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DISSERTATION ABSTRACT 

 

Sean Patrick Cleary 

 

Doctor of Chemistry 

 

Department of Chemistry and Biochemistry 

 

March 2020 

 

Title: Fourier Transform Analysis for the Characterization of Mass Heterogeneity of 

Intact Protein Complexes using Native Mass Spectrometry. 

 

 

Heterogeneous mass populations, or molecules that have molecular weight 

distributions for their mass measurement, appear in many contexts throughout chemistry, 

including multi-subunit protein complexes, lipid-bound membrane proteins, and 

polymers.  The average mass and dispersity of these molecules are useful and pertinent 

parameters to measure and investigate, as these properties can have dramatic effects on 

the physical properties of the overall system.  Mass spectrometry has emerged as a 

powerful tool to probe these parameters, but conventional mass spectrometry can be 

problematic for heterogeneous biological samples, as the experiment requires transfer to 

the gas phase and can sometimes require harsh ionization conditions.  Native mass 

spectrometry can overcome these limitations, in that it can maintain the native 

stoichiometry and structure of biomolecular complexes into the gas phase, but as the 

dispersity and size of these molecules increases, it can become increasingly difficult to 

measure the average mass and dispersity due to mass spectral congestion.  This 

congestion of peaks can often obfuscate determination of charge state, total mass, or 

subunit mass using conventional mass spectrometry analysis methods.  
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Here, research is presented dedicated to the development of a Fourier transform-based 

method that can be used to deconvolve highly congested mass spectra for a variety of 

different heterogeneous mass populations. The method is parameter-free and requires no 

initial guesses of charge states, total mass, or subunit mass, thus giving it a unique 

advantage over other established techniques.  First, a 1-dimensional Fourier analysis is 

introduced that can probe the subunit mass, charge states, and subunit mass dispersity for 

a variety of different molecules.  The method is further advanced by discussing the 

advantages of using higher harmonic frequencies in the Fourier spectrum, particularly for 

mass spectra with low signal-to-noise and poor resolution.  A short-time Fourier 

transform-based method is then introduced, and is demonstrated to be useful for 

extracting signal from native-like protein ions even in the presence of a large salt-cluster 

background.  Finally, the theoretical and practical implications for investigating mass 

populations with two or more different subunits is explored.  This dissertation includes 

previously published co-authored material.   
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CHAPTER I 

 

INTRODUCTION 

 

 Heterogeneous mass populations, or molecules whose mass measurement is a 

molecular weight distribution, appear in many contexts throughout chemistry and 

biochemisty.  The variety of different molecules that fit this definition are numerous and 

ubiquitous, and can include lipid-protein complexes,1, 2 polymers,3-6 biotherapeutics,7, 8 

and many more.  Properties such as the average mass or the dispersity of the masses are 

important properties to investigate for these molecules, as they can have dramatic effects 

on the physical properties of the overall system.  For example, the dispersity of masses 

for a polymer population can dramatically affect its glass transition temperature, viscosity 

and strength, and resistance and wear.9  Furthermore, these characteristics are not 

restricted to molecules made up of only covalent interactions.  For example, it is 

theorized that the lipid environment surrounding transmembrane proteins can play an 

important role in the overall function of the protein or protein complex.10-12 Here, the 

complex of the protein and the lipids immediately surrounding the protein can be treated 

as a heterogeneous mass population.  Because these interactions are difficult to study and 

are poorly understood, the development of novel methods is necessary to begin to fully 

comprehend the properties of cellular membranes and other likewise systems.13, 14  The 

main focus of this dissertation will be dedicated to the development of one such method, 

but before discussing this method, it is important to first discuss and introduce the 
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advantages and disadvantageous of current methods for studying heterogeneous mass 

populations. 

Methods to Study the Average Mass and Dispersity of a Heterogeneous Mass 

Population. 

  While currently there are many established methods for studying the properties of 

heterogeneous mass populations, the three most popular techniques include size 

exclusion chromatography,15 nuclear magnetic resonance,16 and mass spectrometry.17  

While a short list will be discussed here, it should be noted that this is not a complete list, 

but rather a short list of the more popular techniques in academia and industry. 

 Size Exclusion Chromatography. Size exclusion chromatography (SEC) is a 

chromatographic method that separates molecules based on their size and shape, and is 

currently perhaps the most popular industrial method for measuring the average size and 

dispersity of polymers. A SEC experiment is a liquid chromatographic method, meaning 

the analyte of interest is first solubilized in a liquid mobile phase and is then passed by a 

stationary phase in a column, which is typically nonreactive porous beads for SEC.  

Smaller molecules get trapped in the pores of the beads while larger molecules simply 

pass by, resulting in larger molecules being eluted first.  A calibration curve of analytes 

of known size can then be made and used to measure the size of an unknown analyte. The 

molecular weight and dispersity of molecule are typically estimated based on this size 

measurement. As an example of data obtained by an SEC experiment, shown in Figure 1 

is a calibration curve of known analytes (black trace), as well as an analyte of unknown 

size measured with an internal calibration curve (red trace). As analytes are eluted from 

the column, they are detected by some physical property, which is UV absorbance for 
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Figure 1.  Each peak (labeled with letters A through E) in Figure 1 represents a different 

analyte which decreases in size going from left to right.  

The advantages of using SEC when 

compared with other techniques is that the 

instrumentation required to perform an SEC 

experiment is often simpler and less expensive 

than other established methods.  Furthermore, 

there can be short and well-defined separation 

times, which can lead to good sensitivity, and 

the experiment can be set up such that no 

sample is loss, as the analytes can be collected 

and separated at the end of the experiment. 

SEC is also particularly popular for biological 

molecules, as the liquid mobile phase can often be a biologically relevant buffer. For 

studying heterogeneous mass populations, both the average mass and the dispersity of the 

mass can be estimated by using the top and the width of the peak respectively. However, 

it is important to note that one of the major disadvantages in using SEC to measure the 

average mass and dispersity is that the mass is not actually being measured.  Instead, SEC 

measures the size of the molecule, and uses this measurement to estimate the mass. 

Furthermore, theoretically, SEC measures an estimated hydrodynamic radius, meaning 

one of the fundamental assumptions of SEC is that all of molecules being measured are 

spherical, which can be a problematic assumption for many different systems.  Finally, in 

comparison with the other methods discussed here, SEC is typically limited in resolution 

Figure 1.  Size exclusion 

chromatography of gel filtration 

standards (A = bovine thyroglobulin, 

B = bovine γ-globulin, C = chicken 

ovalbumin, D = equine myoglobin, E 

= vitamin B12) without (black) and 

with (red) addition of 18:0-SM 

Nanodiscs. 
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to separate finer details of heterogeneous mass populations, as the distribution often 

appears as one solid peak rather than a distribution of peaks for all of the masses present 

in the spectrum.  Thus, while SEC can be useful for estimating the average mass and 

dispersity of heterogeneous mass populations, other popular techniques can often produce 

more accurate and insightful results.  

 Nuclear Magnetic Resonance.  Nuclear Magnetic Resonance (NMR) is another 

popular technique for measuring the average mass of a heterogeneous mass population. 

NMR is a spectroscopic technique that works by aligning the nuclear magnetic spins of 

molecules with a strong magnetic field, and measuring the energy needed to flip the 

alignment of spin using radio waves. This can give descriptive details about the chemical 

composition of molecules, such as the location of different functional groups within the 

molecule, as the atoms of different functional groups require a differing amount of energy 

to flip the nuclear magnetic spin.  NMR is another popular technique for polymer 

analysis, as a technique known as head group analysis can be used to measure the average 

mass of the molecule.  As an example how this is typically done, shown in Figure 2 is a 

13C NMR spectrum of a polyethylene glycol (PEG) 10k molecule in DMSO.  13C NMR 

indicates how many different carbons are contained within the molecule, and in the case 

of the PEG polymer, there are three different types:  Two head group carbons, shown as 

“a” and “b” in Figure 2, and the chain carbons, which composes all of carbons contained 

within the chain of the polymer and is shown as “c” in Figure 2,.  These appear as three 

distinct peaks in the NMR spectrum, along with a fourth peak for the solvent (see Figure 

2). Integration of the peaks is related to the average amount of each carbon present in the 

molecule. Therefore, the average number of subunits contained within the chain be 
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measured using the integration of the three peaks in the NMR spectrum, which can then 

be used to measure the average mass.   

One major advantage of using NMR is 

that finer detail about a heterogeneous mass 

population can be learned from analyzing the 

spectrum. For example, molecules that have 

dispersity from two differing subunits, such as 

copolymers, can also be analyzed by NMR 

using the head group analysis described above.  

Using this analysis, not only can the average 

mass be measured, but the relative amount of 

each subunit can also be determine.  This type 

of analysis is not feasible with a method like 

SEC. However, one major disadvantage of using NMR is that the sensitivity of the 

instrument is often lower than other methods, and therefore, a higher concentration of 

analyte is often needed to obtain reasonable data.  This can become problematic for 

biological samples, as the required concentration can sometimes approach the millimolar 

range, a range that is often infeasible for many protein samples to remain solubilized in 

solution.  Furthermore, NMR measures the bulk average of that analyte contained within 

the sample. This can also be problematic if the sample is not highly purified, as is the 

case for the polymer in Figure 2. As will be discussed below, the average molecular 

weight of the fully formed polymer was found to be closer to 13 kDa rather than the 10 

kDa measurement found by NMR.  This discrepancy is attributed to smaller molecular 

Figure 2. 13C-NMR spectrum of the 

PEG 10k polymer sample in 

dimethyl sulfoxide (DMSO). 

Colored text indicates chemical 

structure assignment of observed 

peaks. Numbers in parentheses 

indicate the integrated area for each 

peak found, relative to peak b.  
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weight contaminates found in the sample, which are taken into account when average 

mass measurement is made by NMR. Thus, if the sample is not highly purified, the 

average mass can be skewed toward an inaccurate measurement. 

 Mass Spectrometry Mass spectrometry is another popular technique for 

measuring the average mass and dispersity of heterogeneous mass populations. Mass 

spectrometry works by first charging the molecule through some form of ionization, and 

measuring the ions mass to charge ratio using a number of different mass analyzers.  For 

example, a popular mass analyzer is the Time-of-Flight mass analyzer, which measures 

how long it takes a charged particle to transverse a drift cell under vacuum.  This time 

measurement is associated with two physical properties: The charge of the ion, where the 

higher the charge, the faster it will make it through the cell. And the weight of the ion, 

where the higher the molecular weight, the slower it will make it through the drift cell. 

Other versions of mass analyzers exist, but the common result is a spectrum the reports 

an ion’s mass/charge ratio.  This means that unless the amount charge on the ion (or, as it 

will be referred to here, the charge state) is 1, then knowledge of the amount of charge is 

needed prior to performing a mass measurement.     

 Mass spectrometry has some distinct advantages for measuring the average mass 

and dispersity of heterogeneous mass populations, the first of which is, it is the only 

technique listed here that actually measures the mass. Furthermore, the resolution of a 

mass spectrum is typically much higher than SEC, in that each mass associated with a 

disperse complex (i.e. PEG with 100 subunits, PEG with 101 subunits, ect…) appear as 

individual peaks in the mass spectrum rather than the one large peak often seen with 

SEC.  This is shown in Figure 3, which is the mass spectrum of the PEG 10 kDa polymer 
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in Figure 2. Furthermore, because the ions are plotted as function of the mass to charge 

ratio, mass spectrometry can overcome the bulk average limitation of NMR, as lower 

molecular weight contaminates often have different m/z values than the fully formed 

polymer.  Finally, mass spectrometry is much more sensitive than either SEC or NMR, 

where it is often feasible to obtain quality spectra using nanomolar concentrations of 

analytes.  One disadvantage however, particularly from the perspective of studying 

biological samples such as the lipid-protein complexes, is that mass spectrometry requires 

transfer to the gas phase to perform the analysis.  For a lipid-protein complex, this can 

certainly seem problematic, as the aqueous environment is often needed for self-assembly 

of the lipid bilayer.   

Fortunately, a recent 

development in mass spectrometry 

has led to the ability to maintain non-

covalently bound complexes into the 

gas phase, including lipid-protein 

complexes.  This development is a 

technique known as native mass 

spectrometry.  As will be discussed 

below, because of the ability to 

measure the mass and maintain non-

covalent interactions, native mass spectrometry will be the main analytical method used 

to investigate the average mass and dispersity of heterogeneous mass populations 

throughout this dissertation. 

Figure 3.  Mass spectrum of a polyethylene 

glycol Polymer.  Red inset shows m/z ranges 

from 800 to 850 m/z.  The manufacture 

reported average mass for this polymer is 10 

kDa. 
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Native Mass Spectrometry 

 Native mass spectrometry is an analytical technique that attempts to maintain and 

preserve the native structure and stoichiometry of biomolecules into the gas phase.  The 

advantages of using this technique are numerous, including the advantages already 

discussed for mass spectrometry, but with the added benefit of being able to quickly 

determine the native stoichiometry of biomolecules composed of primarily non-covalent 

interactions. As an example, anthrax lethal toxin is a multi-subunit pore forming toxin 

that was recently analyzed by native mass spectrometry. The protein complex is a 

decamer composed of two different protein subunits; lethal factor (LF), which composes 

three of the subunits, and protective 

antigen (PA) which composes seven. This 

structure was determined in 2015 by cryo-

EM,18 but it should be noted that this is a 

membrane protein, and it is rare to achieve 

such a high resolution cryo-EM for a lipid-

protein complex.  As is shown in Figure 4, 

the same stoichiometry can be determined 

using native mass spectrometry. The 

protocol for determining this is a typical 

workflow for native mass spectrometry, in 

that the mass of the intact protein complex 

is first measured, followed by a mass measurement of the individual components (i.e. the 

mass of PA and LF of anthrax). Using the mass of the entire complex and the mass of the 

Figure 4. Mass spectrum of fully formed 

anthrax lethal toxin.  Anthrax lethal toxin 

is made of 10 subunits, 7 of which are 

Protective Antigen (blue subunit) and 3 

of which are Lethal Factor (red subunit).  

The mass spectrum above can be used to 

determine this native stoichiometry by 

using the mass of the fully formed intact 

complex. 
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individual components, the stoichiometry of the individual components can then be 

determined, which when performed for the spectrum in Figure 4, results in same ratio 

found by cryo EM, 7 PA’s and 3 LF’s. While this workflow is typical, it is important to 

note that there are some key experimental parameters that need to be carefully controlled 

to run this experiment, which will be discussed below. 

 Electrospray Ionization Electrospray ionization (ESI) is the ionization source 

typically required for native mass spectrometry. This is because ESI is known as a “soft” 

ionization source, in that it does not require fragmenting the molecule during the 

ionization process, which is preferable for maintaining non-covalent interactions of 

biological molecules. In order to understand how ESI is able to maintain non-covalent 

interactions into the gas phase, it is important to discuss some of the mechanistic details 

of the ionization process. The analyte is first solubilized (in the case of a biological 

molecule, the solution is typically a native-like buffer) and placed into a glass capillary.  

The solution is then charged, typically using a platinum wire, and a potential difference is 

applied between the capillary and the front of the mass spectrometer.  This causes the 

charged solution to be pulled out from the capillary in the form of charged droplets, and 

if the concentration is held sufficiently low, a small number of these droplets will contain 

the analyte of interest.   

As the droplet makes its way to the front of the instrument, desolvation of the 

droplet occurs, and charges on the outside of the droplet move closer.  This creates a 

columbic potential between like charges that will eventually overcome the surface 

tension of the droplet.  When this occurs, the droplet breaks apart into smaller droplets 

through columbic fission. After this occurs, the analyte of interest is now contained in 
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one of the smaller droplets, and the process is repeated until the droplet is fully 

desolvated.  At this point, the charges are placed on the analyte of interest, and if the 

experiment is set up correctly, the fully intact ionized analyte will make its way into the 

instrument. Since mass spectrometry requires the instrument to be held under vacuum, 

this can aid in maintaining the native structure and stoichiometry of analytes, as the 

vacuum conditions keep the analyte kinetic trapped in a native like state (i.e. the 

interactions holding the complex together are much stronger under vacuum than in 

solution). It is also important to note that the amount of charge deposited onto an analyte 

during the ionization process can vary.  Therefore, an ESI spectrum will typically have 

multiple peaks for the same analyte, where each peak in the spectrum is the mass of the 

analyte divided by a different amount of charge.  Thus, in order to measure the mass of 

an analyte from an ESI spectrum, knowledge of the charge state for a peak is needed. 

Ion Mobility Separation. While from a theoretical standpoint, the idea of 

trapping protein complexes in a native-like structure through ESI makes sense, it is 

important to mention that this has also been shown experimentally to be the case. Ion 

mobility separation (IMS) is additional experiment that can be performed in the mass 

spectrometer prior to the transfer of the ion to the detector.  Importantly, IMS can 

measure the shape of the ion in the gas phase. The technique works by first placing the 

ions into a drift cell while a neutral buffer gas is being flowed the opposite direction. The 

time it takes to transverse the drift cell is related to two different physical properties of 

the ions: The charge of the molecule, where the more charge an ion has, the faster it will 

move through the cell.  And importantly, the size of the molecule, where the larger a 

molecule is, the slower it will make it through the drift cell, resulting from more 
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collisions with the neutral buffer gas. When measured against a calibration curve of 

analytes of known size, IMS can measure an ion’s rotationally averaged collisional cross 

section (CCS), a parameter that is closely related to its overall size.  This CCS 

measurement can also be measured in the solution or estimated through computation, and 

when compared with measurements taken by IMS, it has been found the collisional cross 

sectional measurements typically agree within 3% of their solution phase values.19   

This sets up native mass spectrometry as technique with a large amount of 

potential to analyze highly heterogeneous mass populations, all while overcoming the 

limitations associated with SEC, NMR and conventional mass spectrometry.  

Unfortunately, while the technique can indeed perform the analysis, native mass 

spectrometry can often suffer from a data analysis flaw, which will be described below. 

 

Native ESI Mass Spectrometry Produces Complex Data Sets for Heterogeneous 

Mass Populations  

While native mass spectrometry has been shown to be a powerful analytical 

method for a variety of different protein complexes,20-23 it can be difficult to use for 

highly heterogeneous mass populations such as polymers and protein-lipid complexes. 

The origin of this difficulty comes from the interpretation of the data. As with other mass 

spectrometry methods, a native mass spectrum can report every mass associated with a 

heterogeneous mass population, but determining these masses can be time consuming 

process, as a heterogeneous mass population can often produce 10’s to even hundreds of 

different mass peaks in the spectrum. Combining this observation with the necessity of 

using ESI means there will also be multiple charge states present in the mass spectrum.  
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This results in a spectrum where each charge state can contain its own distribution of 

masses. To put it another way, the ESI mass spectrum of a highly heterogeneous mass 

population is often found to be a distribution of distributions. To further this difficulty, 

assigning masses for all of these peaks can often be infeasible if the average mass 

changes between different charge state distributions.  If the average mass changes 

between different charge states, then overlap can occur for adjacent charge state 

distributions.  This can result in a superposition of many peaks, an observation that has 

been seen with protein-lipid complexes1, 24, 25 and is seen with the polymer mass spectrum 

in Figure 3.  This makes it difficult to uniquely identify a peak with a specific mass.  

  With this in mind, it should not be understated that the information desired of 

heterogeneous mass populations is still present in the mass spectrum.  Therefore, native 

mass spectrometry still has the potential to identify the different properties of 

heterogeneous mass populations if methods can be developed that could simplify the 

analysis of the spectrum. This idea has led to a surge in research dedicated to this very 

concept, including a method that will be the main focus of this dissertation. Before 

discussing this however, it is important to first describe the current state methods 

available to deconvolve native mass spectra.      

 

Methods for Reducing the Complexity of Native Mass Spectrometry Data 

Both experimental and data analysis based methods have been developed to 

simplify and deconvolve the mass spectra of heterogeneous mass populations. While not 

a complete list, described below is list of some of the more popular methods. 
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 Ion Mobility Separation. As was described above as a means to measure the 

collisional cross section of ions in the gas phase, IMS can also separate out and simplify 

overlapping charge state distributions in the mass spectrum. One of the main challenges 

in analyzing the mass spectrum of heterogeneous mass populations is the potential of 

multiple charge state distributions overlapping each other and forming a superposition of 

peaks, making it difficult to uniquely identify each peak with a particular mass.  IMS can 

overcome this limitation, as the process of measuring the drift time (i.e. the time it takes 

for an ion to transverse the IMS cell, see above section) can be plotted against the mass 

spectrum to produce a 2-dimensional spectrum which can separate two signals 

overlapping in the mass spectrum.  This has been demonstrated with reasonable success 

for polymers, as was demonstrated by Trimpin and coworkers,5, 6 and an example this 

type of spectrum is shown in Figure 5 for the PEG 10 kDa polymer in Figures 2 and 3.  

Figure 5. Ion mobility spectrum of a polyethylene glycol polymer.  The mass 

spectrum (x-axis) is plotted against the drift time of (y-axis).  The white dotted line 

demonstrates segregated signals that have been separated by ion mobility when 

previously overlapped in the mass spectrum.  The average molecular weight of the 

polymer is reported as 10 kDa 



 

14 

 

Signals captured in this spectrum can also be isolated and plotted back into the 

mass spectrum, thus allowing the user to separate out charge state distributions into their 

own mass spectrum.  However, while IMS can help separate out overlapping 

distributions, the technique can still leave the time consuming process of manually 

identifying 10’s to 100’s of unidentified mass peaks. Because of this, the other three 

methods discussed here focus more on the development of different algorithms to 

automatically assign peaks, overcoming this limitation associated with IMS and 

traditional mass spectrometry techniques. 

 Maximum Entropy. Maximum entropy (MaxEnt) is an algorithm that was 

introduced in 1989,26 and has since gone through many iterations and created additional 

programs that are based on the same underlying method.  MaxEnt has been used by many 

laboratories in both academia and industry, is often considered the gold-standard for mass 

spectral data deconvolution. While many different versions of MaxEnt exist, most of the 

versions work on the same basic premise, in that the algorithm iteratively searches for a 

charge state and mass assignment that maximizes an entropy parameter based on 

deviations from predicted mass spectral peak positions.  Importantly, one of the 

fundamental assumptions of MaxEnt is that each charge state has identical mass or mass 

dispersity.  For heterogeneous mass populations, this assumption can often be 

problematic, as the average mass can be different for the charge state distributions present 

in a spectrum.  In cases such as these, this can lead to a failed convergence or incorrect 

charge state and mass assignments. While the method can be avoided if this information 

is known prior to analysis, one of the main difficulties with MaxEnt and other fitting 

algorithms is being able to discern this knowledge if the spectrum is highly congested. 
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Thusly, users of these algorithms are advised caution prior to performing the analysis to 

not over interpret results. 

Bayesian Deconvolution. Bayesian deconvolution is a newer data deconvolution 

technique that was introduced as “UniDec” by Marty and coworkers in 2015.14  UniDec 

is another fitting algorithm, but differs from MaxEnt by using a Bayesian statistical 

approach rather than maximum entropy.  The underlying algorithm works by fitting delta 

functions to the mass spectrum based on Bayesian priors, such as ranges for mass and 

charge states, and finding the most likely fit by iteratively fitting the modeled data sets 

until a convergence is found.  Importantly, because a range of masses can be used as a 

prior, UniDec does not suffer from the assumption that every charge state has to contain 

the same mass or mass distribution. This advantage has allowed UniDec to be successful 

in analyzing mass spectra with charge state distributions that change in the average mass, 

such as lipid-protein complexes.  However, because UniDec is based off of Bayesian 

statistics, in order for the algorithm to be successful, knowledge of the sample and 

spectrum is required prior to performing the analysis. As is the case with MaxEnt, one of 

the major drawbacks of using fitting algorithms to analyze heterogeneous mass 

populations is that this information can sometimes be difficult to know prior to using the 

algorithm, in particular for spectra that are highly congested.  This was demonstrated in a 

publication in 2018 using model data,25 where lacking this information produced a result 

that do not resemble the known data.  Indeed, as is the case with other fitting algorithms, 

the user is advised to not over interpret results found with the program, as inputting the 

incorrect Bayesian priors has the potential to produce incorrect results that can seem 

reasonable to a naïve user.   
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 Fourier Transformation. Fourier transformation (FT) is another deconvolution 

method that has been shown to be effective at analyzing the mass spectra of 

heterogeneous mass populations. Rather than fitting data based on a statistical parameter, 

the FT method instead treats the mass shift associated with the addition of subunit (i.e. 

PEG with 100 subunits versus 101 subunits) as a frequency in the mass spectrum.  This 

frequency is related to both the subunit mass and the charge state associated with the 

spacing, and can be probed by Fourier transforming the mass spectrum.  The result of this 

in another spectrum with an equally spaced series of peaks, where each peak corresponds 

to a charge state present in the mass spectrum divided by the shift in mass (or subunit 

mass).  This method was introduced in 2004 by Cook and coworkers,4 where it was 

shown to have success at analyzing polymer mass spectra. 

 When compared with other deconvolution methods, the main advantage of the FT 

method is that no assumptions or parameters are needed to perform the analysis.  Because 

of the linearity of FT, the data that is being analyzed in the FT spectrum is simply the 

original data in the mass spectrum plotted in a different space.  This allows FT to avoid 

the issue of over interpreting fitted data sets associated with other fitting algorithms. As 

for analyzing heterogeneous mass populations, a benefit of using the FT method is that it 

can often simplify the highly complex data seen with the mass spectra of these systems. 

As was mentioned above, one of the main difficulties in interpreting the mass spectra of a 

heterogeneous mass population is the time consuming process of uniquely identifying 

every peak associated with different mass.  FT takes all of peaks, and sorts each peak 

according to its respective charge state, often resulting in turning 100’s of peaks into only 
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a select few. This is even the case when there is a high amount of overlap between 

adjacent charge state distributions.  

 Until recently, the main limitation with FT was the potential of higher harmonic 

overlap.  As an example to describe this limitation, unique identification of the charge 

states present in a polymer mass spectra from the original publication in 2004 was 

difficult due to higher harmonic overlap in the frequency spectrum.  This is because 

peaks that appear in the Fourier spectrum have the potential of producing higher 

harmonic frequency peaks, particularly if the mass spectrum is well resolved. This means 

that if a peak appears at the 3+ charge state in the FT spectrum, another peak may appear 

at that 6+, 9+ and any other multiple of the 3+ frequency.  This concept is discussed in 

more detail in Chapter 3, but the result of this is it becomes difficult to uniquely say if the 

mass spectrum has a 3+ charge state, a 6+ charge state, or both. Thus, unique 

identification of charge states presents a challenge to using the FT method for highly 

heterogeneous mass populations.   

That being said, if the harmonic overlap issue could be resolved, the FT method 

appears to have a lot of potential for analyzing heterogeneous mass populations. As it 

will be shown in this dissertation, it can indeed be overcome, and over the next few 

chapters, I will demonstrate research that I have conducted to expand and understand the 

theoretical implications of the Fourier transform method.  In Chapter 2, I will set the 

theoretical groundwork for a typical 1d Fourier transformation, and show that the method 

can measure the subunit mass, charge states, and mass dispersity for multiple highly 

heterogeneous mass populations. This chapter contains co-authored material from James 

S. Prell and Avery M. Thompson. I further the theoretical groundwork in Chapter 3 by 
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demonstrating all of the additional information that can be learned from a Fourier 

analysis, including how this new information can useful for other fitting algorithms, such 

as the Bayesian analysis described above. This chapter includes co-authored material 

from James S. Prell, Huilin Li, Dhanashri Bagal, Joseph A. Loo, and Iain D. G. 

Campuzano.  In Chapter 4, I will introduce a novel 2 dimensional Fourier analysis 

approach, which can overcome the limitation of higher harmonic overlap, and allow 

researchers to study biological molecules from more atypical biochemical buffers. This 

chapter includes co-authored material from James S. Prell. Finally, in Chapter 5, I will 

discuss the potential of what can be learned from performing the analysis heterogeneous 

mass complexes with two different subunits, and how mechanistic detail can be learned 

about the complex from performing the analysis. This will include future co-authored 

material from James S. Prell. 
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CHAPTER II 

1-DIMENSIONAL FOURIER ANALYSIS FOR DECONVOLVING MASS SPECTRA 

OF HETEROGENEOUS MASS POPULATIONS 

Includes co-authored material from: 

Cleary, S. P., Thompson, A. M. and Prell, J. S. "Fourier Analysis Method for 

Analyzing Highly Congested Mass Spectra of Ion Populations with Repeated 

Subunits" Anal. Chem. 2016, 88, 6205-6213. 

 

Introduction 

 

Electrospray ionization mass spectrometry (ESI-MS) can be a powerful tool for 

studying large ions, including native-like protein complexes and other large assemblies.27-

30 ESI-MS is a soft ionization technique capable of maintaining native-like structures of 

protein complexes with many subunits, and the topology, stoichiometry, shape, and other 

properties of the resulting ions can in many cases be characterized using MS and/or ion 

mobility spectrometry (IMS).31-34 For very large or heterogeneous native-like 

biomolecular complexes, accurate mass and charge determination can be very 

challenging owing to low practical resolution caused by solvent and/or salt adduction and 

a high density of mass spectral peaks.35, 36 

As was mentioned in Chapter 1, complexes with differing numbers of repeated 

subunits appear in many contexts, including native membrane protein-lipid,12, 37 

chaperone-target,38, 39 and hetero-oligomeric protein assemblies,40, 41 as well as synthetic 

polymers.42 However, ESI mass spectra of these complexes can be exceptionally 

challenging to analyze when the stoichiometry of the repeated subunit varies over a wide 

range, due to strongly overlapped distributions of peaks that represent different charge 

states and subunit stoichiometries, especially when individual peaks exhibit broadening 
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from solvent or salt adductions. These problems are exacerbated for ions with high 

charge states, where peak spacing may approach the practical resolution of the mass 

spectrum. Adducts can often be removed to some extent through collisional activation. 

This “collisional clean-up” method is commonly used to improve the resolution, 

homogeneity, and transmission efficiency of the ions.43, 44 However, analysis of fragile 

native assemblies can be challenging due to unwanted dissociation of labile ligands of 

interest during collisional “clean-up” and transfer to the mass analyzer.24, 44, 45 

As was mentioned in Chapter 1, deconvolution algorithms have been developed to 

assist in assigning complex mass spectra of these types. Maximum entropy-based 

algorithms iteratively search for a charge state and mass assignment that maximizes an 

entropy parameter based on deviations from predicted mass spectral peak positions, 

assuming identical mass distributions for each charge state.26, 46 However, for many 

heterogeneous ion populations, mass distributions may be different for each charge state, 

which can lead to failed convergence or incorrect charge state and mass assignments 

using this method. In contrast, Bayesian statistical analysis is another deconvolution 

approach that can be useful with heterogeneous ion populations because different mass 

distributions can be modeled for different charge states, and a fit to the mass spectrum 

can be generated from a maximum likelihood estimation.14, 47 Typically, a range of 

charge states, total mass, and/or subunit mass are input as initial parameters, potentially 

making this method challenging to apply if this information is not known. Furthermore, if 

the likelihood function has more than one local maximum, the result of the algorithm 

may not be unique and may in principle depend on the initial guesses of parameters. 

Therefore, in the case of very heterogeneous ion populations, it is desirable to develop 
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deconvolution algorithms that do not require initial guesses of charge state and mass 

distributions and allow for different mass distributions for each charge states.  

Here I present a deconvolution method that is parameter-free and can be used to 

extract mass spectral information with little need for collisional clean-up of ions prior to 

mass analysis. This method is based on Fourier transform, and I describe its use in 

measuring the charge state distribution, accurate subunit mass, total mass, and subunit 

stoichiometry distribution for electrosprayed analytes containing varying numbers of a 

repeated subunit. The method does not require mass spectral smoothing or initial guesses 

for charge states, total mass, or subunit mass. As proof of principle and to demonstrate its 

versatility, the method is applied to ubiquitin with multiple adductions of sodium and 

potassium, large single and mixed polymers, and native self-assembled lipid-protein 

bilayers (Nanodiscs). The method is widely applicable to many different types of ions 

and ion assemblies containing repeated subunits. 

 

Methods 

Sample preparation. All samples were prepared using ultrapure (18.0 MΩ) 

water. Bovine ubiquitin (Ubq) was purchased from Sigma-Aldrich and used without 

further purification. Aqueous Ubq solutions were prepared containing 25 μM Ubq and 1 

mM sodium chloride or potassium chloride to promote adduction of sodium and 

potassium to Ubq ions. Polyethylene glycol (PEG) and polyacrylic acid (PAA) were 

purchased from Sigma-Aldrich and used without further purification. PEG and PAA were 

prepared as 1 mg/mL aqueous solutions. 

Nanodiscs containing palmitoyloleoylphosphatidylcholine (POPC), 

dioleoylphosphatidylcholine (DOPC), dimyristoylphosphatidylcholine (DMPC), 
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dipalmitoylphosphatidylcholine (DPPC), or 18:0-sphingomyelin (18:0-SM) were 

prepared according to a method adapted from that of Sligar and co-workers.48, 49 Briefly, 

all lipids were purchased from Avanti Polar Lipids as 5 mg/mL solutions in chloroform, 

dried until opaque with dry nitrogen gas, and re-suspended to a final concentration of 50 

mM in a pH 7.4 aqueous buffer containing 100 mM sodium cholate (Sigma-Aldrich), 20 

mM Tris (Bio-Rad), 100 mM sodium chloride, and 0.5 mM ethylenediaminetetraacetic 

acid (EDTA). Membrane scaffold protein MSP1D1 (Sigma-Aldrich) was reconstituted in 

pH 7.4 aqueous buffer (20 mM Tris, 100 mM sodium chloride, 0.5 mM EDTA, 0.01% 

sodium azide) to a concentration of ~200 μM. Lipid suspensions were mixed with 

MSP1D1 solutions and additional buffer to a final concentration 100 μM in MSP1D1 and 

6.5 mM POPC, 6.0 mM DOPC, 8.0 mM DMPC, 9.0 mM DPPC, or 7.5 mM 18:0-SM, 

and incubated for 1 hr at 4 °C (POPC and DOPC), room temperature (DMPC), or 37 °C 

(DPPC and 18:0-SM). Nanodisc self-assembly was initiated by addition of 50% volume 

equivalent of BioBeads SM-2 (Bio-Rad) that had been previously rinsed and sonicated 

three times in methanol followed by three times in the reconstitution buffer. After 4-12 

hr, the Nanodisc-containing supernatants were removed from the BioBeads and buffer-

exchanged into 200 mM ammonium acetate (Sigma-Aldrich) using Micro Bio-Spin 6 

columns (Bio-Rad) immediately before IM-MS analysis. 

Mass spectrometry. All mass spectrometry analysis was performed with a 

Synapt G2-Si ion mobility mass spectrometer (Waters Corp.) using a static 

nanoelectrospray ionization (nanoESI) source. NanoESI emitters were prepared by 

pulling borosilicate capillaries (ID 0.78 mm, Sutter Instruments) to a tip ID of ~1 μm 

using a Flaming-Brown P-97 micropipette puller (Sutter Instruments). For each sample, 
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~3-5 μL of solution was loaded into an emitter, which was placed approximately 3-5 mm 

from the entrance of the mass spectrometer. A platinum wire inserted into the solution 

was used to apply an electrical potential of 1.0-1.2 kV relative to instrumental ground to 

initiate electrospray. The ion source was held at a temperature of 60 °C for all 

experiments except those with Nanodiscs, for which it was equilibrated to ambient 

temperature. Mass spectra from sodiated and potassiated Ubq were collected in 

Resolution mode, and mass spectra for all other analytes were collected in Sensitivity 

mode for maximal signal-to-noise. Mass calibration was performed using the distribution 

of singly-charged Cs+(CsI)n peaks in mass spectra obtained for 100 mM aqueous CsI 

solutions. Argon Trap gas was introduced at a flow rate of 5 mL/min in all experiments. 

Trap/Transfer Collision Energy settings of 20/2 V, respectively, were used for all 

analytes other than Nanodiscs, for which Trap/Transfer Collision Energies of 40/10, 

75/50, or 175/75 were used to create “minimal”, “mild”, or “strong” collisional activation 

conditions, respectively. For all analytes other than Nanodiscs, mass spectra collected 

continuously for ~3 min were summed, whereas for Nanodiscs, ~10 min of continuously 

collected data were summed. All mass spectral data were processed using MassLynx v. 

4.1 (Waters Corp.) before further analysis using a Fourier transform-based algorithm (see 

below).  

Analysis methods. A Fast Fourier Transform (FFT)-based algorithm, illustrated in 

Scheme 1, was used to deconvolve and analyze mass spectra. The key concept to the FFT 

algorithm is that the distribution of mass spectral peaks for an individual charge state z of 

an analyte containing various numbers n of a repeated subunit with mass ML can be 

approximated as a comb of equally-spaced peaks multiplied by a mass spectral envelope 
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function. This envelope function describes the relative abundances of peaks with charge 

state z representing ions with different n. When ML is much smaller than the total mass of 

the ion, the shape of each mass spectral peak with the same z but different n in the comb 

varies only slightly. The mass spectrum for a given z can thus be represented 

mathematically as: 

 

s(m/z) = [c(m/z)*p(m/z)]×f(m/z) 

 

where s(m/z) is the abundance of the ion with m/z, c(m/z) is a comb function with comb 

spacing ML/z, p(m/z) is a function that approximately describes the shape of each 

individual peak in the comb, f(m/z) is the mass spectral envelope function, * indicates 

convolution, and × indicates multiplication (see Scheme 1, top).  

The FFT of c(m/z) is another 

comb C(k) of evenly spaced peaks 

centered about zero in the Fourier 

“frequency” domain, or k-domain, 

where k represents the periodicity of 

peaks in the mass spectrum and is 

equal to z/ML for a given charge state z. The FFT of s(m/z), which I call S(k), can be 

written as: 

 

S(k) = [C(k)×P(k)]*F(k) 

 

Scheme 1. Key concepts behind the Fourier 

transform algorithm 
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where P(k) is the FFT of p(m/z) and is a slowly decaying function of k, and F(k) is the 

FFT of f(m/z) and has a width inversely proportional to the width of f(m/z) (Scheme 1, 

bottom). For the purposes of the mass spectral analysis method outlined here, the 

important consequences of the FFT operation are: 1) the comb of mass spectral peaks 

associated with charge state z transforms to another comb of peaks in the k-domain, 2) the 

mass spectral envelope for ions with a broad distribution of n transforms to a narrow 

peak shape in the k-domain, 3) the shape of each k-domain peak is the IFFT of the 

individual m/z envelope function corresponding to its charge state, and 4) because FFT is 

linear, the sum of comb-shaped mass spectra for different values of z transforms to a sum 

of k-domain comb spectra. In particular, for ions with sequential charge states zmin, 

(zmin+1), (zmin+2), …, zmax, as is common for many ions produced by ESI, the FFT of the 

mass spectrum contains comb peaks spaced by Δk = 1/ML. I term this value of Δk the 

“fundamental frequency,” kf, of the mass spectrum and note that its inverse is the average 

mass of the repeated subunit, ML. Thus, the mass of the repeated subunit and the charge 

states represented in the mass spectrum have a straightforward mathematical relationship 

to the spacing and distribution of peaks in the k-domain spectrum, which is the central 

idea used in the detailed analysis described below. 

For mass spectra of the type under discussion, basic questions that one may want 

to answer include: What is the mass of the repeated subunit (ML)? What charge state 

distribution is present in the mass spectrum? For a given charge state, z, what is its 

associated mass spectral distribution, f(m/z)? Once the answers to these questions are 

known, the total mass distribution for charge state z can be obtained by re-scaling the 

m/z-axis by z, and if the “base mass” of the ion (the total mass of all substituents other 
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than the repeated subunit) is known, the distribution of the number of repeated subunits 

for charge state z can be determined from this total mass distribution. A method for 

determining ML, the charge state distribution, and f(m/z) for each charge state is outlined 

below, including a 2-dimensional algorithm for challenging cases in which k-domain 

spectra are highly congested.  Many computational implementations of the algorithm are 

possible and our implementation is described in greater detail in the Appendix A. 

 Determination of ML (= 1/kf). For a given charge state, z, k-domain peaks appear 

at integer multiples of zkf, and the spacing between the first harmonic peaks for adjacent 

charge states is kf. Thus, kf can be estimated as the average spacing between the centroids 

of adjacent peaks in the k-domain comb. ML is then estimated as the reciprocal of kf. Once 

kf has been determined, the charge state associated with a peak that is not an overtone 

peak is its frequency divided by kf. 

 Determination of charge-state distribution. The k-domain comb for a given 

charge state includes overtone peaks at integer multiples of zkf, thus a 1+ ion will 

contribute to every peak of the k-domain comb. In general, for two charge states z1 and z2, 

if z2 is a multiple of z1, the first comb peak in the k-domain associated with z2 will overlap 

with an overtone peak associated with z1. Conversely, all peaks with k-values that are not 

integer multiples of the k-value of any other peak must correspond to a charge state 

present in the mass spectrum. For example, if a k-domain peak at zkf is present, and this 

peak does not coincide with overtone of any other peak, then charge state z must 

contribute to the mass spectrum. Thus, the distribution of charge states contributing to the 

mass spectrum can be straightforwardly obtained under these conditions, which are 

relatively common for electrospray mass spectra of large ions. If the k-domain spectrum 
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does not decay too quickly at high k, the assignment of charge states can be validated, for 

example, by verifying the presence of a similarly-shaped distribution of corresponding 

overtones in the k-domain, for example, at the second harmonic peak of each of the 

putative charge states (see below). 

 Determination of the mass spectral envelope, f(m/z), for a given charge state, 

z. If the k-domain peak at zkf has been determined to be associated exclusively with 

charge state z, i.e., it does not coincide with an overtone peak from another charge state 

and does not significantly overlap with adjacent peaks, the mass spectral envelope for 

charge state z can be estimated as the inverse Fast Fourier Transform (IFFT) of the k-

domain peak at zkf. Here, I compute the IFFT of this peak by windowing the k-domain 

spectrum with a symmetric rectangular window from (𝑧 −
1

2
) 𝑘𝑓 to (𝑧 +

1

2
) 𝑘𝑓. Care must 

be used in choosing the window width, because “ringing” artifacts (due to the IFFT of the 

window function itself) may appear in the reconstructed f(m/z) if the window is too 

narrow, and contributions from adjacent peaks will be present if the window is too wide. 

 2-dimensional algorithm for challenging cases. The above procedure can be 

challenging to implement when k-domain peaks overlap significantly, which can occur 

when the m/z envelope for a particular charge state is narrower than ML/1. However, if 

the mass spectral distributions for adjacent charge states do not completely overlap, a 

helpful strategy for analyzing the mass spectrum using FFT can be to multiply the mass 

spectrum by a window function (for example, a Gaussian) before performing the FFT. A 

2-dimensional plot representing the windowed FFT of the mass spectrum as a function of 

the center of the window can then be used to separate out the contributions in the k-

domain from each charge state and facilitate determination of kf (see Appendix A). 
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Caution must be exercised in reconstructing f(m/z) for different z by IFFT from these 2-

dimensional spectra, because the k-domain peaks are convolved with the FFT of the 

Gaussian window. If the ion population is suspected to contain oligomeric states with 

overlapping k-domain spectra, caution should be exercised in assigning charge states, and 

additional separation by chromatography or ion mobility may be useful. 

 

Results and Discussion 

Choice of Samples. In order to assess the strengths and limitations of the Fourier 

algorithm, three different types of sample were used. To demonstrate the consistency of 

results from the Fourier algorithm with those easily obtained from conventional mass 

spectral analysis, the masses of sodium and potassium adductions to Ubq (~8.5 kDa) 

were measured using the Fourier spectrum alone or the mass spectrum alone. Aqueous 

long-chained polymer ions for which the charge state envelope and subunit masses could 

not be straightforwardly determined from the mass spectrum were also analyzed with the 

Fourier algorithm, and charge state assignments were confirmed with the aid of ion 

mobility separation. Finally, mass spectra for ~100-200 kDa lipid-protein Nanodisc 

samples incorporating several different types of lipids were acquired. Nanodisc ions 

represent an exceptionally challenging case of heterogeneity not easily resolved by 

chromatography or ion mobility, and the Fourier spectra for these ions were used to 

assess the reproducibility of Nanodisc samples in triplicate preparations as well as the 

dependence of Nanodisc lipid stoichiometry on lipid identity and collisional activation 

conditions. A Nanodisc sample prepared using 18:0-sphingomyelin, a lipid-raft 
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associated lipid, was also analyzed with the FFT method to determine for the first time 

the native lipid stoichiometry and effective bilayer surface area of this lipid in Nanodiscs.  

Sodiated and Potassiated Ubq. Sodium and potassium cations often displace 

protons as charge-bearing adducts and represent a simple example of a repeating subunit 

for aqueous biomolecular ions produced with ESI. These adductions can lead to a broad 

mass distribution at a given charge state for many biomolecular ions, which can be 

problematic in measuring accurate masses. To illustrate the effectiveness of the FFT 

algorithm for determining accurate masses of repeated subunits in a case where they can 

be directly verified from the mass spectrum, the FFT algorithm was applied to the mass 

spectra of extensively sodiated or potassiated Ubq with native charge states.  

 Mass spectra and the corresponding Fourier spectra for these Ubq samples are 

shown in Figure 6. A small population of ions with a single sodium adduction and 

varying numbers of potassium adductions was observed in the mass spectrum of 

potassiated Ubq. While the mass spectra are isotope-resolved and can be assigned 

without the aid of the FFT algorithm, mass and charge state analysis was straight forward 

from the Fourier spectra as well. The mass of the subunit is greater than twice the width 

(i.e., twice the standard deviation) of the m/z envelope for each charge state present in the 

mass spectrum. Due to the properties of Fourier transform, the k-domain peaks for 

individual charge states thus overlap and are poorly resolved. Resolution of the charge 

states is achieved by use of the 2-dimensional analysis described in the Methods section 

(and in general detail in the Appendix A). In order to determine accurate adduct masses 

and charge states present in the Ubq mass spectrum, the analysis used a total of 31 evenly 

spaced Gaussian windows in the mass spectrum with a width (2σ) of 50 m/z. Identical 
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parameters (windows and mass spectral range) were used for both the sodiated and 

potassiated Ubq spectra. The resulting 2-dimensional spectra are shown in Figure 7. 

Charge states for both the sodiated and potassiated Ubq spectra were found to be 4+ and 

5+ for the monomer and 6+ and 7+ for the non-specific dimer of Ubq. The mass 

difference due to displacement of a 

proton by a sodium cation was found 

to be 22.05(2) u compared to a 

calculated (23Na − 1H) exact mass of 

21.982 u. The potassium adduct was 

found to have a mass of 38.11(2) u, 

compared to a calculated exact (39K − 

1H) mass of 38.090 u. These results 

correspond to relative errors of 3000 

and 500 ppm for the adduct masses, 

respectively, or an error in the 

relative mass difference between 

adjacent sodiation or potassiation 

states of the Ubq ions of 8 or 1 ppm, 

respectively. By comparison, corresponding accurate mass differences of 21.973(3) and 

37.940(3) u were measured directly from the mass spectra.  

 

 

 

Figure 6. Native mass spectra (left) and FFT 

spectra (right) of sodiated (A) and potassiated 

(B) Ubq, including monomers (“M”) and non-

specific dimers (“D”). Insets in mass spectra 

illustrate sequential adductions of sodium or 

potassium ions. Arrows show sequential 

repeated adductions of sodium or potassium to 

Ubq. The high-intensity peak near zero 

frequency in the FFT spectra has been 

truncated for clarity. 
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PEG and PAA. Long-chain 

polymers are prototypical molecules 

with repeated covalently bound 

subunits that can be difficult to 

separate chromatographically and to 

analyze by electrospray ionization 

mass spectrometry, because polymers  

with many different chain lengths 

may exist in the same sample, and 

many charge states may be produced 

upon ionization. The resulting mass 

spectra can be highly congested, 

comprising hundreds of densely 

spaced peaks with no obvious 

abundance pattern from which charge 

states or masses can be 

straightforwardly determined without 

the aid of methods such as charge 

stripping.42, 50 To assess the utility of the FFT algorithm in analyzing the charge states 

and subunit masses for ions with this type of heterogeneity, nanoESI mass spectra were 

acquired for aqueous PEG, PAA, and a sample containing both polymers (Figure 8). 

Above m/z ~500, a highly complex distribution of peaks spanning more than 1000 m/z is 

present for both analytes. These high-m/z distributions comprise a sequence of peaks of 

Figure 7. 2-dimensional Fourier analysis for 

sodiated (A) and potassiated (B) Ubq mass 

spectra. Bottom traces are nanoESI mass 

spectra, and the left traces are 1-dimensional 

FFT spectra. 2-dimensional plots axes 

correspond to the center of the mass spectrum 

Gaussian window (horizontal axis) and 

Fourier frequency (vertical axis). High-

intensity peaks near zero frequency in the 1- 

and 2-dimensional FFT spectra have been 

truncated for clarity. 
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relatively high abundance spaced by approximately 1 m/z in addition to a plethora of 

more closely-spaced peaks of lower abundance. These mass spectra are similar to 

previously reported ESI mass spectra of aqueous long-chain PEG, for which highly 

heterogeneous, overlapped distributions of ions were also observed over similar ranges of 

m/z.17, 50 

The FFT spectra (Figure 8A 

and 8B) for each single-polymer 

analyte consist of a single comb of 

many sharp, evenly-spaced peaks. 

Fundamental frequencies, kf, for the 

PEG and PAA samples were 

computed from the 2nd through 8th k-

domain harmonic peaks to be 

2.267(5)×10−2 z/m and 1.387(4)×10−2 

z/m, respectively. From these values, 

accurate subunit masses for the 

analytes were readily determined to 

be 44.04(1) and 72.07(5) u for PEG 

and PAA, corresponding to errors of 

450 and 650 ppm, respectively, as 

compared to the calculated formula weight of C2H4O (44.02 u) and C3O2H4 (77.02 u). 

While metal cation adducts such as sodium and potassium may certainly be present in the 

mass spectra of these polymer samples, signal due to such adductions is not clearly 

Figure 8. Mass spectra (left) and FFT spectra 

(right) of PEG (A), PAA (B), and a 1:1 wt:wt 

mixture of PEG and PAA (C) generated from 

aqueous solution using nanoESI. The high-

intensity peak near zero frequency in the FFT 

spectra has been truncated for clarity. 
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visible in the FFT spectra and is likely overwhelmed by signal from the repeated polymer 

subunits.  

Because many sharp peaks are present in the mass spectra for both analytes, their 

k-domain spectra exhibit many harmonics with a complex structure containing 

information about the ions’ charge states. For PEG, discernable peaks are present at every 

harmonic of kf between the 0th and 22nd. Because the fundamental peak is very low in 

absolute intensity, it can be concluded that 1+ ions constitute only a very small fraction of 

the ion population. Conversely, ions with charge states between 2+ and 22+ that are 

prime numbers must be present for PEG. For PAA, discernable peaks are present at all 

prime-number harmonic of kf between the 0th and 22nd other than the 11th and 13th. For 

both polymers, it is difficult to assess from the Fourier spectra whether ions with 

composite-valued charge states are present due to potential signal from overtones of 

prime-valued multiples of kf. Prior chromatographic separation or ion mobility separation 

may facilitate assignment for composite number charge states for some polymer samples, 

and this harmonic overlap can be overcome through the use of a short-time Fourier 

Transform (see chapter 4). 

Finally, a mass spectrum was acquired for a mixture of the two polymers to 

illustrate that the algorithm can be used to determine the subunit masses of two different 

polymers present in the same sample (Figure 3C). A nanoESI mass spectrum for a 1:1 

wt:wt aqueous mixture of the two polymers was acquired under the same conditions as 

for the single-polymer experiments. There is a strong 3+ peak for PEG with high 

amplitude in the k-domain spectrum that dominates the rest of the peaks. This 

corresponds to the highly abundant comb of peaks visible in the mass spectrum that is 
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spaced by 14.67 m/z. The k-domain contains many peaks that are not evenly spaced, 

indicating the presence of at least two different repeated subunits in the ion population. 

Two distinct combs are present with very different relative intensities at each multiple of 

kf. In particular, high-intensity peaks are observed at 3kf, 8kf, and 9kf for PEG, and, by 

contrast, only at 4kf for PAA. Interestingly, the relative k-domain intensities observed for 

the mixed-polymer sample differ substantially from those observed from either single-

polymer sample, an effect likely attributed to competing ionization during the 

electrospray process for the mixed-polymer sample. This conclusion is borne out by the 

observation that the mass spectrum of the mixed-polymer sample is not proportional to 

the sum of the mass spectra of the single-polymer samples under the same experimental 

conditions. 

Nanodiscs. Protein-lipid Nanodiscs are an example of large biomolecular 

assemblies with repeating subunits that can be difficult to analyze by ESI mass 

spectrometry. Briefly, Nanodiscs are discoidal non-covalent biomolecular assemblies a 

few nanometers across, consisting of a phospholipid bilayer surrounded by two 

amphipathic helical membrane scaffold proteins (MSPs). For the MSPs used here 

(MSP1D1), native-like Nanodisc ions typically have masses near 150 kDa, as found 

using other deconvolution algorithms.14, 24, 51 Their native mass spectra typically exhibit a 

high degree of overlap between the heterogeneous mass distributions for each charge 

state distributions contained in the ion population. For a given native-like charge state, 

the distribution in the number of lipids has been reported to be roughly ±5 for DMPC, 

POPC, DOPC, and DPPC.24, 51 The Fourier algorithm was applied to mass spectra of 

Nanodisc ions containing POPC, DOPC, DMPC, DPPC, or 18:0-SM, and the mass of 
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each lipid, the charge state distribution for the ions, and the mass distribution and lipid 

stoichiometry distribution for each charge state were determined. Three separate 

preparations of DMPC Nanodics were analyzed to test the reproducibility of the results. 

Much of the large “baseline” in these spectra is attributed to the resolving power of the 

mass spectrometer i.e., it arises in large part from the summed “tails” of the mass spectral 

peaks of ions at many different closely spaced m/z values. This “baseline” contains signal 

from the analytes, and the FFT algorithm was therefore applied to the raw spectrum of 

the Nanodiscs without “baseline” subtraction or smoothing procedures.  

Example mass spectra and the 

corresponding Fourier spectra for 

these Nanodiscs are shown in Figure 

9 (additional Nanodisc mass spectra 

and Fourier spectra can be found in 

Figures A1 through A4 in Appendix 

A). While they are very challenging 

to identify by conventional means 

directly from the mass spectrum, 

charge states are easily identified in 

the k-domain. k-domain peaks were 

found to be well separated with little 

to no overlap, a result attributed to the 

large width of the mass spectral 

envelope function compared to the 

Figure 9. Mass spectra (left) and 

corresponding FFT spectra (right) for 

Nanodiscs containing 18:0-SM (A), DOPC 

(B), and DPPC (C). IFFT of the charge-state 

specific peaks in the Fourier domain (insets) 

are shown as envelope functions of the same 

color as overlays in mass spectra. The high-

intensity peak near zero frequency in the FFT 

spectra has been truncated for clarity. 



 

36 

 

mass of the repeated subunit (the lipid, typically 650-800 u; much smaller repeated 

“subunits,” such as water, ammonium, or sodium adductions, were not resolved). 

Furthermore, while peak shapes in the k-domain were found to be different, different 

charge states can have different peak shapes due to differences in the distribution of 

subunits for each charge state, i.e. the charge state specific m/z envelope. Charge states 

for Nanodisc samples containing different lipids were found to be similar when measured 

under identical instrumental conditions, although they vary somewhat depending on the 

type of lipid used for Nanodisc assembly. Lastly, very low-frequency peaks, including 

the fundamental, were not observed in the Fourier spectra, an observation that allows for 

an unambiguous assignment of charge states. The mass of each lipid was determined 

from the Fourier spectra to be within two standard deviations of their theoretical values 

for all 13 Nanodisc samples analyzed (and within one standard deviation for 11 of these). 

The results of these experiments (not including DMPC Nanodisc triplicate experiments, 

discussed below) under three different collisional activation conditions are summarized in 

Table 1. These results demonstrate that native Nanodisc ions containing different types of 

lipids can be readily distinguished using the FFT algorithm with no prior knowledge of 

the lipid mass. 

 

Individual k-domain peaks were subjected to inverse Fast Fourier Transform 

(IFFT) to determine the envelope functions (i.e. mass spectra) for each individual charge 

state (Figure 9). Assuming a base mass of 49450 u (see Appendix A), the distribution of 

lipids in the Nanodiscs was determined for each sample (Tables 1 and 2) and found to be 

in good agreement with previously reported values.51, 52 “Reconstruction” of the mass 

spectrum from the IFFT data is achieved by summing the IFFT of the k-domain data with  
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Table 1. Charge States, Lipid Masses, and Lipid Stoichiometries Determined for 

Nanodisc Ions Using Fourier Transformed Mass Spectra 

 

a value of k within (kf/2) of 0 and those from the identified charge-state peaks, as shown 

in Figure 10 for DPPC Nanodiscs. Inclusion of higher-order harmonic peaks in the 

reconstruction changes the reconstructed mass spectrum only slightly, indicating that 

remaining deviations from the raw mass spectrum are almost entirely due to random 

noise. This is explained by the nearly flat (i.e., “white”) noise profile in the Fourier 

spectrum in the region of interest (Figure 10) and represents an instance of the “Fellgett 

Lipid Collisional 

Activation 

Condition 

Theoretical 

Average 

Mass (u) 

Measured  

Mass (u) 

from IFFT 

Data  

z Lipid Stoichiometry 

18:0-SM Minimal 731.1 730.9 ± 0.2 19+ 153 ± 8  

    20+ 173 ± 10 

21+ 165 ± 7 

18:0-SM Mild 731.1 730.9 ± 0.5 13+ 140 ± 15 

    14+ 152 ± 8 

15+ 168 ± 10 

DMPC Mild 677.9 678.8 ± 0.8 13+ 142 ± 12 

    14+ 

15+ 

151 ± 10 

157 ± 13 

DOPC Mild 786.1 789.0 ± 3.0 14+ 140 ± 10 

    15+ 

16+ 

153 ± 9 

160 ± 10 

DPPC Mild 734.0 734.1 ± 0.2 13+ 142 ± 12 

    14+ 147 ± 13 

POPC Mild 760.1 760.1 ± 0.4 12+ 111 ± 10 

    13+ 117 ± 11 

18:0-SM Strong 731.1 731.0 ± 1.6 8+ 134 ± 9 

    9+ 143 ± 8 

DMPC Strong 677.9 677.0 ± 0.6 5+ 66 ± 10 

    6+ 75 ± 10 

DPPC Strong 734.0 733.0 ± 1.0 7+ 107 ± 14 

    8+ 124 ± 12 

9+ 141 ± 10 

POPC Strong 760.1 760.4 ± 0.4 6+ 61 ± 6 

    7+ 82 ± 16 

    8+ 103 ± 8 
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advantage” offered by Fourier transform that is exploited in many spectroscopic 

techniques.53 

To observe the effects of 

collisional activation for Nanodiscs, a 

step often used to “clean up” ion 

populations with poor mass spectral 

resolution by removing small 

adducts, samples were collected in 

different collisional activation 

conditions which I term “minimal”, 

“mild”, and “strong” activation (see 

Methods). After “minimal” activation, 

Nanodisc ions were found to have m/z 

values between 8000 and 9000, with 

charge states between 17+ and 21+. 

For “mild” (resp., “strong”) activation 

conditions, Nanodisc ion m/z values ranged from 10,000 to 12,000 (resp., 19,000 to 

23,000), with charge states from 12+ to 16+ (resp., 5+ to 9+). Furthermore, stronger 

activation conditions generally correlated with lower charge states and a lower average 

number of lipids and wider distribution in the number of lipids contained within the 

Nanodiscs (Table 1). For example, 18:0-SM Nanodiscs had charge states from 19-21+, 

13-15+, and 8-9+ after minimal, mild, and strong collisional activation, with an average 

number of lipids of 153-173, 140-168, and 134-143, respectively. These results are 

Figure 10. Reconstructions of mass spectrum 

(left, blue trace) for DPPC Nanodisc ions 

acquired under “strong” collisional activation 

conditions. Colors associated with charge 

states in the FFT spectra (right) correspond to 

like-colored charge-state-specific mass 

spectral envelopes in the mass spectra (left). 

The bright red traces overlaid over raw mass 

spectra are reconstructions using the FFT data 

for first harmonic peaks only (A), or both first 

and second harmonic peaks (B). 
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consistent with previously reported trends for ion mobility-separated Nanodisc mass 

spectra analyzed with Bayesian deconvolution. 14 

To assess the reproducibility of these Nanodisc experiments, a triplicate 

experiment was performed for 

Nanodiscs containing DMPC under 

“minimal” collisional activation 

conditions. The results of this 

experiment are summarized in Figure 

11 and Table 2. Charge states are 

similar, but not identical, for each 

sample, and k-domain peak shapes 

differ between the three samples. 

However, upon IFFT of the 

individual k-domain peaks back to 

mass spectrum, the charge-state 

specific mass spectral envelope 

functions appear to be remarkably 

similar between the three samples, 

with two of the replicates having nearly identical mass spectra for the most-abundant 

common charge states (19+ and 20+; Figure 6, top and middle). For these same charge 

states, the third sample has slightly different reconstructed charge-state specific mass 

spectral envelopes (Figure 11, bottom), but the average and standard deviation in the 

number of lipids are nearly the same among all three samples. The average number and  

Figure 11. Mass spectra (left) and FFT 

spectra (right) for triplicate experiments with 

DMPC Nanodiscs acquired under “minimal” 

collisional activation conditions (see text). 

The high-intensity peak near zero frequency 

in the FFT spectra has been truncated for 

clarity. 
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Table 2. Lipid Masses and Stoichiometries for Common Observed Charge States in 

DMPC Nanodisc Triplicate Experiment. 

 

standard deviation in the number of lipids for these samples are similar to those 

previously reported for native-like DMPC Nanodiscs analyzed with an FT-ICR,51 

Orbitrap,24 or Synapt14 mass spectrometers. 

 

To demonstrate further the utility of the FFT algorithm, it was also used here to 

obtain the first reported native stoichiometry of Nanodiscs assembled with 

sphingomyelin, a major raft-associated lipid, as well as the effective bilayer surface area 

of this lipid. Under “minimal” activation conditions, the total number of lipids contained 

within the 18:0-SM Nanodiscs was found to be 163 ± 15. This value corresponds to a 

mean lipid bilayer surface area of 54 ± 5 Å2 per 18:0-SM lipid, assuming a total bilayer 

surface area of 4400 Å2 for MSP1D1 Nanodiscs.52 The result is in good agreement with 

simulated aqueous 18:0-SM bilayers above their melting transition temperature, where 

the effective lipid surface area was found to be ~53 Å2.54  The effective Stokes radius of 

the 18:0-SM Nanodiscs was determined by size exclusion chromatography to be 4.1 ± 1.0 

nm, within error of previously reported values for Nanodiscs containing other 

phospholipids (Figure 1).55 

Triplicate 

Sample 

Collisional 

Activation 

Conditions 

Theoretical 

Average 

Mass (u) 

Measured 

Mass (u) 

from IFFT 

Data 

z Lipid 

Stoichiometry 

DMPC 1 Minimal 677.9 678.4 ± 1.0 19+ 166 ± 9 

    20+ 168 ± 15 

DMPC 2 Minimal 677.9 678.2 ± 0.8 19+ 164 ± 11 

    20+ 163 ± 18 

DMPC 3 Minimal 677.9 678.1 ± 0.4 19+ 163 ± 11 

    20+ 169 ± 13 
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Conclusions 

The one- and two-dimensional forms of the Fourier transform algorithm described 

here can be very useful to extract mass spectral information for ions with broad 

distributions of mass and charge arising from differing stoichiometries of a repeated 

subunit. Using this algorithm, effects of competitive ionization for electrospray of mixed-

polymer samples were observed, and the native stoichiometry of 18:0- sphingomyelin-

MSP1D1 Nanodiscs and the effective bilayer surface area of this lipid in Nanodiscs were 

measured for the first time. The algorithm can be applied to many different types of 

analyte, from polymers to non-covalent biomolecular assemblies, and mass and charge 

analysis using the algorithm appears to especially facile with broad mass spectra that 

represent a wide distribution of subunit stoichiometries. Major advantages of the 

algorithm are that it does not require guesses of subunit mass, ion charge states, or total 

mass, and peak-tail baseline subtraction and smoothing are not necessary when using this 

algorithm. Additionally, the algorithm can work well without the need for extensive 

collisional clean-up, potentially resulting in more accurate native stoichiometry 

determination for weakly bound assemblies such as biomolecular assemblies. 

Disadvantages to the Fourier method include complications in interpretation arising from 

overlap of Fourier domain peaks with adjacent peaks or overtones of other peaks, which 

are both less likely to occur for very large ions with broad mass spectra. These 

disadvantages could in principle be mitigated somewhat by using ion mobility separation 

prior to mass analysis or other separation methods. 

Future application of this method could aid in characterizing biomolecular ions 

with many repeated post-translational modifications or ligands as well as lipid-protein 
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assemblies. Furthermore, while the algorithm has been demonstrated for complexes that 

contain one type of repeated subunit, Chapter 5 explores its use in identifying multiple 

different types of repeated subunit contained within the same ions. Techniques, such as 

Cation-to-Anion Proton Transfer Reactions (CAPTR),56 charge stripping,42 reactions with 

gas phase57 or solution phase additives,58 or electron transfer dissociation59 that lead to 

improved resolution in the mass spectrum without leading to subunit dissociation could 

potentially enable more accurate mass determination using the Fourier algorithm, because 

the resulting broader mass spectra can yield better-resolved peaks in the Fourier domain.  

While the Fourier spectrum is effective at determining the subunit mass, charge 

states, and charge-state-specific stoichiometry for the mass spectra of heterogeneous 

mass populations, there is still other valuable information that can be learned that is not 

discussed in this chapter.  Higher harmonic frequencies are a common occurrence in the 

Fourier transformed spectra, and in the next chapter, a detailed description will be given 

as to what can be learned from these additional signal components.  This includes how to 

determine the shape of a peak from a highly congested mass spectrum, how the higher 

harmonics can be used as a smoothing filter for the mass spectrum, and how all this 

information combined can be useful for other fitting algorithms such as UniDec (see 

Chapter 1). 
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CHAPTER III 

HIGHER HARMONIC ANALYSIS FOR EXTREME CASES OF MASS SPECTRAL 

CONGESTION 

Includes co-authored material from: 

Cleary, S. P., et al. "Extracting Charge and Mass Information from Highly 

Congested Mass Spectra Using Fourier-Domain Harmonics" J. Am. Soc. Mass 

Spectrom. 2018, 29, 2067-2080. 

 

Introduction 

Native electrospray ionization mass spectrometry (ESI-MS) can be a powerful 

tool for investigating the stoichiometry of large, multi-subunit biomolecular assembly 

ions.2, 19, 21, 29, 51, 60-75 However, as polydispersity, size, and complexity of these 

biomolecular ions increase, accurate mass and charge determination can become very 

challenging, because salt or other co-solute adduction76, 77 and a high density of mass 

spectral peaks5, 6, 13, 14, 17, 51, 78-80  reduce practical resolution. Although separation methods 

such as chromatography and ion mobility separation can improve resolution of ion 

subpopulations differing sufficiently in chemical properties or shape,6, 34, 42, 62, 81-86 many 

types of analytes can still be difficult to separate with these methods, necessitating 

development of new methods for determining charge states and assembly stoichiometries. 

In addition to charge-stripping or -reducing approaches, which can increase peak 

spacing,42, 87 fitting-based mass deconvolution algorithms have been shown to greatly 

facilitate charge state determination and mass analysis.14, 47, 88-90 However, to obtain 

accurate results from these fitting algorithms, the user is typically required to input 

estimates for some initial parameters, such as mass and charge state ranges and widths of 

the mass spectral peaks, that are close to the true values. It can thus be highly 
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advantageous to have accurate estimates of these parameters before implementing the 

algorithms in order to obtain reliable results. Alternatively, Fourier Transform-based 

deconvolution approaches require minimal data processing and parameter guessing.4, 13, 91  

For example, Fourier transform requires only linear data interpolation and specification 

of the minimum allowed number of data points separating frequency-domain peaks.13   

Here, I extend the previously-introduced Fourier-Transform-based method 

(chapter 2) for characterizing disperse assembly ion mass spectra,13 focusing on the use 

of information contained in higher harmonic peaks in the Fourier domain, including mass 

spectral peak shape information. I illustrate the use of higher harmonics in studying lipid-

protein Nanodiscs, which are self-assembled discoidal non-covalent assemblies 

consisting of a phospholipid bilayer surrounded by two amphipathic helical membrane 

scaffold proteins (MSPs).92 Nanodiscs have been used in numerous biochemical 

applications to study isolated, embedded membrane proteins and protein complexes92, 93 

as well as in native IM-MS to study lipid binding to peripheral and transmembrane 

protein complexes.1, 79, 94 

A common occurrence in native ESI-MS analysis of Nanodiscs and other large, 

disperse ions, is a relatively large baseline in the raw mass spectrum.10, 13, 60, 78, 85, 95 This 

results from the overlap from the superposition of many closely-spaced peaks and can 

occur even for mass spectra acquired on high-resolution quadrupole–time-of-flight 

(QTOF) instruments.13, 78, 95 In such cases, it can be difficult to intuit what part of the 

mass spectral signal constitutes the baseline and what part contains information that can 

be used to determine ion masses and charge states. Data pre-processing software for 

many commercial mass spectrometers, including some Orbitrap and Fourier Transform-



 

45 

 

Ion Cyclotron Resonance (FT-ICR) mass spectrometers, often performs baseline 

subtraction, apodization, or other signal processing that can alter peak shapes before data 

is displayed to the user.96 After first discussing how Fourier Transform (FT) can be used 

to extract the information-rich portion of mass spectra for assembly ions, I show how 

analysis of harmonic peaks in the Fourier spectrum can be used to mitigate artifacts 

resulting from overlap or low signal-to-noise of peaks in the Fourier spectrum. Previously 

analyzed native Nanodisc mass spectra acquired on Orbitrap and FT-ICR mass 

spectrometers60 are used as benchmarks. Advantages of this FT method are then 

illustrated for a mass spectrum of native-like “large” Nanodiscs containing over 300 

lipids acquired on a QTOF mass spectrometer, which represents an extreme example of 

mass spectral congestion and is also the first reported mass spectral analysis of this type 

of “empty” Nanodisc. Finally, I show how information learned from the higher harmonic 

Fourier analysis can be used to characterize mass spectral peak shapes as well as to 

determine values for input parameters to improve the quality of results obtained from a 

Bayesian deconvolution method, UniDec.14 

 

Methods 

Nanodisc preparation. Nanodiscs containing dimyristoylphosphatidylcholine 

(DMPC) or dipalmitoylphosphatidylcholine (DPPC) were prepared according to a 

method adapted from that of Sligar and coworkers.55 Briefly, all lipids (Avanti Polar 

Lipids Inc., Alabaster, AL, USA) were prepared as 5 mg/mL solutions in chloroform, 

dried until opaque with dry nitrogen gas, and resuspended to a final concentration of 50 

mM in a pH 7.4 aqueous buffer containing 100 mM sodium cholate (Sigma-Aldrich, St. 
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Louis, MO, USA), 20 mM Tris (Bio-Rad, Hercules, CA, USA), 100 mM sodium 

chloride, and 0.5 mM ethylenediaminetetraacetic acid (EDTA). Membrane scaffold 

protein MSP1D1 or MSP1E3D1 (Sigma-Aldrich, St. Louis, MO, USA), for “small” or 

“large” Nanodiscs, respectively, was reconstituted in pH 7.4 aqueous buffer (20 mM Tris, 

100 mM sodium chloride, 0.5 mM EDTA, 0.01% sodium azide) to a concentration of 

∼200 μM. Lipid suspensions were mixed with MSP1D1 solutions and additional buffer 

to a final concentration 50 μM in MSP1D1, 4.0 mM in DMPC, and 25 mM in cholate. 

MSP1E3D1 Nanodiscs were prepared in a similar fashion, differing only in the final lipid 

concentration, which was 9.0 mM for DPPC. The samples were incubated for 1 h at room 

temperature for DMPC (37 °C for DPPC). Nanodisc self-assembly was initiated by 

1000:1 (vol:vol) dialysis into the Tris buffer, and BioBeads SM-2 (Bio-Rad, Hercules, 

CA, USA) were added to the dialysis buffer after being previously rinsed and sonicated 

three times in methanol followed by three times in the reconstitution buffer. Nanodisc 

samples were removed from dialysis after 24 hours and were purified by size exclusion 

chromatography. Fractions containing Nanodiscs were pooled together and concentrated 

to a final concentration ~10 µM in Nanodiscs. Concentration was determined by UV 

absorbance of the MSP1D1 or MSP1E3D1 protein, and divided by two (due to the 

presence of the two scaffold proteins) to obtain Nanodisc concentration.  

Mass spectrometry.  Orbitrap-EMR (Amgen, Thousand Oaks, CA, USA). 

Experiments were performed on a modified Exactive Plus instrument (ThermoFisher 

Scientific, Bremen, Germany) equipped with a nanoelectrospray ionization (nESI) 

source. All critical instrument voltages and pressures were as follows: The capillary 

voltage 0.8-1.5 kV. Ions formed by nESI were transmitted through a heated stainless steel 
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capillary (4.25 cm long ion transfer tube) maintained at 200 °C into an S-Lens stacked 

ring ion guide with an applied RF-amplitude (peak-to-peak) of 200 V. Ions then traveled 

through a transport multipole and entered the HCD cell where they were stored at high 

pressure before they were returned to the C-trap. This feature allows efficient trapping 

and desolvation of large protein ions and dramatically improves sensitivity. Nitrogen gas 

was used in the C-trap as well as the HCD cell. Using a trapping gas pressure setting of 

7.0 (software-determined) the C-trap pressure was approximately 2×10−4 mbar and the 

UHV pressure (Orbitrap analyzer) was 7.5×10−10 mbar. The voltage offsets on the 

transport multipoles were manually tuned to increase the transmission of large complexes 

(C-trap entrance lens; 0 V, bent flatapole DC, 4 V; inter-flatapole DC 4 V; injection 

flatapole DC, 4 V). An in-source CID voltage of 50 V to 120 V and an HCD voltage of 

20 V to 100 V were required to achieve efficient sample desolvation. Raw transients were 

processed using enhanced Fourier Transform 96 for converting the time-domain data into 

frequency before m/z conversion; this data pre-processing is standard for this generation 

of Orbitrap instruments. The instrument was set at a nominal resolving power of 70,000 

at m/z 200, and mass spectra were acquired for 2 minutes by averaging 10 microscans per 

analytical scan. Data were analyzed using XcaliburTM2.2. No additional data processing 

was performed before Fourier-Transform analysis. 

Quadrupole–Time-of-Flight mass analyzer (University of Oregon, Eugene, OR, 

USA). All QTOF mass spectrometry experiments were performed with a Synapt G2-Si 

ion mobility mass spectrometer (Waters Corp. Milford, MA, USA) using a static nESI 

source. nESI emitters were prepared by pulling borosilicate capillaries (i.d. 0.78 mm, 

Sutter Instruments) to a tip i.d. of ~1 μm using a Flaming-Brown P-97 micropipet puller 
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(Sutter Instruments, Novato, CA, USA). For each sample, ~3−5 μL of solution was 

loaded into an emitter, which was placed approximately 1-2 mm from the entrance of the 

mass spectrometer. A platinum wire inserted into the solution was used to apply an 

electrical potential of 0.6-1.0 V relative to instrumental ground to initiate electrospray. 

The ion source was equilibrated to ambient temperature. Mass spectra were collected in 

Sensitivity mode to maximize signal-to-noise. Argon gas was introduced into the Trap at 

a flow rate of 5 mL/min in all experiments. Trap/Transfer collision energy settings of 

100/5 V, respectively, were used for all Nanodiscs. Nanodisc mass spectra were collected 

for 20 min and the continuously collected data were summed. All mass spectral data were 

processed without smoothing using MassLynx v. 4.1 (Waters Corp., Milford, MA, USA).  

Fourier Transform-Ion Cyclotron Resonance (FT-ICR) (UCLA, Los Angeles, CA, 

USA). All FT-ICR native-MS experiments were performed using SolariX 15 Tesla 

instrument (Bruker Daltonics, Billerica, MA, USA). The nESI capillary voltage was set 

to 0.6 to 0.8 kV in positive ionization mode. The temperature of drying gas was 100 °C 

and the flow rate was 2.5 L/min. The RF amplitude of the ion-funnels was 300 V peak-to-

peak, and the applied voltages were 210 V and 6 V for funnels 1 and 2, respectively. The 

voltage of skimmer 1 was 50 and the skimmer 2 voltage was 20 V. The lowest values of 

RF frequencies were used in all ion-transmission regions: multipole 1 (2 MHz), 

quadrupole (1.4 MHz), and transfer hexapole (1MHz). Ions were accumulated for 500 ms 

in the hexapole collision cell before being transmitted to the infinity ICR cell. A time-of-

flight of 2.5 ms was used. Vacuum pressures for different regions were: source 2 mbar; 

quadrupole 2×10−6 mbar; ultra-high vacuum chamber 2.6×10−9 mbar. To assist in ion 

desolvation, mild collision-induced dissociation (CID) was performed in the hexapole 
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collision cell by collision with argon at a voltage of 4 V. 1000 scans were averaged for 

each spectrum using 256,000 data points (transient length 0.085 s) per scan in magnitude 

mode. The MS Control software was Compass solariXcontrol, version 1.5.0, build 103, 

and the data were apodized using a full-sine-bell function. The mass spectrometer was 

externally calibrated with a 50 µg/mL solution cesium iodide in 1:1 (vol:vol) 

acetonitrile:water over the m/z range 100 to 20,000. 

Computational work. All FT-based analysis was performed using the Prell 

group’s home-built program, iFAMS (interactive Fourier Analysis for Mass Spectra) v. 

4.2. All mass spectra are symmetrized before FT is performed to yield real-valued 

Fourier spectra for ease of graphical presentation. Signal-to-noise is calculated as the 

maximum amplitude of a peak divided by the root-mean-square white noise at baseline in 

a neighborhood of the peak. Unless otherwise specified, all other data analysis was 

performed using Igor Pro v. 6.37 (WaveMetrics, Inc., Lake Oswego, OR, USA). 

 

Theory 

The principle of the Fourier Transform (FT)-based mass spectrum analysis 

method used here for deconvolving heterogeneous mass populations is described in detail 

in chapter 2, as well as the following references4, 13, 91 and therefore will only be briefly 

explained here. The key concept to the FT algorithm is that a distribution of mass spectral 

peaks for an individual charge state z of an analyte containing various numbers of a 

repeated subunit with mass ms can be described as a comb of equally-spaced peaks 

multiplied by a mass spectral envelope function. Mathematically the mass spectrum 

(s(m/z)) can be decomposed into three separate functions (Figure 12A): a comb function 
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(c(m/z)) with spacing ms/z between adjacent delta functions, a peak shape function 

(p(m/z)) that is convolved with the comb function and describes the typical shape of the 

peaks in the comb, and an envelope function (e(m/z)) that describes the relative 

abundances of the peaks in the comb, i.e., the stoichiometry distribution. This 

relationship can be described symbolically in the following way: 

1. s(m/z) = [c(m/z)*p(m/z)]×e(m/z) 

where the symbols * and × represent convolution and multiplication, respectively. 

Figure 12. (A) Graphical depiction of mathematical decomposition of a nESI mass 

spectrum (left) and its Fourier Transform (right) for a polydisperse ion population 

with a repeated subunit. (B) Simulated mass spectrum, (C) corresponding Fourier 

spectrum, and (D) reconstructed FT-baseline (red) and charge-state-specific mass 

spectra with colors identical to their corresponding Fourier-domain peaks from C. (E) 

DPPC-MSP1E3D1 Nanodisc mass spectrum acquired on an QTOF mass 

spectrometer, (F) corresponding Fourier spectrum with highlighted zero-frequency 

band (red) and harmonic peak series (violet), and (G) reconstructed low-information 

signal (red) and FT-baseline-subtracted mass spectral signal (violet) 
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The FT of Eq. 1 is (hereafter referred to as the “Fourier spectrum”): 

2. S(k) = [C(k)×P(k)]*E(k)  

where k = z/Δm is the frequency corresponding to peak spacing Δm/z the mass spectrum. 

For a given charge state, the peaks in S(k) each have the shape E(k), which is the FT of 

e(m/z), and the comb of peaks in S(k) decays as P(k), which is the FT of p(m/z). The FT 

of the entire mass spectrum, which may include several charge states, is the sum of the 

Fourier spectra corresponding to each charge state present. The fundamental peaks in the 

Fourier spectrum for each charge state are spaced by 1/ms, thus ms is found by computing 

the reciprocal of the fundamental peak spacing. The charge states present in the ion 

population are determined by multiplying the frequencies of the fundamental peaks in the 

Fourier spectrum by ms, and the stoichiometry distribution e(m/z) can be found for a 

particular charge state by inverse Fourier Transforming its corresponding fundamental 

peak in the Fourier spectrum. The relationship between these characteristics of the mass 

spectrum and its Fourier Transform is illustrated for one charge state series in Figure 1A. 

 P(k), which describes the decay of the harmonic frequency peaks for a given 

charge state, is the FT of p(m/z), the average peak shape for the mass spectral peaks for 

that charge state. The inverse Fourier Transform of P(k) is therefore p(m/z), the width of 

which reflects the width of each peak in the comb associated with the chosen charge 

state. 

Results and Discussion 

 In extremely congested mass spectra with poor resolution, a significant baseline is 

often observed that may have a complex shape. Beyond a constant or linear baseline 

subtraction, other forms of baseline fitting and subtraction are often used in mass spectral 
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analysis software that can model curved baseline shapes. These algorithms include fitting 

a baseline to a polynomial60 or smoothing a spliced sequence of step functions that 

measure local minima in the raw mass spectrum,47 and data points with negative 

abundance values after baseline fitting and subtraction are often removed or set to zero 

abundance. These methods can be highly effective when adjacent peaks of interest are 

well-separated and the baseline originates primarily from chemical interferents, such as 

salt or small molecule clusters.26, 88 In cases where many peaks of interest overlap 

strongly, a significant baseline, perhaps even larger in magnitude than the modulation 

depth of the spectrum, can arise due to 

the superposition of the tails of these 

peaks.24, 78, 97 In such instances, it is not 

always easy to assess to what extent 

the above-described baseline 

subtraction methods distort the true 

peak shapes, centroids, or relative 

abundances of ions in the mass 

spectrum.  

For example, Figure 13 shows 

a QTOF native mass spectrum of 

“large”-diameter (12.9 nm wide52) Nanodiscs assembled using membrane scaffold 

protein MSP1E3D1 and DPPC lipids. This and other sizes of Nanodiscs are widely used 

in biochemical studies of isolated membrane protein complexes.1, 92, 98, 99 A very large, 

curved baseline is observed that results from the overlap of many poorly-resolved peaks 

Figure 13. Mass spectrum of lipoprotein 

Nanodisc ions assembled with DPPC lipid and 

membrane scaffold protein MSP1E3D1. Inset 

shows signal modulation in m/z range 13,600-

14,200 
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attributed to individual charge states and lipid stoichiometries. Poorly-resolved mass 

spectra of disperse native-like ion populations,5, 17 such as this, motivate a careful 

analysis of the baseline and signal modulation to determine what portion of the mass 

spectral signal can be used to reconstruct ion mass, charge, and stoichiometry 

information, and how this can be done reliably. After establishing the self-consistency of 

an FT-based method for analyzing similar Nanodisc mass spectra acquired with 

significantly higher resolution and other instruments, results from this method for this 

lower-resolution mass spectrum in Figure 13 are presented below.  

FT-based approaches for baseline characterization and noise filtering in 

mass spectra. Fourier filtering is a well-known procedure in signal processing and many 

spectroscopic techniques that can facilitate detection and characterization of periodic 

signals even in a noisy environment as well as removal of low-frequency baselines.100-102 

A raw signal is first Fourier transformed, signals at frequencies of interest are identified, 

and these signals are extracted using frequency windows before inverse Fourier 

transforming to yield the filtered signal in the original domain. Figure 12 illustrates a 

simulated mass spectrum for a population of assembly ions containing a range of subunit 

stoichiometries and charge states as well as the corresponding FT spectrum. Signal in the 

Fourier spectrum is observed near zero frequency and at several series of equally-spaced 

peaks corresponding to the fundamental and higher harmonics belonging to each charge 

state (Figure 12C). Because FT is a linear operation, the Fourier spectrum is a sum of 

each charge-state-specific signal in the Fourier domain. White noise and other non-

periodic signals in the mass spectrum are spread out across all frequencies in the Fourier 

spectrum. While the spacing and shapes of the fundamental and harmonic peaks contain 
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information about charge state, subunit mass, and stoichiometry distribution,13 it is 

extremely challenging to extract this information from the frequency band around 0 in the 

Fourier spectrum because this band contains a superposition of signals from all of the 

charge states. This band is thus much less information-rich than the other peaks in the 

Fourier spectrum, and it is reasonable to define its inverse Fourier Transform (IFT) as the 

“low-information signal” of the mass spectrum (see Figure 12D, red trace). 

The remaining signal after subtracting the low-information signal in the mass 

spectrum thus contains the most useful information, and it typically takes on both positive 

and negative values that oscillate about zero (see Figure 12D). It should be noted that this 

signal is generally not the same as the signal obtained by subtracting a low-order 

polynomial baseline or by using other common mass spectral domain baseline fitting 

approaches.14, 47 Its FT corresponds to the entire Fourier spectrum outside the zero-

frequency band. As shown for the simulated, noise-free mass spectrum in Figure 13, for 

each charge state, the envelope of the IFT of each harmonic has identical shape but 

different scaling, and the low-information signal resembles the sum of these envelopes 

(Figure 12D). A similar decomposition of the experimental mass spectrum from Figure 

13, which contains white noise, is shown in Figure 12E-G. 
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Fourier filtering has the 

potential advantage over simpler low- 

or high-pass filtering methods in that 

noise outside and between frequency 

bands of interest can be eliminated, 

and signal at several frequencies can 

be characterized simultaneously. 

Fourier filtering is equivalent to 

removal of all signal and noise 

outside the zero-frequency band and 

Fourier domain peaks. Figure 14  

shows the low-information signal and 

Fourier-filtered mass spectrum 

reconstructions for previously 

reported mass spectra of DMPC-

MSP1D1 NDs ionized using nESI on 

an Orbitrap–EMR and 15 Tesla FT-

ICR,60 and for DPPC-MSP1E3D1 NDs acquired using a QTOF (same data as in Figure 

13). The FT-ICR and Orbitrap mass spectra have nearly completely resolved peaks and 

very small low-information signals, whereas the QTOF mass spectrum exhibits a very 

large low-information signal, in agreement with visual intuition. The root-mean-square 

(RMS) random noise in the Fourier spectrum for the QTOF data is essentially constant as 

a function of frequency, whereas it decreases with increasing frequency (up to the 

Figure 14. Mass spectra (left) and 

corresponding Fourier spectra (right) for 

native-like DMPC-MSP1D1 Nanodiscs 

measured on (A) Orbitrap and (B) FT-ICR 

mass spectrometers, and (C) a DPPC-

MSP1E3D1 Nanodisc mass spectrum 

measured on a QTOF mass spectrometer. 

Fourier-filtered mass spectra (blue overlays) 

are calculated using the first three harmonics, 

as well as the Fourier baseline (red) the 

corresponding to the zero-frequency band. 

Detailed peak structure illustrated in insets 



 

56 

 

Nyquist frequency) for the FT-ICR and Orbitrap data. These differences in mass spectral 

resolution and frequency-dependence of the RMS random noise can be explained in part 

by noting that Orbitrap pre-processing software combines magnitude- and absorption-

mode data to improve apparent mass spectral peak resolution,96 and both the Orbitrap and 

FT-ICR data (which is analyzed here in magnitude mode) are apodized during pre-

processing to remove ringing artifacts caused by a finite sampling period. The small 

depth of modulation for the Fourier-filtered QTOF mass spectrum (Figure 14C, blue 

trace) as compared to the FT-baseline subtracted mass spectrum in Figure 12G (violet 

trace) is consistent with the relatively large random white noise and illustrates the utility 

of Fourier-filtering in removing this type of noise. A comparison of Fourier filtering with 

other common noise filtering techniques (Savitzky-Golay, moving-average, and median 

filters) is shown in Appendix B (Figure B1) and illustrates that Fourier filtering typically 

removes much more low- and high-frequency noise from the mass spectrum than do 

these other filters and has the additional advantage of leaving Fourier-domain peak 

amplitudes unaltered. 

When multiple harmonics are resolved in the Fourier spectrum, there are in 

principle multiple pathways by which to determine the subunit mass, charge state 

distribution, and charge-state-specific mass spectra for this type of ion population, though 

different pathways may have unique advantages for real data exhibiting Fourier peak 

overlap or low signal-to-noise. In addition to the spacing and shape of individual peaks in 

the Fourier spectrum, the relative scaling of the harmonics contains information about the 

shape and width of peaks in the mass spectrum. Extraction of information from harmonic 

peaks is described below for Nanodisc mass spectra. 
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Consistency of subunit mass and charge state determinations using different 

Fourier-domain harmonic peak series. In chapter 2, FT-based analysis of mass spectra 

with well-resolved fundamental peaks in the Fourier domain was illustrated.13 In all three 

Fourier spectra shown in Figure 14, the fundamental peaks overlap significantly, thus 

stoichiometry information obtained by directly inverse Fourier transforming the 

fundamental peaks may be unreliable, because overlap of signal from adjacent Fourier-

domain peaks and use of frequency windows that are too narrow are potential sources of 

error in Fourier filtering. Figure B2 illustrates the relationship between Fourier-domain 

peak separations, IFT window width, and reconstructed mass spectral ringing artifacts 

(which are less than 5% of the maximum signal when Fourier-domain peak separation is 

at least ~1.5 times the sum of adjacent peak widths). A potential solution to these 

problems is to use higher harmonic peaks rather than fundamental peaks to determine 

subunit stoichiometry distributions, because they are more widely spaced and less to 

prone to overlap, though it is important to note that higher harmonic peaks can have 

lower signal-to-noise than their corresponding fundamentals. Thus, a trade-off between 

overlap-induced artifacts and artifacts introduced by noise must be considered when 

performing this analysis. 

Figure 15 illustrates this approach, where charge-state-specific mass spectrum 

reconstructions for the fundamental, second, and third harmonics are shown for the 

baseline-resolved Orbitrap mass data from Figure 14A. The fundamental peaks have 

extensive overlap, but charge states 15-23+ are still found using the FT method, in 

agreement with previously published results using UniDec.60 A subunit mass of 678.5 ± 

3.6 Da is calculated using the FT method, which is close to the known mass of DMPC 
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(677.993 Da). These results are also 

consistent with the second harmonic 

series, which also indicate charge 

states 15-23+ and a more accurate 

and precise subunit mass of 678.2 ± 

1.0 Da. Using the third harmonics, 

the FT method calculates similar 

subunit mass (677.3 ± 0.8 Da) but 

only identifies charge states 16-21+, 

due to overlap of the higher charge 

states with the 4th harmonics. Thus, 

overlap of two different charge states 

from two different harmonic series 

can in certain cases represents a 

limitation in the higher harmonic 

analysis. These results are 

summarized in Table B1.  

While the charge states and 

subunit mass measurements are similar for the fundamental, second, and third harmonics, 

a notable difference can be seen in their reconstructed mass spectral envelope functions, 

particularly when using the fundamentals. The reconstructed charge-state-specific 

envelope functions using the fundamental peaks are visibly wider than those for the 2nd 

and 3rd harmonics, a result attributed to strong overlap of the fundamental peaks in the 

Figure 15. Mass spectrum of DMPC-

MSP1D1 Nanodiscs acquired on an Orbitrap 

mass spectrometer (left) and corresponding 

Fourier spectrum (right) for (A) fundamentals, 

(B) second harmonics, and (C) third 

harmonics. IFT of the charge-state specific 

peaks in Fourier spectra (insets) are shown as 

overlaid envelope functions of the same color 

in mass spectra. Faint color surrounding 

envelope functions represents uncertainty of 

envelope functions calculated from average 

noise amplitude in the Fourier domain  
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Fourier spectrum (Figure 15).  The higher harmonic peaks in the Fourier spectrum are 

more widely spaced and are better resolved, leading to narrower corresponding charge-

state-specific envelope reconstructions (Figure 15). The corresponding standard 

deviations in the number of lipids present (Table B1) are consistently lower than those 

found using the fundamental peaks, and lipid statistics are nearly identical when using the 

2nd and 3rd harmonics for charge states 16-21+. Notably, all of these Fourier-domain 

peaks have signal-to-noise greater than 10:1 and inter-peak separation exceeding 1.5 

times the sum of adjacent peak widths. Subunit statistics for Fourier-domain peaks that 

meet these two criteria are therefore likely to be accurate in general even for mass spectra 

for which only one set of harmonic peaks meets them, as is often the case in the other 

Nanodisc spectra presented here. Similar results for mass spectra exhibiting even 

greateroverlap of the fundamental peaks are illustrated in Figure B3 and Table B1 in 

Appendix Figure 16 shows results for the much more congested QTOF mass spectrum 

from Figure 13, in which the mass spectral peaks are far from baseline-resolved. FT 

analysis of the fundamental frequencies indicates charge states 18-24+ and average sub-

unit mass of 732. ± 2. Da, which is within one standard deviation of the average mass of 

DPPC (733.562 Da). However, the 19 and 20+ fundamental peaks overlap strongly, so 

their corresponding charge-state-specific mass spectra cannot be reliably reconstructed 

from these peaks alone. By contrast, the second harmonic peak sequence is baseline-

separated. The same range of charge states, 18-24+, is identified, and a more accurate and 

precise average sub-unit mass of 733.0 ± 0.8 Da is determined. The average number and 

standard deviation in the number of lipid subunits for these charge states determined 

using the fundamental and second harmonic peaks are very similar. Together with the 
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results for DMPC-MSP1D1 Nanodisc ions described above, these results show that 

higher harmonic frequencies can often beneficial in determining charge states, subunit 

mass, and charge-state-specific mass 

spectra for disperse assembly ion 

populations. Similar results were 

obtained for the spectrum in Figure 

14B and are shown in Figure B4 in 

Appendix B. 

In addition to signal overlap 

and artifacts introduced by using 

overly narrow Fourier frequency 

windows (see Figure B2), artifacts in 

reconstructions of charge-state-

specific envelope functions can occur 

if the white noise present in the 

Fourier spectrum obscures the true 

shape of higher harmonic peaks that 

have relatively low signal-to-noise. 

Averaging the shape of two or more 

reconstructed spectra from different 

harmonics belonging to the same 

charge state is a potential strategy for reducing artifacts of this type. “Harmonic-average” 

charge-state-specific mass spectra for the data from Figure 13 were reconstructed by 

Figure 16. Mass spectrum of DPPC-

MSP1E3D1 Nanodiscs acquired on a QTOF 

mass spectrometer (left) and corresponding 

Fourier spectrum (right) for (A) fundamentals 

and (B) second harmonics. IFT of the charge-

state specific peaks in Fourier spectra (insets) 

are shown as overlaid envelope functions of 

the same color in mass spectra. Faint color 

surrounding envelope functions represents 

uncertainty of envelope functions calculated 

from average noise amplitude in the Fourier 

domain. (C) Harmonic-averaged 

reconstruction of envelope functions. (D) 

Zero-charge spectrum (black), calculated from 

harmonic-averaged spectra for all charge 

states 
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directly averaging the IFT of the fundamental and higher harmonic peaks for each charge 

state (Figure 16C). The harmonic-averaged spectral envelopes widths are slightly wider 

than those for the second harmonics, but contain fewer periodic “ripples” in the tails of 

the spectra due to averaging with the data from the fundamentals. A “zero-charge” mass 

spectrum for the entire ion population was also calculated from these harmonic-averaged 

mass spectra (Figure 16D) to illustrate the mass distribution for the entire ion population. 

(Zero-charge spectra for the Orbitrap and FT-ICR spectrum in Figures 14A and 14B can 

be found in Figures B5 and B6.) The average ion mass found by this method is ~290 

kDa, which, assuming two scaffold proteins are present per ion, means that the DPPC-

MSP1E3D1 Nanodiscs in the ion population represented in Figure 13 have an average of 

~306 lipids. Using this number, an average condensed-phased area per lipid head group 

in the Nanodisc of ~60 A2 can also be estimated, assuming that each leaflet has a 

diameter of 2 nm smaller than the diameter of the assembly.52 This result agrees well with 

previous computational simulations of model DPPC bilayers.103 

Characterizing peak width and unresolved adductions in the mass spectrum 

and Fourier domain. When baseline-resolved mass spectral peaks can be attributed to 

only one charge state, peak broadening caused by unresolved adductions (such as solvent 

molecules and small cosolute ions) for each peak can in principle be determined from the 

width of the peaks in the mass spectrum and (separately-measured) instrumental 

resolving power. If peaks from more than one charge state overlap or there is a large 

baseline, peak width determination directly from the mass spectrum can be more 

challenging. Statistics for the average peak shape for each charge state instead can be 

determined from analysis of the higher harmonic peaks in the Fourier spectrum, which 
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have amplitudes that decay as the FT of the average mass spectral peak shape for the 

corresponding charge state (P(k); see Figure 12A). Then, p(m/z) for each charge state is 

simply the IFT of P(k). However, for a typical ESI mass spectrum with multiple overlap 

charge states, it is typically infeasible to determine this zero-frequency contribution for 

individual charge states, but it may be reasonable to assume that the zero-frequency 

amplitude has a fixed relationship to the amplitudes of all the other harmonic peaks. For 

example, if p(m/z) is Gaussian in 

shape, as in the simulated spectrum in 

Figures B7A and B7B, its Fourier 

Transform, P(k), is also a Gaussian, 

and the FWHM of P(k) is inversely 

proportional to that of p(m/z). The 

FWHM of p(m/z) can then be 

determined from P(k) without 

knowing its amplitude at zero 

frequency, provided enough 

harmonics have sufficient signal-to-

noise to confidently fit P(k) to a 

Gaussian. 

The baseline-resolved Orbitrap mass spectrum in Figure 15A has roughly 

Gaussian peaks and is in this respect similar to the modeled spectrum in Figure B7B. 

Average peak-width statistics for each charge state can thus be readily estimated from 

reconstruction of P(k). This is shown in Figure 17A for charge states 17, 18, and 19+ 

Figure 17. Mass spectra (left) and 

corresponding Fourier spectra (right) of (A) 

DMPC-MSP1D1 Nanodiscs acquired using an 

Orbitrap mass spectrometer and (B) DPPC-

MSP1E3D1 Nanodiscs acquired using a 

QTOF mass spectrometer. Charge-state-

specific mass spectral envelope functions 

(left), and Gaussian frequency decay functions 

(P(k), right) are shown with same color 
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using the second, third, and fourth harmonics (the fundamentals, as well as fifth and 

higher order harmonics, could not be used due to overlap). Using these parameters, fitting 

a Gaussian to the higher harmonics results in a reconstructed average FWHM, in m/z, of 

8.1 ± 0.1, 7.9 ± 0.1, and 7.5 ± 0.1 for the 17, 18, and 19+ charge states respectively. Note 

that these and all peak width uncertainties reported below reflect fitting to a forced 

Gaussian shape and do not include uncertainty reflecting exact, i.e., non-Gaussian, peak 

shapes. These peak width values are close to forced-Gaussian FWHM measurements 

determined directly from the mass spectrum (7.8 ± 0.6, 6.4 ± 0.6, and 6.3 ± 0.6 for charge 

states 17, 18, and 19+), with the small discrepancies likely arising from the slightly 

asymmetric shape of the mass spectral peaks. This result is consistent with a small degree 

of salt adduction and the slight deviation of the data from the Gaussian fits shown in 

Figure 17A. 

A similar analysis was performed for the poorly resolved QTOF spectrum from 

Figure 13 assuming Gaussian shape peaks (Figure 17B). The FWHM, in m/z, for charge 

states 20, 21, and 22+ are found to be 13.7 ± 0.2, 12.2 ± 0.1, and 13.6 ± 1.0, respectively. 

This is within error of values found by measuring the most abundant peak in each charge 

state after an initial smoothing and baseline subtraction (13. ± 1., 12. ± 1., and 13. ±1., 

respectively). Notably, both the directly measured and FT-reconstructed peak FWHM are 

less than half the inter-peak spacing for each charge state (~17-18, in m/z, for these ions). 

These results are summarized in Table 3. 
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Table 3. Mass Spectral Peak Widths for Native-Like Nanodisc Ions Determined Using 

P(k) and Directly from Mass Spectrum  

 

Potential errors in peak-width determination can occur when using this method if 

the mass spectral peak shapes are very poorly resolved or highly non-Gaussian, 

especially if a large baseline is subtracted before peak shape analysis. The extent of these 

potential errors was investigated using model spectra with peak FWHM ranging from 

115% to 180% of the inter-peak spacing for each charge state. For example, Figure B7A 

shows a mass spectrum in which the peak FWHM is 115% of the inter-peak spacing. The 

FT approach described above yields a FWHM, in m/z, of 6.5, whereas direct 

measurement of the FWHM in the mass spectrum after baseline subtraction is ~5.1, 

slightly smaller than the true value (5.9). When the true FWHM are increased, the 

resulting mass spectra have even larger baselines. If these curved (i.e., polynomial-fitted, 

not FT) baselines are subtracted, the resulting spectrum is ostensibly baseline-resolved, 

and directly measuring the FWHM of the peaks leads to nearly identical measurements 

for the FWHM (5.3, 5.4, and 5.6, respectively), increasingly far from the correct values 

(7.1, 8.2, and 9.4), but all very similar to half the inter-peak spacing (5.1). This error 

trend arises from the fact that the signal modulation with respect to the low-information 

signal in the mass spectrum asymptotically approaches a simple sinusoid at the 

Analyte 

(Instrument) 

z FWHM found 

using P(k) 

FWHM from 

Mass Spectrum 

DPPC-MSP1E3D1 20+ 13.7 ± 0.2 13. ± 1. 

(QTOF) 21+ 12.2 ± 0.1 12. ± 1. 

 22+ 13.6 ± 1.0 13. ± 1. 

    

DMPC-MSP1D1 17+ 8.1 ± 0.1 7.8 ± 0.6 

(Orbitrap) 18+ 7.9 ± 0.1 6.4 ± 0.6 

 19+ 7.5 ± 0.1 6.3 ± 0.6 
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fundamental frequency as the width of the individual peaks increases. In sharp contrast, 

Fourier transforming the model mass spectra, with or without subtracting the curved 

baseline, results in much more accurate FWHM measurements because the shape of P(k) 

is easily measured in the Fourier spectra. These results illustrate the robustness of this 

method and indicate one should exercise caution in interpreting mass spectra after curved 

baseline subtraction, especially as relates to peak width and resolution, if peak widths are 

similar to or larger than inter-peak spacing. Peak width analysis can be even more 

challenging in the case that the mass spectral peak shape is far from Gaussian (see 

Appendix B, especially Figure B7C and B7D). 

Use of parameters determined from FT algorithm to improve results of 

Bayesian mass spectral fitting. Disperse mass populations with repeated subunits from 

native mass spectra, such as the Nanodisc mass spectra investigated here, can in many 

cases be deconvolved using other strategies besides Fourier Transform, such as Bayesian 

fitting, the approach implemented in UniDec/MetaUniDec,14, 60, 104 or MaxEnt.26 These 

fitting algorithms typically require the user to input some initial parameters, such as 

charge state, peak width, and mass estimates, and a modeled data set based on those 

parameters is iteratively fit to the experimental data set until convergence is achieved. 

(The MaxEnt algorithm further assumes that the stoichiometry distribution for each 

charge state is identical, which may not be the case for some disperse ion populations, 

such as the Nanodiscs investigated here; see Table B1.) When using these fitting 

algorithms, choosing the right initial parameters can therefore be highly advantageous for 

extracting accurate information, especially when the mass spectra have low signal-to-

noise or the goodness-of-fit function used in the algorithm contains multiple local 
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extrema. These effects are illustrated for simulated DPPC-MSP1E3D1 Nanodisc mass 

spectra in Figure B8 with signal-to-white-noise ratio 20:1 and a realistic increase in 

average lipid content of 10 lipids per charge state. Despite the low signal-to-noise ratio, 

nearly perfect reconstruction of the exact zero-charge mass spectrum is achieved using 

the FT approach alone, and dramatic improvement of reconstructions using UniDec is 

observed when the charge state range is limited using output from the FT method and a 

Fourier-filtered mass spectrum is used as input. 

 Shown in Figure 18 are two deconvolutions for the experimental DPPC-

MSP1E3D1 Nanodisc mass spectrum from Figure 13 using UniDec’s Bayesian 

deconvolution algorithm. The initial parameters for both analyses were chosen as 

follows: a charge state range of 15-27+ and a mass range for the entire complex of 250-

Figure 18. Deconvolved QTOF mass spectra vs. charge (left), mass vs. charge 

(center) and zero-charge mass spectra (right) of DPPC-MSP1E3D1 Nanodiscs 

determined using UniDec. Mass spectral data are the same as in Figure 13. A, B, and 

C result from using “naïve” input parameters for subunit mass, charge state range, 

peak width, and total mass range, whereas D, E, and F result from using values 

obtained from the FT-based method (see text). Smooth black trace in C and F 

represents zero-charge mass spectrum reconstructed using FT approach (see Figure 

16D) 
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350 kDa. These values were chosen to simulate a typical scenario in native MS in which 

the approximate charge state and mass range of a population of assembly ions can be 

estimated, but the repeated sub-unit mass is unknown. Figures 18A, 18B, and 18C show 

results from using the Bayesian algorithm with no initial guess for the lipid mass and an 

initial peak FWHM, in m/z, of 8.9, which is obtained from the mass spectrum using the 

peak width tool in UniDec after performing an initial baseline subtraction. Overall, the 

results are similar, but not identical, to those from the FT-based approach (see Figure 15 

and Table 1), though a number of high-intensity orphan peaks, presumably artifacts, are 

found in the zero-charge mass spectrum with these input parameters at masses below 270 

kDa and above 300 kDa. 

Figures 18D, 18E, and 18F show results from UniDec for the same mass 

spectrum, but using input mass spectra and parameters determined from the different FT-

based approaches described above: The Fourier-filtered spectrum as the input spectrum, a 

subunit mass of 733 Da determined using the FT method and a peak FWHM of 13 

determined from P(k). With these input parameters, the spurious peaks in the zero-charge 

mass spectrum are nearly eliminated and charge states and mass estimates for the ion 

population agree much more closely with results obtained using the FT analysis above. 

The zero-charge mass spectrum reconstructed with UniDec is somewhat narrower than 

the one reconstructed using the FT approach, consistent with the non-overlapping charge-

state-specific mass spectra reconstructed in UniDec (Figure 18D). This demonstrates that 

information obtained from the Fourier analysis can be used as input parameters in 

Bayesian fitting algorithms to improve the quality of the results. Similar results were 
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found for UniDec processing of the Orbitrap and FT-ICR spectra, as shown in Figures B9 

and B10 

Conclusions 

 As the composition and structure of larger and more heterogeneous assembly ions 

probed with mass spectrometry continue to increase in complexity, analysis of their mass 

spectra demands more powerful approaches for assigning charge state, mass, and 

stoichiometry. Developing instruments with increased resolving power is one potential 

strategy, but access to these higher resolution instruments may not always be available 

for some laboratories, and it may be desirable to perform tandem experiments, such as 

ion mobility spectrometry and surface-induced dissociation, which are not widely 

available in high-resolution instruments. Furthermore, resolution limitations associated 

with current instruments will inevitably arise again for future instruments as the size and 

complexity of ions continues to increase, even with the advantages of charge-stripping or 

–reduction techniques.42, 87 The results presented here illustrate how the Fourier 

Transform-based analysis strategy can allow one to work within current instrumental 

limitations when studying assembly ions with repeated subunits. Both experimental and 

computational results indicate that reliable and self-consistent charge state, subunit mass, 

and subunit stoichiometry determinations can be made using this strategy, especially if 

Fourier-domain peaks are well resolved (with inter-peak spacing at least ~1.5 times the 

sum of adjacent peak widths) and have signal-to-noise of at least 10:1. This 

deconvolution method can be used alone or in combination with Bayesian deconvolution 

techniques, for which it can provide input parameter values, such as charge state range, 

subunit mass, mass range and mass spectral peak width, to improve results. Furthermore, 
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information learned through FT-based analysis can help avoid potential errors in analyses 

associated with mass spectral domain deconvolution algorithms, including error 

attributed to curved baseline subtraction or parameter estimation.  The general principles 

discussed here are valid for many other types of assembly ions with repeated subunits, 

including biomolecular assemblies, polymers, and inorganic cluster ions, due to the 

analogous form of their nESI mass spectra.  

 While higher harmonic frequencies can indeed be useful signal components, one 

challenge of the Fourier method is the potential of overlapping higher harmonic 

frequencies.  When this overlap occurs, it can be difficult to uniquely identify charge 

states from the Fourier spectrum, and thus presents a serious limitation for ions with low 

charge states, a high number of different charge states, or mass spectra with sufficiently 

high resolution, such as polymer mass spectra.4, 13 Thus, in order for the Fourier method 

to be useful for a variety of different molecules, it is necessary to expand the method such 

that this limitation can be overcome.  Presented in the next chapter is one such expansion, 

where a 2-dimensional Fourier approach is developed that can separate overlapping 

higher harmonic frequencies. 
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CHAPTER IV  

SHORT-TIME FOURIER TRANSFORMATION APPROACH FOR OVERLAPPING 

FREQUENCY DOMAIN SIGNALS 

Includes co-authored material from: 

Cleary, S. P. and Prell, J. S. "Liberating Native Mass Spectrometry from 

Dependence on Volatile Salt Buffers by Use of Gábor Transform" 

ChemPhysChem 2019, 20, 519-523. 

 

Introduction  

Nanoelectrospray ionization mass spectrometry (nESI-MS) can be a powerful tool 

for analyzing the native structure and stoichiometry of large, multi-subunit complexes in 

the gas phase.21, 29, 51, 60, 61, 63-69 However, for ions exhibiting a large degree of subunit 

stoichiometric polydispersity, such as long chain polymers4, 5, 17 or lipoprotein 

Nanodiscs,1, 13, 24, 25, 60, 78 analysis of the nESI mass spectrum can be very challenging due 

to the presence of tens to hundreds of closely spaced peaks. Analytes in native nESI-MS 

are almost universally characterized using buffers containing volatile salts such as 

ammonium formate or ammonium acetate105-109 because the use of more common 

biochemical buffers with non-volatile salts, such as Tris/NaCl or HEPES/NaCl buffers, 

results in biological ions with many salt adducts as well as salt cluster ions that severely 

congest the mass spectrum.35, 110-113 This reliance of native nESI-MS on volatile salt 

buffers can be problematic for native analytes that do not survive buffer exchange or may 

have different compositions or structures in different buffers.20, 114, 115 Adduction of 

cations in positive ion mode (or anions in negative ion mode) can increase polydispersity 

of the biological ion of interest, making accurate mass measurement challenging, and 

overlapping signal from large, non-volatile salt cluster ions can further obfuscate analyte 
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signal. In a previous chapter, I demonstrated that Fourier transformation (FT) of the mass 

spectrum can greatly facilitate the analysis of samples exhibiting high degrees of subunit 

or adduct polydispersity.13, 25 However, in some cases, analyte signals in congested mass 

spectra elude characterization even with the FT approach due to overlap in both the mass 

spectrum and frequency domain. This can occur when signal in the Fourier frequency 

domain from an ion of interest overlaps with signal from other analytes containing the 

same subunit, for example, a highly sodiated protein and a distribution of salt cluster ions 

with a signal at the same Fourier frequency. Here, I introduce a Gábor transform-based 

method that enables analysis of large biomolecular and polymer ions in extremely 

congested mass spectra dominated by signals from non-specific salt or small polymer 

cluster ions. 

 

Methods 

Sample Preparation. All water used in the data presented here was ultrapure 

(18.0 MΩ/cm impedance) water. Aqueous anthrax lethal factor N-terminal subunit (LFn) 

solution was prepared containing 10 μM LFn, 100 mM sodium chloride, 20 mM 

tris(hydroxymethyl)aminomethane (Tris), and 0.5 mM ethylenediaminetetraacetic acid 

(EDTA) at pH 7.4. β-lactoglobulin (β-Lac) was purchased from Sigma-Aldrich and was 

solubilized without further purification. Aqueous β-Lac solutions were prepared in a 

buffer containing 10 μM β-Lac, 100 mM sodium chloride, 20 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), and 0.5 mM EDTA at pH 7.4. Polyethylene 

glycol with a manufacturer-estimated average molecular weight of 10,000 Da (PEG 10k, 

product number 309028) was purchased from Sigma-Aldrich (St. Louis, Missouri) and 
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used without further purification. PEG 10k samples were prepared as 0.5 mg/mL 

solutions in water for mass spectrometry experiments. 

Mass Spectrometry. Native nanoelectrospray ionization (nESI) mass spectra 

were acquired on a Synapt G2-Si Quadrupole Time-of-Flight (QTOF; Waters-MS 

Technologies, Manchester, UK) mass spectrometer using a static nESI source. nESI 

emitters were prepared by pulling borosilicate capillaries (i.d. 0.78 mm, Sutter 

Instruments) to a tip i.d. of ~1 μm using a Flaming-Brown P-97 micropipet puller (Sutter 

Instruments, Novato, CA, USA). For each sample, ~3−5 μL of solution was loaded into 

an emitter, which was placed approximately 1-2 mm from the entrance of the mass 

spectrometer. A platinum wire inserted into the solution was used to apply an electrical 

potential of 0.6-1.0 kV relative to instrumental ground to initiate electrospray. The ion 

source was equilibrated to ambient temperature. Mass spectra were collected in 

Sensitivity mode to maximize signal-to-noise. Argon gas was introduced into the Trap at 

a flow rate of 5 mL/min in all experiments. Trap/Transfer collision energy was set to 10/5 

V, respectively, unless otherwise stated. All mass spectral data were processed without 

smoothing using MassLynx v. 4.1 (Waters Corp., Milford, MA, USA). 

Nuclear Magnetic Resonance Spectroscopy. A 13C-NMR spectrum was 

acquired on a Bruker AV-III HD 500 MHz NMR spectrometer equipped with a 5 mm 

Prodigy BBO Cryprobe at 308 K. PEG 10k was solubilized in deuterated dimethyl 

sulfoxide to a concentration of 10 mM. All data processing of the 13C-NMR spectrum, 

including integration of identified 13C peaks, was performed using the software 

MestReNova version 12.0.4 from Mestrelab. The number-average degree of 

polymerization was determined as the ratio of the integrated internal monomer peak area 
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(at δ 70.3 ppm) to the average of the integrated terminal peak areas (at δ 72.8 and 60.8 

ppm). The number-average molecular weight was determined as the molecular weight of 

a PEG polymer with this degree of polymerization, and the uncertainty (1 standard 

deviation) was estimated by propagating integration uncertainty and white noise. 

Computational Work. All data processing involving a Gábor transformation was 

performed using the open-sourced Matlab package “The Large Time-Frequency Analysis 

Toolbox” (LTFAT) available for download here: http://ltfat.github.io/. All one-

dimensional Fourier transform-based analysis was performed using the Prell group’s 

home-built program, iFAMS (interactive Fourier Analysis for Mass Spectra) version 5. 

 

Theory 

Gábor transformation (GT) is a short-time Fourier transformation signal 

processing technique that can reveal where specific frequencies are localized in the mass 

spectral signal. In GT, the signal is windowed with a Gaussian prior to Fourier 

transformation, and this process is repeated with the window translated by equally-spaced 

intervals. The windowed Fourier-transformed data are then plotted as a 2d “spectrogram” 

with the horizontal axis indicating the position of the window in the m/z domain, the 

vertical axis being the frequency, k (= z/Δm), and the complex amplitude equal to the 

Gábor Transform coefficient as a function of these two variables. Thus, the GT 

spectrogram shows where in the mass spectrum signals of a particular frequency are 

localized. GT of a mass spectrum can be ideally represented mathematically: 

G(𝛼,k) =∫ 𝑠 (
𝑚

𝑧
) 𝑔(

𝑚

𝑧
− 𝛼) 𝑒−𝑖𝑘(

𝑚

𝑧
)𝑑𝑘 

where: 

http://ltfat.github.io/
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𝑔 (
𝑚

𝑧
) =

1

𝜎√2𝜋
𝑒

−
(
𝑚
𝑧

)2

(2𝜎)2
 

α = the m/z center of the window 

k = frequency 

For an experimental (i.e. discretely sampled) mass spectrum, this is: 

G(w,v) = ∑ 𝑠(
𝑚

𝑧
)𝑚

𝑧
 𝑔(

𝑚

𝑧
− 𝑤𝑑𝑊) 𝑒−𝑖𝑘(

𝑚

𝑧
)𝑣/𝑉

 

Where: 

dW = spacing of window positions in m/z 

V = frequency channels 

The number of distinct window positions used in the GT limits the number of 

frequency samples that can be made without redundant representation of the signal in the 

spectrogram. Specifically, the number of points in the spectrogram, L, is equal to the 

number of window positions in the mass spectrum, W, times the number of distinct 

frequencies (“channels”), V at predefined intervals. 

L = W × V 

In the information-limited case, i.e. where L is as large as possible without redundant 

information being contained in the spectrogram, L is equal to the number of data points in 

the mass spectrum. This means there is a trade-off between the information-limited 

resolution in frequency and window position (i.e., effective mass spectral resolution in 

GT).  

Although V is adjustable, the bandwidth of frequencies remains constant because 

it is determined by the range of m/z values in the mass spectrum, and total number of data 

points in the mass spectrum: 



 

75 

 

bandwidth = (number of data points)/(m/z span) 

The Nyquist Theorem asserts that, in order to avoid aliasing, the sampling rate must be at 

least twice as high as the frequency of interest in the mass spectrum. Therefore, in order 

to resolve two adjacent bands in the GT spectrogram, V must be chosen such that the 

change in frequency one hopes to capture (i.e., the spacing between charge state peaks in 

the Fourier domain) is larger than the sampling rate. Sampling rate is determined by: 

sampling rate = bandwidth/V 

Because of this, oversampling, a scenario in which L is greater than M, is sometimes 

practically unavoidable. Since oversampling can lead to artifacts in the GT spectrogram, 

it is advised that the rate of oversampling be kept low, where:  

rate of oversampling = L/W 

 

Results 

Limitations of a 1D Fourier transformation approach.  As a demonstration of 

limitations associated with ordinary 1D Fourier analysis, shown in Figure 19 are the mass 

spectrum and corresponding Fourier spectrum of two disperse samples exhibiting the 

problem described in the introduction: Highly sodiated anthrax lethal factor N-terminal 

subunit (LFn, Figure 19A) and long-chain (~10 kDa average molecular weight, as 

reported by the manufacturer) polyethylene glycol (“PEG 10k”) polymer (Figure 19B). 

While Fourier transformation of the mass spectrum facilitates sodium adduct and 

polymer subunit mass determination using previously described methods,4, 13 it is difficult 

to uniquely identify charge states for both analytes (LFn and the long-chain polymer 

ions) in the Fourier spectrum due to the presence of many other peaks. Without confident 
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charge state determination, determining accurate mass information for these ions from 

either the mass spectrum or Fourier spectrum is very difficult. 

The LFn mass spectrum is 

complicated by multiple factors, 

including adduction of sodium to the 

protein, the presence of sodium 

chloride clusters, and a high baseline 

that is typical of spectra 

electrosprayed from a buffer 

containing a high concentration non-

volatile salt (for comparison, a 

sample of the same protein sprayed 

from an ammonium acetate buffer, which is much more common in native ESI-MS, is 

shown in Appendix C, Figure C1). These three signal components each span the entire 

mass spectrum, making it difficult to uniquely assign peaks to specific components in the 

mass spectrum. This effect can be seen in inset of Figure 19A, which shows the partially 

unfolded charge states for LFn. (21-31+). Near-native (13-20+) and compact native (9-

12+) charge states are not readily identified, however, as the high baseline due to salt 

clusters obscures the signal due to these charge states of the protein. Fourier 

transformation produces a spectrum with a prominent signal at integer multiples of 

frequency (k (= z/Δm) = 0.5). This signal arises from Na+(NaCl)n clusters due to the 

distribution of chloride isotopes, which are spaced by ~2 Da within the mass spectral 

signal for each cluster. Although the signal at k = 0.5 can be assigned to chloride-

Figure 19. Native mass spectra (left) and FT 

spectra (right) of sodiated LFn ion (A) and 

polyethylene glycol polymer (manufacture-

reported Mavg 10,000 Da) (B). Insets in mass 

spectra illustrate the adduction profile for the 

LFn ion, and the signal component for the 

long-chain polymer. 
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containing species that are singly-charged, signals at higher multiples of k = 0.5 cannot be 

uniquely assigned from the Fourier spectrum alone, because they can arise from multiply-

charged salt clusters, harmonics of the k = 0.5 peak, or a mixture of both. Moreover, these 

intense salt cluster peaks strongly mask the weaker signals of other ion types. For 

example, LFn ions with multiple Na adducts are expected to contribute signals at integer 

multiples of k ≈ 1/22 = 0.045 (the inverse of the mass shift due to the displacement of a 

proton by a sodium ion), but such signals are difficult to distinguish in the Fourier 

spectrum.  

Similarly, the PEG 10k mass spectrum (Figure 19B) contains several apparent 

distributions of ion signal throughout the spectrum, including a highly abundant 

distribution around 1000 m/z and smaller overlapping distributions between 1500-3500 

m/z (see inset). Each distribution contains tens to hundreds of closely spaced peaks, 

making it difficult to assign specific peaks to specific charge states and distributions. FT 

of this signal results in a spectrum with many peaks that appear equally spaced, an effect 

that has been described in detail elsewhere.4, 13 Briefly, each peak is spaced by Δk = 

0.0227, which is the frequency corresponding to the subunit mass of PEG (44.026 Da). A 

peak is present at nearly every multiple of this frequency up to the 18th harmonic. Due to 

the possible presence of overtones of the fundamental peak, which can overlap with the 

fundamental peak of all other charge states, it is difficult to determine the charge states 

present in the mass spectrum. This ambiguity frustrates further analysis of the mass 

distribution of these ions. 

Gábor Transformation can Separate Overlapping Signals in the Fourier and 

Mass Spectrum. In contrast to ordinary FT, Gábor transformation (GT) is a “short-time” 
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Fourier transform that can reveal where specific frequencies are located in the mass 

spectral signal. As with other short-time Fourier transform methods, this is achieved by 

sliding a window with a user-defined shape (in the case of GT, a Gaussian) across the 

signal prior to Fourier transformation. The windowed, Fourier-transformed data are then 

plotted as a 2-dimensional “spectrogram” with the horizontal axis indicating the position 

of the center of the window in the m/z domain and the vertical axis being the frequency, 

k. The spectrogram shows where in the mass spectrum signals of a particular frequency 

are localized. Importantly, because GT spectrograms are 2-dimensional, frequency 

signals that overlap in the ordinary Fourier spectrum can often be separated in the GT 

spectrogram. 

 To illustrate how GT can reveal information in congested mass spectra, Figure 20 

shows the mass spectrum, FT spectrum, and GT spectrogram of an idealized data set 

representing three different types of heterogeneous ion populations: a single-charge-state 

population of ions separated by constant mass, an ion population representing non-

specific clusters that increase in average m/z as the charge state increases, and a multiple-

charge-state population of ions that does not significantly change mass distribution as 

charge state increases (which represents a highly adducted protein or polymer population 

with a charge-state-independent mass distribution). For illustrative purposes, the mass 

spectrum is modeled such that the different mass spectral signal components are well 

separated in m/z, and the subunit mass is the same for each component. Similar to the FT 

spectrum in Figure 19B, the FT spectra in Figure 20 contains many peaks that are 

difficult to uniquely attribute to one specific mass spectral signal component. However, 

GT produces a spectrogram where the different signal components are spread out, and 
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appear as collections of ovoid bands in the GT spectrogram, and the 2-dimensional 

arrangement of these bands is different for the three types of ion population. Bands 

corresponding to the fundamental frequencies for each type of population are boxed in 

white, and each subsequent group of bands found at higher frequencies represents higher 

harmonic bands. Importantly, while these different frequency components overlap in the 

Fourier domain, the different series are separated and easily identified in the GT 

spectrogram. This result illustrates how GT can be used to identify different ion signals 

that overlap in both the mass spectrum and FT spectrum. 

Figure 20. Gábor transformation (GT) of a modeled mass spectrum.  Shown are the 

mass spectrum (A) and corresponding Fourier spectrum (B) and GT spectrogram (C).  

Mass spectrum was modeled to show three different mass populations, including a 

single-charge-state population (green), a multiple-charge-state population that 

increases in mass with increasing charge (blue), and a multiple-subunit population that 

does not significantly increase in mass (red, see text).  Black spectra above and to the 

right of the GT spectrogram represent the mass spectrum (top) and Fourier spectrum 

(right) of the original data set. 
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 The shape, or “chirp”, of the different groups of bands (by analogy with the 

auditory phenomenon of time-varying frequencies in, e.g., a bird’s chirp), can also reveal 

information about a family the type of ions they represent. That is, ion populations 

representing clusters of a single charge state and fixed subunit mass have no chirp, 

clusters with mass that tends to increase with charge state have positive chirp, and ion 

populations that do not change mass significantly with increasing charge state have 

negative chirp. (Indeed, native-like ions with charge-independent mass distributions will 

typically have GT signals with frequency inversely proportional to m/z, i.e., a hyperbolic 

negative chirp).  

Gábor Transform can Separate Highly Sodiated Protein Signals from a High 

Baseline Associated with Salt Cluster Ions. Due to this ability to separate the different 

mass spectral and frequency signal components, GT was applied to the mass spectra 

shown in Figure 19. Figure 21 shows the GT spectrogram of the sodiated LFn using 

sampling parameters that were chosen to optimize subunit mass resolution while keeping 

the oversampling rate low (see methods).  The spectrogram contains prominent features, 

including three high-intensity vertical strips seen at low m/z, horizontal strips (bands) that 

are seen at every multiple of k = 0.5, and a low-intensity pattern that has a negative chirp 

(shown in the inset of Figure 20). The highly abundant vertical strips seen at m/z ~122, 

144, and 265 correspond to protonated Tris, sodiated Tris, and sodiated Tris dimers, 

respectively. The frequency sampling rate chosen for the spectrum in Figure 21 is too low 

to clearly resolve these frequencies, and the narrow width of the mass spectral signals for 

these ions results in the spreading out of their associated frequency information across the 

entire frequency domain. The horizontal bands corresponding to integer multiples of k = 
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0.5 are the same signals described previously for the Fourier spectrum in Figure 19A, 

which result from sodium chloride clusters.  

The low-intensity 

negatively chirped group of 

bands found between 

frequencies 0.5 to 1.5 (see 

inset, Figure 21) is signal 

from the LFn ion 

population. The frequency 

spacing of these bands 

corresponds to the mass of 

sodium minus the mass of a proton and arises from the adduction of different numbers of 

sodium ions to the protein. Using the charge states identified from the frequencies of 

these bands, the measured accurate mass of LFn was determined to be 32,900 ± 200 Da, 

which is consistent with the measured accurate mass (32,723 ± 1 Da) found using the 

compact native LFn ions observed upon nESI out of ammonium acetate solution (Figure 

C1), albeit slightly larger due to more extensive adduction of sodium ions. Importantly, 

while these ions are difficult to characterize using either the mass spectrum or Fourier 

spectrum alone, they are much more easily identified in the GT spectrogram, especially 

the near-native charge states (13-21+). A reconstructed spectrum of the isolated, sodiated 

LFn peaks, as well as a comparison of this reconstruction to the mass spectrum acquired 

from ammonium acetate solution (Figure C1), are shown in Figures C2 and C3, 

respectively. Interestingly, the GT analysis is possible due to sodium ion adduction, 

Figure 21. GT spectrogram of LFn sprayed from a 

NaCl/Tris buffer.  Inset shows the different charge states 

identified for the sodiated protein. Red traces represent 

the mass spectrum (top) and Fourier spectrum (right).  
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which is the origin of the observed frequencies in the frequency domain. Thus, while the 

adduction of cations is often thought of as a limitation in native mass spectrometry, here 

it is advantageous. This result suggests the enticing possibility of using GT to analyze 

native bimolecular samples electrosprayed from more common buffers in biochemistry, 

such as Tris/NaCl, HEPES/NaCl, and other buffers containing nonvolatile salts, 

especially for proteins or complexes that do not survive buffer exchange intact or adopt 

different structures in different buffers. (Shown in the Appendix C is a similar analysis 

for β-lactoglobulin in HEPES/NaCl buffer, including an ammonium acetate spectrum, 

Figure C4; HEPES/NaCl buffer spectra, Figure C5; and GT spectra, Figure C6). 

Gábor Transform can Separate Overlapping Higher Harmonic Frequencies. 

Shown in Figure 22 is the GT spectrogram of the PEG 10k polymer from Figure 19B 

(The inset in Figure 22 shows the data between m/z 1,150 and 3,200). The low-intensity, 

broad bands that extend across most of the inset exhibit little chirp and represent short-

chain polymer and polymer cluster contaminants with charge states of at least 3+. By 

contrast, the series of more intense bands with negative chirp (see Figure 22 inset) are 

readily assigned to charge states 4+ through 8+ for the fully-formed, long-chain polymer, 

which increases only slightly in mass with increasing charge state (mavg = 12,920 and 

13,610 Da for the 4+ and 8+ charge states, respectively). Signals representing the 1st 

through 4th harmonics for these long-chain polymer ions are observed, consistent with the 

relatively high resolution of individual peaks in the mass spectrum. 
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Ion signal from a GT spectrogram can be isolated and transferred back to the mass 

spectral domain by applying inverse GT to the isolated 2-dimensional data. This can be 

quite useful for polymers, as it allows one to characterize the average weight and 

polydispersity of the fully formed complex. A “zero-charge” spectrum using both the 

fundamental and higher-harmonic data for each charge state (Figure C7), as well as mass 

and stoichiometry statistics for all the charge states (Table S1), are reported in Appendix 

C using the GT of the PEG 10k spectrum. As in FT-based analysis,25 using all available 

harmonics results in greater accuracy of the reconstructed signal. Interestingly, while the 

manufacture reported average mass is 10,000 Da, Gábor analysis demonstrates that the 

average mass of the long-chain polymer ion population is about ~30% larger (13,200 ± 

Figure 22. GT spectrogram of polyethylene glycol 10 kDa ions.  Inset shows 

the different signal components for the long-chain polymer ions, which are labeled by 

color () for the specific charge state. Red traces represent the mass spectrum (top) 

and Fourier spectrum (right) of the original data set. Ordinal numbers in white indicate 

harmonics of long-chain polymer ion signal. 
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300 Da). Furthermore, the charge-state-specific mass spectra for odd charge states are 

shifted by ~22 Da from those of even charge states. This observation is attributed to the 

addition of an extra sodium on average for each additional charge state, which is very 

close to half the mass of the PEG subunit mass (44.02 Da). It should be noted that the 

mass reported here is the number-average mass of the long-chain polymer ions, isolated 

from the large population of short-chain polymer contaminants. Conversely, methods 

such as gel permeation chromatography, which is used by the manufacturer to estimate 

the average mass, or other methods, such as nuclear magnetic resonance (NMR) 

spectroscopy, may include smaller, short-chain polymer contaminants in the average 

mass measurement. These methods can result in a somewhat lower value than that 

reported here for the isolated long-chain polymers. For example, a 13C-NMR spectrum of 

the same PEG sample was acquired in deuterated dimethyl sulfoxide (Figure 2). 

Integration of the measured NMR peaks indicates a number-average polymer mass of 

~10.0 ± 0.4 kDa, likely due to the inclusion of short-chain polymer contaminants in the 

NMR signal. 

 

Conclusions 

Analytes exhibiting high degrees of polydispersity, such as the highly sodium 

adducted protein and long-chain polymer samples presented here, are often considered 

challenging to analyze by conventional ESI-MS analysis. This observation has led 

researchers to use methods that can reduce the complexity of the spectra. Popular 

methods include desalting the protein prior to analysis, such as the standard practice in 

native ESI-MS of buffer-exchanging protein samples into volatile salt buffers such as 
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ammonium acetate,105-109 or using smaller nESI emitter tips,116 as recently demonstrated 

by Williams and coworkers. Other helpful methods include deconvolution algorithms13, 

14, 25, 47 or ion mobility separation, which has been previously shown to be effective for 

polymer mass spectrometry analysis.5, 6, 17 However, many commercially available 

instruments, such as Orbitrap and Fourier-Transform Ion Cyclotron Resonance mass 

spectrometers, do not yet have ion mobility capabilities.   

By contrast, the method presented here is suitable for a wide variety of common 

MS instrumentation and can be used to identify mass, charge state, and subunit mass for 

challenging ions such as those described above, even within an intense background of 

interferent ions. Because adduction of multiple adduct ions or additional polymer 

subunits encodes a frequency into the mass spectrum, this frequency can be found by 

Fourier transformation and further localized within the mass spectrum and extracted from 

background signal using GT. The chirp of different mass populations in the GT 

spectrogram can also be readily used to distinguish signals from non-specific (e.g., salt) 

clusters and native-like ions. This presents the attractive possibility to use GT to 

characterize the mass spectra of many types of samples that have been heretofore 

intractable with existing analysis methods, for example, proteins that do not survive 

buffer exchange into a volatile salt buffer such as ammonium acetate. Future directions of 

this research include determining the influence of buffer choice on the conformation and 

stoichiometry of biomolecules and biomolecular complexes in native MS. 

Along with the previous two chapters, this chapter thus presents a variety of 

different approaches that can be used to probe the native stoichiometry of highly disperse 

molecules made up of a single subunit using native mass spectrometry.  However, a 
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lingering question may be can the Fourier analysis method be used if a heterogeneous 

mass population contains dispersity from two different subunits, for example, a Nanodisc 

assembled with two lipids.  An article85 published in 2016 investigated this question, and 

found that for Nanodiscs made up of two lipids, the subunit mass as measured by Fourier 

transformation was representative of the average amount of each lipid contained within 

the Nanodiscs.  While this was an enticing result, the explanation as to why this 

measurement was found was not discussed and thus it was assumed that the 

stoichiometry of a variety of different molecules with dispersity from two different 

subunits could be measured by this same method.  In the next chapter, I explore the 

theoretical reasoning as to why this result was found, using molecules with a variety of 

different dispersity profiles.    
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CHAPTER V 

THEORETICAL AND PRACTICAL APPROACHES TO PROBING MULTI-

SUBUNIT STOICHIOMETRY WITH MASS SPECTROMETRY USING FOURIER 

TRANSFORMATION 

 

Introduction 

Multi-subunit, polydisperse complexes, including many protein complexes, 

protein complexes with bound ligands, and membrane protein-lipid complexes are 

essential for the function and structure of all organisms.49, 117-120 Native electrospray 

ionization mass spectrometry (ESI-MS) is a powerful technique that can probe the native 

stoichiometry of these biomolecular complexes, because it allows many complexes to 

remain intact while being transferred into the gas phase, and the stoichiometry of the 

complex can be determined if the masses of the individual parts are known.2, 7, 13, 21, 29, 66, 

69, 70, 121 Developments in MS methodology and spectrum analysis tools have made it 

possible to characterize stoichiometry distributions even for polydisperse populations of 

complexes.1, 13, 14, 25, 122  However, in cases where the polydispersity is exceptionally high 

or different for different charge states, or includes polydispersity arising from two 

different subunits, the mass spectrum can be exceedingly difficult to analyze, as the ESI 

source produces overlapping charge state distributions forming a superposition of tens to 

hundreds of peaks.  

 Multiple alternative methods have been developed to facilitate the analysis of 

highly polydisperse samples, including Fourier Transform (FT)-based algorithms,4, 13, 25, 

121, 122 m/z-domain deconvolution algorithms,14, 47, 88 and macromolecular mass defect 
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analysis (akin to Kendrick mass defect analysis for polymers).80, 123, 124 Commonly used 

mass spectral-domain deconvolution algorithms typically require user optimization of the 

algorithm and input of accurate guesses at several parameters describing the mass 

distribution.  Macromolecular mass defect analysis can be used to characterize samples 

with multiple subunits with sufficiently high mass resolution. Conversely, FT-based mass 

deconvolution can often be achieved with little to no initial parameter guessing even 

when resolution is relatively low, as was recently shown for a sample of intact lipoprotein 

Nanodiscs sample containing over 300 lipids25 and for bacterial toxin complexes 

embedded in nearly intact detergent micelles.121  Furthermore, the Marty and co-workers 

recently demonstrated that FT methods can quantify the bulk subunit composition for 

Nanodisc ions containing two different lipid types.85  In that study, an iterative FT 

approach was used to determine an average subunit mass from the entire Nanodisc mass 

spectrum, and it was revealed that this measurement reflected the bulk lipid stoichiometry 

of the mixture used to synthesize the Nanodiscs. 

While it is perhaps intuitive that FT can be used to determine bulk composition of 

polydisperse ions containing two or more types of subunits, the appearance of the FT 

spectrum and the way it is to be interpreted depend strongly on the mathematical form of 

the composition distribution of the ions. That is, in general, one must know that an ion 

population follows a particular statistical description in order to interpret the 

corresponding FT spectrum correctly. Extreme examples that require very different 

interpretation include a mixture of two or more single-subunit populations and a 

population whose stoichiometry distribution can be described as a convolution of the 

stoichiometry distributions of the separate subunits. Here, we illustrate how such ion 
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distributions can be treated with FT deconvolution methods and demonstrate the 

theoretical utility and limitations of these methods.  Finally, we show how these methods 

can be used to distinguish between a mixed-subunit population and a mixture of two 

single-subunit populations, even with the same bulk subunit composition, shedding light 

on the mechanisms by which the ions are assembled. These results should be readily 

generalizable to many complex samples, from copolymers to protein-ligand complexes. 

 

Methods 

Sample Preparation. Nanodiscs containing palmitoyloleoylphosphatidylcholine 

(POPC), dipalmitoylphosphatidylcholine (DPPC) or both were prepared according to a 

method adapted from that of Sligar and co-workers.52, 55 Briefly, all lipids were purchased 

from Avanti Polar Lipids as 5 mg/mL solutions in chloroform, dried until opaque with 

dry nitrogen gas, and re-suspended to a final concentration of 50 mM in a pH 7.4 aqueous 

buffer containing 100 mM sodium cholate (Sigma-Aldrich), 20 mM Tris (Bio-Rad), 100 

mM sodium chloride, and 0.5 mM ethylenediaminetetraacetic acid (EDTA). Membrane 

scaffold protein MSP1D1 (Sigma-Aldrich) was reconstituted in pH 7.4 aqueous buffer 

(20 mM Tris, 100 mM sodium chloride, 0.5 mM EDTA, 0.01% sodium azide) to a 

concentration of ~200 μM. Lipid suspensions were mixed with MSP1D1 solutions and 

additional buffer to a final concentration 50 μM in MSP1D1 and appropriate lipid 

concentrations.  These concentrations were: 3.38 mM for pure POPC, 4.5 mM for pure 

DPPC, and 4.22 mM, 3.94 mM, and 3.66 mM for 75/25, 50/50, and 25/75 percent 

mixtures of DPPC/POPC respectively. The concentrations for mixtures were chosen 

based on a weighted measurement for pure lipid ratios (90-1 and 67.5-1 for DPPC and 
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POPC respectively to MSP1D1). The mixing of lipid stocks was performed after initial 

solubilization of pure lipid stocks by mixing samples in the appropriate ratios and 

sonicating the solution for an additional 30 minutes.  Samples were incubated for 1 hr at 

20 °C, room. Nanodisc self-assembly was initiated by cholate removal through both 

dialysis and the use of BioBeads SM-2 (Bio-Rad), where the BioBeads were placed in the 

dialysis buffer (20 mM Tris, 100 mM sodium chloride, and 0.5 mM EDTA) and 

constantly stirred through use of a stir bar. Samples were left overnight and the Nanodisc-

containing supernatants were removed from dialysis and buffer-exchanged into 200 mM 

ammonium acetate (Sigma-Aldrich) using Micro Bio-Spin 6 columns (Bio-Rad) 

immediately before MS analysis. 

 Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) 

(PEG-PPG-PEG) was purchased from Sigma-Aldrich and used without further 

purification.  The polymer was solubilized to a concentration of 0.5 mg/mL in ultra-pure 

(18.0 MΩ) water. Bovine ubiquitin (Ubq) was purchased from Sigma-Aldrich and used 

without further purification. Aqueous Ubq solutions were prepared containing 25 μM 

Ubq and 200 mM ammonium acetate. 

Mass Spectrometry. All mass spectrometry analysis was performed with a 

Synapt G2-Si ion mobility mass spectrometer (Waters Corp.) using a static 

nanoelectrospray ionization (nanoESI) source. NanoESI emitters were prepared by 

pulling borosilicate capillaries (ID 0.78 mm, Sutter Instruments) to a tip ID of ~1 μm 

using a Flaming-Brown P-97 micropipette puller (Sutter Instruments). For each sample, 

~3-5 μL of solution was loaded into an emitter, which was placed approximately 3-5 mm 

from the entrance of the mass spectrometer. A platinum wire inserted into the solution 
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was used to apply an electrical potential of 0.6-1.0 kV relative to instrumental ground to 

initiate electrospray.  For Nanodisc mass spectra, samples were sprayed from a 200 mM 

ammonium acetate solution. Trap collisional voltage was set to 100 V while transfer was 

set to 5 V. Both sample cone and source offset were both set to 25.  All spectra were 

averaged for 20 minutes.  For polymer mass spectra, samples were sprayed from 

ultrapure (18.0 MΩ) water. Trap collisional voltage was set to 10 V while transfer was 

set to 5 V. Both sample cone and source offset were both set to 25.  All spectra were 

averaged for 5 minutes. For Ubq spectrum, sample was sprayed from a 200 mM 

ammonium acetate solution. Trap collisional voltage was set to 10 V while transfer was 

set to 5 V. Both sample cone and source offset were both set to 25. 

Computational Work. All FT-based analysis was performed using the Prell 

group’s home-built program, iFAMS (interactive Fourier Analysis for Mass Spectra) v. 

5.2. 

 

Theory 

Mathematical Descriptions of Ion Populations Containing Two or More 

Types of Repeated Subunit. The presence of a second polydisperse subunit population 

can significantly complicate the analysis of a mass spectrum, and it should be emphasized 

that there are a very large number of ways in which two repeated subunits can be 

distributed. A variety of these different ways are shown in Figure 23 in the form of 

modeled mass spectra, along with their corresponding Fourier spectra. Perhaps the 

simplest way is the mass spectrum arising from two non-interacting, independent single-
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subunit ion populations, which is 

shown in the upper spectrum of 

Figure 23, and is described by 

stot(m/z) = s1(m/z) + s2(m/z) 

Stot(k) = S1(k) + S2(k) 

where Stot(k) = FT[stot(m/z)], S1(k) = 

FT[s1(m/z)], and S2(k) = FT[s2(m/z)]. 

That is, both the mass spectrum and 

its Fourier transform (due to the 

linearity of FT) can be simply 

described as a superposition of the 

individual single-subunit population. 

Such a population can arise simply 

from mixing together two purified 

samples that do not exchange 

subunits on the timescale of the 

experiment; we refer to this as a 

“Type I” population throughout the 

manuscript and note that it can be 

easily generalized for multiple subunits by similar reasoning. 

In sharp contrast, many other common types of heterogeneous ion populations can 

arise from samples in which two or more types of subunit are assembled simultaneously 

Figure 23. Mass spectra and the 

corresponding Fourier spectra for differing 

forms of multi-subunit polydispersity. Shown 

above are modeled spectra and the 

corresponding Fourier spectra for the different 

forms of multi-subunit polydispersity 

described in the theory section. Blue spectra in 

the Fourier spectra correspond to the Fourier 

transform of the multi-subunit spectra, while 

the other colored Fourier spectra (orange, 

green) correspond to relative single subunit 

populations. 
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into complexes, such as random copolymers or phospholipid Nanodiscs. While there are 

a very large number of ways in which this can occur, two particularly relevant extremes 

are 1) the stoichiometry distribution of the resulting ion population can be described as 

the convolution of the underlying stoichiometry distributions of the individual subunit 

types, which is shown in the middle spectrum of Figure 23, the total number of subunits 

in the ions is essentially fixed, such that the number of subunits of each type always add 

up to the same number, which is shown in the bottom spectrum of Figure 23. We refer to 

these as “Type IIa” and “IIb” populations throughout the manuscript. A common 

example of a Type IIa population is a linear block copolymer formed by growing the 

second polymer block off one end of a pre-existing population of the first block. In this 

case, for each charge state Z, 

stot(m/z) = s1(m/z) * s2(m/z) 

and therefore, 

Stot(k) = S1(k) • S2(k) 

That is, the FT of the total ion spectrum is the product of the underlying mass spectra for 

each subunit type with charge state Z. For more than two subunits, the total mass 

spectrum is again the convolution of the underlying subunit mass spectra, and the 

corresponding total FT spectrum is the product of the underlying FT spectra. 

Common examples of Type IIb populations are protein assemblies of fixed size 

with two or more substituents, such as hemoglobin tetramers, or isotopic distributions. 
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For each charge state and total ion size, the mass spectrum abundance follows a binomial 

distribution with respect to the average probability that an ion contains either subunit, i.e. 

𝑠𝑡𝑜𝑡(𝑚/𝑧) ∝ (
𝑛𝑡𝑜𝑡

𝑛𝐴
) 𝑝𝐴

𝑛𝐴(1 − 𝑝𝐴)𝑛𝑡𝑜𝑡−𝑛𝐴  

for each m/z corresponding to an ion containing nA of subunit A and nB (= ntot – nA) of 

subunit B with probabilities pA and pB (= 1 – pA), respectively. This distribution is 

equivalent to an ntot-fold autoconvolution of a distribution having just two peaks at m/z 

positions mA/Z and mB/Z with relatively abundances pA and pB, respectively. Thus the FT 

of s(m/z) is simply the ntot power of the FT of this simple two-peak spectrum. 

(Incidentally, this idea can be generalized quite easily to compute the isotope distribution 

of any molecule from the natural abundances of its constituent atoms according to their 

individual stoichiometries.) A priori, one would expect that Type IIa mass distributions 

should often be much broader and have denser peaks spacing than Type IIb mass 

distributions, but it can be difficult to distinguish the two from one another or from Type 

I mass distributions simply by visual inspection of the mass spectrum, especially with 

poor resolution. However, Fourier transform can readily distinguish between these two 

possibilities, as the frequency of a Type IIb molecule is simply the inverse of the mass of 

the heavier subunit minus the mass of the lighter subunit. 

𝑘 =  
1

𝑚𝐴 − 𝑚𝐵
 𝑤ℎ𝑒𝑟𝑒 𝑚𝐴 >  𝑚𝐵 
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Results and Discussion 

Rationale for Selected Examples. The question arises how, without having to 

perform the time-consuming analysis of all the peaks in the mass spectrum, one can 

determine whether a multi-subunit ion population belongs to Type I, Type IIa or IIb, or 

some other type, and what statistics (such as average subunit composition, average ion 

size, and polydispersity) one can determine straightforwardly from the mass spectrum, 

even with poor resolution. To demonstrate how Fourier transform can discern between 

the different types of multi-subunit populations and what can be learned from the 

analysis, the following examples are used: Two single-lipid Nanodiscs mixed together 

(Type I), a mixed-lipid Nanodisc (Type IIA), a block copolymer (Type IIA), and an 

isotope distribution (Type IIB). 

Type I Mixture of Single-Subunit Nanodiscs (Superposition). For samples that 

are a simple mixture of two non-interacting analytes (Type I mixtures), the distribution of 

peaks in the mass spectrum is a superposition of the underlying mass spectra belonging to 

each type of analyte. Due to the linearity of FT, the Fourier spectrum is therefore a 

superposition of the underlying Fourier spectra of each type of analyte, and the positions 

of peaks in the Fourier spectrum do not change for the mixture. An example of the mass 

spectrum of a Type I mixture and its corresponding Fourier spectrum, acquired under 

moderately activating conditions where ~20 lipids have been dissociated from the 

Nanodiscs,13 is shown in Figure 24. Two Nanodisc samples were separately prepared 

using different lipids (POPC and DPPC), and mixed in approximately equal molar ratios 

immediately before analysis with nESI-MS. While it is difficult to see that the mass 

spectrum is a roughly 1:1 superposition of the mass spectra of pure POPC and DPPC 
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Nanodiscs, acquired under identical 

instrumental conditions, due to the 

relatively low resolution, it is clear 

that the corresponding Fourier 

spectrum is such a superposition. 

Notably, such an analysis is possible 

even in the absence of good peak 

resolution in the Fourier spectrum 

due to the presence of multiple 

harmonics for each Nanodisc type. 

This is particularly evident for the 3rd 

harmonic frequency peaks, where the 

same characteristic frequencies for 

the pure Nanodisc Fourier spectra are 

seen in the mixture Fourier spectrum. 

That is, they do not occur at the abundance-weighted average frequency of the POPC and 

DPPC Nanodisc peaks, in sharp contrast to results for Nanodiscs prepared from a 1:1 

bulk mixture of POPC and DPPC lipids (see below) and to previous results for mixed-

lipid (i.e., Type IIa) Nanodiscs.85 

Type IIa Mixed-Lipid Nanodiscs (Convolution of Composition 

Distributions). Figure 25 shows the mass spectrum (A) and corresponding Fourier 

spectrum (B) for a Nanodisc sample prepared from a bulk mixture of POPC and DPPC in 

a molar ratio of 25 % to 75 % POPC:DPPC, which is expected to result in Nanodiscs that 

Figure 24. Mass spectra and corresponding 

Fourier spectra of single-lipid Nanodisc mixed 

together. Shown above are the mass spectra 

and corresponding Fourier spectra of 

Nanodiscs assembled with DPPC (A and B), 

POPC (C and D), and both samples mixed 

together (E and F) in equimolar ratios.  The 

result of mixing together the two single-lipid 

Nanodiscs is a super position of both the mass 

and Fourier spectra, which is seen in E and F. 
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contain a mixture of both lipids. A 

priori, because the assembly 

mechanism for Nanodiscs is not well 

understood, it is not clear whether 

this should result in Type IIa or IIb 

(or another type) of heterogeneity. 

Type IIa heterogeneity would result 

from a Nanodisc assembly 

mechanism than can be approximate 

by two independent Poisson 

processes, i.e., in which the two 

different types of lipids add to the 

growing Nanodisc via pseudo-first-

order kinetics with rate constants 

dependent on the bulk concentrations 

of the lipids. In this case, the distribution in the total number of lipids in the Nanodiscs 

should be a convolution of the (Poisson) distributions in the number of each lipid type 

contained in the Nanodisc. Because the convolution of two independent Poisson 

distributions is another Poisson distribution, and because the mean of a Poisson 

distributions is equal to its variance, this mechanism should result in Nanodiscs with 

approximately equal mean and variance in the total number of lipids. As has been 

previously observed in multiple studies of intact MSP1D1 Nanodiscs using native MS, 

the mean number of lipids is often ~120-180 with a standard deviation of ~10-15 (i.e., a 

Figure 25. Mass spectra and corresponding 

Fourier spectra for Nanodiscs assembled with 

two different lipids.  Shown above is the mass 

spectrum (A) and Fourier spectrum (B) of 

Nanodiscs assembled with 75% DPPC and 

25% POPC.  In contrast to the mixture of two 

single-lipid Nanodiscs mixed together, 

Nanodiscs assembled with 2 different lipids 

produces only a single series of peaks in the 

Fourier spectrum, whose spacing corresponds 

to the variance-weighted average subunit 

mass.  This result is consistent across multiple 

different ratios, as is seen in C. 
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variance of ~100-225),1, 13, 51 so this mechanism is consistent with these observations. 

Similarly, larger MSP1E3D1 Nanodiscs typically contain ~270-350 lipids with a variance 

of ~225-400,25 these numbers increasing for smaller lipids. A somewhat tedious but 

straightforward derivation shows that Fourier-domain peaks for such a Type IIa sample 

(formed by convolution of two monomodal subunit distributions, e.g., Poisson or 

Gaussian distributions, with variance-proportional means) will be located at the bulk 

concentration-weighted average frequency of the two subunit types. Emphatically, if the 

variances of the subunit distributions are not simply proportional to their means, the 

frequency of peaks in the Fourier spectrum share no simple relationship to their bulk 

concentrations. 

 Figure 25C demonstrates this principle, in that frequencies in the Fourier spectra 

for all of the bulk concentration ratios tested for POPC and DPPC do indeed fall very 

close to the bulk concentration-weighted average frequencies expected for a sample with 

the Type IIa heterogeneity described above, i.e., with variance-proportional means. This 

result is consistent with previous observations by Marty and coworkers for a variety of 

different lipid mixtures.85 We conjecture that this relationship therefore strongly supports 

a Nanodisc formation mechanism that proceeds by independent, pseudo-first-order 

addition of lipids, resulting in Nanodisc compositions that are largely kinetically trapped 

and not at equilibrium.  

Type IIb mixed-lipid Nanodiscs (hypothetical equilibrated Nanodiscs limited 

by bilayer size). Type IIb heterogeneity, in stark contrast, would be associated with a 

mechanism whereby fully formed Nanodiscs equilibrate with one another by exchange of 

lipids before MS analysis, constrained by the number of lipids that can be accommodated 
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into the fully formed Nanodiscs. In this case, the Nanodisc composition distribution 

would be expected to be nearly binomial, and the variance in the distributions of each 

lipids would be nearly identical independent of the bulk lipid concentration ratios. For 

example, if Nanodiscs are tightly constrained to contain ~140 total POPC or DPPC lipids, 

any lipid within a Nanodisc that is not a POPC must be DPPC, thus the POPC and DPPC 

distributions within the Nanodiscs must have equal variances independent of the bulk 

lipid composition. As described in the Theory section, such Type IIb heterogeneity 

results in a Fourier spectrum with a fundamental frequency equal to the inverse of the 

difference between the two masses (26 Da for POPC and DPPC) regardless of bulk 

composition. The sharp contrast between this result and the experimental results shown in 

Figure 25 lends further support to the conclusion that these Nanodiscs are not at 

equilibrium, but form by pseudo-first-order kinetics and have a kinetically trapped 

composition distribution. Together with the Type I mixture results described above, these 

results indicate that the FT method can straightforwardly distinguish between Type I and 

Type IIa heterogeneity, even in cases where the bulk average subunit composition is the 

same.  

Type IIa triblock copolymer (convolution of composition distributions). 

Similar reasoning described above for Type IIa mixed-lipid Nanodiscs can be used to 

understand the mass spectra and corresponding Fourier spectra of many block 

copolymers formed by growing each successive block off pre-existing, polydisperse 

blocks. In many realistic cases, the exact size of each block will be uncorrelated with the 

exact size of the other component blocks, resulting in an overall copolymer length 

distribution that is the convolution of the block length distributions of each monomer 



 

100 

 

type. Again, peaks in the Fourier 

spectrum should appear at the 

variance-weighted average of the 

individual monomer frequencies. A 

nESI mass spectrum for a 

PEG:PPG:PEG linear triblock 

copolymer sample is shown in Figure 

26. Intriguingly, the first visible peak 

at positive frequency in the 

corresponding Fourier spectrum 

occurs near the respective 3rd and 4th 

harmonic of the 3+ charge state 

corresponding to PEG and PPG, 

respectively. The reason that lower-

frequency peaks, closer to the PEG 

and PPG fundamental frequencies, 

are not observed is that the polydispersity of the constituent PEG and PPG blocks is so 

large that the corresponding Fourier-domain peaks are too narrow to overlap for any 

lower-order harmonics and happen to nearly coincide for these harmonics (and multiples 

thereof). From the observed Fourier-domain frequencies, it can be concluded that the 

ratio of variances for the PEG and PPG monomer distributions is ~5:1. As described 

above, this value does not directly report the average composition of the triblock 

copolymer. This value is remarkably close to the manufacturer-reported composition of 

Figure 26. Deconvolved mass spectrum of 

poly(ethylene glycol)-block-poly(propylene 

glycol)-block-poly(ethylene glycol) (PEG-

PPG-PEG, 8.4 kDa average molecular 

weight).  The mass spectrum and 

reconstructed charge state specific 

distributions are shown in A. Colors 

correspond to the identified charge state peaks 

in the inset of the Fourier spectrum shown in 

B.  The deconvolved zero-charge spectrum is 

shown in C, with the color of the trace 

corresponding to the appropriate charge states, 

and the black trace showing the summation of 

all the charge states.  Shown in the D is the 

Gábor spectrogram, which is used to 

reconstruct the charge state specific envelope 

functions shown in A. 
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3.8:1 PEG:PPG based on 1H-NMR analysis. While a number of factors likely contribute 

to this discrepancy, purification of the PPG core before growth of the PEG blocks could  

 

Table 4. Total polydispersity characterization of Poly(ethylene glycol)-block-

poly(propylene glycol)-block-poly(ethylene glycol) 8.4 kDa using the Fourier transform 

method 

 

be responsible for reducing the variance:mean ratio of the PPG block length 

distribution relative to that of the PEG blocks. This would result in a slightly higher 

PEG:PPG ratio being determined using the FT method with the mass spectrum based on 

the assumption of variance-proportional means. The results of this analysis is 

summarized in Table 2.  

Type IIb isotope distributions (multinomial abundance distributions). As is 

well known, for an ion with chemical formula AnABnBCnC…, where A, B, C, … are 

elements and nA, nB, nC, … are the stoichiometries of each element (assumed to follow 

their natural or other well-defined isotope abundances), the relative abundance of the 

isotopomer of the ion with total mass 

adjusted subunit 

mass of PEG 

(Da) 

adjusted subunit 

mass of PPG 

(Da)  

avg. subunit mass 

measurement 

(Da) 

% variance 

PEG 

% variance 

PPG 

14.675 14.510 14.646 82.38 17.62 

     

mean of total 

population (Da) 

mean of PEG 

population (Da) 

mean of PPG 

population (Da) 

  

8370 ± 970 6620 ± 860 1740 ± 400   
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𝑚𝑡𝑜𝑡 = (𝑛𝐴𝑖𝑚𝐴𝑖 + 𝑛𝐴𝑗𝑚𝐴𝑗 + 𝑛𝐴𝑘𝑚𝐴𝑘 + ⋯ ) + (𝑛𝐵𝑖𝑚𝐵𝑖 + 𝑛𝐵𝑗𝑚𝐵𝑗 + 𝑛𝐵𝑘𝑚𝐵𝑘 + ⋯ )

+ (𝑛𝐶𝑖𝑚𝐶𝑖 + 𝑛𝐶𝑗𝑚𝐶𝑗 + 𝑛𝐶𝑘𝑚𝐶𝑘 + ⋯ ) + ⋯ 

where nAi and mAi are the respective stoichiometry and mass of the ith isotope of element 

A, etc., 

is 

𝐴 = (
𝑛𝐴

𝑛𝐴𝑖 , 𝑛𝐴𝑗 , 𝑛𝐴𝑘 …
) 𝑝𝐴𝑖

𝑛𝐴𝑖𝑝𝐴𝑗
𝑛𝐴𝑗

𝑝𝐴𝑘
𝑛𝐴𝑘 … (

𝑛𝐵

𝑛𝐵𝑖 , 𝑛𝐵𝑗 , 𝑛𝐵𝑘 …
) 𝑝𝐵𝑖

𝑛𝐵𝑖𝑝𝐵𝑗
𝑛𝐵𝑗

𝑝𝐵𝑘
𝑛𝐵𝑘 … (

𝑛𝐶

𝑛𝐶𝑖 , 𝑛𝐶𝑗 , 𝑛𝐶𝑘 …
) 𝑝𝐶𝑖

𝑛𝐶𝑖𝑝𝐶𝑗
𝑛𝐶𝑗

𝑝𝐶𝑘
𝑛𝐶𝑘 … 

where the terms in brackets are multinomial coefficients, and 𝑝𝐴𝑖 is the relative bulk 

abundance of the ith isotope of element A, etc. The FT spectrum of this isotope 

distribution is simply the product of nA of the FT of element A’s bulk isotope abundance 

spectrum times nB of that for element B, times nC of that for element C, etc. Because the 

total number of atoms in the ion is fixed, this is in fact an example of Type IIb 

heterogeneity for the ion in question. Figure 27 shows an isotope-resolved experimental 

mass spectrum of (ubiquitin + 6H)6+ as well as its corresponding predicted mass spectrum 

from the Fourier analysis. The Fourier spectrum is predicted in this manner using 

ubiquitin’s chemical formula, C378H629N105O118S1, and natural bulk isotope abundances. 
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The Fourier spectrum of even this relatively large 

ion can be computed extremely quickly (< 1 

second) from pre-computed Fourier spectra for its 

constituent atoms (C, N, O, S, and H), and the 

Fourier spectrum can be inverted using Fast 

Fourier Transform to yield the predicted mass 

spectrum for the ion. Especially for proteins and 

other large ions, this can be extremely 

advantageous over conventional mass spectral-

domain methods relying on convolution, because 

pointwise products are much faster to compute 

than convolutions. The resolution of the predicted 

mass spectrum is limited only by the maximum 

frequency included in the pre-computed Fourier 

spectra for the constituent atoms, thus it trivial to 

predict mass spectra in this manner to arbitrary 

resolution (including isotope fine structure) at 

minimal computational expense.  

 

Conclusions 

 Analytes exhibiting dispersity from two different subunits can be considerably 

challenging to study by conventional mass spectrometry analysis methods.  This 

Figure 27. Estimated ubiquitin 

isotope distribution.  Shown 

above is an estimated isotope 

distribution (A), a measured 

isotope distribution (B) and the 

two spectra overlayed (C). 
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challenge arises not only from the overlap of 10’s to 100’s of peaks in the mass spectrum, 

which is a common difficulty seen with dispersity from a single subunit, but also from the 

variety of different statistical scenarios for which a multi-subunit complex can form.  

Recently, a publication introduced a novel method based on a Fourier transformation that 

was able to probe the lipid stoichiometry for Nanodiscs assembled with two different 

lipids.85  While this is an enticing result for the challenge presented here, the theoretical 

reasoning behind this method was not present in the manuscript and had not been 

investigated. Due to the variety of different ways a multi-subunit complex can assemble, 

we concluded that without the theoretical background, it was difficult to say with 

certainty that the FT method could be applied to a variety of different analytes. Therefore, 

the theory behind the method was first explored in detail here.   

 By treating the mass spectrum of a mixed-lipid Nanodisc as the convolution of 

two underlying lipid stoichiometry distributions, the FT spectrum is shown here to simply 

be the product (or the overlap) of the FT of the underlying lipid distributions.  

Furthermore, since the variance of the underlying lipid distributions determines the shape 

of the underlying peaks in the FT spectra, the centroid of the overlapped peak is 

determined by the variances of the underlying lipid distributions. It is therefore shown 

that the variance of these distributions determines the average subunit mass, not the mean 

which is postulated in the original publication.  Furthermore, it is demonstrated that a 

necessary condition to use the average subunit mass to measure the stoichiometric 

amounts of each subunit is a linear dependence between the mean and variance of the two 

convolved subunit populations, a condition that is found to be true for mixed-lipid 

Nanodiscs.  Further insight into Nanodisc formation can also be found through the FT 
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analysis of mixed single-lipid Nanodiscs, where Nanodiscs are found to not be at 

equilibrium resulting from no exchange of lipids, and combined with results from the 

mixed-lipid Nanodisc analysis, formed by pseudo-first-order kinetics and have a 

kinetically trapped composition distribution. Future directions of this research can 

include investigating other molecules exhibiting non-equilibrium behavior, and 

investigating lipid preferences for mixed-lipid Nanodiscs.   
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OUTLOOK 

The research presented in this dissertation is culmination of a variety of different 

studies dedicated to the development of a data analysis method for measuring the average 

mass and dispersity of heterogeneous mass populations.  Native mass spectrometry was 

used as the primary analytical tool for measuring these different properties, but it was 

often infeasible to analyze the data by conventional mass spectrometry methods due to 

the time consuming process of uniquely identifying each mass peak. Furthermore, while 

programs were already developed that could deconvolve complex mass spectra, a 

common theme that was found amongst the programs was that prior knowledge of the 

sample and/or mass spectrum was needed in order for these methods to be successful.  As 

the analytes measured by native mass spectrometry become larger and more complex, 

this information will undoubtedly become difficult to know, and thus it seemed that a 

method was needed that did not require assumptions about the data set.  Examples of 

analytes like this are shown throughout this dissertation.   

The Fourier transformation method presented here is different way to think about 

mass spectral data analysis, in that instead of iteratively fitting the measured data to 

modeled data sets, the data is instead plotted in a different space through linear 

transformation.  This allows the Fourier method to make no assumptions about the mass 

spectrum, as the analysis of the Fourier spectrum is simply an analysis of the original 

data, just plotted in a different way.  In Chapter 2, it was demonstrated that the subunit 

mass, charge states, and charge-state-specific mass distributions could be determined for 

a variety of different molecules using the Fourier transformation method. While this first 

result was very useful and perhaps was most pertinent for the mass spectral analysis of 
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heterogeneous mass populations, there is much more information that can be learned 

from a Fourier spectrum. Thus in Chapter 3, a thorough discussion was presented about 

all of this additional information, including what can be learned from the common 

observation of higher harmonic frequencies.  When this method was introduced for 

polymer mass spectra in 2004, higher harmonic frequencies were considered a major 

limitation for uniquely identifying charge state information, and while the information 

discussed in Chapter 3 can be useful to know, the fact remained that higher harmonic 

overlap could prevent unique identification of charge states in the Fourier spectrum.  

Therefore, in Chapter 4, a newer short-time Fourier transformation method was presented 

that can overcome this limitation.  Furthermore, this method provided a means to analyze 

biomolecular ions from more atypical biochemistry buffers, in contrast to the accepted 

method of using an ammonium acetate buffer.  Finally, this method was explored for ions 

with dispersity from two different subunits by another research group in 2016, and while 

the result they found was enticing, the theoretical explanation for the result was not 

explored in great detail. The theoretical ability of Fourier transform to analyze 

heterogeneous mass populations with dispersity from two different subunits was thus 

explored in Chapter 5, including how Fourier transform could be used to decipher 

between to single subunit populations in a mass spectrum versus one population with two 

different subunits. Future directions of this research include uses of the phase information 

in the Fourier transform spectrum, which is not discussed in this dissertation, as well as 

determining the influence of buffer choice on the conformation and stoichiometry of 

biomolecular complexes when using native mass spectrometry, and development of the 

method as quantitation tool for biotherapeutics, such as monoclonal antibodies.   
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APPENDIX A 

SUPPLEMENTAL INFORMATION FOR CHAPTER II 

 

Computational Implementation of Analysis Method 

 All FFT analysis was performed using Mathematica 10.1 (Wolfram, Inc.), 

although many data analysis tools can be used to produce essentially identical results. 

Raw time-of-flight mass spectra acquired for these experiments consist of data points that 

are not equally spaced in m/z. Over the m/z region of interest, data were interpolated 

using a cubic interpolation to produce a data set that is equally spaced (“equispaced”) in 

m/z and contains the same number of points as the raw mass spectrum. (Non-equispaced 

FFT algorithms were tested using raw mass spectral data for comparison but required 

significantly more computational time and produced essentially identical results.) The 

resulting equispaced mass spectrum was transformed with Fast Fourier Transform as 

Implemented in Mathematica 10.1. For polymer and Nanodisc experiments, centroids of 

k-domain peaks were then found by first computing the absolute value of the Fourier 

spectrum, and identifying k-domain peaks by eye, and a trial value for kf was computed as 

the difference in the k-values for the two most intense adjacent peaks in the spectrum. 

The absolute-signal-weighted average value of k about a peak of interest within a window 

centered about the peak maximum and having width kf was then computed. For all 

samples other than sodiated and potassiated Ubq, an updated value for kf was 

subsequently determined from the (unweighted) average of the differences between 

adjacent peak centroids. A final value for kf was computed by finding the absolute-signal-
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weighted average value of k within a window of width kf centered about each integer 

multiple of kf. 

For Nanodisc experiments, the data within each of these windows were returned 

to the mass spectral domain by Inverse Fast Fourier Transform, as implemented in 

Mathematica 10.1. In some cases, “ringing” was observed in the charge-state-specific 

mass spectra due to the sinc-function-shaped IFFT of the rectangular window. The 

charge-state-specific average mass was computed as the charge state (z) times the 

abundance-weighted average m/z value of the charge-state-specific mass spectrum with 

abundance at greater than the maximal depth of modulation of the ringing (typically 

~1/10 the maximum abundance of the raw mass spectrum). The abundance-weighted 

standard deviation in the mass was computed for the same data subset. These values were 

converted to the average and standard deviation in the number of lipids contained in the 

Nanodiscs by assuming a mass mMSP of 24661.9 u for MSP1D1 and a base mass of 

(2*mMSP + z*mH + n*18), where mH is the mass of a proton, and n is the number of bound 

adducts of nominal mass 18 u (water or ammonium cation). This assumption has been 

previously used in native mass spectrometry studies of Nanodiscs,1, 51 and I typically 

found best agreement between our raw mass spectra for Nanodiscs with n ≈ 7, similar to 

previous results from literature.51, 125 Although this assumption does not explicitly 

account for other possible adductions, such as sodium cations, the total mass of these 

adducts is not expected to affect our characterization of the distribution in the number of 

lipids in the Nanodiscs.  

For sodiated and potassiated Ubq, the 2-dimensional version of the FFT algorithm 

was used instead due to the strong overlap between peaks belonging to the Fourier 
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spectrum comb for each charge state. Briefly, the interpolated, equispaced mass spectra 

were pre-multiplied by a 50 m/z-wide (= 2σ) Gaussian window, centered at one of 31 

equally-spaced m/z values spanning the entire mass spectral range. The resulting 

windowed mass spectra were Fourier transformed, and 2-dimensional plots were 

prepared with the center m/z value for the Gaussian window along one axis and k along 

the other. Centroids for the clearly visible peaks in the resulting 2-dimensional plots were 

computed by finding the absolute Fourier signal-weighted average value of k for the three 

m/z values of the Gaussian window center where maximum total absolute Fourier signal 

was observed for the k-domain peak of interest.  
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Figure A1. Mass spectrum of DPPC Nanodisc ions (left) and corresponding FFT 

spectrum (right) acquired under “mild” collisional activation conditions. The high-

intensity peak near zero frequency in the FFT spectrum has been truncated for clarity.  
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Figure A2.  Mass spectra of POPC Nanodisc ions (left) and corresponding FFT spectra 

(right) acquired under “mild” (top) and “strong” (bottom) collisional activation 

conditions. The high-intensity peak near zero frequency in the FFT spectra has been 

truncated for clarity. 
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Figure A3.  Mass spectra of 18:0-SM Nanodisc ions (left) and corresponding FFT 

spectra (right) acquired under “minimal” (top) and “strong” (bottom) collisional 

activation conditions. The high-intensity peak near zero frequency in the FFT spectra has 

been truncated for clarity. 
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Figure A4. Mass spectra of DMPC Nanodisc ions (left) and corresponding FFT spectra 

(right) acquired under “mild” (top) and “strong” (bottom) collisional activation 

conditions. The high-intensity peak near zero frequency in the FFT spectra has been 

truncated for clarity. 
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APPENDIX B 

SUPPLEMENTAL INFORMATION FOR CHAPTER III 

 

Characterizing peak width and unresolved adductions in mass spectrum for 

non-Gaussian peak shapes. In the case that the mass spectral peak shape is unknown 

and not Gaussian, for example, when there is a long, asymmetric “tail” on each peak in 

the mass spectrum due to unresolved adductions of small ions or solvent molecules, the 

amplitude of the zero-frequency peak in the Fourier spectrum is not uniquely determine 

by the value of P(k) at the harmonic peaks. This can result in gross errors in estimating 

mass spectral peak width when the zero-frequency amplitude for a particular charge state 

is not known. This scenario is demonstrated for a single charge state in Supplementary 

Figures S7C and S7D, where a sawtooth wave function is used as a model of a highly 

asymmetric peak shape. Because the zero-frequency component is in general needed to 

uniquely reconstruct asymmetric peaks, the Gaussian fit to P(k) is unsurprisingly poor. 

This example illustrates the potential danger of determining peak shape characteristics 

when the mass spectral peaks have highly asymmetric or unknown shapes. 
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Figure B1. Comparison of DMPC-MSP1D1 Nanodisc mass spectrum (black traces) 

acquired using QTOF mass spectrometer and processed (blue traces) using different types 

of filtering/smoothing algorithms (A-D). Panel E shows the FT representation of 

Savitzky-Golay and moving-average filter functions over the entire Fourier domain. 

Panel F shows the FT representation of Savitzky-Golay and moving-average filters 

(colored lines) and Fourier-filtered data (highlighted in green) for the Nanodisc mass 

spectrum. The Savitzky-Golay and moving-average filters have the effect of damping 

very high-frequency noise and slightly altering relative Fourier-domain peak amplitudes. 

By contrast, the Fourier filter removes all low-frequency noise between each set of 

harmonics and all high-frequency noise beyond the highest-harmonic data used without 

altering the relative amplitudes of the preserved data. 
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Figure B2. Model mass spectral envelopes (A, C, E, G, I, K, M, O, Q; black traces) 

and corresponding Fourier spectra (B, D, F, H, J, L, N, P, R; left peak of each peak 

pair), illustrating effects of overlap of a Fourier-domain peak with an adjacent peak 

and choice of window width used in IFT. Peaks in Fourier domain have fixed standard 

deviation (σ), but spacing between Fourier-domain peaks varies from left to right as 

indicated. Width of Fourier-domain window (blue boxes) used for IFT to reconstruct 

mass spectral envelopes (red traces) varies as indicated along vertical axis, and blue 

trace in mass spectra indicate the IFT of the rectangular window function itself. 

Faithfulness of reconstructed mass spectral envelope generally increases from bottom 

left to top right, as the spacing between Fourier-domain peaks and the width of the 

window used for IFT increases. Windowing and overlap artifacts are less than 5% of 

the mass spectral peak abundance when the spacing between Fourier-domain peaks is 

at least 3 times their width (measured as standard deviation, σ). 
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Figure B3. Mass spectra (left) and corresponding Fourier spectra (right) for DMPC-

MSP1D1 Nanodiscs acquired using QTOF mass spectrometer, showing reconstructed 

charge-state-specific mass spectral envelopes found using Fourier-domain (A) 

fundamentals, (B) second harmonics, and (C) third harmonics. Insets show detail for 

Fourier-domain peaks, with reconstructed mass spectral envelopes corresponding to 

charge states labeled with the same color 
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Figure B4. Mass spectra (left) and corresponding Fourier spectra (right) for DMPC-

MSP1D1 Nanodiscs acquired using FT-ICR mass spectrometer, showing reconstructed 

charge-state-specific mass spectral envelopes found using Fourier-domain (A) 

fundamentals, (B) second harmonics, and (C) third harmonics. Insets show detail for 

Fourier-domain peaks, with reconstructed mass spectral envelopes corresponding to 

charge states labeled with the same color  
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Figure B5. Reconstructed zero-charge mass spectrum of DMPC-MSP1D1 Nanodiscs 

acquired on an FT-ICR mass spectrometer using data from Fourier-domain fundamental 

peaks for individual charge states (colored traces) and for entire ion population (black 

trace). Higher harmonics were not used for full ion population reconstruction because 

charge states other than 16-18+ had poor 2nd and 3rd harmonic signal-to-noise in the 

Fourier spectrum. Very broad mass distributions are attributed in part to artifacts from 

overlapped fundamental peaks (see Supplementary Figure S4; Supplementary Figure 

S10C and S10F contain a zero-charge mass spectrum reconstruction using the 

fundamentals, 2nd, and 3rd harmonic peaks for the 16-18+ charge states) 
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Figure B6. Reconstructed zero-charge mass spectrum of DMPC-MSP1D1 Nanodiscs 

acquired on an Orbitrap mass spectrometer using data from Fourier-domain 2nd harmonic 

peaks for individual charge states (colored traces) and for entire ion population (black 

trace). Narrower mass distribution than that shown in Supplementary Figure S5 is 

attributed to greater resolution of 2nd harmonic peaks for these data 
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Figure B7. Model mass spectrum (left) for a single charge state of a population of assembly 

ions that varies in the number of subunits, and the corresponding Fourier spectrum (right) for 

different peak shapes: (A) overlapping Gaussian peaks with a large curved baseline, (B) 

baseline-resolved Gaussian peaks, (C) overlapping sawtooth-shaped peaks with a large 

curved baseline, and (D) baseline-resolved sawtooth-shaped peaks.  Insets shows close-up 

view of mass spectra. Gaussian fits to Fourier-domain decay functions, P(k), shown in red, 

are better for Gaussian-shaped mass spectral peaks than for poorly resolved sawtooth-shaped 

mass spectral peaks 
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Figure B8. Simulated mass spectrum with 20:1 signal-to-white-noise (A, black trace) for 

DPPC-MSP1E3D1 Nanodiscs with charge states 18-24+ and ~300-340 lipids, with the 

average number of lipids increasing by 10 with each increasing charge state, similar to 

experimental data. The blue trace in panel A shows the Fourier-filtered spectrum 

reconstructed using the Fourier-Transformed data from panel B (inset: fundamental 

peaks). Panel C shows the reconstructed zero-charge mass spectral envelopes for each 

charge state (colors of traces correspond to the charge states shown in panel B) the total 

zero-charge mass spectral envelope (black trace), and the exact zero-charge mass 

spectrum (orange trace). The reconstructions are remarkably accurate despite the low 

signal-to-noise of the input mass spectrum. Panels D, E, and F show deconvolution 

results from UniDec with a wide input charge state range (10-30+). Panels G, H, and I 

show deconvolution results from UniDec with a narrow input charge state range (17-25+) 

based on charge states identified using the FT method. Panels J, K, and L show 

deconvolution results from UniDec using Fourier-filtered data from FT analysis and input 

charge state range 17-25+. Dramatic improvement of both the charge-state-specific and 

zero-charge mass spectra is observed when using output from FT analysis in UniDec.  
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Figure B9. Charge vs. m/z (left), charge vs. mass (middle) and total zero-charge mass 

spectrum (right) for mass spectrum of DMPC-MSP1D1 Nanodiscs acquired using 

Orbitrap mass spectrometer and deconvolved using UniDec. A, B, and C result from 

using “naive” input parameters for subunit mass, charge state range, peak width, and 

total mass, whereas D, E, and F result from using input parameter values obtained 

using the FT-based method described in the text. Smooth black trace in C and F 

represents zero-charge mass spectrum reconstructed from Fourier spectrum 2nd 

harmonics using FT analysis. 
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Figure B10. Charge vs. m/z (left), charge vs. mass (middle) and total zero-charge 

mass spectrum (right) for mass spectrum of DMPC-MSP1D1 Nanodiscs acquired 

using FT-ICR mass spectrometer and deconvolved using UniDec. A, B, and C result 

from using “naive” input parameters for subunit mass, charge state range, peak width, 

and total mass, whereas D, E, and F result from using input parameter values obtained 

using the FT-based method described in the text. Smooth black (resp., blue) trace in C 

and F represents zero-charge mass spectrum reconstructed from Fourier spectrum 

fundamentals (resp., fundamentals, 2nd, and 3rd harmonics for 16-18+ charge states) 

using FT analysis. (Charge states other than 16-18+ had poor 2nd and 3rd harmonic 

signal-to-noise in the Fourier spectrum.) 
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Table B1. Lipid Mass, Charge States, and Lipid Stoichiometry Statistics Determined for 

Native-Like Nanodisc Ions Using FT-Based Approach.  

 

Analyte (Instrument) Harmonic Subunit mass (Da.) z Lipid 

Stoichiometry 

DPPC-MSP1E3D1 Fun 733. ± 2. 18 273 ± 36† 

(QTOF)   19 290 ± 32† 

   20 304 ± 28† 

   21 316 ± 29† 

   22 325 ± 30†  

   23 340 ± 41† 

   24 353 ± 47 

     

 2nd  733.0 ± 0.8 18 275 ± 41* 

   19 294 ± 29 

   20 305 ± 26 

   21 315 ± 26 

   22 327 ± 33 

   23 352 ± 46* 

   24 383 ± 56* 

     

 Average N/A 18 274 ± 39 

   19 292 ± 31 

   20 304 ± 27 

   21 316 ± 28 

   22 326 ± 32 

   23 346 ± 45 

   24 372 ± 55 

     

DMPC-MSP1D1 Fun 678.5 ±  3.6 16 125 ± 15† 

(Orbitrap)   17 129 ± 24† 

   18 137 ± 19† 

   19 143 ± 22† 

   20 149 ± 20† 

   21 158 ± 22† 

   22 166 ± 23 

   23 179 ± 23 

     

 2nd 678.2 ±  1.0 16 128 ± 17 

   17 136 ± 14 

   18 143 ± 12 
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   19 146 ± 14 

   20 150 ± 16 

   21 154 ± 20 

   22 162 ± 25 

   23 178 ± 28 

     

 3rd 677.3 ± 1.2 16 127 ± 17 

   17 137 ± 12 

   18 141 ± 12 

   19 145 ± 12 

   20 150 ± 15 

 

* indicates Fourier-domain peaks with signal-to-noise less than 10:1 

† indicates Fourier-domain peaks spaced by less than 1.5 times the sum of their apparent 

standard deviations 

 

 



 

128 

 

APPENDIX C 

SUPPLEMENTAL INFORMATION FOR CHAPTER IV 

 

 
Figure C1. Mass spectrum of LFn electrosprayed from 200 mM ammonium acetate 

buffer. Insets show two different regions in the charge-state distribution for this protein, 

including unfolded states (blue, 22-31+) and compact native charge states (orange, 9-

12+).  
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Figure C2. Inverse Gábor transform spectrum of LFn electrosprayed from buffer 

containing 20 mM Tris, 100 mM NaCl, and 0.5 mM EDTA. The inverse Gábor transform 

spectra (blue) from Figure 21 (Chapter 4) is overlaid with the original mass spectrum 

(black) from Figure 19 (Chapter 4). The red star indicates where one would expect the 

22+ charge state to be. Because signal from this charge state is overlapped with the k = 

1.0 frequency band in the Gábor spectrum (see Figure 21, Chapter 4) signal for this 

charge state of LFn is not resolved.  
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Figure C3. Comparison of the mass spectra of LFn ions electrosprayed from ammonium 

acetate and NaCl/Tris. (A) The ammonium acetate spectrum in Figure S1 (black) is 

overlaid with the inverse Gábor transformed (IGT) data from the NaCl/Tris spectrum in 

Figure S2 (blue). Different populations of charge states, including those corresponding to 

unfolded states (green), near-native states (yellow), and compact native states (red) are 

identified by color. (B-D) A comparison of the mass spectra from Tris/NaCl (found from 

the IGT data) and ammonium acetate solutions is shown for the different regions. Dotted 

lines in B and C imply line up with the centroid of the charge state peak in the inverse 

Gábor transform spectrum. Dotted lines in D line up with the centroid of the charge state 

peak for the ammonium acetate spectrum.   
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Figure C4. Mass spectrum of β-lactoglobulin electrosprayed from 200 mM ammonium 

acetate buffer. The color of the charge states indicates whether a peak is a monomer 

(green) or a dimer (blue). Multiple peaks at each charge state are due to different 

isoforms of the protein. 
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Figure C5. Mass spectrum of β-lactoglobulin electrosprayed from a 20 mM HEPES, 100 

mM NaCl, and 0.5 mM EDTA. Trap collisional activation increases going downward, 

and is set to 50 (A), 70 (B), and 100 (C).  
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Figure C6. Gábor transformation of the β-lactoglobulin mass spectra in Figure S5, 

electrosprayed from a 20 mM HEPES, 100 mM NaCl, and 0.5 mM EDTA. The letter 

identifier corresponds to the same letter identifier for the spectra in Figure S5. Signals 

from the 6+ and 7+ native charge states are readily identifiable using GT analysis, even 

though their signals are strongly dominated by salt cluster signal in the mass spectra.  
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Figure C7. Zero-charge spectrum for the PEG 10k polymer. Zero-charge spectrum 

reconstructions are prepared from the isolated charge-state-specific mass spectra found 

by inverse Gabor transformation of data in the GT spectrogram. Individual charge state 

components are labeled by color, while the total mass spectrum is shown in black. 
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Table C1. Subunit statistics for the long-chain Polyethylene Glycol 10k Ion Population  

 

 

charge state (z) polymer mass mean 

and standard 

deviation 

equivalent number of 

ethylene glycol monomers  

“zero charge” 13240 ± 760 300 ± 17 

4+ 12920 ± 780 293 ± 18 

5+ 13100 ± 770 297 ± 17 

6+ 13160 ± 740 299 ± 17 

7+ 13410 ± 730 304 ± 17 

8+ 13610 ± 690 309 ± 16 
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