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THESIS ABSTRACT 
 
William Bartholomew Niday 
 
Master of Science 
 
Department of Earth Sciences 
 
September 2019 
 
Title: Origins of Complex Seismic Anisotropy beneath the Wallowa Mountains, 

Northeast Oregon 
 
 

We use a dense network of observations and an automated method of 

analysis to investigate complex patterns of seismic anisotropy in eastern Oregon. 

We present SKS splitting results for approximately 220 broadband seismic 

stations in the Pacific Northwest, including 33 stations from the new Wallowa2 

array deployed between 2016 and 2018 in northeast Oregon. Our data set 

contains approximately 3300 splitting measurements. 

Over most of the Pacific Northwest, SKS splitting is consistent with a 

conceptual model of broadly east-west mantle flow redirected in places by 

lithospheric strength variations. However, splitting analysis performs poorly in 

northeast Oregon, and results are not consistent with uniform or layered 

anisotropy. We argue that anisotropy in NE Oregon is laterally heterogeneous on 

small scale, and propose a model that attributes complex splitting behavior to the 

seismically imaged Wallowa high-velocity anomaly. 
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I: INTRODUCTION 

Because shear deformation in the upper mantle produces a lattice 

preferred orientation (LPO) of anisotropic mineral crystals (mostly olivine), 

observations of seismic anisotropy can provide a valuable constraint on the 

geometry of mantle flow. Measuring the splitting of core-refracted shear waves 

such as SKS is one of the most well-studied and direct ways of quantifying 

seismic anisotropy. Because of its near vertical incidence, SKS splitting provides 

good constraints on lateral variation of anisotropy but little direct information 

about vertical variation. Furthermore, standard methods for shear-wave splitting 

analysis make important assumptions about the nature of anisotropy (that the 

seismic wave only samples one anisotropic system, which lies in the horizontal 

plane) and of the seismic waves (that seismic waves are only sensitive to material 

along the raypath). If these assumptions do not hold, such as if the upper mantle 

is strongly heterogeneous on the scale of seismic wavelengths, the relationship 

between shear-wave splitting and anisotropy may be complex. 

The upper mantle in the Pacific Northwest is strongly heterogeneous on 

the scale of seismic wavelengths. Prominent seismically imaged structures in the 

Pacific Northwest are the high-velocity Juan de Fuca slab, low-velocity anomalies 

under north central Oregon and the Snake River Plain, and two separate high-

velocity bodies beneath northeast Oregon and northern Idaho. Darold and 

Humphreys (2013) argue that the latter structures are fragments of Farallon 

oceanic lithosphere that detached from the North American continent at 
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approximately 16 and 53 Ma, respectively. Mantle flow associated with their 

detachment would have occurred from 55-16 Ma; however, for the overall pattern 

of mantle flow other factors, such as Cascadia slab rollback (e.g., Druken et al., 

2011) and plume flattening (e.g., Lowry et al., 2000) are also likely to be 

important. 

Geodynamic modeling studies (e.g. Becker et al., 2006; Liu and Stegman, 

2011; Zhou et al., 2018; Wang and Becker, 2019) have had success matching 

splitting-derived anisotropy in the western US with coupled models of mantle 

flow and fabric development. In general, geodynamic models agree that east-west 

oriented anisotropy in the PNW is due to east-directed mantle flow (relative to 

the North American plate). However, geodynamic models do not perform well at 

matching smaller-scale variations in anisotropy. Wang and Becker (2019) find 

that including strong cratonic roots and continental-scale mantle density 

structure inferred from seismic images significantly improves predicted 

anisotropy over models of plate-driven flow alone, but including higher-

resolution models of density and craton geometry does not improve the fit to 

observations. Because the regional models perform well, we believe the 

assumption that anisotropy indicates horizontal mantle flow is valid, but it may 

not hold on small scales. 

Geodetic observations indicate that crustal deformation in the Pacific 

Northwest is primarily as a rigid block rotation around a pole in central Idaho, 

with minimal strain accumulation south of the Seattle-Yakima thrust belt. The 



 

 

3 

discrepancy between crustal and mantle deformation implies either that the crust 

and mantle are mechanically decoupled or that the crust is strong enough to 

resist the basal tractions resulting from mantle flow (McCaffrey et al., 2013). 

Castellanos et al. (2019a, b) find that crustal anisotropy in the region (and 

inferred lower crustal flow) does not correlate with mantle strain, and propose a 

model where the crust is decoupled from lateral basal tractions. In their model 

the vertical loading associated with the Wallowa and Farallon high-velocity 

bodies drives crustal flow. Any anisotropy produced by asthenospheric flow 

during their detachment would likely have been overprinted by the last 16 million 

years of strain. 

 

Previous Work 

Although no studies have focused on complex anisotropy in northeast 

Oregon, there are several avenues of evidence in the region. Long et al. (2009) 

studied shear-wave splitting in eastern Oregon with the High Lava Plains and 

Wallowa1 broadband seismic networks, finding a relatively coherent east-west 

fast axis orientation with very large delay times in southeast Oregon. For stations 

in NE Oregon, they found fewer and less consistent splitting measurements, 

which they attributed to a component of lithospheric anisotropy (as opposed to 

pure asthenospheric flow in SE Oregon). 

Lin et al. (2010) fit observed shear-wave splitting with a model including 

surface wave measurements of crustal and uppermost mantle anisotropy and a 
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smoothly varying asthenosphere, which performs well in most of the western US 

but poorly in NE Oregon (although few measurements are available). We also 

note that in the shear-wave splitting database of Yang et al. (2016), there are 

relatively few non-null measurements for stations in northeast Oregon despite a 

good station and back azimuth distribution. However, the splitting times for non-

null measurements in northeast Oregon are significant (~1.2 s), implying that the 

frequent null measurements are not simply a result of small or vertically oriented 

anisotropy. 

We integrate data from the EarthScope USArray and several regional 

seismic arrays to investigate shear-wave splitting in the Pacific Northwest, with a 

focus on northeast Oregon. We use a very dense network of broadband seismic 

observations to characterize splitting in the tectonically complicated region of 

northeast Oregon, and attempt to place the complex anisotropy there in the 

context of regional tectonic models; in particular, to understand the role of the 

high-velocity Wallowa anomaly. 
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II: METHODS 

Data Collection 

We use data from approximately 220 broadband seismic stations in the 

IRIS DMC (Figure 1). These include stations from the U.S. National Seismic 

Network, USArray Transportable Array, Pacific Northwest Seismic Network, and 

several campaign seismic arrays including recently acquired data from the IDOR 

and Wallowa2 arrays. We obtain seismograms for earthquakes magnitude (mb 

and mw) greater than 5.5 (usually greater than 6) and in the distance range of 85-

120°, where the SKS phase amplitudes are significant. The resulting set of 

earthquakes is dominated by events with back azimuths between 225° and 315° 

(Figure 2). 

Radial SKS arrivals are automatically picked using a 30 second window 

centered around the estimated travel time from the TauP package (Crotwell et al., 

1999). An automatic quality control step discards seismograms with a signal-to-

noise ratio of less than three when band-pass filtered to between 0.02 and 0.25 

Hz. The automatic picks are then manually checked to remove duplicate events 

and instrument errors, and ensure that the SKS window does not overlap with 

other phases. Approximately 5000 seismograms remain after quality control. 
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Splitting Measurement 

The most widely used methods for measuring shear-wave splitting from an 

individual record are the rotation correlation method [RC] (Bowman & Ando, 

1987) and transverse component minimization method [SC] (Silver & Chan, 

Shear wave splitting and subcontinental mantle deformation, 1991), both of 

which are implemented in the commonly used SplitLab package (Wüstefeld et al., 

2008). Both methods assume that anisotropy produces two identically shaped, 

orthogonally polarized pulses, implying a vertically incident ray and a single 

horizontal anisotropic layer. More complex anisotropy results in frequent ‘null 

splits’ and azimuthal variation in ‘apparent’ splitting parameters. Variations in 

apparent splitting at a single station can be used to identify multilayered or 

dipping anisotropy (e.g., Silver and Savage, 1994), but this requires better 

azimuthal coverage than is typically available. 

This study uses the cross-convolution method [ML] of Menke and Levin 

(2003) to measure shear-wave splitting. ML assumes that the observed radial 

(𝑉𝑉(𝑡𝑡)) and transverse (𝐻𝐻(𝑡𝑡)) waveforms are each the convolution of a common 

source wavelet 𝑠𝑠(𝑡𝑡) with the impulse response functions 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) and ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡). If 

an anisotropic model 𝑚𝑚 has impulse responses 𝑣𝑣(𝑚𝑚, 𝑡𝑡) and ℎ(𝑚𝑚, 𝑡𝑡), the model 

predicts radial and transverse waveforms 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) ∗ 𝑣𝑣(𝑚𝑚, 𝑡𝑡) and 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) =

𝑠𝑠(𝑡𝑡) ∗ ℎ(𝑚𝑚, 𝑡𝑡). If 𝑚𝑚 is a good model, then 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) ≈ 𝑉𝑉(𝑡𝑡) and 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) ≈ 𝐻𝐻(𝑡𝑡), and 

thus 𝑣𝑣(𝑚𝑚, 𝑡𝑡) ∗ 𝐻𝐻(𝑡𝑡) ≈ ℎ(𝑚𝑚, 𝑡𝑡) ∗ 𝑉𝑉(𝑡𝑡). We search for a model that minimizes the 

normalized difference 𝐸𝐸(𝑚𝑚) between the two ‘cross convolution’ waveforms 
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𝑣𝑣(𝑚𝑚, 𝑡𝑡) ∗ 𝐻𝐻(𝑡𝑡) and ℎ(𝑚𝑚, 𝑡𝑡) ∗ 𝑉𝑉(𝑡𝑡). Figure 6 shows a graphical example of the cross-

convolution method. 

Since ML does not assume the fast and slow pulses are identically shaped, 

it can directly assess complex models without the need for apparent splitting 

parameters, and it does not require as complete a back-azimuth distribution 

(Menke and Levin, 2003). We also find it to be more robust in the presence of 

noise, which permits a more automated workflow than that of SplitLab: no 

waveform filtering is necessary, and small changes in the time window have little 

effect on the measurement. 

We use the ML method to measure splitting for each seismogram 

assuming a single-layer model, and determine splitting at each station (Figure 4) 

by choosing the model that minimizes the total misfit across all events recorded 

by that station. We also tried two-layer models (discussed below), but with little 

success. For events with published splitting measurements (e.g., Yang et al., 

2014), ML results are typically very similar to other methods. 

Like the SC and RC methods, the ML method returns ‘null-split’ 

measurements when a seismogram is noisy, the polarization direction coincides 

with the fast or slow direction of anisotropy, or the single-layer model does not fit 

the observations well. In the ML results, null measurements tend to have large 

delay times and best-fitting models with fast directions parallel to the back 

azimuth. Null and noisy measurements do not need to be removed when 

calculating splitting parameters at a station, but we apply an additional automatic 
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quality control step to remove these questionable results from our plots of results 

for individual events. We discard all events with unphysically large delay times 

(>4 s), then fit a smooth model to the remaining measurements and discard 

events more than 2.5 standard deviations from the smooth model. With nulls 

removed, the data set includes approximately 3100 measurements (Figure 3). 
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III: RESULTS AND DISCUSSION 

SKS Splits 

Comparing seismograms across the region, we find that radial component 

SKS arrivals for the same events look similar at stations in NE and SE Oregon. 

Transverse SKS arrivals often differ between stations (as expected, if anisotropy 

varies across the region), but we find that most events produce well defined 

transverse SKS arrivals across the region. We do not see a systematic difference 

in noise characteristics between stations in NE and SE Oregon. 

The fast axes of shear wave splitting measured at stations (Figure 4) tend 

to be oriented east-northeast. Fast axes beneath the Blue Mountains trend more 

northeast, and trend southeast in the western Snake River Plain. Delay times are 

quite variable, with maximum split times of ~2 s in the High Lava Plains 

decreasing to an average of ~1 s in northeast Oregon and nearby areas. Splitting 

measurements vary smoothly below stations, and we see no outliers among 

stations with >10 measurements (stations with <10 measurements are omitted 

from the figure for clarity). 

In Figure 3 we back project the individual splitting events to their ray 

piercing points at a depth of 200 km (chosen visually to maximize the coherency 

of the plot). Because of the nonuniform distribution of global seismicity our data 

are dominated by events with back azimuths pointing to the west, and a large 

number of piercing points cluster to the west of the north-south oriented 

Wallowa2 array. 
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If complex SKS waveforms in NE Oregon were a result of near-field effects 

such as topographic signal-generated noise or crustal anisotropy, we would 

expect to see systematic differences in events with nearby piercing points 

measured at separate stations (with rays sampling the same mantle volume, but 

different regions of the crust). However, we do not see such a difference – results 

with nearby piercing points are consistent from station to station.  Well 

constrained measurements with significantly different parameters overlap, but 

the variation in parameters does not appear to depend on station location. 

We also produced a map of averaged splitting results (Figure 5). For each 

location, we stack the results shown in Figure 4 that are within 50 km of the 

location, with weighting a gaussian function of distance. In areas that are well 

covered by rays at 200 km depth, this map is overall similar to the station-

averaged splitting map. Other than a poorly sampled region of northern Idaho, 

splitting time reaches a minimum of ~0.8 s in the northeast corner of Oregon, 

where the average fast direction also rotates from east-northeast to north-

northeast. Although this region of Oregon is not especially well sampled, the 

events shown there in Figure 3 include back azimuths facing both east and west, 

and the feature persists when averaging over larger bins. 

We also tested for frequency dependence in the splitting results, which is 

associated with spatial variations in anisotropy. Splitting in both NE and SE 

Oregon varies somewhat depending on the frequency band, but we observe the 

highest degree of variability in NE Oregon. Although the effects of spatially 
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varying anisotropy are complex, higher frequencies are more sensitive at 

shallower depths (Saltzer et al., 2000). We note that if the seismograms are 

filtered at longer periods (i.e., 20-50 s), splitting is similar in NE and SE Oregon. 

 

Complex Anisotropy 

As a simple way of assessing the evidence for complex anisotropy, we use 

the Menke and Levin (2003) misfit statistic 𝐸𝐸(𝒎𝒎) between individual 

measurements of 𝐸𝐸(𝒎𝒎) at each station. A vertically incident ray on a uniform 

anisotropic fabric with a horizontal fast axis produces identically shaped fast and 

slow pulses, and in the absence of noise the two cross-convolution waveforms 

match perfectly (e.g., Figure 6a and b). If the anisotropy is more complex, the fast 

and slow pulses are not generally identically shaped, and the cross-convolution 

waveforms do not match (e.g., Figure 6c and d). 

For both the stacked station models (Figure 7a) and single event results 

(Figure 6b), we observe coherent patterns in the geographical distribution of 

misfit. Misfit is generally low on the periphery of the study region and increases 

toward NE Oregon. However, even though the average misfit increases in NE 

Oregon we observe many individual results with small misfit values. Although 

noisier records have greater misfit values, and individual events with greatest 

misfits tend to be noisy, records at stations in NE Oregon are not noisier than in 

the rest of the region. This suggests the poor misfit values in the NE Oregon 
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region indicate an anisotropy that is not well modeled by a single horizontal 

layer. 

Considering the poor fit in NE Oregon, we also searched for two-layer 

models. Menke and Levin (2003) note that two-layer models are prone to 

overfitting because the four-parameter model (the fast axis orientation and delay 

time for each layer) is nonunique, and a two layer model with nearly parallel or 

perpendicular fast axis orientations is nearly equivalent to a single layer model. 

The ML method can theoretically identify two layers of anisotropy from a single 

record, but given that two-layer models are poorly constrained we stacked results 

from events with nearby piercing points. We apply an f-test to each two-layer 

result and retain only the models that improve the one-layer misfit statistic at a 

95% confidence level. 

Figure 8 shows the results of two-layer modeling. Where the two-layer 

models are successful, one of the layers is typically oriented close to the 

orientation of the best-fitting single layer model. The two-layer models often give 

a statistically significant improvement in the cross-convolution misfit, but misfit 

values are still much larger in NE Oregon. In many cases the best-fitting fast axes 

are near perpendicular and one layer is parallel to the single-layer model, 

suggesting that the variance reduction is due to overfitting of noise. The 

consistency of the results suggests that anisotropy varies with depth, but a two-

layer model does not appear to be enough to describe anisotropy in northeast 

Oregon. However, we note that the most densely sampled area of the High Lava 
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Plains produces successful two-layer models that do not fall in the “nearly one 

layer” regime, consistent with Wagner & Long’s (2013) observations of strong 

vertical heterogeneity. 

 

Finite Frequency Modeling 

Given that our results in NE Oregon are frequency dependent (implying 

spatially varying anisotropy) and that the two-layer anisotropy model performs 

poorly, we hypothesize that upper mantle anisotropy is laterally heterogeneous. If 

the Wallowa anomaly represents delaminated Farallon oceanic lithosphere (e.g., 

Darold & Humphreys, 2013), we may expect 'fossil' anisotropy aligned with the 

spreading direction at the site of lithosphere formation (albeit possibly modified 

by the delamination event), and not necessarily with present flow-induced 

anisotropy elsewhere in the upper mantle (Audet, 2013). Flow due to the 

Wallowa anomaly detachment would also have created an anisotropic fabric in 

the upper mantle, though that fabric may have been overprinted by more recent 

deformation. 

We use a forward model to investigate the effects of laterally 

heterogeneous anisotropy. We use the three-dimensional finite-frequency 

sensitivity kernels of Favier and Chevrot (2003) to predict splitting intensity from 

a hypothesized anisotropic structure, and predict station-averaged splitting by 

fitting a sine function to splitting intensity as a function of back azimuth, as 

described by Chevrot (2000). Although the splitting as measured by splitting 
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intensity is not necessarily the same as that measured by cross-convolution, we 

expect that results for the two methods are similar (Romanowicz & Yuan, 2012). 

We incorporate the effects of the nonuniform back azimuth distribution by 

performing the calculation at randomly selected back azimuths from the list of 

events.  

The Favier & Chevrot (2003) sensitivity kernels imply that a vertically 

incident shear wave at 0.1 Hz (typical for teleseismic SKS phases) at a depth of 

200 km is sensitive to a mantle volume with a radius of approximately 150 km, 

and the peak sensitivity occurs approximately 60 km from the ray path. The 

observed delay time is more sensitive to spatial variations in anisotropy than the 

observed fast polarization direction. In eastern Oregon, we observe significant 

differences in anisotropy over distances comparable to the size of the sensitivity 

kernel. Because the radius of the Wallowa anomaly in map view is approximately 

40 km, it is plausible that anisotropy in the anomaly itself does not have a distinct 

signal at the frequencies we use. However, heterogeneity at this scale could 

explain our erratic splitting measurements in northeast Oregon. 

We use a model of an anisotropic inclusion with similar geometry to the 

Wallowa anomaly to test our interpretations of the finite frequency kernels. The 

model consists of a cylindrical volume with a radius of 40 km extending from a 

depth of 100 to 300 km, inset in an 'asthenospheric' layer extending from 150 to 

300 km. Both the Wallowa anomaly and asthenospheric layer have a uniform 5% 

anisotropy (corresponding to a delay time of 1.5 seconds in the asthenosphere). 
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The fast axis is oriented N80°E in the asthenospheric layer and N30°E in the 

anomaly. Shear wave velocity is 4.9 km/s. Ray theory predicts a splitting time of 

approximately 1.5 seconds away from the Wallowa anomaly and 2 seconds at 

stations above the anomaly. 

Predicted SKS splitting (Figure 9) exhibits little variation in fast axis 

orientation, but the delay time varies substantially over an area roughly the size 

of the finite frequency kernel. Opposite the ray theoretical predictions, observed 

splitting times decrease at stations above the anomaly. The decrease in splitting 

time extends over an area with a radius of roughly 100 km, significantly larger 

than the anomaly itself. If the Wallowa anomaly is isotropic, or if anisotropy in 

the anomaly is highly variable on small scales, it causes an average decrease in 

splitting time from ~1.5 to ~1.2 s (Figure 9b). A larger decrease in splitting time 

requires the anomaly to be anisotropic, but oriented nearly perpendicular to the 

asthenospheric flow direction. 

  



 

 

16 

IV: CONCLUSIONS 

We use a largely automated method to compile approximately 3100 non-

null shear-wave splitting measurements in the northwest United States. Our 

measurements are generally consistent with previous studies using different 

methodologies, but our study has much improved resolution.  

Shear-wave splitting in the northwest United States appears to be roughly 

consistent with a simple model of anisotropy, with fast directions trending east-

to-northeast. We attribute this to simple shear flow driven by motion of the 

North American plate, with the systematic deviations attributable to flow 

modification by the Cascadia subduction zone or Pacific plate motion. We 

observe particularly large delay times, and characteristics of simple anisotropy, in 

the High Lava Plains and Snake River Plain regions. Observed fast directions 

suggest east-west oriented flow beneath the High Lava Plains that is redirected 

toward the northeast by a low viscosity region associated with low seismic 

velocities beneath the western Snake River Plain. 

The shear-wave splitting signal in the area of northeast Oregon expresses 

an anisotropy that is inconsistent with layered models. My modeling of multi-

layered structures and structures with lateral variations suggests that the 

anisotropic structure beneath northeast Oregon has relatively strong lateral 

heterogeneity. This region corresponds with the seismically imaged “Wallowa” 

high-velocity anomaly under northeast Oregon. Models imply that anisotropy in 

the Wallowa anomaly can produce a region of reduced split times (and 
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presumably more complex waveforms) several times larger in map view than the 

anomaly itself, and approximately the same size as the area in which observed 

seismic waveforms are most complicated. 
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APPENDIX: FIGURES 

 
Figure 1: Location of the broadband seismic stations used in my study. 
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Figure 2: Distribution of earthquakes and number of seismograms per 
earthquake. Inset: Distribution of backazimuths for all seismograms (note 
logarithmic scale). 
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Figure 3: Non-null splitting results, plotted at the piercing points of the rays at 
200 km. 
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Figure 4: Average splitting estimates for stations with ≥10 events recorded. 
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Figure 5: Average one-layer splitting estimates, produced by stacking 
measurements at their piercing points in overlapping circular bins with radius 
50 km. 
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Figure 6: Synthetic example of the cross-convolution method. (a) Predicted 
radial and transverse waveforms due to one-layer anisotropy model. (b) Cross-
convolution waveforms, predicted splitting parameters ∆𝑡𝑡 and 𝜙𝜙 and misfit 
statistic 𝐸𝐸 for a one-layer model applied to (a). (c) Predicted radial and 
transverse waveforms due to two-layer anisotropy model. (d) Cross-
convolution waveforms, predicted splitting parameters and misfit statistic for a 
one-layer model applied to (c). 
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Figure 7: Cross-convolution measurement misfit, E(m). (a) Misfit of the best-
fitting one-layer models for each event, plotted on the ray piercing points at 200 
km. (b) Misfit of the stacked splitting estimates from Figure 5. 
  

Microsoft Office User
Need to finish. Also, the color scale in (a) and (b) makes it hard to see the variation. Something that has more than a mix of 2 colors would help.
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Figure 8: Best fitting two-layer anisotropic models. Only two-layer models with 
a statistically significant (at the 95% level) improvement over the one-layer 
model are shown – if the improvement is not significant, the one-layer model is 
shown instead. Events with nearby piercing points are stacked as in Figure 5. 
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Figure 9: Finite-frequency synthetic model of splitting above a structure 
analogous to the Wallowa anomaly (described in text), modeled with (a) and 
without (b) anisotropy in the anomaly. Circles indicate the boundaries of the 
anomalous structure. 
  



 

 

27 

REFERENCES CITED 

 

Audet, P. (2013). Seismic anisotropy of subducting oceanic uppermost mantle 
from fossil spreading. Geophysical Research Letters, 40, 173-177. 

Becker, T. W., Schulte-Pelkum, V., Blackman, D. K., Kellogg, J. B., & O'Connell, 
R. J. (2006). Mantle flow under the western United States from shear-
wave splitting. Earth and Planetary Science Letters, 237(3-4), 235-251. 

Bowman, J. R., & Ando, M. (1987). Shear-wave splitting in the upper-mantle 
wedge above the Tonga subduction zone. Geophysical Journal 
International, 88(1), 25-41. 

Castellanos, J. C., Perry-Houts, J., Clayton, R. W., & Humphreys, E. (2019a). 
Crustal anisotropy as a window to mantle dynamics: A case study on the 
western United States. Abstract presented at 2019 AGU Fall Meeting, San 
Francisco. 

Castellanos, J. C., Perry-Houts, J., Clayton, R. W., Kim, Y., Stanciu, A. C., Niday, 
B., & Humphreys, E. (2019b). Seismic anisotropy reveals crustal flow 
driven by mantle vertical loading in the Pacific NW. Manuscript submitted 
for publication. 

Chevrot, S. (2000). Multichannel analysis of shear-wave splitting. Journal of 
Geophysical Research: Solid Earth, 105(B9), 21579-21590. 

Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: Flexible 
seismic travel-time and ray-path utilities. Seismological Research Letters, 
70(2), 154-160. 

Darold, A., & Humphreys, E. (2013). Upper mantle seismic structure beneath the 
Pacific Northwest: A plume-triggered delamination origin for the 
Columbia River flood basalt eruptions. Earth and Planetary Science 
Letters, 365, 232-242. 

Druken, K. A., Long, M. D., & Kincaid, C. (2011). Patterns in seismic anisotropy 
driven by rollback subduction beneath the High Lava Plains. Geophysical 
Research Letters, 38(13). 

Favier, N., & Chevrot, S. (2003). Sensitivity kernels for shear wave splitting in 
transverse isotropic media. Geophysical Journal International, 153(1), 
213-228. 



 

 

28 

Lin, F.-C., Ritzwoller, M. H., Yang, Y., Moschetti, M. P., & Fouch, M. J. (2011). 
Complex and variable crustal and uppermost mantle seismic anisotropy in 
the western United States. Nature Geoscience, 4(1), 55. 

Liu, L., & Stegman, D. R. (2011). Segmentation of the Farallon slab. Earth and 
Planetary Science Letters, 311(1-2), 1-10. 

Long, M. D., Gao, H., Klaus, A., Wagner, L. S., Fouch, M. J., James, D. E., & 
Humphreys, E. (2009). Shear wave splitting and the pattern of mantle 
flow beneath eastern Oregon. Earth and Planetary Science Letters, 288(3-
4), 359-369. 

Lowry, A. R., Ribe, N. M., & Smith, R. B. (2000). Dynamic elevation of the 
Cordillera, western United States. Journal of Geophysical Research: Solid 
Earth, 105(B10), 23371-23390. 

McCaffrey, R., King, R. W., Payne, S. J., & Lancaster, M. (2013). Active tectonics 
of northwestern U.S. inferred from GPS‐derived surface velocities. J. 
Geophys. Res. Solid Earth, 118(2), 709-723. 

Menke, W., & Levin, V. (2003). The cross-convolution method for interpreting 
SKS splitting observations, with application to one and two-layer 
anisotropic earth models. Geophysical Journal International, 154(2), 379-
392. 

Romanowicz, B., & Yuan, H. (2012). On the interpretation of SKS splitting 
measurements in the presence of several layers of anisotropy. Geophysical 
Journal International, 188(3), 1129-1140. 

Saltzer, R. L., Gaherty, J. B., & Jordan, T. H. (2000). How are vertical shear-wave 
splitting measurements affected by variations in the orientation of 
azimuthal anisotropy with depth? Geophysical Journal International, 
141(2), 374-390. 

Schmandt, B., & Humphreys, E. (2010). Complex subduction and small-scale 
convection revealed by body-wave tomography of the western United 
States upper mantle. Earth and Planetary Science Letters, 297(3-4), 435-
445. 

Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and subcontinental 
mantle deformation. Journal of Geophysical Research: Solid Earth, 
96(B10), 16429-16454. 

Silver, P. G., & Savage, M. K. (1994). The interpretation of shear-wave pslitting 
parameters in the presence of two anisotropic layers. Geophysical Journal 
International, 119(3), 949-963. 



 

 

29 

Wüstefeld, A., Bokelmann, G., Zaroli, C., & Barruol, G. (2008). SplitLab: A shear-
wave splitting environment in Matlab. Computers & Geosciences, 34(5), 
515-528. 

Wagner, L. S., & Long, M. D. (2013). Distinctive upper mantle anisotropy beneath 
the High Lava Plains and Eastern Snake River Plain, Pacific Northwest, 
USA. Geochemistry, Geophysics, Geosystems, 14(10), 4647-4666. 

Wang, W., & Becker, T. W. (2019). Upper mantle seismic anisotropy as a 
constraint for mantle flow and continental dynamics of the North 
American plate. Earth and Planetary Science Letters, 514, 143-155. 

Yang, B. B., Liu, K. H., Dahm, H. H., & Gao, S. S. (2016). A uniform database of 
teleseismic shear-wave splitting measurements for the western and central 
United States: December 2014 update. Seismological Research Letters, 
87(2A), 295-300. 

Zhou, Q., Hu, J., Liu, L., Chaparro, T., Stegman, D. R., & Faccenda, M. (2018). 
Western US seismic anisotropy revealing complex mantle dynamics. Earth 
and Planetary Science Letters, 500, 156-167. 

 

 


	I: INTRODUCTION
	Previous Work

	II: METHODS
	Data Collection
	Splitting Measurement

	III: RESULTS AND DISCUSSION
	SKS Splits
	Complex Anisotropy
	Finite Frequency Modeling

	IV: CONCLUSIONS
	APPENDIX: FIGURES
	REFERENCES CITED

