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ABSTRACT 

Mating is vital for sexually reproducing species, yet the ideal mating strategy for males 
and females can differ. The ensuing conflict between the sexes – namely, sexual conflict 
– results in a decrease in population level fitness. The degree of sexual conflict can be 
affected by the behavior, physiology, and life history of a population. Previous studies 
in the nematode Caenorhabditis elegans have shown that mating causes lifespan to 
decrease in pseudo-females and hermaphrodites, which was interpreted as evidence of 
sexual conflict. However, it is still an open question whether variations in mating 
condition and strain type can affect the degree of sexual conflict and lifespan decrease. 
Here, I investigate whether lifespan is affected by mating in conditions other than sex-
skewed individual mating scenarios used in previous work. I conducted population-based 
mating assays in two different strains of C. elegans using both natural and male-skewed 
sex ratios. Counter to expectations, I found no effect of mating on lifespan in a wild 
isolate of C. elegans, while virgins from a canonical laboratory strain had a decreased 
lifespan relative to their counterparts mated in groups. My data offers a counterpoint to 
the literature, which agrees that mating universally decreases the lifespan of C. elegans 
pseudo-females and hermaphrodites. These results highlight the flexibility of 
reproductive costs and the importance of life histories in experimental populations. 

 

1. INTRODUCTION  

Males and females of the same species can have different optimal mating strategies. For 
example, in fruit flies, males produce maximum offspring at high re-mating rates, limited by the 
number of females with which they can mate (Bateman, 1948; Fowler and Partridge, 1989). 
Females produce maximum offspring at intermediate mating rates, limited by the number of eggs 
they can lay (Fowler and Partridge, 1989). In another example, male beetles are known to damage 
female beetle reproductive tracts as a by-product of selection for traits that increase male 
fertilization success (Arnqvist and Rowe 2013; Hotzy et al, 2012; Morrow et al, 2003). The 
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disparity between optimal reproductive phenotype and genotype, as well as the resulting negative 
effect on fitness, is called sexual conflict. This means that an increase in mating success in one sex 
may not increase the reproductive output of the other sex.  

Every mating carries a risk for both sexes, which can include increased probability of predation, 
direct physical damage to the female, and excessive depletion of stored energy resources. When 
females mate beyond the mating frequency that maximizes their lifetime reproductive output, 
their lifespan may decrease (Arnqvist and Rowe, 2013; Fowler, 1989). Here, I investigate lifespan 
effects of mating scenarios allowing for different rates of re-mating in strains derived from 
canonical and wild isolate Caenorhabditis elegans. 

1.1. THE CAENORHABDITIS ELEGANS MODEL ORGANISM 

The nematode C. elegans offers natural variation in mating systems that can be taken 
advantage of when studying sexual conflict. Importantly, post-mating lifespan decrease has been 
observed in hermaphrodites and pseudo-females in the canonical C. elegans strain N2 (Riddle 
and Gems, 1996; Shi et al, 2014).  

C. elegans is a microscopic nematode usually found in compost and rotting vegetation (Felix 
et al, 2015). The species has a global distribution with genetically distinct strains isolated in 
different geographic regions (Sterken et al, 2015). This genetic variation is especially useful for 
VWXd\iQg Whe YaU\iQg UeVSRQVeV iQ Ve[Xal cRQflicW dXe WR a SRSXlaWiRQ¶V life hiVWRU\. NePaWRdeV aUe 
ideal for conducting studies on aging and lifespan because they are easy to maintain in large 
populations and have short lifespans of around three to four weeks. This allows for high-
throughput lifespan studies. 

Different species of Caenorhabditis display different types of mating systems, making them a 
valuable animal for studies on reproduction (Kiontke et al, 2011). In wild-type C. elegans, which 
reproduce largely through self-fertilization of the hermaphrodite, males occur at a rate of 0.2% of 
the population and arise due to meiotic nondisjunction events (Zarkower, 2006). Other species of 
Caenorhabditis are obligate male-female reproductive populations with approximately equal sex 
ratios. Therefore, populations can be dominated by hermaphrodites or have approximately equal 
numbers of males and females, but natural populations never have male-biased sex ratios. 

1.2. SEXUAL CONFLICT AND LIFESPAN IN C. ELEGANS 

Pseudo-female C. elegans have been used in previous studies to disentangle the effects of 
mating and resource utilization due to self-progeny production and to bypass a known effect of 
lifespan increase during hermaphrodite-selfing that is not present during outcrossing (Carvalho 
et al, 2012). Pseudo-female worms are created by a deletion of the fog-2 gene (Clifford et al, 2000; 
Schedl and Kimble, 1988). Wild type hermaphrodite worms produce sperm during the fourth 
larval stage, and then irreversibly switch to producing oocytes once they reach adulthood 
(Zarkower, 2006). However, self-sperm production can be stopped by knocking out the gene fog-
2 in the spermatogenesis pathway, effectively creating pseudo-female worms. Sperm production 
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in fog-2 males is unaffected. Because fog-2 worms reproduce solely through sexual reproduction, 
this deletion results in a population sex ratio of approximately equal males and females, with every 
oocyte requiring fertilization from the sperm of a male worm.  

Studies of aging and longevity follow two main approaches: observing aging and senescence 
through a mechanistic lens or through the lens of the life-history of an organism (Caswell-Chen 
et al, 2005). The mechanisms of lifespan decrease in both female and pseudo-female C. elegans 
are caused by post-mating pathways associated with pheromones, seminal fluid and sperm, and 
germline-mediated responses leading to somatic collapse (Gems and Riddle, 1996; Shi et al, 
2014). While these mechanistic approaches have provided important insights into the functional 
biology of aging and sexual conflict, a life-history approach holds the potential to reveal additional 
variation in sexual conflict phenotypes (Caswell-Chen et al, 2005). Such an approach is equally 
necessary to complement mechanistic studies, and together they provide a powerful tool for 
understanding the ecological and mechanistic contexts of aging and sexual conflict.  

A life history approach requires biologically relevant mating conditions considering mating 
both in a group context and at natural mating ratios. Previous work in C. elegans has focused on 
mating pseudo-females in individual mating assays with strongly male-biased sex ratios to ensure 
that mating occurs. However, this setup does not reflect natural population ratios of one male for 
every one pseudo-female. These male-biased mating scenarios have not been observed in natural 
mating conditions and potentially introduce re-mating rates not seen in natural populations. 

Confounding factors such as temperature and starvation-induced mating variant genotypes are 
also present in previous work, making it difficult to isolate decreased lifespan due to mating as a 
sexual conflict phenotype. Additionally, these studies used the standard laboratory strain N2, 
which is known to have several laboratory-derived alleles with a broad range of phenotypic effects, 
including behavioral changes (Sterken et al, 2015). These confounding factors bring into question 
ZheWheU Whe ³PaWiQg-iQdXced dePiVe´ UeVSRQVe iV XQiTXe WR N2 iQ iQdiYidXal PaWiQg aVVa\V, RU 
whether this response can be replicated in wild isolates of C. elegans as well.  

I conducted a series of individual and group matings in one fog-2 natural isolate and one  fog-
2 lab isolate of C. elegans to investigate whether mating-induced lifespan decrease is impacted by 
mating ratios and population setting. 

2. MATERIALS AND METHODS 

2.1. C. ELEGANS STRAINS AND MAINTENANCE 

I used two pseudo-female strains of C. elegans: JK574 (fog-2(q71) V), Whe ³caQRQical VWUaiQ´ 
derived from N2, referred to as N2fog-2 in this paper, and PX632 (Ppie-1::TIR-1::mRuby, 
I:2851009]; spe-44(fx110[spe-44::degron]) IV;  fog-2(fx111) V), which is derived from the wild 
isolate JU2526 and is genetically distinct from N2, referred to as wildfog-2. Worms were 
maintained on 60mm petri NGM plates at 20°C seeded with 200 ǋL OP50-1 Escherichia coli 
(Brenner, 1974).  
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2.2. LIFESPAN ASSAY DESIGN 

Lifespans of nematodes were measured using the C. elegans Automated Lifespan Machine 
(ALM), an automated system comprising office scanners and imaging software, following 
Stroustrup et al. (2013).   

2.3. GROUP MATINGS 

Nematode cohorts were created following the Caenorhabditis Intervention and Testing 
Program protocol (unpublished, C. Sedore pers comm.). 

I created three cohorts to be mated at different sex ratios: one of only virgin pseudo-females, 
one of pseudo-females mated at a natural population sex ratio, and one of pseudo-females mated 
at a ratio of three males to one pseudo-female (Figure 1). All nematodes began in age-
synchronized cohorts, achieved by letting parent day-two adult pseudo-females lay eggs on plates 
for 2 hours before removing parent pseudo-females. Therefore, all nematodes in these cohorts are 
aged within 2 hours of each other. At 19-20 hours post egg-lay, nematodes have hatched and are 
larval, but are not yet reproductively mature adults. At this stage it is possible to differentiate the 
sexes based on distinctive sex characteristics. At this time, pseudo-females in the pre-adult virgin 
cohort were isolated from males on separate plates to ensure they never mated. The nematodes 
in the cohort of male-skewed mating ratios were transferred to plates with fifteen females for 
every forty-five males, a 3:1 male-skewed sex ratio. The nematodes in the cohort destined to mate 
in natural population ratios were left on the plates in the same ratios in which they were laid. For 
both natural and male-skewed ratio cohorts, mating began after nematodes became 
reproductively mature at 26-28 hours. Mating was allowed for 42 hours, then males were removed 
(Figure 1). 

Next, all pseudo-females were moved to plates with 51 mM 5-fluoro-2¶-deoxyuridine (FUdR) 
to arrest the germline and assure progeny were inviable. Note the virgin cohort did not produce 
progeny but was also placed on FUdR as a control. Pseudo-females were transferred again to fresh 
FUdR plates 24 hours later to ensure no viable progeny remained.  

On day five of adulthood, pseudo-females were transferred to scanner plates at densities of 
approximately 60 worms per plate and placed on the ALM. Images of each plate were taken every 
hour. Data collection on worm lifespans using the ALM lasted for 25 days, after which the images 
were compiled. Software identified when a worm had died and noted this time (Stroustrup et al, 
2013). Lifespans were calculated using the day of the egg lay as day 0. The experimental design 
from egg lay to the ALM was the same for all treatments (Figure 1). 

This process was repeated for both N2fog-2 and for wildfog-2 nematodes.  
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Figure 1: Schematic of experimental design for population mating from egg lay 
to placement on the C. elegans Lifespan Machine. Circles represent petri plates. 

Yellow plates, NGM. Red plates, NGM + FUdR. Blue plates, NGM + FUdR on 
scanners. 

2.4. INDIVIDUAL MATINGS 

Previous work used mating scenarios of one individual female mated to three males in the 
canonical strain N2, which also had a fog-2 mutation (Shi et al, 2014). I mated nematodes on 
individual plates of one female and three males to verify a lifespan decrease in my experimental 
population of N2fog-2 (Figure 2).  

 

Figure 2: Group and individual matings in different ratios of wild isolate (blue) and canonical strain (orange) 
populations. Treatments of each mating ratio, 1 female to 1 male or 1 female to 3 males, and virgin worms are 

performed in the canonical strain and wild isolate. 

2.5. STATISTICAL ANALYSIS 

Lifespan data were analyzed using a linear mixed model in lme4 (Bates et al, 2015) and a mixed 
effects Cox Proportional Hazards model in coxme (Therneau, 2018) in the R Statistical Package 
(R Core Team, 2013).  
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3. RESULTS 

In N2fog-2, pseudo-females mated in groups of male-skewed ratios had significantly longer 
lifespans than virgin pseudo-females mated in both group (p < 0.001) and individual (p < 0.05 ) 
assays (Figure 3A). The shape of the lifespan curves of N2fog-2 virgins is intriguing as they do not 
mimic the lifespan curve of mated worms, due to an abnormal linear decrease in cohort 
survivorship by day 20 (Figure 3A).  

There were no significant differences between mated and virgin worms in the wildfog-2 strain, 
even at skewed mating ratios (p < 0.001) (Figure 3B).  

Between strains, lifespans of N2fog-2 virgins were significantly shorter than wildfog-2 mated 
at a one-to-one sex ratio (p < 0.001) (Figure 3C). Virgin worms of each strain had significantly 
different lifespans (p < 0.01). The shape of lifespan curves of N2fog-2 and wildfog-2 strains 
appeared different, but the power of this study was insufficient to define this difference.  

 

Figure 3: Lifespans of the treatments. A. N2fog-2 analysis. Mated (3:1) and 
virgin worm lifespans are significantly different in both group (p < 0.001) and 

individual (p < 0.05) analyses. Whether the worm was in the individual or group 
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cohort had no significant effect on lifespan. B. Wildfog-2 analyses. Mated (1:1) 
and virgin worms do not differ significantly in lifespan. Data from three pooled 

replicates. C. Lifespans of N2fog-2 (³caQRQical VWUaiQ´) aQd Zildfog-2 (³Zild 
iVRlaWe´) ZRUPV iQ gURXS PaWiQg WUeaWPeQWV. 

To investigate whether the fog-2 mutation itself led to changes in lifespan, I compared 
lifespans of hermaphroditic ancestors. Wildfog-2 lives are shorter than their hermaphrodite 
ancestor (p < 0.05) (C. Sedore pers. comm.). The N2 ancestral hermaphrodite has a median 
lifespan range of 15 to 17 days (Riddle and Gems, 2000), compared to 17 days (virgin) and 22 days 
(mated) of the N2fog-2 strain.  

4. Discussion  

I compared lifespans of mated and virgin worms in two different strains of C. elegans using an 
Automated Lifespan Machine (Stroustrup et al, 2013). I found no significant differences between 
mated and virgin worms in a wild isolate-derived strain, even at male-skewed mating ratios. In a 
canonically derived strain, however, virgin worms had significantly shorter lifespans than worms 
mated at a ratio of three males to one female, contrary to previous work. 

The responses to mating stress differed in each strain. This suggests the degree of lifespan 
decrease is strain-dependent and highlights the importance of using strains outside of the N2 
reference strain. The N2 strain is known to have many laboratory adaptations (Sterken et al, 
2015), and it is possible that the response of N2 is not reflective of responses of C. elegans strains 
drawn directly from nature. Previous studies in N2 have shown decreases in lifespan after mating 
in both hermaphrodite and pseudo-female C. elegans, while this study showed the opposite effect 
of increased lifespan relative to virgin pseudo-females.  

One interpretation of this effect is simply that life history may dictate responses to mating 
stress. The previous study that investigated fog-2 lifespans used a different point mutation to 
create the null phenotype (Shi et al, 2014). This could demonstrate pleiotropy of a single mutation, 
such that each point mutation has multiple unique phenotypic effects, resulting in phenotypic 
changes beyond a spermless phenotype. These differences in lifespan between strains are in 
agreement with the differences observed between not only various wild isolate strains and N2 
strains, but notably within N2 strains from a common ancestor themselves when maintained in 
different laboratories (Riddle and Gems, 2000).  

Another plausible explanation of this difference is the main deviation in methodology, as the 
use of the ALM could have generated a slightly different response than that previously observed. 
There are numerous differences between the ALM and manual assays, but two possibilities stand 
out. First, it is possible previous studies found mated worms have decreased lifespans due to the 
combined stresses of mating and daily picking in manual assays that is not present when using 
the ALM. This would explain a lack of decrease in mated worm lifespans. Second, there may be 
population effects of pheromone signaling present on the ALM that are not present when worms 
are isolated on plates. C. elegans uses pheromone signaling for communicating about food 
availability, population density, and sexual reproduction; this signaling is known to induce 
physiological, behavioral, and lifespan changes (Shi et al, 2017). The effects of an increased 
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concentration in pheromone signaling may alter lifespan as mated worms and virgin worms 
respond to pheromones differently (Borne et al, 2017). A study investigating the effects of mating 
when living as a population on the ALM, which has an enclosed and dynamic environment of 
changing oxygen levels and bacteria availability, compared to the relatively static environment of 
transferring worms to fresh plates, would give insight into this difference.  

4.1. AGING AND THE “FEMALE-LIKE” STATE 

Previous studies have shown that changes in gene expression associated with the spermless 
heUPaShURdiWe, WeUPed Whe ³fePale-like´ VWaWe, aUe alVR aVVRciaWed ZiWh agiQg aQd Sh\ViRlRgical 
changes (Angeles-Albores et al, 2017). It is possible that a spermless state for pseudo-females 
induces a fast-agiQg SheQRW\Se XQiTXe WR Whe ³fePale-like´ VWaWe RbVeUYed iQ WhiV VWXd\. HRZeYeU, 
while the female-like state may explain fog-2 associations with aging phenotypes, this explanation 
fails to reconcile the difference between fast and slow aging in this and previous studies (Shi et al, 
2014).  

Previous experimental evolution using the same strain of N2fog-2 (JK574) to generate high-
conflict male-female mating systems showed a trend of increased sexual conflict over evolutionary 
time (Palopoli et al, 2015). N2fog-2 worms may not be evolutionarily adapted to both mating in a 
male-female population and the self-spermless state induced by a fog-2 mutation. This would 
create a difference between mated and virgin treatments.   

I surveyed only a single point in evolutionary time, giving a static window into the sexual 
conflict phenotypes present in these two populations of fog-2 worms. It is likely that as 
evolutionary time progresses from onset of the fog-2 mutation, C. elegans will show differential 
responses to this artificially imposed mating system. Sexual conflict phenotypes depend largely 
on the type of mating system, so the change from self-fertilization to outcrossing carries with it 
the potential for new and distinct sexual conflict phenotypes to emerge.  

5. CONCLUSIONS 

To further investigate the potential for evolutionary adaptation, I would follow an experimental 
evolution paradigm with N2fog-2 pseudo-females evolved in a sperm-limited state and compare 
lifespan responses to mating after several generations.  

Explorations in a wider variety of strains of C. elegans will shed light on the potentially varied 
effects of life history on post-mating longevity. Understanding the type of traits under sexual 
conflict and the ensuing fitness decrease across strains and mating systems will provide important 
information on mating dynamics in this genus. An increased understanding of strain-dependent 
mating effects may provide an answer to irreconcilable differences in results previously described 
in the literature (Riddle and Gems, 1996; Voorhies, 1992). Studies like this and the ones proposed 
are important for our understanding of how intertwined sexual conflict, mating behavior, and 
longevity are in Caenorhabditis nematodes.  

Unique life histories can cause differential sexual conflict phenotypes. The variation present 



Oregon Undergraduate Research Journal  Lancaster 

Volume 17 Issue 1 Spring 2020             37 
 

among sexual conflict phenotypes even within the same species and mating system cannot be 
taken for granted. Broadly speaking, the potential for variation must be taken into account when 
investigating sexual conflict phenotypes both in the lab and in the field, and caution must be taken 
when extrapolating sexual conflict phenotypes to a species as a whole.  
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