
Introduction

Virtual Test Environment Creation

Figure A: neque 

dignissim, and in 

aliquet nisl et umis.

Software Development Kit

References

Variable Update Order

Conclusions

Department of Geography

buffalo.edu

ADEMIC RESEARCH POSTER TEMPLATE
Subtitle for Academic Research Poster (48x36 inches)

Your names and the names of the people who contributed to this presentation

Using Unity to Obtain Eye-Tracking Data From the VIVE Pro Eye Headset
Zachary Hoffman
Department of Human Physiology, Research Mentors: Dr. Andrew Karduna, Kate Spitzley

Acknowledgements

University of Oregon

The growing virtual reality (VR) market has driven the research 
and development of new technological features, such as the 
addition of eye-tracking cameras, to some VR models.

From the location of the pupil, the headset can gather where 
the user is looking, called the gaze direction.

VR allows researchers to manipulate the visual and auditory 
sensory information a participant in a virtual environment is 
receiving.

The output and analysis of gaze data can be applied to further 
biomechanics research, and to other fields with research 
related to the analysis of subject gaze.

The aims of this project were to create a virtual test 
environment in Unity with a moving object, and to have an 
eye-tracking code that would compare the gaze of the 
subject to the position of a moving visual target at each 
frame.

1. Tieri, Gaetano, et al. "Virtual reality in cognitive and motor rehabilitation: facts, fiction and 

fallacies." Expert review of medical devices 15.2 (2018): 107-117.

2. Mirelman, Anat, et al. "Effects of virtual reality training on gait biomechanics of individuals 

post-stroke." Gait & posture 31.4 (2010): 433-437.

3. Subramanian, Sandeep, et al. "Virtual reality environments for post-stroke arm 

rehabilitation." Journal of neuroengineering and rehabilitation 4.1 (2007): 20.

4. “VIVE Pro Eye Specs: VIVE™.” VIVE, www.vive.com/eu/product/vive-pro-eye/specs/.

5. Iskander, Julie, Mohammed Hossny, and Saeid Nahavandi. "Biomechanical analysis of eye 

movement in virtual environments: A validation study." 2018 IEEE International Conference 

on Systems, Man, and Cybernetics (SMC). IEEE, 2018.

6. Prostheticknowl. “Prostheticknowledge.” Prosthetic Knowledge, 10 July 2018, 

prostheticknowledge.tumblr.com/post/175747127281/eye-tracking-in-the-htc-vive-pro-short-

video-from

Within the room was a pink target coordinate plane that the 
moving target object would traverse across.

Upon putting on the HMD, the subject would appear to be 
standing in the center of this room, (underneath a spotlight).

Figure 2. The virtual test environment with a camera icon to 
indicate the source location of the subject’s field of view.

Before any coding, the VIVE Pro Eye software development kit 
(SDK) SRanipal was installed and imported into Unity. 

With modifications to a gaze visualization script (GazeRaySample) 
in the SDK, gaze data could be acquired and exported from Unity. 

Variable Initialization
Within the GazeRaySample script, variables were created to 
acquire, store, and modify the gaze data coming from the eye-
tracking cameras.

A variable GazeDirectionCombined was created to combine the 
direction each eye was looking into one intermediate vector.

Figure 3. The code used to acquire the combined gaze 
direction from the two eye-tracking cameras.

GazeDirectionCombined allowed for acquisition of the x,y,z
components of the Gaze direction Vector3 data coming from the 
eye-tracking cameras.

Next, a variable was created to store these individual x,y,z
components of the gaze direction Vector3, and a time counter, 
each frame.

A second variable was also updated each frame to compare the 
position where a subject’s gaze converged with the position of the 
moving ball at each frame.

These variables were necessary to store the information the eye-
tracking cameras were receiving, so that it could be compared to 
the position of the visual target.

Figure 4. The Raycast function used to acquire positional 
data for the surface a subject’s gaze was on.

The RaycastHit function works like firing a bullet in a video game; it 
only outputs data each frame if the subject gaze ray hit a surface.

Figure 5. Code demonstrating how each variable was updated and 
stored within look_variable to be formatted correctly in the 

subsequent text file.

At each frame, a time counter was added into the variables storing 
the gaze data.

These variables were then updated to additionally hold the gaze 
position Vector3 of the subject, and the individual x, y and z 
components of their gaze direction.

This chain of code formatted the data in a way that allowed it to be 
easily analyzed by other software when exported as a text file.

Coding Instructions for the Visual Target
The moving target was given parameters for the minimum 
and maximum positions it could oscillate between.

Another variable was created to specify whether movement 
would be exclusively along the x or y axes.

Results

Figure 6. Subject’s perspective of the moving ball, and 
the plane behind it, with arrows added to demonstrate 

the two planes it can possibly move between. 

X

Y

Subject gaze data was acquired (n=1) from the eye-tracking 
cameras, along with comparison data for the difference 
between the moving ball’s location and the gaze position of 
the subject. 

I would like to thank my research mentor Kate Spitzley and 
lab principal investigator Andrew Karduna for this research 
opportunity.

The aims of this project were to create a virtual test 
environment in Unity with a moving object, and to have an 
eye-tracking code that would compare the gaze of the 
subject to the position of the moving object at each frame. 

The aims of this project were met, and all data was 
successfully exported in a format that can be analyzed in 
another software (i.e Microsoft Excel).

This programming framework could be used to acquire data 
for eye-tracking research in Biomechanics and other fields. 

Without the restrictions of the COVID-19 outbreak, I would 
have liked to use this framework to conduct research 
evaluating the oculomotor system with Fitt’s Law. 

Figure 7. Example text data output from the code, organized as: 
time, gaze position, ball position, and difference between the two 

(listed as a Vector3).

Figure 1. The VIVE Pro Eye VR Headset used (left), and an 
example of the cameras within the headset tracking an eye.

http://www.vive.com/eu/product/vive-pro-eye/specs/

