsure of his own future directions, he has

been offered a post-doctoral position previously (it didn’t work out due to timing

and the author being unsure how excited he was about the research). He has also

applied to Lewis and Clark as a physics professor, but has yet to hear back. To be

fair though, no liberal arts college is probably hiring in the midst of the COVID-19

pandemic so he’s holding that plan loosely.

Thank you so much for reading this far. I hope you have learned something.

-CJH
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APPENDIX A

MATHEMATICAL DETAILS FOR CH. II

Within our simulations for gamma peak frequency, we use biologically

plausible values whenever possible for our parameters. In order to study the effect

of horizontal connections, we did several different searches to try to find networks

which best displayed the contrast dependence of gamma peak frequency, the local

contrast dependence of gamma peak frequency, and the surround suppression of

firing rates.

We searched over the following parameters for the two population networks:

JE,E strength of E to E connections

JE,I strength of I to E connections

JI,E strength of E to I connections

JI,I strength of I to I connections

gE strength of feedforward E inputs

gI strength of feedforward E inputs

ρN NMDA fraction of E weights
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And expanded the search to include the following parameters when modelling

the retinotopic network

λE,E the locality of E to E connections

λE,I the locality of E to I connections

σE,E the spatial decay of E to E connections

σE,I the spatial decay of E to I connections

Initially, we searched a grid of plausible parameter values. But searching the whole

grid became computationally prohibitive.

We also performed gradient descent on our parameters using the JAX

package of python since JAX can evaluate a gradient on an arbitrary function

given a loss. We used a mean-square-error (MSE) loss on the shapes of our power

spectra by comparing our simulated power spectra with idealized versions of the

power-spectra found in [21], i.e. lossPS = 〈(PSideal(f) − PSsimulated(f))2〉f , where

PSideal was based on [21] and PSsimulated was found during our simulation for some

parameter choices . We also include a regularizing term in our loss for our firing

rates to be within biological regimes. The loss was zero if rE < 80 Hz and rI < 100

Hz for all E and I units in our network, but grew approximately linearly as the

rates exceeded those limits, i.e. lossr = 〈ln (1 + exp (r −UB))〉r where UB are

the upper bounds for E and I units. For our retinotopic networks, we included

a term which kept our suppression index above some minimum value. The loss

for the suppression index was 0 when the network had a suppression index that

was above or equal to some minimum value, but the loss increased linearly when

the simulated suppression index was below that value. Typical experimental
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observations of surround suppression report suppression indices in the range of

0.3−0.6, and so we used 0.2 was used as our lower bound, SImin. For the surround

suppression loss, we used lossSS = A
2
(|SImin − SIsimulated| + SImin − SIsimulated),

where A controlled the weight of this loss term (A = 10 was used here). Our total

loss during these simulations was L = lossPS + lossr + lossSS.

Using JAX helped narrow down the parameter ranges that we should search

in, but ultimately the search that yielded the results used in this work was a

random parameter search. Wherein, we set the ranges of the parameters according

to some biological considerations guided by results from the JAX searches, and

each parameter was drawn uniformly from that range. The shared parameters for

the model producing the power-spectra in Figs. 2.1 and 2.4 were:

JEE = 4.43

JEI = 1.65

JIE = 5.03

JII = 1.24

gE = 0.37

gI = 0.26

ρN = 0.5
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The remaining parameters used to specify the spatial connectivity in Fig. 2.4 were:

λEE = 0.4

λEI = 0.7

σEE = 0.20 mm

σEI = 0.40 mm

The example power-spectra shown in Fig. 2.6, had the following values for its

parameters:

JEE = 4.20

JEI = 3.15

JIE = 3.61

JII = 1.86

gE = 0.58

gI = 0.23

ρN = 0.42

λEE = 0

λEI = 0

σEE = 0.22 mm

σEI = 0.24 mm

Lastly there are several fixed parameters for the networks that did not vary

throughout our simulations. For both the two-population and the retinotopic
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model, we chose

n = 2 (exponent of SSN’s nonlinearity) (A.1)

k = 0.04 (prefactor of SSN’s nonlinearity) (A.2)

τA = 5 ms (decay time of AMPA) (A.3)

τG = 7 ms (decay time of GABA) (A.4)

τN = 100 ms (decay time of NMDA) (A.5)

τcorr = 5 ms (correlation time of noise) (A.6)

To find the fixed-point firing rates of the network without considering different

synaptic types, i.e. in a simple E-I network, we use the following time scales for

excitation and inhibition

τE = 30 ms (A.7)

τI = 10 ms (A.8)

Recall that such simple E-I networks have the same numerical value of fixed-

point firing rates as the expanded synaptic version. To ensure that the fixed point

remains stable going from the simple E-I network to the network with various

synaptic types, we checked that the real part of the eigenvalues of the Jacobian of

our network were negative.

To study the retinotopic model, we expanded our simulation to a 17× 17 grid

with 2 units (one E and one I ) at each location. Thus we expanded the number

of units of our simulation from 2 to 172 ∗ 2 = 578. We kept the following spatial
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parameters fixed as well for our retinotopic simulations

wRF = 0.04◦ (grating input margin width) (A.9)

σGabor = 0.5◦ (Gabor stimulus sigma) (A.10)

∆x = 0.4 mm (column size) (A.11)

Ngrid = 172 (number of columns) (A.12)

L = 6.4 mm (grid side length) (A.13)

M = 2
mm

deg.
(cortical magnification factor) (A.14)

And finally we fixed the following parameters for the scaling of connections

within our retinotopic model:

σaI = 0.09 mm for a ∈ [E, I] (A.15)

A.1. Random explorations of model parameter spaces

For studying the robustness of the contrast dependence of gamma frequency

in the two-population model (results shown in Fig. 2.2), we allowed the parameters

(e.g. JEE, JEI , JIE, JII , gE, gI , ρNMDA) to vary widely within biologically plausible

ranges. To determine the ranges for the recurrent connection strength we first

made rough biological point estimates for the recurrent E and I weights (i.e.,

JaE and JaI , respectively, for a ∈ {E, I}), as well as the (excitatory) feedforward

weights (gE and gI); we denote these estimates by J∗E, J∗I and g∗, respectively (see

below for a description of how we estimated these estimates). Finally, we assumed

that recurrent V1 excitatory synapses are dominated by AMPA, rather than

NMDA, and therefore sampled ρN uniformly at random in the interval [0, 0.5].
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The ranges of all varied model parameters were thus given by

JEE ∈ [0.5 J∗E, 1.5 J
∗
E] = [2.2, 6.6] (A.16)

JEI ∈ [0.5 J∗I , 1.5 J
∗
I ] = [1.1, 3.3] (A.17)

JIE ∈ [0.5 J∗E, 1.5 J
∗
E] = [2.2, 6.6] (A.18)

JII ∈ [0.5 J∗E, 1.5 J
∗
E] = [1.1, 3.3] (A.19)

gE ∈ [0.5 g∗, 1.5 g∗] = [0.22, 0.66] (A.20)

gI ∈ [0.5 g∗, 1.5 g∗] = [0.22, 0.66] (A.21)

ρN ∈ [0, 0.5] (A.22)

We then independently sampled the different parameters, uniformly at

random, from the above ranges. However, we rejected some sampled parameter

sets, to ensure stability of the fixed points and lack of excitatory supersaturation

based on criteria found in [46]. The first criteria was to reject parameter sets for

which JEEJII > JEIJIE, or where the product of strengths of intra-population

connections was greater than the product of inter-population connections. [46]

found the opposite inequality, i.e., JEEJII < JEIJIE, to be a necessary condition

for the existence of a stable fixed point. We moreover enforced another inequality

involving the recurrent and feedforward connection weights, in order to prevent

(strong) supersaturation of excitatory rates and guarantee sufficient growth of

those rates with contrast [46].It is worth noting that Within the biological regime

there is a marginal and small volume of parameter space that allows for sufficiently

strong excitatory rates despite their supersaturation at very high contrasts;

here, mostly in order to speed up sampling, we did not explore this region of the

parameter space. We thus rejected parameter choices where JIIgE > JEIgI , to
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avoid the so-called supersaturation of excitatory firing rates in [46]. Parameter

choices which violated the above conditions were then re-drawn from their

distributions until the above criteria were satisfied.

To estimate the mid-range estimates, J∗E, J∗I and g∗, we relied on estimates

of the effect of recurrent and feedforward inputs on the membrane voltage of a

post-synaptic neuron. To connect these latter estimates to our model parameters,

however, we first need to express SSN’s powerlaw input-output function, Eq. (2.1),

more biologically, in terms of the relationship between membrane voltage and

output firing rate: r = kbio(∆V )n, where ∆V denotes the raise in membrane

potential from baseline (at which the mean firing rate is assumed to be very low,

and hence neglected). From [52, 60], a ∆V ∼ 20 mV leads to a firing rate of ∼ 80

Hz. For a power-law exponent of n = 2, this translates to a power-law prefactor

kbio = (80 Hz)/(20 mV)2 ∼ 0.2 Hz/mV2. In our model, we have instead used

the value k = 0.04, Eq. (A.2), for the power-law pre-factor, for consistency with

previous SSN publications [45, 46]). Thanks to the scaling property of the power

law, however, we can convert from the biological units to our arbitrary units, by

rescaling estimated changes in the voltage (due to feedforward or recurrent inputs)

by γ ≡ (kbio/k)
1
n =

√
0.2/0.04 =

√
5.

We estimated the effect of feedforward inputs on membrane voltage using

measurements in cats and mice [52, 67, 86, 87, 88] (see [89] for a review and

discussion of these measurements). Based on these measurements, we estimate

the maximum feedforward input, achieved for 100% contrast to be on the order

of the rest to threshold distance, which is around 20 mV [? ]. This yields g∗ =

γ(20mV)/(100%) = 0.2
√

5 ' 0.447, used in Eqs. (A.20)–(A.21).
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To estimate the total excitatory recurrent weight, JaE (a ∈ {E, I}), suppose

that a typical V1 neuron of type a receives KaE excitatory inputs from within V1.

Suppose these inputs produce unitary post-synaptic potentials (PSP) that have an

exponential time course, with a mean amplitude jaE and time-constant τPSP, and

have mean rate rE. Then the mean depolarization produced by these excitatory

inputs is ∆V ∼ jaEKaEτPSPrE. After conversion to our units, we thus obtain the

estimate JaE = γ∆V/∆rE ∼ γ jaEKaEτPSP. Based on anatomical measurements

for sensory cortex (reviewed in [89]) we estimate KaE ∼ 400 (with uncertainty

around ±200). And based on electrophysiological measurements we assume the

median EPSP amplitude to be ∼ 0.5 mV. For fast synapses the PSP time-course

is mostly set by the membrane time constant, so we take τPSP ∼ τmem ∼ 10 ms

= 0.01 Hz−1. We thus obtain J∗E =
√

5× 0.5× 400× 0.01 ' 4.47 Hz−1, which then

lead to the ranges Eq. (A.16) and (A.18). The obvious modification of the above

yields an estimate for total inhibitory weights, JaI . For inhibitory PSP amplitudes,

we used the value of 0.5 mV, but we assumed half as many inhibitory pre-synaptic

inputs, KaI , due to the smaller number of inhibitory cells in the circuit. We thus

took J∗I = 0.5J∗E, which lead to the ranges Eq. (A.17) and (A.19).

In Fig. 2.5, we studied the robustness of results obtained in the retinotopic

model of Fig. 2.4 to local parameter perturbations. We limited the relative

strength of these perturbations to within ±10% of each parameter’s unperturbed

value. More explicitly, we independently sampled the model parameters, uniformly
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at random, from the following ranges:

JEE ∈ [3.99, 4.89] (A.23)

JEI ∈ [1.48, 1.82] (A.24)

JIE ∈ [4.52, 6.76] (A.25)

JII ∈ [1.12, 1.24] (A.26)

gE ∈ [0.33, 0.41] (A.27)

gI ∈ [0.24, 0.29] (A.28)

ρN ∈ [0.45, 0.55] (A.29)

λEE ∈ [0.36, 0.44] (A.30)

λEI ∈ [0.63, 0.77] (A.31)

σEE ∈ [0.18, 0.22] mm (A.32)

σEI ∈ [0.36, 0.44] mm (A.33)

When studying the retinotopic SSN with a smooth fall-off of excitatory

horizontal connectivity (i.e., with λEE = λIE = 0) we again varied the

parameters over the full range of their biologically plausible values. Thus the

shared parameters between the two-population networks and this retinotopic

model were sampled as described above, from the ranges Eqs. (A.16)–(A.22).

We also chose a biologically plausible range for the length-scales of long-range

excitatory horizontal connections, σE,E and σI,E:

σEE, σIE ∈ [0.15, 0.5] mm (A.34)
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We sampled these randomly and uniformly from the above range, subject to the

condition σI,E > σE,E, which is necessary for obtaining surround suppression [45].

166



APPENDIX B

MATHEMATICAL DETAILS FOR CH. III

In this appendix we give the value of the parameter in the various 1D and

2D models of thalamocortical connectivity development studied in Ch. III. There

were several parameters which remained fixed across our simulations (i.e. one-

dimensional ring vs two-dimensional grid networks).

τW = 1000 ms (plasticity time-scale) (B.1)

τslow = 100 ms (slow feature time-scale) (B.2)

τfast = 1 ms (fast feature time-scale) (B.3)

Recall from Sec. 3.2.3 that we assumed γi = 1
τi

, or that the relaxation time-scales

of the linear response kernels ( 1
γi

) were the same as the correlation times of the

inputs (τi), at the same time-scale. The time-step of our integration method is

set during the first time-step such that the standard deviation of the change in

synaptic weights is 0.01, see Sec. 3.4.5. Moreover we kept the same bounds on all

elements of W in all models:

Wmax = 4 (upper bound W ) (B.4)

Wmin = 0 (lower bound W ) (B.5)
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In the simulations of all one-dimensional ring models, Sec 3.3.1, we used

L = 10 mm (half the circumference of the ring) (B.6)

x ∈ [−L,L] (B.7)

a ∈ [−L,L] (B.8)

Npost = 1024 (number of post-synaptic neurons) (B.9)

Npre = 1024 (number of pre-synaptic neurons) (B.10)

(B.11)

for the spatial grid parameters. We simulated two different types of one-

dimensional ring networks which differed in the type of their input correlation. In

the simpler version of the model (with results shown in Fig. 3.6), we used single-

rank input correlations, Cj = ej(ej)T , at both the slow and the fast time-scales.

We randomly generated the principal eigenvectors eslow and efast, and then made

efast orthogonal to eslow using the so-called Graham-Schmidt orthonormaliztion

procedure. As such, Cslow and Cfast were single-rank projection operators for this

first choice of input correlation structure (see Fig. 3.6).

In a more complex version of the 1D ring models, we used a Mexican hat or

difference of Gaussian (DoG) spatial profile for the input correlations at both the

slow and the fast time-scales. The DoG profile is in general given by

DoG(x,y) = α+N+e
− |x−y|2

2σ+ − α−N−e
− |x−y|2

2σ− (B.12)

where N+ and N− were chosen such that with αE and αI set to one, the absolute

value of each term in Eq. (B.12) would yield one if summed over y. We call this
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the row-normalization of the lobes. For the ring networks, the spatial length scales

(σ) and strengths (α) of the DoG lobes underlying the input correlation structure

we used were

σslow+,C = 0.3 mm (B.13)

σslow−,C = 1 mm (B.14)

σfast+,C = 0.033 mm (B.15)

σfast−,C = 0.1 mm (B.16)

α+ = 10 (B.17)

α− = 10 (B.18)

We used the same α+ and α− in the slow and fast input correlation matrices.

Because we row-normalized each Gaussian lobe, Cj(0, 0) is nonzero for j ∈

[slow, fast].

While the input correlations had a DoG spatial profile at both time-scales,

only the cortical linear response kernel at the slow time-scale had a DoG profile.

By contrast, the cortical linear response kernel at the fast time-scale was chosen as

a very narrow Gaussian function to approximate a delta-function. In the notation

introduced above, in the DoG for the slow linear response kernel we used

σslow+,K = 0.5 mm (B.19)

σslow−,K = 1.5 mm (B.20)

αslow+,K = 10 (B.21)

αslow−,K = 10 (B.22)
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On the other hand, we modelled the fast linear response kernel as approximating a

Kronecker-δ. For the fast linear response kernel we used

Kfast(x,y) = αfaste−
|x−y|2

2σfast (B.23)

σfast = 0.01 mm (B.24)

αfast = 0.67 (B.25)

where σfast is smaller than the grid spacing dx = 0.0195 mm, and alphafast was

chosen such that the growth of selectivity to the fast feature was approximately

as strong as the growth of selectivity to the slow feature. Here expand on the

discussion before Eq. (3.33) about normalzation. After constructing the input

correlations, we normalized their respective principal eigenvalues to one, such that

the relative selectivity to slow and fast features could be controlled with λslow and

λfast.

λslow = 1 (B.26)

λfast = 10 (B.27)

For the one-dimensional ring networks, we did not normalize the principal

eigenvalue of the cortical response kernels to one.

For the one-dimensional ring networks with DoG input correlation structures,

we used a “pill-box” arbor (see Sec. 3.4.3) with radius

RA = 1 mm (arbor radius) (B.28)
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We now describe the parameters of the two-dimensional networks. In order

to keep the same number of pre- and post-syanptic neurons between the one-

dimensional ring networks and the two-dimensional grid networks, we choose the

number of neurons per dimension ni = 32 where i ∈ [pre, post]. The number of

neurons is then Ni = ndi where d is the dimensionality of the network (d = 1 for

ring networks, d = 2 for grid networks). For the two-dimensional networks, we give

all length-scales in units of the grid spacing dx; these values can be converted to

millimeters by multiplying them by dx = 0.0195 mm. The grid specifications were:

L = 16 (half of the grid side length) (B.29)

x ∈ ([−L,L], [−L,L]) (B.30)

a ∈ ([−L,L], [−L,L]) (B.31)

(B.32)

For the grid networks, we used the circular overlap arbor function as described in

Sec. 3.4.3 (see Eqns. 3.48 and 3.49) with parameters

RA = 6.5 (arbor radius) (B.33)

cA = 0.5 (scalar of the axon circle radius). (B.34)

Recall that for a circular overlap arbor, we model the dendrites of the post-

synaptic neuron and the axon of the pre-synaptic neuron as being circles. In

analogy with biology where dendrites have a greater bounding area than the axons,

we scale the arbor circle by cA such that it is smaller than the dendritic circle. The

value of the arbor is then determined by the amount of overlap between the two
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circles, with complete overlap being one. Fig 3.16 shows a representative arbor

made using this circular overlap. The result is an arbor which tapers at the edges.

We again used DoG structures for the spatial profiles of the input

correlations and the cortical linear response kernels, but now x and y are two-

dimensional vectors rather than one-dimensional. For these two-dimensional

simulations, we set N+ and N− to one to be more consistent with previous work

[22]. For the length scales of the input correlation structures we used (where again

the units are in terms of grid spacing)

σslow+,C = 0.92 (B.35)

σslow−,C = 2.76 (B.36)

σfast+,C = 0.31 (B.37)

σfast−,C = 0.92 (B.38)

α+,C = 1 (B.39)

α−,C = 1/9 (B.40)

For our linear response kernels, we used

σslow+,K = 1.38 (B.41)

σslow−,K = 4.14 (B.42)

αslow+,K = 1 (B.43)

αslow−,K = 1/9 (B.44)
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for the slow kernel, and for the fast kernel we used

σfast = 0.01 (B.45)

αfast = 1 (B.46)

where again we assumed the linear response kernel at the fast time-scale

approximated a Kronecker-δ. Moreover, we normalized the principal eigenvalues

of the input correlation structures and the cortical linear response kernels to one

when we simulated two-dimensional networks. As discussed before Eq. (3.33), by

normalizing our eigenvalues we could control the relative strengths of the fast and

slow feature using

λslow = 1 (B.47)

λfast = 5.5 (B.48)

`fast = 2.5 (B.49)
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