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DISSERTATION ABSTRACT

Edouard A. Hay

Doctor of Philosophy

Department of Physics

December 2019

Title: Identifying Gut Bacteria and Their Interactions Using Deep Learning Based
Image Analysis and Gnotobiotic Experiments

The microbial communities of animal intestines are composed of dozens to

hundreds of species and play important roles in host development, health and

disease. Due to the complexity of these communities, the determinants of the

microbial composition, which may include physical characteristics or biochemical

interactions, remain largely unknown. Understanding the spatial structure and the

effect of bacterial interactions are paramount to learning more about how these

communities are formed.

In this dissertation, we develop the use of a deep convolutional neural network

for identification of individual bacteria in 3D images of the intestines of larval

zebrafish which contain fluorescently labeled bacteria taken using light sheet

fluorescent microscopy. This network achieves human expert level accuracy and

we extend its use to multiple bacterial species through transfer learning. Next we

show the application of U-net in segmentation of the intestine in phase contrast

microscopy images. These two techniques can be used in the future to study the

spatial structure of microbes in the zebrafish intestine.
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Lastly, we present an experiment in which explore bacterial interactions

within larval zebrafish. We consider commensal intestinal microbes in larval

zebrafish, initially raised germ-free to allow introduction of controlled combinations

of 1-5 bacterial species. Using dissection and plating assays, we find strong

pairwise interactions between certain bacteria. In the 4 or 5 bacterial species

communities, we find weaker interactions and a much higher than expected level

of coexistence suggesting that the pairwise interactions are not sufficient to predict

the composition of multispecies gut communities and that higher-order interactions

may dampen strong competition.

This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

1.1. Preface

Microbial communities are found nearly everywhere on Earth; from within

the rocks of the Atacama desert, to the ocean in which microbes make up 50-

90% of the total biomass [1]. They are found within our intestines and stomach,

and on our hair and skin. These microbes exist in structured communities called

microbiomes that exist in ecological niches across wide ranging scales, from a

few species to many thousands. A majority of these microbiomes are complex,

heterogeneous communities across a broad diversity of taxa. This diversity is

crucial to the stability of these biomes, much like is the case for the ecological

communities of the old growth forests of the Pacific Northwest or other macro-

ecological systems. There have been an unprecedented amount of imaging

experiments on microorganisms in the past decade. This has led to a wealth of

understanding of these creatures and has created image processing problems that

defy conventional methods of image analysis. The abundance of complex, noisy,

high-resolution image data is what drew me to biophysics from high energy early

in my graduate career. In the past decade, machine learning applied to images has

emerged as a powerful tool for analyzing the content of images with unprecedented

rigor, exceeding the accuracy of human experts in many cases. The architectures

that have consistently outperformed in the field of image processing are deep

convolutional neural networks whose applications range from self-driving cars
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and facial recognition to classifying deforestation in the Amazon Rainforest. My

dissertation is focused on the intersection of biological imaging, deep learning and

the gut microbiome. In particular, my work has centered around understanding

two important features of intestinal microbial communities; their spatial structure,

and the individual interactions between their constituents. This dissertation is

composed of deep learning applications and non-imaging based experimentation.

I describe work done to create and apply several deep learning algorithms to

identification of bacteria and host morphologies which will, in the future, allow for

study of spatial structure of these microbes within the intestine of larval zebrafish.

I also describe an experiment in which we probe interspecies bacterial interactions

in larval zebrafish through gut dissections and plating of contents, losing spatial

information but providing precise quantitative data on the abundance of several

species at once. These studies will enable future investigations that combine these

advances to determine the spatial structure of these microbes interacting inside the

gut, which can further decipher multispecies microbial interactions.

1.2. Imaging of Intestinal Microbiota in Larval Zebrafish

To better understand the spatial structure of the intestinal microbiota, a

variety of microscopy techniques have been developed that allow for in-vivo imaging

of bacteria and other microorganisms within the intestines of various animals

[2, 3, 4, 5]. In this thesis, I will be discussing two of these techniques, light sheet

fluorescence microscopy (LSFM) and differential interference contrast microscopy

(DIC) and their use in imaging larval zebrafish and their intestinal microbes.

Previous members of the Parthasarathy lab, Matthew Jemielita, Mike Taormina

and Ryan Baker created a microscopy system combining both of these techniques
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as discussed in [2, 6]. These systems each produce high-content, high-resolution

images. It is important to have good image processing tools in order to obtain

quantitative information from these images which has been the focus of much of

my work in the Parthasarathy lab.

Zebrafish were introduced as a model organism by Streisinger here at the

University of Oregon 40 years ago [7]. Along with Drosophila melanogaster

(fruit fly), C elegans (nematode worm), and mice, zebrafish are commonly

used model organisms for the study of intestinal microbes, among many other

applications [8, 9, 10, 11, 12, 13]. In contrast to Drosophila and C. elegans,

zebrafish are vertebrates and thus many processes are shared with humans. Similar

to Drosophila and C. elegans, zebrafish are nearly transparent in their larval stage

making them amenable to live imaging in contrast to mice. While mice are more

closely related to humans than zebrafish and have an abundance of genetic tools,

they come at the cost of less simple husbandry as well as difficulty in non-invasively

probing the intestinal microbes.

Light sheet microscopy is a technique in which an excitation laser is oscillated

at a high frequency forming a time-averaged thin sheet of laser light, Fig 1.1. This

sheet passes through a specimen exciting any fluorescent molecules within. These

molecules then emit light of a longer wavelength than the excitation light which

passes through an object which focuses the light and a band pass filter that allows

through only the emitted light. After the filter, the light is picked up by a camera.

One can move the sample while taking pictures creating a scan with a specific z-

resolution set by the frame rate and the speed of the moving sample. One can also

leave the specimen in place while taking pictures to obtain a video. In contrast to

confocal microscopy which illuminates a large volume of the sample and rejects
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light not in the focal point, in light sheet microscopy every part of the sample that

is illuminated is imaged, Fig 1.1. This allows for diminished photobleaching and

phototoxicity which in turn allows for long term imaging of specimens without

significant loss of signal or damage to the specimen.

FIGURE 1.1. Schematic of a light sheet fluorescent microscope. A
laser passes through an AOTF after which it is oscillated at a high frequency
at a galvometer (a), passes through a lens (b), then passes through a sample
perpendicular to which is a camera that records the emitted light.

The Parthasarathy Lab realized that LSFMs fast, high-resolution 4D imaging

allows for unprecedented study of intestinal microbes as well as their host, and for

the past few years has applied this technique to study gut microbial systems in

zebrafish, obtaining what are to date the only data in any animal species of in vivo

gut microbial dynamics with single-bacterium resolution. Previous examples of this

approach from the Parthasarathy lab include studies of the population dynamics

of two strongly competing bacterial species in larval zebrafish [8, 11], the discovery

that the bacterial type VI secretion system can stimulate intestinal transport and

displace competing species [13], and uncovering relationships between bacterial

cohesion and the spatial distribution of intestinal microbes [14].
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Differential interference contrast microscopy uses transmitted light to generate

optical contrast and sectioning [15, 16]. The technique as usually implemented

uses a Wollaston prism to separate light of orthogonal polarizations along two

different paths. The light then passes through the sample and then another

prism, recombining the separated paths. Each point on the camera plane therefore

combines light from two spatially separated points from the object plane and their

interference depends on their relative path length. This leads to a 2-D image in

which contrast is due to index of refraction gradients, emphasizing any edges. Our

setup uses a single-prism technique. For a more detailed discussion as well as its

integration with LSFM see [2]. In our own lab, this combined microscopy set up

has allowed for quantification of gut motility in larval zebrafish [17] which enabled

the discovery of intestinal microbes altering gut motility [13].

These two techniques provide high resolution images that are noisy and whose

noise varies both across the image in space and time, and has complex textures

(especially DIC). A single LSFM scan of one region of a zebrafish can contain

hundreds of millions of pixels. A typical experiment can perform 20+ of these

scans in a single day. Because of their size and complexity, it is non-trivial to

obtain quantitative information from these images. Due to the natural variation

in biological parameters one is interested in quantifying, a large number of samples

is required making it very difficult to analyze these images with techniques that

require large amounts of user input or are not computationally efficient.

1.3. Deep Learning on Images

Due to the analytic challenges noted above, one needs both automation and

accurate generalization in order to quantify the information found in LSFM and
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DIC images. Deep learning has emerged as a tool that can address these; I will

briefly note the history of deep learning here.

In an attempt to better understand the human brain, mathematical models

were created of neurons and their connections to one another. These models, or

neural networks, were initially attempt to better understand the rules governing the

firing of neurons within the brain but were found to be useful in other applications

as well. The first practical implementation of a neural network appears to be

Stanfords MADALINE, which was used to help make phone calls more clear by

removing echos from the calls [18]. Despite early interest in their application, it

wasnt until 2006 that excitement in these networks surged when Geoffrey Hinton

published a paper [19] obtaining unprecedented accuracy on classifying hand-

written numbers from the standard CIFAR dataset using what they called deep

belief nets. Hinton, as well as Yoshua Bengio and Yann LeCun are largely credited

for the rebirth of neural networks and the branding of the term deep learning.

LeCun pioneered work on convolutional neural networks throughout the 90s and

is responsible for simple gradient descent which led the way for relying on more

automatic learning, and less on hand-designed heuristics [20]. LeCuns paper showed

that it was possible for neural networks to be applied directly to the pixels of

the images requiring no manual determination of of features thus paving the way

for deep learning on images that has become a ubiquitous image classification

technique.

The success of deep learning on images due to these network architecture

advances as well as an explosion of image data, powerful GPUs and open-source

software. Due to the rapid adoption of smartphones by people across the globe, the

amount of digital pictures taken each year has increased to astonishing levels. For
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instance, it is estimated that in 2018 there were around 1.2 trillion photos taken,

up from 660 billion in 2013, doubling in only five years [21]. GPUs have gone from

hundreds to thousands of cores with many cards specifically designed and targeted

to deep learning applications, i.e. Googles Tensor Processing Units or Nvidias

Tesla GPUs. There has been a large increase in open-sourced software devoted

to image processing and deep learning that make creating a deep convolutional

neural network or distributing its computation across a graphics card relatively

easy to implement. The work of this dissertation was implemented using Tensorflow

[22], Scit-Kit Learn [23], Sci-Kit Image [24] among other python packages. There

are many other open-source tools that are extremely impressive like Theano [25],

Keras [26], Caffe [27] and Torch [28]. Chapter II describes the application of a

convolutional neural network to identify individual bacteria of several species

from 3D LSM images of the intestines of larval zebrafish. This chapter contains

previously published co-authored material with contributions from Raghuveer

Parthasarathy. Chapter III follows my application of the deep learning architecture

U-net to segment the intestine in DIC images.

1.4. Interactions of Intestinal Microbial Communities

In 1837, Charles Cagniard-Latour, Friedrich Traugott Ktzing and Theodor

Schwann [29] published three separate papers arguing that yeast in beer, or as

they were referred to at the time, the sugar fungus, were living organisms and

hence these three were the first to determine that the microscopic objects seen

in fermenting beverages were living organisms. Twenty or so years later, Louis

Pasteur developed a more comprehensive description of alcoholic fermentation

when studying wine in Lille, France which led to his work on the germ theory
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of disease and helped to convince the world that microbes existed and were in

fact living organisms. And so it is apt that for my doctorate I have been able to

further study microbes through my love for fermentation. After years of producing

craft beer, I have transitioned to making wine in the Willamette Valley. It was

through my interest in winemaking, in particular my intrigue into the diversity of

fermentation microbes and their interactions, both directly through biochemical

signals and toxins and indirectly through their impact on nutrients within the

wine, that piqued my interest in studying multi-species communities within larval

zebrafish.

The interactions between the members of multi-species communities inform

the rules that govern the assemblage and maintenance of these communities.

Despite its importance, it is not well understood how these interactions behave. At

present there is a lot of theoretical interest [30, 31, 32] in multi-species systems,

but relatively little experimental data, especially for the gut microbiome. The

majority of studies on intestinal microbiota have been performed on naturally

assembled microbiomes by sequencing DNA extracted from fecal samples. Since

sequencing data provides relative, rather than absolute, microbial abundances, it

is challenging to accurately infer interactions between species [30]. An alternative

approach to deducing interactions from natural, complex host-microbiota systems

is to build such systems from the bottom-up, using model organisms, techniques

for generating initially germ-free animals, and well-defined sets of small numbers

of microbial species. While there are many studies unraveling the individual

biochemical interactions between microbes, it is unclear to what degree bacterial

interactions can be inferred from bacterial abundance information alone for a

system of multiple bacterial species. Chapter IV discusses an ongoing experiment
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in which we take a bottom-up approach to quantifying the interspecies interactions

of commensal bacteria within larval zebrafish. I note that the work I have done

on deep learning applied to images could be tied together with these multi-species

studies in future work to explore the interplay of spatial structure and bacterial

interactions. The work performed in this thesis is a first step towards that end.

Chapter IV contains as yet unpublished co-authored material with contributions

from Raghuveer Parthasarathy, Dylan Martins, Deepika Sundarraman, Drew

Shields and Noah Pettinari.
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CHAPTER II

PERFORMANCE OF CONVOLUTIONAL NEURAL NETWORKS FOR

IDENTIFICATION OF BACTERIA IN 3D MICROSCOPY DATASETS

This chapter contains previously published co-authored material with

contributions from Raghuveer Parthasarathy. In this work, I contributed to

designing the research, performing the research, analyzing the data, and writing

the paper.

2.1. Introduction

The continued development and widespread adoption of three-dimensional

microscopy methods enables insightful observations into the structure and time-

evolution of living systems. Techniques such as confocal microscopy [33, 34],

two-photon excitation microscopy [35, 36, 37, 38], and light sheet fluorescence

microscopy [3, 11, 38, 39, 40, 41, 42] have provided insights into neural activity,

embryonic morphogenesis, plant root growth, gut bacterial competition, and more.

Extracting quantitative information from biological image data often calls for

identification of objects such as cells, organs, or organelles in an array of pixels,

a task that can especially challenging for three-dimensional datasets from live

imaging due to their large size and potentially complex backgrounds. Aberrations

and scattering in deep tissue can, for example, introduce noise and distortions,

and live animals often contain autofluorescent biomaterials that complicate

the discrimination of labeled features of interest. Moreover, traditional image

processing techniques tend to require considerable manual curation, as well as

user input regarding which features, such as cell size, homogeneity, or aspect
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ratio, should guide and parameterize analysis algorithms. These features may be

difficult to know a priori, and need not be the features that lead to the greatest

classification accuracy. As data grow in both size and complexity, and as imaging

methods are applied to an ever-greater variety of systems, standard approaches

become increasingly unwieldy, motivating work on better computational methods.

Machine learning methods, in particular convolutional neural networks

(ConvNets), are increasingly used in many fields and have achieved unprecedented

accuracies in image classification tasks [20, 43, 44? ]. The objective of supervised

machine learning is to use a labeled dataset to train a computer to make

classifications or predictions given new, unlabeled data. Traditional feature-based

machine learning algorithms, such as support vector machines and random forests,

make use of manually determined characteristics, which in the context of image

data could be the eccentricity of objects, their size, their median pixel intensity,

etc. The first stages in the implementation of these algorithms, therefore, are the

identification of objects by image segmentation methods and the calculation of

the desired feature values. In contrast, convolutional neural networks use the raw

pixel values as inputs, eliminating the need for determination of object features by

the user. Convolutional neural networks use layers consisting of multiple kernels,

numerical arrays acting as filters, which are convolved across the input taking

advantage of locally correlated information. These kernels are updated as the

algorithm is fed labeled data, converging by numerical optimization methods on

the weights that best match the training data. ConvNets can contain hundreds

of kernels over tens or hundreds of layers which leads to hundreds of thousands of

parameters to be learned, requiring considerable computation and, importantly,

large labeled datasets to constrain the parameters. Over the past decade, the use
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of ConvNets has been enabled by advances in GPU technology, the availability

of large labeled datasets in many fields, and user-friendly deep learning software

such as TensorFlow [22], Theano [25], Keras [26], and Torch [28]. In addition

to high accuracy, ConvNets tend to have fast classification speeds compared to

traditional image processing methods. There are drawbacks, however, to neural

network approaches. As noted, they require large amounts of manually labeled data

for training the network. Furthermore, their selection criteria, in other words the

meanings of the kernels’ parameters, are not easily understandable by humans [45].

There have been several notable examples of machine learning methods

applied to biological optical microscopy data [46, 47], including bacterial

identification from 2D images using deep learning [48], pixel-level image

segmentation using deep learning [49, 50, 51], subcellular protein classification

[52], detection of structures within C. elegans from 2D projections of 3D

image stacks using support vector machines [53], and more [54, 55, 56, 57, 58].

Nonetheless, it is unclear whether ConvNet approaches are successful for thick,

three-dimensional microscopy datasets, whether their potentially greater accuracy

outweighs the drawbacks noted above, and what design principles should guide the

implementation of ConvNets for 3D microscopy data.

To address these issues, we applied a deep convolutional neural network

to analyze three-dimensional light sheet fluorescence microscopy datasets of gut

bacteria in larval zebrafish (Fig 2.1 a,b) and compared its performance to that

of other methods. These image sets, in addition to representing a major research

focus of our lab related to the aim of understanding the structure and dynamics of

gut microbial communities [8, 11, 12, 13], serve as exemplars of the large, complex

data types increasingly enabled by new imaging methods. Each 3D image occupies
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roughly 5 GB of storage space and consists of approximately 300 slices separated by

1 micron, each slice consisting of 6000 x 2000 pixel 2D images (975x325 microns).

These images include discrete bacterial cells, strong and variable autofluorescence

from the mucus-rich intestinal interior [59], autofluorescent zebrafish cells,

inhomogeneous illumination due to shadowing of the light sheet by pigment

cells, and noise of various sorts. The bacteria examined here exist predominantly

as discrete, planktonic individuals. Other species in the zebrafish gut exhibit

pronounced aggregation; identification of aggregates is outside the scope of this

work, though we note that the segmentation of aggregates is much less challenging

than identification of discrete bacterial cells, due to their overall brightness and

size. The goal of the analysis described here is to correctly classify regions of high

intensity as bacteria or as non-bacterial objects.
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FIGURE 2.1. Images of bacteria in the intestine of larval zebrafish.
a) Schematic illustration of a larval zebrafish with the intestine highlighted in
red. Scale bar: 0.5 mm. b) Single optical section from light sheet fluorescence
microscopy of the anterior intestine of a larval zebrafish colonized by GFP
expressing bacteria of the commensal Vibrio species ZWU0020. Scale bar: 50
microns. c) z, y and x projections from 28x28x8 pixel regions of representative
individual Vibrio bacteria, d) non-bacterial noise, e) individual bacteria of the
genus Pseudomonas, species ZWU0006, and f) autofluorescent zebrafish cells.
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Using multiple testing image sets, we compared the performance of the

convolutional neural network to that of humans as well as random forest and

support vector machine classifiers. In brief, the ConvNet’s accuracy is similar to

that of humans, and it outperforms the other machine classifiers in both accuracy

and speed across all tested datasets. In addition, the ConvNet performs well when

applied to planktonic bacteria of a different genus through the use of transfer

learning. Transfer learning has been shown to be effective in biological image

data in which partial transference of network weights from 2D images dramatically

lowers the amount of new labeled data that is required [44, 52, 55, 60]. We explored

the impacts on the ConvNet’s performance of network structure, the degree of data

augmentation using rotations and reflections of the input data, and the size of the

training data set, providing insights that will facilitate the use of ConvNets in other

biological imaging contexts.

Analysis code as well as all ∼ 21, 000 manually labeled 3D image regions-of-

interest are provided; see Methods for details and urls to data locations.

2.2. Results

Data

The image data we sought to classify consist of three-dimensional arrays of

pixels obtained from light sheet fluorescence microscopy of bacteria in the intestines

of larval zebrafish [8, 11, 12, 13]. Fig 2.1B shows a typical optical section from an

initially germ-free larval zebrafish, colonized by a single labeled bacterial species

made up of discrete, planktonic individuals expressing green fluorescent protein; a

three-dimensional scan is provided as Supplementary Movie 1. All the data assessed
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here were derived from fish that were reared germ free (devoid of any microbes) [61]

and then either mono-associated with a commensal bacterial species or left germ

free. Nine scans are of fish mono-associated with the commensal species ZWU0020

of the genus Vibrio [9, 10, 11], two scans are of fish in which the zebrafish remained

germ-free, and a single scan is from a fish mono-associated with Pseudomonas

ZWU0006 [12] . For each 3D scan, we first determined the intestinal space of the

zebrafish using simple thresholding and detected bright objects (blobs) using a

difference of Gaussians method described further in Methods. From each blob, we

extracted 28x28x8 pixel arrays (4.5x4.5x8 microns), which served as the input data

to the neural network, to be classified as bacterial or non-bacterial.

Since there is no way to obtain ground truth values for bacterial identity

in images, we manually classified blobs to serve as the training data for the

neural network, using our expertise derived from considerable prior work on three

dimensional bacterial imaging. Notably, in prior work we showed that the total

bacterial abundance determined by manually corroborated feature-based bacterial

identification from light sheet data corresponds well with the total bacterial

abundance as measured through gut dissection and serial plating assays [8]. In Fig

2.1C-F we show representative images of blobs corresponding to bacteria and noise.

In order to estimate an upper bound on the classification accuracy we can

expect from the learning algorithms, we chose a single image scan which we

judged to be typical of a noisy, complex 3D image of the intestine of a larval

zebrafish colonized by bacteria. We then had six lab members with least two years’

experience with light sheet microscopy of bacteria individually label each of the

detected potential objects as either a bacterium or not. We show in Fig 2.2A the

agreement between lab members. Excluding human 3 the agreement between any
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pair of humans is always above 0.87. The outlier, human 3, is the person with the

least experience with the imaging data, namely the principal investigator.

We next created a set of labeled data by manual classification of blobs

from the 9 Vibrio scans and 2 scans of germ-free fish, consisting in total of over

20,000 objects. Including scans from germ-free fish is particularly important to

enable accurate counting of low numbers of bacteria, which arise naturally due to

extinction events [11] and population bottlenecks [9].

Network Architecture

As detailed in Methods, we used Google’s open-source Tensorflow framework

[22] to create, test, and implement 3D convolutional neural networks. Such

networks have many design parameters and options, including the number, size,

and type of layers, the kernel size, the downsizing of convolution output by pooling,

and parameter regularization. In general, overly small networks can lack the

complexity to characterize image data, though their limited parameter space is less

likely to lead to overfitting. Conversely, larger networks can tackle more complex

classification schemes, but demand more training data to constrain the large

number of parameters, and also carry a greater computational load. In between

these extremes, many design variations will typically give similar classification

accuracy. We chose a simple architecture consisting of two convolutional layers

followed by a fully connected layer. The first and second convolutional layers

contain 16 and 32 5x5x2 kernels, respectively. Each layer is followed by 2x2x2 max

pooling as further described in Methods. The final layer is a fully connected layer

consisting of 1024 neurons with a dropout rate of 0.5 during training. After this,

softmax regression is used for binary classification.
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We explored various alterations of our network architecture, and illustrate

here the effect of simply varying the number of kernels per convolutional layer.

We assessed the classification accuracy as a function of the number of kernels in

layer 1, with the number of kernels in layer 2 being double this. Accuracy was

calculated using cross validation, training on all but one image dataset (where an

image dataset is a complete three-dimensional scan of the gut of one zebrafish),

testing on the remaining image dataset, and repeating with different train/test

combinations. The network accuracy initially increases with kernel number and

plateaus at roughly 16 kernels, beyond which the variance in accuracy increases

(Fig 2.2B). Therefore, increasing the number of kernels beyond approximately 16

gives little or no improvement in accuracy at the expense of model complexity

and increased variability. We note that there are many ways to alter network

complexity, for example adding or removing layers, all of which may be interesting

to investigate. Here, a rather small model consisting of two layers is sufficient to

achieve human-level accuracy, suggesting that adding layers is unlikely to be useful.
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FIGURE 2.2. Creation of the 3-D convolutional neural network. a)
Agreement matrix between six individuals (members of the authors’ research
group), evaluated on a single dataset of images of Vibrio bacteria, and between
those humans and the convolutional neural network. b) Accuracy vs number
of kernels per layer using cross validation across the various imaging datasets,
where the x-axis denotes the number of kernels in the first convolutional layer. The
second convolutional layer for each plotted point has twice as many kernels as the
first.
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Network Accuracy Across Image Datasets

We trained the ConvNet using manually labeled data from eight of the

Vibrio image datasets and the two datasets from germ-free fish (devoid of gut

bacteria) and then tested it on the remaining manually labeled Vibrio image

dataset that was used to assess inter-human variability, described above. The

agreement between the neural network and humans (mean std. dev. 0.89 0.01)

was indistinguishable from the inter-human agreement (mean std. dev. 0.90 0.02),

again excluding human 3, indicating that the ConvNet achieves the practical

maximum of bacterial classification accuracy (Fig 2.2A). Examples of images for

which all humans agreed on the classification, and in which there was disagreement,

are provided in the Supplementary Text.

To further test the network’s consistency across different imaging conditions

we applied it separately to each of the 3D image datasets of larval zebrafish

intestines. We also tested, with the same procedure and data, random forest and

support vector machine classifiers to address the question of whether or not the

ConvNet outperforms typical feature based learning algorithms. We first consider

two experiment types: zebrafish intestines mono-associated with Vibrio ZWU0020

(9 image datasets, i.e. 9 complete three-dimensional scans from of different

zebrafish) and germ-free zebrafish (2 image datasets). Classifier accuracy for each

Vibrio-colonized or empty-gut image scan was determined by cross-validation,

training the network using all of the other image datasets, and testing on the

dataset of interest. To test the variance in accuracy due to the training process,

we performed three repetitions of each train/test combination using the same data.

We found that the neural network outperforms the feature based algorithms

on every image dataset (Fig 2.3), and also shows less variation in accuracy between
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the different datasets. The enhanced accuracy from the neural network is especially

dramatic for germ-free datasets, for which it achieves over 90% accuracy, in

contrast to less than 75% for feature based methods. For a given test dataset,

the training variance for the convolutional neural network is small but nonzero,

indicating that the network training algorithm finds similar, but not identical,

minima with different (random) initializations on the same training data. It is also

small for the random forest classifier. Interestingly, it is zero for the SVM classifier,

indicating that given the same dataset, the algorithm is finding the same minimum.

To further verify the robustness of our accuracy measures, we performed tests

using a manually labeled image dataset that was completely distinct from those

previously considered, and that therefore played no role in cross-validation or other

prior work. This new test set consisted of 1302 images of bacteria (482 images) or

noise (840 images). We determined the classification accuracy of our convolutional

neural network to be 89.3%, the support vector classifier to be 83.1 %, and the

random forest classifier to be 78.5 %, in agreement with the prior assessments.

The random forest, support vector machine, and neural network classifiers

process roughly 300, 400, and 950 images per second, respectively; i.e. the neural

network runs 2-3 times faster than the feature based learning algorithms on the

same data.
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FIGURE 2.3. Comparison of Convnet and feature based learning
algorithms across all datasets. Comparison of accuracies for the various
learning algorithms (convolutional neural network, support vector classifier, and
random forest) across different Vibrio image datasets, as well as two image datasets
from fish devoid of gut bacteria. Each accuracy was determined by training on the
data from all of the other datasets, and testing on the dataset of interest.

Training Size and Data Augmentation

Convolutional Neural Networks famously require large amounts of training

data which must often, as is the case here, be evaluated and curated by hand. To

assess the scale of manual classification required for good algorithm performance,

which is a key issue for future adoption of neural networks in biological image

analysis, we explored the effect on the network’s accuracy of varying the amount

of training data. We set aside 25% of the images from each of the Vibrio and germ-

free fish image scans and trained the network using an increasing number of images

from the remaining data. We increased the amount of training data in two different

ways. First, we consecutively added to the training set all images from each image

dataset excluding a subset of the images previously reserved for testing (labeled
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“New datasets” in Fig 2.4A). Second, we randomly shuffled the training images

from all the image scans, adding 1500 images to the training set over each iteration

(labeled “Train/test split” in Fig 2.4A). For the first method, enlargement of the

training set corresponds to a greater amount of data as well as data from more

diverse biological sources. For the second, data size increases but the biological

variation sampled is held constant. In both cases, accuracy plateaus at a number

of images on the order of 10,000 (Fig 2.4A). The rise in accuracy with increasing

training data size is only slightly more shallow with the first method, surprisingly,

demonstrating that within-sample variation is sufficient to train the network.
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FIGURE 2.4. Data augmentation. Examining the accuracy of the CNN as a
function of a) varying the training data size by adding images from biologically
distinct datasets (New datasets) or by adding images randomly from the full set of
images (Train/test split), and b) transformation of the data by image rotations and
reflections

. In (a), the two empty circles represent the inclusion of the datasets from empty
(germ-free) zebrafish intestines.

Data augmentation, the alteration of input images through mirror reflections,

rotations, cropping, and the addition of noise, etc., is commonly used in machine
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learning to enhance training dataset size and enable robust training of neural

networks. To characterize the utility of data augmentation for 3D bacterial images,

we focused in particular on image rotations and reflections, because the bacteria

have no preferred orientation and hence augmentation by these methods creates

realistic training images. We note that data augmentation is not necessary for

feature based learning methods in which parity and rotational invariance can

be built into the features used for classification. Obviously, augmented data is

not independent of the actual training data, and so does not supply wholly new

information. We were curious as to how including rotated and reflected versions of

previously seen data compares, in terms of network performance, to adding entirely

new data, a comparison that is useful if evaluating the necessity of performing

additional imaging experiments. To test this, we compared the accuracies of the

network when adding new data to that when adding rotated and reflected versions

of existing data. We started with a fixed number of 1500 total objects randomly

sampled from the entire set and, in the case of including new data, added another

random 1500 objects at each iteration. For the augmented data, we applied random

rotations and reflections to the original 1500 objects to iteratively increase the

training size by 1500 objects. Each trained network was tested on the same test set

of objects as that of Fig 2.4A. As shown in Fig 2.4B, the addition of new data leads

to a plateau in accuracy of roughly 90% while for augmented data the plateau value

is around 88%. This result demonstrates that, in the context of our network, simply

augmenting existing data can raise classification accuracy to nearly the optimal

level achieved by new, independent data.
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Transfer Learning

We assessed the accuracy of the convolutional neural network on images of

discrete gut bacteria of another species, of the genus Pseudomonas. Training solely

on the Vibrio images and testing on Pseudomonas gives ∼ 75% accuracy (Fig 2.5).

However, this is much lower than the ∼ 85 − 95% accuracy obtained on Vibrio

images (Fig 2.4); the Pseudomonas species is not an exact morphological mimic of

the Vibrio species. The Pseudomonas dataset is small (1190 images); using 80% of

its images for de novo neural network training gives ∼ 72% accuracy in identifying

Pseudomonas in test datasets (Fig 2.5). We suspected that the general similarity

of each species as rod-like, few-micron-long cells would allow transfer learning, in

which a model trained for one task is used as the starting point for training for

another task [62, 63]. Using the network weights from training on Vibrio image

datasets, as before, as the starting values for training on the small Pseudomonas

dataset gives over 85% accuracy in classifying Pseudomonas (Fig 2.5).

26



FIGURE 2.5. Transfer learning on new bacterial sSpecies. The accuracy of
Pseudomonas classification with convolutional neural networks trained in different
ways. “Vibrio” indicates training on images of Vibrio bacteria, “Pseudomonas”
indicates training on the small Pseudomonas image dataset, and “Transfer”
indicates using the Vibrio-derived network weights as the starting point for training
on Pseudomonas images. For training only on Vibrio images, the different data
points come from random weight initialization, random data ordering, and random
augmentation. For training only on Pseudomonas images, and for transfer learning,
the different data points are from random train/test splits of the Pseudomonas
data.

2.3. Discussion

We find that a 3D convolutional neural network for binary classification of

bacteria and non-bacterial objects in 3D microscopy data of the larval zebrafish

gut yields high accuracy without unreasonably large demands on the amount of

manually curated training data. Specifically, the convolutional neural network

obtains human-expert-level accuracy, runs 2-3 times faster than other standard

machine learning methods, and is consistent across different datasets and across

planktonic bacteria from two different genera through the use of transfer learning.
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It reaches these performance metrics after training on fewer than 10,000 human-

classified images, which require approximately 20 person-hours of manual curation

to generate. Moreover, augmented data in the form of rotations and reflections of

real data contributes effectively to network training, further reducing the required

manual labor. Experiments of the sort presented here typically involve many weeks

of laboratory work. Neural network training, therefore, is a relatively small fraction

of the total required time.

In many biological imaging experiments, including our own, variety and

similarity are both present. Multiple distinct species or cell types may exist,

each different, but with some morphological similarities. It is therefore useful

to ask whether such similarities can be exploited to constrain the demands of

neural network training. The concept of transfer learning addresses this issue,

and we find that applying it to our bacterial images achieves high accuracy

despite small labeled datasets, an observation that we suspect will apply to many

image-based studies. Transfer learning is a rapidly growing area of interest, with

an increasing number of tools and methods available. There are likely many

possibilities for further performance enhancements to network performance via

transfer learning, beyond the scope of this study. One commonly used approach is

to train initially on a large, publicly available, annotated dataset such as ImageNet.

It is not likely that ImageNet’s set of two-dimensional images of commonplace

objects will be better than actual 3D bacterial data for classifying 3D bacterial

images. Nonetheless, it would be interesting to examine whether training using

ImageNet or other standard datasets could establish primitive filters on which 3D

convolutional neural networks could build. In addition, given the rapid growth of

machine learning approaches in biology, it is likely that large, annotated datasets of
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particular relevance to tasks such as those described here will be developed, further

enabling transfer learning.

Though the data presented here came from a particular experimental system,

consisting of fluorescently labeled bacterial species within a larval zebrafish

intestine imaged with light sheet fluorescence microscopy, they exemplify general

features of many contemporary three-dimensional live imaging applications,

including large data size, high and variable backgrounds, optical aberrations, and

morphological heterogeneity. As such, we suggest that the lessons and analysis tools

provided here should be widely applicable to microbial communities [64] as well as

eukaryotic multicellular organisms.

We expect the use of convolutional neural networks in biological image

analysis to become increasingly widespread due to the combination of efficacy, as

illustrated here, and the existence of user-friendly tools, such as TensorFlow, that

make their implementation straightforward. We can imagine several extensions

of the work we have described. Considering gut bacteria in particular, extending

neural network methods to handle bacterial aggregates is called for by observations

of a continuum of planktonic and aggregated morphologies [12]. Considering 3D

images more generally, we note that the approach illustrated has as its first step

detection of candidate objects (blobs), which requires choices of thresholding and

filtering parameters. Alternatively, pixel-by-pixel segmentation is in principle

possible using recently developed network architectures [65, 66], which could

enable completely automated processing of 3D fluorescence images. In addition,

pixel-based identification of overall morphology (for example, the location of the

zebrafish gut) could further enhance classification accuracy, by incorporating
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anatomical information that constrains the possible locations of particular cell

types.

2.4. Future Directions

Since the publication of the above work, we have labeled more image data,

including many images of each of the species considered in Chapter 4. Through

transfer learning, this has allowed for accurate identification of each of these five

bacterial species. We are currently working to implement this single bacteria

identifier in combination with machine learning based algorithms to identify and

segment all of the bacterial clusters within an image as well as a full segmentation

of the 3D volume of the intestine, eliminating a great deal of image processing that

is presently done manually. This automation will allow for unprecedented study of

the spatial distributions of these bacterial species and will be a natural extension of

the work described in Chapter III of this thesis.
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CHAPTER III

SEMANTIC SEGMENTATION

3.1. Introduction

In trying to identify objects within complex, noisy biological image data,

one is often interested in identifying exactly which pixels within an image belong

to which object, a process known as semantic segmentation. Differentiating

tumors from healthy organ tissue within CT scans, abnormal brain lesions from

healthy brain tissue, or outlining an immune cell in a histological slide fall under

this category. Prior to the recent explosion of deep learning, there were many

techniques like simple thresholding, various clustering methods, and edge detection

that were employed with varying degrees of success but, at least for noisy complex

images, all required extensive manual curation and did not generalize well.

The initial attempts to realize semantic segmentation using deep learning

were performed using convolutional networks where the input image was the

neighboring pixels of a specified area centered around the pixel whose class one

wanted to determine [65]. In this manner, one would apply the network pixel

by pixel in a sliding window, classifying only a single pixel at a time to be of a

particular object as in figure 3.1. This algorithm was originally applied to segment

neuronal membranes from electron microscopy images with a great improvement

over previous competitors submissions to the ISBI 2012 EM Segmentation

Challenge [67]. It was quite generalizable as it required only hand labeled data and

no user determination of features. Despite its success compared with conventional
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segmentation methods, the technique is computationally expensive requiring as it

does rastering over the entire image labeling pixel-by-pixel with redundancy in the

overlap. It also suffers in accuracy as it only uses information from neighboring

pixels, ignoring the rest of the images content entirely when making a classification.

FIGURE 3.1. Pixel-by-pixel segmentation using convolutional neural
network. Left is the input image with a window of width and height w at the
center of which is the pixel to be classified. This window is passed through a
convolutional neural network, center, which classifies the pixel as belonging to
an object, in this example, gut or not-gut.

To decrease computational cost as well as include information from a

larger region than just the neighboring pixels, another architecture called a

“fully convolutional network” [68] was developed, Fig 3.2. This network consists

of a series of contracting convolutional layers followed by an equal number of

upsampling or transposed convolutional layers. In contrast to the previously

described network, this network takes in the entire image to be segmented and

outputs a segmentation of the full image in one pass. The lowest convolutional

layer, just prior to upsampling, is dimensionally reduced from the input image due

to the max pooling layers, in which one downsamples by taking the maximum

value in an n x n patch. Therefore, much of the information that is lost in the

downsampling convolutional side of the network is not retrieved in the upsampling

layers. This architecture does have the benefit though of segmenting an entire

image in a single pass as contrasted with the pixel-wise approach.

32



FIGURE 3.2. Example “fully convolutional netowrk” used for
segmentation. The image passes through a series of convolutional layers each
followed by max pooling. After this, upsampling in the form of backwards
convolution (deconvolution) is performed in series yielding a segmentation map.

In 2015, Ronneburger, Fischer and Brox of the University of Freiburg

proposed an elegant solution [66] to the loss of information in the downsampling

layers, which has since become one of the mostly widely used networks in semantic

segmentation. They devised a new architecture for semantic segmentation, called

U-net, that overcame the issue of high computational expense, the loss of full

image context, and the large amounts of hand labeled image data required. They

extended the concept of the fully convolutional network by concatenating the

output of each of the contracting convolutional layers with the corresponding

upsampled layers of equal sizing, Fig 3.3. Thus, their network did not suffer from

the dimensionally reduced loss of information of the original fully convolutional

network approach. A further discussion of the architecture follows in the next

section.
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FIGURE 3.3. Schematic of the U-net architecture. Similarly to the “fully
convolutional network”, a series of convolutional layers and max pooling are
performed followed by a series of up-convolutions. U-net also concatenates the
contracting path to the expanding path.

In the Parthasarathy lab, we work with 3D fluorescence microscopy images of

larval zebrafish with both fluorescently labeled host cells and inoculated fluorescent

bacteria [2, 6, 11, 12, 13, 14]. We also generate differential interference contrast

microscopy videos of the intestines of larval zebrafish which allows for the study

of gut motility. These two methodologies produce high content images with many

objects one may want to segment. The images are noisy, with variable signal to

noise ratio across the image in both space and time. I describe in this dissertation

segmentation of these types of images, though the method is straightforward to

extend to other segmentation problems, which will be discussed at the end of

this chapter. I have also implemented my own version of U-net using Python and

Tensorflow which allows for easy alteration of the network architecture.
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3.2. U-net’s Architecture and Our Implementation

U-net, as originally implemented in Ronneburger, Fischer and Broxs paper

[66], is schematically illustrated in Fig 3.3. The design is similar to that of an

autoencoder, another type of neural network. U-net begins with a series of

convolutional layers each of which is followed by max pooling, after which a series

of up-sampling and convolutional layers are employed. Note that this is nearly

identical to the network described previously but in contrast, each convolutional

layer from the down-sampling layer of same dimensionality is concatenated to the

up-sampled layer prior to convolutions. This appending allows for the weights of

the neurons in the downsampling layers to be appended to the upsampling layers,

bypassing the max pooling operations. This clever implementation allows for signal

to propagate across at each dimensionally reduced layer thus avoiding the loss

of information a network without these connections would have. The algorithm

uses valid padding in the max pooling layers so that, by the output layer in U-net,

there is a loss of border pixels. To overcome this edge loss and make sure that the

entire input image is segmented U-net needs to be provided with an image that has

been mirror padded to the appropriate size so that the segmented image is of same

dimensions as the input image before padding. The original implementation of U-

net uses was constrained in several ways so as to be implemented on a standard

Nvidia GPU. The input image was divided into smaller images, or tiles, using

padding where needed to ensure that each tile was of equal size. The second

computational limitation was the use of a batch size of one. To avoid jumps in

gradient descent caused by the loss being computed from individual images at a

time without the averaging one gets with a large batch size, a high momentum

(0.99) is used so that many of the previous training samples are included in the
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optimization step. The loss was determined using pixel-wise cross entropy and

a weight map was included in which particular sets of pixels on the image could

be given varying degrees of importance if say one wanted to make sure that the

algorithm was properly differentiation the same cell types that were adjacent in an

image. Lastly, in order to make the most of training samples, they implemented

data augmentation in the form of translations, rotations, grey value variations and

random elastic deformations.

My goal was to create a readily usable version of U-net and test it on

gut image data. The original U-net algorithm was implemented in Caffe [27].

Tensorflow was released several months before U-net’s publication and has since

become the dominant deep learning software with a strong community, widespread

use, heaps of documentation and easy integration with Python. Because of these

reasons I decided to implement a version of U-net written in Python and using

Tensorflow to build the network. My implementation of U-net closely follows that

of the original paper. The code allows for variable total network depth as a depth

of three works for many simple segmentation problems and has lower computational

requirement than the depth of four from the original paper. For the same reason

the number of kernels in the first layer is variable while the others follow the same

schema of doubling after each pooling layer and halving after each up-sampling

layer. The code uses cross entropy for its loss function but this can be replaced

with dice loss especially in cases in which there is a significant imbalance in class

weights. There is a tiling functionality that can be used as in the original paper

though this may be unnecessary, especially in cases in which the segmentation

problem is simple enough and downsampling of the image can reduce the image

and network size to a reasonable limit.
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FIGURE 3.4. DIC gut image with corresponding polygon mask. Example
DIC image with polygon from Ryan Baker’s software. (A) labels a closed lumen,
(B) labels interstitial fluid, (C) muscle tissue and (D) is a lumenal opening
containing a bacterial bolus. The scale bar is 100 µm.

3.3. Results

The intestine uses periodic contractions along its length for the transport

of materials. Using DIC one can image these periodic contractions in larval

zebrafish generating video from which one can abstract quantitative information

characterizing this gut motility. To this end, Ryan Baker, a former graduate

student in the Parthasarathy lab, created software [17] for analyzing gut motility.

In this software, the intestine is first outlined by hand creating polygons that have

only several points along the width of the image which is roughly 2,500 pixels in

length at a scale of 0.1625 microns per pixel, see Fig 3.4. The pixels interior to

these polygons are used to calculate a velocity field over time. The magnitude of

the dominant modes in Fourier space are determined from which one can obtain

both frequency and amplitude information thus enabling quantification of gut

motility. Currently, the software requires the user to approximate the intestinal
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outline using a polygon drawn on to the first frame of the video which are typically

several hundred to thousands of frames in length. There are several issues with

this technique; it requires manual curation by the user, the fish can drift during

the course of imaging rendering the original polygon incorrect, and it does not

distinguish between the intestinal lining and the lumen, or interior of the gut.

This last point is particularly important in fish in which the lumenal opening is

large either due to a bacterial aggregate, food, or a host genetic mutation. Fig 3.5

Shows 10 example images taken from videos from different larval zebrafish. Note

the variable lumen sizes, thickness of intestinal lining, blurriness, pixel intensities

and gut contents.

FIGURE 3.5. Example DIC gut images showing variable noise and quality.
Each image is of a different fish. The scale bar is 100 µm.

To address the previously mentioned issues, I was interested in applying U-net

to enable segmentation that requires no user input, could more precisely outline

the intestine and track any drift in the intestine over time. I trained U-net with

a network depth of 3 and 32 kernels in the initial layer, using 480 hand labeled
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images taken from 48 different videos of larval zebrafish intestines. In addition

to visually examining the output, I also quantified the algorithm’s segmentation

using images from 2 separate fish not contained in the training data, comparing

with manual (human) segmentation performed by two people. The resulting

segmentation is shown in Fig 3.6. The accuracy was evaluated by calculating the

dice loss,

dice = 1− 2× |X ∩ Y |
|X|+ |Y |

, (3.1)

where X and Y represent the set of pixels identified as gut or exterior pixels

respectively. U-net’s segmentation does quite well, especially considering the large

variance in intensity in the image on the left of Fig 3.6 as well as the significant

blurring and large lumenal space on the image on the right. The dice loss in

between U-net and the two humans for the closed lumen example on the left of

Fig 3.6 is 0.48 for both while the dice loss between humans is 0.46. For the more

challenging, open-lumen image on the right, the dice loss is higher between U-net

and each human (0.104, 0.092) than between the two humans (0.081).
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FIGURE 3.6. U-net segmentation on DIC gut images. DIC image followed
by two different human’s masks and finally the predicted mask using U-net. The
dice loss is given between the two human’s on the Human 1 mask panel. The dice
losses between U-net and human 1 and human 2 are shown on the left and right
respectively of each U-net image. The scale bars are 100 µm.

In an attempt to avoid the issue of tracking the lumenal space, we created

masks of each of the 480 images in which the lumen was excluded from the mask

of the gut as displayed in Fig 3.7. Using a deeper version of U-net (depth=4), and

starting with 32 kernels in the first layer, U-net is able to differentiate lumen from

gut with a lower dice loss between it and each human (0.174, 0.215) than the dice

loss between the two humans (0.235) in the image with the open lumen implying

that the automated segmentation is at least as good as human identification of the

gut.
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FIGURE 3.7. U-net segmentation on DIC gut images excluding lumen.
DIC image followed by two different human’s masks and finally the predicted mask
using U-net of the intestine excluding the lumen. The scale bars are 100 µm.

3.4. Discussion

The resulting segmentation using U-net is certainly more accurate and

automated than the current practice of creating a single polygon for each movie.

It also has the potential to be immune to drift as was lacking in the previous

technique. Having the segmentation hug the intestinal lining may allow for a

new metric for quantifying gut motility that relies directly on the intestinal shape

instead of using particle image velocimetry of the entire image. Insensitivity to the

contents of the lumen will allow for a more accurate quantification of gut motility,

not confounded by the dynamics of gut contents, enabling studies of gut motility

in fed fish, or fish with unusual microbial communities, both of which are presently

very challenging. Furthermore, tracking the lumen and its contents could allow for

better quantification of the mechanics of intestinal transport which are crucial to

the biophysics of intestinal populations.
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CHAPTER IV

MULTI-SPECIES MICROBIAL INTERACTIONS IN LARVAL ZEBRAFISH

This chapter contains as yet unpublished co-authored material with

contributions from Raghuveer Parthasarathy, Dylan Martins, Deepika

Sundarraman, Drew Shields and Noah Pettinari. In this work, I contributed to

designing the research, performing the research, analyzing the data, and writing the

paper.

4.1. Introduction

Intestinal microbes exist in diverse, highly complex and heterogeneous communities

containing dozens to hundreds of taxonomically diverse species including viruses,

eukaryotes, archaea and prokaryotes. The composition of these communities

varies across individuals and is crucial to the health of the host, having been

shown to be correlated with a wide range of diseases [69, 70], the development

of various organs [71, 72], and immune regulation [73]. Despite the importance

of these intestinal communities, the determinants of their composition remain

largely unknown. The vast majority of studies on intestinal microbiota have been

performed on naturally assembled microbiomes by sequencing DNA extracted from

fecal samples. Though this approach provides powerful insights into the species

and genes present in the gut, it suffers from severe limitations. For example,

one is sampling only the microbes that have exited the host, which may not be

representative of the intestinal community [74]. Furthermore, sequencing data

typically provide relative, rather than absolute, microbial abundances, from which

it is fundamentally challenging to accurately infer interactions between species [30].
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Our lack of understanding of the rules governing the composition of these intestinal

microbial communities hinders our ability to deliberately alter these communities

for therapeutic ends.

An alternative approach to attempting to deduce interactions from natural,

complex host-microbiota systems is to build such systems from the bottom-up,

using model organisms, techniques for generating initially germ-free animals, and

well-defined sets of small numbers of microbial species. Recent work along these

lines has been performed using the nematode C. elegans [75] and the fruit fly D.

melanogaster [76, 77], described further below. However, it is unclear whether these

results translate to a vertebrate gut, which has both greater anatomical complexity

and more specific microbial selection [9]. To address this, we implement a bottom-

up approach of measuring bacterial interactions in larval zebrafish, Fig 4.1 (a), a

model organism amenable to gnotobiotic techniques [61, 78], which has enabled in

earlier work delineation of specific interbacterial competition mechanisms related to

intestinal transport [11, 13] as was discussed in the Introduction.

A key question for understanding microbial community assembly is whether

inter-species interactions, either cooperative or competitive, are pairwise additive.

In other words, is characterization of interactions between all pairs of microbial

species sufficient to explain outcomes when more than two species are present, or

are higher-order interactions important? Recent work using well-defined bacterial

assemblies in Drosophila melanogaster found significant higher-order interactions,

influencing host traits such as lifespan [76]. In contrast, analogous experiments in

C. elegans showed that interactions could be considered pairwise additive, with a

high level of predictivity for several-species communities given two-species data [77].
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To assess inter-microbial interactions in the zebrafish gut, especially with

respect to evaluating the potential role of higher-order interactions, we performed

inoculations of initially germ-free larval zebrafish with specific subsets of five

different species of bacteria and assessed the absolute abundance of each species

two days post-inoculation. The five species are phylogenetically distinct, Fig 4.1

(c), and are native to and commonly found in the zebrafish gut [10]. Though the

number of species is considerably fewer than the hundreds that may be present in

a normal zebrafish intestine, it is large enough to sample a range of higher-order

interactions, yet small enough that the possible permutations of species is tractable.

As detailed below, we find strong pairwise interactions between certain bacteria.

However, we find weaker interactions and a much higher than expected level of

multi-species coexistence in fish colonized by 4 or 5 bacterial species. This suggests

that measurements of pairwise inter-microbial interactions are insufficient to predict

the composition of multispecies gut communities, and that higher-order interactions

may dampen strong competition.
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FIGURE 4.1. Image of larval zebrafish and bacterial species investigated.
(a) A 7 day post fertilization larval zebrafish; the dotted curve outlines the
intestine. Scale bar: 500 µm. (b) photograph of all five bacterial species plated
on HiChrome universal agar on which all five species can be seen to grow to
different colors and morphologies (c) Phylogenetic tree of the five bacterial species
used in the experiment, also indicating the color scheme and abbreviations used
throughout the text. Numbers indicate [whatever] metric of genetic distance. (d)
The abundance per zebrafish gut of each of the five bacterial species when colonized
in mono-association with the host, assessed as colony forming units (CFU) from
plated gut contents. The violin plots indicate the distribution of CFU values, with
the median and quartiles indicated by dashed lines, in N = [35, 26, 18, 25, 25] fish
(left to right).

4.2. Methods
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Zebrafish were derived to be germ-free and housed in 15 mL flasks containing 5-

15 fish. At 5 days post-fertilization (dpf) the fish were inoculated with the desired

combination of microbial species by addition of bacteria to the flasks housing the

fish to a density of roughly 106 cells/mL. The five bacteria used in this experiment

were isolated from zebrafish at the University of Oregon’s Zebrafish Facility. They

are Enterobacter sp. ZOR0014, Pseudomonas mendocina ZWU0006, Aeromonas

sp. ZOR0001, Acinetobacter calcoaceticus ZOR0008, and Plesiomonas sp.

ZOR0011. Approximately 48 hours after inoculation, fish intestines were removed

by dissection, a process done by hand under a microscope. Following dissection, the

gut was placed in 500 µL of sterile embryo medium (EM) and the contents were

homogenized by vortexing the gut with the addition of zirconium oxide pellets.

The slurry was then diluted by each a factor of ten and a factor of one hundred

and then 100 µL from each of these dilutions were plated onto HiCrome Universal

agar from Sigma Aldrich. In this media, secreted enzymes from each of the five

candidate bacterial species generate particular colors due to substrates in the

chromogenic medium, allowing quantification of colony forming units (CFUs), Fig

4.1 (b). With the dilution factors used, this yields a detection limit of roughly of 25

bacteria per gut, and therefore we can obtain the absolute intestinal abundance of

each of the five bacterial species in any combination.

4.3. Results

This experiment is ongoing and so as a result, interpretations presented in this

dissertation are subject to change. In particular, additional data on mono-

association abundances for the five species studied here may clarify their mean
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values and distributions, affecting the inference of interaction parameters as

described below. Nonetheless, the conclusions as presented are drawn from a large

body of data, and we think large changes of interpretation are unlikely.

As noted earlier, the five species examined in this experiment were selected as

diverse representatives of genera commonly found in the zebrafish intestine. We will

refer to these through most of the text by genus name or two letter abbreviation:

Acinetobacter (AC), Aeromonas (AE), Enterobacter (EN), Plesiomonas (PL), and

Pseudomonas (PS). As expected, each species in mono-association, i.e. as the sole

species inoculated with germ-free fish, colonizes robustly to an abundance of 103 −

104 CFU/gut, corresponding to an in vivo density of approximately 109 − 1010

bacteria/ml Fig 4.1 (d).

We first examined all ten possible co-inoculations of five species, which

enables assessment of interactions between pairs in the absence of higher-order

effects. Assessment of intestinal CFUs shows a wide range of outcomes for different

species pairs, indicating a range of interaction strengths. As exemplars, the

CFUs per gut for two of these species, AE and EN in the presence of each of

the other four, are displayed in Fig 4.2 (a) and (b) respectively. The abundance

of Aeromonas is similar in the presence of any other species as it is in mono-

association. In contrast, the mean Enterobacter count is similar to its mono-

association value if co-inoculated with Plesiomonas or Pseudomonas, but orders

of magnitude lower if co-inoculated with Acinetobacter or Aeromonas, implying in

the latter causes strong negative interactions.
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FIGURE 4.2. Pairwise bacterial interactions. Split violin plots of the
abundances per zebrafish gut of (a) AE and (b) EN in mono-association (left curve,
repeated in each plot) and in di-association with each of the other bacterial species
(right curve). Medians and quartiles are indicated by dashed lines. (c) Matrix of
pairwise interaction coefficients determined from a linear additive model, described
in the text. The mean and standard deviations as determined from bootstrap
sampling are included. (d) The average total bacterial load in each of the di-
association combinations, expressed as log10 of total CFUs. The diagonal values
are the mono-association load for each of the five species.

There are many ways to quantify interactions from population data. We

assume that the log abundance, < log10 (pi) >, of a bacterial species, i in the

presence of j, grows like,

d < log10 (pi) >

dt
= rif (< log10 (pi) >)

1−
< log10 (pi) > −

∑
j 6=i

Cij < log10 (pj) >

< log10 (ki) >

 ,
(4.1)
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where f(< log10 (pi) >) is some function of the log of the bacterial abundance,

ri is the growth rate, ki is the carrying capacity, N is the number of bacterial

species, and Cij are the interaction coefficients. This equation is similar to the

competitive Lotka-Volterra equation in which one has uninhibited growth followed

by an asymptotic plateau to the bacteria’s carrying capacity. However, here we

posit that the log of the abundance follows these dynamics instead of the total

bacterial abundance. We make this assumption as our bacterial abundances are

log-normally distributed as can be seen in Fig 4.1 (d). Importantly, the effects are

large enough to shift the abundance by orders of magnitude, so that interactions

proportional to log of the population are sensible to assume. Under the assumption

that the bacteria have reached steady state, Eq 4.1 becomes,

< log10 (ki) > = < log10 (pi) > −
∑
j 6=i

Cij < log10 (pj) > . (4.2)

In the case of only two interacting bacterial species we obtain,

< log10
(
pIi
)
> = < log10

(
pIIi
)
> − Cij < log10

(
pIIj
)
> . (4.3)

The Roman numerals denote the the number of inoculated bacteria; I represents

mono-association and II, di-association. Note that we are making the assumption

that the mean log carrying capacity for a bacteria is its mean log abundance in

mono-association, i.e. < log10 (ki) >=< log10
(
pIi
)
>. Rearranging yields,

Cij =
< log10

(
pIIi
)
> − < log10

(
pIi
)
>

< log10
(
pIIj
)
>

, (4.4)

from which we can find the pairwise bacterial interaction coefficients, Cij. A

negative interaction coefficient means that a bacterial species decreases the
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diassociation abundance of another species from that of its mono-associated

abundance. In our calculation of the interaction coefficients, we only used data

in which both bacterial species were present so as not to include fish in which a

particular bacterial species failed to colonize. Fig 4.2 (c) shows these interaction

coefficients for each of the bacterial species acting on one another. Bootstrap

sampling from the measured sets of bacterial abundances gives the mean and

standard deviation of the estimated interaction parameters, Cij, of species j on

species i. As expected, AE has no significant interaction coefficients acting on

it. AC has several significant positive interactions while EN, PL and to a lesser

degree PS have significant negative interactions acting upon them. The load, or

total number of bacteria per gut disregarding species type, is similar for all of the

di-associations as shown in Fig 4.2 (d).

To see whether these pairwise interactions have predictive power, we consider

co-inoculation of all five bacterial species. Examination of over 200 fish shows a

large variety of outcomes, depicted in Fig 4.3 (a) as the relative abundance of each

species in each larval gut. Multiple species are able to coexist, with the median

number of species present being 4, Fig 4.3 (b). The mean total bacterial load as

well as its distribution is similar to the mean and distribution of the mono- and di-

association experiments, as well as four-species inoculations discussed below, Fig

4.3 (c).
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FIGURE 4.3. Pairwise prediction of the five species community. (a) Stacked
bar plot of the relative abundance of the five bacterial species when all five were
co-inoculated. Each bar is a single dissected fish and are ordered by total load. (b)
Histogram of the total number of bacterial species from the 5-species inoculations.
(c) Violin plots of the total load as a function of total number of inoculated
species. (d) Prediction of the abundance of the five different bacterial species from
the linear additive model compared to the actual abundance from the 5-species
inoculations.

We assess the expected presence and absence of each species, and more

precisely the expected numerical abundance of each as determined from the steady
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state of Eq. 4.1. The predicted abundance of species i in the presence of species j

in the five species case is given by

< log10
(
pIi
)
> = < log10

(
pVi
)
> −

∑
j 6=i

Cij < log10
(
pVj
)
> . (4.5)

Rearranging and in matrix form,

< log10
(
p̂Vi
)
> = Ĉ−1 < log10

(
p̂Ii
)
>, (4.6)

where the roman numeral represents is the number of species present, and Ĉ is the

interaction matrix where Ĉii = 1 and the off diagonal elements Ĉij = −Cij. We

can use Eq. 4.6 with bootstrap sampling to get a prediction of the abundance of

each of the five bacterial species when all are co-inoculated and compare to our

results from dissection. The predictions as well as the five species data are shown in

Fig 4.3 (d). Interestingly, the mean predictions for both EN and PL fall below the

detection limit of 25 bacteria per gut as represented by the dashed horizontal line.

Thus, in our system, the pairwise interactions fail to predict the abundances in the

five species communities. Instead, the strong negative interactions, Cij, from the

pairwise inoculations predict near extinction of two of the species that is not seen

in the data. Note that the predicted mean abundances for AC, PS and in particular

AE are not too far from the means of the data. This failure of prediction suggest

that higher order interactions are at play than those calculated using our model.

To further explore the role of pairwise interactions of these bacteria, we can

determine the apparent pairwise interactions between species in the 4 and 5 species

communities similar to Robert Paine’s experiment on the abundance of species

commonly found in tide pools [79] in which he explored the effects of removing a
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species from a community on other species in that community. In analogy to Eq

4.6, the apparent 4-5 interaction coefficients, C̃ij, are given by,

C̃ij =
< log10

(
pVi
)
> − < log10

(
pIVi

)
>

< log10
(
pVj
)
>

. (4.7)

We performed all five possible different co-inoculations of four bacterial

species, and assessed the interaction between species i and j in this multi-species

system by the difference in abundance of species i lacking species j and in the five-

species system as in Eq. 4.7. Thus, we examing all four species communities as well

as those four species plus the fifth remain species in order to see the effects of the

fifth species on each of the original four. In our analysis, we only included fish in

which all four bacterial species were present which resulted in approximately 11 fish

per co-inoculation. As an example, EN abundance in inoculations lacking AC, PL,

PS, and AE, as well as its abundance in five-species inoculations, are shown in Fig

4.4 (a). It can be seen that EN does not experience the large abundance change,

in either its mean or variance, that we found in the di-association experiments.

Again, using bootstrap sampling we determine the mean and standard deviation of

the apparent 4-5 interaction coefficients, C̃ij, which are shown in Fig 4.4 (b). Note

that there are no strong negative interaction coefficients in contrast to the pairwise

interactions. In fact, the apparent multispecies interactions, C̃ij, tend to be more

positive than their pairwise counterparts, Cij, as shown in Fig 4.4 (c).
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FIGURE 4.4. 4 and 5 bacterial species interactions. (a) violin plot of the
total abundance of EN in the 5-species experiment, left side, and each of the
4-species experiments, right side. (b) 4-5 species interaction coefficients. The
mean and standard deviation for each coefficient are included as determined from
bootstrap sampling. (c) The 4-5 interactions plotted against the 1-2 interactions
from Figure 2.

4.4. Conclusions

Our in-vivo study of bacterial interactions using initially germ-free larval

zebrafish allows for a controlled, bottom-up approach to probing bacterial

interactions in both pairwise inoculated as well as in multi-species communities.

We find strong negative interactions between two co-inoculated bacterial species

in contrast with more positive interactions in the 4 or 5 species communities. This
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could explain why we see a recovery of EN and PL in the five species data when

compared to the predictions. Our data imply that higher-order interactions may

dampen strong competition between species and therefore foster greater diversity

than may be expected from pairwise models. There are many possible causes for

this enhanced coexistence, including new metabolic interactions, or partitioning

into spatial niches or domains. From earlier work [14] different species in isolation

have very different physical organization, and it would be unprecedented to

discover alterations of these patterns by co-resident species. To further explore

what is driving these higher order interactions our lab plans to study the spatial

distribution of these bacteria within the gut. We also plan to complete all ten

combinations of 3-species co-inoculations in order to see what apparent 2-3 and

3-4 interactions look like and to see if interaction strength monotonically decreases

with number of species.
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