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DISSERTATION ABSTRACT

Erik Jason Keever

Doctor of Philosophy

Department of Physics

March 2020

Title: Nonlinear Investigation of Oscillations in Radiating Shockwaves

Strong shockwaves are a common phenomenon throughout the universe.

Linear analysis indicates that when the postshock gas cools with a volume

emission rate Λ ∝ ρ2T θ that for many physically realizable values of θ the cooling

region should be subject to both one-dimensional (‘radial’ in the accretion context)

and transverse instabilities. The hydrodynamic and numeric theory underlying

the GPU-Imogen parallel GPU-accelerated fluid dynamic code is presented. This

accelerated code was used to simulate over one thousand combinations of Mach,

adiabatic index and radiation law θ to their final nonlinear state in one dimension,

which gives a comprehensive dictionary of the expected observable output as a

function of the input parameters. The same code was used to examine the fully

nonlinear development of transverse instabilities in two dimensions. It is found

that the same radial modes expected to dominate most of parameter space, the F

and first overtone, suffer their cold zones degenerating into turbulence which shuts

down the characteristic large, periodic luminosity fluctuations expected from the

one dimensional case.
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CHAPTER I

INTRODUCTION

A high performance, parallel, gpu-accelerated general purpose fluid

simulation code, GPU-Imogen, is developed. It is used to examine the instability

of radiating planar shockwaves with parameterized optically thin cooling in the

nonlinear regime for a broad range of astrophysically applicable parameters.

Radiative shockwaves can occur wherever a shock front propagating

through a fluid is sufficiently intense to heat the postshock gas enough that the

cooling time, measured as the internal energy density divided by the rate of

radiative loss, becomes comparable to another relevant timescale. The term is

perhaps something of misnomer as the shock front does not, itself, radiate.

They can occur on earth in the early stages of nuclear explosions and in

laboratories using lasers to shock-heat materials. In space, they are an important

part of the evolution of supernova remnants, coming after the adiabatic Sedov-

Taylor phase. They are also found driven ahead of runaway stars with intense solar

winds, in both protostellar and compact object accretion columns, and on grand

scales in galactic jets. Shock heating followed by radiative loss is also an essential

part of protostellar formation.

In many cases, postshock radiation renders otherwise invisible cold cosmic

gas directly visible by heating it and driving it to emit detectable radiation, from

visible to hard X-rays depending on temperature. Very strong shocks are expected

to create a telltale emission from a structure which is much too small to directly

resolve (e.g. white dwarf/neutron star accretion), and thereby allow these small

scale structures to be probed without planet-sized telescopes.
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Figure 1. Qualitative depiction of a shock with cooling column (‘radiating shock’).
A: A thin shock superheats the incoming gas; Thin implies that the mean free
path is much shorter than the cooling length. B: The cooling region between
the shock and the cold layer behaves as an acoustic cavity, with the cold piston
“closed” and the shock front “open”, and therefore contains standing modes at
a fundamental wavelength at 4 times the shock height and at odd harmonics. C:
The cold layer drives the shock forward, in the frame that considers the preshock
gas stationary. “Cold” is relative, and may mean either that the radiation rate
drops or that the gas becomes radiatively opaque. D: The volumetric radiation
emission rate Λ, driven by ρ2, rises rapidly near the cold layer. E: Velocity and
temperature collapse to zero, while density blows up. The competition between ρ
and T contrives to keep pressure relatively constant. F: The shape of the cusps -
zero, finite or infinite slope - depends upon the radiation exponent.
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It is realistic to model the radiation rate of a plasma as being proportional

to the square of the density and, over restricted temperature ranges, a fixed

power of the temperature, with different temperature ranges having very different

values (and signs) of temperature exponent. The qualitative structure that

results from postshock cooling is depicted graphically in figure 1. On dimensional

analysis grounds, we expect that Xshock ≈ vposttcool with cooling time tcool =

εint/Λ ≈ (9/16)ρ0v2in
Λ0ρ21T

θ
1

. In fact, the competition between rising density and dropping

temperature contrives to make this dimensional analysis far closer to correct than

might be surmised, i.e. the prefactor really is close to one.

Is has long been known that in the strong shock limit, many values

of temperature exponent are subject to linear instability of the overstability

type. In this work, shocks from weak to strong, spanning the physical range of

radiative exponents at three adiabatic indices (5/3, 7/5, 9/7) are tested for radial

instabilities in a total of over 1000 fully nonlinear simulations.

Based on the depth of the (relative) luminosity fluctuation, potentially the

presence of multiple simultaneous oscillations modes, and ratios of harmonics in

the fluctuation it is possible to constrain the potential radiative emission laws, and

by comparison of the emission law obtained with the known exponents associated

with real cosmic gas, constrain the gas and shock parameters involved.

Two dimensional simulations of planar radiative shocks show that

development of transverse structure is likely to greatly surpress spatially

unresolved luminosity fluctuations due to development of turbulence in the cold

layer. Based on visualization of the nonlinear 2D development, this is because the

edge of the cold layer is an acoustic mirror, and just as an optical mirror must be
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flat to show a coherent reflection, the cold layer boundary must remain something

resembling flat in order to maintain coherent oscillation.

This work is organized as follows: In section 2, the theory of fluid dynamics

is presented. This is followed in section 3 by the theory of the numeric methods of

solving these equations implemented in GPU-Imogen. Section 4 presents a wide

range of code verification tests used to confirm the veracity of code generated

output. In section 5 the planar shock simulations are described and results from

a large bank of 1D simulations are presented. These are followed by results in

2D and finally, some global 3D simulations of stellar bow shocks are presented

in which the use of different radiation laws obtains completely different results.
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CHAPTER II

THEORY

The theory of conservation equations in the general sense will be

introduced, followed by application specifically to the formulation of the Euler

equations of fluid dynamics. Key source terms applicable to the Euler equations

in an astrophysical context will be introduced. This will provide a foundation for

discussion of radiative shocks.

Conservation equations. Consider a closed (classical) volume where

the only way for something to enter or leave the volume is by going through

its surface if there are no source terms. In this case we would then define the

evolution through time of the contents of the box, u in the convention of most

literature pertaining to numeric hyperbolic PDEs, via the rate at which u is

transported through the surface, defined as the flux ~F (u).

Consider a simply-connected finite volume V , with a boundary surface σ

and differential normal surface elements dσ. There are two choices of orientation

for the dσ elements. The one in which they are oriented facing out of the volume

is adopted; Put another way, the one which yields the sign conventions as in (2.1)

below. In this case, a quantity u is described by a conservation equation if its time

evolution is described as

∂tu = −∇ · ~F ↔ d

dt

∫
V

u(x, t)dV = −
∫
σ

~F (x, t) · ~dσ (2.1)

where on the left we have the differential form and on the right the integral

formulation. Put in words, the net rate of change of the amount of u within the

volume equals minus the net rate at which ~F transports u across the boundary of

the volume, which the integral formulation makes clear.
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The integral form is applicable to most any “reasonable” volumes/surfaces.

They must be orientable (e.g., no Klein bottles). Both V and σ should have

integer dimensions such that the Riemann integrals converge upon refinement (e.g.,

no Koch snowflakes). Though not mandatory as a matter of analysis, numeric

problems tend to arise if the aspect ratios of the cells are vastly different from 1

(e.g., no voxels of size 100x1x1 units). And as stated before, the volumes should be

simply connected (topologically equivalent to a circle/sphere, e.g. no tori).

Volumes considered in practice are usually geometrically simple: Curvilinear

coordinate surfaces (e.g. rectangles/boxes) are common on structured grids.

Unstructured choices include tesselating triangles or tetrahedra, or quadrilaterals.

Generally speaking, shapes with flat (or at least asymptotically flat) sides.

In GPU-Imogen the conservation form is applied on curvilinear coordinate

systems. The integral (2.1) taken in a counterclockwise loop around a square X-T

box in one dimension gives∫ x1

x0

u(x, t0)dx−
∫ t1

t0

F (x1, t)dt−
∫ x1

x0

u(x, t1)dx+

∫ t1

t0

F (x0, t)dt = 0. (2.2)

The space integrals are recognizable as averages. If the fluxes F are evaluated at

t0 and changes in them are assumed to be small (they may even be zero), all four

integrals can be evaluated and a recognizable equation for the time evolution of

the averaged quantity ū appears:

ū(x, t1)(x1 − x0) = ū(x, t0)(x1 − x0) + F (x0, t0)(t1 − t0)− F (x1, t0)(t1 − t0) (2.3)

is the finite volume formulation of the conservation law in 1D. Replacing

differences in x and t with deltas and rearranging slightly yields a more familiar

form,

ū(x, t1) = ū(x, t0)− ∆t

∆x
[F (x1, t0)− F (x0, t0)] (2.4)
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The fraction ∆t/∆x is the mesh ratio, sometimes written as λ, and it hints at the

self-similarity of solutions to piecewise-constant initial conditions in one dimension.

In more spatial dimensions, the resulting equations are

ū(x, y, t1) = ū(x, y, t0)− ∆t

∆x
[F (x1, t0)− F (x0, t0)]− ∆t

∆y
[G(y1, t0)−G(y0, t0)]

(2.5)

ū(x, y, z, t1) = ū(x, y, z, t0)− ∆t

∆x
[F (x1, t0)− F (x0, t0)]− ∆t

∆y
[G(y1, t0)−G(y0, t0)]

(2.6)

− ∆t

∆z
[H(z1, t0)−H(z0, t0)]

While these equations are correct and mathematically convergent for infinitesimal

spacings ∆xi and ∆t, they are as written only of first order space and time

accuracy for finite spacings and appreciable further development is required to

arrive at a practically useful scheme.

The chief defect present in (2.4) as written is that it is an application of

Euler’s Method, which is only of first order time accuracy. Nonetheless, it is the

building block for higher order methods. Its higher order compatriots have a

further serious defect originating from the assumption that the fluxes are constant,

which near corners and edges they are not. This issue is depicted schematically

in figure 2 and is (with specific attention to the Euler equations) is considered in

detail in Vides, Nkonga, and Audit (2015).

As an illustrative example, consider constant speed advection. Suppose

some scalar quantity φ is moving at constant speed c everywhere along the line.

This is 1D constant velocity linear advection and is a model problem in first-order

hyperbolic PDEs. It provides similar difficulties with numeric differencing stability

and function reconstruction as the Euler equations while removing the complex
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X
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(a) (b)

(c)

Figure 2. A depiction of the evolution of a corner of a two dimensional Riemann
Problem through time. Referring to equation (2.5), the (a) region’s flux is initially
specified by F (x0, t0) and the (b) region’s flux by G(y0, t0) but the region in which
the fluxes determined by these 1D fans is valid shrinks as the corner interaction
region (c) grows. Thus the kind of discretization described here, naively applied to
multi-dimensional problems, is only first order accurate.

Ω1

Ω2

Ω3

X

Figure 3. A depiction of the finite volume integral transform in (2.1) in two
dimensions, showing three volumes with the outward normal ∂V2 marked by
arrows. Local conservation is clearly acheived because anything leaving V2

immediately enters another volume.
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flux calculation.

∂tφ = −c∂xφ (2.7)

It can be seen by inspection that the solution, if formulated as an initial value

problem, is

φ(x, t) = φ0(x− ct, 0) (2.8)

and as a conservation equation we can see that the flux equation is

F (φ) = cφ (2.9)

Now let us take our volume to be an interval [x0, x1] on the real number

line, with boundaries at the endpoints of the interval. The advection equation (2.7)

then reduces through the form of (2.4) to

d

dt
φ̄(x, t)dx = −cφ(x1, t) + cφ(x0, t) (2.10)

The rate of change φ on the interval is the rate at which it enters at point x0

minus the rate at which it leaves at x1 (in the view that c > 0). If we consider

adjacent boxes,

d

dt
φ̄01 =

d

dt

∫ x1

x0

φ(x, t)dx = −cφ(x1, t) + cφ(x0, t) (2.11)

d

dt
φ̄12 =

d

dt

∫ x2

x1

φ(x, t)dx = −cφ(x2, t) + cφ(x1, t) (2.12)

with the ordering x0 < x1 < x2, it is obvious why these are conservation equations.

At any instant, whatever is exiting the right side of box 01 is entering box 12.

For conservation to be easily acheived with finite volumes, we note that

simply connected finite element subdomains must exactly span the domain with

neither gaps nor double-counting; Such a spanning is inherently achieved when

curvilinear coordinate surfaces are subdivided (stacking line segments, squares

or cubes). With less structured grids the subject of mesh generation is its own
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substantial subject, although the exact-spanning property still guarantees identical

conservation.

We note here the distinction between approximate and exact (identical)

conservation. Given that (2.7) is conservative, an approximately conservative

method would conserve the total amount of φ up to truncation error, the order of

accuracy of the method. An exactly conservative method will conserve it perfectly

(in real-valued arithmetic) and to the level of float point round off (in actual

computer arithmetic).

Differential vs integral formulation. The key difference of interest

between the integral and differential formulations of (2.1) is their ability to deal

with solutions containing discontinuities. Differential formulations work fine

with equations that have strong solutions. This is because a strong solution says

that u(x, t) exists everywhere in the domain of interest, and thus writing down u

and its derivatives at all points does not present a problem. However, transport

equations are infamous for generating solutions in which the solution becomes

multivalued and discontinuities develop.

When a discontinuity exists, a strong solution is no longer possible because

u cannot be written down at the locatin of the discontinuity. Here, weak solutions

are necessary. They allow us to write down the solution arbitrarily close to the

discontinuity and effectively “seal it off” as in e.g. linear analysis of a shock wave

in which the solution is smooth almost everywhere except at the location of the

shock.

While this is tractable for analyzing known geometries like the above plane

shock, the scaling issues involved with deciding where and when to do this in a

modern simulation that may contain billions of elements, or more, are self evident.
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Moreover, when dealing with finite differences as on a computational

grid rather than with infinitesimal differentials as in calculus, the solution being

approximated need not actually be discontinuous. Spatial structure smaller than

can be resolved is effectively the same: if a variable jumps from 1 to 2, what does

it matter if the true solution does it in the space of 1/100 of a cell, or 1/2 of a cell?

Neither is resolvable and are effectively discontinuous.

By using the integral formulation, the cripping inability to write down what

u(x, t) is at a discontinuity is avoided. The transform effectively “upgrades” the

level of smoothness of the system by one order, in this case from not continuous

to C0. Consider e.g. if a shockwave propagates into a box from the left, moving

right. While point values jump instantly, the value of any box-averaged quantity q

is Lipschitz continuous (with the Lipschitz constant equal to the magnitude of the

jump in q times the speed of the shock divided by the size of the box).

An important feature of the integral formulation is the need to remember

what the variables now represent; that is,

ūV =

∫
V

ud~x. (2.13)

As presaged in (2.11), “the” value of u in a domain is the integral average over the

domain of the point values u(x, t). This is why weak solutions are needed to deal

with idealized transport equations (which are infamous for not only supporting

the existence of discontinuous solutions, but creating discontinuities in initially

smooth data in finite time). The integration over finite volumes “upgrades” the

smoothness of the system from the discontinuous u(x, t) to the C0 value ūV . Thus

the need to attempt to know point values of u is sidestepped.
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Figure 4. Depiction of an Eulerian grid, through which a wave is traveling (a).
In the Lagrangian grid (b) which is translating in the lab frame, the speed of the
wave relative to the grid will appear to be much smaller.

While there will follow many references to “u at x” it must always be

kept in mind now that what this really means is “the average values of u over the

volume surrounding x.”

Choice of frame. In writing down (2.7) we have implicitly chosen an

Eulerian formulation for the conservation law. The subdomains have (presumably)

been chosen once, and we now sit on the space-time lattice with our notepads

watching u move from one to another.

An Eulerian frame refers to one in which the coordinates at which the

solution is evaluated remain stationary while the solution “moves through” them.

It is often identified with the partial derivatives ∂x and ∂t. A Lagrangian frame

(also possibly called a material or comoving frame, depending on who one talks

to) is one which the solution points move with the flow, and is identified with

comoving derivative operators, like dt = ∂t + ~c · ∇ for physical flows.

The Eulerian formulation is exceedingly convenient in the following sense:

Having chosen a set of domains within which to track the evolution of φ, we
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are done setting up the problem immediately. This is because each domain Vi

introduces both a new variable, ūi, and a new equation constraining the evolution

of ūi: the (discretized) governing differential equation is all that is required to

completely define the solution and the simulation is “ready to go.”

The Lagrangian frame (of which the Eulerian frame is a restricted

particular case) considers that the domain boundaries may move: that Vi are

not time-independent. This provides formidable advantage in representing certain

problems: Features which move, grow or shrink can be followed by the simulation

domain as a whole or by parts of it. If φ contains both large and very small

features, we may track the very small features in φ without the enormous burden

of over-representing the large features with (unnecessary) equal fidelity.

The downside of the Lagrangian frame is that of considerably increased

complexity because the finite domains used to construct the integral equations

are themselves changing. By allowing d/dt to act on both φ and Vi we now have

multiple variables added for each domain, but the governing (physical) differential

equations still only give enough constraints for an Eulerian solution and so new

governing equations must be invented to control the evolution of the frame itself.

In one dimension, the problem is highly tractable because ordering

subdomains in one spatial dimension is trivial - in fact it is impossible for them

to become disordered. However, ordering is only part of the problem. Equations

are necessary to describe how cell boundaries move, and to decide when to refine

(or unrefine) the grid in an area.

In more than one spatial dimension, the natural ordering of domains is lost.

The management of Lagrangian grids is a whole subject in and of itself: Grid

13



generation, grid detangling, rezoning, remapping, and adaptive mesh refinement

(AMR) are each formidable fields of study by themselves.

In view of these complexities, the work being built upon and the already

formidable scale of the project undertaken the Eulerian frame is used (with some

very limited relaxations wherein the grid as a whole moves or rotates).

Gas dynamic theory.

Fluid equations. In light of having (2.7) to describe constant velocity

advection, suppose we consider φ as the density of mass in a fluid, ρ. In general

fluids obviously do not flow with constant velocity so we would be forced to replace

the constant c with v(x, t), the velocity of the fluid at a given point in space and

time. This leads to the continuity equation in one dimension,

∂tρ = −∂x(ρv) (2.14)

Where for space’s sake we are dropping the explicit reference to the space-time

dependence of all the variables.

Having solved one problem - how to evolve the density variable - another

has been created in the question of how to evolve the velocity variable. Matters

can be improved by considering instead the momentum density p = ρv. Thinking

of this as pinned to parcels of fluid, we may argue for it to be transported around

in the same manner by which we arrived at conservation of mass, such that

∂tp = −∂x(pv) = −∂x(ρvv) (2.15)

If a pattern appears to be emerging it’s because one is: The above equations

represent the first two terms in the expansion of the kinetic (Boltzmann) equation

in powers of velocity. And the problem is already evident: The expansion is not

closed. For each moment of the kinetic equation that is expanded in powers of
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velocity, the Nth moment’s evolution is coupled to the (N+1)th’s moment. And

not by an object of the same size, but by a tensor one rank higher.

The process of achieving closure, described in great detail in the classic

monograph of Chapman & Enskog Chapman, Cowling, and Park (1962), provides

a solution. Any remotely realistic collision operator, it turns out, generates

a predictable pattern in velocity space. By keeping certain moments and

contractions of the 3rd rank ρvvv object and assuming that the distance a particle

can travel through the fluid before scattering λ << L for a length scale of interest

L, we can write an evolution equation for a scalar called the total energy density

E in terms of ρ, p and E. This yields a closed set of equations, which when all

non-ideal terms are dropped become the ideal fluid equations:

∂tρ+ ∂x(ρv) = 0 (2.16)

∂t(ρv) + ∂x(ρvv + P ) = 0 (2.17)

∂tE + ∂x (vE + vP (εint)) = 0 (2.18)

in which E = 1
2
ρv2 + εint is the total (kinetic plus internal) energy density.

One more relation to give pressure in terms of internal energy density is

needed. For an ideal fluid of low density (number density n ¡¡ 1/Vmolecule, this is

often an adiabatic equation of state

P = (γ − 1)ε (2.19)

for ratio of specific heats 1 < γ ≤ 5/3 in three dimensions. The limit of γ → 1

is an isothermal equation of state, in which case an energy equation is no longer

needed because pressure is a constant temperature times the density.
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If an adiabatic equation of state is explicitly massaged into the energy

equation, the result is

∂tE + ∂x

(
v

[
1

2
ρv2 +

γ

γ − 1
P

])
= 0 (2.20)

It is worth noting that ρv2 has the same dimensions as pressure P . Naturally so,

since the only difference is that ρv2 represents ordered bulk kinetic energy while P

represents disordered thermal energy.

In the context of dissipation of bulk kinetic energy to heat (pressure),

especially as concerns strong shocks in which the preshock thermal pressure is

negligible, the kinetic energy density is also known as the ram pressure.

Extension to multiple space dimensions. The extension of

conservation laws to multiple dimensions is as above, however the line segment

and endpoints are replaced by a square with a perimeter, or a box with a surface.

Or in principle an N-dimensional hypervolume with an (N-1)-dimensional

hypersurface, though it certainly appears that the macroscopic universe has only

three spatial dimensions.

When the general conservation law (2.1) is integrated about a rectangle or a

box, the equations for uniform flow through space in two and three dimensions are

seen to be

∂tφ+ cx∂xφ+ cy∂yφ = 0 (2.21)

∂tφ+ cx∂xφ+ cy∂yφ+ cz∂zφ = 0 (2.22)

We can see that advection (and by extension the continuity equation) is the

divergence of a vector-type quantity, so that we have the multi-dimensional form

of (2.16),

∂tρ+∇ipi = 0 (2.23)
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Since we are not dealing with relativistic concerns, upper/lower indices are

shamelessly mixed.

The same formulation may be applied to the components of 2.17 one by

one, resulting in the divergence of a stress tensor

∂t(ρvi) +∇j(ρvjvi) +
∂P

∂xi
= 0 (2.24)

which leads to the nice compact form,

∂tvi +∇j(ρvjvi + δi,jP ) = 0 (2.25)

The Kronecker delta is often omitted, but it is useful to remember that the scalar

we call P is just only the dominant hydrostatic part of the general pressure tensor

(whose non-scalar parts generally only become relevant when considering the

intimate details of shock structure, hence why they get ignored).

The energy equation in multiple dimensions is essentially unchanged save

that the v2 is recognized as ~v · ~v,

∂tE +∇i

(
1

2
vi

[
ρv · v +

γ

γ − 1
P

])
= 0 (2.26)

Combined, these five (in three spatial dimensions) equations have the

beautiful short form,

∂t


ρ

vi

E

+∇j


ρvj

ρvivj + δijP

1
2
vj(ρv · v) + γ

γ−1
vjP

 = 0 (2.27)

This is the conservative form of the the Euler equations.

Nonideal terms of interest. Terms that can’t be brought under the

divergence sign are said to be nonconservative because they can’t be written as the

divergence of a flux. This is generically written as

∂t~φ+∇ · ~F (~φ) = ~Γ(~φ) (2.28)
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where all source terms have been lumped under the Γ banner. In the case of

the Euler equations ~φ = [ρ, ρ~v, E] and F is the Euler fluxes. By dimensional

analysis source terms must have dimension
[
~Γ
]

=
[
~φ
]
/t. Nearly all astrophysical

phenomena of interest originate from nonideal terms, as unlike in a laboratory or

engineering setting there are no (physical) boundary terms to drive behaviors.

Source terms typically show up for one of three broad classes of reason.

They may represent diffusivities (mass diffusion, viscous stress tensor, thermal

diffusion), or even higher order derivatives in the kinetic equation. These represent

the tendency of sharp structure to smooth itself, and when present are believed

to formally prevent discontinuous structures from forming (a million dollar

award awaits the formal proof). The second typical source is additional physics

being taken into consideration: Turbulence modelling, radiation energy loss or

absorbtion, gravity, magnetization, ionization, multicomponent flow, reactive flows

(e.g. combustion), the list goes on: These are simply things going on that aren’t

part of the transport context of the fluid equations. Finally are geometric and

frame terms: phantom “forces” originating from one’s choice of coordinates or

noninertial frame.

Microscopic diffusivities. The next terms originating from the kinetic

equation append themselves to the right side of Eq. (2.27) giving us dissipations,

Γ =


D∆ρ

ρν∆v

κ∆T

 (2.29)

where D is the molecular diffusivity, ν is the kinematic viscosity and κ is the

thermal conductivity. These tell us that mass, momentum and energy all prefer

to diffuse away from local maxima and into local minima.

18



Their presence fundamentally alters the character of the partial differential

equation system, from the Euler equations which are strictly hyperbolic (for

temperatures greater than 0), to the Navier-Stokes equations which are parabolic.

The Reynolds number is a dimensionless value that compares momentum

transport to momentum diffusion,

Re =
V L

ν
=
ρV L

µ
(2.30)

where V and L are some characteristic velocity/length scales and ν is the

kinematic viscosity determined by gas microphysics (or alternatively, µ is the

dynamic viscosity).

In an engineering context considering either internal (e.g. pipe/turbine)

or external (e.g. airframe) flows, the diffusivities can never be entirely ignored

because they control the transport of momentum and heat at solid boundaries.

This led to one of the early mysteries of high-Re flow, which is that Re for the flow

of seawater around a large vessel is so high as to be basically ∞, yet if viscosity

is ignored as this suggests should be the case, the vessel should experience zero

drag. Obviously this is not the case, and the resolution came in the form of the

recognition of the textitboundary layer - that there is always a region near a fluid’s

interface with a mechanical surface where dissipation cannot be neglected.

Within an astrophysical context however, there are often no mechanical

surfaces to introduce a small length scale, so the usually enormous global length

scale contributes to a very large Re.

Plugging in ballpark numbers for protoplanetary disk at 300K at 10AU, for

example, we get

Re ≈ vkeprρ

µH2

≈ 104 × 1011 × 10−7

10−6
≈ 1014 (2.31)
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which means that viscosity will take a very, very long time to damp differential

rotation. Not surprising: It is this dimensional analysis that tells us diffusion is

exceedingly inefficient on large scales.

Noting that all three diffusivities (D, ν and κ) are of equal dimension

([L2/T ]); those of mass and heat are related to the viscous one by their own

dimensionless numbers. The Schmidt number

Sc = ν/D (2.32)

gives the relative importance of mass diffusion to momentum diffusion (viscosity)

The Prandtl number

Pr = ν/κ (2.33)

normalizes the efficacy of thermal diffusion to that of viscosity. In the context

of boundary layer flow, these compare the relative thicknesses of the mass,

momentum and thermal bounary layers.

Large Prandtl numbers occur in geologic flows, while very small ones

(order of .001) are measured for liquid metals due to their quite high thermal

conductivities. In the case of small-molecule gasses, both Sc and Pr are predicted

to lie in the vicinity of unity by first principles calculations, and reassuringly they

are in fact measured to be around 1 for real gasses as well.

Given the enormous global-scale Re above, these terms too may be

imagined utterly irrelevant to accretion disks (and assuredly their microscope

molecular values are). However, turbulent flows can experience substantially larger

effective diffusivities if the process which drives the turbulence (e.g. the MRI) is

assumed to satisfy certain reasonable isotropy assumptions (see Pringle (1981)). It

is precisely the idea of an effective local viscosity that leads to the α-disk in thin
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disk steady state accretion theory, and the search for the turbulence driver which

can provide an α value appropriate to observed disk lifetimes is one of the central

themes in accretion disk research.

Gravitation. Gravitating flows are ubiquious in astrophysical scenarios.

In the Newtonian case,

Γ =


0

−ρ∇Φ

−ρv · ∇Φ

 (2.34)

∇2Φ = 4πGρ (2.35)

for gravitational potential Φ. For plane waves in a uniform gas with wavevector k,

Φ ≈ k−2ρ so that for large scales, gravity is expected to dominate.

The potential must be determined from either direct solution of the Poisson

equation or by expansion in Green’s functions. While this equation appears

superficially innocent it is among the most difficult to solve at scale in parallel

computing. The reason is because it is a PDE of elliptic character. Solutions of

elliptic PDEs are generally characterized by complete non-locality: the solution

at every point depends on every other point. In a parallel computer, this requires

that every node communicate with every other node to solve the problem, which is

among the worst scenarios possible.

For a uniform infinite medium, the pressure perturbation caused by an

adiabatic plane wave density fluctuation with wavevector k of δP = c2
sδρ is

independent of k, but the gravitational field fluctuation is δφ = −δρ/k2 which

diverges for large wavelengths. Linear analysis gives the dispersion relationship for

self gravitating sound waves in an infinite medium as

ω2 = c2k2 − 4πGρ0 (2.36)
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Thus as the wavelength grows, the oscillation frequency drops. By solving for ω =

0, the point at which propagation halts, we arrive at the Jeans length

LJ =
2πcs√
4πGρ

(2.37)

which tells us the shortest wavelength which will undergo self-gravitational

collapse. Then, the Jeans length is the characteristic scale at or larger than which

self gravitation can not possibly be ignored in a uniform medium, as all scales

larger than this are unstable against self gravity collapse.

In thin disks, the analogue of the Jeans length is the Toomre Q parameter,

Q =
csVk
πGΣ

(2.38)

first described in Toomre (1964). Here Vk is the Keplerian orbital velocity and

Σ is the surface (vertically integrated) mass density. Anywhere Q < 1 the disk

is locally linearly unstable against gravitational collapse. Examination of the

components suggests the obvious condtions for Q to be low: cold (cs low), large

radius (low Vk), and dense (large Σ) parts of the disk, which are not surprisingly

the conditions which imply that self gravitation will matter.

While self gravity is the dominant player in the early life of a star system

(from the collapse of the molecular cloud core and the duration of active accretion

from cloud, which maintains a large disk-to-star mass ratio), by the time a disk

reaches the protoplanetary stage self gravity has been a victim of its own success:

Self gravitation appears to drive efficient accretion in the early stage of disk life,

such that by the time the disk becomes visible the disk to star mass ratio is down

to a few percent.
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Direct imaging of massive disks in the embedded phase reveals global

structure dominated by low angular wavenumber modes (e.g. see Meru et al.

(2017) for discussion of the now famous Elias 2-27 disk).

In the inner (Less than some tens of AU) parts of a thin disk, Q is

expected to be large and self gravity is not dynamically important, though self

gravitationally generated turbulence propagating in from the outer disk may still

be a factor (See Armitage (2011) section 3.1).

Magnetism. Magnetism is a major player in all kinds of accretions disks

because the conditions for it to arise - an ionized medium that couples to magnetic

fields and differential rotation to power a dynamo - are ubiquious.

Neglecting several entire chapters’ derivation, it turns out that the idealized

form of the magnetized plasma equations are the Euler equations with additional

conservative source terms, forming a beautiful set of equations called the ideal

MHD equations,

∂t



ρ

~v

E

~B


+∇ ·



ρ~v

ρv~v − ~B ~B + δij(
1
2
B ·B + P )

~v(1
2
ρv · v + γ

γ−1
P + 1

2
B ·B) + ~B(v ·B)

~vB − ~Bv


(2.39)

The evolution of these equations in a manner which does not cause any magnetic

divergence to appear is distinctly nontrivial even in Cartesian coordinates. They

have many nonideal extensions associated with expansions in electron mass (i.e.

finite relative e−-ion drift velocity), finite conductivity and new and interesting

isotropy-breaking, tensor-valued parameters.
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Because of the great difficulty of solving these equations, and the general

expectation that they will lead to small-scale turbulent structure which there is no

hope of numerically resolving anyway, MHD will not be considered directly.

In disks, magnetism (and magnetic turbulence) will be intimately

coupled with the local ionization level and whether it is high enough to sustain

electric currents and couple the gas motion to magnetic pressure. Outside the

innermost edge of the disk that can thermally ionize alkali metal atoms directly,

in turn, ionization is intimately coupled with external drivers of ionization and

recombination. Ionization is expected to be driven by the impingement upon

the disk of external ionizing photons, cosmic rays, and self ionization due to

radioactive atoms, while recombination will be substantially aided by dust particles

mopping up free electrons.

Radiation physics. Radiation is a key effect in astrophysical objects,

if for no other reason that (outside of LIGO) it is only through radiation that

anything in the outer universe becomes visible and knowable to us. The full

radiation transfer function of a classical fluid lives in a six dimensional space (the

radiation emission rate as a function of frequency and angular orientation, at every

point in physical space) which means that simulating the full equation directly is

firmly on the “hopelessly intractable” list.

Some reasonable assumptions can render radiation transfer tractable, or at

least less intractable, in many important cases. In a gas medium without a clear

breaker of isotropy, it is often reasonable to assume that the emission is isotropic

(reducing the general problem to 4 dimensions).

The real radiation rate of a gas is a sum over an infinite number of

atomic/molecular transition lines, continuum blackbody emission, bremsstrahlung
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in hot plasmas, and cyclotron emission from magnetized plasmas, and in highly

dynamic systems (where thermal equilibrium does not necessarily hold) becomes a

history-dependent function as well, which steps back towards “intractable.”

The wavelength of a photon determines how much it will interact with its

environment.

At the lowest energy scale useful outside of a laboratory, electron-proton

spin coupling results in hyperfine splitting. These couplings typically have energies

in the high RF to microwave region. The neutral hydrogen 21cm line is the best

known of these and is used to track the presence of neutral molecular hydrogen.

Electron-electron spin coupling has higher energies. It is responsible for e.g. the

ortho/para hydrogen split, which is responsible for the anomalous specific heat of

molecular hydrogen below about 70K.

At higher energies, rotation states of molecules with a dipole moment

have large transition rates because they can directly change J by emitting or

absorbing photons. Rotation states of smaller molecules observed in astrophysical

scenarios may most often be associated with millimeter radiation (≈1THz) into

the far infrared (10µ ≈ 40THz). Their long wavelength relative to the haze of

submicron dust that obscures many objects from optical view makes them valuable

for probing stellar birth and the galactic center. Both the SMA and ALMA have

taken direct images of disks using the carbon monoxide J = 1 → J = 0 transition

at 850um.

Excited vibrational states of molecules can have energies of an appreciable

fraction of an electron-volt, which is beyond the reach of thermal excitation except

in or very near stars (1eV / Kb ≈ 11000K) or compact object accretion disks. In
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general by the time the temperature is high enough to enter these states the tail of

the energy distribution is beginning to cause molecular dissociation and ionization.

Dust particles may be expected to radiate as black (or grey-)bodies,

glowing with characteristic infrared peaks that trace the temperature of the dust

emitting them as a function of radius if it can be spatially resolved, or generating

a convolution over the emitting area if it cannot. As far as any possibility of

inducing the oscillatory instabilities that are the subject of this thesis goes,

dust blackbody emission may be ruled out completely because its temperature

dependence, as T 4, is a far too rapidly decreasing function of falling temperature.

Molecular binding energies are typically on the order of 1-10eV,

corresponding to temperatures of around 104 to 105K. Temperatures in this range

are associated with an extremely sharply increasing radiation rate as a functon of

temperature due to the prevalence of partially ionized states and excited molecular

states with very high transition rates.

Per Gehrels and Williams (1993), temperatures from about 2 × 105 to

around 107K have an overall decreasing radiation rate as the atomic cores become

completely stripped of their electrons. Finally, at temperatures above around

10MK all atoms trend towards completely ionized and the radiation emission

function quickly becomes dominated by bremsstrahlung, which increases as
√
T .

The detailed shape of the predicted plasma radiation curve has evolved

with research and increasing computing resources. Compare e.g. Tucker and Gould

(1966) and Gehrels and Williams (1993) and Schure, Kosenko, Kaastra, Keppens,

and Vink (2009). However the essence depicted in 5 is consistent, and substantially

more precise models generally become dependent on the atomic composition of the

plasma.
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Figure 5. A qualitative depiction of a modern plasma radiation emission rate curve
spanning 104K to 108K. The rate is an extremely rapidly increasing function of
temperature below 105K. It peaks around 1 − 2 × 105K,then acquires an overall
decreasing trend with roughly Λ ∝ 1/T , although two islands of thermal stability
exist. It becomes minimal around 1 − 2 × 107K, before rising with bremsstrahlung
as Λ ∝

√
T .

The ability of radiation to escape (or not escape, as the case often is) is

described by the optical depth

τ(λ) =

∫ L

0

nσ(λ)dl (2.40)

which is the number of times a photon of wavelength λ would expect to get

scattered if it tried to follow a path of length L through a uniform medium.

In the limit that τ << 1, radiation (at that frequency) flies freely out of the

optically thin volume and this manifests itself as an energy loss rate per time per

volume of Λ,

Γ =


0

0

−Λ(ρ, T ; ...)

 (2.41)
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Alternatively if an optically thin volume is irradiated with microwaves/heat/light

from a source like a star, the result may be a volume heating function. All else

being neglected, optically thin volumes may be expected to hunt the equilibrium

whereat their frequency-integrated radiation emission and absorbtion powers are

equal.

Because opacity is very strongly dependent on wavelength, it is often

the case that energy at one wavelength can enter a region, be absorbed and re-

radiated, and the new wavelength find itself trapped. Such it the case of the

greenhouse effect, where Earth’s atmosphere is essentially transparent to near IR

and visible light, but highly opaque to significant parts of the thermal IR spectrum

that its surface glows in.

Depending on the slope of the radiation function ∂TΛ, it is possible for

a radiating gas where radiation absorbtion and emission are competing to be

thermally unstable if the derivative is negative. This can be seen from a simple

perturbative stability argument: If an increase in temperature perturbs the

radiation loss rate down, the temperature will rise further, leading to even less

radiation: linear instability and runaway.

In the opposite limit where τ >> 1 lies radiative diffusion: The photons

cannot get anywhere in a straight line and instead conduct a random walk.

Radiative diffusion adds an additional term to normal heat diffusion,

Γ =


0

0

k∆Λ(ρ, T ; ...)

 (2.42)
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Sophisticated radiation transfer and radiation rate functions are not

considered in this work, however temperature parameterized cooling (Λ ∝ T θ)

is implemented efficiently.

Dust dynamics. A natural extension to equations (2.27) for a

single fluid is to consider two or more superimposed fluids which can exchange

momentum, energy and perhaps particle numbers (e.g. ionization/recombination or

reactive flows).

In the case of a multi-phase fluid consisting of mixed atomic/molecular

species, the coupling time will be spectacularly short - on the order of the mean

free flight time - such that decoupling will be virtually nonexistent except under

the most extreme conditions. An exception to this is a neutral-ion fluid, in which

the persistent application of electromagnetic forces only on the ions can eventually

accumulate a substantial displacement though the integration over time of the

relative velocity, even though the δv itself is limited to roughly the free particle

acceleration times the scattering time.

Many interesting effects in electron-ion plasmas are caused by effects which

depend on the electron- to-proton mass ratio or its square root, introducing

separations of scale by factors of around 45 or 2000. In the case of gas-dust

coupling, the ratios are vastly larger still. Even the smallest dust particles, the

sub-micrometer sized ‘monomer’ spherules, are likely to have millions of times the

mass of a hydrogen molecule.

Pressureless, isothermal fluid. To a good approximation, we may

think of the dust embedded within a disk as a pressureless and isothermal (γ →

1+), so that compression causes neither heating nor any introduction of pressure)

second fluid, coupled to the gas by drag.
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Suppose the dust is an ideal gas. In this case, in thermal equlibrium, we

have the ideal gas law

P = nkbT (2.43)

with pressure P , number density n = N/V , Boltzmann constant kb = 1.381 ×

10−23 in S.I. units, and T the temperature. Using the particle mean mass µd we

can replace the number density with the mass density

P =
ρ

µd
kbT (2.44)

The mass of a solid particle scales as the cube of its size. The dust agglomeration

process is capable of creating extremely ‘fluffy’ structures of low fractal dimension

(In Mannel et al. (2016) a dust agglomerate was examined which had a fractal

dimension of only 1.7), whose mass grows much more slowly than the cube, but

even so the “molecular” mass quickly becomes so large that pressure is suppressed

to effectively zero. This is the familiar result in granular physics on earth that

grain “fluids” have no thermal pressure.

As a reference point, using c2
s =

√
P/ρ =

√
kbT/µ, the isothermal

soundspeed in a “gas” made of 10nm iron spheres is about 2.8m/s, and that of

10µm iron spheres is about 46µm/s per second at room temperature. By way

of comparison, the adiabatic sound speed in molecular hydrogen under these

conditions is around 1, 300m/s, and the Keplerian orbital velocity 10 A.U. from

the Sun is about 9,400m/s.

To substantiate the belief that the grains have an adiabatic index

indistinguishable from 1, consider the shortest wavelength phonon accessible to

a thermal bath at temperature T ,

E = ~ω = ~(cs2π/L) = kbT (2.45)
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if we assume this phonon is in the linear-acoustic region of the solid dispersion

relation. If we suppose for normal-density solids that the sound speed is about

2000m/s, this suggests a shortest phonon wavelength of L0 = 300pm at room

temperature. Then there would be something like (Dparticle/L0)3 phononic degrees

of freedom that the heat bath can access compared to precisely three translational

and two solid-body rotational. So, then, a 100nm monomer dust particle would

have about 37 million accessible internal DoF and an adiabatic index of about

1.00000005, which is close enough to 1!

If (2.45) is solved for length and is equated to length derived from mass

and solid density, we can estimate the mass of a particle not dominated by thermal

DoF (i.e. which is not totally isothermal).

4

3
π

[
~cs2π
kbT

]3

ρsolid = M (2.46)

The result is only valid for masses containing many atoms which can support a

near-continuum of phonon states. However, even at 10 K, solid particles much

larger than a nanometer will have accessible phonon DoF.

While the actual phonon density of states in solids and the structure of

protoplanetary dust grains both are whole complex fields by themselves, this back

of the envelope analysis is sufficient to see that for any reasonable conditions the

grains will not heat up upon compression.

Back of envelope bounds. Some back-of-the-envelope calculations

may be applicable to determine/bound the cases of interest. First, the Reynolds

number: Assuming a 75/25 H2/He mix with a surface density of 2000g/cm2, with a

scale height at 1AU of .1AU, yields an approximate number density of 3 × 1014/cc

and a mass density thus of 10−9g/cc. The dynamic viscosity of the gas is about
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8 × 10−5g/cm-sec. Suppose on the larger end that a 100cm diameter particle

experiences a headwind of 100 meters/sec.

In this case we would have a Reynolds number of Re = ρvl/µ ≈ 12.

Given that the potential headwind for a large particle is set by the deviation

of the disk’s rotation from Keplerian, which is fairly small for real post-class-0

young stellar objects, the primary avenue for increases in Re is the formation of

larger aggregates. Certainly 10- or 100-meter class objects could reach the point of

turbulent flow (Re ≈ 100− 1000), but smaller particles will not.

In similar conditions, the mean free path is about 9cm, so our 1-meter

object would have a Knudsen number Kn ≈ 0.1 such that non-rarefied flow must

definitely be accounted for in the inner areas of the disk.

These represent likely upper bounds on Re and lower ones on Kn.

The viscosity used above is accurate at room temperature. For a hydrogen-

helium mix the dynamic viscosity varies as roughly the 2/3 power of T, such that

temperature ranges of a factor of ten (e.g. between 1000K in the innermost disk

and 100K in the outer) the viscosity may range over a factor of roughly 5.

Taking a fiducial upper limit on relative speed of around 100m/s, over a

likely range of gas temperatures (very roughly 1000K on the inner edge, perhaps

50K on the periphery) the speed of sound in the H2/He mix will vary from about

500m/s to 2300m/s, such that the Mach is unlikely to exceed about 0.2; Certainly

supersonic relative motion is unlikely!

Drag Force Equations. The motion of dust particles relative to the

gas they are embedded in results in a drag term which opposes the relative motion

and so tends to couple the motion of the gas and dust. If the coupling is presumed

to be linear (opposition force ∝ |δv|) then the relative velocity, absent drivers,
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decays over a characteristic timescale

τcpl = δv/(F/µ) = 1/Kd (2.47)

In the case that τcpl is much shorter than the other timescales, coupling is strong

and the behavior is perturbatively different from that of a single fluid. In the case

it is very long, the two fluids flow through each other nearly independently and it

is their coupling which is perturbative. When τ is neither, things are interesting.

An understanding of drag across a wide range of τcpl is needed because it is

expected to evolve across many, many orders of magnitude relative to an orbital

period, from a tiny value for microscopic grains to essentially infinity for kilometer

sized boulders.

There are three principle dimensionless parameters relevant to determining

how the drag behaves. These are the Reynolds number

Re =
ρvL

ν
(2.48)

where ρ is the fluid density, v the relative velocity, L a relevant length (e.g. the

diameter of an obstructing body in a flow) and ν is the microscopic viscosity, the

relative Mach

M = |vg − vd|/cs, (2.49)

and the Knudsen number

Kn = λmfp/d, (2.50)

with

λmfp = (
√

2nσ(T ))−1 (2.51)

defining the mean free path of a single species in terms of its number density n

and kinetic cross section σ(T ) = πD11(T )2 where the effective molecular size
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depends on temperature, which is the dimensionless ratio of gas mean free path to

particle diameter. When Re is small, the flow is linear, laminar and viscous while

when Re is large it is turbulent. When Kn is small, the particle is much larger

than a free path and experiences the gas as a continuum. When Kn is large, the

particle is small and experiences rarefied particle dynamics.

At very large mass densities, as the specific volume decreases, the equation

of state, viscosity, and all other parameters computed here begin to deviate

markedly from the predictions of the low-density formulae as rates of ternary,

quaternary, etc interaction are no longer vanishing. The issue of interparticle

spacing is not at issue for gasses, however it is not impossible that at substantial

dust loads the dust volume fraction

θd = ρd/ρs, (2.52)

where ρd is the mass of dust per volume and ρs is the intrinsic density of the

solids, may increase to appreciability. If a dust overdensity created by the

streaming instability undergoes rapid self gravity collapse into a bound compact

object (a proto-asteroid of the rubble pile type), θd will become large and this is

not accounted for.

In the process of searching the literature it has become apparent that some

parameters or their inputs are routinely expressed in one of multiple ambiguous

ways with the determination left to context. Most particularly, the meaning of

‘size’ must more often than not be deduced as meaning one of radius or diameter

based on the numeric prefactors on formulae. We take the diameter of the

(presumed) spherical dust particles as l. The Epstein drag term requires a

thermal mean speed, and the value c̄ =
√

3kbT
µg

is used (which differs from the

averge particle speed by 8%).
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The drag is described by another dimensionless value, the drag coefficient,

which relates the actual drag force to the ram force (ram pressure times cross

section),

Cd =
Factual

1
2
ρgδv2 × A

(2.53)

At low speeds, drag force is linear in δv rather than quadratic so Cd(v → 0) ∝ 1/v.

Under other conditions, the drag coefficient is lower and typically acheives values

between 1/2 and 2 for a very wide range of Re, M and Kn values.

Formulating a single function that accurately describes Cd(Re,M,Kn)

without restriction upon any of the parameters is impractical. Not that it is

impossible - given enough degrees of freedom in an appropriate fitting function

ANY curve can be fitted - but the resulting morass of empirical coefficients and

forms would be expensive to evaluate.

Reliable analytic forms are available in two limits: At low Re, the force on

the sphere is given by Stokes drag,

Fstokes = 3πnudv (2.54)

as first derived by Stokes (1851) for an incompressible liquid, which gives the

coefficient of drag as

Cd,st|Re<<1,Kn=0,M<<1 = 24/Re (2.55)

The force on a sphere in free molecular flow was derived by Epstein and a much

simpler expression that matches Epstein’s very large exact expression to within 1%

at all speeds was derived in G. Stokes (1850),

Cd,ep|Kn>>1 = vρgσ

√
v2 +

16

3
(γ − 1)eint (2.56)

35



Where v = |vg − vd| and eint = P
(γ−1)ρg

= (Etot − KE)/ρg is the specific internal

energy density. This is the RMS sum of the leading terms of the high- and low-

speed limit of the full function for Epstein drag on a polished hard sphere.

The first successful calculation that merged these regimes together for low-

speed flow was that of Cunningham in 1910 (Cunningham (1910)) who recognized

that for small particles the no-slip condition at the particle’s surface needed to be

modified to a partial-slip condition, with the partiality of the slip increasing as the

particle shrank. Today the drag equation for small particles bears his name in the

form of the Cunningham correction,

Cd,cu|Re<<1,M<<1 =
24

Re
(1 + kn× A)−1 (2.57)

In fact, (2.57) has been superceded by modern empirical measurements

which yield excellent agreement with data using a correction of the form

Cd,cu|Re<<1,M<<1 =
24

Re
(1 + kn(α + βe−γ/Kn)−1. (2.58)

The difference, it is seen, occurs for Kn ≈ 1/γ. In Allen and Raabe (1985), the

Cunningham correction was measured using plastic spheres in a partial vacuum of

air. Their measurements have α = 1.142, β = .558 and γ = .999, which values are

adopted here.

In continuum flow, when Re is not small, the drag coefficient deviates

from 1/Re. Expansions in powers of Re (e.g. Oseen equation) have not proven

practically useful at large Re in that they fail to much extend the valid range of

the equation, however empirical fits provide excellent results. For Re <≈ 905,

Cd,st|Re<905,Kn=0,M<<1 = 24Re−1 + 4Re−1/3 (2.59)

Back of the envelope calculations for dust in a disk suggest that Re > 10 is

unlikely to be acheived. However, for completeness’ sake, general utility, and to
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avoid flagrantly wrong results in the event of unexpected circumstances, it is a

good idea to maintain some degree of correctness in the drag coefficient for large

Re.

Smooth spheres in a quiescent background flow enter the Newton regime

from ≈ 1000 < Re <≈ 250000 where the drag coefficient is ‘about .44.’ Either

roughness on the sphere’s part or turbulence in the background flow decrease the

upper critical Re. The upper limit marks the change from a laminar to a turbulent

boundary layer around the sphere and is associated with a huge decrease in drag

coefficient, to roughly 0.1, after which Cd slowly increases again. This is the

supercritical Re regime and will not be modelled; The adopted curve asymptotes

to Cd(Re→∞) = .407.

Rather than making a piecewise function, which introduces numeric

convergence problems (or increased complexity) when solving the drag ODEs and

problematic branching statements into tight-grained parallel code, a single drag

function correlation is used,

Cd,st|Re<2×105,Kn=0,M<<1 = 24Re−1 + 3.6Re−0.319 +
.407Re

8710 +Re
. (2.60)

Variations of the first two terms are often quoted with the coefficients of Schiller &

Naumann as 4Re−1/3, or similar. Using drag data corrected for wall effects, Brown

and Lawler (2003) provided the above coefficients as their equation 19 based on

previous proposed Cd equations of the same form.

The Cunningham correction is applied to this generalized continuum drag

equation without proof of correctness other than that it reproduces the correct

results in appropriate limits to yield the following equation implemented in the
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code:

Cd|Re<2×105,M<≈0.2 =
24Re−1 + 3.6Re−0.319 + .407Re

8710+Re

1 +Kn(1.142 + .558e−.999/Kn)
(2.61)

This equation reproduces extremely accurate drag curves for the parameters which

may be expected in dusty disk conditions, and is widely applicable to a very broad

range of flows in other conditions as well.

No serious attempts to accurately model the effect of M in the drag

coefficient equation were made, simply because supersonic relative velocities

between gas and dust will not occur, and even if they were unphysically specified

as an initial condition, would rapidly decay and so accounting for them adds a

considerable amount of computational effort to no end.

Comparisons with published drag equations that use both M and Re find

that the corrections in continuum flow due to compressibility to be less than a few

percent below M = 0.2. This is not surprising since compressibility corrections are

as the square of Mach to leading order. The exact behavior of Epstein drag in the

supersonic limit is obvious, Cd → 2; The deviation in (2.61) caused by high speed

is only about 20% at Mach 1.

Other forces on particles. In a more general case than under

consideration here, the rotation of the particles may be taken into account, which

adds an equation for the evolution of their angular momentum and introduces e.g.

the Saffman effect (rotating particles attracted towards shear gradient) and the

Magnus effect (rotating particles pushed towards ω × δv). If the particles are large

enough that the flow field is not uniform over their area, effects which scale as

higher powers of particle diameter become relevant (Faxen terms) and can either

dominate or alter propagation speeds. If particles are sufficiently large or intense

acoustic waves are present, the Froude-Krylov effect matters (force on particle
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from integral of pressure over area). Naturally, if the particle density becomes

sufficiently large that the particles occupy a nontrivial fraction of the geometric

volume, this greatly modifies the dynamics. If the particles are embedded in a fluid

with a large mass density (e.g. air bubbles in water), the virtual mass effect (fluid

entrained in the boundary layer effectively forced to move with the particle) can be

very large. Particles dragging a turbulent wake which are subject to acceleration

experience an effective hysteretic/memory force due to the finite time required for

the boundary layer to reaccomodate (Basset effect).

On astrophysical timescales, the Poynting-Robertson effect (Robertson and

Russell (1937)) eventually removes smaller particles from debris disks, given long

enough for the radiation pressure from special-relativistically-abberated sunlight

to sap the particle’s orbital angular momentum. Per Roberton’s equation 4.5, the

time t

t = (7MY)(a/cm)(ρ/g/cc)(R/au)2 (2.62)

is how long a spherical blackbody in thermal equilibrium of radius a and density ρ

takes to spiral in to an orbital radius touching the sun’s photosphere, provided it

is not so small that the radial radiation pressure term defeats the gravity entirely

(which can happen to ionized molecules whose radiation scattering cross section is

enhanced). However, if we want a tpr < tdisk ≈ 1MY then plugging in 10AU and

a density of 1 implies a particle size of less than about 60ish micrometers. Particles

can definitely grow beyond this size via known agglomeration mechanisms.

All of the effects fluid dynamicists associate with particles embedded

in fluid have, at least in principle, an analogue operating upon dust particles

embedded in a gas disk even if the parameters of the flow regime are sometimes

wildly different.
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The forces potentially influencing a small particle (low Re), and some

relevant scalings, as described by the Basset-Boussinesq-Oseen (BBO) equation

are Stokes drag (dv), Froude-Krylov force (action of pressure gradient on particle

surface area, d3k), virtual mass effect (d2aρgas), and Basset effect (effective force

associated with delayed development of stable boundary flow, ≈ d2v). Except for

viscous drag, all decrease in importance rapidly for small particles.

The BBO equation does not cover the Saffman effect Saffman (1965), in

which a small particle in a viscous fluid is attracted to a shear gradient with a

strength proportional to

Fsaffman ∝ ρg
√
νσd(vg − vd)

√
|γ̇| (2.63)

where γ̇ is the strain rate. However, it is difficult to forsee sufficiently intense

sustained shearing for it to generate sustained lift.

For the most part, these effects (while in and of themselves certainly

interesting) can generally be written off in astrophysical circumstances because

the particles are too small and the scales of flow gradients and curvature are too

large.

Viscosity model. In the above equations for the drag force in the

continuum regime (i.e. (2.61)), reference is made to the molecular viscosity µ.

As described in Chapman et al. (1962) (or any other edition of The

Mathematical Theory Of Nonuniform Gasses), the point center of force (PCOF)

model provides a quite accurate description of the viscosity of hydrogen, helium,

and hydrogen-helium mixtures across a very wide range of temperatures, including

all those of interest (C&C chapter 12 table 14), and so this model of viscosity is

adopted for use in gpu-Imogen’s gas-dust drag calculation.
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Simply quoting the input equations and the final answers, the PCOF model

assumes that spherical molecules repel each other with a force along the line

connecting their centers which is of magnitude

F = κrν = F0(r/r0)ν (2.64)

In the limit that ν → ∞ the hard sphere result is recovered with spheres of radius

r0. This model is effective for relatively spherical molecules and especially for

relatively small ones, which lack low-energy molecular vibrational modes.

The viscosity and kinetic cross section of a single species PCOF gas behave

as

µ = µ(T0)(T/T0)1/2+2/(ν−1) (2.65)

πD2
11 = σ(T0)(T/T0)1/(ν−1) (2.66)

where D11 is the effective diameter of species 1 and πD2
11 is the kinetic cross

section. Again when ν is large, µ ∝
√
T and the kinetic cross section becomes

constant as expected for hard spheres.

The viscosity model introduces somewhat of a problem of overdefinition

in application to partly rarefied flow: Kn is defined through the mean free path,

which scales as the inverse of the gas kinetic cross section. Thus we are not free to

look up both experimental measurements for the Cunningham correction and gas

kinetic cross sections, because the requirement that (2.57) equal (2.56) when Kn is

large has already fixed their ratio.

This is resolved here by accepting the Knudsen number definition via mean

free path, (2.51) and using the Epstein equation (2.56) to compute the kinetic

cross section,

πD2
12 = σ0 =

√
2

27
A
√
kbmgT/µ (2.67)
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in which A is the coefficient on Kn in the Cunningham correction at large Kn

(the values adopted from Allen and Raabe (1985) have A equal to precisely 1.7),

mg is the molecular mass, T the temperature and µ the dynamic viscosity at that

temperature.

Thus as inputs, we accept a viscosity, the reference temperature at which

that viscosity is measured, and the temperature dependence exponent. For

example, the NIST REFPROP database gives the viscosity of H2 at 25 degC as

8.9153 × 10−6 kg/m-sec for a molecular diameter of 123.8pm, and that of air

18.492 × 10−6 kg/m-sec for an effective molecular diameter of 167.4pm. These

values are slightly smaller than printed values (136pm and 174pm respectively),

but those values refer to hard spheres.

Viscosity models (and other relevant thermodynamic parameters like

adiabatic index) for several relevant gasses are coded in GPU-Imogen in the file

fluidDetailModel.m.

Fluid-Dust Coupling Equations. Once the form of the drag force

for a single particle embedded in fluid is available the next step is to apply this

to the equations that couple two fluids. The presence of multiple fluid fields

can potentially cause notational difficulties. Here, xg denotes a gas quantity

while xd denotes a dust quantity. Functions which are unambiguous may not be

subscripted.

The first move to apply the drag force to the coupled fluid equations is to

go from the force on one particle to the volume force density and convert to vector
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form,

Fone = Cd(Re,Kn)
1

2
ρgσd|δv|2 (2.68)

Fvol = Cd(Re,Kn)
1

2
ρgσd|δv|2fracρdmd (2.69)

~Fvol = Cd(Re,Kn)
1

2
ρgσd|δv|

ρd
md

~δv (2.70)

(2.71)

Where δ~v = ~vg − ~vd, σd is the dust particle cross section. The volume force density

is just the force on one particle times the dust number density.

This completes suffcient preparation to present the equations for coupled

gas-dust drag. These are a collection of ten first-order hyperbolic PDEs with

source terms, given here in conservative form. They are two copies of the Euler

equations, coupled by exchange of momentum and energy:

∂t



ρg

~pg

Eg

ρd

~pd

Ed


+ ~∇ ·



ρg~vg

ρg~vg~vg + P (ρg)

~vg(Eg + P (ρg))

ρd~vd

ρd~vd~vd

~vdEd


=



0

−~Fvol(dv)

−~vd · ~ad

0

~Fvol(dv)

~vd · ~ad


(2.72)

Because of operator splitting, we now concern ourselves with outlining an

efficient method to handle just the drag term. For finite amounts of dust, the gas

experiences a matching reaction and so the relative acceleration is given by

~arel = ∂t ~δv = (−~Fd/ρg − ~Fd/ρg) (2.73)

The familiar reduced mass appears, this time as the reduced density:

~arel = −~Fdr
ρg + ρd
ρgρd

= −~Fdr/mr (2.74)
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Similar application of kinematics to forces and velocities, followed by remembering

to append the word ’density’ to everything, gives explicitly the equations for the

gas and dust velocity:

~vst =
(ρg~vg + ρd~vd)

ρg + ρd
(2.75)

~vg(t) = ~vst + ~dv(t)ρd/(ρg + ρd) (2.76)

~vd(t) = ~vst − ~dv(t)ρg/(ρg + ρd) (2.77)

where ~vst is the sticking speed. To get the gas and dust momentum, we simply

multiply by the appropriate mass density. Under the assumption that the Basset

term is irrelevant (i.e. that the drag force is instantaneously opposed to the

relative velocity at all times), we can solve a single scalar equation for the decay

of δv.

The last aspect of concern is the desire to keep track of heating

while solving the drag equations since heating will, of course, alter the gas’

thermodynamic properties.

Because of the overwhelming mass of a dust particle relative to a gas

particle, the gas is assumed to walk away with 100% of the dissipated heat caused

by drag. Within the total energy formulation used for the gas, heating is handled

by simply adding to the gas’ energy any kinetic energy lost by the dust due to

drag:

d

dt
Etotal = 0 = KE ′gas +KE ′dust + U ′int,gas (2.78)

This permits exact conservation of energy and yields an exact expression for the

heating of the gas as a function of velocity decay, independent of the details of the

drag force

Uint/ρg = U(vrel = v0) +
ρd(v

2
0 − v2

1)

ρg + ρd
(2.79)
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This equation comes from a work integral and is only valid when the relative

velocity is undriven (e.g. no pressure gradient). An analagous but more complex

equation is available if a constant gas acceleration a0 introduces a steady-state

drift velocity,

Uint/ρg = U0/ρg+ka
2
0t−2~a0 ·(~v−~a0)expm1(−k∗t)−(~v−~a0)2expm1(−2∗k∗t) (2.80)

where expm1(x) = exp(x) − 1. If the acceleration ~a0 = −∇P/ρ vanishes, the final

term yields the difference in velocities squared in (2.79).

These expressions provide useful approximations, however it is simpler and

much more reliable to apply (2.78) to determine the final total energy density of

cells after the new velocities are known: This guarantees that energy is identically

conserved.

Qualitative insight into the behavior of dusty gas is obtainable by

considering plane waves in a medium which is uniform and otherwise at rest with

itself.

Wave motion in dusty gasses has three regimes, one of which can efficiently

convert kinetic energy into heat. In a uniform background initially stationary and

at rest with itself, the plane wave eigensystem has the matrix

Mgd =



−iω iρgk 0 0 0

0 K̂d/ρg − iω ik/ρg 0 −K̂d/ρ

0 ikc2
0ρg −iω 0 0

0 0 0 −iω ikρd

0 −K̂d/ρd 0 0 K̂d/ρd − iω


(2.81)

where k is the magnitude of the wavevector and K̂d = Kd
ρgρd
ρg+ρd

where Kd is the

stopping time of a single dust particle and c0 is the gas-only soundspeed.
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This system has five eigenvalues. Two of them are zero and correspond

to arbitrary dust and gas density fluctuations (entropy waves). One does not

propagate, and corresponds to opposing gas/dust motion that damps, independent

of wavenumber. The final two are the ones of interest and correspond to the

modified sound waves going in the +k and −k directions.

When the systems are weakly coupled (Kd much smaller than oscillation

period), the dust trends toward the inviscid Burgers equation. Linear solutions

become weakly stable at short times in the folowing sense: a superimposed dust

velocity disturbance causes a dust density disturbance that grows linearly in

time, such that adjacent solutions with different δvd drift apart from each other

in density norm proportional to time.

The behavior of the two sonic modes is outlined in figure 6. When coupling

is weak, the structure of the unperturbed sound wave is modified by damping (it

acquires an imaginary part). The dust is always trying to follow the gas sonic

motion but never really succeeds. When coupling is intermediate, dissipation is

large (top middle of figure): because the gas and dust velocities are significantly

out of phase. When the coupling becomes strong, there is effectively only one

eigensystem because vdust is locked to vgas. Dissipation again becomes small, but

wave phase speed decreases (top right of figure): the pressure restoring force is the

same, but the density being dragged along is now (ρg + ρd) in cs ∝
√
P/ρ. The

perfect coupling limit recovers single-fluid behavior with a modified equation of

state.

GPU-Imogen’s ability to handle dusty wave propagation is prodded by the

DustyWave test problem. As discussed in Laibe and Price (2011a) and seen in the
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Figure 6. Relative real and imaginary parts of the sonic eigenvalue as functions of
the coupling strength (horizontal) and dust load (vertical). Dissipation (imaginary
part) is significant only when the relative coupling is in the vicinity of unity.
Substantial modification of wave propagation speed occurs only when coupling
is strong and dust content is high (upper right).
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DustyWave rest results, a resolution problem exists in which for

hgrid ≥ cststop (2.82)

dusty sound waves are inappropriately damped due to an inability to resolve the

tiny phase difference between the gas and dust wave components.

Real dust grains. In realistic astrophysical dusty flows, there exist

two major deviations from the model presented and analyzed above. First, the

particles described above would be known as a monodispersion, with all grains

having exactly the same size. Real dusty flows in nebulas and especially accretion

disks are expected to span a very large range in size, from sub-micron sized

particles to centimeters and eventually to boulders, asteroids and planetesimals.

The dynamic range represented by kilometer-class asteroids to the original

circa 100nm sized particles believed to form as a supernova remnant enters the

cold snowplow phase is a factor 1010 in size. Such a polydispersed flow cannot

realistically be simulated with the fluid approach taken here as the number of

dust fluid particle size bins required would be large and the computational burden

excessive. Such situations are instead considered using either fully Lagrangian

methods (gas and dust “particles”) or with particle-in-cell (PIC) dust in a gridded

fluid.

The second major issue, hinted at in the viscosity model discussion, is that

real dust grains are not hard spheres. They aren’t even soft spheres. In fact the

growth process tends to lend itself initially to the creation of fractal “fluff” of

often remarkably low fractal dimension (see again Mannel et al. (2016)). The

main aerodynamic effect of this is to yield particles with stunningly low effective

densities, and thus surprisingly short drag times.
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CHAPTER III

NUMERICAL METHODS

Having presented the theory of the differential equations describing the

physics GPU-Imogen can solve, now the numeric methods needed to solve them

are described.

First methods for solving the fluid equations in one spatial dimension will

be presented, followed by the natural operator splitting that extends the reliable

one-dimensional solver to multiple space dimensions will be. Then a number of

additional algorithms implementing the various non-ideal terms will be presented.

All of these algorithms have been implemented in the CUDA parallel

programming language and extensively tuned to execute with high efficiency. The

code is supported by two levels of test codes which provide full self-test assurance

that everything is in working order.

Building blocks of Imogen. The size and complexity of the equations

that Imogen attacks can easily seem overwhelming, especially if it is insisted to

write the entire set out at once. Upon examination, the steps to evaluate this

enormous set of equations can be broken into a tree like structure whose individual

leaves are tractable and practical to evaluate.

The first and most important building blocks are those that solve the Euler

equations. This requires the discretization of the Euler equations (2.27) into a

form suited for numeric solution.

∂t~u+ ∂x ~F (~u) + ∂y ~G(~u+ ∂z ~H(~u) = Γ(u, ..., t) (3.1)
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where

~F =
[
ρvx, ρv

2
x + P, ρvxvy, ρvxvz, vx(E + P )

]
(3.2)

~G =
[
ρvy, ρvyvx, ρv

2
y + P, ρvyvz, vy(E + P )

]
(3.3)

~H =
[
ρvz, ρvzvx, ρvzvy, ρv

2
z + P, vz(E + P )

]
(3.4)

into a form suited for numerical solution. While discretizing any one of flux terms

in (3.1) stably and with second order accuracy is not excessively difficult to do,

methods to do so simultaneously in two or three dimensions, which are known as

unsplit methods, are substantially more difficult and for reasons described in the

operator splitting subsection are not used in the code.

The 1D problem

∂t~u+ ∂x ~F (~u) (3.5)

can be efficiently solved with three building blocks: a flux assignment scheme

(FAS) and a reconstruction algorithm to provide a stable space discretization,

combined with a standard time integration scheme for the resulting system of

ODEs. Once these are developed, the operator splitting which permits extension

to multiple space dimensions is presented. Finally, the solvers which handle source

terms and their part within the operator-split scheme are described.

Flux assignment scheme (FAS). The one-dimensional flux

assignment scheme (FAS) is a formal implementation of the map

F := (~uL, ~uR)→ ~F (3.6)

That is, it maps a presumed-constant left and right fluid (or other conservation

law) state onto the resulting flux through the location of the original discontinuity.

One option, certainly, is to actually compute the true solution for the flux

through x = x0. For constant fluid states uL and uR this is known as a (1D)
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Riemann Problem. It is the case that the true flux from a Riemann Problem of

this type is constant (for a finite time), and one option for flux assignment is to

“just” solve it, with ~RP representing the exact solution to the problem:

~F = ~RP (~uL, ~uR)x0 . (3.7)

In simple cases, such as a single ideal gas, an exact solution has been available for

a long time. And recently, completely general exact results have become available

for more complex systems (such as ideal MHD, Takahashi and Yamada (2013)).

However, even for a simple ideal gas, the exact solution requires a

number of branching if-else decisions and worse yet, the numeric solution of a

transcendental algebraic equation. This is rather problematic for an equation

that must be solved twelve times per cell per timestep in a 3D problem, and more

over represents a waste of time solving fine detail that will just be absorbed by

averaging over two blobs anyway.

It is for this reason that considerable attention was historically focused on

the development of approximations to ~RP (~uL, ~uR).

The original proposition to treat the flux calculation as a Riemann problem

was presented by Soviet physicist Sergei Godunov (Godunov and Ryabenki

(1964)), for which these methods based on the breakdown of a discontinuity into

a fan of primitive waves are named. Godunov methods are a subset in the broader

classification of known schemes of a type known as flux difference splitting or FDS.

These, again broadly speaking, decompose the flux emitted from the

decomposition of the RP into a series of different waves. Godunov solvers - either

exact or approximate - represent one physically valid way of computing the flux in

this manner.
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Another major subset of FDS methods involves a decomposition of the form

~F =
∂ ~F

∂~u
∂x~u = A~u′ (3.8)

in which an appropriate Jacobian A is determined by some method, at which

point the problem is reduced to one of linear algebra and eigenvalue/eigenvector

expansion. Methods of this type are generally known as Roe methods for their

introduction by Phillip Roe in Roe (1981).

The second broad strategy subsumes methods known as flux vector splitting

methods, after van Leer (1982), and include the well known AUSM (Advection

Upstream Splitting Method) family of methods and its descendents/improvements.

These propose to compute the flux vector directly, and then break the vector

up into its upwind and downwind components (i.e. to split the vector). This

is advantageous over Godunov methods in the sense that complex, often

computationally intense models of the physical RP are avoided. It is particularly

advantageous when facing a problem for which the characteristic decomposition is

unknown, or is very complex (e.g. the page-filling decision tree for the completely

general ideal MHD’s RP solution given in Takahashi and Yamada (2013)) as it is

not required to explicitly know the characteristics, or the Jacobian/eigenvalues/etc.

The GPU-Imogen code implements the well-known HLL (Harten-Lax-van

Leer) and HLLC (HLL with Contact) approximate Riemann solvers.

Properties of HLL/HLLC. The HLL (Harten, Lax, and Leer (1983))

and HLLC (Toro, Spruce, and Speares (1994)) methods are golden classics in

approximate solution of the Euler equations.

The HLL method assumes that a single intermediate state (and associated

intermediate flux value) exist when the RP discontinuity decomposes, while the
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Figure 7. Graphic depiction of all non-degenerate (all wavespeeds unique)
outcomes for the HLL and HLLC approximate Riemann solvers. Shaded regions
have interacted with the emitted waves. Black angled lines trace wave front speeds.
HLL has two, SL and SR, and HLLC has a third, S∗, defined by the requirement
that the separation between U∗L and U∗R be a contact discontinuity. The HLL cases,
bottom to top, are those of supersonic leftgoing convection, subsonic convection,
and supersonic rightgoing convection. The HLLC cases, clockwise from bottom
left, are supersonic leftgoing convection, subsonic leftgoing convection, subsonic
rightgoing convection, and supersonic rightgoing convection. Degenerate cases:
Both methods, with appropriate choices of wavespeeds, capture stationary shocks
(vertical characteristic line) exactly, in which case the change in state across the
other characteristic line(s) vanishes. In the case of HLLC, this also implies that
S∗ → Snot shock.

HLLC method assumes that two (a left and right) intermediate states exist, and

that the separation between them is a contact discontinuity.

These methods must be given as input values for the left and right wave

speeds; They make no prescription for them. In order that the resulting fluxes

be physical, the input wave speed estimates must bound the physical waves

departing from the RP (i.e. the leftgoing wavespeed estimate must go left faster

than any wave from the exact solution, and similarly the rightgoing estimate). The

recommended choice of wavespeeds given in Batten, Clarke, Lambert, and Causon

(1997) satisfies these requirements, and furthermore captures stationary shocks

exactly for HLL, and stationary shocks and contacts exactly for HLLC.

53



Because of these properties and other desirable outcomes such as

positivity preservation and physicality of the resulting flux, GPU-Imogen uses the

wavespeeds given in Batten et al. (1997) Eq. 51.

Positivity preservation is a property of a numeric method that, given a

transported scalar φ which has evolution equation

∂tφ+ ∂xv(x, t)φ = 0 (3.9)

then

φ(x, 0) > 0→ φ(x, t) > 0 ∀ t > 0 (3.10)

The intuitive explanation is simple - If we start with some φ everywhere and can

only move it around, obviously a situation cannot be arranged with less than no φ.

In the Euler equations, the mass density is such a scalar, as is the total energy.

In simulations which may have extremely large dynamic ranges in these

variables (e.g. the gas disk used to test some of the solvers has a dynamic range in

density of 108, the assurance against unphysical outcomes is very valuable.

1D State Reconstruction. Once a method to assign a flux to an

interface given the interface’s two states ~uL and ~uR is available, the next step is

to consider how to compute the left and right states abutting the cell boundary.

For labelling purposes, suppose we are interested in the state at the

interface between cells i an i + 1, designated i + 1/2. The 1/2 implies constant cell

spacing, though this is not required and the extension to non-uniform cell spacing

is not difficult to intuit.

The labelling has at times proven quite confusing: the left state is the right

side of cell i and the right state is the left side of cell i+ 1.
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The obvious and simplest method is to consider the states of cells as

piecewise constant,

~uL = ~ui (3.11)

~uR = ~ui+1 (3.12)

This is a good idea if we believe that there is a shock present in cells i or i + 1

where the true solution ~u(x, t) jumps discontinuously and no derivative can

reasonably be approximated. But if ~u(x, t) is assumed to be smooth as it generally

is almost everywhere in a real flow, this is a poor idea because clearly for cells of

size h we are making an error of order h.

However, any naive attempt to use cells in the vicinity of ~ui to compute ~u′i

is destined to fail, in the sense that success means not oscillate. A tendency of a

solver to introduce oscillations (new extrema) is here defined as a failure in the

sense that the true solution never does this, and the introduction of oscillations is

infamous for leading to the catastrophic failure of numerical schemes for the Euler

equations.

The problem is depicted schematically in figure 8. While that uses central

differences, there is always a particular slope that will break any linear scheme.

Backward differences and left-biased weights in general will fail at negative steps,

while forward differences and right-biased weights in general will fail at positive

steps. This inevitable failure of any attempt to build a stable higher-than-first-

order method out of linear corrections is embodied in the Godunov Theorem,

which states that stable (monotonicity preserving) linear methods can be of at

most first order accuracy.

The keyword permitting a run-around of Godunov’s theorem is “linear.” If

a correction could be introduced that were a nonlinear function of cell values (and

55



Figure 8. Results of extrapolating from cell centers to edges using naive central-
difference linear slopes (top) and with the van Leer slope limiter (bottom): Note
that the disastrous monotonicity-violating overshoots are cured, while the slopes in
smooth regions are still smooth.

approximate derivatives found from them) at and around a given cell, it may be

possible to construct stable higher order methods.

Slope limiter functions. The total variation of a function defined at

points yi is defined by the sum of absolute value of successive differences,

TV (y) = Σi|yi+1 − yi| (3.13)

This applicability of this property to the Euler equations was introduced in Harten

(1983) under the name Total Variation Not Increasing (TVNI) which is now known

better as Total Variation Diminishing (TVD). This is one of the central properties

of solution of the Euler equations to the point that it, or a close relative, is now

built into nearly all schemes for solving them.

The enforcement of monotonicity by synthesizing two (or potentially more)

“naive” derivative approximations into a trustworthy estimate that does not

induce oscillation is described in great detail in van Leer (1982), who described

several slope limiters which are still in widespread use. Sweby presented a detailed
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description of the operation of the slope limiter in terms of the ratios of adjacent

derivatives and introduced the Sweby Plot to describe slope limiters, along with a

number of slope limiter functions, in Sweby (1984).

A slope limiter accepts two ‘plausible’ corrections for what the interface

state might be extrapolated to - such as the naive forward and backward

differences - and returns a slope such that the now piecewise-linear reconstruction,

when plotted, is guaranteed to maintain monotoncity and positivity.

Limiter functions are generally presented in dimensionless form, acting on

the ratios of adjacent derivatives, e.g. φ(a, b) → aφ(1, b/a) = aφ(r ≡ b/a). If the

proposed corrections a and b have opposite signs, r < 0, we don’t know what the

slope is really doing, and must assume it to be zero for safety: all limiters have

φ(r ≤ 0) = 0 (3.14)

This in mind, some of the classic limiters include the minmod (φmm) and superbee

(φsb) limiters which bound all other 2nd order limiters, the van Leer limiter (φV L),

the Ospre limiters (φOsp), the van Albada limiter (φV A) and the monotized central

(MC) limiter (φMC):

φmm(r) =

 1, r > 1

r, r ≤ 1
(3.15)

φsb(r) =

 φmm(2r), r < 1

2φmm(r/2), r ≥ 1
(3.16)

φV L(r) =
2r

1 + r
(3.17)

φOsp(r) =
1.5(r + r2)

1 + r + r2
(3.18)

φV A(r) =
r + r2

1 + r2
(3.19)

φMC(r) = max[0,min(r, (1 + r)/2, 2)] (3.20)
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Figure 9. Sweby plot showing the 2nd order TVD region (gray shaded) as well as
the Minmod, Superbee, van Leer and Ospre slope limiter curves. For all limiters,
φ(r < 0) = 0. The region 0 ≤ φ < φmm is TVD but it is not second order; In
particular, the curve must pass through φ(1) = 1 to exactly reconstruct a linear
input, as a 2nd order scheme must.

PLM reconstruction encounters a problem at legitimate extrema, because

at them adjacent derivatives have opposite signs. This forces the slope limiter

to return zero derivative, such that the reconstruction at extrema is first order.

Thus, second-order methods using PLM reconstruction suffer first-order accuracy

at extrema, and thus (asymtotically) the convergence plots tend to deviate from

second order.

A very desirable property of the slope limiter is symmetry. The Euler

equations are even under parity, but if the state reconstruction lacks the property
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that

φ(u′a, u
′
b) = φ(u′b, u

′
a) (3.21)

then the calculation will break mirror symmetry. All of the limiter above and

implemented in GPU-Imogen are symmetric.

Reconstruction algorithm. Given a choice of slope limiter φ(a, b)

and a uniformly spaced set of variables ui, the reconstruction algorithm used is as

follows. The division by h that would yield derivatives is dropped since the next

step just multiplies by h/2 again.

(1) Form the simple backward and forward differences,

BDi = ui − ui−1 (3.22)

FDi = ui+1 − ui (3.23)

(2) Find the nonlinearly limited slope

u′i = BDiφ(FDi/BDi) = φ(BDi, FDi) (3.24)

(3) The desired state information for the cell boundary is then

uL,i+1/2 = ui +
1

2
u′i (3.25)

uR,i+1/2 = ui+1 −
1

2
u′i+1 (3.26)

Now that we are equipped with the machinery to compute the fluxes

through cell boundaries given their interface states, and the algorithm to compute

those interface states, the spatial part of the one dimensional Euler equations is

fully discretized.

Time integration methods for conservative equations. With a

slope-reconstruction algorithm and a flux assignment scheme, we have a reliable

method of mapping a series of states ~ui onto the instantaneous fluxes at their
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interfaces ~Fi+1/2. Thus taking the cell-average values ~ui as discrete variables

sampling the true solution ~u(x, t), these two parts provide a stable and accurate

discretization of the spatial part of the Euler equations.

Through the finite volume integral transform (2.1) this yields the time

derivative of the discretized system,

V
d~ui
dt

= σi−1/2
~F |i−1/2 − σi+1/2

~F |i+1/2) (3.27)

where having assumed that we are in an Eulerian frame and that the geometric

elements remain unchanged we can move the volume V and interface cross sections

σ outside of the derivative signs.

As is almost always done for PDE evolution equations, we have translated

the non-time part of the equation into a discrete form and left the time part

continuous in order to apply the Method of Lines. This yields a very large and

sparse system of nonlinear, coupled ODEs at which any applicable ODE method

may be thrown.

Because of the inescapable constraints imposed by δt ≈ cδx, the increased

storage required by high-order temporal methods is seen as insufficient to justify

implementing them for the main fluid equations.

By exploiting certain coincidences in the evaluation of the 2nd order Runge-

Kutta methods (both the explicit midpoint and explicit trapezoid) Imogen requires

only one temporary storage array (5 × number of cells) to solve the discretized

equations with second time order accuracy.

A third time order Runge-Kutta method has been implemented, but

shows no improvement in the convergence characteristics. This indicates that the

spatial discretization error almost always dominates the temporal one. This is not

surprising: The time step is limited by the time for a wave to propagate one cell,
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but the smallest wave-like structure in space that is usefully resolved is around

twenty cells long.

Temporal methods for the Euler equations in GPU-Imogen.

The space of all possible methods for marching an ODE solution forward in time,

i.e. to generate approximate solutions to the continuous equation

du

dt
= F (u) (3.28)

where u is a vector of solution points, and F is a vector valued function, is

enormous.

Let the solution vector at the Nth time point be denoted un. Systems which

compute un+1 using un,n−1,...n−s are called multistep methods. Those based on

linear combinations of F (un+k) with −1 ≤ k < s are the linear multistep methods:

un+1 − un =
s∑

k=−1

αkF (un−k) (3.29)

When α−1 is nonzero, the method is implicit. The explicit LMMs - with equal

timesteps - are known as Adams-Bashforth methods. The first two are

un+1
i = uni + tF (un) (3.30)

un+1
i = uni −

t

2
F (un−1) +

3t

2
F (un) (3.31)

Unfortunately, even at second order, the α vector contains negative entries, a

matter which to say the least does not improve at higher orders. This is a fatal

problem for solving the Euler equations, because if the 2nd order Adams-Bashforth

is considered as a sum of two Euler steps, one step has a negative timestep.

Negative timesteps (or, as here, negative stage weights) are not acceptable when

solving the Euler equations because the Euler equations are not time reversible.

The reason that methods with all-positive weights are so important is

because of the TVD theorem (Harten et al. (1983): If the spatial method is

61



TVD, then forward Euler steps are monotonic and stable; If in addition the

flux is physical, a forward Euler step is guaranteed to output a physical state.

Because convex weights of stable methods (and physical cell states) are themselves

guaranteed to be stable (and physical), higher order methods with convex weights

are the key to building methods that have higher time order accuracy without

sacrificing stability in space.

The TVD condition is an example of a strong stability preserving property.

Numeric methods that have the strong stability preserving (SSP) property at high

time order are an active area of research; See e.g. Kennedy, Carpenter, and Lewis

(2000), and Ketcheson (2008).

However, since the spatial discretization in use is only second order

accurate, classic results for second-order SSP methods are sufficient. All explicit

second order RK methods can be parameterized by the choice of a single

parameter α in the following scheme:

uαi = uni +αtF (uni ) (3.32)

un+1
i = uni +(1− 1

2α
)tF (uni ) +

t

2α
F (uαi ) (3.33)

which is convergent for α ∈ (0, 1], though evidently the full step weights suggest

that α not be too small. Named choices of α include the explicit midpoint method

(α = 1/2), Ralston’s method (α = 2/3) and Heun’s method (aka explicit

trapezoid), α = 1.

Of these, the explicit trapezoid is unconditionally stable and nonoscillatory

(TVD) for the largest timestep, all the way to the maximum timestep permitted

by forward Euler. It is for this reason that the trapezoid is the default time

method for the Euler equations in GPU-Imogen, though the explicit midpoint may

be selected when GPU modules are compiled if for some reason desired.
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Furthermore, the trapezoid method is observed to be substantially more

reliable than the midpoint method at handling corner cases. E.g., tests find

that the midpoint is likely to crash and cause a checkpoint restore (which also

automatically shrinks the CFL prefactor described below) when running the the

Einfeldt and double-blast test problems, while the trapezoid never does this even

for a CFL of 0.85.

Adaptive timestep control. Previous sections have developed

the spatial and temporal discretization for the 1D Euler equations, however

the explicit methods used have well known limits upon their stability when

the timestep is increased. Because of this, and our desire to take the largest

practicable timestep because timesteps cost a lot of wallclock time, adaptive

timestep control is mandatory.

This requirement to limit the timestep δt given a space step δx for an

explicit method is known as the CFL condition, after the seminal work of Courant,

Friedrichs & Lewy who in 1928 demonstrated for various classes of PDEs (Elliptic,

parabolic and hyperbolic) that convergence of time methods was often conditional

upon the ratio of time step to space step.

The CFL of a discretized PDE encodes the maximal local eigenvalue of

the resulting system of ODEs, which goes directly to the stability of conditionally

stable methods (which includes all explicit linear methods) in in the form that

stability requires that λmaxt < const. This constant, now called the CFL

constant, was originally derived by Courant, Friedrich and Lewy in 1928 for several

categories of discretized PDEs in ?, translated to English in ?.

The CFL limit, by dimensional analysis, is a constant times the ratio of the

space step to information speed (for equations which have real, finite information
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speeds):

tCFL = βmax ×min(
h

cfastest

) (3.34)

For explicit discretizations of hyperbolic systems, it is typically in the vicinity of

one. Matters beyond this point become confused by the common use of the same

term, usually a phrase like “Simulation X was run at a CFL of 0.7,” to potentially

refer to any of several things, all related to the details of the numeric method.

One, βmax may refer to the largest forward Euler timestep which has the TVD

property. Two, it may refer to the largest timestep for the time integrator being

used which is TVD. Third, it may refer to the largest timestep for the chosen

integrator which is stable under some other stability criterion which is not the

TVD condition (e.g. TVB, total variation bounded).

A better intuitive understanding can be gained using one of the ideas of the

original Courant paper, information propagation and domain of dependence. For

the Godunov scheme, we can imagine that when the fastest moving information

(fastest wavefront) has traversed one half of a cell, it is possible that it could

collide with a “partner” that has reached the center of the same cell from the

other side. At this point, it is not guaranteed that these waves cannot interact

to generate a faster wavefront propagating back to one of the interfaces, thereby

rendering the original calculation of the flux invalid and the method potentally

unstable.

Based on this reasoning, we can understand the von Neumann result that

under meaning 1, Godunov methods have βmax = 1/2. If the time integrator,

however, is chosen to be explicit midpoint, it will be observed that the method is

only TVD for βmax ≤ 1/4, and becomes TVB for values between 1/4 and 1/2.
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However this introduces practical problems. If a different numeric method

were selected (or implemented), then suddenly all simulations with β prescribed

may find themselves being either excessively conservative, or in unstable territory.

It is for this reason that GPU-Imogen utilizes the second meaning: The

code accepts input values of run.cfl which lie on the interval (0, 1) where 1 refers

to the βmax for the chosen spatial and temporal discretization which preserves the

TVD property.

All other time evolution operators in the code also have an associated

CFL-equivalent property. For example, a stationary gravity potential φ has the

condition that

|1
2
adt2| = 1

2
|∇φ|dt2 < dx, (3.35)

i.e. that the timestep may not be large enough for gravity to make a fluid parcel

freefall further than an entire cell within a single timestep. As in this case dt ∝
√
dx, such a condition is not considered relevant to be worth checking.

Other limits which exist are handled in a manner that prevents them

imposing global constraints: The radiation limit (Γdt <≈ εinternal) is handled per-

cell by nonlinearly stopping cooling at a temperature floor. The gas-dust coupling

time (kdragdt <≈ 1) is evaded by performing coupling with an unconditionally L-

stable method described below. Technically a limit exists as well due to the frame

terms in cylindrical coordinates and/or rotating frames of reference, but these

are tied to angular change per unit time; Unless the azimuthal grid has literally

a single-digit number of cells, the normal CFL limit assuredly satisfies them.

Operator splitting. Extending the one-dimensional prescription to

two or three dimensions with first spatial order accuracy is exactly as simple as

one may imagine: Just sum the time derivatives resulting from each of the ~F , ~G
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and ~H operators, or more generally just compute the flux through every face, and

use their differences to perform a multi-dimensional conservative update.

However, the edges/corners of cells can create a strongly-interacting region

of the local solution. Handling this requires that a multi-dimensional scheme of

higher than first order compute fluxes not pairwise at edges/faces, but at each

corner using data from all four quadrants (or eight octants) touching that corner in

the locally orthogonal coordinate system.

Unsplit schemes certainly, of course, exist but their implementation onto

the chosen parallel architecture appeared quite daunting and so the dimension split

approach was used.

Operator splitting theory. In the split approach, ~F , ~G and ~H are

treated as separate propagators for the system’s state, and operator algebra shows

how individual (i.e. 1D) methods can evolve the combined (~F + ~G+ ~H) propagator

with second order accuracy

The idea of dimension splitting was rigorously analyzed by Strang in Strang

(1968) which considered the case of a two dimensional linear constant coefficient

hyperbolic PDE,

ut + Aux +Buy = 0 (3.36)

for two non-commuting matrices A and B. In the case of the Euler equations,

for smooth solutions, A and B would be the flux Jacobians in two orthogonal

directions expanded about the current fluid state. Per Strang, the evolution of u

can be expanded as a power series in time,

u = u0 + t(Aux +Buy) + t2(A2uxx + (AB +BA)uxy +B2uyy)/2 + ... (3.37)
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if we assume that u is smooth and exchange mixed partials with abandon. If

the series were continued it would be seen that this expansion computes the

exponential of the operator,

u(t) = u0 exp((Aux +Buy)t) (3.38)

If we consider that for the Euler equations Aux and Buy are just the

fluxes in the x and y directions, let us replace them with F/G/H representing

the discretized x−, y− and z− direction flux differences.

Two means of constructing a multi-dimensional method (or more generally,

a solver for a splittable operator) out of one-dimensional methods (sub-operators)

work well. Both operate by generating terms which agree with the terms in

expansion (3.37) to some order.

One consists of applying various sub-solvers (which exactly or

approximately calculate the exponential of sub-operators) with scaled timesteps,

where the list of operators and timestep scale factors is cleverly chosen to arrive at

its end having generated the first N terms of (3.37).

To save space, let the letters refer to the exponential of the operator

rather than the operator and numeric multiplicands to scaling the operator being

exponentiated. In other words, “F/2” would mean exp(tF/2) or “Evolve the F

operator by half a timestep.”

Then the simplest operator splitting is of first order accuracy, and consists

of just solving for the sub-flows, one by one, in any order:

u(t) = F ∗G ∗H ∗ u0 +O(t2) (3.39)

where O(t2) is the local truncation error (the global error being one order worse, as

the O(t2) error is compounded by N t timesteps). The requirement for 1st order
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accuracy is that the coefficients on every individual operator add up to unity,

which is also called consistency.

For any two operators F and G, it is easy to show by direct expansion of

exp((F +G)t) and comparison that

u(t) = F/2 ∗G/2 ∗G/2 ∗ F/2 ∗ u0 +O(t3) = F/2 ∗G ∗ F/2 ∗ u0 +O(t3) (3.40)

forms a method that is second order accurate in the splitting. This is the Strang

splitting. The order of error is the same, but it’s worth nothing that the actual

error term coefficients in the expansion (there are eight) differ.

By induction it can be seen that any such first-order stringing together of

subsolvers can be upgraded to second order by repeating the sequence in reversed

order,

u(2t) = A1 ∗ A2 ∗ A3...An ∗ An...A3 ∗ A2 ∗ A1 ∗ u0 +O(t3) (3.41)

Operator splitting has found great application in N-body direct solvers,

in which the N-body Hamiltonian H = T (pi) + U(xi) has two parts which are

easy to exactly evaluate individually - the change in position due exclusively to

momentum, and the change in momentum due exclusively to position, commonly

called “drift” and “kick” - yet perniciously difficult to evaluate at high order

simultaneously.

A more general approach in splitting is called Multiple Product Splitting

(MPS). This expands the toolbox from products of suboperators to sums of

products. An example of a second-order accurate MPS from two first-order

products is

u(t) =
1

2
(F ∗G+G ∗ F )u0 +O(t3). (3.42)
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Like the above method (3.40), this is of second global order but the error terms

differ considerably.

For any set of operators and a proposed product method, it is not knowable

a priori, in general, what order of method can be constructed: Given the step

fractions as parameters, the requirement that the first P terms in (3.37) agree will

generate an exponentially growing number of constraints. The use of summation

in addition to products introduces new free parameters which can potentially help

satisfy constraints when searching for high order methods. Solvers for irreversible

equations, such as the fluid equations, suffer particularly because non-reversibility

forbids negative timesteps.

There are generally 8 third order terms in a splitting of two operators

(ranging from AAA to BBB). If second order methods are symmetrized by

averaging over permutations of their constituents, then there are four distinct

third order coefficients. One, corresponding to AAA and BBB, has no error if the

individual propagators are solved exactly (as it corresponds to a one dimensional

system).

Of the three second order methods given in (3.40) and (3.42), the Strang

split ones can be symmetrized into the symmetric 2nd order method

u(t) =
1

2
(F/2 ∗G ∗ F/2 +G/2 ∗ F ∗G/2)u0 +O(t3) (3.43)

This can be combined with the second order MPS method in a way that minimizes

the third order error but does not eliminate it (as there are 3 coefficients but only

two variables),

u(t) =
1

2
(
13

16
(F/2 ∗G ∗F/2 +G/2 ∗F ∗G/2) +

3

16
(F ∗G+G ∗F ))u0 +O(t3) (3.44)
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which has slightly over half as much third order error (and no asymmetry in that

error). However the price is a most unreasonable increase in the amount of work

required - this method requires ten evaluations of the F and G operators, where

the Strang splitting requires only three.

Operator splitting in GPU-Imogen. The operators that are split

and solved in GPU-Imogen are the spatial fluxes (which may be in 1, 2 or 3 space

dimensions), and any or all of a variety of other source terms, such as radiative

loss as referred to in the introduction, multi-fluid coupling, gravitation and frame

effects.

All source operators are grouped under a single symbol Γ, which represents

the action of all the source operators (wherein any splittings must, themselves, be

symmetrized).

By expanding the exponential of the operators and requiring that all 1st

and 2nd order errors cancel, a one-parameter family of 2nd order methods is

arrived at:

(
k/2

Γ
) ∗ P ({F,G,H}) ∗ ((1− k)Γ) ∗ P̃ ({F,G,H}) ∗ (

k

2
Γ) (3.45)

For values of k ∈ [0, 1] (such that no attempt to run operators backward in time

is made), a fully second order method of composing the space update where P and

P̃ represent respectively a permutation and the reverse of that permutation (e.g. if

P = {X,Z, Y } then P̃ = {Y, Z,X}).

The product formulation is chosen over the second order MPS because it is

memory efficient. This is because it does not require creating multiple copies of the

simulation state.

Without looking beyond second order, there is no way to decide which

if any ordering of operators is “better.” Because GPU-Imogen’s solver for the
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individual flux operators is only second-order accurate, it doesn’t really matter.

Based on the heuristic belief that one sequence may perhaps generate errors that

partially cancel those from another, GPU-Imogen alternates spatial sweeps in

2D (XYYX, YXXY, ...) and cycles through all six permutations in 3D, both in

a repeating determinstic pattern.

Application of gravitational potential and frame terms. It is

found that the actions of gravitational potential, frame rotation, and cylindrical

geometry source terms can be solved simultaneously with considerable efficiency

and high-order time accuracy. These source terms are the following in Cartesian

coordinates written as equations for velocity, evaluated with density ρ and

positions held fixed:

d

dt


vx

vy

vz

 =


2ωvy + ω2x− dΦg

dx

−2ωvx + ω2y − dΦg
dy

−dΦg
dz

 (3.46)

and in cylindrical coordinates,

d

dt


vr

vφ

vz

 =


2ωvφ + rω2 − dΦg

dr

−2ωvr − dΦg
dφ

−dΦg
dz

 (3.47)

Because these terms act purely upon the kinetic energy of the gas, we do not need

to numerically calculate an integral to track the total energy because we have an

exact one at hand, namely that the change in total energy is simply the change in

kinetic energy, which is trivial to calculate exactly (.5ρ(v2
final − v2

initial)).

The reason that high time order accuracy is desired locally here, even

though the fluid dynamic algorithm is only second-order space and time, is because

these terms lack the intrinsically conservative behavior of conservation equations.
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Depending on how they are solved they can, in fact, erroneously invent momentum

and energy out of nowhere. This we desire to suppress to the greatest possible

extent for long simulations.

The total gravitational potential (the static field, dynamic solution of

Poisson’s equation, and sum over fields from compact objects if any exist) is here

assumed as a given, having been already evaluated at all points on the grid. The

potential gradient is calculated using either 2nd or 4th order central difference

stencils for regular grids with spacing h,

∂f

∂x
=
−f(x− h) + f(x+ h)

2h
+O(h2) (3.48)

∂f

∂x
=
f(x− 2h)− 8f(x− h) + 8f(x+ h)− f(x+ 2h)

12h
+O(h4) (3.49)

These formulae and a litany of other finite difference, scattered-interpolation and

mesh-metric formulae are given in Hyman and Larrouturou (1982).

Once the potential gradient is available, the problem becomes completely

parallel because every cell is an independent problem. To acheive high order

from few variables, Gaussian quadrature is adopted. By construction, Gaussian

quadrature with s points exactly reproduces the integral of a polynomial of order

2s − 1, and therefore has accuracy of order O(2s). The 2nd order Gauss-Legendre

method (one quadrature point) is the implicit midpoint method. The 4th order

(GL-4) and 6th order (GL-6) methods are described below.

The only difficulties arise in solving for the X-Y or R-θ velocities, as the z

equation is trivial (the only action in z is gravity). The in-plane variables represent

a system of two equations. It has been found that Gauss-Legendre quadrature

can be made to iterate a solution of these with extremely high efficiency on GPUs

(acheiving nearly 80% of theoretical maximum mathematical throughput).
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The Butcher tableau that must be solved for GL4 is

1/2−
√

3/6 1/4 1/4−
√

3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4

1/2 1/2

(3.50)

And that for GL-6 is

1/2−
√

10/15 5/36 2/9− 1/
√

15 5/36−
√

15/30

1/2 5/36 +
√

15/24 2/9 5/36−
√

15/24

1/2 +
√

10/15 5/36 +
√

15/30 2/9 + 1/
√

15 5/36

5/18 8/18 5/18

(3.51)

When referring to them abstractly below, the component names

ci ai,j

bj

(3.52)

will be used. With two equations, it can be seen that the 4th (6th) order methods

will require solving a system of 4 (6) equations simultaneously. This requirement

to solve s × N variables at once is what generally precludes the use of GL type

methods for large coupled systems of equations (large N) despite their accuracy

and stability properties.

The fixed point iterations are Gauss-Seidel like, but rather than backsolving

rows in a matrix the nonlinear equations are manipulated directly. The equations

for the p-th vr are independent of vr and yield “exact” stage values for vr given the

current estimates of vφ:

v(n+1)
r,p = v0

r +

[∑
s

ap,s(rω + vφ,s)
2/r + cpΦr

]
τ (3.53)
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Next the equations for the p-th vφ are sequentially solved for vφ,p,

v
(n+1)
φ,p =

v0
φ −

[
ap,p2vr,pω − (1/r)

∑
s<p

v
(n+1)
φ,s (vr,s + 2rω)− (1/r)

∑
s>p

v
(n)
φ,s(vr,s + 2rω)− cpΦφ

]
τ

1 + τap,pvr,p/r

(3.54)

The reciprocal factor suggests one obvious limit upon the radius of convergence,

but this will never be encountered in practice because for that to happen the grid

would have to extend within less than one radial cell size of r = 0 (The CFL

timestep limit precludes τv > h).

The limitations on timestep imposed by the explicit CFD algorithm mean

that the change here is in fact small; In practice, improvements in equilibrium

holding (i.e. reduction of errors in the interior of an equilibrium fat gas torus) go

away with only an explicit Euler first-guess and two iterations on a reference test

case.

That the algorithm described here acheives performance at the price of

generality: The structure of the specific equations of motion being solved is

expressly manipulated to provide a very fast fixed-point iteration of the implicit

system. There is an upper bound on the radius of convergence (and thus the stable

timestep) but it is expected to be very large.

When the fluid is held in place (Due to operator splitting, all fluid

transport is handled by the CFD routines) these terms act purely on the

mechanical energy of the fluid and have no action upon its internal energy density.

As a result the total energy equation can be solved exactly by simply subtracting

the kinetic energy from total energy before and adding its new value after. This

efficiently prevents a wide range of potential maladies associated with unphysical
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states that could be created by truncation error if an approximation for total

energy were used.

There are two “knobs” that control this method: The choice of 4th or 6th

order time integration given the potential gradient, and the choice of the 2nd or

4th order spatial scheme to compute the potential gradient. When tested upon

a prototypical application for this operator solver, a 3D gas disk in cylindrical

coordinates with gravity and frame rotation, all three methods are associated

with exceedingly low levels of error inside of the disk as imaged in log |∂tρ|. The

exception occurs at the midplane, where the fluid solver inescapably is first order

accurate (because density has an extremum - a maximum - there).

Application of multifluid drag. The equations of motion for drag-

coupled gas and dust in astrophysically relevant regimes are given in detail in

Laibe and Price (2011b) and produced previously in section II

Several solvers of two classes are implemented in GPU-Imogen: The classic

explicit midpoint (EMP) and 4th order Runge-Kutta (RK4) methods, and three

members of a family of exponential methods dubbed the LogTrap method.

Exponential Methods. The linear multistage methods are well known.

The exponential method deserves some explanation. Exponential integrators are

designed to approximate the general semilinear equation

y′ = f(t, y) = Ly + nl(t, y) (3.55)

where L may be either the linear part of the ODE or a linearization about the

current state and nl is respectively either the nonlinear part or nonlinear residual.

Details as well as the basis for the implementation in Imogen may be found in

Caliari and Ostermann (2009).
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The very short summary is, exponential methods are described by Butcher

tableax except that the entries are now matrix-valued functions instead of scalars.

In addition to the classical (nonstiff) order conditions which guarantee that the

first N terms of the power series expansion are correct, exponential methods have

stiff order conditions which determine their order of accuracy in solving the stiff

(linear) part of the problem.

The exponential equivalent of the Euler method has the Butcher tableau

0 0

φ1

(3.56)

with the φ1 function defined as

φ1(x) = exp[x]− 1. (3.57)

This method has classical order two and stiff order one.

Assuming that the matrix exponential eLt can be computed effectively (in

general this is an extremely bad assumption), it should not be surprising that

under that condition such methods can potentially have substantial advantages

in computational efficiency (accuracy per work done).

Historically matrix exponentials have been very troublesome to compute

numerically (Moler and Van Loan (2003)), especially when finite difference

operations create large, sparse matrices. In the case being considered here, though,

where the stiff action is that of force directly opposite to the direction of relative

motion, with all cells independent, it is very easy to solve the matrix exponential

because if the instantaneous relative velocity decay time is defined using

k = −Fdrag(vgas − vdust)/(vgas − vdust). (3.58)

then the L in (3.55) is simply Lij(t) = diag(−k,−k,−k).
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LogTrap Method. In reality, the drag coefficient itself is generally

dependent on the relative velocity. If the timestep is large enough that the drag

coefficient changes greatly during the span of a single timestep, the drag regime

can become extremely nonlinear as the rate of change of L itself begins to seem

stiff.

The evolution in L has no negative impact upon stability because we know

a priori that none of the eigenvalues will flip sign: drag may get weaker but it’s

not going to turn into a magic free energy source where drag makes particles

accelerate.

The detrimental effect of a rapidly changing L to a method such a

ETDKR1 is the degradation of the accuracy of the numeric solution because the

drag is not accurately modelled over the interval being integrated during a given

timestep.

A novel method for addressing this condition implemented in GPU-Imogen

is deemed the LogTrap method (for LOGarithmic TRAPezoid). If we are solving a

nonlinear ODE

y′ = −k(y)y (3.59)

, obviously the general nonlinearity will preclude exact solution. The logtrap idea

is that if an interpolating polynomial kp(t) can be constructed instead with the

property that

kp(t) = k(y(t)), (3.60)

then a very simple exact form emerges, that

y(t) = y0e
−

∫ t
0 k(t)dt (3.61)
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Of which the case of linear drag can be seen is the case of kp(t) =constant. In the

simplest case, that of measuring k once at t = 0, the resulting first-order LogTrap

method (LT1) yields linear exponential decay and is equivalent to the exponential

Euler method (for the case (3.59), ETD methods are more broadly applicable).

The second-order logtrap method uses k0 to advance to time t and compute

k1 there (then k1 incurs a locally second-order truncation error), and the result is

ylt2 = y0e
−(k0+k1)t/2 (3.62)

such that kp is a linear interpolant. This is where the name comes from, because it

applied the Trapezoid method to the Log, or in shorthand LT2.

Further improvement in accuracy may be affected by using this (globally)

2nd order approximation to advance y0 to y1/2 and compute k1/2. Now in

possession of three points, Richardson extrapolation yields Simpson’s rule,

ylt3 = y0e
−(k0+4k1/2+k1)t/6 (3.63)

Assuming the evaluation of the individual k values is stable, because the weights

are convex this method (LogSim?) is also clearly L-stable for positive timesteps

when applied to problems of the form (3.59).

Both the ETD and the LogTrap methods are examined by the DustyBox

test in the implementation test descriptions. The use of Richardson extrapolation

or fancier RK tableaux to derive more points and better quadrature rules could

be continued, however the LT3 algorithm already has sufficient accuracy (and to

spare) that global error is dominated by other operators and operator splitting

error.

Challenges for strong drag. Strong gas-dust coupling (short drag

time) in a multifluid flow is a famously difficult problem to handle numerically.
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When the coupling term becomes extremely strong it becomes problematic to

consider the system from the standpoint of two fluids coupled by a perturbing

drag. In Laibe and Price (2014), Laibe & Price present the opposite angle

formalism of a single fluid containing fractional components εk with perturbed

velocities δvk. Unfortunately, this would have required rewriting the entire

Godunov solver from the ground up and was considered as presenting rather too

much of an implementation challenge.
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CHAPTER IV

PARALLEL IMPLEMENTATION

Now more than ever, large numeric problems are not solved by serial

processors running faster (if for no other reason than that multiple physical limits

prevent them from running any faster) but by more processors running in parallel.

The gpu-Imogen code, as its name suggests, takes advantage of the parallel

processing facilities of nVidia Tesla GPUs, which provide banks of hundreds or

thousands of tightly coupled parallel processors in the space of a standard video

card. The code is capable of using any or all of the GPUs available on a node, and

also runs in parallel on multiple nodes using MPI.

This problem is solved by a hierarchical arrangement in which the whole

space being simulated is distributed among processor nodes, which in turn

distribute it among their GPUs. In turn, the GPUs each distribute their local

processing tasks among tens or hundreds of streaming multiprocessors, each of

which have a hundred float point units at its command.

All processing that the code performs upon the distributed fluid (and/or

ancilliary data) arrays is fully parallelized. Here some underlying ideas in parallel

code speedup are presented and the code’s performance is compared under a

variety of conditions.

Types of parallel speedup. There are two forms of speedup of

interest: Strong scaling and weak scaling. If T (s, n) denotes the execution time

for a program doing w amount of work on n processors, strong scaling asserts that

T (w, n)strong = T (w, 1)/n, (4.1)

that is, that a problem of fixed size runs faster and faster as more resources are

thrown at it. Most algorithms that exhibit this behavior are known as trivially
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parallel: There is no dependency at all between calculations, so dividing them

up to more processors is extremely simple. An example of such would be the

calculation yi = f(xi) for i ∈ [0, N).

Inevitably weak scaling breaks down at some point once an irreducible

atomic unit of calculation is reached. In the vector mapping example just given,

clearly the simple distribution of a job of size M to N processors will encounter

problems when N > M .

A program which exhibits weak scaling behaves with the property that

T (nw, n)weak = T (w, 1), (4.2)

that processing time remains the same as the job is scaled so long as work per

processor remains constant. This avoids the endpoint of strong scaling where some

indivisible unit of work is eventually encountered.

An algorithm which does not parallelize what so ever would have the

relation

T (w, n)serial = T (w, 1). (4.3)

An example of such would be a calculation of the form yi+1 = f(yi), which includes

ODE initial value problems (IVPs). The calculation of multiple yi at once cannot

possibly be done, because each new y depends on every previous y.

Real computations will contain both parts that can be parallelized and

parts that can’t. Amdahl’s Law states that if a fraction p of a program can be

parallelized and a complementary amount 1 − p can’t be parallelized at all, then

the maximum amount it can be sped up is 1
1−p . This represents the limit in which

the parallel part executes instantly, and provides an immediate rule of thumb for

how much a program can possibly be sped up.
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gpu-Imogen solves a (very large) IVP ODE; While multiple steps cannot

be computed at once, each step involves solving a nonlinear function of millions

or possibly billions of variables, and it is the evaluation of the fluid dynamic steps

themselves that is parallelized.

Parallel strategies. The underlying PDEs that Imogen solves are of

the strictly hyperbolic type and therefore have a locality property (all wavespeeds

are real and finite). Looking back in time, the region from which information can

reach and therefore influence any given point looks like (is conformally equivalent

to) a cone. This physical locality property leads to a computational locality

property: Because the true solution at any point depends only on a conical region

extending in to the past, the computed solution at any cell depends only on cells

containing that conical region (In fact, the solution not only can but must depend

on all cells in the past signal-cone in order to be stable), and that cone extends

only to the neighbors, as depicted in figure 10.

For completeness’ sake, we note that the domain of dependence of

equations of different character. Parabolic equations (e.g. incompressible fluid

equations) are characterized by an infinite domain of dependence, but one in

which the dependence on distant parts of the solution generally decays rapidly

(exponentially). Elliptic equations (e.g. electrostatics or gravitation) have

imaginary-valued characteristic ‘speeds’ and show the behavior that the solution at

every point depends upon every other point, and not necessarily weakly. This all-

to-all dependence is what makes the solution of elliptic PDEs infamously difficult

to parallelize.

Ghost cells. When calculations possessing a locality character are

distributed, it is inevitable that at the boundary between processors i and j,
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Figure 10. Schematic drawing of the domain of dependence (in red), which grows
backward in time, and the domain of influence (in green) which grows forward in
time. Time levels are horizontal lines, while relevant cells are vertical lines. The
bounding exact signal speeds are traced by the dashed lines.

Step 0: Dirty halos

Step 1:  Read boundaries to linear buffers

Step 2: Exchange linear buffers (memcpy)

Step 3: Write linear buffers to boundaries

Figure 11. Depiction of the halo exchange process utilized by gpu-Imogen: First,
the halo sources (solid red/blue planes) are copied to linear buffers; This process
is reasonably efficient, and the GPU’s memory bandwidth is very wide. Then the
halo buffers are exchanged, which is very efficient but limited by the relatively low
speed available. Finally, the linear tapes are efficiently copied back to planes. An
analagous process applies to MPI halo exchanges; The only difference is that the
buffers are exchanged by MPI messages rather than cudaMemcpyDeviceToDevice.
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processor i needs information held by processor j and vice versa. A standard

technique for resolving this conundrum is the use of ghost cells : The data on

processor j that processor i needs for the next timestep is copied to processor i

before beginning the timestep. gpu-Imogen performs parallel exchange between

GPUs and between nodes entirely through the use of ghost cells, and also

uses ghost cells at the level of individual multiprocessors within the GPU for

computation.

A variety of strategies are applied for calculations involving differences on

various directions, sometimes at once, that come up in the process of solving the

evolution equations being used. Most of these have been tested using the nSight

performance profiler and found to acheive good performance.

GPU utilization in gpu-Imogen. The performance of gpu-Imogen

is tested using both simple built-in timer functions to measure the time required

for a given number of timesteps to be taken (as used by the code to estimate its

own likely walltime required to run), and in much greater detail using the nSight

profiler tool from nVidia.

These tests show that once enough work is available (the simulation is large

enough) that the GPU kernels no longer execute in less than the blink of an eye,

the utilization of processing resources is highly efficient.

The archive of 1D simulations which were performed to generate many of

this paper’s results were near the overhead-dominated regime, and they revealed

an overhead that accumulates to roughly 1.6 milliseconds per timestep (meaning

an upper limit of about 600 iterations per second). The 3D simulations were in

the exact opposite, utilizing essentially 100% of available GPU time. The crossover

point depends on the capability of the GPUs being used (the more powerful the
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GPUs, the more work required), as well as the amount of extended physics being

computed but roughly speaking GPU utilization behaves as

utilization =
Ncells

Ncells + 20000
× 100% (4.4)

where Ncells is the number of cells per GPU.

In addition to runtime overhead per iteration, there is a small fixed

overhead required for the MATLAB runtime to start and for GPU kernels to

be JITed on first use, in addition to whatever time is required for computing

simulation initial conditions. This is generally negligible in all realistic use

scenarios, in which many iterations will be run, but it is very clear in profiling runs

in which only a small number of steps will be taken. In nSight there are usually

random (relatively) long delays for the first half dozen or so iterations before

behavior settles in.

An unexpected source of overhead, it turned out, lives somewhere inside the

CUDA runtime: GPU memory allocations/frees, when done on the default stream

for the first device used were found to often carry an extremely large time penalty.

And not only were they slow, the time required for cudaMalloc and cudaFree

actually appears to be proportional to the size of the alloc or free. With no way

to avoid this, several groups of compiled functions now support the ability to be

passed pre-allocated buffers to minimize the number of allocations/frees that must

be done.

When there is enough work to keep GPUs occupied, it is found that the

code is very efficient at distributing itself across multiple GPUs on a single node.

This is no surprise, of course, since the bandwidth connecting devices inside

a single node is very large (usually on the order of 10GBps, comparable to a
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Figure 12. Crops of timelines recorded by the nSight profiler in two different cases.
Above, an extremely small simulation (4096 cells in one dimension) takes less
time computing than the simulation has overhead: Only about 2.3msec of GPU
utilization were reported, and 55msec elapsed in computing 4 timesteps (excluding
significant startup overhead on the very first timestep), for a GPU utilization
efficiency of only 4%. Below, a larger simulation (1024x256) occupied about 190 of
240msec to solve 4 timesteps, using around 80% of available GPU time.

86



100Gbps network interface, though new NVLink GPU-to-host interfaces are much

faster).
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CHAPTER V

CODE VERIFICATION TESTS

This section describes a substantial battery of tests which have been applied

to the G G code in order to verify that it correctly solves the basic equations of

shock-capturing fluid dynamics and a range of additional physics.

Code test parameters. All code tests are run with the following

parameters (as relevant) unless otherwise specified:

The temporal integration method is explicit trapezoid. The CFL prefactor

is set to 0.85. The slope reconstructor used in the Godunov solver extrapolates

primitive variables (ρ, v, P ) using the Ospre limiter. The flux assignment is HLL.

Code correctness tests - 1D.

Convergence of wave propagation. In the wave propagation tests,

simulations are initialized with uniform backgrounds upon which are imposed

exact solutions of sonic or entropy waves. Exact nonlinear initial conditions are

found by integrating the infinitesimal sonic or entropy wave eigenvector (linear)

waves over an amplitude parameter. In this manner the initial condition to the

situation depicted in figure (13)’s sound wave is given in terms of the normalized

amplitude a = δρ/ρ0 as

ρ(a) = ρ0(1 + a) (5.1)

v(a) = M0c0 +
2c0

γ − 1

[
(1 + a)

γ−1
2 − 1

]
(5.2)

P (a) = P0(1 + a)γ (5.3)

c(a) = c0(1 + a)
γ−1
2 (5.4)

x(a, t) = x0 + c0t((1 +M0) +
γ + 1

γ − 1
((1 + a)

γ−1
2 − 1)) (5.5)
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Figure 13. X-T plot depicting nonlinear propagation of a sonic disturbance leading
to shock formation: Where the soundspeed is a decreasing function of position,
three lines tracing the movement of characteristic packets converge towards the
point of maximum negative gradient until at the time t = t∗ given in (5.7) they
collide. This marks the formation of a shock and the end of the exact solution
used to track wave propagation accuracy. Two retreating lines on a region where
soundspeed is increasing depict rarefaction (spreading out of characteristics).

which are the density, velocity, pressure, adiabatic sound speed and characteristic

packet positions (the location where an initial sonic characteristic of amplitude a

starting at x0 at time t will be found), and M0 is the Mach at which the uniform

background is moving. The code test unit uses ρ0 = 1 and P0 = 1 for the

background fluid state; The choice is arbitrary because there is nothing else to

normalize against.

The exact initial condition for the sound wave is essential to test the code,

as a linear sound wave initial condition will generate an error proportional to

amplitude squared that does not decrease when the grid is refined.

The exact solution to an entropy wave is simply an arbitrary perturbation

to density.
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In the test, the simulation runs on a unit line, square or cube in dimension

1, 2 or 3 respectively. The wavenumber k is quantized by the imposition of

periodic boundary conditions, such that wavennumbers ki = 2πni are chosen for

integer inputs ni. There is a choice in labelling as there are two sonic eigenvalues

(k and −k) per ω but two sign choices for ω as well, but ω/k = (−ω)/(−k). We

choose positive ω. By utilizing symmetric flux limiters, which have the property

that F (ρ, v, P ) = −F (ρ,−v, P ), we can guarantee preservation of parity symmetry

about a coordinate axis. By extension, this means only one half/quadrant/octant

of ni need to be tested.

Analytically there is no limit on n. On the finite simulation grid a cutoff is

imposed on n by, at the very least, the Nyquist sampling theorem - ni <
1
2
ngrid,i.

The actual range of wavenumbers that a code can resolve is called its spectral

bandwidth and, for grid based codes, this is necessarily substantially less than

the Nyquist limit (only spectral element codes come anywhere close to the

Nyquist limit). Sine waves in GPU-Imogen resolved by less than about 20 cells

per wavelength experience substantial damping: (Im(ω) ≈ 0.1Re(ω)), implying a

damping period of a few oscillation periods.

Galilean invariance is tested by running with a static background (M0 = 0)

and with a moving one (M0 = .526172, a completely arbitrary value) and finding

that the results are identical up to the 2nd order truncation error. The truncation

error is not Galilean invariant because it is tied the grid and thus the frame in

which the flux differences are evaluated.

Under the Euler equations, with an ideal gas equation of state, the group

velocity is constant. By using the Euler equations we have already assumed

that the second derivative terms (mass diffusion, kinematic viscosity, thermal
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diffusivity) should be neglected. Thus we expect a wave packet of infinitesimal

amplitude to be everlasting, experiencing no dissipation, dispersion or distortion,

so that

~u(x, t) = ~U0 + ε
[
1,±cs/ρ, c2

s

]
f(x± ct) (5.6)

is a solution for any finite, smooth f for at least some length of time.

With waves of finite amplitude, adiabatic compression modulates the local

soundspeed so that the peaks and troughs see higher and lower local sound speeds,

and pull ahead or fall behind the midpoint of the wave (where δρ crosses zero and

the characteristic amplitude is infinitesimal). This is a form of self-interacting

nonlinearity known as wave steepening. It is also observed in gravity-driven surface

waves in shallow water (including tsunami), and in nonlinear optics where it is

known as self phase modulation.

In all its forms, the underlying nonlinear mechanism is that the local

wave amplitude modulates its own local phase velocity. In acoustics, unless the

fluid equation of state exhibits exotic behavior, the coefficient of modulation is

always positive for all perturbative waves - there is no amplitude at which further

compression of an ideal gas causes soundspeed to begin dropping, for example.

This is not the case in e.g. nonlinear optics, in which the group velocity dispersion

coefficient may have either sign; Positive values leading to soliton formation (an

optical analogue of a shock) and negative ones leading to pulse stretching.

The point is, the finite amplitude sound wave represents an exact nonlinear

solution to the Euler equations which isn’t based on a symmetry or balance.

In the one-dimensional wave tests, waves are initialized using a sinusoidal

density with wavenumbers of 1 and a relative amplitude 1%. This is tame as far as

perturbations go, but in air would be equal to a literally deafening sound pressure
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level of 154dB (0dB in air is referred to a 20µPa pressure fluctuation, which is

roughly the quietest sound a young person can hear at 1KHz in an anechoic

chamber. The largest amplitude possible for an undistorted sine wave in air is

194dB before the trough reaches zero density).

The simulation is evolved forward in time for 0.95 times the critical time t∗,

t∗ =
2

cs(γ + 1)
max(−da/dx)−1(wave periods) (5.7)

t∗ =
4π

c2
s|k|(γ + 1)

max(−da/dx)−1(time) (5.8)

The value t∗ is the time at which characteristic lines near the largest negative

amplitude slope will cross, at which time the flux becomes multivalued and a

discontinuity (shock wave) forms. This is the endpoint for the solution prescribed

in (5.1)- (5.5).
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Figure 14. Convergence towards exact solution of a sonic characteristic. Initial
condition: x ∈ [0, 1], ρ0 = P0 = 1, γ = 5/3, M0 = 0 or M0 = .526172 (an arbitrarily
chosen value), exact sound wave with a(x, 0) = a0cos(k · x), a0 = .01 and k = 2π.
Norms measured at t = 0.95t∗ ≈ 6.803874. The solution is Galilean invariant up to
truncation error.
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Figure 15. A reference sound wave of amplitude .01 shown in its initial state,
immediately before the critical time at which it forms a shock, and shortly after
forming a shock; Numeric simulation with 512 grid points. The wave has been
horizontally shifted for presentation. The evolved waves required approximately
10000 and 15000 time steps respectively.

The flow, of course, still exists, but now characteristic transformation

(between forward sonic, entropy, and reverse sonic) occurs at the shock, as well as

a scattering by these different characteristics off each other and dissipation by the

shock that alters the ‘equilibrium’ state. Which is to say, any attempt to continue

the exact solution grows extremely complicated very quickly.

Dustybox test (drag solver). The DustyBox tests the time accuracy

of the drag solving algorithm independent of space. Spatially uniform gas and dust

with specified parameters are placed into a box and given a relative velocity, and

the simulation is let evolve and they decay.

Assuming the form of the drag law is exactly integrable, the exact

relative velocity is available for comparison. This is not the case for the

general law given by Eq. 2.61 outside of its asymptotic limits. Instead,
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Figure 16. Demonstrating the efficacy of the LogTrap solver algorithm in a box
of length 1 meter. Dust particles with σ = 7 × 10−6m2 are initially in motion
at 130m/s in hydrogen at STP. With Kcouple = d log v

dt
/(cs × 1m) defined as the

test particle stopping time over the sound crossing time set to 50, 200, 500, and
5000 by respectively setting particle masses to 188, 47.3, 18.9 and 1.89 nanograms,
accuracy remains dead on. In the Kcouple = 5000 case, the relative velocity decays
by 99.93% (and Re decreases from 3610 to 2.4) in the very first timestep, yet the
relative error just before velocity decays below resolvability is still only 6%. In the
other cases, the error at the endpoints is 0.36%, 0.05% and 0.002% for decreasing
Kcouple.

reference results are generated using Matlab’s ode113 function with the options

odeset(’Reltol’,1e-13,’AbsTol’,1e-14) .

In the test, fluid 1 is given the microscopic parameters of molecular

hydrogen, a density of .0824 and a pressure of 101325 (hydrogen at STP). ”Fluid”

2 is given a cross section of 7 × 10 − 6m2, corresponding to a sphere of diameter

approximately 3mm.
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Figure 17. Plots showing the 1st through 3rd order accuracy of the ETD,
LogTrap2 and LogTrap3 solvers. The fluid conditions are the same as in figure 16,
with Kcouple set to 10. The dust velocity is initially 0.1 times soundspeed, and the
gas speed is (per the legend) .01, .25 and 2 times soundspeed (referring here to the
unmodified cs). The simulation is run for 10 milliseconds and the resulting relative
velocity is compared to the result from solving the drag ODE using Matlab’s
ode113 solver with the tolerance set to 10−13; Both the error prefactor and the rate
of convergence of the LogTrap algorithms are superb.

This cross section was chosen so that the initial relative velocity of 0.1cs ≈

130m/s yields Re ≈ 3610, well into the turbulent regime. From here, particle mass

is chosen in order to set the coupling time (without comment as to the physicality

of the implied densities).

Four numeric solvers have been implemented: Classic explicit midpoint

(EMP) and 4th order Runge-Kutta (RK4), the exponential Euler method (EE),

and an exponential-like method dubbed the LogTrap method.

The explicit methods are used only to check that the drag-calculation core

function is correctly implemented because they are only conditionally stable and

would require additional work to test for timestep restrictions in practice.
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Dustywave test. In the dustywave test, the ability of the code to

correctly propagate a sound eigenstate of a coupled gas-dust system is tested for

several coupling strengths (weak, intermediate, strong), which correspond to a test

particle stopping time respectively much longer than, comparable to, and much

less than the sound wave oscillation period.

Because coupled gas-dust flows require computing the microscopic viscosity,

and this microscopic value in turn takes physical values as inputs, this test is run

in SI units rather than normalized units. The calculation domain is a box one

meter long with circular boundary conditions.

The 0th order initial conditions for the gas are a density of .0824, velocity

of 0 and pressure of 101325 (SI units for molecular hydrogen at RTP). The

thermodynamic model is warm molecular hydrogen with γ = 7/5; The details are

available in gpuImogen via fluidDetailModel(’warm molecular hydrogen’).

They are, a dynamic viscosity of 8.9135 × 10−6kg/m-s at 298.15K, scaling

as (T/298.15)0.7, and a kinetic cross section of 1.9272 × 10−19m2 scaling as

(T/298.15)0.2.

The 0th order initial condition for the dust is a density of 1, at rest. The

dust particles are given a radius of 5 micrometers. In order to satiate the numeric

solvers, an adiabatic index of 1.01 is asserted. The particles are treated as hard

spheres.

The relative coupling strength depends on the particle drag time versus

wave frequency, which in turn is proportional to wavenumber. For a given target

coupling strength as input, the particle mass is sought which generates it:

Starget = K̂d(md)/ω(K̂d(md)) (5.9)
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where ω is a sound wave eigenvalue of the dusty gas linear matrix (2.81). Given

that the relative coupling strength is monotonically related to the particle

mass, if an interval on which the solution to this nonzero root-finding problem

is guaranteed to lie can be given to a root finder algorithm (such as Matlab’s

fzero()) then convergence is assured. Starting from an arbitrary m0, Imogen first

computes mlow by scaling m0 down by factors of 4 until the coupling strength is

too large, then scales up by 4 until it is too small to find mhigh. The solution to

(5.9) is now guaranteed to lie on the interval (mlow,mhigh).

It is noted that while any mass and particle size/volume may be asserted

numerically, physically realizable values are bounded by the density of solid matter

not subject to external compression, the pressures required to substantially raise

the density of solid matter not generally occurring outside of stellar and planetary

cores, detonating atomic bombs or diamond anvils.

Once md is found, a sine wave perturbation of amplitude 0.001 and

wavelength equal to the length of the box is evolved to t = k/Re [ω], i.e. one trip

through the box, and the metric error is computed in the p-norm as

Ep =

∫ 1

0

[(ρg(x)− ρg,ref (x))p +R(ρd(x)− ρd,ref (x))p]1/p dx (5.10)

with R = ρd/ρg is the ratio of equilibrium densities. The inclusion of the dust

density, as can be seen in figure 18, is associated with initially slow convergence

because of the tendency of the dust to evolve entropic mode errors - stationary

glitches in density - which have a strong tendency to persist over time, until finally

2nd order convergence is obtained asymptotically.

Convergence of Sod shock tube. The Sod shock tube is a classic

test for shock-capturing codes in which the decomposition of a one-dimensional

97



5 6 7 8 9 10 11

log
2
(# pts)

-15

-10

-5

0

5

lo
g

2
[|

 -
 

e
x
a

c
t|/

|
 

in
i|]

Accuracy of dustywave solutions

1-norm

2-norm

Reference 2nd order slope

Figure 18. Convergence of the Dusty Wave test with overlaid 2nd order slope lines.
The initially 1st order convergence is due to the tendency of the dust to evolve
persistent entropy-mode glitches.

Riemann problem (RP) is evolved forward until shortly before the emitted waves

reach the boundary.

The RP tested here is the same as that specified by Sod (1978) and is

specified by left and right states of

uleft = [ρ = 1.0, v = 0, P = 1.0]

uright = [ρ = 0.125, v = 0, P = 0.1]

with the gas equation of state defined by γ = 7/5.

The simulation is a unit line segment on the interval [−0.5, 0.5], with

u(x < 0) = uleft and u(x ≥ 0) = uright and constant BCs. The exact solution

to the decomposition of this particular RP is given in terms of the self-similarity
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parameter s = x/t, in all cases for t > 0, as

ψ(s < −cleft) = uleft (5.11)

ψ(−cleft < s < ctail) = ufan(s) (5.12)

ψ(ctail < s < ccontact) = ub (5.13)

ψ(ccontact < s < cshock) = upostshock (5.14)

ψ(s > cshock) = uright (5.15)

This describes a decomposition that emits a left-going rarefaction fan, two regions

of constant state separated by a contact discontinuity, and a rightgoing shock

wave. The first step is to solve a transcendental equation that equates the pressure

after the shock jump with the pressure at the tail of the rarefaction,

G = (γ − 1)/(γ + 1) (5.16)

β =
γ − 1

2γ
(5.17)

(P β
l − P

β)

√
(1−G2)P

1/γ
r

G2ρl
= (P − Pr)

√
1−G

ρr(p+Gpr)
(5.18)

with left pressure Pl, left density ρl, right pressure Pr and right density ρr as

inputs and the postshock pressure P to be solved for. From this the Rankine-

Hugoniot relations yield the remainder of the postshock state, upostshock =

RP (uright). By integrating the sonic amplitude parameter for Eqs. (5.1 - 5.5), the

state ufan(x, t) = ufan(s) is found, as is the speed ctail and the position of the tail.

Then ub = ufan(ctail) and the entire solution is written.

This process is implemented in the function SodShockSolution(xcoords,

t). The function is careful about cells which straddle boundaries between the

piecewise states and computes integral averages in them in order to be correct

(as the numeric code, it must be remembered, represents cells as volume averages).
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Figure 19. Convergence of numeric solution of a Sod shock tube. 2-norm
convergence slows to 1/

√
(N) as the diffusion of the contact eventually dominates

the error.

The error metrics are generated by comparing the L1 and L2 differences

in density. As expected, the solution only converges at 1st order because of the

O(h) uncertainty in the exact shock position on the grid and because the slope

limiter goes to first order there, leading to large errors in the vicinity of the shock.

However, these errors are monotonically bounded and decay exponentially moving

away from either side of the shock.

Convergence of Einfeldt rarefaction tube. The Einfeldt rarefaction

tube is another classic test for codes in which a Riemann problem is specified that

produces a double rarefaction between two mutually retreating slabs of fluid.

It appears in Einfeldt (1988) as a demonstration of the potential for

schemes to produce glitches at sonic points, or create entropy-violating shocks.

The HLL and HLLC fluxes used by GPU-Imogen are essentially glitch-free as

expected.
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The Einfeldt initial condition may be specified on the unit line segment

x ∈ [−0.5, 0.5] as a Riemann problem with initial states parameterized by the

initial Mach number m as

ux<0 = ρ = 1, v = −mcs, P = ρc2/γ

ux>0 = ρ = 1, v = mcs, P = ρc2/γ

and the fluid adiabatic index given by γ.

The exact solution to the Einfelt tube may be found by a self-similarity

transform. Let the initial condition be specified by

All non-trivial structure emanates from the origin at x = 0; The head of

the rarefaction travels at the the infinitesimal speed of sound plus the background

convection speed, xhead(t) = (m + 1)cst at which point the fluid is travelling at a

speed of mcs. Therefore we have that

v(x, t) = mcs
x

(m+ 1)cst
=

m

m+ 1
s (5.19)

Given this prescription for the velocity field, we assume a self-similarity solution of

the form

ρ(x, t) = φ(x/t) ≡ φ(s) (5.20)

with self-similarity variable s = x/t. Then the continuity equation may be

massaged into an integrable ODE,

∂tρ+ ∂xρv = 0 (5.21)

dφ

ds
∂ts+

m

m+ 1
s
dφ

ds
∂xs+ φ

m

m+ 1
∂xs = 0 (5.22)

−sdφ
ds

+
m

m+ 1
s
dφ

ds
+ φ

m

m+ 1
= 0 (5.23)

dφ/ds = mφ/s (5.24)
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after noting that ∂xs = 1/t and ∂ts = −x/t2. This ODE has the solution

log(φ/φ0) = m log(
s

(m+ 1)cs
) (5.25)

ρ(x, t) = φ(x/t) = ρ0 ×
(

x

(m+ 1)cst

)m
(5.26)

The rarefaction fan is an expansion wave and its behavior changes

fundamentally depending on the initial Mach of the retreating slabs. From Eq.

(5.2), letting a→ −1+, the largest initial speed from which an expansion wave that

decompresses to zero density can reach zero speed is

Mcrit =
2

γ − 1
(5.27)

Notably, the critical Mach increases without limit as the equation of state

approaches isothermal. If m < Mcrit then the expansion fan will be able to

slow the retreating fluid down to zero speed and the solution of the problem

will have five piecewise regions: The unaffected slabs at large |s|, bracketing two

rarefaction fans, bracketing a stationary central region. In this case of a subcritical

Mach, the solution is well behaved everywhere and can be numerically represented

everywhere.

However for m > Mcrit the central quiescent region vanishes and there are

only three piecewise regions, the unaffected slabs bracketing a single expansion

described by Eq. (5.26). The problem which occurs in this solution when s is

allowed to run through zero is obvious - it goes to vacuum. Such a situation is

numerically impermissible because of the resulting divide by zero, which can be

seen as representing the fact that it breaks one of the fundamental assumptions of

continuum mechanics.

The formal convergence of such supercritical rarefactions is prevented

because GPU-Imogen, like all gridded codes, necessarily asserts a very small
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minimum density to prevent division by 0. The convergence grows worse

with increasing m because density is suppressed as sm which quickly becomes

exceedingly small for most values of s as m grows.

Convergence of Woodward & Colella double blast tube. The

double-blast tube was presented by Colella and Woodward (1984) in their 1984

paper introducing the piecewise parabolic method (PPM) interface reconstruction

scheme.

It consists of a line segment of unit length on the interval [0, 1] containing

three piecewise discontinuous initial states,

ux<0.1 = {ρ = 1, v = 0, P = 100}

u0.1≤x≤0.9 = {ρ = 1, v = 0, P = .01}

ux>0.9 = {ρ = 1, v = 0, P = 1000}

with the boundary conditions on either end set to extrapolate-as-constant and the

gas equation of state defined by γ = 7/5.

The decomposition the two RPs launches extremely strong shocks towards

the middle. These collide, yielding very fine details which require considerable

grid refinement to resolve for lower-order schemes and which displayed the

high resolution of PPM to advantage. The simulation is stopped arbitrarily at

t = 0.038.

There is no analytic solution except for short times; Imogen accepts the

most-refined solution as “exact.” Because the grids are refined by doubling

resolution, the process of integral-averaging the fine grid over the coarser ones

simplifies to the following: For each decrease in refinement by one step, average

fine cells 2N and 2N+1 into cell N.
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Figure 20. Convergence of numeric solution of an Einfeldt rarefaction with γ = 1.4
and m = 4 (barely subcritical).
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Figure 21. Plot of numeric results for above Einfeldt tubes at resolutions of 32, 128
and 512 cells, with exact solution in black: The solution is captured, and no sonic
kink is evident.
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Figure 22. Results from GPU-Imogen for the Woodward-Colella double blast tube
for successive quadruplings of resolution

Initially convergence is poor due to the influence of unresolved structure,

however once all major forms become resolved the expected 1st order convergence

of a shock-containing solution emerges.

Convergence of Noh implosion tube. The Noh implosion tube is

another specific Riemann problem with a slight twist. The implosion consists of a

shock propagating into a cold fluid (nominally with M = ∞, i.e. into cold fluid

temperature of zero) which then collides with a perfect wall, leaving stationary

doubly-shocked fluid behind a shock which is now propagating back the way it

originally came.

The GPU-Imogen version is a little more flexible. The problem can be run

in any of planar, cylindrical or spherical geometry. The planar problem is solved

exactly for arbitrary Mach.

The initial condition is specified as a box on the line segment x ∈ [−1, 1].

The parameters are the initial radius of the shock r0 from x = 0, arbitrary initial
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Figure 23. Convergence of a double blast tube. A resolution of twice the largest
shown is taken as being exact.

ρ0, P0 > 0, and the Mach m that sets the strength of the shock (by which v0 is

determined).

The code uses |r0| as the distance of the shock from x = 0 or r = 0 and

the sign to indicate either that the first shock has not hit the center (r0 < 0) and

r0 > 0 to indicate it has.

By default, to also test mirror boundary conditions, the planar test is set to

only use the halfspace x ∈ [0, 1], with a mirror boundary condition on the negative

X edge.

In planar geometry, the exact solution of the tube for arbitrary Mach

numbers is possible because the only characteristics flying around are shocks

separating constant states (details in Gehmeyr, Cheng, and Mihalas (1997)). Such

solution is probably not possible for the case of spherical or cylindrical implosion

chambers.
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Figure 24. Graph of the depiction of the Noh tube test, showing the expected 1st
order convergence for a solution containing shocks.

The initial (coldest) fluid is denoted ψ0 = ρ0,−v0, P0. The shock propagates

in at a rate

vsh,0 = −mcs,0 (5.28)

where the adiabatic index is by default 5/3, leaving behind fluid in state ψ1 =

RH(ψ0,m). At a time

t1 = −r0/vsh,0 (5.29)

the shock hits its counterpropagating counterpart (or the wall), creating a twice-

shocked region denoted as ψ2. In the generalized constant-velocity-piston case

an infinite sequence of ψ states are created as the shock bounces back and forth

between the wall and the piston, which is fully described in Gehmeyr et al. (1997).

In the GPU-Imogen test only the first two are considered.
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For completeness, the first three states (with intermediate variables φ =

γ−1+2m−2

γ+1
and c0 =

√
γP0/ρ0 are,

ψ0 =


ρ = ρ0

v0 = 0

P = P0

 (5.30)

ψ1 =


ρ = ρ0/φ

v = −mc0(φ− 1)

P = P0(γ(2m2 − 1) + 1)/(γ + 1)

 (5.31)

ψ2 =


ρ = ρ1(4 +m2(γ + 1)−m

√
16 +m2(γ + 1)2)/(2 + 2m2(γ − 1))

v = 0

P = P1 + ρ1m0c
2
1(m0(γ + 1)−

√
16 +m2(γ + 1)2)/4

 (5.32)

Shu-Osher tube. The Shu-Osher tube was introduced by Shu & Osher

in Shu and Osher (1989) as a demonstration of their new ENO reconstruction

algorithm.

Their state consists of a shock propagating at Mach 3 at the instant it

runs into a plane entropy wave of amplitude 0.25 whose wavevector is parallel to

the shock. Linear perturbation analysis of the shock yields the outbound wave

amplitudes propagating into the postshock region given the incoming entropy wave

amplitude from upstream. Wavevectors are connected by the requirement that all

waves have the same oscillation frequency in the shock frame. The outcome and

exact initial conditions for simulation are given in figure 25. The linear result (red

line in 25) derived by the Mathematica CAS for arbitrary initial conditions is given

below.

In this calculation subscript 1 denotes preshock and subscript 2 denotes

postshock equilibrium quantities, with the postshock quantities defined by the
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Figure 25. The result of evolving a Shu-Osher tube to t = 0.178 (blue curve)
with linear analysis (orange) overlaid. The initial condition is set on the interval
x = [0, 1]. The initial condition for x > 0.75 is ur = {ρ = 1 + .2 sin(8πx), v =
0, P = 1} with an adiabatic index γ = 7/5. The IC for x < 0.75 is
ul = RH(ur|x=0.25,M0 = 3), i.e. the uniform postshock solution of a shock not
encountering any entropy wave (ul = {ρ ≈ 3.857, v ≈ 2.629, P = 10.3}). Boundary
conditions are constant.

exact solution of the Rankine-Hugoniot conditions (given the preshock state and

the Mach). This calculation was done in the stationary shock frame with the

normal into the shock (so that v1 = Mc1 > 0 and v2 > 0 also). For space’s sake we

here use the abbreviations β = γ − 1 and δ = γ + 1.

Asnd,post =
ε

c2

2v2
1(γ(P1 − P2) + βρ1v1(v1 − v2))(v1 − v2) c2v1(2γ(P1 − P2) + ρ1(v1 − v2)(3βv1 − δv2))+

v2(2γP1v1 + 2γP2(v2 − 2v1) + βρ1v1(3v2
1 − 4v1v2 + v2

2))


(5.33)
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Aent, post =
εv2

1

c2v2
2


−2(γ(P1 − P2) + βρ1v1(v1 − v2))(v1 − v2)v2

2 + c2
2(2γv2(P1 − P2)

+ρ1v1(v1 − v2)(βv1 + (γ − 3)v2))− c2v2(2γP1(v1 − 2v2)

+2γP2v2 + βρ1v1(v2
1 − 4v1v2 + 3v2

2))


 c2v1(2γ(P1 − P2) + ρ1(v1 − v2)(3βv1 − δv2))+

v2(2γP1v1 + 2γP2(v2 − 2v1) + βρ1v1(3v2
1 − 4v1v2 + v2

2))


(5.34)

xshock =
iε

ρ1ω

v1(v1 − v2)(−2γP2v2 + ρ1v1(β(v1 − v2)v2 + c2(βv1 − δv2))) c2v1(2γ(P1 − P2) + ρ1(v1 − v2)(3βv1 − δv2))+

v2(2γP1v1 + 2γP2(−2v1 + v2) + βρ1v1(3v2
1 − 4v1v2 + v2

2))


(5.35)

The only dependence on incoming wavenumber appears for xshock which contains

1/ω = 1/kincsM .

Because the outbound postshock sound wave has amplitude comparable

to the incoming entropy wave amplitude, it steepens within a few shock frame

oscillation periods into a weak (M ≈ 1.003) shock train. A partially nonlinear

analysis that propagated the exact sound relations given by (5.1)- (5.5) might

be of value, however the superposition of the linear result with the nonlinear

simulation shows that we recover the expected outcome.

A fully nonlinear analysis would require accounting for the fact that

the entire postshock region is a scattering problem, with multiple interacting

characteristics of large ( 0.2 normalized) amplitude. Fourier analysis of a very

high refined simulation (Nx = 500, 000) showed, in the FFT of the shock front’s

position, nonlinear modulation terms without end.

Stability of radiative shock. Imogen supports optically thin radiation

which takes the form of a simple sink of internal energy,

∂ε

∂t
= −Λ(ρ, P ) = −kρ2T θ (5.36)
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where we consider θ-parameterized radiation.

Radiation powered by particle collisions scales as ρ2 because at least two

particles must collide or graze, either to convert their kinetic energy into an

excited state or for Bresmsstrahlung of ions/electrons to occur. Bremsstrahlung

has θ = 1/2 because the typical momentum two colliding/grazing particles have

to exchange is proportional to thermal velocity which is proportional to
√
T for

nonrelativistic particles (Te− <≈ 109K)

A planar radiative shock profile may be derived by adding the radiation

term to the Euler equations and asserting time-independence,

∂x



ρvx

ρv2
x + P

ρvxvy

Eflux


=



0

0

0

−Λ(ρ, P )


(5.37)

The continuity, transverse momentum, and normal momentum equations may all

be trivially integrated and found to equal constants. These then allow to solve for

ρ(vx), vy(vx) and P (vx). All are substituted into the energy equation, yielding a

single ODE of the form

d

dx
Eflux(vx) =

dEflux(vx)

dvx

dvx
dx

= −Λ(ρ, P ) (5.38)

Noting that everything but vx itself was defined in terms of vx from having

integrated the earlier members of Eq. (5.37).

This equation is analytically solvable for integer and half integer values of

θ. In the code, it is numerically integrated with 10 decimal accuracy using the

adiabatic postshock solution as the initial condition.

The terminating condition depends on the choice of θ. If the advection

component is ignored and we examine an isolated, stationary parcel of fluid then
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the equation is also exactly solvable, with a form dependent on θ:

d

dt

(
P

γ − 1

)
= −βρ2−θP θ (5.39)

d

dt

(
T

γ − 1

)
= −βρT θ (5.40)

T−θdT = −β(γ − 1)ρdt (5.41)

where we replace pressure with T = P/ρ while assuming ρ is constant. This leads

to solutions of the form

T (t) = (T q0 + φ(t))1/q (5.42)

away from special cases, with q = 1− θ and φ = −β(γ − 1)(1− θ)ρt. The cases are:

If θ > 1, then q and φ are both positive. The temperature profile over time

is a fractional power, and cooling never finishes.

If θ = 1 the special case of exponential cooling occurs (which also never

finishes).

If 0 < θ < 1, q is positive and φ grows more negative with time. At

the critical time t∗, the quantity in parentheses in (5.42) goes to zero and the

temperature falls to zero at t∗. Because 0 < q < 1, the decrease to zero

temperature is smooth approaching t∗.

If θ = 0 the radiation rate is temperature independent and the temperature

drops linearly to zero in finite time.

If θ < 0 the same runaway cooling as for 0 < θ < 1 happens, but the

solution has a singular point at t∗ which it approaches with infinite derivative.

Given the assumption that the preshock flow was nonradiating, a logical

choice of where to end the integration of the flow is when the temperature returns

to its preshock value. For a strong shock which heats the postshock fluid greatly,
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this results in an ultimate compression ρfin/ρ0 ≈M2 such that the overall outcome

resembles an isothermal shock.

There are then 3 regions initialized: A uniform preshock flow which is

presumed to not radiate, a stationary adiabatic shock at the start of a cooling

layer, and a cold dense region where radiation is again switched off.

A model of this type is widely considered as a starting point for both stellar

accretion columns and for modelling the leading edge of the radiative snowplow

phase of supernova remnants. These solutions are well known to support linearly-

unstable nonlinearly-saturating modes for many values of θ, including weakly

unstable behavior for θ = 1/2 (see e.g. Chevalier and Imamura (1982) and

Imamura, Wolff, and Durisen (1984) for linear analysis and emphasis of white

dwarf accretion columns, and Strickland and Blondin (1995) and Blondin, Wright,

Borkowski, and Reynolds (1998) for nonlinear numeric simulation)

Numerically capturing the steady solution represents a considerable

challenge to a fixed grid. At the high Machs of interest, the stationary shock

front is known to be positionally unstable for most shock profiles, and its very

slow secular evolution is subject to the generation of slow post-shock oscillations,

both of which are observed.

At high Machs, the base of the cooling regions presents a major resolution

problem. At Mach 7, for example, even with a resolution of 10000 cells half of the

final cooling occurs in the last 5 cells before radiation switches off. This is because

the pressure contrives itself to remain (relatively) constant, so that for radiation

exponents θ < 2 the radiation rate diverges to ∞.

Another way to see the problem is that since Γ ∝ ρ2 ∝ (M2)2 = M4

for an isothermal shock (whose state the base of the cooling shock approaches),
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Figure 26. Plot of the radiation rate of a shock with M=10 and adiabatic index
γ = 5/3 and radiation law θ = 1/2 in linear and log scale. The cooling region is
resolved by 1440 cells. The radiation rate immediately postshock is 85.9, and the
radiation rates in the last 4 cells before cooling finishes are 4961, 4076, 6640, and
25800.

the resolution required to prevent total cooling in a single cell grows as the fourth

power of the shock strength!

Code correctness tests - 2D. Two and three dimensional tests

require that the operator splitting process maintain second order accuracy, and

provide substantial additional freedom to do interesting things with flows.

Cross-grid wave transport. Transporting a sound wave at an angle

across the grid provides a test of the isotropy breaking in GPU-Imogen due

to the use of dimension splitting to acheive multi-dimensional operation. For

this test, a (typically large) grid is chosen, along with a maximum wavenumber

~Nmax. Simulations of the same sound wave at all wavenumbers up to ~Nmax are
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run. All are run for the same time (chosen as 0.95t∗ computed for the largest

wavenumber) to remove dependence of the results on iteration count. Metric

norms are computed, then scaled by 1/|N |2 (due to the effective scaling of

resolution as 1/N and the observed 2nd order convergence) to remove the expected

resolution dependence.

If the expected resolution dependence were the only dependence, then at

this point all norms should be identical. Regrettably the underlying structure

of the equations being solves means that they are not. The square grid breaks

continuous rotation symmetry in space, and the operator splitting scheme breaks it

in both time and space.

As can be seen in the plots of figure 27, the results are however very close

to isotropic. This can be quantified by normalizing the standard deviation of the

prefactors (which would be zero in the case of perfect isotropy) by their mean. For

the test conditions run, the result is

σ1

µ1

=
6.03759× 10−6

4.52471× 10−5
= .1334 (5.43)

σ2

µ2

=
2.53809× 10−5

1.40048× 10−4
= .1812 (5.44)

Which indicates that the truncation error (though always very small) varies by

around 15% depending on the orientation of the wavevector with respect to the

grid.

Operator splitting sequences with higher order accuracy in the splitting

are well known for some classes of differential equations. However, higher order

splittings require either negative timesteps, that certain branches in the tree of

error commutators vanish, or both. While other important sets of differential

equations, such as quantum operators and the gravitational N-body equations,
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Figure 27. Convergence of a sonic characteristic propagating with wavenumbers
as marked. Value for ~N = (0, 0) invalid. Initialization on unit square using Eq.

(5.1)-(5.5) with ~k = 2π ~N , circular boundary conditions and a wave amplitude of

.05. All simulations share common end time t = 0.95t∗( ~N = (11, 11)) ≈ 0.874739.
Grid resolution fixed at 1536 × 1536, minimum effective resolution occurs for max
wavenumber having ≈ 100 cells/wavelength.
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Figure 28. Convergence of a centrifuge equilibrium toward time-independence

meet these requirements and have seen great returns from higher order operator

split methods, this is the not the case with the Euler equations: They are nither

time reversible (which forbids negative timesteps) nor can any commutator terms

in their (time dependent, nonlinear) evolution operators be expected to vanish.

We also note that larger wavenumbers (toward the upper right corner of the

figures) are nearing the resolution at which they begin to deviate from asymptotic

behavior.

Gresho test. The Gresho test was introduced in Gresho (1991) and

among those used in Liska and Wendroff (2003) to compare numerous CFD

schemes/packages.

It consists of a two-dimensional system with cylindrical symmetry in which

pressure and centripetal effects due to axisymmetric rotation balance. The fluid

rotates on cylinders with the form v(r, θ, z) = f(r)θ̂, which generates a divergence-

free flow for any choice of f . Assuming axial symmetry, the continuity equation
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Figure 29. A particular centrifuge with rotation curve ω(r) = ω0(1 − cos(2πr)) on
r ≤ 1 and ω = 0 for r > 1, with ω0 = 1.5. The grid spans (−2.5,−2.5) × (2.5, 2.5).
The rotation curve yields a rotation period of τ(r = 0.5) = 2.09. As can be seen,
the structure remains stable for about 8τ before a normal mode appears, then it
deforms into a bar by 9τ and fragments into pieces by 10.5τ .

is identically solved for any axisymmetric density distribution. The

constraint of relevance is the radial force balance version of the momentum

equation,

dvr
dt

= 0 = ρ(r)vθ(r)
2/r − ∂rP (r) = ρ(r)rω(r)2 − ∂rP (r) (5.45)

This problem is solvable through the same potential integral method that yields

a Kojima model protostellar/protoplanetary disk, albeit with quite different

boundary conditions.

118



With only one constraint per point, two more constraints or assertions

are necessary to specify an initial condition. The typical choice is to assert some

rotation curve, and to pick an equation of state that allows to write P (ρ), at which

point Eq. (5.45) gives a (usually integrable by design) ODE for ρ. Depending on

the choice of EoS, not all rotation curves are compatible with physical density

profiles (instead ending with vaccuum inner edges). Another workable choice is to

prescribe some temperature curve T (r) and compute P = ρT to get an ODE for ρ.

Generally the rotation curve should be nonsingular at the origin and have

compact support on the computational domain (outer boundary vθ → 0) yielding a

finite interesting region embedded in a uniform, stationary background.

Exact time-independent equilibria are evolved, and accuracy is considered

based on how well they maintain time-independence. These vortices are expected

to be unstable against both axisymmetric instability in 3D as well as axially

asymmetric modes in both 2D and 3D.

This test is run in square geometry and serves mainly to test the operator

splitting and general accuracy in square coordinates.

Reflected blast test. The reflected blast test specifies an initial set

of riemann problems which generate a chaotic central region containing subsonic

turbulence.

The initial condition is defined on the square [0, 1] × [0, 1], with mirror

boundary conditions on both axes with the fluid state

ρ(x+ y > 0.5) = 1, P (x+ y > 0.5) = 1 (5.46)

ρ(x+ y < 0.5) = ρcorn, P (x+ y < 0.5) = Pcorn (5.47)
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We use ρcorn = .125 and Pcorn = 0.14. The simulation is executed on a grid

of resolution 7682 and run for a total of 100,000 iterations (≈ 75 initial sound

crossing times).

Because the problem begins with perfect mirror symmetry about x = y, it

should nominally maintain the symmetry forever. However second order operator

splitting does not maintain XY symmetry and therefore perfect symmetry cannot

hold.

In the case of the reflected blast test, the asymmetry seen in

density/temperature is amplified as the shocks repeatedly run across the contact

discontinuity separating originally-dense and -tenuous gases, and the low-density

region becomes chaotic. After a couple of reflections, the shocks’ Mach inevitably

drops to a value not greatly more than 1 due to dissipation, and dissipation

quickly slows.

However, while the asymmetry is very obvious in density and temperature,

it is largely invisible in pressure. Even after dozens of dynamic times, even if the

density profile is obviously asymmetric due to weakly stable shear modes forming

vortices, the locations of the shocks running back and forth remain quite close to

(though not perfectly) symmetric.

Because all boundaries are mirrors, total mass upon the grid should be

perfectly conserved. Noting that an edge cell that straddles the mirror counts for

half, and a corner cell that straddles both counts for one quarter, a 7682 blast

chamber was let to run for 100000 steps and the mass on grid was checked at

every timestep. The result is plotted in figure 31: Conservation was identical to

the limit of double precision. The change in total mass on grid fluctuated by -3

to +5 ×10−15, a value so close to zero that the quantization of double precision
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Temperature in reflected implosion test at t=5

Figure 30. The temperature of the implosion test chamber at t=5, imaged in
temperature, with velocity vector arrows overlaid. Simulation resolution was 5122.
Initial symmetry breaking is just visible.

numeric representation is clearly visible. The sum of mass was performed by

Matlab’s sum() function which uses compensated summation to assure that the

result is accurate.

2D Riemann problems. Here numeric solutions to several 2D

Riemann problems are presented. They may be compared to the results published

in the locations indicated with each figure.

Some of these demonstrate the existence of the chaotic central region of the

2D RP, which for a long time caused considerable difficulty in the formulation of

unsplit solvers upon solid theoretic grounds.

Rayleigh-Taylor instability. The Rayleigh-Taylor instability, as

originally analyzed by Lord Rayleigh in 1883, describes the instability of a heavier

fluid balanced on top of a lighter one. The classic example is water balanced

on top of oil: If a surfactant removes the surface tension that stabilizes the
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Figure 31. The total mass on the grid of a 7682 implosion chamber was tracked.
Ideally there would be no deviation from zero. The actual total change, as can
be seen, is nearly as close to zero as double precision can represent. +1 and -.5
×10−15

√
log x are plotted showing expected growth of errors introduced by the

nature of float point math.

arrangement, it overturns. Another example is atmospheric inversions which

balance cold, dense air on top of warmer, lighter air. When this arrangement

breaks down and if the turbulence reaches the surface, the result is the appearance

of intense, randomly-varying wind gusts “out of nowhere.”

Somewhat more generally, the instability is that of any lighter fluid

accelerated into a denser one, either by a pressure driven flow or by gravity.

Looking at things from an energy perpective the origin of the instability is clear:

heavy fluid is “higher up” than lighter fluid and it is energetically preferable for

them to exchange positions.

Two sets of 2D Rayleigh-Taylor simulations were run. They were initialized

on unit boxes with a resolution of 5122. Density was 1 for x < 0.5 and 2 for

x > 0.5. Equilibrium velocity is zero everywhere. The classical analysis is

incompressible, however our fluid must have a finite soundspeed. Therefore a

gravity field pulls left with a strength of 0.1. Initial pressure at x=0 is 2.5, and

is solved for vertical balance against gravity.
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RP # 1: From Clawpack-4.3

Figure 32. A four quadrant RP. Initial states given as [ρ, vx, vy, P ], clockwise
from lower right: [1.0, 0, 0, 1.5], [0.53225, 1.206, 0, 0.3], [0.53225, 0, 1.206, 0.3],
[0.13799, 1.206, 1.206, 0.029032]. γ = 1.4. Grid is a unit box. Boundary condition
= extrapolate constant. RP initially centered on (0.8, 0.8). Evolved from t = 0 to
t = 0.8

The sinusoidal perturbation altered the velocity as

vy(x, y) = 0.1cos(4πx)exp(−4π|y − 0.5|) (5.48)

and the random perturbation took the form

vy(x, y) = 0.1rand(x)exp(−4π|y − 0.5|). (5.49)

In both cases the perturbation is decayed away from the interface and assumes

a very small value at the walls. The boundary conditions are circular vertically,

mirror at the left wall and free balance at the right wall.

The sinusoidal perturbation leads directly to the classic RT “mushroom

cloud”. The random perturbation creates structure with a much smaller size

in the Y direction. From the linear instability analysis (in which ωr ∝ k), the
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RP #2: From Wendroff 2003

Figure 33. A four quadrant RP. Initial states given as [ρ, vx, vy, P ], clockwise from
lower right: [1, 0.75,−0.5, 1], [3,−0.75,−0.5, 1], [1,−0.75, 0.5, 1], [2, 0.75, 0.5, 1].
γ = 1.4. Grid is a unit box. Boundary condition = extrapolate constant. RP
initially centered on (0.5, 0.5). Evolved from t = 0 to t = 0.3.

higher wavenumbers in the random perturbation should grow faster. However,

the random perturbation’s small structure also reaches the nonlinear regime much

sooner and the growth of small fingers is slower than that of a few large fingers.

2D Sedov-Taylor explosion. The Sedov-Taylor explosion, as a model

of either an atomic explosion or supernova, considers the deposition of a finite

energy E into a delta function at the origin of a uniform, cold (pressureless) fluid.

This was the solution originally published by Sedov. Later work by Kamm and

Timmes in Kamm (2000) and Kamm and Timmes (2007) generalizes the exact

solution to arbitrary spatial dimension, and of power-law distribution of density,

ρ ∝ rw, as well as providing the algorithm for exact solution in all cases. (We note

that at least one erroneous factor appears in the 2007 paper that is not present in

the 2000 one).
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Rayleigh-Taylor instability simulations
Left, sinusoidal perturbation; Right, random perturbation

Figure 34. Frames from two sets of Rayleigh-Taylor simulations. Both are
initialized in boxes of size 1, on grids of size 5122. Density of the left half is 1,
of the right half is 2. Gravity field strength is set to 0.1, and from a maximum
pressure of 2.5, the pressure gradient is set to hold equilibrium. Images are taken
at times of 0.5 to 2.5 in steps of 0.5. The perturbations are given in the text.

In GPU-Imogen the classic case (w = 0), the one Sedov considered as

a model of a nuclear explosion, is tested in space dimensions 2 and 3. It often

presents problems with formal convergence metrics, especially by measurement of

density, because the great majority of the area/volume of the blast is extremely

tenuous which causes small errors in density to become large errors when

normalized.

Depositing the energy into a finite spherical volume (containing multiple

cells) predictably results in an improvement in circularity / sphericity, but
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obviously deviates from the idea of a point explosion. This can be done in two

ways. The simple one which can be implemented trivially for any radius is to

deposit equal energy into all cells whose center’s radius is less than r0, then

normalize such that total energy equals the blast energy.

The better solution, implemented for small radii, is to properly integral-

average a disk/sphere whose radius touches some particular coordinate point. Four

such integrals are available for 2D: Assuming square cells with dimension
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Figure 35. Scatterplot of density vs radius from a 5122 Sedov-Taylor explosion
on a unit square with ρ0 = 1 and Eblast = 1, evolved to rblast = 0.45
(t = 0.20088). Blue dots were from initialization into a single cell, while red
were from initialization into a radius of

√
2.5 (13 cells): Initialization into a

small finite volume improved circularity by about 30%. In both cases the shock
is captured in a width of about 2 cells, with a deviation from circularity of about
1 or 1.5 cells (out of a diameter of ≈ 450 cells). The extremely narrow structure
of density behind the blast - at this resolution ρ drops 16% in the space of 2 cells
- dominates the metric errors and causes them to converge very slowly. Note that
the variations in max density (the lower left line corresponds to grid-aligned, and
the higher right line to 45 degrees across) which contribute so much to the metric
error are almost entirely an artifact of the multi-dimensional shock profile: The
Mach of the shock front at this point is still in the hundreds.

126



normalized to one, to circles with radius zero (1 cells), radius 1/
√

2 (5 cells), radius

1.5 (9 cells) and radius
√

2.5 (13 cells). Three such integrals are available in 3D.

Assuming cube cells of unit size, for circles of radius zero (1 cell), radius 1/
√

2 (7

cells) and radius 1.5 (27 cells).

These simulations take 20 steps using the HLLC solver before switching

themselves to the HLL flux solver. HLL requires an inordinately small timestep

at small times, or it yields ugly odd-even decoupling glitches along the coordinate

axes, while HLLC at long times suffers the carbuncle instability.

The ST explosion is also notable for exhibiting the carbuncle instability if

the HLLC flux solver is used for the whole simulation time. The carbuncle is an

artificial instability present in certain classes of flux solvers in which hydrodynamic

shocks, which should be unconditionally stable, instead exhibit various strange

malefictions in the vicinity of grid-aligned flow. The problem appears to be

connected with any solver which represents a shear wave according

Figure 36. A small 1282 simulation of the above described blast with the shock
capturing cells visible.
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Figure 37. Plots of the 1-norm of the density and velocity error for Sedov-Taylor
runs at resolutions of 16 (blue), 32 (red), 64 (orange), 128 (purple), 256 (green),
512 (cyan) squared, with both axes mirrors for double effective resolution. Formal
convergence is slow but present.

to Dumbser, Moschetta, and Gressier (2004), among which HLLC is prototypical

representative.

Code correctness tests - 3D. Most of the tests done in two

dimensions have a nontrivial extension to three dimensions. Tests done in

three dimensions are also notable because, especially with any appreciable grid

refinement, they cannot be done even workstation class computer, and require the

use of fully parallel computing resources: A 10243 simulation, for example, requires

roughly 90GB total of memory in GPU-Imogen.

3D reflected blast test. A three-dimensional unit cube was initialized

with velocity zero everywhere and a Riemann problem with normal ~n =< 1, 1, 1 >
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with values

ρ(x+ y + z > 0.8) = 1, P (x+ y + z > 0.8) = 1 (5.50)

ρ(x+ y + z < 0.8) = ρcorn, P (x+ y + z < 0.8) = Pcorn (5.51)

As in the 2D case we use ρcorn = .125 and Pcorn = 0.14 and the simple ideal gas

EoS with γ = 7/5.

Figure 38. Schlieren-like visualization of |∇ρ| of a 3D implosion chamber at
t=4.957 (about 6 sound crossing times) revealing the shock waves continuing to
echo across the chamber. The image plane has normal < 1, 1, 1 > and passes
through the center of the simulation volume: Note that at this point there is no
detectable deviation from trigonal symmetry. This simulation used a resolution of
2563.
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In the 2D case the expectation is of maintaining reflection symmetry

about the < 1, 1 > axis because the initial conditions are identical under that

parity transform. This is equal to embedding the 2D solution in 3 dimensions and

rotating it by n × 180 deg about the < 1, 1 > axis). In the 3D case, trigonal

symmetry is evident about the < 1, 1, 1 > axis because the initial condition is

(and its evolution should be) symmetric under rotations of n × 120 deg about the

< 1, 1, 1 > axis.

This symmetry is confirmed in simulations at early times, as well as its

inevitable breaking at later times due to amplification of truncation errors in

weakly stable entropic structure.

3D Sedov-Taylor explosion. As in two dimensions above, the ST

explosion is tested in three dimensions. These tests were run using all three axes

mirrored, doubling the effective resolution of each run. As is visible in the plots

below, the Sedov-Taylor explosion has erratic and slow convergence. This is

associated with the extremely thin layer of spatial structure behind the shock,

which is difficult to accurately capture, and the fact that because the shock

structure grows as the 2/5 power of time, the number of cells involved grows as

the 1.2 power of time and the number of cells at the surface of the blast grows as

the 0.8 power of time.

Thus, given that the error in cells near the shock front will always be O(1),

at best convergence metrics will be something like 1/N0.2. None the less, there

is a decrease in the error measurements initially and despite the seemingly bad

numbers, the exact and numeric solutions look extremely similar.
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Figure 39. A three dimensional visualization of the implosion chamber at t=4.652
showing the contour of ρ = 0.64, colored by pressure. The three plumes launched
along the edges of the cube are visible, as is the knob-like plume launched along
the < 1, 1, 1 > normal. This, and an additional contour at the opposite corner of
the simulation, all exhibit the trifold symmetry.

Known limitations. It is well known (see e.g. Dumbser et al.

(2004)) that numeric schemes of the type employed in GPU-Imogen are not quite

unconditionally nonoscillatory in the resolution of planar shocks. A sufficiently

strong shock always has some profile (“position” within the cell) which is

unstable to moving off that profile, a defect related to the fact that the (linear)

reconstructions generated by the finite shock profile fail to trace the Rankine-

Hugonoit loci, even if the underlying flux scheme exactly captures a thin (zero-

cell-wide) shock that is aligned on a cell boundary (both HLL and HLLC do so).
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Figure 40. Plots of the 1-norm of the density and velocity error for Sedov-Taylor
runs at resolutions of 24 (blue), 48 (red), 96 (orange) and 192 (purple) cubed.
Convergence is erratic but present.

In such cases, a slowly moving shock (|vsh| << cs) is known to experience

shock front oscillation as the numeric shock position jumps from interface

to interface. This is evident in the later stages of the double blast test, and

particularly visible in the Noh shock tube: The first shock propagating toward

the wall shows no untoward oscillation, while the second one bouncing off it does.

The code also has some limitations in the handling of radiation loss, which

are discussed at length in section VI, and with handling two-fluid flow with tight

coupling which are covered at the end of II.
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CHAPTER VI

SIMULATIONS AND RESULTS

The GPU-Imogen code has been employed to simulate radiative shocks in

one, two and three dimensions. The large number of one dimensional simulations

has been compiled into a data bank of observables and properties as functions of

shock parameters over a wide range of parameters.

All simulations utilize the truncated radiation law

ėint = −Θ(T − 1)βρ2T θ (6.1)

where θ is the temperature scaling law (θ = 0.5 corresponds to free-free

bremsstrahlung) and Θ(x) is the Heaviside step function that truncates cooling.

Thus the generated equilibria are in fact detailed models of isothermal shocks: The

preshock temperature is normalized to 1 and cooling is cut off when the postshock

temperature drops to 1. The strength of cooling is represented by β.

In the code, β is tasked with absorbing all dimensionful prefactors,

including those originating from dropping µ/kb when using T = P/ρ. The units

are such that ρpre = Ppre = β = 1.

The instability of a similar problem - a shocked flow settling onto a wall

at T=0 - is of interest as a model of white dwarf accretion. This was analyzed

linearly by Chevalier and Imamura (1982) among others. They found that in the

strong shock limit the flow is potentially subject to multiple linearly unstable

modes - denoted as F, 10, 2O, etc after classification of stellar radial oscillation

modes - depending on the cooling law θ parameter.
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Solving the Rankine-Hugoniot conditions for the postshock parameters and

computing the shock position and cooling time, it is suggested that

w
∂Xshock

∂w
> NwTcool → instability. (6.2)

The heuristic argument is that the left side represents the change in equilibrium

shock height Xshock when the shock front velocity is perturbed by w, and the right

the distance the front will move before feedback can allow it to “recompute” where

it “wants” to be, which is proportional to the cooling time. This analysis, for a

strong shock, leads to the result that

2θ < 3− CN (6.3)

where C is the shock compression ratio (γ+1
γ−1

equals 4, 6 and 8 for γ = 5/3, 7/5

and 9/7 respectively) and N is the numeric constant. In reality, it ends up being

observed stability thresholds for θ that inform the feedback to cooling time ratio

N , but none the less the implication that there is an upper θ for instability to be

present is clear and correct.

Direct numerical simulations were performed by Strickland and Blondin

(1995) on a similar problem with a different bottom boundary condition - that

of radiation cutoff rather than to T=0 - owing to the singularities introduced

by permitting T to reach 0. They confirmed that multiple modes exist in the

nonlinear regime analagous to the F/10/2O/... and that the saturated nonlinear

pattern frequencies agreed with the linear oscillation rates. While the limited

processing power available prevented a wide ranging nonlinear survey, the basic

result was confirmed that the oscillation frequencies and the underlying instability

are largely independent of how the cooling region is terminated for strong

upstream shocks
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Here, we consider flows at three adiabatic indices (5/3, 7/5, 9/7), radiation

theta values ranging from -1.0 to +0.5, and shock strengths from Mach 2 to Mach

10. For each adiabatic index a body of around 500 simulations has been obtained.

From the radiation rate temperature dependence exponent of a radiating plasma

(see 5 & Gehrels and Williams (1993) for details), such exponents correspond to

postshock temperatures of around 200 thousand Kelvin and above.

The methodology behind equilibrium generation is presented, followed by a

description of various oscillatory behaviors that have been observed. The analysis

tools used to examine the time series data from simulation are described, and

results are presented per adiabatic index.

Two dimensional simulations were performed on parameters which oscillate

in the F, 1O and 3O modes in 1D, at a spatial resolution of 2048 cells in the

cooling direction and 10240 transverse, with 512 cells in the cooling region. This

necessitated the use of relatively moderate shock strengths to avoid the cold layer

resolution problem, but the overwhelming similarity between all modes of a given

type suggests that their behavior should also be representative.

Finally, the result of simulations of a global 3D simulations of three stellar

bow shocks, featuring no radiation, θ = 1/2 radiation, and runaway θ = −1/2

radiation are presented. The 3D simulations covered the initial grid-symmetry

breaking and several complete cycles of cold layer formation, dissolution to

turbulence, and reformation/stabilization during 35000 timesteps. The numeric

spatial resolution was 768x768 transverse and 512 flow direction, for a total of 225

million voxels. These results were acheived using only 4 K-80 GPUs with a single

day of wallclock time.

135



Equilibrium solutions. The equilibrium stucture with which the

simulations are initialized contains three regions: A uniform preshock region, a

thin shock at the front of the cooling layer, and a uniform cold region (which

matches the postshock result for a planar isothermal shock). The assumption

of thinness implies that the mean free path for re-thermalization must be much

shorter than the cooling length.

The equations for a radiating one dimensional flow with adiabatic index γ

are restated for convenience:

∂t


ρ

v

.5ρv2 + P/(γ − 1)

+ ∂x


ρv

ρv2 + P

v(.5ρv2 + γP
γ−1

)

 =


0

0

−Θ(T − 1)ρ2T θ

 (6.4)

where the subscript vx on velocity has been dropped to just v. The transverse

components of velocity remain constant for these radiating flows, as they do across

the shock, due to conservation of transverse momentum (∂x(ρvxvy) = 0 combined

with ∂x(ρvx) = 0).

The mass equation can immediately be integrated exactly to yield a

constant (named ‘px’ in the code) and an expression for ρ(v), and the momentum

equation can be integrated to yield another constant (named ‘fx’) and an

expression for P (v). This reduces the problem to a single autonomous ODE in a

single variable for the evolution of internal energy density. This takes the generic

form of

dy

dv
= f(v) (6.5)

. The numerical simulation naturally requires the output in position space, and we

change the independent variable to x,

dy

dx

dx

dv
= f(v)→ dy

dx
= f(v)

dv

dx
. (6.6)
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This gives the term c1 in the equation (6.9) below,

dv

dx
= c1 =

P θβ(γ − 1)ρ2−θ

pxv − Pγ
(6.7)

in which P (v) = fx − pxv and ρ(v) = px/v are analytic functions of the velocity

v. The single ODE is solved as an IVP with the initial condition at x = 0 equal

to the stationary shock solution of the Rankine-Hugoniot equations for the given

shock strength, and integrated with respect to x until the temperature drops to

1.05 (for numeric reasons). We note that equation 6.7 is analytically solvable for

integer and half-integer values of θ.

As part of the initialization of the equilibrium solver, initial step points are

required; At all regular points, the flow ODE has a Taylor series expansion. Using

the Mathematica CAS, a program to symbolically evaluate the coefficients cn in

the expansion

v(x) =
∞∑
n=0

cnx
n (6.8)

was written which recursively solves for these coefficients cn in terms of input

constants and previous cn, generating ever larger polynomials in terms of values

at x = 0, the adiabatic index γ and the radiation index θ.

Though it is possible to recursively substitute the previous cn in, the

resulting equations grow larger rather than smaller, meaning that there is no great

cancellation of terms. Or at least not one that Mathematica’s FullSimplify[] can

find.
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The first four coefficients cn can be given in a relatively reasonable space,

and these are:

c1 =
P θβ(γ − 1)ρ2−θ

pxv − Pγ
=
dv

dx
(6.9)

c2 =− c1

(px(γ − 1)(P
θ−1β(P (2−θ)+pxvθ)ρ2−θ

pxv
+ γ+1

γ−1
)

2(pxv − Pγ)
(6.10)

c3 =− px(γ + 1)c1c2

pxv − Pγ
−

 P θ−1(γ − 1)ρ2−θ(−((β(6P 2 + (6fxP − f 2
x − 10P 2)θ

+(fx − 2P )2θ2)c2
1)/(Pv2)) + 2β(pxθ − P (θ − 2)/v)c2)


6(pxv − Pγ)

(6.11)

c4 =− px(γ + 1)(c2
2 + 2c1c3)

2(pxv − Pγ)
−



(P θ−3β(γ − 1)ρ1−θ(f 3
x(θ − 2)(θ − 1)θρc3

1

−4P 3(θ − 1)(−3 + 2θ)c1((−2 + θ)ρc2
1 + 3pxc2)+

12P 4(θ − 1)c3 + fx(6P
2θ(2θ − 3)c1((−2 + θ)

ρc2
1 + 2pxc2) + 6P 3(2− 3θ)c3) + f 2

x(6P (1− θ)

θc1((θ − 2)ρc2
1 + pxc2) + 6P 2θc3)))


24v3(pxv − Pγ)

(6.12)

where the fluid properties (ρ, v, P ) are constants evaluated at x = 0, γ is the gas

adiabatic index, and β and θ are the radiation parameters in (6.1).

For values of θ less than 1, the ODE becomes singular if integrated towards

T → 0+. On the basis that it is physically unreasonable for the postshock gas

to continue radiating below the temperature of the preshock gas, integration is

terminated at a user-set constant (nominally 1.05) times the preshock temperature.

The factor 1.05 rather than 1 is used due to tiny artificial temperature fluctuations

in the cell ahead of the shock front, which artificially destabilize it if the radiation

switch-off threshold is exactly equal to the preshock temperature.
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The equilibrium integration, in any case, extends only over parameters for

which the resulting ordinary differential equation is well posed and amicable to

solution by Matlab’s builtin solvers such as ode113().

Once the initial condition for the simulation has been generated, the

nonlinear code uses operator splitting to evaluate the transport and radiation

terms separately, and so the radiation is evaluated numerically with density a fixed

quantity so that it is only necessary to solve an equation of the form

Ṗ = −kΘ(T − 1.05)ρ2−θP θ (6.13)

with k = β(γ − 1)(kb/µ)θ−1, which solution is implemented in closed form for all

values of theta (and applicable temperature floor cutoff applied). Numerically, it is

favorable to solve the temperature evolution equation instead,

T−θṪ = −kΘ(T − 1.05)ρ (6.14)

because while this requires an additional division to find T = P/ρ but avoids

solving a transcendental function to find ρ2−θ.

Depending upon the radiation exponent θ there are three possible solutions

to the temperature curve:

θ = 0→ T (t) = T0 − kρt (6.15)

θ = 1→ T (t) = T0exp(−kρt) (6.16)

else→ T (t) = (T 1−θ
0 + (θ − 1)kρt)

1
1−θ (6.17)

In each case, the evaluation of radiation loss is followed by T = max(T, 1.05) which

represents the step cutoff.

Oscillatory behaviors. A radiating column between a dense cold layer

and a thin shock front behaves as a one dimensional acoustic resonator. The dense

layer behaves as a hard boundary and the shock front as a free boundary. This
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Figure 41. Plot of a 1D equilibrium shock structure with parameters M = 6,
γ = 5/3, θ = 0.15, with all values normalized by the indicated preshock
(Xpre) values. The visible fluctuations in v (green) and P (red) are the initial
perturbations used to salt any instability. This structure is qualitatively the same
for all shocks studied.

condition leads us to expect a oscillations at wavelengths which satisfy the half-

closed-pipe boundary conditions, namely a fundamental mode with a wavelength

λ0 = 4Xshock and overtones at odd harmonics λn = λ0/(2N + 1). In turn the

fundamental mode would oscillate at a frequency ω0 and the harmonics at ωn =

(2N + 1)ω0.

The instability of radiative shocks is of the overstability type. If a

shock in equilibrium has its shock front velocity perturbed, the hypothetical

new equilibrium shock length is determined instantly by the velocity of the

perturbation. The question then becomes, in the time before the cooling column

can provide feedback, does the shock pass the new equilibrium or not? If it does,

the feedback will say to reverse direction and the shock will be stable. If it has

not, the shock will “realize” that it is even further out of equilibrium and runaway

instability results.
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If we consider a strong shock, the RH jump relations yield postshock

quantities (no subscripts) of

ρ =
γ + 1

γ − 1
ρpre (6.18)

v =
γ − 1

γ + 1
vpre (6.19)

P = ρv2T = v2 (6.20)

The results for temperature and pressure are surprisingly independent of the

adiabatic index. From these we may calculate the cooling time and cooling length

(where ε = P/(γ − 1) is the internal energy density):

tcool = ε/ε̇ = ρv2/(γ − 1)/(ρ2v2θ) (6.21)

Xshock = vtcool = v3−2θρ−1/(γ − 1) (6.22)

From the qualitative argument presented above, consider that the shock

front is perturbed outward at a velocity w. This will alter the equilibrium column

height by an amount ∂Xshock/partialv × w. In turn we expect the shock to cover a

distance of wTfeedback before it “figures out” where it is relative to the equilibrium

it is hunting, so an approximate physical intuition for stability is implied by

∂Xshock

∂w
w > NTcoolw (6.23)

in which the feedback time is a dimensionless constant N times the cooling time.

The way to read this is, the displacement of the equilibrium position caused by

a velocity w exceeds the distance the shock front moves before pressure feedback

occurs. Dividing both sides by w and substituting the strong-shock results for the
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postshock variables,

(θ − 2)(v/vpre)Tcool + (3− θ)γ − 1

γ + 1
Tcool + 2(1− θ)γ − 1

γ + 1
Tcool > NTcool (6.24)

(θ − 2 + 3− θ + 2− 2θ)
γ − 1

γ + 1
> N (6.25)

(−2θ + 3) > C N (6.26)

2θ < 3− C N → θ < 1.5− .5C N/2 (6.27)

Where C is the compression ratio of the shock (γ + 1)/(γ − 1) and N is the

unknown constant. In the forward direction, any (positive) value of N indicates

that there is an upper bound θcrit above which instability is not expected. Going

the other way, the observed threshold values for θcrit imply numeric values of N .

Based on the apparent stability thresholds found numerically, at M = 10, the

approximate numeric values for N corresponding to them are

γ θcrit Neff

5/3 .75 0.375

7/5 .6 0.3

9/7 .25 0.3125

(6.28)

And it can be seen that the computed numeric value of N is surprisingly consistent

across significantly varying adiabatic indices.

Comparison with other nonlinear simulations and linear

theory. In Strickland and Blondin (1995), Strickland & Blondin provide a table

comparing their numeric oscillation frequencies at 3 different Machs, two of which

are below as SB. Chevalier & Imamura provide frequencies and growth rates

from linear analysis in Chevalier and Imamura (1982) (CI below) in the strong

shock limit, and our results are presented side by side as KI. These results are for
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γ = 5/3:

θ M = 5, SB M = 5, KI M = 10, SB M = 10, KI CI#1 CI#2

−1 .2586(F ) .2679(F ) .263(F ) .953(1O)

0 .993(1O) .9588(1O) .869 .8701(1O) .294(F ) .921(1O)

.25 1.73(2O) 1.018(1O) .888(1O) .8806(1O)

.5 2.342(3O) 1.43(2O) .8957(1O) .889(1O) 1.504(2O)

(6.29)

While there are disagreements as to which mode dominates the nonlinear

saturation, agreement in mode frequencies is always very close. In cases of

disagreement, our mode plots reveal that the parameters in question are usually

near to a mode transition; Such cases are generally characterized by very long

settling times. For example, for M=5, θ=0.25 we find a 1O mode where Strickland

& Blondin find a 2O. Our mode plot finds that this parameter is near the 1O/2O

threshold, and the nearby 2O mode at M=4.5, θ=0.25 has a frequency of 1.734,

while M=5, θ=0.35 has a frequency of 1.706 (which is the frequency SB found

for their 2O mode). In limited refinement tests, we often found that higher

resolutions tended to shift the preferred oscillation modes up near mode thresholds

by reducing artificial damping of the higher mode.

The nonlinear simulations in all cases are of course disadvantaged in that

they can only “report” the dominant mode. In some of these cases, a simulation

required hundreds of oscillation periods to settle into the modes we report.

Sometimes a shock would settle into a high mode of oscillation, or a mixture of

two modes, for many dozens of oscillation cycles before “decaying” into a lower

mode. It is worth noting, this process exclusively proceeded one way - never did

a shock long reside in a lower mode before eventually entering a higher mode
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number. The reason for this exclusivity is that the process we to salt the shocks, a

random upstream density perturbation, is heavily biased towards high frequencies

such that every simulation begins with high modes and ‘tumbles down’ the ladder

of mode numbers.

Generic mode properties. As suggested at the start of VI and

described in detail below in VI, we expect any given shock to have a spectrum

of frequencies at ωn = (2n+ 1)ω0.

Later analysis shows that, with the addition of a correction term for finite

Mach, accurate predictions of ω0 can be obtained for a great range of parameters.

As the 1D PDE has continuously infinitely many variables and the Euler

equations are strictly hyperbolic (implying that the system has a complete set of

eigenvalues), there must exist infinitely many possible modes of oscillation. As to

whether an infinite number of unstable modes of ever higher mode number will be

found as parameters are swept towards stability is another matter. While there

are no longer infinitely many modes once the calculation is discretized, the rapid

reduction of mode amplitudes at high mode numbers suggests that these very high

modes do not matter anyway.

As described before in VI, high overtones obey the harmonic oscillator

prediction very closely, while low modes deviate. This is to be expected based on

the large amplitudes that low modes are able to reach, leading to self frequency

modulation. The F mode frequency is generally about 15-20% below ω0 and the

1O frequency is perhaps typically 5% lower than 3ω0, with all higher modes being

easily within the standard deviation of their scatter across various parameters of it.

The Nth mode in a half-closed 1D acoustic oscillator has N nodes inside its

envelope. Stable, saturated oscillation of a radiating shock in the Nth overtone - or
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γ F 1O 2O 3O
5/3 0.75;−15% .15;−5% .04;≈ 0; .02;≈ 0
7/5 ? .12,−8% .025;≈ 0 .015;≈ 0
9/7 ? .12, .023;≈ 0 .015− .02;≈ 0

(6.30)

Figure 42. Table of typical approximate saturated mode amplitudes along with
measured typical frequency shifts from prediction for the lower modes at 3
adiabatic indices

the F mode when N=0 - is characterized by (N+1) wave envelopes whose relative

phases are 360n/(N + 1) degrees for n ∈ (0, 1, ..., N − 1): The F mode has a single

wave, the 1O has the appearance of two waves 180 degrees apart, the 2O of three

waves at 120 degrees, etc. Examples of the first six modes are plotted in figure 43.

Based on this various geometric observations can be made based on the 1/N

shift symmetry. A line drawn at fixed time from the adiabatic shock through the

cooling region will cross N weak shocks existing inside the cooling region which are

analogous to the N nodes of a linear wave. And, a shock propagating down crosses

N shocks propagating up. Etc.

The result uniformly holds that an increase in Mach or a reduction in θ will

tend to induce instability if it is not present, and lead to a preference for lower

modes of oscillation if instability is present.

While low modes dominate over large areas of parameter space, all higher

oscillation modes tend to be compressed into relatively narrow bands between the

1O mode and the threshold of discernable instability, with higher modes appearing

to occupy progressively narrower bands.

Most parameters, once fully saturated, settle into a mode of oscillation

with only that mode frequency and its harmonics present. In the proximity of a

mode transition, the time required to saturate and for the weaker mode to ring
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Figure 43. Spacetime waterfall plots (vertical = space, time = to right) of the
structure of representative members of the F through 5O modes of oscillation of
radiating shocks, showing the increasing number of overlapping wave patterns.
Images are of cs ∝ T in linear scale. Representing the input parameters as the
tuple (M, θ, γ), the parameters are as follows: F mode - (6,−.35, 5/3), 1O mode
- (7,−.75, 9/7), 2O mode - (2,−.95, 5/3), 3O mode - (8, .25, 7/5), 4O mode -
(4.25, .35, 5/3), 5O mode - (5.5, .2, 7/5). Overlaid lines are ∂tρ, revealing shocks
moving up and down the cooling region.
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down become much longer. Sufficiently near to the transition, it is often the case

that the weaker mode does not ring down to zero amplitude, but that both modes

coexist with finite amplitude in the final state.

When this occurs, it seems to be the case that only one mode attains true

nonlinearity, and the others are present in the spectral analysis only as their linear

mode peak. The second mode, rather than creating its own harmonics, instead

generates intermodulation tones with the dominant primary mode. This takes

the visual appearance in the time series of the dominant mode pattern’s peaks

appearing to fluctuate periodically.

Even overtones are unstable, but except for high adiabatic indices (γ = 5/3)

and shocks that are weaker than the hypersonic regime they are almost never

seen in saturated simulations. It is not clear if a sufficiently fine gradation of

parameters might reveal a band of even overtones for lower adiabatic indices or

stronger shocks, but the fact that not one was “hit” by chance suggests not.

Shock fallback. All shocks simulated in the equilibrium’s rest frame

which are unstable are found to retreat downstream at a slow rate once oscillation

sets in. This process occurs because the oscillations increase the dissipation of

the cooling region, allowing it to reach a temperature which is actually somewhat

below the radiation cutoff temperature.

The oscillation process launches both entropic and sound waves into the

cold layer. The sound waves are adiabatic, and their compression heats the flow.

However, in the cold layer any temperature above the cutoff is “instantly” radiated

away, and so the final flow state is such that the peak temperature of the waves in

the cold layer is close to the cutoff, not its average.
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In the normalized preshock flow cs =
√
γ ≈ 1 and the incoming flow

velocity is Mcs ≈ M . The rate at which shocks retreat downstream relative to

their equilibrium state is very much less than 1. It is very small for weak shocks

(which have very little dissipation) and high oscillation modes (which introduce

very little), and for strong shocks (for which the equilibrium cold layer is already

moving so slowly as to be nearly unable to go any slower), for which cases the

typical fall-back rate is 0.005 or less. For intermediate strength shocks (and

especially intermediate strength shocks near the F-1O threshold) the rate is larger,

from 0.01 to 0.025 or so. The fallback also becomes very markedly weaker for lower

adiabatic indices. In all cases, δv/Mcs << 1.

Another potential cause of shock migration is purely numerical error, the

failure of the simulation to keep a stable and stationary shock fixed in place. In

simulations which were found to be stable, the shock would (except for perhaps a

few cells’ eventual displacement when the initial perturbation rammed the shock

front at the start) remain utterly stationary, barely moving a cell or two even if the

simulation ran for a hundred cooling times.

If the simulation is run for long enough in the equilibrium rest frame, a

fixed grid leads to the shock inevitably walking off the grid. This is compensated

for by boosting the frame to track the fallback.

Plots of the fallback rate versus parameters show that it drops to zero at

the threshold of instability, smoothly rises to a maximal value, and then tends to

decrease moving towards the high-M/low-θ parameters. Along a curve of fixed

M this behavior is easy to understand: At low M , approaching stability, the

instability is weak and so fallback is weak. At high M , the post-cooling flow is
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so dense it can hardly slow down any more and so fallback is also slow, and thus a

maximum exists between these cases.

Multi-mode saturation. As convenient as it would be for analytical

purposes, there is no rule stating that only one mode is unstable in a radiative

shock for given parameters.

The instability exhibited by 1D radiating shocks is of the saturating type

which does not fundamentally rearrange the system. This may be expected only

because a 1D system lacks the degrees of freedom present in 2D and 3D that

permit the usual mechanism of fluid mechanics that nonlinearity brings to mind

- turbulence - to exist.

A few experiments were conducted in which two nonlinear oscillators

interacted through a symmetric quadratic coupling:

ȧ = (iω + ka)a− (ka/asat)a/|a|3 + αab (6.31)

ḃ = (iω + kb)b− (kb/bsat)b/|b|3 + αab (6.32)

If the iω and saturation terms are ignored, the Lotka-Volterra equations are

recognizable. The extensions cause either mode to be able to evolve independently

of the other (precisely as is observed if one mode’s growth rate is negative and a

single-mode oscillation is observed). It was found that when realistic frequencies

and saturation amplitudes were entered for the F and 1O modes, the spectrum

of a numeric integration can reproduce lower order spectral features found in

the intermodulated parameter region (the two base peaks and their second-order

sum/difference tones) but not the higher order terms when appropriate growth

rates and interaction strengths were guessed. The possibility of quantitatively

recreating the nonlinear behaviors of the shocks with a slightly more complex

model is attractive for the potential analytic tractability and savings in simulation
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Figure 44. Image qualitatively illustrating the the F to 1O crossover. X-T plot of
log(T ) of the radiating regions. Images do not have same space/time scale. All
images from simulations with γ = 5/3. Left: F mode, M = 5, θ = −1. Middle: IF
mode, M = 8, θ = −.15. Right: 1O mode, M = 4, θ = −.25.

time, as evaluating (6.31) and (6.32) requires about 5 lines of Matlab code and a

few seconds of CPU time, not hours with an entire dedicated fluid code.

Such is potentially relevant to many parameters which, upon simulation

start, enter a long period in which they are “trapped” in an intermodulated

state with very slow amplitude evolution, until they cross a tipping point where

abruptly one mode “wins” and very suddenly. Others, right on top of mode

transitions, appear to enter a stable and permanent intermodulation that never

decays purely to one mode or another. Such would indicate a third nonlinear fixed

point where both amplitudes are nonzero.

Originally, analysis and mode categorization was done manually and led

to the supposition that only one or perhaps two modes might be unstable at any

given parameter, and that the only major intermodulation occurred between the F

and 1O modes, as they are the only ones to reach very large amplitudes.

Improved (and, more importantly, unbiased) automated analysis has found

that in many cases - especially for modes of oscillation higher than the 1O -

multiple modes of oscillation are routinely detectable in saturated states.
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Figure 45. Image of the shock position for run parameters M=6.75, θ = −.35,
γ = 9/7 with a spatial resolution of 4096 cells. These parameters are very near
the 1st to 3rd overtone transition, and this run takes over 150 oscillation cycles to
reach a clean 1st overtone state.

Typically, any case lying near a mode-dominance transition will exhibit

both modes present at appreciable amplitude, with the ultimate power spectral

distribution smoothly shifting between them as the parameters are shifted to favor

one or the other, as is illustrated in 44 for the crossover between the 1O and F

modes. Both possible outcomes, that of coexistence of both modes with finite

amplitudes as t → ∞ and that of one amplitude vanishing, are observed. Moving

away from the threshold, the outcome is (eventually) monochromatic as shown in

figure 45, while in a small region near it both modes maintain finite amplitude,

forming a non-repeating pattern (as their frequency ratios are not integer).

For parameters only susceptible to higher (2nd overtone and up) modes of

oscillation, the time for saturation and the emergence of the final wave pattern can

become extremely long. The final amplitudes are set by nonlinear limiting, and the

weak growth rates and low saturation amplitudes of high modes imply very weak

nonlinearity (as it must scale as the square of the amplitude or worse).
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Remarkably, despite that the complex structures formed by radiatively

unstable shocks consist of weak internal shocks crossing back and forth across

the cooling region rather than any sort of linear wave-like oscillation, the simple

acoustic-resonator prediction for mode frequencies (and the predictions based

a linearized strong shock) both remain remarkably close to each other and the

results of nonlinear simulations as found here and elsewhere.

Radiation cutoff problem. The radation cutoff formula described for

the equilibrium generation works fine for the case in which radiation is in some

sense “weak.” However a resolution problem tends to arise at the base of strong

shocks. This is because the postshock density of a strong isothermal shock (which

state of the cold layer approaches) increases as M2, and so radiation rate increases

as ρ2 ∝ M4. Thus is quickly becomes extremely difficult to truly resolve the cold

dense base of high-M shocks, where the cooling rate increases so quickly that the

majority of all density increase occurs within literally a handful of cells.

Realistically, this becomes a problem when dx × ∂xρ becomes comparable

to ρ itself, i.e. the radiation calculation based on piecewise constant cells breaks

down. Normally this algorithm is actually quite accurate: The second order

correction is the gradient in radiation rate, but this cancels by symmetry so that

the simple piecewise-constant method is actually 2nd order accurate.

In one dimension, this case in which there is sub-cell structure can be

handled by identifying and tracking this cell for special treatment. However, much

as Lagrangian grid transport is trivial in 1D but not in any higher dimension,

this proposition quickly becomes untenable in multiple dimensions and/or with

nontrivial flow geometry.
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In this work, for 1D, the resolution problem was handled by simply

increasing the resolution. The resolution required was highest with high-M shocks.

It was also found to be higher for more negative values of θ, in particular for θ < 0

for which the radiation rate becomes singular as T → 0. It was also seen that more

resolution was needed for shocks with higher adiabatic index (5/3). In the most

difficult case surveyed - M = 10, γ = 5/3, θ = −1, a total resolution as high as

32768 cells was used, and even then the solution exhibits marginal behaviors (even

if the F mode pattern frequency is correct).

It should be noted that identifying the frequency spectrum peaks associated

with modes is relatively easy to do reliably, especially given foreknowledge of

what their frequencies are likely to be as is available for the 1D shock problem.

Moreover, there is no requirement to reach a saturated state - the mere presence of

the peak in the Fourier transform is sufficient.

However, comparable accuracy and reliability for mode amplitudes is more

difficult to achieve as now the simulation is in fact required to reach the saturated

state. This can potentially require a very large number of iterations to approach,

and even then a mode that appears to have settled in may relatively abruptly

undergo mode decay and be replaced by a new lower frequency oscillation pattern.

This kind of changeover may take a hundred cycles for the new mode to slowly

grow in amplitude, before abruptly jumping to 100% of all oscillation power in a

relatively short time.

Accurate prediction of integrated luminosity fluctuations is made even

more difficult because the above requirement for full saturation is compounded by

relative difficulty in actually measuring the radiation rate in certain circumstances.

Those circumstances are namely strong shocks with runaway cooling (θ < 0). In
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these cases, the radiation rate peaks so strongly at the very base of the shock that

nearly complete cooling occurs when radiative loss is applied to the flow.

Because GPU-Imogen code solves the flow using operator splitting, either

the saved full-timestep data will have just had flux transport applied (in which

case it will be hot and the radiation rate, evaluated at this point in time, will

be too high) or just had radiative loss applied (in which case it will be cold and

the radiation rate measured at this point in time will be depressed). In fact, for

strong shocks with runaway cooling, the base cells will cool completely during the

radiation phases, so the measured radiation rate at the end of a timestep for those

cells will be depressed all the way to zero. That this is the phenomenon occurring

and not an error in flow calculation is supported by the observation that where

this phenomenon’s prevalence is worst - γ = 5/3 shocks with M >≈ 5 and θ ≤ −.5

- there are many simulations which reproduce consistent shock position amplitudes

even as dramatic drops in measured integrated radiation rate occur. It is difficult

to see how an error in simulation could cause one but not the other.

Backreflection of emitted waves at low θ. It is observed under

conditions of low θ (meaning -0.5 or lower usually) that the shock quantities

exhibit oscillations at frequencies lower than any cooling region mode. These

appear to be due to the very large amplitude sound and entropy waves that the

shock bouncing emits into the cold layer at low-θ parameters. The sound waves

immediately steepen into weak shocks, and these reflect off of both the outbound

train of entropy waves as they overtake them and off of the the downstream static

boundary. The former case is entirely physical within the context of the simulation

(if not within the context of being a reasonable downstream boundary for most

physical systems). The latter, problematically, couples the cooling region acoustic

154



oscillator to an artificial one created by the cold layer boundary and the simulation

grid boundary.

The best realistic solution to this seems to be to use a large cold layer,

which makes the frequency of the second fake acoustic oscillator very low, such

that the resulting sidebands in spectral analysis don’t overlap with (predicted) real

mode frequencies and impersonate them.

This problem only seriously afflicts low-θ simulations because the

intensity of the sound waves launched grows when θ is low. As the downstream

end boundary is static, the reflection coefficient of incoming sound waves is

proportional to the square of their amplitude (the incoming amplitude brings one

power of a, while the deviation from the equilibrium condition due to a brings the

second). At low θ values, the outbound sound wave amplitudes have been seen to

reach 30% or more, leading to reflection coefficients which can be on the order of

10%.

Analysis methodology.

Parameter refinement. A total of roughly 1000 simulations were

run spanning the region 2 ≤ M ≤ 10 and −1 ≤ θ ≤ 0.5 for adiabatic indices

of 5/3, 7/5, and 9/7. Initial parameter searches used relatively widely spaced

(∆M = 1,∆θ = .25) gridded points. Parameter spacing near mode transitions

was progressively refined to values of ∆M = .25 and ∆θ = .05. When referring to

changes in outcome depending on parameters, this will be referred to as “a square”

below since this parameter spacing gives the appearance of a roughly square grid

when plotted over the range of parameters surveyed. In total, the 1D simulations

compose roughly 1TB of X-T data.
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A region in which a mode dominates may be considered “cleanly resolved”

in the scanned parameter space if squares with all four points dominated by the

same mode are found. This is because there do not appear to be any “surprise”

structures, such as islands of different modes, so that a square whose four points

are all the same mode is taken as indicating that that mode dominates the entire

inside of the square, and that extrapolation is from nearby points is valid.

The finest grid spacing was found to be enough to cleanly resolve the

lower oscillation modes, but the regions dominated by modes higher than the 3rd

overtone are generally comparable to, or narrower than, the spacing and are thus

not resolved as plateaus in mode plots. The grid was not further refined as the

separation between modes becomes so narrow that the time required to acheive

consistent results becomes excessive.

Limits of simulation. Numerically, the very high modes become

exceedingly difficult to resolve. To begin with, it is a case of detecting an ε

perturbation on an O(1) equilibrium, so that the features being measured become

hard to compute or see. As the oscillation becomes weaker, so do the shocks

running up and down the cooling region. While even a Mach 2 or 1.1 shock is

resolved in a handful of cells, this is not the case for a M=1.01 or M=1.001 shock;

The self-steepening behavior that makes shock resolution possible depends on the

self-steepening behavior of shocks, and this scales as the third power of (M − 1),

so that enormous numeric resolutions are required to prevent numeric dissipation

from interfering. Because the growth rates are tiny, the simulation must also be

run for a very long time. And to top it off, because the pattern frequencies are so

high, the Nyquist sampling criteria requires saving a larger fraction of an enormous

number of timesteps.
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While it is not an answer, we submit that in truth the answer is unlikely

to realistically matter. Of the 1000+ simulations run, perhaps a few dozen could

be reliably characterized as exhibiting oscillation modes of 7th overtone or higher.

The amplitude of these oscillations is always extremely small: The shock position

is typically modulated by 0.5% or less, and the column integrated luminosity

fluctuation is at most a few percent. Such a modulation depth of the emitted light

as a function of time is tiny, and because the mode is subject to such rapid change

if the shock parameters change even slightly, the very idea of a saturated mode

may not realistically apply at all.

A default space resolution of 4096 cells was eventually settled on, with

roughly 1000 to 1500 cells resolving the cooling layer, about 500 cells upstream to

accomodate potential shock front oscillation (and/or slow upstream migration) and

the balance in the cold layer. At shock strengths beyond Mach 6 and especially

with runaway (θ < 0) cooling, the resolution is scaled up to accomodate the

increasing resolution requirement for resolving the base of the shock.

Denoting the radiation operation as R and flow as F, the propagator

sequence (R/2)(F/2)R(F/2)(R/2) is used to advance the simulation through

one δt with second order accuracy in the Strang splitting. Because the timestep

limitation is a nonlinear function of the state that must be recomputed every

step when we have second time-order accuracy, adjoining (R/2)(R/2) steps

unfortunately cannot be computed at once in the way that they are in e.g. the

Verlet method for the N-body equations because the timestep must be recomputed

between them.

Both the upstream and downstream boundary conditions are static,

equal to the incoming uniform flow and outgoing equilibrium cold layer states
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respectively. At the downstream boundary, this causes sound waves to reflect with

amplitude proportional to outbound amplitude squared. Normally the outbound

amplitude is small enough (perhaps 10%) that reflection is minimal. In the case of

strongly runaway radiation laws (θ <≈ −0.5) the outbound sound wave amplitudes

become large enough (up to perhaps 30%) to result in measurable reflections which

cause a degree of “jitter” in some simulations.

In such simulations it is useful to utilize a large buffer zone. This is because

lower boundary reflections effectively couple the desired cooling region oscillation

to a second acoustic cavity formed by the cold layer boundary and the end of the

grid. By making the buffer zone long, the resonant frequency of this cavity can be

made quite low. As a result, the spectral side-bands at ωshock ± Nωcav can be kept

near to ωshock so they are not confused with real modes.

Simulations are run until a stable mode pattern emerges. The time required

for this pattern to emerge depends on the physical instability level, with weakly

unstable high modes requiring longer, as well as the proximity to mode transitions.

For highly unstable modes as little as one to two dozen oscillation periods is often

enough for the final wave pattern to settle in, after which it is typically run for

a minimum of several dozen cycles in order to get a narrowly peaked spectrum

graph. For less unstable simulations, or especially those very near to mode

transition boundaries, runs may be extended for multiple hundreds of oscillation

periods. In numeric terms, this typically equates to a minimum of half a million

time steps, to in some cases involving weakly unstable strong shocks nearly ten

million iterations.

Analysis process. Analysis of the simulations has been facilitated

by the development of an almost automatic analysis routine in the form of the
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Figure 46. Flowchart depicting the input, generation and data-reduction phases of
the 1D simulation bank

RHD Analyzer class. At the end of a simulation, the analysis of the resulting

X-T dataset begins with the waterfall diagram, a typical well-behaved species

representative of which is shown in Figure 47.

The researcher is asked to identify the wave round-trip time; In the case

of a monochromatic mode, the number of peaks inside this interval is the mode

number (1 = F, 2 = 1O, etc). The tool then requests the interval to be Fourier

transformed, and tries to shift the endpoints to the nearest minima in order to

try and minimise broadening of the spectral peaks and other spectral spurs. The

tool will then tag the 10 largest spectral peaks and use a priori knowledge of what

frequencies various modes are found at in order to label those associated with

oscillation modes.

Most of this user input is only required once, as the analyzer stores the

manual-input data for future reference. If the simulation is resumed and run for a

longer time, the only manual intervention required is the new transform interval. If

reanalysis is desired after a change to the tool, all runs which have been
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Figure 47. The first image shown by the RHD analysis workflow is ∂t log(ρ). This
reveals shock fronts, sound waves and entropic waves. These images are taken from
a simulation with M = 6.5, θ = 0.25 at γ = 7/5; If the eye is let to follow a line
from the base (bottom) of the shock, up over and back down to the base, it can
be seen that the spatial pattern repeats twice in this period and so this is a first
overtone (1O) mode. This simulation took 40 oscillation periods to settle and ran
for a total of 90.

previously analyzed can be automatically re-scanned.

The normalization with the time unit of xshock/vin yields normalized

frequencies that are relatively close to constant for a given mode across a very

wide range of parameters (Eq. (6.33)), but exhibit clear and predictable trends. A
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small linear correction for the dependence of ω on θ exists, which from the values

given can be seen to be only a handful of percent. The first term in a Laurent

series in Mach, the correction proportional to 1/M , is the real mover,

ω̂ = ωmeas ∗ xshock/vpre (6.33)

ω̂ = ωmeas
xshock
vpre

× [(1 + a(γ)/M)× (1− b(γ)θ)]−1 (6.34)

ω(n) ≈ (2n+ 1)ω̂0 (6.35)

where (a, b)(5/3) = (1.75, .038), (a, b)(7/5) = (2.5, .042) and (a, b)(9/7) =

(2.84, .06). This is the above referenced a priori knowledge. Based on this

normalization, mode frequencies are predicted and spectral peaks tagged based

on (6.35) below, using ω0(γ = 5/3) = 0.256, ω0(γ = 7/5) = 0.186 and

ω0(γ = 9/7) = .150.

The correction to frequencies grows larger and larger at low Machs. Because

shocks with γ = 5/3 can be unstable to very low Machs (as low as M = 1.75,

though the radiation model is all but certainly unphysical at such parameters), the

first correction for finite M in (6.35) may not be sufficient. An alternative formula

obtained by numerical least squares is

ω̂ = ωmeas

[
vpre
xshock

× (1 + 1.14/M + 1.45/M2)× (1− .02θ)

]−1

(6.36)

and ω0 = .261; This formula yields accurate a priori frequency predictions for

shock strengths as low as Mach 2. Examination of the residual left at this point

indicates a very complex structure that would likely not be amenable to significant

further improvement by this method. Moreover, the “structure” is comparable in

amplitude to the random scatter in measured frequencies, meaning that a great

deal of data curating work and extended simulations to narrow the Fourier peaks

would be required to proceed.
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Both complex normalizations, eq. 6.35 and 6.36, are extracted from

empirical fits. Presumably, a linear prediction would be possible if linear analysis

were applied to a shock calculated using the exact hydrodynamic jump conditions,

or if they themselves were computed in a Laurent series in 1/M .

This complex normalization is very useful for analysis purposes, but would

cause all presented values to deviate from those computed using the normal

formula ω̂ = ωmeas/
vpre
xshock

, so the normal formula is used for all presentations.

In the perfect world imagined by (6.35), mode frequencies would now equal

positive odd integers with ω̂ = (2N+1)ω0, N ≥ 0. In fact, low mode frequencies are

predictably and repeatably less. This may be expected as low modes are associated

with large amplitudes, and a shift ω → ω0 + ω1A
2 + ... is expected. Thus, the

analyzer is programmed to search for low modes at frequencies of [.86, 2.85, 5, 7, ...]

based on empirical observation. The deviation in the frequency of the 1O mode

is found to be consistent across all 3 adiabatic indices. That of the F mode is

assumed to be so, despite that no F modes were found except for γ = 5/3.

Once peaks have been identified in the FFT, the more difficult task of peak

analysis and assigning peaks to modes, harmonics of modes and mode interaction

begins. This job is handled by the SpectralAnalyzer class in several phases.

First, (6.35) is used to name spectral peaks. The width of the acceptance

bin is set to 0.07, which encompasses the entire range of variations in actual

frequency versus predicted. Following detection of a mode, its harmonic distortion

terms are searched for among all remaining untagged peaks. The criteria for

harmonic distortion terms are far more stringent,

| f
f0

− round(
f

f0

| < σ(f, f0) (6.37)
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where f is the possible harmonic, f0 is the base tone and σ(f, f0) is the RMS of

the peak fitter’s returned Gaussian width for the f and f0 peaks. Simply put, the

peaks must be closer to an integer frequency ratio than the uncertainty in their

positions. Harmonic distortion must be marked immediately because odd harmonic

distortion creates peaks which land on the (2N + 1)ω0 ladder and look just like

higher overtone peaks. So for example the 3rd harmonic of the 1O mode, which

has frequency of roughly 9ω0, would get marked as being the 4th overtone if it

were not already marked as being a harmonic.

The second phase is necessitated by the same problem: Odd order

intermodulation, like odd order harmonic distortion (of which it is a generalized

case), creates frequency peaks which will appear at (nearly) the same locations as

actual shock modes. In the case of shocks which oscillate in higher modes, the two

effects are nearly impossible to disentangle. Because the shock oscillation modes

do not lie exactly on an integer frequency ladder, technically a third order term

created by two true modes will not have exactly the same frequency as an actual

third shock mode. But in reality, the second and higher overtones come so close to

the ladder that the frequency resolution required to distinguish the two separate

peaks is not achieved.

In general it is observed that only rarely are more than two shock modes

present at substantial amplitude, and these modes are generally adjacent (e.g. 2O

and 3O, 4O and 5O, etc), even though it is nearly always an odd overtone that

dominates. If the two tones are denoted A and B, there are four unique ways to
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make a third order intermodulation:

2Fa + Fb : 2(2N + 1) + (2N + 3) = 6N + 5 = (6N + 4) + 1→ (3a+ 2)overtone(6.38)

2Fa − Fb : 2(2N + 1)− (2N + 3) = 2N − 1 = 2(N − 1) + 1→ (a− 1)overtone(6.39)

2Fb + Fa : 2(2N + 3) + (2N + 1) = 6N + 7 = (6N + 6) + 1→ (3b+ 3)overtone(6.40)

2Fb − Fa : 2(2N + 3)− (2N + 1) = 2N + 5 = 2(N + 2) + 1→ (b+ 1)overtone(6.41)

The two sum formulae generate very high frequencies and seem to occur very

weakly. The difference formulae yield the classic examples of third-order

intermodulation distortion: With two carriers separated by a frequency δf , these

close-in IMD products occur δf below the lower frequency carrier (the a − 1

overtone) and δf above the higher one (the b + 1 overtone). A third particular

case consists of intermodulation between the Nth and 2Nth overtones,

2FN − F2N : 2(2N + 1)− (4N + 1)→ 1(= F mode) (6.42)

For the 1st and 2nd overtones, this is equal to the first set of cases but this can

also occur with e.g. the 2nd and 4th overtone, or 3rd and 6th. This situation is

most often encountered with runs that oscillate at high overtones, and was only

considered because early analysis tools falsely indicated that F modes were being

detected where no F mode could possibly be. In all cases, the result is a frequency

peak at ω0 which is near enough to the location of the F mode peak at 0.86ω0

that it is often mistaken for it. The fact that the 1O frequency is actually 2.86ω0,

placing the fake tone at 2×2.86−5 = .72, is unique in that the fake tone lies below

rather than above the actual F mode frequency, but the distance is comparable.

In all of these cases, the fake shock mode is distinguished by two critera:

The amplitude of the fake mode, as an intermodulation tone, will be smaller

than either of the tones creating it. Second, the frequency of the fake peak will
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exactly match the sum/difference formula, usually within a small fraction of the

FFT frequency resolution. To give an example encounted during development

testing, a 2O and 3O mode conspired to create a fake 1O mode differing from

the difference formula prediction by only .0025, in an FFT with a resolution of

.0097. Meanwhile the acceptance bins for marking modes a priori are .14 wide in

the same normalization, meaning that a match a close as .00x is much more likely

to be a harmonic product than a new tone.

The particular edge case of a run in which the F mode is much larger than

the 1O mode amplitude, but the 1O mode still exists, has in a very few cases been

observed to break the perturbative ordering rule (that higher harmonics are always

weaker than lower ones) for shock displacement amplitudes: In this rare case the

1O - 2F interaction peak can actually be larger than the 1O peak itself, because

the F mode amplitude is in this case very large. This case may result in both the

F mode and the (1O-2xF) frequency peak being tagged as “the” F mode. This

is rejected by counting the number of single peaks associated with a single mode

type. If there is more than one, the largest is kept and others are rejected.

Once a good attempt has been made to identify and reject fake shock

mode tones, the intermodulation analysis can be made to assign meaning to the

remaining spectral peaks which are not base (shock mode) tones or harmonics of

them. In the most general case if there are N identified base tones Fi, it would be

necessary to test for every unknown peak f whether

|ΣαiFi − f | < ε, αi ∈ Z (6.43)

with a nonlinearity order equal to Σ|αi|. In analyzing shocks, given how rare it is

to see more than two large-amplitude tones, it is restricted to consider the base

frequencies only pairwise (for N(N-1) possible pairs) and values of α are restricted
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from -3 to 3 inclusive. This is found to identify all, or nearly all, peaks in the

considerable majority of simulations.

As with harmonic distortion, the concession to imperfect data lives in ε. In

this case, ε is set to the RMS of the gaussian fit widths of the input Fi and of the

f target peak.

The end result of the analysis, as depicted in 46, is a map that gives

(mode, oscillation frequency, radiance fluctuation) as functions of (Mach, radiation

θ, adiabatic γ) without requiring others to go through the intermediate steps

involving 100s of GB of data analysis.

Mode analysis is computed by analyzing the shock front displacement

because this represents a measurement that depends on a local value (the position
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Figure 48. Screenshot of the 1D analyzer’s output spectral graph, zoomed in to
show the relative noise levels of Xshock (blue) and integrated luminosity (blue).
This simulation has parameters M = 4.25, θ = −.4, γ = 7/5; The transform was on
roughly 2800 points.
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of the adiabatic shock jump), and on a variable that is “clean.” On the

other hand, the astrophysical observable - periodic or quasiperiodic fluctuations in

luminosity - is an integral over the cooling region of a viciously nonlinear function,

and often has a noise floor an order of magnitude higher than the shock position

does, despite the normalized amplitudes typically being rather similar. This

situation is shown graphically in 48.

Detailed 1D results. Planar shocks are found to be subject to a

variety of radial oscillatory instabilities depending on their strength and the

radiation’s temperature dependency. The result in terms of dominant mode as a

function of Mach and θ is summarized in figure 49.

Interest is particular in the case of θ = 0.5 as it corresponds to

bremsstrahlung. For a gas with γ = 5/3, corresponding to a completely ionized

postshock of a compact accretion column, the oscillation of a strong shock will be

in the 1st overtone. In the case of a supernova remnant in the radiative phase, the

cooling’s temperature dependence will take on a wide range of values, including

strongly runaway cooling once the postshock temperature is no longer sufficient to

destroy all molecules (whereupon further cooling will permit more molecules with

more molecular excitations to exist).
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Figure 49. Summary of expected mode type for all three adiabatic indices as a
function of cooling parameter θ and shock strength M . Dotted lines denote the
threshold of stability, below which no oscillation is observed. Dashed lines denote
parameters dominated by higher modes (mode type changing too fast to resolve;
For γ = 5/3, anything above 1O, for γ = 7/5, anything above 3O, for γ = 9/7
anything above 5O). Solid lines indicate the threshold of the F mode (for γ = 5/3)
or 1O mode (others) plateaus.

Results for γ = 5/3. At the parameters tested, γ = 5/3 is the only

adiabatic index for which F modes are found to dominate any part of parameter

space. The vast bulk of parameters tested in the region (−1 ≤ θ ≤ 0.5) × (2 ≤

M ≤ 10) yielded F or 1O oscillation modes, with higher modes appearing only in a

narrow region near the threshold of stability.
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Figure 50. Dominant mode type and frequency plot for γ = 5/3

Empirical formulae have been found for the parts of parameter space

containing F, 1O, and all higher modes. For θ <≈ −.2 and shocks up to M = 6.5,

it’s found that

mode
[
M >≈ 3 + 6(θ + 1)2

]
= F (6.44)

and for M >≈ 6.5 the line separating F and 1O becomes steep, with the critical

θ remaining around -.15 at Mach 10. Similarly, for shocks up to about M = 5,

the high mode oscillations are confined in a narrow band near to the theshold of

instability,

mode
[
2 + .8(θ + 1)3 <≈M <≈ 2.25 + 1.6 ∗ (θ + 1)2

]
> 1O (6.45)

for θ up to about 0.4. Above M = 5 and θ = .4 the slope dM/dθ of the line

between 1O and higher modes becomes fairly large. The critical strength for a

θ = 0.5 shock to oscillate in the 1O mode is about M = 7.5. This is notable
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for meaning that the oscillation mode of a strong γ = 5/3 shock emitting

Bremsstrahlung is firmly within the first-overtone region.

As can be seen in figure 51, the boundary between the F and 1O modes

is not exactly the perfectly unambiguous line one would wish it to be. Because

the amplitude of the pure F mode is large, so is nonlinear modulation with other

modes. As parameters are swept from pure F mode (e.g. M = 10, θ = −.5) to

pure 1O mode (e.g. M = 10, θ = .5), there is a large region where both modes are

present at large amplitude (the ‘incomplete F mode’). Even well into the region

where a mode is called ‘1O’ there is generally a detectable spectral peak at slightly

under 1/3 the 1O pattern frequency, meaning that the F mode remains weakly

unstable well into that regime.

The range of parameters over which the F and 1O modes are both unstable

is wide enough that it is actually resolved and the transition from pure F to

pure 1O can be readily observed on the grid of computed results. In the regime

where they are comparably unstable, a third order intermodulation is observed

at f = f1O − 2fF . This leads to the appearance that power “sloshes back and

forth” between the two modes at a slow rate. Because the position amplitude

is dominated by the F mode, the visual result resembles that of an AM radio

waveform.

This regime of competing oscillations may be observed to either end with a

repeating envelope pattern at a fixed amplitude, or (as the parameters shift away

from the transition) ultimately end with the exponential decay of one component

or the other, yielding a pure F or 1O mode. The origin of the envelope lays in the

non-integer frequency relation between F and 1O (3xF and 1O differ in frequency

by about .3 in normalized units). Thus roughly every 6 F mode cycles, the
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Figure 51. Plot showing one of the F/1O borderland simulations which exhibits
intense and complex intermodulation, including long-period amplitude oscillation.

peaks of the 1O mode oscillation go from adding constructively with the F mode

(increasing its amplitude) to adding destructively and back, yielding the envelope.

The region occupied by all modes higher than 1O is only a few “squares”

(0.25 Mach by .05 θ, the finest resolution of the examined parameter grid) wide in

total, and no plateaus of higher modes are resolved.
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For the most part, any given mode’s luminosity fluctuation has a similar

power-ordering as the shock position does when observing harmonic distortion -

power is a decreasing function of the harmonic, though for luminosity very much

more slowly than with shock position. The F mode is the only reversal, often

having considerably more luminance in its 3rd harmonic.

While the mode type changes dramatically over parameters, the luminance

fluctuation does not. From a maximum normalized value in the (large M, negative

θ) corner of parameters that approaches 100%, it undergoes a remarkably smooth

decrease towards zero at the threshold of instability. If only the power in the

dominant mode is graphed, the surface exhibits notches at mode transitions; This

is because multiple modes tend to share power at transitions, and if the RMS

luminance of all mode peaks is graphed instead, the result is quite a bit smoother.

We find it notable that while the mode type, and correspondingly the

Figure 52. The luminance fluctuation in the dominant mode for γ = 5/3. Left: 3D
surface shows gap where emission fluctuation is spread into intermodulation tones.
Right: Contour graph
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glitches in the luminosity graph reflect the difficulty of obtaining clean data in
the high-M regime.

structure of the instability’s saturated wave pattern and its frequency, jump

considerably over the range of surveyed parameters, the radiance fluctuation

overall remains much smoother. For strong shocks, it appears to correlate

strongly with the radiative θ, with a small step down in magnitude at the F to

1O transition.

It is fascinating to observe that F modes with strongly runaway cooling

(low θ) will often form “baby” radiative shocks inside the F mode envelope with

every oscillation cycle. During the outward overshoot phase, the flow length is

long enough to acheive complete cooling. Because the flow maintains a speed well

above the final cold layer value, this returns it to supersonic speed and forms a

second “baby shock.” The baby shock appears to oscillate in either the F or 1st
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overtone mode, and usually manages somewhere under 10 oscillations before the

main envelope implodes onto it.
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Figure 54. A ‘baby shock’ formed inside the main envelope, imaged in log(ρ). This
one is from a shock with M=5 and θ = −1, and itself oscillates in the F mode.
Where the main oscillation has a frequency of .26, the baby shock has a frequency
of roughly 3, and the luminance spectrum indeed shows a series of peaks in that
area which surely correspond to this structure.

Results for γ = 7/5. The results for γ = 7/5 show that the mode

transition boundaries, and the threshold of stability, all move toward the high-M

low-θ corner compared to the γ = 5/3 case. The F mode is complete wiped out;

Only near M = 10,θ = −1 is even a hint of the F mode seen (the beginning of

the ‘intermodulation’ seen between the F and 1O modes for γ = 5/3). The relative

behaviors when viewed alongside the γ = 5/3 transition suggest that F modes

might emerge for γ = 7/5 around θ = −1.2 or so at M=10.
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Figure 55. Mode type and frequency plot for γ = 7/5

The bands occupied by higher oscillation modes grow wider. The 3O band

becomes about 2-3 squares wide, which is enough to be a clearly resolved plateau,

while the 5O band appears to be about 1 square wide.

As with γ = 5/3 the preference is overwhelmingly for odd overtones

(1O/3O/5O/...). While even overtone frequencies are detectable in spectral

analyses, rarely do they form the dominant mode; The few times they do are

usually in weaker shocks. This may be the result of a ‘phase instability.’ An even

overtone, in an unfortunate turn of terminology, contains an odd number of waves,

which prefer to be separated by 360/N degrees of phase.
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Figure 56. The luminance fluctuation in the dominant mode for γ = 7/5. Left: 3D
surface. Right: Contour graph in intervals of .1.

The 3rd overtone plateau is observably wide for γ = 7/5. Unlike the F

to 1O transition for γ = 5/3, this mode change is associated with a distinct step

down in luminance power at the tone frequency. For strong shocks, this stepdown

is from approximately 30% amplitude to approximately 20% amplitude.

Results for γ = 9/7. Oscillation modes and thresholds for instability

again shift up in M and down in θ. Instability at high θ values is very difficult

to find: Even at M = 9 the largest θ to exhibit instability is 0.2, extending only

to 0.25 at M = 10. This is in keeping with the general trend that increasing the

internal energy content available renders cooling induced instability less likely by

lengthening the cooling time. As with γ = 7/5, the preference for odd overtones is

overwhelming.
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Figure 57. Mode type and frequency plot for γ = 9/7

The γ = 9/7 data yields several well-resolved step functions in the shock

oscillation frequency, position modulation amplitude and integrated luminance,

going from 1O to 3O to 5O (and from there to 7O and higher modes).

As with γ = 7/5, the luminance fluctuation jumps down as the mode

number goes up in addition to the smooth decrease associated with increasing θ.

Strong shocks changing from 1st to 3rd to 5th mode oscillation see the luminance

fluctuation drop from roughly 30% to 20% to 10%.

It is somewhat more difficult to ascribe the behavior of γ = 9/7 runs to

single monochromatic oscillations, however, as they have a much more marked

tendency to exhibit oscillation in multiple modes when saturated.
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Figure 58. The luminance fluctuation in the dominant mode for γ = 9/7. Left: 3D
surface. Right: Contour graph in intervals of .1.

Observables for radiating planar shocks. From Gehrels and

Williams (1993), the basic takeaway for us is that plasma temperatures exceeding

roughly 105K up to about 5 × 108K in cosmic gas are all characterized by local

radiation temperature dependence exponents θ in Γ ∝ n2T θ which range

from values as high as about 0.4 to ones as low as -1. We find that gas shocks,

especially strong shocks which would generate such temperatures to begin

with, are nearly always unstable to radial oscillations of some form under these

conditions.

We also note that for temperatures below about 1 or 2 ×105K the radiation

rate is a very strongly increasing function of T (θ > 2) such that gas shocks under

these conditions should be stable against radial oscillations.

According to Gehrels and Williams (1993), shock temperatures above

roughly 2 × 107K will be primarily emitting bremsstrahlung continuum radiation

while those below are dominated by line emission, while the emissivity near
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2 × 107K itself is nearly constant (θ ≈ 0). In the line range, Fe and Si emission

characteristics should be detectable, and these are in fact responsible for the

fluctuations in the overall θ = −1 trend at “intermediate” temperatures.

Observations of 2D planar shock simulations. Several simulations

of two dimensional planar shocks were performed to determine their susceptibility

to transverse structure formation in the nonlinear regime. Shocks with relatively

modest resolution requirements were chosen, and the following three parameter

points were tested: M=6, θ = −.5, γ = 5/3 as a representative clean F mode.

M=6, θ = 0, γ = 5/3 as the representative 1O mode. M=6, θ = 0.1, γ = 7/5 as the

repesentative 3O mode.

These simulations were run at a longitudnal resolution 2048 (512 shock

cells) and a transverse resolution 10240 (5:1 box aspect). The wide box aspect is

necessitated because from dimensional analysis ky ≈ kx and there is no reason to

assume ky is preferred to be substantially larger than kx. As the linear wavelength

of the F mode is 4 times the length of the cooling column, even a 5:1 aspect may

be suspected of quantizing the available wave modes.

Fully 3D simulations would naturally be preferred but the required

resolution could not be accomodated with available resources. Even if the

transverse grid spacing were doubled so that only 5000 transverse cells were

needed, this would in 3D result in a 2000x5000x5000 = 50 billion cell grid and

the simulations would emit around 5-10PB of data each.

It is found that the F mode simulation picks the N=1 deformation, the

lowest that is permitted by the circular boundary conditions in the Y direction.

The 1O oscillator picks the N=2 transverse mode, indicating adequate transverse

resolving power. The 3O oscillator shows some signs of structure growth at a
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transverse wavenumber N=14, but after the time necessary for the F and 1O

simulations to dissolve into complete turbulence, the amplitude of the transverse

structure in the 3O mode remains extremely small (pressure fluctuations roughly

.2%).

The generalized expectation is that the observable (volume-integrated)

luminosity fluctuation will be far smaller in oscillations with k⊥ 6= 0, as

components that are 180 degrees out of phase will mostly or entirely cancel.

In both the F and 1O oscillations, in their linear phase, the transverse

structure indeed appears to take on a form resembling

ψ(x, y, t) = ψ1D(x, t+ a(t) sin(kyy)) (6.46)

Meaning that we simply observe the 1D function, with a slowly growing phase

difference across it width. This most visibly manifested when visualized as the

sinusoidal bowing of the shock front, and in turn as the warping of the originally

straight lines of the sound waves emitted into the cold layer.

The curvature of the shock front, alone, introduces v⊥ where none existed

before. Of course transverse momentum is conserved so that on average there is

none, which is also why the bowing of the shock takes the form of a standing wave.

However, this alone is not enough to cause the observed turbulence in the cold

layer.

The key element relates to the reflection of the (curved) shock off of the

cold layer. When the amplitude function a(t) referred to above is small, each

reflection inverts the phase of the entire bow. This is simple to see: The part

advanced “forward in time” will be further down, rebound first, and be moving

up while the delayed part is still falling down. This is depicted schematically and

with images of the actual simulation in figure 59.
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Figure 59. Image of the bow shock and the reversal of the displacement phase
when the sinusoidally curved cooling layer collapses onto and rebounds off of the
cold layer. The angled shock front at the nodes of the sinusoid creates vy there
that blows sideways across the cold layer, seeding turbulence formation

Through this early part of this process, the cold layer remains “indifferent.”

The displacement velocity caused by a given momentum impact scales as 1/ρ, and

the cold layer (at the tested parameters of M = 6) is roughly 50 times denser than

the preshock gas. Thus it experiences only a very small warping.

However, as the amplitude a(t) grows and the out-of-phase parts of the

shock become effectively further displaced from each other in time, the impact of

the curved shock fronts causes a dramatic nonlinear effect.

It is well known that the streamlines of gas impacting an oblique shock

bend away from the normal. To see why, consider simply that normal momentum

is conserved while transverse velocity is conserved. The fact that this deflects gas

away from peaks and into valleys leads directly to the unconditional stability of

the ideal hydrodynamic shock.

The nodes of the warping of the shock front are the locations of maximum

angle, and these lead to the strongest sideways wind (v⊥) occuring there when

the shock rebounds. In the same way a gale blowing across a body of water drives
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waves across the water, this sideways wind drives up Kelvin-Helmholtz turbulence

at the boundary of the cold layer.

Meanwhile at the maxima of the bowing, the quasi one dimensional

oscillation continues (with an ever growing phase discrepancy at alternating

maxima) as if nothing else were going on.

The turbulence at the cold boundary damps as the shock front rebounds,

and there apparently exists a critical amplitude a(t) = acrit below which the

resulting wave/vorticity generation damps away between each oscillation cycle

and above which self-sustaining turbulence is induced.

The self-sustaining turbulence generally “bursts” and begins destroying the

planarity of the cold boundary after a vortex stands about its own radius above

the mean cold layer boundary. This is enough that the impact of the angled shock

upon the curved density boundary generates a massive amount of vorticity due to

(∇ρ)× (∇P ). Afterwards, the curvature of the cold layer and the incoming cooling

layer begin generating their own turbulence via the Kelvin-Helmholtz shearing

mechanism, and this continues to power the complete disruption of the cold layer

even after the destruction of the smooth wave-reflecting cold boundary causes all

shock oscillation to shut down.

There does not appear to be any clear bound on the growing random

displacement of the cold layer. Both the F mode and 1O mode simulations were

ultimately ended because the distance from the top of the adiabatic shock to the

bottom of the cooling layer were nearly as large as the height of the grid, where

the equilibrium height of both shocks was one quarter the height of the grid.
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Figure 60. Four snapshots of log(ρ) of the 1st overtone 2D simulation’s descent
into chaos. Left: 45tcool, with only a few signs of out-of-phase oscillation. 2nd:
102tcool, with a clear transverse structure. 3rd: 127tcool, the sideways (vertical)
winds from the oblique shock impacts at the nodes of the standing transverse
structure are generating Kelvin-Helmholtz turbulence. Last: 156tcool, the cold layer
has dissolved into turbulence and all coherent oscillation has shut down.
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Figure 61. Four snapshots of log(ρ) of the F mode 2D simulation’s descent into
chaos. From left to right, after 69, 84, 96 and 113 tcool. First the bowing in the
ny = 1 mode becomes apparent. Once the bowing reaches appreciable amplitude,
the (here) vertical winds created by the angled shock front whips up Kelvin-
Helmholtz turbulence. Areas over the roughly flat part of the cold boundary
determinedly try to keep oscillating. The disruption of the cold layer shuts down
all oscillation.
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Figure 62. Plot of the luminosity fluctuation of an F mode shock simulated in
2D for 105 cooling times. Starting from a gently salted equilibrium, the planar
(ny = 0) F mode oscillation takes 35tcool to reach its full amplitude. An ny = 1
structure begins growing and at roughly 75tcool it begins to drive the formation
of turbulence in the cold layer. After the outbreak of full turbulence, coherent
oscillation shuts down quickly.
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Figure 63. Plot of the luminosity fluctuation of a 1st overtone shock simulated
in 2D for 167 cooling times. Starting from a gently salted equilibrium, the planar
(ny = 0) 1st overtone oscillation rings up in about 15 Tcool. The loss of luminance
to the out-of-phase (ny = 2) oscillation takes off around 80tcool. The out-of-phase
component eats into the integrated fluctuation until around 130tcool at which point
the disruption of the cold layer shuts down coherent oscillation completely.
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Both the F and 1O simulations grow clear transverse structure, and it was

not too difficult to run them far enough to watch both descend into turbulence.

The 3O simulation is a different character entirely. There is definite evidence that

some transverse structure is growing (with a transverse wavenumber around N =

14), however it appears that it will require several million iterations to reach an

amplitude of even a few percent, let alone nonlinearity. The planar 3O mode in

this simulation, it is worth noting, required a similar time just to reach its own

saturation.

The much reduced susceptibility of the higher overtones to transverse

structure formation and its inducement of turbulence suggests that if the adiabatic

index of the cooling region could be surpressed enough to compel 3O oscillation,

this could yield at least intermittent coherent oscillation of a strong shock.

Tests of a global 3D model. Three 3D bow shock simulations

were performed. One had no radiation, and exhibited the essentially stable

structure that was expected, outside of the Kelvin-Helmholtz instability in the

shearing layer. The radiating simulations had two very different radiation laws -

one proportional to T .5 and one proportional to T−0.5. While the two radiating

simulations were quantitatively different in both the intensity and period of

instability caused by the radiation, the simple presence or absence of radiation

(when the radiation timescale was comparable to the flow timescale) caused a

fundamental qualitative change towards quasiperiodic instability of the bow layer.

The simulations were performed at resolutions of 7683 (450 million voxels)

on two nodes with 2 K80 processor cards each, achieving a simulation rate of .45

steps per second.
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Equilibrium structure. In all three cases, the initial non-equilibrium

initially evolved towards a time-independent equilibrium structure.

Figure 64. Qualitative diagram depicting differences in the equilibrium structures
of radiating vs nonradiating bow shocks.

This equilibrium structure consists inside of a simple adiabatic radial

outflow as a simplistic model of a stellar wind. This collides with the inner shock

where the outflow drops to subsonic speed, and (in the areas facing the oncoming

flow) stop and begin flowing away from the subsonic point.

The inner and outer shocked gas shells are in contact and fall sideways

at different speeds, creating a Kelvin-Helmholtz unstable shearing layer between

them.

Both radiating and nonradiating bows form similar structures dynamically,

best described by the pressure structures. Radially, pressure is maximal at the

subsolar point, with a strong gradient direction away from the shearing layer

serving to brake the progress of gas towards the shearing layer. In the transverse
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direction, a pressure gradient points away from the subsolar point (which thus has

the maximum pressure obtained), serving to cause fluid to accelerate away from

the subsolar point and avoiding endless accumulation of gas there.

Radiating flows exhibit a comparatively secular formation of a very thin

cold layer near the subsonic point where fluid resides long enough to cool.

Behavior of nonradiative bow flow. When the bow flow is not let

to radiate, the only source of instability is the KH instability of the shearing layer.

This is indeed seen to waver and emit rolling structures (which in real conditions

would correspond to the turbulent mixing layer), however there is no larger-scale

instability nor is there any periodicity to the overturning eddies other than their

own circulation rate.

That is, the inner/outer shock structure is never substantially disturbed by

the rolling eddies and turbulence in the shearing layer.

Behavior of radiative bow flows. The ratio of import for the

radiating simulations is the radiation cooling time divided by the flow time. If

radiation is slow, the limit of a simple nonradiative simulation is approached

because no internal energy is lost before the flow moves off the grid.

Ultimately, the origin of the unstable behavior is the subsolar point. If

outflow is uniformly radially away from the star, and oncoming flow is uniform,

then the line connecting the outflow and incoming flow lines traces a saddle point

of the velocity field: A particle flowing along the axis nominally becomes trapped

at the subsolar point, and gas near there resides there for a relatively long time.

Dynamically, the equilibrium flow always holds itself in pressure balance.

If radiation causes the temperature of the shocked layer to drop, then the density

of the middle of the shocked layer - the shearing layer - must increase in order to
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maintain pressure suppport. The extent of this density increase becomes greater

and greater approaching the subsolar point, where gas can have a much longer

residence time.

In both radiating simulations, the subsolar point is observed to eventually

accumulate a very dense knot of matter that undergoes runaway cooling, such that

it can essentially “wander” without being pushed back against by pressure - as any

gas that it absorbs cools immediately.

As long as it remains inside the shocked region, it does not fundamentally

destabilize the system. However the moment its curved surface makes contact

with either shock front, the ram pressure imparts a large torque (c.f. Richtmeyer-

Meshkov instability). This initiates a cascade of intense dynamic turbulence as the

pressure-sapping cold layer is disrupted and spread.

The chaotic, turbulent flow appears to continue for as long as there are any

dense, pressure-sapping knots of matter within the bow region to power it. Once

the existing knots drift away or are disrupted (and the turbulent flow prevents the

formation of new ones), the turbulence dies away and the original largely laminar

stable bow re-emerges and settles into an equilibrium form again, after which the

cold dense layer can then be seen to re-emerge.

Both radiating simulations ran long enough to observe multiple cycles of

this: Disruption of the laminar bow structure, dissolution of the bow region into

turbulence, followed by clearing and reformation of the stable bow.

These observations were made possible by visualizating the output data,

amounting to roughly 6TB per simulation, using the Paraview 3D parallel

visualization system.
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Figure 65. Quantitative difference between radiating and nonradiating simulations.
Radiating simulations form a cold gas layer which eventually destabilizes near the
subsolar point and totally disrupts the otherwise relatively stable bow structure
that forms.
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