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DISSERTATION ABSTRACT 
 
Jeff M. Van Raden 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
September 2019 
 
Title: Nanohoops as New Building Blocks for Supramolecular Chemistry 
 
 

The delocalization of pi-electrons through extended carbon networks is a key design 

strategy to modulate the chemical and physical properties of organic molecules and 

materials.  In addition to the extent of delocalization, the overall topology or three-

dimensional geometry of the resulting molecule can have a profound impact on the 

resulting properties.  Cycloparaphenylenes, also known as nanohoops, are a particularly 

illustrative example, where the fully conjugated cyclic structure results in properties that 

are often times in stark contrast to their linear counter parts.  These electronic differences as 

well as their macrocyclic shape renders them as fascinating candidates for various 

applications in supramolecular and materials chemistry. 

Chapter I provides a brief overview of the importance of template-directed 

synthesis in preparing complex architectures.  Examples of common synthetic macrocycles 

will first be discussed which will then be followed with a more in-depth presentation of 

how the radial, yet fully conjugated cylindrical geometry of nanohoops make them 

distinguished building blocks for supramolecular applications. Chapter II provides a more 

detailed understanding of the synthetic and electronic considerations of nanohoop 

macrocycles.  A scalable and mild synthetic approach is disclosed that allows for the 

preparation of a highly strained nitrogen-doped nanohoop.  Using the nitrogen atom, the 
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electronic structure is then fined tuned via alkylation. Chapter III describes the synthesis of 

cycloparaphenylenes that contain a metal-coordination site, a 2,2’-bipyridine, which acts as 

versatile handle for a variety of metal centers.  Chapter IV expands on the coordination 

chemistry of these macrocycles; however, the ligand geometry is engineered to direct a 

metal to the inside of the macrocyclic cavity, which is then used to construct a new type of 

mechanically interlocked nanohoop structure. Chapter V discusses how other non-covalent 

interactions can be leveraged to construct supramolecular cylindrical assemblies, where 

weak arene-perfluoroarene interactions guide nanohoops into perfect cylinders.  In 

summary, the findings discussed in this dissertation provide synthetic strategies for the 

selective functionalization of nanohoops and highlight this class of molecules as a novel 

scaffold for the design of new types of carbon nanomaterials. 

This dissertation includes previously published and unpublished co-authored 

material. 
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1.1. Introduction 

A primary goal of contemporary synthetic chemistry is to design, construct, and 

build molecular frameworks which can address health-, energy-, and technology-related 

problems. For example, the development of pharmaceuticals with improved bioactivity is 

heavily dependent on organic synthesis.1 On the other hand, through the preparation of 

synthetic molecular machines, we can now access new forms of nanotechnology.2 Bearing 

this in mind, a major objective is to develop new synthetic strategies to overcome 

limitations that prevent new molecular architectures from being realized.  Inspiration for 

these methods can come from a variety places, however, nature has provided a number of 

elegant strategies that have allowed for the formation of some of the largest, most complex 

molecular systems known.  Therefore, as a guide, nature has provided synthetic chemists 

with invaluable blueprints for addressing unexpected limitations in complex synthesis.   

A key design concept encountered in natural systems is the ability to carefully 

balance covalent and non-covalent linkage—a design principle which gives rise to many of 

the high-functioning biological molecular machines.  Over the past several decades, 

synthetic chemists have worked toward to uncovering the underlying principles that can 

allow this balance to be harnessed in the lab, ultimately giving rise to the field of 

supramolecular chemistry. This work was pioneered early on by Pederson, Cram and Lehn, 

typically regarded as the fathers of supramolecular chemistry.  This lead to numerous 

design considerations and has significantly contributed to our current understanding of the 

fundamentals of physical organic chemistry resulting in the Nobel Prize in Chemistry being 

in 1987.3-5 



3 
 

 The successful application of supramolecular chemistry to new types of functional 

materials and molecules relies on the ability to design and synthesize small molecule 

building blocks that have been programmed to engage in multiple non-covalent 

interactions.  Under the correct conditions, these building blocks can then act in concert to 

form large, complex, yet well-defined structures that would be other inaccessible through 

pure covalent approach.  Therefore, molecular design is a primary consideration in the 

preparation of supramolecular systems with two major structural features—three-

dimensional molecular shape and electronic structure—ultimately dictating the resulting 

functionality of the supramolecular system. 

 Carbon-rich materials such as fullerenes, graphene, and carbon nanotubes have a 

wide range of unusual physical properties resulting from their unique topography and 

extensive delocalized circuits of pi-electrons.6-11 For example, graphene, a two-dimensional 

sheet material consisting solely of carbon atoms, is a zero-gap semiconductor.12 When this 

same material is rolled into a cylindrical topology—a carbon nanotube—the resulting 

material can be either metallic or semiconducting, depending on the specific atom 

connectivity. These features have contributed to an intense interest in the generation of 

molecular-scale graphitic structures, earning the title of the so-called nanocarbons.13 

Indeed, many other molecular entities can be synthesized primarily from carbon, with 

limitations being only creativity and current synthetic methods.  Thus, as new fragments or 

building blocks for supramolecular applications, these nanocarbons hold great potential for 

exploring new complex architectures and are expected to deliver unusual properties. 

Through the presentation of recent literature examples, this chapter aims to 

demonstrate how molecular properties are intrinsically tied to the molecular topology.  
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From this discussion, the ability to leverage supramolecular chemistry to access these 

unusual topologies will be highlighted as specific attention will be paid to literature 

examples that possess extensive pi-conjugation.  This is intended to illustrate how pi-

conjugation ultimately contributes to unique chemical and physical properties that 

otherwise would not be observed in the absence of such electronic delocalization.  

 First, in Chapter 1.2, examples will be provided that show how metal-

coordination can be leveraged in the template-directed synthesis of complex molecules.  

Emphasis will be placed on how metal ions can pre-organize molecular fragments in either 

a passive or active manner prior to a covalent capture event to ultimately provide access to 

various topological landscapes.  Next, in Chapters 1.3 and 1.4, a discussion on several 

selected macrocyclic architectures will be provided which will highlight desirable features 

or structural considerations when designing new building blocks for supramolecular 

applications.  Additionally, where applicable, examples of these macrocyclic architectures 

participating in non-metal mediated template-directed syntheses will be discussed.  Finally, 

in Chapter 1.5, macrocycles with fully conjugated radial pi-conjugation will be introduced 

in order to highlight their emerging potential in supramolecular and materials chemistry.  

Again, a major focus will be on how these macrocyclic architectures differ from typical 

macrocycles such as those in Chapter 1.3 and 1.4 and how, as a result, new template 

strategies have been developed to construct new architectures.  The ultimate goal will be to 

establish an understanding of how nanocarbon research is beginning to merge with the 

powerful concepts of supramolecular chemistry and as a result, a variety of new challenges 

are emerging that are poised to lead to an exciting new era in carbon nanoscience. 
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1.2. Metal-Mediated Template-Directed Synthesis of Organic Molecules 

Template-directed synthesis is a powerful method to create complex molecular 

architectures.14-16 This concept allows for molecular fragments to be positioned or pre-

organized in solution prior to a covalent capture event which can result in a significant 

improvement in yield or unique reaction outcomes.  Typically, the molecular fragments are 

held in place via a reversible interaction such that after the desired architecture is captured, 

the template can be removed to release the final product.  A variety of templating strategies 

have been developed such as metal coordination, donor-acceptor interactions, and anion 

binding.  As shown below, template-directed syntheses enable the preparation of a range of 

highly complex structures, often times possessing various interlocked componentry or high 

molecular weights that would be otherwise inaccessible in the absence of a template agent. 

A especially noteworthy example of how the power of template-directed synthesis 

can dramatically improve access to particular molecular architecture was reported by 

Sauvage in 198317 in the preparation of a [2]Catenane: a structural motif consisting of two 

macrocycles that have been linked/threaded together via a non-covalent bond.  In this case, 

two phenol-functionalized 1,10-phenanthroline units I.1 were bound together I.2 via a 

tetrahedral Cu(I) metal (Figure 1.1), producing a point at which each ligand crosses over 

the other.  Importantly, by functionalizing the phenanthroline at the 1,10-positions with aryl 

groups, the otherwise highly sensitive Cu(I) metal center is protected such that a 

Williamson ether macrocyclization strategy can be used to form the key macrocyclic bonds 

forming the desired [2]catenane I.3 in 27% yield (Figure 1.1).  This was also expanded on 

via the formation of a macrocycle containing an 1,10-diaryl substituted phenanthroline I.4.  

In the presence of 1 equivalent of Cu(MeCN)4PF6 and linear strand I.1, the formation of a 
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thread structure (I.5) was observed, which, under Williamson ether conditions allowed the 

[2]catenane I.3 to be formed in an improved 42% yield.  The improved yield can be 

attributed to the fact that only one macrocyclization event is needed to capture to targeted 

[2]Catenane.  Additionally, by reacting I.3 with KCN, the Cu(I) metal center could 

removed to give the unmetallated [2]Catenane.  This particular report17 was a pivotal point 

in the early stages of mechanically interlocked molecules given that the previous synthetic 

approaches by Wasserman delivered the first example of a catenane in less than 1% yield.18 
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Figure 1.1. Early example of template-directed synthesis of a [2]Catenane I.3 by Sauvage 

showing templation followed by covalent capture.  In the top example, two 

macrocyclization events are needed to form the [2]Catenane.  In the lower example, only a 

single macrocyclization event is needed, resulting in an overall higher yield. 

 

This phenanthroline-based templation strategy was recently applied in two separate 

reports by the Bäurle19 and Cong20 groups in the preparation of two unprecedented fully 

conjugated [2]Catenanes (Figure 1.2).   Unlike typical mechanically interlocked molecules, 
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both of these molecules represent rare cases of interlocked fully sp2-hybridized 

macrocycles.  The effects of catenation were readily apparent in both cases.  For example, 

in the case of the oligothiophene catenane I.7, it was found that that the molar extinction 

coefficient was doubled relative to the free macrocycle.  Additionally, the quantum yield of 

catenane I.7 was reduced relative to free macocycle, indicating charge-transfer through the 

mechanical bond.  On the other hand, the oligophenylene catenane I.9 by Cong et al. 

demonstrated a rare case of solid-state stabilized Mobius topology which the authors 

attribute to the mechanically interlocked topology.  It should be noted that in both cases, 

each [2]Catenane prepared using Sauvage’s metal templation concept was isolated in a 

reasonable yield (22% (I.7) and 28% (I.9)) from the linear precursors which highlight the  

effectiveness of a metal-templated approach.  Ultimately, Sauvage’s templation strategy17 

has been applied in the preparation of a range of small molecules as well as materials and 

the seminal report established a foundation for many template-directed syntheses of 

mechanically interlocked molecules.  It should be noted that metals known to adopt 

geometries such as octahedral, square planar, and linear arrangements have also been used 

in template-directed syntheses, which highlights the generality of this approach.15  

 

The work by Sauvage leveraged the metal ions coordination geometry in a passive 

way, where the metal acts solely to pre-organize two molecular strands that are then 

coupled using an orthogonal reaction.  In a conceptually different approach, Leigh 

demonstrated in 200621 that a metal ion can both pre-organize components and form a 

mechanical bond.  This strategy, referred to as an active metal template synthesis, is 

fundamentally different from a passive template strategy in that the requirement for  
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Figure 1.2. Application of Sauvage’s templation strategy in the synthesis of conjugated 

[2]Catenanes by Bäurle (left) and Cong (right). Conditions: a) CsF/[Pt(dppp)Cl2], 34%; b) 

I2, 74%; c) KCN 44%; d) Pd(PPh3)2Cl2, KF, air; e) TMSCN, KF (28%, two steps); f) 

Sodium naphthalenide, 78%. 

 

complimentary recognition motifs between each strand are no longer needed.  In the initial 

2006 report, they reported that a macrocycle I.10 containing an endocyclic pyridine unit 

was capable of binding copper(I) within the macrocyclic pocket (Figure 1.3).  Next, under 

Cu(I)-catalyzed azide-alykne cycloaddition reaction conditions with a terminal alkyne I.11 

and terminal azide I.12, a [2]Rotaxane I.13 could be generated by directing the key bond-

formation event to occur within the macrocyclic pocket.  Again, this was a natural 

consequence of the macrocycle geometry, where the endocyclic pyridyl unit allowed for 

the reaction to take place within the macrocycle cavity.   
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Figure 1.3. First example of an active metal template synthesis of a [2]Rotaxane by Leigh.  

The mechanical bond is formed via Cu(I) catalyzed azide-alkyne cycloaddition, resulting in 

[2]Rotaxane I.13 bearing a triazole moiety.   

 

Since this initial report, a number of reactions22 have been shown to participate in 

active metal template method such as the Cadiot-Chodkiewicz coupling as well palladium-

free Sonogashira reactions.  An excellent illustration of the power of this strategy was 

shown by the Anderson and Tykwinski groups23 where [2]Rotaxane formation allowed for 

the stabilization of long polyynes (I.14-I.17) (Figure 1.4)—a structural motif known for 

being highly reactive.  The impact of encapsulation was particularly noteworthy in the case 

of [2]Rotaxane I.17, where decomposition occurred at 60 oC higher in the [2]Rotaxane 

versus a polyyne of same length with no macrocycle for protection (Figure 1.4).  This 

synthetic strategy was also applied to the formation of a large 6-porphryin nanoring bearing 

3 additional macrocycles I.18, i.e. a [4]Catenane.24  While not tested for thermal stability, 

this example highlights a rare example of both passive and active metal template strategies 
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being used in concert to construct complex architectures.  A similar approach toward 

molecular trefoil knot was also recently reported by the Leigh group.25 

 

(I.14)

(I.15)

(I.16)

(I.17)
I.18

 

Figure 1.4. Selected examples of a [2]Rotaxane (left) and [4]Catenane (right) prepared via 

an active metal template synthesis.  The inserted table showing decomposition 

temperatures refers to the difference between polyynes that are encapsulated by a 

macrocycle or those that are unencapsulated. 

 

Template-directed syntheses are often performed on structures that are in a 

relatively small size regime (<1 nm), with traditional methods being less reliable for the 

formation of structures on the multi-nanometer scale. In 2011, the Anderson group reported 

the synthesis (Figure 1.5) of a 12-porphryin nanoring I.19 bearing a diameter of 4.7 nm.26 

This is a rather large improvement over their previous reports of an 8- and 6-porphyrin 

nanoring.27, 28 The key difference between these reports is the templation method used to 

prepare each nanoring.  In the case of the smaller nanorings, a single linear chain of 8 or 6 
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diyne-linked porhphyrins was combined with a circular pyridine based template containing 

exactly 8 or 6 binding sites to form 1:1 complexes.  After an oxidative palladium alkyne 

homocoupling reaction, the 8-porphyrin nanoring was formed in 14% isolated yield.  In 

contrast, the 12-porphyrin nanoring was assembled by using two templates bearing 6 

binding sites with three individual tetrameric porphyrin chains (Figure 1.5, left), i.e. a 2:3 

complex.  Again, capture of the final nanoring was accomplished using an oxidative 

palladium catalyzed alkyne homocoupling reaction to give the final product in 39% yield.  

Attempts to prepare the same 12-porhpyrin nanoring via the classical template strategy 

were successful (Figure 1.5, right), however, the required template molecule required ten  

steps to synthesize and was reportedly accessible only in small quantities.  In contrast, the 

Vernier approach leveraged a template that was easily accessible, ultimately highlighting 

the benefits of using a Vernier approach to access large nanostructures.  Importantly, it was 

found that without the added template, macrocyclization attempts all failed to generate any 

cyclic I.19 and instead give linear polymers. 

 

With access to these large fully conjugated structures, fundamental concepts in 

aromaticity and antiaromaticity have recently been investigated.  In a recent report by the 

Anderson group,29 they demonstrated that a macrocycle consisting of 6 porphyrin rings 

(I.20) with diameter 2.4 nm showed antiaromatic or aromatic ring currents (Figure 1.6) in 

either a 4+ or 6+ oxidation state, respectively.  This work showed that global ring currents  

begin to dominate on suppression of local ring currents via changes in oxidation state.  

Additionally, the authors found it was essential for the template to be present in order to 

observe the well-defined antiaromatic currents, but, interestingly, was not needed for the  
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Figure 1.5. Vernier-templated synthesis of 12-porphyrin nanoring I.19 using two small 

templates (left) or a single large template (right).  Bonds colored in red highlight the key 

bonds that are formed during the macrocyclization step.  Cartoons represent templated 

structure before (top) and after (bottom) macrocyclization. 

 

aromatic currents in 6+ state.  Prior to this work, the largest known aromatic molecule that 

demonstrated global aromaticity was around 1.3 nm (50 pi electrons)30 and studies to 

investigate this further were hindered by synthetic access to larger fully conjugated 

systems.  Thus, the ability to leverage template-directed syntheses in the preparation of 

large systems becomes a powerful tool for studying fundamental concepts. 

As previously mentioned, the macrocyclic architecture plays a pivotal role in 

supramolecular chemistry.  In general, this stems from the ability of macrocycles to act as  
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Figure 1.6. Recent example of a large 6-porphryin nanoring I.20 prepared via template-

directed synthesis that demonstrates local aromaticity in a charge neutral state (left) or 

global aromaticity in a 6+ oxidation state (right). 

 

molecular hosts for a range of guest molecules.  This observation and concept was 

proposed by Pederson and Cram and has since become the foundation for modern 

supramolecular chemistry.  As a result, naturally occurring macrocycles such as 

cyclodextrins as well countless synthetic macrocycles have been explored extensively in 

the area of host-guest chemistry for the last several decades.  The chemistry of these 

systems has been covered in numerous reviews and as such, the following discussions in 

this chapter are focused primarily on strained macrocycles such as cyclophanes as well as 

macrocycles that exhibit extended conjugation. 

  

1.3. Importance of Electronic Structure in Molecular Recognition  
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The ability to tune the electronic structure of a macrocyclic host will ultimately 

determine which guest molecules can be recognized.  A class of macrocycles known as the 

cyclophanes have a rich history in this regard.  Cyclophane macrocycles typically consist of 

an aromatic unit linked by sp3-hybridized bridge.  In general, these particular macrocycles 

display large deviations in the planarity of each aryl ring, resulting in a significant build up 

of molecular strain (Figure 1.7).  Given this high strain, cyclophane type macrocycles are 

remarkably rigid and therefore possess a well-defined molecular pocket that is well suited 

for host-guest interactions.   
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Figure 1.7. Representative examples of common cyclophane macrocycles.  First reported 

host-guest chemistry of I.23 showing binding to electron rich guests. 

 

As an early example of host-guest complexation with a cyclophane host, the 

Stoddart group sought to prepare a new electron-poor cyclophane macrocycle that they 

anticipated would bind electron-rich guests.  In their first investigation in 1988, the 

Stoddart group reported the tetracationic cyclobis(paraquat-p-phenylene) cyclophane (I.23, 
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“blue box”).31  This particular macrocycle possesses a well-defined box-like cavity size of 

10.3 x 6.8 A.  Importantly, through electrostatic potential surface analysis, the interior of  

the macrocycle was shown to be highly electron-poor owing to the cationic pyridinium 

units.  In this first report, they demonstrated that the cationic host binds electron-rich 

dimethoxy guests (Figure 1.7) in a 1:1 charge-transfer complexation I.25—an observation 

that was confirmed via UV-Vis and NMR spectroscopy.  Additionally, the authors also 

show that by exchanging the counterion from PF6 to Cl-, I.23 becomes water soluble which 

allowed for an investigation in the aqueous host-guest complexation I.26 ability of this 

macrocycle. 

The initial 1988 report effectively established I.23 as general receptor for electron 

rich guests, which, depending on the connectivity of the pyridyl unit, could be readily 

tailored to a variety of guest sizes and shapes.32  Shortly after this report, the Stoddart group 

demonstrated (Figure 1.8) that this receptor could be leveraged in a template-directed 

manner to construct mechanically interlocked molecules with a report of a [2]Catenane I.27 

and [2]Rotaxane I.28 following in 198933 and 1991,34 respectively.  Importantly, these 

reports deviated from that of Sauvage in that it successfully demonstrated that a metal ion 

was, in some cases, no longer necessary.  In the first case, I.29 was combined with a 2.5 

fold excess of I.30 in the presence of I.31 to give the targeted [2]Catenane I.27 in a 

exceedingly high 70% yield.   This high yield can be explain via the mechanism of 

formation, where complexation of I.29 with I.30 occurs followed by covalent capture via 

SN2 to give the desired [2]Catenane I.27.  This is consistent with their previous report on 

the complexation of paraquat with a hyodrquinone cyclophane-like receptor.31  While 

[2]Catenanes had been prepared prior to this report, the fact that I.27 still possessed the 
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templating interaction in the final product differentiated this structure from all previous 

reports which would be expected to impart unsual dynamics into the system.  Additionally, 

the effect of catenation on the electrochemical properties of I.27 were readily apparent in 

the cyclic voltammograms, where on single electron reduction of I.27, it was reported that 

the inner paraquat unit is stabilized stronger by the proximity of two hydroquinone units, 

resulting in a selective reduction of the outer paraquat unit.  On second reduction, the  

difference between each paraquat unit is likely diminished given that single electron 

reduction attenuates the interaction between each hydroquinone unit.  This work ultimately 

established donor-acceptor interactions as a foundation for preparing a wide range of 

MIMs, with a report of a [2]Rotaxane I.32 following in 1992.34  This particular report 

demonstrated the unique dynamics in these systems, where it was revealed that these 

donor-acceptor interactions could be leveraged to initiate a shuttling type motion. 

In 2008, a similar class of macrocycles was introduced by Ogoshi and coworkers 

known as the pillar[n]arenes.35 These macrocycles are composed entirely of electron-rich 

hydroquinone units linked together through methylene bridges (Figure 1.9), rendering the 

macrocyclic unit a host for electron-poor guests despite an overall neutral charge.  In this 

report they demonstrated the ability of I.24 to host pyridinium salts, a feature that can be 

attributed to a combination of an electron rich pore as well as ionophores on both faces of 

the macrocycle.  In a follow up report36 on the synthesis of pillar[5]arene I.24, the 

macrocycle was obtained in 71% yield through a single lewis acid-catylzed step via 

commercially available starting materials (Figure 1.9).  Particularly noteworthy is that this 

reaction was completed in only 3 minutes.  The ability to host electron poor guests is a  
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feature that is opposite to that observed in the cationic cyclophanes which highlights the 

importance of controlling electronic structure. Since the initial report of this class of 

macrocycle, the supramolecular capabilities have been well-established, both in solution 

and the solid-state.  
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Figure 1.9. Optimized synthesis of pillar[5]arene I.24. 
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1.4. Shape-Persistence in Molecular Recognition 

 The key structural features that enable macrocycles to engage in molecular 

recognition stem primarily from the molecular composition within the macrocyclic pocket.  

Additionally, the tendency for this macrocyclic pocket to retain its shape and avoid 

conformations that may prohibit molecular recognition capabilities is crucial.  The 

development of macrocycles with a shape-persistent structure are therefore highly desirable 

as supramolecular building blocks with a major design strategy being the inclusion of 

extensive conjugation.  Conjugation of a molecular fragment can provide necessary 

structural rigidity which ultimately allows for a macrocycle to maintain a specific three-

dimensional geometry under a wide range of conditions which can greatly enhance the 

binding ability of the host. 

 Work by the Flood group in 2008 demonstrated this concept, where a fully 

conjugated macrocycle I.34 bearing four 1,2,3-triazoles units enabled strong binding to 

chloride anions.37  This report is an unusual case where a negatively charged chloride anion 

can be hosted in an overall neutral host through only C-H interactions—interactions that 

typically regarded as additional binding sites rather than primary sites.  The key macrocycle 

I.34 was prepared in 27% yield over seven steps (Figure 1.10) using a combination of 

Sonogashira cross-couplings and Cu(I) catalyzed azide-alkyne cycloaddition reactions.  

Importantly, by including 1,2,3-triazole units, two important structural features are 

provided: 1) the macrocycle adopts a shape-persistent coplanar arrangement with a total of 

eight C-H interactions facing the interior of the macrocycle and 2) the highly polarized C-H 

bonds of the triazole units enhance the ability to bind the negatively charged chloride 

anion.  To illustrate the advantage of shape-persistence, macrocycle I.34 was compared 
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against a linear analogue in a titration with TBACl.  It was found that in the case of I.34 a 

Ka of 1.3 x 105 M-1 was calculated versus a Ka of 7 M-1 for the linear analogue.  Again, this 

large difference can be attributed to the preorganized shape of I.34.  Very recently, a 

similar cage-like structure I.35 using 1,2,3-triazole moieties was prepared which resulted in 

attomolar affinity (Ka 1 x 1017 M-1).38  This further illustrates the importance of 

preorganization and rigidity in molecular recognition. 
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Figure 1.10. Synthetic strategy used to access triazole macrocycle I.34.  Conditions: (a) 

TMSA, [PdCl2(PPh3)2], CuI, iPr2NH, THF, 8h. (b) NaN3, CuI, DMEA, Sodium Ascorbate, 

EtOH/H2O/Toluene. (c) KF, MeOH, THF, 8h. (d) CuSO4, sodium ascorbate, 

EtOH/H2O/Toluene. (e) CuI, DBU, Toluene, 4h. Reported binding affinities with chloride 

using macrocycle I.34 and cage I.35. 

 

 As another example, in 2013 the Flood group reported a new type of fully 

conjugated shape-persistent macrocycle I.43 comprised of cyanostillbene units (Figure 

1.11).39  Similar to the polarized C-H bonds (5.0 D) in the 1,2,3-triazole moieties, the C-H 

bond of cyanstillbene units are highly polarized (3.70 D) which was anticipated to assist in 
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anion binding. In this first report, the targeted macrocycle (I.43) was prepared in a one-pot 

synthesis delivering I.43 in exceptional 81% yield.  Characterization of this macrocycle 

revealed a bowl-shaped coplanar arrangement of each aryl unit, similar to that in the case of 

I.34.  Encouraged by a relatively large cavity size (5.2 Å), the authors then explored the 

ability to bind anions, which resulted in the observation that the host macrocycle binds 

rather strongly in a 2:1 fashion with larger anions (BF4, ClO, PF6).  This enhanced binding 

affinity can be attributed to the resulting electropositive cavity from each polarized C-H 

bond as well the rigid and shape-persistent nature of the host.  Encouraged by the 2:1 

complexation and the ability to bind large anions, the authors then constructed an 

unprescendented [3]rotaxane I.44—a mechanically interlocked structure bearing 2 

macrocycles of I.43 threaded over a dialkyl-substituted phosphate.    
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Figure 1.11. Synthetic strategy used to access cyanostar macrocycle I.43 from I.45 and 

reported phosphate [3]Rotaxane I.44. 
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 Ultimately, these studies as well others highlight the importance of structural 

rigidity in molecular recognition.  In these cases, the structural rigidity improves the 

affinity for anionic guests owing to improved preorganization for the targeted anion.  

Again, this is in line with Cram’s early idea that a preorganized rigid host should show the 

strongest binding to a guest.  In addition to providing structural rigidity, these pi-rich 

macrocycles also tend to display unusual electronic properties relative to their linear 

counterparts as in the cause of cyclic thiophenes.  These properties will be expanded on in 

following chapter with an overview of macrocycles that possess radial conjugation.  

 

1.5. Macrocycles with Radially Oriented Pi-Systems 

The molecular shape of the macrocycles presented in Chapter 1.3 can be 

characterized by a radial orientation of each aryl ring owing to a combination of strain and 

para-connectivity of each ring.  Additionally, the electronic structure can be viewed 

generally as either electron deficient as in the case of I.23 or electron rich in the case of 

pillar[5]arene I.24.  In contrast, the molecular shape of the macrocycles discussed in 

Chapter 1.4 are non-radially oriented, but instead are flat fully conjugated structures with 

an electronic structure dictated by the extent of conjugation.  As previously mentioned, the 

combination of electronic structure and three-dimensional shape are key parameters that 

govern functionality in supramolecular structures and these examples illustrate this 

importance.  In the following chapter, a type of macrocycle that shares features (Figure 

1.12) similar to those discussed in Chapter 1.3 and 1.4, the [n]Cycloparaphenylene 

([n]CPP) or carbon nanohoop, is introduced.  Specifically, these macrocycles are fully 

conjugated, but, due molecular strain, are oriented in a radial geometry.  Throughout this 
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chapter a large emphasis will be placed on the emerging supramolecular reports of this 

unique macrocycle and, where applicable, prospects and potential research directions will 

be discussed. 

 

Figure 1.12. a) Selected examples of macrocycles with radial geometry. b) Selected 

examples of macrocycles with full pi-conjugation. c)  Relationship of the [n]CPPs to other 

macrocycles and carbon nanotubes.  These macrocycles possess properties from both a) 

and b). 

 

 

The [n]CPPs have been a longstanding molecular target of numerous synthetic 

groups since 1934.40  The synthetic challenge of these unusual macrocycles can be 

understood by the realization that in some cases, such as [5]CPP for example, an 
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astounding 120 kcal/mol of strain energy must be overcome during the synthetic route.41  

This is sharp contrast to each of the examples discussed prior.  The first synthesis of 

[n]CPPs was shown by Jasti and Bertozzi in 2008 (Figure 1.13) using a “shot-gun” type 

macrocyclization.42  In this report, diboronate I.45 was first prepared and then subjected to 

dilute Suzuki-Miyaura coupling conditions with diiodide I.46 to give a statistical mixture 

of macrocycles I.47-I.49 in 2%, 10%, and 10% yield, respectively.  Importantly, by using a 

cyclohexadiene moiety, the macrocyclic precursors adopted a “bent” geometry which 

provided curvature, ultimately enabling the formation of cyclic products which are 

relatively unstrained in comparison to the fully conjugated counterpart.  To build in the 

remaining strain, reductive aromatization of each cyclohexadiene moiety with sodium 

napthalenide transformed the intermediate macrocycle into fully conjugated variants, i.e. 

the [n]CPPs I.50-I.52.  Since the initial report, this strategy has been greatly expanded upon 

in our group, which has ultimately lead to the preparation of [5]-[12]CPP.43  Work by the 

Itami group has shown that cyclohexane units can also provide the necessary curvature for 

macrocycle formation (I.53) which can then be oxidatively aromatized using an acid 

catalyzed dehydration to give macrocycle I.54 in 62%.44  Lastly, another key strategy for 

these strained targets was shown by the Yamago43 and Isobe groups,13 where 

cyclometalated Pt(II) units (I.55) act as bent functional groups which can then reductively 

eliminated to give the final conjugated macrocycle I.56.  In should be noted that in general, 

these strategies are amenable to a wide range of different functional groups13 and that these 

techniques have allowed for the preparation of numerous CPP derivatives. 
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Figure 1.13. Synthetic approaches toward making strained carbon nanohoops by Jasti 

(top), Itami (bottom left), and Yamago (bottom right). 

 

One of the more striking features of this class of macrocycles lies in the 

photophysical and overall electronic structure.43  In many cases, the properties observed in 

macrocycles with radial pi-conjugation are in stark contrast with their linear counterparts.  

For example, when n is greater than 6, the [n]CPPs are fluorescent.  More interestingly, 

however, is that as conjugation increases, the emission begins to blue shift—again, a trend 

that is in stark contrast with typical fluorescent molecules.  This trait is also reflected in the 

frontier molecular orbital energies, where the difference between highest occupied 

molecular orbital (HOMO) energy and lowest unoccupied moileccular orbital (LUMO) 

energy increases with extending conjugation.  While the underlying electronics that give 

rise to these properties are of fundamental interest, these properties have practical 

applications given that redox-active molecules play a pivotal role in molecular electronics.  

For example, the redox chemistry of [8]CPP (I.56) has been the subject of several 
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reports.46-48 Recent work by Yamago and coworkers showed that oxidation of [8]CPP 

(I.56) to the dication allows the macrocycle to exhibit global aromaticity.48 On the other 

hand, the charge neutral macrocycle shows only local aromaticity.  Moreover, it was 

recently shown that [10]CPP (I.57) and its alkoxy derivates49 are capable of transporting 

charge suggesting materials applications.  Bearing these properties in mind, these 

macrocycles hold potential for new molecular building blocks in a variety of avenues. 

One of the first reports of [n]CPPs engaging in supramolecular chemistry was 

shown by Yamago,50 where complexation between [10]CPP (I.57) and spherical fullerene 

C60 was observed to occur with a Ka of 2.79 x 106 M-1.  Similar complexation was reported 

by Oda51 as well as Lee52 in acetylene functionalized nanohoops, however, in work by 

Yang and Du, a consistent increase in binding affinity was reported through extension 

(I.58, I.59) of the nanohoop backbone (Figure 1.14).53  Additionally, these fullerene 

nanohoop complexes were shown to act as photoconductive heterojunctions.  The 

selectivity of the complexation between [10]CPP (I.57) and C60 was also reported, where  

addition of excess C60 to an equimolar mixture of [8]-[12]CPP resulted in characteristic 1H-

NMR shift changes only in [10]CPP (I.57).50 Taken together, the size-complementarity and 

pre-organized shape between [10]CPP (I.57) and C60 render this complexation both strong 

and selective amongst reported fullerene hosts.  In addition to this report, a variety of 

[10]CPP derivatives are known for their ability to host fullerenes.54   

A particularly noteworthy example of how this complexation can be applied as a 

template was shown in work by the von Delius group, where [2]Rotaxane formation was 

accomplished using a functionalized fullerene C60.55  The synthesis was performed as  
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Figure 1.14. Selected examples of fullerene [10]CPP host-guest complexes showing 

increase in binding affinity via extension of the nanohoop backbone. 

 

shown in Figure 1.15.  First, formation of a pseudorotaxane I.60 was carried out using a 

diethyl malonate pentakis-fullerene.  Importantly, the diethyl malonate pentakis 

functionalization was necessary in order to prevent the [10]CPP macrocycle from sliding 

over the terminal fullerene groups.  In the presence of a slight excess of brominated stopper 

I.61 under Bingel reaction conditions, the targeted [2]Rotaxane I.62 was then accessed in 

40% yield which consisted of two different isomers.  It should be noted that the formation 

of only two isomers is rather unusual given that a typical bingel reaction would be expected 

to provide a more complicated mixture of isomers.  This result suggested that [10]CPP 

provides steric protection to a variety of locations on the central C60. Indeed, the authors 

then investigated the ability of [10]CPP to act as a supramolecular protecting group for 

fullerene C60, which revealed that in the absence of [10]CPP, addition of a brominated 

malonate derivative to malonate functionalized C60 resulted in the formation of roughly 7 

different isomers.  However, in the presence of [10]CPP, the formation of four of these 

isomers were suppressed which highlight the ability of [10]CPP to act as a supramolecular 

protecting group.  This work ultimately established concave-convex pi-pi type templation 

as a new strategy to form mechanically interlocked molecules that bear nanohoop 



27 
 

macrocycles and also demonsrated that nanohoop macrocycles can impact reaction 

outcomes.  While fullerene guests have been the most heavily investigated with nanohoop 

macrocycles, reports of other guests such as pyridiniums, [n]CPPs themselves, 

corannulene, and cations are beginning to emerge.54 

BTTP
DCM, -60 oC40%

O
O

O
O

O

O

O

O
6

6
Y 
=

I.60

I.61

I.62  

Figure 1.15. Von Delius’s synthetic fullerene-templated approach toward [10]CPP 

[2]Rotaxane I.62. 

 

While reports on the supramolecular chemistry this class of macrocycle are only 

beginning to emerge, the current examples suggest they hold great potential.  The ability to 

impart regioselectivity in fullerene chemistry for example may enable more facile synthesis 

of fullerene derivatives.  On the other hand, the seemingly frictionless motion observed in 

the mechanically interlocked variants may lead to unusual dynamics in molecular 

machines.  Since the initial report in 2008, there has been a tremendous advance in the 

ability to functionalize the nanohoop backbone which has ultimately allowed for these 
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reports to emerge.  The features ultimately render these macrocycles as fascinating 

candidates as new building blocks in supramolecular chemistry. 

 

1.6. Conclusion 

 By perfecting the balance between covalent and non-covalent interactions, synthetic 

chemists have gained access to molecular architectures that would be otherwise 

inaccessible.  These structures have displayed unusual chemical and physical properties 

which have in turn been leveraged to study phenonema such as aromaticity and 

antiaromaticty at the nanometer scale.  While the reports concerning the supramolecular 

chemistry of nanohoops are just beginning to emerge, the current examples strongly 

suggest unusual chemical properties exist within these fascinating targets.  It should also be 

noted that a majority of the reports concerning the supramolecular chemistry of nanohoops 

involve complexation with fullerene-type guests and those that involve metal-templation 

are limited, despite the demonstrated power in template-directed synthesis.  With this in 

mind, exploring how metal-coordination can be leveraged with nanohoop macrocycles is a 

primary focus of this dissertation. 

 

1.7. Bridge to Chapter II 

 This chapter highlights how weak interactions can be used to construct a variety of 

complex molecules that would otherwise be inaccessible.  In many cases, access to these 

structures enables investigations into interesting phenomena, such as aromaticity and 

antiaromaticity on nanometer sized assemblies.  Our ability to investigate these types of 

structures as well as new architectures depends on the molecular components and synthetic 
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methods available to prepare them.  Given that the underlying electronic structure gives rise 

to the many of the observed properties, the next chapter provides a more detailed 

discussion of how to design the energy levels of frontier molecular orbitals in [n]CPPs and 

their derivatives. 
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CHAPTER II 
 
 

SYNTHESIS AND CHARACTERIZATION OF A HIGHLY STRAINED 

DONOR-ACCEPTOR NANOHOOP  

 

From Van Raden, J. M.; Darzi, E. D.; Zakharov, L. N.; Jasti, R. Org. Biomol. 

Chem. 2016, 14, 5721-5727.  Further permissions related to the use of the material 

excerpted in this chapter should be directed to the RSC.  This manuscript was written by 

myself with editorial assistance from Professor Ramesh Jasti and Dr. Evan Darzi.  

Experimental work in this chapter was performed by myself or Dr. Evan Darzi. 

A highly-strained, nitrogen-doped cycloparaphenylene (CPP), aza[6]CPP, was 

synthesized and then converted to a donor–acceptor nanohoop, N-methylaza[6]CPP, via 

alkylation of the nitrogen center. The energy levels of the lowest unoccupied molecular 

orbital (LUMO) and the highest occupied molecular orbital (HOMO) for both molecules 

were then probed by cyclic voltammetry (CV), which revealed that the donor–acceptor 

nanohoop had a significantly lower LUMO energy relative to [6]CPP and aza[6]CPP. 

Density functional theory (DFT) revealed that the donor–acceptor nanohoop underwent a 

redistribution of the frontier molecular orbital (FMO) density such that a significant 

portion of the LUMO density resided upon the electron-deficient nitrogen-containing 

ring. This localization of LUMO density caused a large lowering in the LUMO energy of 

nearly a full electron volt, while the HOMO energy was less affected due to a large 

centralization of the FMO on the electron-rich phenylene backbone. This ultimately 

resulted in a net lowering of the HOMO–LUMO energy gap which was observed both 

experimentally and computationally. In addition, N-methylaza[6]CPP has a significantly 
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lower energy LUMO than N-methylaza[8]CPP, illustrating that the FMO levels of donor–

acceptor nanohoops can be tuned by adjusting the hoop size. 

 

2.1. Introduction 

Organic small molecules and polymers have been heralded as attractive materials 

for use in electronic devices such as organic field-effect transistors (OFETs) and organic 

photovoltaics (OPVs) due to their mechanical flexibility, ease of design, and potential for 

low-cost production methods.1-3 The advent of new molecular architectures with unique 

optoelectronic properties is essential for the further development of these technologies. 

CPPs, or nanohoops, are cyclic arrays of [n]para-linked benzene rings, where n denotes the 

number of benzene rings that comprise the hoop.4-7  With decreasing n, the nanohoops 

begin to adopt highly strained conformations that force the adjacent phenyl rings to have 

reduced dihedral angles. The reduced dihedral angles of the smaller CPPs along with the 

distortion of the aromatic units ultimately result in a decreased HOMO–LUMO energy gap. 

This trend is in direct contrast to that of flat aromatics, where an extension of the π-system 

results in a decreased HOMO–LUMO energy gap.8 Moreover, the curved architecture of 

CPPs decreases intermolecular aggregation, increasing their solubility in organic solvents. 

Due to the increased solubility, as well as the ability to tune the HOMO–LUMO energy 

levels, fluorescence emission, redox potential, and solid-state morphology via adjustments 

in the nanohoop diameter, CPPs are emerging as attractive materials for use in organic 

electronics. 

Our group9 and others10,11 have demonstrated that cyclic systems such as CPPs and 

conjugated corrals can act as new donor–acceptor scaffolds (Figure 2.1). Our approach 
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relied on the common strategy of hetereoatom-doping12-14, where nitrogen atoms were 

incorporated into the backbone of [8]CPP. In our previous study, two new nanohoops, 

aza[8]CPP and 1,15-diaza [8]CPP as well as their alkylated analogues, N-methylaza[8]CPP 

and N,N-dimethylaza[8]CPP, were prepared and characterized. Alkylation of the nitrogen 

center caused the LUMO energy level to lower, but left the HOMO energy levels 

essentially unaffected, resulting in a dramatically decreased HOMO– LUMO energy gap.  

Through DFT calculations, it was discovered that a majority of the LUMO density was 

localized around the pyridinium center (acceptor) while the HOMO density was evenly 

distributed over the phenylene backbone (donor). The large decrease in LUMO energy was 

then attributed to the increased orbital density around the nitrogen atom.  

 

Figure 2.1 Donor–acceptor nanohoops with the donor highlighted in blue and the acceptor 

highlighted in red (a) N-methylaza[8]CPP and N,N-dimethyl-1,15-diaza[8]CPP (b) 

cyclo[10]paraphenylene-2,6-tetracyanoanthraquino-dimethylene (c) acceptor–donor–

acceptor–donor conjugated corral (d) Aza[6]CPP and N-methylaza[6]CPP (this work). 
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In all carbon CPPs, a reduction in nanohoop diameter leads to a higher HOMO 

energy and lower LUMO energy.8  To explore how the HOMO and LUMO energies can be 

further tuned in donor–acceptor CPPs, we wanted to investigate a smaller nitrogen-doped 

CPP. Herein, we report the synthesis, characterization, and computational studies of 

nitrogendoped, aza[6]CPP as well the donor–acceptor nanohoop, N-methylaza[6]CPP. Our 

studies illustrate how the macrocycle size can be used to tune the HOMO–LUMO 

properties in donor–acceptor nanohoops. 

 

2.2. Results and Discussion 

CPPs are highly strained molecules, with the magnitude of strain becoming larger 

as the diameter is decreased.8 Using homodesmotic reactions, aza[6]CPP was determined 

to have 98.3 kcal mol−1 of strain energy, similar to that of [6]CPP at 97.0 kcal mol−1.15 The 

synthetic strategy used to prepare this challenging target is illustrated in Figure 2.2. The 

route utilizes the increased reactivity of aryl bromides relative to aryl chlorides in both 

lithium–halogen exchange and Suzuki–Miyaura cross-coupling reactions. The synthesis 

was begun by preparing quinol II.1, as previously reported.9 Addition of 4-

bromophenyllithium to deprotonated quinol II.1, followed by methylation delivered 

tetramethyl ether II.2 as a single diastereomer in 55% yield over two steps. Conversion of 

II.2 to dihalide II.3 was accomplished under Suzuki–Miyaura conditions. The macrocycle 

is then accessed after sequential Miyaura borylation and an oxidative homocoupling 

reaction as we have described previously.16 Its noteworthy that the initial report for the 

synthesis of [6]CPP relied on intermolecular Suzuki–Miyaura cross-coupling for 

macrocyclization and yielded the desired macrocycle in only 12%.  By employing our 
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oxidative homocoupling strategy, we have dramatically improved access to the strained 

macrocycle II.5 (51% yield) and have accomplished the key reaction at much lower 

temperatures (50 °C versus 130 °C). Moreover, the calculated strain of the macrocyclic 

precursor to [6]CPP is 37.5 kcal mol−1, suggesting that the boronate homocoupling strategy 

presented here could potentially be used for a more efficient route to [6]CPP. Subjecting 

II.5 to a sodium naphthalenide reduction at −94 °C provided highly strained aza[6]CPP 

II.6) as a red/orange solid in 45% yield. Previous work to generate donor–acceptor  

pyridinium nanohoops relied on methyl triflate for alkylation, which often yielded the 

undesired protonated product due to trace amounts of triflic acid. Aza[6]CPP was readily 

converted to donor–acceptor nanohoop II.7 in 83% yield using methyl iodide in a 

microwave reactor as an operationally simpler alternative.  
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Figure 2.2. Reagents and conditions: (a) i. NaH, THF, −78 °C, 2 h; ii. 4-

bromophenyllithium, THF, −78 °C, 2.5 h, iii. MeI, DMF, −78 °C → rt; (b) Pd(dppf)Cl2, 

K3PO4, 4-chlorophenylboronic acid, 1,4-dioxane, 80 °C; (c) Pd(OAc)2, SPhos, 

bis(pinacolato)diboron, K3PO4, 1,4-dioxane, 80 °C; (d) Pd(PPh3)2Cl2, KF, B(OH)3, O2, 

THF/H2O (10 : 1), 40 °C; (e) i. sodium naphthalenide, THF, −94 °C; ii. I2, THF; (f) methyl 

iodide, dichloromethane, 100 °C, μW 
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In order to assess the electronic effects of doping [6]CPP with nitrogen, cyclic 

voltammetry was performed on II.6  and II.7  (all potentials are versus the 

ferrocene/ferrocenium couple). Previous work has shown that aza[8]CPP exhibits a 

pseudoreversible reduction event with a potential of −2.39 V.9 The cyclic voltammogram 

(Figure 2.8) of aza[6]CPP (II.6) exhibited a single pseudo-reversible reduction potential of 

−2.18 V, confirming that a reduction in nanohoop diameter leads to a lowering of the 

LUMO energy, as was expected. Similarly, the oxidation potential of aza[6]CPP II.7 was 

0.670 V, whereas in the case of aza[8]CPP this oxidation falls outside of the solvent 

window and we were not able to obtain a value. Again, as expected, this illustrates that 

smaller nanohoops have higher HOMO energy levels than larger nanohoops. To ascertain 

how the HOMO and LUMO energies are modulated by nitrogen incorporation in the 

smaller nanohoop series, the reduction and oxidation potentials of II.6  and II.7  can be 

compared to those of all-carbon [6]CPP. The reduction potential of II.6  (−2.18 V) is very 

similar to the value obtained for [6]CPP (−2.13 V).  [6]CPP has a reversible oxidation at 

0.440 V (ref. 17) while II.6  has a non-reversible oxidation peak with an onset potential at 

0.670 V. This suggests that the LUMO energy is not strongly altered by the inclusion of 

nitrogen and the HOMO energy is marginally lowered. Taken together, this data 

demonstrates that the simple inclusion of one nitrogen atom into [6]CPP does not 

significantly alter the HOMO and LUMO energies. Once converted to the donor–acceptor 

nanohoop (II.7), however, a pronounced non-reversible reduction event occurs (Figure 

2.9) with an onset potential of −1.42 V, providing evidence for the markedly lowered 

LUMO energy compared to both [6]CPP and aza[6]CPP (II.6). The previously reported 

larger donor–acceptor nanohoop, N-methylaza[8]CPP, exhibited a non-reversible reduction 
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with an onset potential of −1.49 V, which suggests that the LUMO in II.7  is lowered due 

to the decreased ring size.  Two additional non-reversible reduction events were also 

observed, with the second at −2.47 V, and the third at −2.72 V. The oxidation of II.7 

showed a single non-reversible event with an onset potential of 0.660 V. The proximity of 

this oxidation potential to that of II.7 (0.670 V) shows that the HOMO energy is largely 

unaffected upon alkylation and that alkylation primarily affects the LUMO energy resulting 

in a narrower HOMO– LUMO gap.  

To understand the origin of these trends, we chose to study both II.6 and II.7 using 

DFT calculations at the B3LYP/6-31g* level of theory using Gaussian 09.18 Ground state 

geometries were first minimized in the gas phase, followed by a solvated (acetonitrile) 

single point energy calculation using the conductor-like polarization continuum model 

(CPCM). This has been shown to give higher correlations between the computed FMOs 

and experimental reduction and oxidation potentials for both charged and neutral aromatic 

species.19 Shown in Figure 2.3 are the calculated frontier molecular orbitals (FMOs) and 

the energy levels for [6]CPP, II.6, and II.7. Comparing II.7 with [6]CPP, the LUMO and 

HOMO energies are lowered by 0.35 eV and 0.07 eV, respectively, which give an energy 

gap of 2.84 eV (0.29 eV narrowing compared to [6]CPP). Interestingly, when making a 

similar comparison of [8]CPP to nitrogen-doped, aza[8]CPP, the LUMO energy is reduced 

by only 0.11 eV.9 This suggests that the smaller nanohoop, II.6, is more sensitive to the 

addition of nitrogen. As is shown experimentally, incorporation of the pyridinium unit has 

a much more powerful effect on the orbital energies than the simple neutral pyridine, 

specifically upon the LUMO energy. In II.7, the LUMO energy is lowered by 1.08 eV, 

while the HOMO energy is only lowered by 0.479 eV. This selective LUMO energy 
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lowering results in a decreased energy gap to 2.53 eV (0.60 eV lower than [6]CPP). 

Localization of the FMOs provides a good rationale for the observed behavior. In II.6, the 

HOMO and LUMO orbital density is symmetrically distributed while in II.7 the positively 

charged pyridinium moiety contributes significantly more to the LUMO than the HOMO, 

and therefore the energy level of the LUMO is lowered more dramatically than in the case 

of the HOMO. Interestingly, the HOMO energy in II.6 is slightly less (0.03 eV) than the  

HOMO energy observed in N-methylaza[8]CPP, although a priori one would expect the 

smaller hoop to have the higher HOMO.9 Due to the smaller size of II.6, however, the 

orbital coefficient of the HOMO resides slightly more on the nitrogen containing ring than 

in the larger hoop, which leads to this counterintuitive result. Importantly, the HOMO–

LUMO energy levels can be fine-tuned by both heteroatom/acceptor incorporation as well 

as by the nanohoop size in a predictable manner.  

 

Figure 2.3.  DFT calculated frontier molecular orbitals of (from left to right) [6]CPP, 

aza[6]CPP II.6, and N-methylaza[6]CPP II.7. 
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To explore the impact of nitrogen incorporation on the photophysical properties of 

the smaller nitrogen-doped nanohoops, UV-Visible spectroscopy was carried out on both 

II.6 and II.7. The UV-Vis spectra of [6]CPP, aza[6]CPP, and N-methylaza[6] CPP in 

dichloromethane are shown in Figure 2.4. The all carbon nanohoop, [6]CPP, has a 

maximum absorption at 338 nm.17 Nitrogen-doped nanohoop, II.6, shares a similar 

absorption maximum of 342 nm (ε = 5.50 × 104 M−1 cm−1) and its methylated analogue, 

II.7, also has a similar absorption maximum centered at 343 nm (ε = 2.30 × 104 M−1 cm−1). 

All three CPPs ([6]CPP, II.6, and II.7) also show minor absorptions in the 350–600 nm 

range. Lastly, there was pronounced broadening of the absorption of II.7 that extended its 

absorption into the visible region. The absorption maximum of CPPs is typically size-

independent, with all CPPs sharing a common absorbance maximum of approximately 340 

nm.6 Through TD-DFT, the Yamago group has assigned this shared maximum to a 

combination of HOMO−1 to LUMO, HOMO−2 to LUMO, HOMO to LUMO+1, and 

HOMO to LUMO+2 transitions.20 Likewise, we used TD-DFT to assign the observed 

transitions in II.6 and II.7 (Figure 2.10). Given the high symmetry of their molecular 

orbitals, the HOMO–LUMO transitions in the all carbon CPPs are Laporte forbidden and 

do not contribute to the absorption maximum.21 Interestingly, despite being forbidden, the 

HOMO–LUMO transitions are observed experimentally (minor absorptions in the 350–600 

nm range), albeit with low extinction coefficients. This was corroborated with TD-DFT, 

where the calculated oscillator strengths, f, for the HOMO–LUMO transition are at or near 

0, illustrating the high symmetry of their molecular orbitals. While [6]CPP has f = 0, the 

nitrogen doped II.6 and II.7 are non-zero, with f = 0.003 and f = 0.022, respectively. 

Addition of nitrogen into these systems causes a minor breakage of molecular orbital 
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symmetry rendering the HOMO–LUMO transition allowed (albeit weak), with the effect 

being stronger in the case of II.6 due to the addition of the methyl group. Computationally, 

the HOMO–LUMO absorption also red-shifts from II.6 (551 nm) to II.7 (619 nm), as 

would be expected given the narrowing of the HOMO–LUMO energy gap. 

Experimentally, this was also observed, with II.6 at 463 nm and II.7 at 560 nm. Through 

TD-DFT, the broadened absorption of II.6 was assigned to HOMO−1 to LUMO and 

HOMO to LUMO+1 transitions (412 nm, ƒ = 0.278). This has been observed in previous 

work with the larger donor–acceptor nanohoops.9,22 Similar to [6]CPP, no fluorescence was 

observed for either II.6 or II.7.17,23 All reports thus far have revealed that, with the 

exception of [6]CPP, the solid-state packing of CPPs is dominated by a herringbone-type 

motif.8, 24, 25 Anomalously, [6]CPP adopts a unique columnar-like packing style, with the 

nanohoops arranging into long tube-like channels.  

 

Figure 2.4.  Scaled (for clarity) absorption spectrum of [6]CPP (green), aza[6]CPP II.6 

(blue), and N-methylaza[6]CPP II.7 (purple) in dicholoromethane. Expanded plot shows 

HOMO–LUMO transitions. 

 

To explore the impact of nitrogen on the solid-state morphology of [6]CPP, 

attempts were made to obtain X-ray quality crystals of both II.6 and II.7. Despite 
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numerous attempts, suitable crystals of II.7 have been elusive thus far, however single-

crystals of II.6 were readily collected through slow evaporation. Illustrated in Figure 2.5 

are the intermolecular contacts observed in the packing motif, torsional angles, as well 

nanohoop diameter in the ORTEP. The nitrogen atom in II.6 was found to be disordered 

over all 24 possible locations. Similar to [6]CPP, II.6 packs into long columnar-like 

channels, with carbons of neighboring channels separated by 3.49 Å. Both the diameter of 

the hoop (7.85 Å) and torsional angles (24.2° and 24.4°) were found to be slightly smaller 

than that of [6]CPP, likely due to the distribution of the nitrogen over the 24 carbon 

positions.17 This suggests that the 6-ring sized nanohoops all favor the columnar packing. 

More studies in regard to this unique solid-state packing are warranted.  

 

Figure 2.5.  (a) View of packing arrangement of II.6 in c axial direction (left) and cb plane 

(right) and (b) ORTEP (50% probability) of II.6 showing torsional angles (Θ) and 

nanohoop diameter (d). Hydrogens omitted for clarity. 

 

2.3. Conclusions 

In summary, two new nitrogen-doped cycloparaphenylenes have been successfully 
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synthesized and characterized. The optoelectronic properties of aza[6]CPP (II.6) showed a 

strong resemblance to [6]CPP whereas the N-methylaza[6]CPP (II.7) showed a broadened 

absorption into the visible range. Electrochemistry provided evidence for a decreased 

LUMO in N-methylaza[6]CPP relative to [6]CPP and aza[6]CPP, while the HOMO energy 

remained fairly constant resulting in a decreased HOMO–LUMO gap. The lowering of the 

LUMO in donor–acceptor nanohoops can be enhanced by decreasing the size (N-

methylaza[8]CPP versus N-methylaza[6]CPP). All of these properties were investigated 

and rationalized through DFT and TD-DFT calculations. The solid-state morphology of 

aza[6]CPP displayed virtually no difference from [6]CPP demonstrating that incorporation 

of the nitrogen heteroatom does not disrupt the unique columnar packing motif observed. 

 

2.4. Experimental Sections 

2.4.1. General Experimental Details 

 1H NMR spectra were recorded at 500 MHz on a Varian VNMR spectrometer or on 

a Bruker 500 MHz. All 1H NMR spectra are referenced to TMS (δ 0.00 ppm) or 

CH2Cl2 (δ 54.0 ppm). All 13C NMR spectra are referenced to a residual CHCl3 (δ 77.0 

ppm). All reagents were obtained commercially. All glassware was flame-dried and cooled 

under an inert atmosphere of nitrogen unless otherwise noted. Moisture sensitive reactions 

were carried out under an inert atmosphere of nitrogen using the standard syringe/septa 

technique. Absorbance spectra for 8 and 9 were collected in dichloromethane in a 1 cm 

quartz cuvette on an Agilent Cary 60 UV-Vis spectrophotometer. Cyclic voltammetry 

experiments (scan rate = 100 mV s−1) were performed using a CH Instruments 1200B 

potentiostat running CH Instruments software. Measurements were conducted in degassed 
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0.100 M nBu4PF6 (recrystallized 3× from methanol) in tetrahydrofuran under an 

N2 atmosphere with a glassy carbon working electrode, platinum counter electrode, and an 

Ag reference electrode. The ferrocene/ferrocenium couple was used as an internal 

reference. Compounds 1, 2, 3, and 4 were prepared according to Jasti et al.9  

 

2.4.2. Synthetic Details 

O

O

N

O

O

Cl Br
II.2  

A flame-dried 1 L flask was charged with II.1 (30.0 g, 68.9 mmol, 1.00 equiv.) and 500 

mL THF and was then cooled to −78 °C for 1 h. To this flask was added NaH (3.30 g, 60% 

suspension in mineral oil, 82.8 mmol, 1.20 equiv.), which resulted in a slurry. This reaction 

was allowed to proceed for 2 h. In a separate flame-dried 2 L flask was added 1,4-

dibromobenzene (35.8 g, 151.7 mmol, 2.20 equiv.) followed by 1 L THF. After cooling at 

−78 °C for 1 h, n-BuLi (2.5 M in hexanes, 60.7 mL, 151.7 mmol, 2.20 equiv.) was added 

dropwise over 45 minutes which, after stirring for an additional 15 minutes, resulted in a 

cloudy-white slurry. After generating the lithiate for 15 minutes, the slurry 

containing II.1 was rapidly transferred via a cannula to the 2 L flask containing the lithiate. 

After 1 hour of stirring, MeI (42.9 mL, 689.7 mmol, 10.0 equiv.) was added, followed by 

DMF (150 mL) to the 2 L flask. After 18 h of stirring, the reaction was quenched with H2O 

(150 mL) and allowed to warm to room temperature. THF was then removed via rotary 

evaporation and the remaining aqueous phase was extracted with DCM (3 × 200 mL). The 
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combined organic phases were washed using 5% LiCl (3 × 100 mL), H2O (100 mL), and 

brine (100 mL), and dried over sodium sulfate. The solvent was removed under reduced 

pressure to afford crude II.2 as a red-orange oil. Addition of ethanol to the crude oil 

precipitated II.2 as a tan solid, which was the collected via vacuum filtration and washed 

with cold ethanol (50.0 mL) (23.6 g, 55%). 1H NMR (500 MHz, CDCl3) δ(ppm) 8.60 

(d, J = 1.2 Hz, 1H), 7.64 (dd, J = 8.1, 1.9 Hz, 1H), 7.51 (d, J = 8.6 Hz, 3H), 7.39 (d, J = 8.6 

Hz, 2H), 7.35–7.27 (m, 4H), 6.16–6.02 (m, 8H), 3.48–3.40 (m, 12H). 13C NMR (126 MHz, 

CDCl3) δ(ppm) 148.34, 141.35, 141.25, 138.48, 136.37, 134.73, 134.73, 133.80, 132.89, 

132.50, 128.79, 128.63, 127.66, 127.42, 127.21, 74.09, 73.23, 52.10, 51.98. IR (neat): 

3070, 2941, 2822, 1590, 1560, 1471, 1401, 1368, 1228, 1177, 1080, 1066, 1012, 984, 951, 

855, 824 cm−1. δ HRMS (TOF, ES+) (m/z): [M + Na]+ calculated for C33H31NO4ClBrNa, 

642.1023; found, 642.1028. 

 

O

O

N

O

O

Cl

Cl
II.3  

To a 1 L flame-dried flask were added Pd(dppf)Cl2 (0.835 g, 1.14 mmol, 0.04 equiv.), 4-

chlorophenylboronic acid (18.87 g, 114.1 mmol, 4.00 equiv.), and II.2 (17.7 g, 28.5 mmol, 

1.00 equiv.). The flask was evacuated and then back-filled with nitrogen. This was repeated 

5 times, at which point dioxane (250 mL) and vigorously nitrogen-spared 2 M K3PO4 (25.0 

mL, 50.0 mmol, 1.75 equiv.) were added via a syringe to the flask resulting in a yellow 
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transparent solution. The reaction was then placed into an 80 °C oil bath, at which point the 

solution turned dark red over a period of 10 minutes. After stirring for 18 h, the black 

solution was brought to room temperature and the dioxane was removed under reduced 

pressure to afford a black oil. The oil was dissolved in DCM (250 mL) and filtered through 

Celite/carbon. The resulting red/yellow filtrate was then added to a separatory funnel, 

washed with water (3 × 100 mL), brine (1 × 50 mL), and then dried over sodium sulfate. 

The solvent was then removed under reduced pressure to afford an orange oil, which was 

chromatographed on silica (ethyl acetate/hexanes = 3 : 7). The combined fractions were 

then washed with ethanol and filtered to give II.3 as a white solid (12.1 g, 67%). 1H NMR 

(500 MHz, CDCl3) δ(ppm) 8.65 (d, J = 1.2 Hz, 1H), 7.68–7.64 (m, 3H), 7.54–7.45 (m, 5H), 

7.38 (d, J = 8.5 Hz, 2H), 7.33–7.25 (m, 4H), 6.19–6.07 (m, 8H), 3.49 (s, 6H), 3.43 (s, 3H), 

3.41 (s, 3H). 13C NMR (126 MHz, CDCl3)δ(ppm) 161.23, 147.21, 142.81, 141.63, 139.41, 

138.95, 137.83, 134.74, 134.56, 134.41, 133.80, 133.56, 132.82, 132.02, 128.33, 127.28, 

126.77, 126.71, 120.42, 75.90, 74.90, 74.14, 73.41, 52.03, 51.95. IR (neat): 3068, 2943, 

2823, 1595, 1564, 1487, 1471, 1451, 1393, 1262, 1226, 1178, 1073, 1019, 1011, 1005, 

987, 950, 853, 840, 827, 821, 771, 753, 729 cm−1. δ HRMS (TOF, ES+) (m/z): [M + 

Na]+ calculated for C39H35NO4Cl2Na, 674.1841; found, 674.1856. 

O

O

N

O

O

R

R

R = Bpin

II.4  



45 
 

To a 1 L flame-dried flask was added Pd(OAc)2 (0.390 g, 1.76 mmol, 0.100 equiv.), 2-

dicyclohexylphosphino-2′,6′dimethoxybiphenyl (1.80 g, 4.40 mmol, 0.250 equiv.), 

bis(pinacolato)diboron (22.3 g, 8.80 mmol, 5.00 equiv.), II.3 (11.5 g, 17.6 mmol, 1.00 

equiv.), and K3PO4(22.4 g, 106 mmol, 6.00 equiv.). After the solids were added, the flask 

was evacuated and backfilled with nitrogen 5 times. Dioxane (300 mL) was then added to 

the flask resulting in an orange solution, which was then placed into an 80 °C oil bath, at 

which point the solution gradually became green. After 18 h, the resulting black solution 

was brought to room temperature and the solvent was removed under reduced pressure. 

The resulting black solid was then dissolved in DCM (300 mL) and filtered through 

celite/activated carbon. The resulting yellow filtrate was then added to a separatory funnel, 

washed with water (3 × 150 mL), brine (1 × 100 mL), and then dried over sodium sulfate. 

After removing the organic solvent via rotary evaporation, the resulting orange solid was 

filtered through a short silica plug (wet loaded with DCM, eluted with 3 : 7 ethyl 

acetate : hexanes), followed by removal of the organic solvent via rotary evaporation. The 

resulting white solid was then washed with hot ethanol (100 mL) to give II.4 as a white 

solid. The solid was collected via vacuum filtration and washed with cold ethanol (50 mL) 

(2.82 g, 84%). 1H NMR (500 MHz, CDCl3) δ(ppm) 8.72 (d, J = 1.2 Hz, 1H), 7.86 (d, J = 

7.7 Hz, 2H), 7.78 (d, J = 7.8 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H), 7.59–7.53 (m, 5H), 7.46 

(d, J = 8.0 Hz, 1H), 7.39 (d, J = 7.8 Hz, 2H), 6.21–6.13 (m, 6H), 6.06 (d, J = 10.0 Hz, 2H), 

3.49 (s, 3H), 3.48 (s, 3H), 3.44 (s, 3H), 3.42 (s, 3H), 1.36 (s, 12H), 1.31 (s, 12H). 13C NMR 

(126 MHz, CDCl3) δ(ppm) 161.01, 147.38, 145.94, 143.63, 142.74, 139.89, 137.89, 

135.16, 135.05, 134.69, 134.39, 134.14, 133.98, 132.53, 132.03, 127.01, 126.59, 126.38, 

125.13, 120.25, 83.74, 75.88, 74.95, 74.63, 73.62, 52.03, 51.98, 24.84, 24.80. IR (neat): 
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3053, 2977, 2935, 2823, 1609, 1560, 1525, 1470, 1448, 1390, 1356, 1318, 1273, 1213, 

1166, 1142, 1125, 1081, 1034, 1015, 962, 949, 858, 821, 760, 755, 731 cm−1. HRMS 

(TOF, ES+) (m/z): [M + Na]+ calculated for C51H59NO8B2Na, 858.4341; found, 858.4315. 

 

O

ONO

O

II.5  

To a 2 L flask were added II.4 (1.00 g, 1.20 mmol, 1.00 equiv.), Pd(PPh3)2Cl2 (252 mg, 

0.359 mmol, 0.300 equiv.), boric acid (370 mg, 5.99 mmol, 5.00 equiv.), and 1 L of THF. 

This was then placed in an oil bath at 40 °C. The bright yellow solution was then 

vigorously sparged with O2 for 1 h. In a separate 250 mL flask was added KF (138 mg, 

2.39 mmol, 2.00 equiv.), and 100 mL of H2O, which was then sparged with O2 for 1 h. The 

KF solution was then transferred to the 2 L flask resulting in a bright orange solution. After 

2 h of stirring at 40 °C, the THF was removed under reduced pressure. The aqueous phase 

was then extracted with DCM (3 × 100 ml), followed by a washing of the combined bright 

orange organic phases with H2O (3 × 50 mL), brine (1 × 50 mL), and dried over sodium 

sulfate. After removal of solvent under reduced pressure, the resulting orange oil was 

purified by column chromatography (THF/DCM = 1 : 5) to give II.5 as a tan/yellow solid 

(357 mg, 51%). 1H NMR (500 MHz, CDCl3) δ(ppm) 8.76 (d, J = 1.6 Hz, 1H), 7.46 (d, J = 

2.3 Hz, 4H), 7.35–7.27 (m, 4H), 7.24–7.15 (m, 4H), 6.43 (dd, J = 8.2, 2.4 Hz, 1H), 6.31 

(dd, J = 12.0, 10.3 Hz, 4H), 6.10 (dd, J = 8.3, 0.9 Hz, 1H), 5.94 (d, J = 10.4 Hz, 2H), 5.73 

(d, J = 10.3 Hz, 2H), 3.45 (s, 3H), 3.44 (s, 3H), 3.35 (s, 3H), 3.30 (s, 3H). 13C NMR (126 
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MHz, CDCl3) δ(ppm) 159.38, 147.82, 141.71, 141.60, 139.87, 139.53, 137.88, 134.73, 

134.44, 133.89, 132.05, 131.41, 128.96, 128.45, 128.34, 126.64, 119.86, 75.27, 74.25, 

73.90, 73.24, 52.67, 52.64, 51.59, 51.24. IR (neat): 3053, 3025, 2978, 2934, 2894, 2820, 

1589, 1580, 1449, 1394, 1370, 1318, 1263, 1230, 1173, 1119, 1070, 1004, 943, 815, 758, 

720 cm−1. MALDI-TOF (m/z): [M + Ag]+calculated for C39H35AgNO4 689.58; found, 

689.33. 

 

NII.6

 

To a flame-dried 250 mL flask were added II.5 (599 mg, 1.03 mmol, 1.00 equiv.) and THF 

(50 mL), which was then cooled to −94 °C for 1 h under N2. Freshly prepared 0.5 M (in 

THF) sodium naphthalanide (42.0 mL, 21.0 mmol, 21.0 equiv.) was then added dropwise 

resulting in a dark purple solution to which, after 30 minutes of vigorous stirring, 1 M (in 

THF) I2 (25.0 mL, 25.0 mmol, 25.0 equiv.) was added dropwise to afford an orange 

solution. The excess I2 was then quenched with excess saturated sodium thiosulfate and the 

solution was allowed to warm to room temperature, which resulted in a bright red liquid. 

The THF was removed under reduced pressure and the resulting aqueous phase was 

extracted with DCM (3 × 50 mL), followed by a washing of the organic phases with H2O 

(3 × 50 mL), brine (1 × 50 ml), and dried over sodium sulfate. The resulting bright red solid 

was chromatographed on silica (DCM/ethyl acetate/hexanes = 2 : 1 : 7) to afford II.6 as red 

solid (201 mg, 43%). 1H NMR (500 MHz, CDCl3): δ(ppm) 8.95 (s, 1H), 8.35 (d, J = 9.1 

Hz, 1H), 7.87–7.49 (m, 21H).13C NMR (126 MHz, CDCl3): δ(ppm) 152.27, 146.31, 
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136.77, 135.73, 135.71, 135.52, 135.46, 135.12, 135.02, 134.88, 134.24, 132.34, 130.82, 

129.03, 129.01, 128.50, 128.45, 127.96, 127.89, 127.68, 127.47, 127.38, 127.34, 127.31, 

127.23, 127.21, 127.19, 127.11, 126.76, 126.72, 126.38, 126.29, 126.04, 117.54.|| IR (neat): 

3040, 2927, 2822, 1589, 1473, 1456, 1419, 1400, 1228, 1174, 1080, 1012, 950, 816, 755 

cm−1. δHRMS (TOF, ES+) (m/z): [M + Na]+ calculated for C35H23NNa, 480.1728; found, 

480.1746. 

 

N
I
-

II.7  

To a flame-dried 5 mL microwave tube equipped with a stir bar were added II.6 (10.0 mg, 

0.0219 mmol, 1.00 equiv.), 2.5 mL DCM, and MeI (1.50 mL, 24.1 mmol, 1.10 × 103 

equiv.). The reaction vessel was heated to 100 °C for 11 h, at which point the vessel was 

allowed to cool to room temperature, followed by the removal of DCM and MeI via high 

vacuum equipped with a cold trap. The resulting black/brown solid was washed with ether 

(5 × 1 mL) and the remaining solid was filtered to afford II.7 (11.4 mg, 83%) as a dark red 

solid.1H NMR (500 MHz, CD2Cl2): δ(ppm) 9.72 (s, 1H), 8.34 (d, J = 8.4 Hz, 1H), 8.04 

(d, J = 8.6 Hz, 1H), 7.90–7.43 (m, 19H), 7.37 (d, J = 9.4 Hz, 1H), 4.93 (s, 3H). 13C NMR 

(126 MHz, CD2Cl2) δ(ppm) 149.19, 144.63, 141.49, 141.08, 139.79, 138.11, 136.78, 

136.26, 135.97, 135.74, 135.33, 135.31, 135.20, 134.87, 132.85, 132.62, 132.27, 131.88, 

131.16, 131.12, 130.83, 130.48, 130.16, 130.06, 128.55, 127.46, 126.48, 126.23, 126.14, 

125.91, 125.72, 125.71, 125.63, 125.57, 49.00.|| IR (neat): 3025, 2981, 2937, 2897, 2821, 

https://pubs.rsc.org/en/content/articlelanding/2016/ob/c6ob00133e#fn5
https://pubs.rsc.org/en/content/articlelanding/2016/ob/c6ob00133e#fn5
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1658, 1651, 1473, 1449, 1394, 1262, 1175, 1119, 1077, 1017, 952, 823 cm−1. HRMS 

(TOF, ES+) (m/z): [M]+ calculated for C36H26N, 472.2065; found, 472.2082. 

 

2.4.3. Optical Data 

 

Figure 2.6.  Beer-Lambert Plot of II.6 at 342 nm (ε = 5.5 x 104 M-1 cm-1) 

 

Figure 2.7.  Beer-Lambert Plot of II.7 at 342 nm (ε = 5.5 x 104 M-1 cm-1) 
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2.4.4. Electrochemical Data 

 

 

Figure 2.8.  Cyclic voltammogram of II.6 in THF (0.1 M tetrabutylammonium 

hexfluorophoshate) with ferrocene/ferrocenium added as internal standard. 

 

 

Figure 2.9.  Cyclic voltammogram of II.7 in THF (0.1 M tetrabutylammonium 

hexfluorophoshate) with ferrocene/ferrocenium added as internal standard. 
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2.4.5. Computational Data 

 

Figure 2.10.  TD-DFT (B3LYP/6-31g*) plot for II.6 and II.7. 

 

 

Figure 2.11.  Major transitions for II.6 determined by TD-DFT using B3LYP/6-31g* 

 

 

Figure 2.12.  Major transitions for II.7 determined by TD-DFT using B3LYP/6-31g* 
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2.5. Bridge to Chapter III 

 This chapter highlights how the electronic structure of [n]CPPs differs from typical 

flat conjugated molecules.  To fine-tune this electronic structure, we have shown that 

nitrogen incorporation can be leveraged to selectively reduce the LUMO energy levels, 

with the most pronounced effect coming from alkylation of the nitrogen center.  Therefore, 

the nitrogen heteroatom can be viewed as an entry point for post-synthetic modification of 

the nanohoop framework.  Encouraged by this observation as well the countless example of 

nitrogen-based coordination complexes, the next chapter focuses on how nitrogen-doped 

nanohoops can be used to construct new cylindrical coordination complexes. 
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CHAPTER III 
 
 

2,2’-BIPYRIDYL-EMBEDDED CYCLOPARAPHENYLENES AS A GENERAL 

STRATEGY TO INVESTIGATE NANOHOOP-BASED COORDINATION 

COMPLEXES  

 

From Van Raden, J. M.; Louie, S.; Zakharov, L. N.; Jasti, R. J. Am. Chem. Soc. 

2018, 139, 2936-2939.  Further permissions related to the use of the material excerpted in 

this chapter should be directed to the American Chemical Society.  This manuscript was 

written by myself with editorial assistance from Professor Ramesh Jasti.  Experimental 

work in this chapter was performed by myself, Shayan Louie, or Lev Zakharov. 

Because of their unique cyclic architectures, tunable electronic properties, and 

supramolecular chemistries, cycloparaphenylenes (CPPs) have the potential to act as a 

new class of ligands for coordination cages, metal− organic frameworks, and small-

molecule transition-metal complexes. However, currently there is no general strategy to 

coordinate the cyclic framework to a variety of metal centers. We report here a general 

and scalable synthetic strategy to embed 2,2′-bipyridine units into the backbone of CPPs. 

We use this approach to synthesize a 2,2′- bipyridine-embedded [8]CPP, which we show 

can successfully coordinate to both Pd(II) and Ru(II) metal centers. The resulting 

coordination complexes, a Pd(II)− nanohoop dimer and a bis(bipyridyl)ruthenium(II)- 

functionalized nanohoop, show unique solid-state and photophysical properties. This 

work provides a proof of concept for a general strategy to use nanohoops and their 

derivatives as a new class of ligands. 
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3.1. Introduction 

The development of ligands with tunable electronic structures and unique three-

dimensional molecular shapes has provided access to an abundance of metal coordination 

complexes with desirable properties for a wide range of applications. For example, the 

development of new redox-active ligands is a central driver in the fields of photocatalysis 

and photovoltaics.1-3 In addition, the increase in functionalization of organic linker 

ligands4,5 in metal−organic frameworks (MOFs) and coordination cages has enabled 

advanced functionality such as catalysis,6,7 chemical sensing,8 molecular recognition,9,10 

and energy transfer.11 As many of the currently available ligands are centralized around a 

linear, flat aromatic framework,5 the introduction of new cyclic ligand scaffolds—in 

particular those with radially oriented π systems— 

would provide new metal− ligand architectures that would offer unique features, thereby 

furthering the development and application of large metal− ligand assemblies as well as 

small-molecule transition-metal complexes.  

The [n]cycloparaphenylenes (CPPs),12 or nanohoops, are composed of n benzene 

rings linked at the para positions, resulting in a rigid, three-dimensional, fully sp2 -

hybridized cylindrical architecture with a radially oriented π system. The unique geometry 

of CPPs provides novel electronic properties such as narrowing HOMO−LUMO energy 

gaps and red shifting fluorescence with decreasing size—a trend exactly opposite to that of 

linear analogues.13 In addition, the radially oriented π systems provide a hydrophobic, 

electron-rich cavity that acts as a strong host for electron-poor guests such as C60.18-21 These 

diameter-dependent optoelectronic properties, coupled with the molecular recognition 

capabilities, position CPPs and related cyclic derivatives22-25 as a new class of inherently 
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porous, cylindrical ligands with numerous potential applications. Using CPPs as ligands, 

however, is currently restricted to η-type coordination complexes26,27 (Figure 3.1), which 

limits their use and potential as a general ligand class. An early report by the Itami group28 

suggested that embedding 2,2′-biypridyl units into the nanohoop framework is possible, but 

the reported synthetic route was not amenable to CPPs of different diameters and the 

reported nanohoop was only accessed in small quantities. Herein we illustrate a general 

synthetic method to access 2,2′-bipyridyl-embedded nanohoops in a size-selective29 and 

scalable manner. By constructing a Pd(II) nanohoop dimer and a photosensitized Ru(II) 

nanohoop, we demonstrate that nanohoops can be used as ligands toward the construction 

of new cylindrical coordination cages as well as a novel photoactive transition-metal 

complexes with supramolecular capabilities.  

 

Figure 3.1. Current examples of metal–nanohoop coordination complexes. 

 

3.2. Results and Discussion 
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Our investigations began by developing synthetic methodology that would allow 

2,2′-bipyridyl-embedded CPPs to be accessed in a size-selective and scalable manner. 

Previous work by our group12 and others15 has shown that CPPs and related derivatives are 

readily accessed by the reductive aromatization of macrocycles containing cyclohexadienes 

as “masked” aromatic rings (e.g., structure III.7 in Scheme 3.1). These relatively 

unstrained macrocycles can be prepared in a variety of sizes via aryl−aryl coupling 

reactions. We surmised that the most general synthetic strategy leading to the 2,2′-

bipyridylembedded nanohoops would be one that formed the pyridine−pyridine linkage in 

the macrocyclization step. Because of the instability of 2-pyridylboranes,30, 31 we targeted 

reductive couplings of pyridyl halides as the key cyclization step.32-35 Yamago recently 

demonstrated that reductive homocoupling of aryl bromides can be used to prepare a 

precursor to [5]CPP.15 In order to leverage previous methods relying on the orthogonal 

reactivity of aryl chlorides and bromides, we envisioned the reductive homocoupling of 

pyridyl chlorides as the key development for general access to the 2,2′-bipyridylembedded 

nanohoops. Guided by these thoughts as well as the work by Goldup34 and Drew,35 we 

prepared intermediate III.6 with terminal pyridyl chloride units (Scheme 3.1) via Suzuki− 

Miyaura cross-coupling of bromide III.5 and boronic ester III.4 in good yield. Precursor 

III.6 can be easily prepared on a multigram scale. After significant optimization of 

reductive nickel homocoupling conditions, we were then able to access macrocycle III.7 in 

57% yield. With macrocycle III.7 in hand, we explored the reductive aromatization step 

and found that the mild H2SnCl4 strategy reported by Yamago15 afforded the desired bipy-

CPP ligand III.8 in 61% yield over two steps. Noteworthy is the use of pseudodilution 

conditions for the macrocyclization step, which allows the ligand synthesis to be highly 
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scalable. Additionally, the use of pyridyl chlorides over bromides allows for orthogonal 

lithium−halogen exchange and Suzuki−Miyaura coupling for rapid access to the 

macrocyclic precursor. Moreover, this strategy can be expanded to a variety of 2,2′-

bipyridylembedded nanohoops with different diameters using strategies we have developed 

for cycloparaphenylene synthesis.17  
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Scheme 3.1. Synthetic Route toward CPP Ligand III.8 
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As a first pass at exploring the coordination chemistry of these new ligands, we 

probed the feasibility of constructing a nanotube-inspired coordination cage from these 

systems. We began by first preparing intermediate III.9 (Figure 3.2) via the reaction of 

PdCl2 with bipy-CPP III.8 in acetonitrile. Pd−CPP III.9 was then combined with another 

equivalent of bipy-CPP III.8 in the presence of 2 equiv of AgBF4 for 2h in 

dichloromethane, providing nanohoop dimer III.10 in quantitative yield. In the 1H NMR 

spectrum of dimer III.10, only three 3-pyridyl centered protons were observed, suggesting 

high symmetry. However, this spectrum could result from a dimeric structure that 

possessed either of two geometries (trans or cis) about the Pd(II) metal center. In order to 

elucidate the exact geometry, dark-red crystals suitable for X-ray crystallography were 

obtained after slow vapor diffusion of pentane into a concentrated solution of III.10 in 

acetone. Crystallographic analysis not only confirmed the formation of III.10 but also 

provided direct solid-state evidence for a trans preference about the Pd(II) center. 

Bis(bipyridyl)palladium(II) complexes often show a distorted square-planar geometry 

because of steric repulsions between hydrogens of the coordinated biypyridine ligands.36 

Thus, the observed preference for a trans conformation about the Pd(II) center in dimer 

III.10 can be explained on the basis that similar steric repulsions that exist upon formation 

of complex III.10.  

N

N

PdCl2

MeCN, rt

N

N
Cl2Pd

AgBF4
 (2 equiv.)

DCM, rt, 2h

III.8

N

N

N

N
Pd

BF4

BF4

III.8 III.9 III.10  

Figure 3.2. Synthetic route for nanohoop dimer III.10. 
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We then investigated how the Pd(II) metal center impacted the nanohoop structure 

and solid-state packing. Detailed analysis of the crystal structure of III.10 revealed that two 

different dimeric units are present, each of which shows subtle changes in their 

corresponding torsional (θ) and displacement angles (α°). In both dimers, the torsional 

angle between adjacent pyridyl rings, θ (Figure 3.3), is approximately 6°, which is 

decreased significantly from that of the all-carbon nanohoops (average of approximately 

31° for [8]CPP). The torsional angles of the remaining aryl rings spanned from 0° up to 

nearly 38°. Additionally, the displacement angles of the pyridyl units, α° (Figure 3.3a), 

varied from 6.0° to 12.7°, similar to those in the parent all-carbon nanohoop [8]CPP.13 

Taken together, these data suggest that while ligation to a Pd(II) metal center does reduce 

the dihedral angle of the embedded bipyridyl unit, this does not strongly affect the 

remaining aryl rings. Interestingly, these two dimeric units contributed to an unusual 

multilayer packing motif (Figure 3.3b) in which each layer possesses a unique 

microstructure. In one case (Figure 3.3c), the dimeric units pack into flat, sheet-like 

arrangements. In the other case, the dimeric units arrange into a herringbone-type motif, 

which is commonly observed in the parent all-carbon CPPs. While the reasoning for this 

packing arrangement is less clear, we anticipate that nanohoop ligands with different 

diameters will strongly affect both the packing motif and observed angle distortions. 

Moreover, through our synthetic methods, we can incorporate multiple pyridyl units such 

that the nanohoops can be extended into trimeric, oligomeric, or polymeric networks, 

which will enable new pathways toward novel porous materials.  
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Figure 3.3. (a) Crystal structure of Pd dimer III.10 showing torsional angles and pyridyl 

displacement angles. (b) Observed packing motif showing the multilayered structure. (c) 

View of the flat layer. Counterions and solvent have been omitted for clarity. 

 

In addition to the nanohoops’ unique structural features, we were curious whether 

the tunable optoelectronic properties of the nanohoops could be leveraged in new 

coordination complexes as well. With this in mind, we found that refluxing bipy-CPP III.8 

with Ru(bipy)2Cl2 in ethanol (Figure 4.4) provided Ru(II)−nanohoop complex III.11 in 

83% yield as the racemate. Red plate-like crystals suitable for X-ray crystallography were 

obtained by diffusion of diethyl ether into a dilute solution of III.11 in acetone, and 

crystallographic analysis unambiguously confirmed both the structure of III.11 and the 

racemic solid-state morphology.  

N

N

III.8

EtOH, relux, 12h

i. [Ru(bipy)2]Cl2
ii. NH4PF6

 (aq) N

N
Ru
N N

N
N

PF6

III.11  

Figure 3.4. Synthetic route for Ru(II)–nanohoop complex III.11. 
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The electronic structures of III.8 and III.11 were then studied using UV−vis 

spectroscopy and compared with the parent system, [Ru- (bipy)3](PF6)2 (Figure 3.5). Bipy-

CPP III.8 has a λmax of 345 nm (ε = 1.2 × 105 M−1 cm−1 ), which is similar to that of the 

parent all-carbon nanohoop [8]CPP (λmax = 340 nm, ε = 1.0 × 105 M−1 cm−1 ),13 

suggesting that the nitrogen atoms have little impact on the electronic structure—a 

common observation in other nitrogen-doped CPPs.14,28 On the other hand, the absorption 

spectrum of Ru(II)−nanohoop complex III.11 showed a dramatic difference relative to 

those of III.8 and [Ru(bipy)3](PF6)2. The first absorption of complex III.11 is centered at 

290 nm and is due to bipyridine π to π* transitions,36 while the absorption at 357 nm 

originates from the nanohoop; both are broadened and red-shifted relative to those of III.8 

and [Ru(bipy)3](PF6)2. The broad absorption from approximately 425 to 575 nm is due to 

metal-to-ligand charge transfer (MLCT)—a hallmark of Ru(II)−polypyridyl complexes.36  

 

 

 

Figure 3.5. Absorption spectra of CPP III.8, Ru(II)–nanohoop complex III.11, and 

[Ru(bipy)3](PF6)2 in dichloromethane. 
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In homoleptic [Ru(bipy)3](PF6)2, irradiation with visible light creates an excited 

state that resides on one of three bipyridine ligands.36 However, in the case of heteroleptic 

complex III.11, the destination of the charge is less obvious because of the presence of the 

nanohoop ligand. In order to further investigate the MLCT absorptions, we turned to 

density functional theory (DFT) and time-dependent DFT (TDDFT). From TD-DFT 

studies, we found that five major transitions (Figure 3.6) are responsible for the 

absorptions between 440 and 490 nm. In all cases, it was found that the filled molecular 

orbital was centralized around the Ru(II) metal center and the unfilled orbital was 

predominately localized on the nanohoop. This supports our expectations that the 

experimentally observed absorptions in the 430 to 500 nm range result from MLCT 

transitions. Additionally, this further suggests that there is a significant amount of electron  

transfer between the Ru(II) metal center and the nanohoop ligand, with apparently very 

minimal transfer to the bipyridine ligands. Taken together, these results indicate that the 

excited state of the Ru(II)−nanohoop complex is primarily localized on the nanohoop 

backbone. Given that the redox potential of nanohoops can be easily tuned,14 we expect 

that this excited-state localization can be leveraged via supramolecular interactions to 

provide new functionality for catalysis and energy transfer with electron-deficient guests.  

 

3.3. Conclusions 

In conclusion, this work illustrates a general strategy for coordinating the nanohoop 

framework to common metal centers. We have shown that the ligand is readily accessible 

using straightforward methodology and can be obtained in sufficient quantity and good 

yield. The resulting coordination complexes, a homoleptic Pd(II) dimer and a  
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Figure 3.6. Major electronic transitions (TD-DFT) contributing to MLCT absorptions and 

representative frontier molecular orbitals for Ru(II)–nanohoop complex III.11, calculated 

at the B3LYP/6-31G(d,p) (C, H, N) and LANL2DZ (Ru) level of theory. 

 

Ru(II)−nanohoop complex, show excellent stability and unique solid-state and 

photophysical properties, suggesting that CPPs show promise as a new class of ligands. 

While this work centralized around a 2,2′-bipyridyl-embedded[8]CPP, we argue that the 

synthetic methodology is readily applicable to [n]CPPs with different diameters, and work 

is currently underway to prepare both reduced- and expanded-diameter nanohoop ligands 

in order to explore new cylindrical metal−ligand assemblies with interesting 

supramolecular and solid-state properties. 

3.4. Experimental Sections 

3.4.1. General Experimental Details 

1H NMR spectra were recorded at 500 MHz on a Varian VNMR spectrometer, 500 

MHz on a Bruker, or 600 MHz on a Bruker Avance-III-HD NMR spectrometer. 13C NMR 

spectra were recorded at 125 MHz on a Varian VNMR spectrometer or 150 MHz on a 
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Bruker Avance-III-HD NMR spectrometer. All 1H NMR spectra are referenced to TMS (δ 

0.00 ppm), residual CH2Cl2 (δ 5.32 ppm), or (CH3)3CO (δ 2.05 ppm). All 13C NMR 

spectra are references to a residual CHCl3 (δ 77.16 ppm), CH2Cl2 (54.00 ppm), or 

(CH3)3CO (δ 29.84 ppm). All reagents were obtained commercially. All glassware was 

flame-dried and cooled under an inert atmosphere of nitrogen unless otherwise noted. 

Moisture sensitive reactions were carried out under an inert atmosphere of nitrogen using 

standard syringe/septa technique. Absorbance spectra for III.8 and III.11 were collected in 

dichloromethane in a 1 cm quartz cuvette on an Agilent Cary 60 UV-Vis 

spectrophotometer. Silica column chromatography was conducted with Zeochem Zeoprep 

60 Eco 40-63 uM silica gel while alumina chromatography utilized Sorbent Technologies 

50-200 um Basic Activity II-II Alumina. 

 

3.4.2. Synthetic Details 

O
TESO

NCl
III.1

 

Synthesis of III.S1. A flame-dried 500 mL flask was charged with 5-bromo-2-

chloropyridine (14.3 g, 74.3 mmol, 1.00 equiv.) and quinone monoketal (11.45 g, 74.3 

mmol, 1.00 equiv.) and then dissolved in 250 mL THF.  The resulting solution was then 

cooled to -78 °C for 1h, at which point n-BuLi (2.5 M in hexanes, 29.7 mL, 74.3 mmol, 

1.00 equiv.) was added dropwise resulting in a transparent orange solution.  The solution 

was allowed to stir for 1.5 h at which point H2O (100 mL) was added, then allowed to 

warm to room temp.  THF was then removed via rotary evaporation and the remaining 

aqueous phase was extracted with diethyl ether (3 x 100 mL).  The combined organic 
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phases were washed with H2O (3 x 100 mL), and brine (1 x 100 mL), and dried over 

sodium sulfate.  The solvent was removed under reduced pressure to afford a yellow oil.  

Addition of hexanes this oil caused a white solid to precipitate which was collected via 

filtration and washed with additional hexanes.  The resulting solid was then dissolved in 

acetone (25 mL) in a 500 mL RBF, followed by the addition of 10% AcOH/H2O (100 mL), 

and then stirred for 1 h.  The acetone was removed with under reduced pressure, and the 

remaining aqueous phase was extracted with ethyl acetate (3 x 100 mL).  The combined 

organic phases were washed with H2O (3 x 100 mL), and brine (1 x 100 mL), and dried 

over sodium sulfate.   After removal of solvent, a tan solid emerged III.S1 (8.71 g, 53%).   

 

TES protection.  Imidazole (5.21 g, 76.6 mmol, 2.00 equiv), and free alcohol III.S1 (8.71 

g, 38.3 mmol, 1.00 equiv.) were added to a 500 mL flame-dried RBF, then dissolved in 150 

mL DMF.  The resulting solution was heated to 40 °C at which point TESCl (9.74 mL, 

57.5 mmol, 1.50 equiv.) was added dropwise.  The reaction was monitored via 1H NMR 

until all the starting material was consumed (typically 2 hours).  Once complete, the 

reaction was flask was placed cooled to 0 °C, then neutrazlied with sodium bicarbonate.  

The resulting suspension was extracted EtOAc (3 x 100 mL).  The combined organic 

phases were washed with 5% LiCl (5 x 100 mL), followed by H2O (1 x 100 mL), brine (1 

x 100 mL), and then placed over sodium sulfate.  Removal of solvent via rotary 

evaporation yielded a brown oil which, after chromatography (5% EtOAc/Hex), yielded 

TES protected III.1 as a white solid (12.8 g, 96%).  1H NMR (500 MHz, Chloroform-d) δ 

8.52 (d, J = 2.7 Hz 1H), 7.62 (dd, J = 8.3, 2.7 Hz, 1H), 7.29 (d, J = 8.3 Hz, 1H), 6.79 (d, J 

= 10.1 Hz, 1H), 6.28 (d, J = 10.1 Hz, 1H), 0.97 (t, J = 7.9 Hz, 7H), 0.66 (q, J = 7.9 Hz, 4H).  
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13C NMR (126 MHz, CDCl3) δ 185.08, 151.39, 150.62, 147.81, 136.32, 135.17, 127.51, 

124.17, 71.87, 6.99, 6.33. δ HRMS (TOF, ES+) (m/z): [M+H]+ calculated for 

C17H23NO2SiCl, 336.1187; found, 336.1197.  IR (neat): 3096.51, 3072.96, 3043.06, 

2957.86, 2908.88, 2876.74, 1689.96, 1670.66, 1629.23, 1605.12, 1580.69, 1564.16, 

1477.67, 1453.30, 1411.73, 1387.98, 1363.08, 1283.33, 1234.00, 1200.27, 1180.08, 

1145.73, 1105.89, 1078.80, 1066.55, 1028.11, 1017.39, 969.22, 925.61, 886.59, 832.11, 

790.11, 756.45.  MP (75.0-76.4°C). 

TESO

TESO

N

Cl

Br

III.3

 

Synthesis of III.3. A flame-dried 500 mL flask was charged with 1,4-dibromobenzene 

(9.96 g, 42.2 mmol, 1.00 equiv.) 200 mL THF.  The resulting solution was then cooled to -

78 °C for 1h, at which point n-BuLi (2.5 M in hexanes, 16.9 mL, 42.2 mmol, 1.00 equiv.) 

was added dropwise resulting in a white suspension after stirring for 30 minutes.  To this 

solution was added III.1 (14.2 g, 42.2 mmol, 1.00 equiv) in 5 mL THF, resulting in a dark 

green solution. The solution was allowed to stir for 1h at which point H2O (100 mL) was 

added, then allowed to warm to room temp.  THF was then removed via rotary evaporation 

and the remaining aqueous phase was extracted with EtOAc (3 x 100 mL).  The combined 

organic phases were washed with H2O (3 x 100 mL), and brine (1 x 100 mL), and dried 

over sodium sulfate.  After removal of solvent, a brown oil (III.2) was obtained (19.4 g, 

94%) which was then TES protected as in the case of III.1.  Chromatography 

(5%EtOAc/Hex) yielded III.3 as a clear oil (17.9 g, 70%). 1H NMR (500 MHz, 
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Chloroform-d) δ 8.31 (d, J = 2.6 Hz, 1H), 7.50 (dd, J = 8.4, 2.6 Hz, 1H), 7.41 (d, J = 8.5 

Hz, 2H), 7.18 (d, J = 8.4 Hz, 3H), 1.03 – 0.84 (m, 18H), 0.63 (q, J = 7.9 Hz, 6H), 0.56 (q, J 

= 7.9 Hz, 6H).  13C NMR (126 MHz, CDCl3) δ 150.34, 147.81, 144.60, 140.44, 136.40, 

132.16, 131.59, 130.75, 127.48, 123.63, 121.72, 70.86, 70.07, 7.04, 6.50, 6.45. δ HRMS 

(TOF, ES+) (m/z): [M+H]+ calculated for C29H42NO2Si2ClBr, 606.1626; found, 606.1621. 

IR (neat): 3096.68, 3072.82, 3043.31, 2956.72, 2909.34, 2876.05, 1690.07, 1670.93, 

1629.39, 1605.14, 1580.68, 1564.01, 1477.74, 1453.33, 1411.77, 1388.07, 1363.20, 

1283.47, 1234.09, 1200.28, 1180.21, 1145.77, 1105.84, 1079.16, 1028.02, 1017.17, 

969.40, 925.69, 886.41, 832.28, 790.29, 756.50. 

 

Br

OTES

OTES

OTES
TESO

N

Cl III.5
 

Synthesis of III.5. To a flame-dried 250 mL flask was added III.3 (3.60 g, 6.00 mmol, 

1.00 equiv.), which was then dissolved in 125 mL THF.  The resulting solution was cooled 

to -78 °C for 1h, at which point n-BuLi (2.5 M in hexanes, 2.40 mL, 6.00 mmol, 1.00 

equiv.) was added dropwise resulting in a bright red solution.  After stirring for 10 minutes, 

bromo ketoneXX (2.27 g, 6.00 mmol, 1.00 equiv), as a solution in 3 mL THF, was added 

resulting in a light orange solution. After stirring for 1 h, the reaction was quenched with 

H2O (100 mL), then allowed to warm to room temp.  The THF was then removed via 

rotary evaporation and the remaining aqueous phase was extracted with EtOAc (3 x 100 

mL).  The combined organic phases were washed with H2O (3 x 100 mL), and brine (1 x 
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100 mL), and dried over sodium sulfate.  After removal of solvent, a yellow oil was 

obtained (3.90 g, 72%) which was then TES protected as in the case of III.1.  

Chromatography (5%EtOAc/Hex) yielded III.5 as a clear oil (3.70 g, 61%). 1H NMR (500 

MHz, Chloroform-d) δ 8.36 (d, J = 2.6 Hz, 1H), 7.45 (dd, J = 8.4, 2.6 Hz, 1H), 7.38 (d, J = 

8.7 Hz, 2H), 7.28 – 7.25 (m, 4H), 7.17 (d, J = 8.5 Hz, 2H), 7.14 (d, 1H), 6.11 (d, J = 10.1 

Hz, 2H), 6.01 (d, J = 10.2 Hz, 2H), 5.91 (m, 4H), 1.26 – 0.82 (m, 36H), 0.83 – 0.43 (m, 

24H).  13C NMR (126 MHz, CDCl3) δ 150.28, 148.04, 145.47, 145.29, 144.75, 140.72, 

136.47, 132.55, 131.81, 131.30, 130.54, 127.76, 126.09, 125.76, 123.51, 121.31, 71.38, 

71.30, 70.98, 70.29, 7.18, 7.18, 7.15, 7.13, 6.61, 6.56, 6.51.  δ HRMS (TOF, ES+) (m/z): 

[M+H]+ calculated for C53H80NO4Si4ClBr, 1020.4021; found, 1020.4036. IR (neat): 

2952.93, 2909.24, 2874.43, 1579.78, 1560.83, 1479, 1454.10, 1406.87, 1378.10, 1357.68, 

1238.08, 1189.24, 1104.84, 1069.29, 1008.55, 956.76, 880.03, 856.36, 825.58, 765.84.  MP 

(86.9-88.0°C). 

N

OTES
TESO

Bpin

Cl

III.4
 

Synthesis of III.4. To a flame-dried 250 mL flask was added III.3 (2.66 g, 4.38 mmol, 

1.00 equiv.), which was then dissolved in 100 mL THF.  The resulting solution was cooled 

to -78 °C for 1h, at which point n-BuLi (2.5 M in hexanes, 1.75 mL, 4.38 mmol, 1.00 

equiv.) was added dropwise resulting in a bright red solution.  The solution was allowed to 

stir for 10 minutes at which point 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

(2.67 mL, 13.1 mmol, 3.00 equiv.) was quickly added, resulting in a bright yellow solution.  
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After stirring for 1 h, the reaction was quenched with H2O (50 mL) and then brought to 

room temperature.  The THF was then removed via rotary evaporation and the remaining 

aqueous phase was extracted with DCM (3 x 100 mL).  The combined organic phases were 

washed with H2O (3 x 100 mL), and brine (1 x 100 mL), and dried over sodium sulfate to 

give a bright yellow oil, which after chromatography (1% EtOAc/Hex), yielded III.4 as a 

white solid (2.20 g, 77%).  1H NMR (500 MHz, Chloroform-d) δ 8.35 (d, J = 2.6 Hz, 1H), 

7.74 (d, J = 8.4 Hz, 2H), 7.45 (dd, J = 8.4, 2.6 Hz, 1H), 7.33 (d, J = 8.4 Hz, 2H), 7.16 (d, J 

= 8.4 Hz, 1H), 6.10 (d, J = 10.2 Hz, 2H), 5.89 (d, J = 10.1 Hz, 2H), 1.35 (s, 12H), 0.95 (t, J 

= 7.9 Hz, 9H), 0.89 (t, J = 7.9 Hz, 9H), 0.65 (q, J = 7.9 Hz, 6H), 0.54 (q, J = 7.9 Hz, 6H).  

13C NMR (126 MHz, CDCl3) δ 150.22, 148.54, 148.03, 140.67, 136.54, 135.11, 132.50, 

130.61, 125.15, 123.57, 83.97, 71.29, 70.31, 25.04, 7.13, 6.50. δ HRMS (TOF, ES+) (m/z): 

[M-Me]+ calculated for C35H54BNO4Si2Cl, 654.3372; found, 654.3373.  IR (neat): 

2956.22, 2910, 2875.23, 1671.62, 1629.67, 1607.50, 1581.03, 1560.65, 1454, 1399.37, 

1390.67, 1361.49, 1322.25, 1284.20, 1272.46, 1235.06, 1191.25, 1100.05, 1145.72, 

1081.81, 1008.47, 969.74, 956.94, 925.78, 856.66, 838.25.  MP (108.4-109.6°C). 

OTES
TESO

TESO

TESO

OTES

OTES
N

N

Cl

Cl
III.6  

Synthesis of III.6. To a flame-dried 100 mL round bottom flask equipped with a stir bar 

was added III.4 (1.35 g, 2.10 mmol, 1.20 equiv.), III.5 (1.76 g, 1.72 mmol, 1.00 equiv.), 
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and Pd(dppf)Cl2 (60.5 mg, 0.827 mmol, 0.04 equiv.).  The flask was evacuated and back-

filled with N2 5 times, followed by addition of 1,4-dioxane (35 mL). This solution was then 

vigorously spared with N2 for 2h at which point an aqueous solution of 2M K3PO4 (3.50 

mL, 7.00 mmol, 3.01 equiv) was added, followed by heating of this solution to 80 °C 

taking the orange solution to a dark red within 15 minutes.  The solution was allowed to stir 

for 12h, at which point the solution was allowed to cool to room temperature. After 

removal of the solvent via rotary evaporation, the resulting brown oil was extracted with 

DCM (3 x 75 mL), followed by washing of the combined organic phases with with H2O (3 

x 100 mL), brine (1 x 100 mL), and finally placed over sodium sulfate.  After solvent 

removal, the resulting brown oil was chromatographed (5% EtOAc/Hex) to give III.6 as a 

clear oil (1.64 g, 81%).  1H NMR (500 MHz, Chloroform-d) δ 8.39 – 8.34 (m, 2H), 7.54 – 

7.50 (m, 4H), 7.42 – 7.36 (m, 6H), 7.32 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 9.3 Hz, 2H), 7.16 

(d, J = 8.4 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.15-6.10 (m, 4H), 6.01 (s, 4H), 5.93 (d, J = 

10.1 Hz, 2H), 5.87 (d, 10.2 Hz, 2H), 0.98 - 0.87 (m, 54H), 0.66 – 0.52 (m, 36H).  13C NMR 

(126 MHz, CDCl3) δ 150.26, 150.19, 148.02, 145.74, 145.40, 144.58, 144.49, 140.78, 

140.73, 140.14, 139.45, 136.63, 136.54, 132.68, 132.59, 131.66, 131.56, 130.50, 127.16, 

126.86, 126.40, 126.24, 126.15, 125.72, 123.62, 123.46, 71.50, 71.42, 71.11, 70.98, 70.32, 

70.29, 7.23, 7.21, 7.14, 6.62, 6.53, 6.50.  δ HRMS (TOF, ES+) (m/z): [M+H]+ calculated 

for C82H121N2O6Si6Cl2, 1467.7180; found, 1467.7217.  IR (neat): 2953.17, 2909.27, 

2874.46, 1579.90, 1560.79, 1479.09, 1454.11, 1406.76, 1357.77, 1237.94, 1189.38, 

1104.91, 1069.24, 1008.68, 956.72, 880.25, 856.55, 825.85, 765.81.  MP (72.5-74.0°C). 
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OTESTESO

TESO

TESO

OTES

TESO
N

N

III.7  

Synthesis of III.7.  To a flame-dried 100 mL round bottom flask equipped with a stir bar 

was added Ni(PPh3)2Br2 (0.464 g, 0.625 mmol, 1.50 equiv.), Mn (0.0686 g, 1.25 mmol, 

3.00 equiv.) PPh3 (0.328 g, 0.625 mmol, 3.00 equiv.), NEtI (0.160 g, 0.625 mmol, 1.50 

equiv.).  The flask was evacuated and back-filled with N2 5 times, followed by the addition 

of N2 sparged DMF (6.25 mL). The resulting suspension was sonicated until the solution 

turned from green to dark red (typically 5 minutes) at which point the suspension was 

stirred at 60°C for 1h.  In a separate flame-dried pear-shaped flask was added III.6 

followed DMF (8.33 mL).  This solution was then sparged with N2 for 1h. The solution 

containing dichloride III.6 in DMF was then added to the catalyst mixture dropwise over 2 

hours via syringe pump, resulting in a dark brown suspension.  Once all the solution had 

been added, the reaction was allowed to proceed for an additional hour.  After 1h, the 

reaction was brought to room temperature at which point aqueous (18 w/w%) ammonia (30 

mL) and EtOAc (25 mL) was added, followed by stirring for 30 minutes.  The resulting 

clear solution was then filtered over celite, followed extraction of the aqueous phase with 

EtOAc (3 x 50 mL).  The combined organic phases were then washed with 5% LiCl (5 x 50 

mL) to remove the remaining DMF, followed by washing with H2O (1 x 100 mL) and brine 

(1 x 100 mL) and then finally placed over sodium sulfate.  The solvent was then removed 
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via rotary evaporation to afford a brown/yellow oil.  Chromatography of the oil 

(1%EtOAc/Hex to remove PPh3 then eluted with 5%EtOAc/Hex) yielded a clear oil which, 

after washing with a small amount of acetone, yielded III.7 as a white solid (0.305 g, 57%).  

1H NMR (500 MHz, Chloroform-d) δ 8.78 (d, J = 2.4 Hz, 1H), 8.30 – 8.18 (m, 2H), 8.14 

(d, J = 8.4 Hz, 1H), 7.61 (dd, J = 8.3, 2.4 Hz, 1H), 7.56 – 7.43 (m, 7H), 7.40 (d, J = 8.5 Hz, 

2H), 7.35 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 6.16 (d, J = 10.1 Hz, 2H), 6.12 (d, J 

= 10.1 Hz, 2H), 6.05 (d, J = 10.1 Hz, 4H), 5.93 – 5.91 (m, 4H), 1.08 – 0.88 (m, 56H), 0.78 

– 0.62 (m, 24H), 0.60 – 0.51 (m, 12H).  13C NMR (126 MHz, CDCl3) δ 155.01, 154.90, 

147.62, 147.13, 146.26, 145.69, 145.40, 142.77, 141.67, 140.18, 139.62, 139.56, 135.04, 

134.51, 132.97, 132.11, 131.96, 131.32, 131.18, 131.04, 126.99, 126.83, 126.69, 126.13, 

126.05, 125.94, 120.36, 120.19, 72.46, 71.61, 71.38, 70.89, 70.68, 70.48, 7.27, 7.24, 7.23, 

7.19, 7.17, 6.68, 6.67, 6.63, 6.55, 6.52.  δ HRMS (TOF, ES+) (m/z): [M+H]+ calculated for 

C82H121N2O6Si6, 1397.7823; found, 1397.7840.  IR (neat): 2953.12, 2909.98, 2874.69, 

1579.76, 1560.69, 1455.98, 1400.38, 1360.50, 1238.15, 1189.48, 1071.32, 1004.14, 

957.35, 858.68, 820.54.  MP (decomp. 262.2°C). 

 

N N

III.8  

Synthesis of III.8.  To a flame-dried 100 mL round bottom flask equipped with a stir bar 

was added III.7 (0.360 g, 0.257 mmol, 1.00 equiv.), followed by THF (20 mL).  To this 

solution was slowly added TBAF (1M in THF, 2.57 mmol, 2.58 mL, 10 equiv), resulting in 
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a tan suspension.  After stirring for 2 hours, the THF removed via rotary evaporation, 

followed by addition of H2O (20 mL) resulting in a white precipitate.  The white solid was 

collected via filtration, washed with H2O (50 mL), DCM (5 mL) and was then transferred 

to a flame-dried 100 mL RBF with stir bar.  After addition of THF (20 mL), H2SnCl4 was 

added dropwise, turning the colorless solution to a bright orange over 20 minutes.  This 

was then allowed to stir for 3h, at which point aqueous (18 w/w%) ammonia (5 mL) was 

added, quickly turning the solution from bright orange to bright yellow.  The THF was 

removed via rotary evaporation, followed extraction of the resulting yellow/orange aqueous 

suspension with DCM (3 x 50 mL).  The combined organic phases were washed with H2O 

(3 x 50 mL), brine (1 x 50 mL) and then dried over sodium sulfate.  After removal of DCM 

under reduced pressure, the resulting yellow solid was run through a short alumina column 

using DCM eluent, providing III.8 as a yellow solid (0.111 g, 63%).  1H NMR (500 MHz, 

Chloroform-d) δ 8.81 (d, J = 2.3 Hz, 2H), 8.13 (d, J = 8.4 Hz, 2H), 7.87 (dd, J = 8.5, 2.4 

Hz, 2H), 7.65 – 7.38 (m, 24H).  13C NMR (151 MHz, CDCl3) δ 146.44, 138.93, 138.08, 

137.69, 137.56, 137.55, 127.95, 127.74, 127.67, 127.61, 127.54, 121.19. δ HRMS (TOF, 

ES+) (m/z): [M+H]+ calculated for C46H31N2, 611.2489; found, 611.2487.  IR (neat):  

3021.71, 2920.80, 2850.30, 1734.72, 1701.01, 1695.95, 1685.16, 1651.96, 1576.20, 

1479.42, 1456.28, 1360.84, 1262.90, 1232.38, 1119.42, 1069.21, 999.13, 855.24, 818.47, 

768.13.  MP (decomp. 150°C). 

N N

PdII
Cl Cl

III.9  
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Synthesis of III.9.  To a flame-dried 25 mL round bottom flask equipped with a stir bar 

was added III.8 (20.0 mg, 0.0291 mmol, 1 equiv) and PdCl2 (5.17 mg, 0.0291 mmol, 1 

equiv), followed by dissolution in MeCN (10.00 mL).  The resulting yellow suspension 

was stirred at room temperature for 5 h, at which point the solvent was removed via rotary 

evaporation resulting a bright orange solid.  This solid was then washed with diethyl ether 

(5 x 15 ml) yielding III.9 as a bright orange solid (22.9 mg, 99%).  1H NMR (500 MHz, 

Methylene Chloride-d2) δ 9.06 (d, J = 2.2 Hz, 2H), 8.24 (dd, J = 8.8, 2.2 Hz, 2H), 7.73 (d, J 

= 8.8 Hz, 2H), 7.71 – 7.53 (m, 24H).  13C NMR (126 MHz, CD2Cl2) δ 153.71, 151.95, 

141.04, 138.94, 138.05, 137.76, 137.70, 137.10, 134.35, 132.40, 128.71, 128.08, 127.95, 

123.90.  IR (neat): 3021.28, 2918.11, 2849.79, 1616.96, 1576.06, 1566.20, 1560.62, 

1554.46, 1478.80, 1460.28, 1456.75, 1437.16, 1388.03, 1365.31, 1323.08, 1297.64, 

1259.30, 1241.92, 1204.93, 1144.66, 1070.14, 1042.84, 999.14, 815.74.  MP (decomp. 

170°C). 

N

N
N

N
Pd

B
-

F

F

F F

B
-

F
F

F

F

III.10  

Synthesis of III.10.  To a flame-dried 25 mL round bottom flask equipped with a stir bar 

was added III.9 (5.00 mg, 0.00634 mmol, 1 equiv), AgBF4 (2.50 mg, 0.0127 mmol, 2 

equiv), III.8 (4.36 mg, 0.00634 mmol, 1 equiv) and DCM (5.00 mL).  The resulting bright 

orange solution was stirred for 5 h, at which the resulting dark red precipitate was collected 
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via filtration, followed by washing of the precipitate with H2O (5.00 mL), diethyl ether 

(5.00 mL), and DCM (5.00 mL), yielding III.10 as a dark red solid (9.51 mg, 99%).  1H 

NMR (500 MHz, Acetone-d6) δ 8.98 (d, J = 2.0 Hz, 4H), 8.86 (dd, J = 9.0, 2.0 Hz, 4H), 

8.53 (d, J = 9.0 Hz, 4H), 7.85 (d, J = 8.9 Hz, 8H), 7.79 – 7.59 (m, 40H).  13C NMR (126 

MHz, Acetone) δ 155.10, 150.79, 141.51, 139.48, 139.23, 138.36, 137.87, 137.30, 132.33, 

129.24, 128.73, 128.30, 128.25, 126.45.  IR (neat): 2924.65, 2853.75, 1700.99, 1699.22, 

1685.16, 1695.92, 1675.98, 1651.96, 1630.27, 1616.97, 1576.40, 1560.62, 1554.57, 

1478.21, 1465.66, 1456.68, 1437.12, 1419.82, 1371.35, 1325.89, 1243.33, 1058.34, 

828.34, 752.12. 

N
N

RuII
N
N

N
N PF6

PF6

III.11  

Synthesis of III.11.  To a flame-dried 25 mL round bottom flask equipped with a stir bar 

was added III.8 (10.0 mg, 0.0146 mmol, 1 equiv), Ru(bipy)2Cl2 (7.06 mg, 0.0146 mmol, 1 

equiv) and EtOH (10.0 mL), followed by the addition of a reflux condenser.  The purple-

yellow suspension was then heated to reflux for 12h, gradually turning the reaction mixture 

to a bright orange solution.  At 12h, the reaction flask was placed in an ice bath, followed 

addition of (saturated) NH4PF4 (aq) (5.00 mL) quickly resulting in the formation a dark red 

precipitate.  The precipitate was then collected via filtration, washed with H2O and diethyl 

ether to provide III.11 as a dark red solid (15.9 mg, 83%).  1H NMR (600 MHz, Acetone-

d6) δ 8.95 (t, J = 6.8 Hz, 2H), 8.77 – 8.74 (m, 3H), 8.50 – 8.39 (m, 5H), 8.29 (t, J = 7.9 Hz, 
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1H), 8.24 (t, J = 7.9 Hz, 2H), 8.18 (d, J = 5.6 Hz, 1H), 8.08 (d, J = 5.6 Hz, 1H), 7.84 – 7.50 

(m, 28H), 7.24 – 7.11 (m, 2H), 6.46 (t, J = 6.6 Hz, 1H).  13C NMR (151 MHz, Acetone) δ 

158.49, 158.36, 158.05, 157.79, 155.80, 155.75, 153.66, 153.20, 153.15, 152.16, 150.65, 

150.28, 140.87, 140.31, 139.34, 139.17, 139.07, 138.99, 138.92, 138.52, 138.37, 138.25, 

137.98, 137.85, 137.45, 137.43, 136.51, 134.54, 134.52, 132.69, 132.61, 129.25, 129.00, 

128.73, 128.60, 128.46, 128.43, 128.33, 128.28, 128.25, 128.21, 127.51, 126.90, 125.77, 

125.73, 125.65, 125.08, 124.93, 29.84.  δ HRMS (TOF, ES+) (m/z): [M-2·PF6]+ calculated 

for C66H46N6Ru, 1024.2827; found, 1024.2992.  IR (neat): 3073.81, 3024.78, 2967.21, 

2925.28, 1708.48, 1701.04, 1699.25, 1695.99, 1651.98, 1616.91, 1575.95, 1566.22, 

1560.65, 1554.46, 1542.37, 1479.38, 1460.70, 1445.93, 1437.22, 1425.30, 13920, 1365.03, 

1311.81, 1262.13, 1241.87, 1209.59, 1160.17, 1112.85, 1067.51, 1043.91, 999.64, 967.51, 

838.03, 821.30, 763.12. 

 

3.4.3. Photophysical Data 

 

 

Figure 3.7. Extinction coefficient of III.8 at 345 nm. 



77 
 

 

Figure 3.8. Extinction coefficient of III.11 at 345 nm. 

 

3.4.4. Computational Data 

Calculations for III.11 were carried out with Gaussian 09 package5 using 

B3LYP/6-31g* (for C, H, N) and LANL2DZ (Ru) level of theory. The geometry was first 

optimized in the gas phase. Once optimized, a single point calculation was carried out 

using the CPCM solvation model with acetonitrile as the solvent. All excited state 

calculations (TD-DFT) were performed on the fully optimized structures. 

 

Figure 3.9. TD-DFT Absorbance of III.11 (B3LYP/6-31g* (C, H, N) and LANL2DZ 

(Ru)). 
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3.4.5. Crystallographic Data 

Crystallographic Data for III.11: C76H70F12N6P2Ru, M = 1458.39, 0.19 x 0.16 x 0.01 mm, 

T = 173(2) K, Orthorhombic, space group Pca21, a = 17.6487(16) Å, b = 20.6724(19) Å, c 

= 18.2635(14) Å, V = 6663.3(10) Å3 , Z = 4, Dc = 1.454 Mg/m3 , μ(Cu)= 3.071 mm-1, 

F(000) = 3000, 2θmax = 118.78°, 22197 reflections, 8935 independent reflections [Rint = 

0.1634], R1 = 0.1194, wR2 = 0.3092 and GOF = 1.019 for 8935 reflections (785 

parameters) with I>2σ(I), R1 = 0.1629, wR2 = 0.3449 and GOF = 1.031 for all reflections, 

Flack = 0.15(4), max/min residual electron density +1.649/-0.979 eÅ-3.  

 

Crystallographic Data for III.10: C112H102B2F8N4O5Pd, M = 1863.99, 0.14 x 0.06 x 0.02 

mm, T = 173(2) K, Triclinic, space group P-1, a = 13.4593(3) Å, b = 24.9166(6) Å, c = 

30.9993(8) Å, α = 79.836(2)°, β = 87.531(2)°, γ = 74.592(2)°, V = 9864.9(4) Å3 , Z = 4, Dc 

= 1.255 Mg/m3 , μ(Cu)= 2.093 mm-1, F(000) = 3880, 2θmax = 99.62°, 68468 reflections, 

20046 independent reflections [Rint = 0.0961], R1 = 0.0816, wR2 = 0.2149 and GOF = 

1.071 for 20046 reflections (2172 parameters) with I>2σ(I), R1 = 0.1177, wR2 = 0.2354 

and GOF = 1.100 for all reflections, max/min residual electron density +0.792/-0.926 eÅ-3. 

 

3.5. Bridge to Chapter IV 

This chapter demonstrates that through the addition of an extra nitrogen atom, the 

cyclic framework of nanohoops can be transformed into a ligand that is capable of binding 

a wide-range of metal-centers.  The synthesis of the key macrocyclic ligand, III.8, is 

achieved via a high-yielding Ni0-mediated pyridyl chloride homocoupling reaction which 

allows for large quantities of the desired product to be available.  With the ability to 
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coordinate a range of metals, the next chapter describes how these structures can be 

employed as ligands for metal-mediated reactions.  Specifically, the ligand geometry has 

been designed such a coordinated metal is directed to interior of the macrocyclic pocket.  

Accordingly, when used in metal-mediated bond-forming reactions, the resulting product 

can be trapped as a rotaxane, which we then show can used to generate a new type of 

small-molecule fluorescent sensor. 
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CHAPTER IV 
 
 

NANOHOOP ROTAXANES VIA ACTIVE METAL TEMPLATE SYNTHESES 

AND THEIR POTENTIAL IN SENSING APPLICATIONS 

 

From Van Raden, J. M.; White, B. M.; Zakharov, L. N.; Jasti, R. Angew. Chem. 

Int. Ed. 2019, 58, 7341-7345.  Further permissions related to the use of the material 

excerpted in this chapter should be directed to Wiley-VCH.  This manuscript was written 

by myself with editorial assistance from Professor Ramesh Jasti and Dr. Brittany M. 

White.  Experimental work in this chapter was performed by myself or Dr. Brittany M. 

White.  Crystal structure analysis was done by Lev N. Zakharov. 

The unique optoelectronic properties and smooth, rigid pores of macrocycles with 

radially oriented π systems render them fascinating candidates for the design of novel 

mechanically interlocked molecules with new properties. Two high‐yielding strategies 

are used to prepare nanohoop [2]rotaxanes, which owing to the π‐rich macrocycle are 

highly emissive. Then, metal coordination, an intrinsic property afforded by the resulting 

mechanical bond, can lead to molecular shuttling as well as modulate the observed 

fluorescence in both organic and aqueous conditions. Inspired by these findings, a self‐

immolative [2]rotaxane was then designed that self‐destructs in the presence of an 

analyte, eliciting a strong fluorescent turn‐on response, serving as proof‐of‐concept for a 

new type of molecular sensing material. More broadly, this work highlights the 

conceptual advantages of combining compact π‐rich macrocyclic frameworks with 

mechanical bonds formed via active‐template syntheses. 
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4.1.  Introduction 

Carbon‐rich molecules with closed circuits of delocalized π electrons have been of 

longstanding interest owing to their unique optical, magnetic, and electronic properties.1-

6 Of this broad class of molecules, structures that have radially oriented π–π systems 

pointing inwards to the cavity of a macrocycle have recently emerged as a new class of 

strained, nonplanar aromatic molecules with unusual properties. Specifically, our 

laboratory and others have synthesized molecules referred to as carbon nanohoops because 

of their structural relationship to carbon nanotubes (Figure 4.1a).7-14 These shape‐persistent 

macrocycles can be prepared with varying size and atomic composition (Figure 4.1b),15-

29 which has unveiled their numerous size‐dependent optoelectronic behavior and 

promising materials applications.14 In particular, owing to the tunable and bright 

fluorescence,9 biocompatibility,23 and metal binding capabilities,17, 21, 22 we have a growing 

interest in the development of these π‐rich macrocycles for biological applications. 

 

Figure 4.1. a) Structural relationship between armchair carbon nanotubes and 

cycloparaphenylenes (carbon nanohoops). b) Previously prepared 2,5‐substituted pyridyl‐

embedded CPPs. c) Nanohoop macrocycles and rotaxanes in this work. 

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-bib-0002
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-bib-0003
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-bib-0003
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-bib-0002b
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In the field of supramolecular chemistry, mechanically interlocked molecules (MIMs) 

such as catenanes, rotaxanes, and molecular knots have captured the imagination of 

chemists, highlighted by the recent Nobel Prize in 2016.30-43A particularly intriguing 

consequence of threading and/or weaving molecular components is that the resulting 

structures often possess highly selective molecular recognition sites that would be difficult 

to access using traditional covalent bonding, a feature that has contributed to a growing 

interest in employing these architectures as selective sensing platforms,33,35 as well as new 

types of biological materials.41, 44-46 In this regard, MIMs comprised of macrocycles with 

radial π‐conjugation could provide new topological landscapes for a variety of applications 

owing to the exotic optical and electronic properties of structures possessing radial π‐

conjugation.15-29 Only very recently have the first of these fascinating interlocked structures 

via passive template synthesis approaches have been reported.47-49 Alternatively, the active‐

template method (AT)31 could be a more powerful approach to these types of MIMs in that 

it does not rely on formation of a thermodynamically stable preorganized complex and 

therefore a wider array of structures are possible. Specifically, in the AT approach, a metal 

bound to the macrocyclic component catalyzes bond formation in the interior of the 

structure, which gives rise to the interlocked molecules. Herein, we report the syntheses of 

nanohoop macrocycles that, via an embedded 2,6‐pyridyl moiety, participate in AT 

reactions, ultimately giving rise to a new class of highly compact, fluorescent [2]rotaxanes 

(Figure 4.1c). Moreover, we show that triazole‐embedded nanohoop [2]rotaxanes 

coordinate metals in a reversible manner, which is accompanied by drastic changes in the 

emission of the macrocyclic fluorophore. Motivated by these findings, we then describe the 

design and preparation of a self‐immolative type of rotaxane sensing platform, ultimately 
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highlighting key conceptual advantages of forming mechanical bonds with fluorescent 

carbon nanohoops via AT syntheses. 

 

4.2.  Results and Discussion 

Inspired by the work of Leigh and Goldup,31, 36 we initially considered leveraging the 

coordination ability of our previously reported bipyridyl‐embedded nanohoops32 in AT 

reactions to prepare mechanically interlocked nanohoop structures. However, in contrast to 

macrocycles typically used in AT rotaxane synthesis, a catalytic metal bound to these 

conformationally rigid nanohoops would direct bond formation to the exterior of the 

macrocycle.32 Thus, our investigations began by first preparing a nanohoop ligand that 

would direct bond‐formation to the interior of the macrocyclic cavity, which we envisioned 

occurring through the incorporation of a single 2,6‐pyridine unit into the nanohoop 

backbone. Based on the well‐established reductive aromatization approach to nanohoop 

molecules,15-29 curved diboronate Suzuki–Miyaura cross‐coupling partner IV.1 (Figure 

4.2) was first prepared.24 With boronate IV.1 in hand, we next explored macrocyclization 

conditions where under dilute (5 mm) Suzuki–Miyaura cross‐coupling conditions with 

commercially available 2,6‐dibromo pyridine, the desired macrocycle IV.2 was isolated in 

excellent yield. With macrocycle IV.2 in hand, a H2SnCl4‐based aromatization was 

pursued, which after deprotection with tetrabutylammonium fluoride (TBAF), the target 

macrocycle IV.3 was accessed in a 94 % yield. Under similar conditions, larger 

macrocycle IV.4 (Figure 4.2b) was also synthetically accessible, as confirmed by X‐ray 

crystallography (Figure 4.2c), albeit in slightly reduced yield. Importantly, in stark contrast 

to our previously reported pyridyl nanohoops, these macrocycles now have a coordination 

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0002
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0002
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0002
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moiety located on the interior of the macrocyclic cavity, as confirmed via X‐ray 

crystallography (Figure 4.2c). Additionally, as a consequence of breaking molecular 

orbital symmetry,29 it should be noted that both IV.3 and IV.4 were fluorescent, 

with IV.3 emitting at λmax of 509 nm (Φ=0.14) and IV.4 at λmaxof 476 nm (Φ=0.62). Of 

note, the all para‐substituted nanohoop with a single embedded pyridine is non‐

emissive;16 a detailed investigation of the result of symmetry breaking on nanohoop 

fluorescence is disclosed in a separate study.29  

 

Figure 4.2. a) Synthetic route used to access ligand IV.3 and IV.4. b) Structure of 

macrocycle IV.4 and c) observed solid‐state structure (ORTEP) of IV.4.  

 

We next explored the potential of macrocycles IV.3 and IV.4 to participate in AT 

reactions. As a starting point (Figure 4.3), we first investigated the well‐studied AT 

Cadiot–Chodkiewicz (AT‐CC) reaction.37, 38 While Glaser couplings have been shown to 

be quite successful in the preparation of rotaxanes, Cadiot–Chodkiewicz couplings allow 

for the preparation of unsymmetrical cross‐coupled products and often tend to proceed 

under milder conditions. Based on the observed cavity size of macrocycle IV.4 in the solid‐

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0002
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0003
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state (ca. 10 Å, Figure 4.2c), trityl‐stoppered alkyne IV.5 and trityl‐stoppered bromo‐

alkyne IV.6 were prepared by previously reported procedures.39 After optimization, we 

found that when 1.2 equiv of alkyne IV.5 and bromo‐alkyne IV.6 were subjected to the 

AT‐CC conditions in Figure 4.3, the desired [2]rotaxane IV.7 was isolated in 51 % yield. 

We next tested the ability of smaller macrocycle IV.3 to participate in an AT‐CC reaction, 

where it was found that the desired rotaxane IV.8 formed with no loss in reaction 

efficiency. While small macrocycles have been explored in some cases,36, 38 the rigid, 

shape‐persistent nature of macrocycle IV.3 results in a calculated cavity size of only 7.8 Å, 

rendering the formation of IV.7 striking. Based on this result, we were curious whether 

rotaxanes could be prepared using simple, low‐molecular‐weight stopper groups, which 

would broaden the types of structures that could be accessed. Accordingly, it was found 

that under identical conditions, 3,5‐di‐t‐butyl‐stoppered rotaxane IV.9 was readily formed, 

whereas unsubstituted benzene rings did not lead to rotaxane formation. Initial structural 

confirmation of each new [2]rotaxane was acquired by mass spectrometry. Furthermore, as 

is typical with MIMs, multiple upfield NMR shifts were observed in the thread component 

of each suspected [2]rotaxane, which further suggested a mechanically interlocked 

structure. For example, proton Ha (see Figure 4.3a for labels) of the encircled thread in 

[2]rotaxanes IV.7a and IV.7b is shifted significantly upfield by nearly 1.5 ppm and 2.0 

ppm, respectively, relative to free thread.40 Owing to the unusually small nature of 

macrocycle IV.3, we were particularly interested in the structural features of 

[2]rotaxanes IV.7b and IV.7c. Indeed, turning to single‐crystal X‐ray crystallography, the 

highly congested nature of these π‐rich rotaxanes was revealed, where it was found that the  

cavity of macrocycle IV.3 is an almost perfect fit for the diyne thread units of 

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0002
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0003
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0003
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both IV.7b and IV.7c (Figure 4.3b, c). For example, in the case of IV.7b, the observed 

distance between the central carbon atom of the threaded diyne component and the nitrogen 

of macrocycle IV.3 was found to be 3.6 Å (Figure 4.3b). Additionally, no solvent 

molecules were observed in either structure, consistent with a tightly packed crystal 

structure overall. Given that conjugated macrocycles have recently emerged as strong 

candidates for new types of electronic materials, this result is particularly encouraging, as 

the ability to thread π‐conjugated fragments in close contact could lead to new geometric 

designs for electron/hole transporting materials. 

Owing to the wide range of commercially available azide‐ and alkyne‐

functionalized starting materials, we next pursued an active template CuI‐catalyzed 

azide–alkyne cycloaddition (AT‐CuAAC) reaction.31 As a first pass, 

macrocycle IV.4 was subjected to conditions (Figure 4.4) similar to those reported by 

Leigh et al.,31 which provided the corresponding trityl‐stoppered rotaxane IV.9a in 

excellent yield. However, when macrocycle IV.3 was subjected to these conditions using 

3,5‐dimethyl ester substituted coupling partners (Figure 4.4, IV.8c and IV.8b), the 

desired rotaxane IV.9b was formed in 14 % yield. After screening various conditions, we 

found that the addition of acetic acid as well as elevated temperatures (100 °C via 

microwave irradiation) improved the yield considerably, with rotaxane IV.9b being 

isolated in 45 % yield (Figure 4.4, entry 2). While a more detailed investigation of the 

scope is ongoing, for our work presented herein, we viewed [2]rotaxane IV.9b as a 

particularly versatile intermediate. For example, motivated by our recent report on the 

biocompatibility of nanohoops23 as well the emerging interest in using fluorescent 

rotaxane architectures in biological environments,47-49 IV.9b was saponified to access  

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0003
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0003
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0004
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0004
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0004
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Figure 4.3. a) Synthesis of nanohoop [2]rotaxanes via AT‐CC conditions; solid‐state 

structures (space‐filling) of b) [2]rotaxane IV.7b and c)  IV.7c. Macrocycle IV.3 has been 

colored yellow while each thread is colored in gray. The inset in (b) shows distances 

between selected points. For clarity, the trityl groups have been removed. 

 

water‐soluble [2]rotaxane IV.9c (Figure 4.5a), which retained the corresponding 

emission properties (Φ=0.07) in aqueous conditions. Additionally, apart from biological 

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0005
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systems, carboxylate functionalized [2]rotaxanes have also recently been incorporated 

into metal–organic frameworks,50, 51 suggesting that this intermediate could act as a new 

π‐rich building block for unusual types of coordination polymers. Ultimately, these 

results highlight the generality of both the AT‐CC and AT‐CuAAC reactions, a feature 

that is expected to provide a variety of new types of π‐rich interlocked molecules and 

materials. Additionally, the narrow cavity of the nanohoops reduce the requirements of 

the stopper groups that can be employed, furthering the utility of these systems. 

Mechanically interlocked molecules bearing nitrogen heteroatoms often engage in a 

wide range of unique co‐ordination chemistry where, depending on the metal and resulting 

coordination geometry, features such as molecular shuttling, switching, and sensing can be 

enabled. Thus, we were curious if the congested binding pocket of triazole [2]rotaxanes 

such as IV.9b could still participate in metal coordination. To probe this, we next 

investigated the effects of metalation on IV.9b in both the solid state and solution through 

single‐crystal X‐ray crystallography, 1H NMR titrations, and fluorescence spectroscopy. In 

the solid‐state (Figure 4.4), without metal, the macrocycle of IV.9b resides over the propyl 

chain. In solution, a resonance at −1.43 ppm can be observed, indicating that the propyl 

chain experiences a particularly strong shielding effect, suggesting that the macrocycle 

resides over the propyl chain. On addition of CuI, this signal broadens, but never fully 

vanishes. Additionally, the appearance of multiple new resonances was observed which 

indicates the formation of a new species alongside metal‐free IV.9b. To investigate this 

further, we then co‐crystallized IV.9b with 1.0 equiv of [Cu(MeCN)4]PF6, which revealed 

that in the solid state, the macrocycle is now localized over the triazole unit with the 

CuI metal coordinated to both the triazole and macrocyclic nitrogen (Figure 4.12). A 

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0004
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similar shuttling effect was observed when IV.9b was titrated with [Pd(MeCN)4](BF4)2. 

Notably, in presence of PdII, the observed signals in the 1H NMR spectrum were noticeably 

sharper relative to that observed with [Cu(MeCN)4](PF6), indicating a less dynamic system. 

Taken together, it can be concluded that, despite the sterically congested environment, 

triazole embedded rotaxanes bearing macrocycle IV.3 bind metals such as CuI and PdII, 

with PdII acting as a stronger binding metal. From these initial studies, an additional key 

result was observed; as the amount of PdII increased, the fluorescence of IV.9b decreased. 

As can be seen in Figure 4, the addition of 1.0 equiv of 

[Pd(MeCN)4](BF4)2 to IV.9b results in a non‐emissive rotaxane, that is, PdII‐ IV.9b. Given 

that metalation with PdII effectively traps the fluorophore in a non‐emissive state, we 

expected that demetalation should result in a turn‐on response. To validate this, non‐

emissive PdII‐ IV.9b was treated with 1.0 equiv of ethylenediaminetetraacetic acid 

(EDTA), which quickly resulted in a pronounced 30‐fold increase in emission (Figure 

4.5b). Encouraged by this result, we were then curious if the emission of water‐soluble 

rotaxane IV.9c (Figure 4.5) could be modulated in a similar fashion. Indeed, the emission 

of carboxylate rotaxane IV.9c was readily quenched (Figure 4.12) in aqueous media (PBS 

buffer) by the addition of 1.0 equiv of [Pd(MeCN)4](BF4)2 to give PdII‐ IV.9c. Upon 

addition of EDTA to this aqueous solution, it was again found (Figure 4.12) that the 

emission quickly returned, albeit with reduced intensity (10‐fold increase). 

Inspired by the fluorescence quenching results with metals, we envisioned a 

perhaps more general sensing platform in which a suitable thread component could serve as 

both a stopper and fluorescence quencher. Analyte‐induced bond cleavage of the thread 

could then perhaps release the quencher and lead to a turn‐on fluorescence response.  

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0005
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Figure 4.4. AT‐CuAAC conditions used to access triazole rotaxanes IV.9a and IV.9b. 

i=[Cu(MeCN)4]PF6 (0.95 equiv), CH2Cl2, rt, 24 h; j=AcOH (20.0 equiv), 

[Cu(MeCN)4]PF6(0.95 equiv), CH2Cl2, μW, 100 °C, 3 h. X‐ray structure of IV.9b (top 

right) showing location of macrocycle IV.3 (yellow) over triazole thread. 

 

Encouraged by the ability of electron‐deficient C60 to quench the emission of 

[10]CPP,26 we hypothesized that macrocycle IV.3 could temporarily be rendered non‐

emissive through the incorporation of a cleavable, mechanically bound electron‐deficient 

stopper moiety. To investigate this concept, we prepared a 3,5‐dinitro‐functionalized 

rotaxane (IV.9d) bearing a fluoride‐cleavable triisopropylsilyl (TIPS) stopper group 

(Figure 4.5c) via our AT‐CC conditions (Figure 4.7) which we found to be non‐emissive 

(Figure 4.5d). Importantly, treatment of rotaxane IV.9d with 1.0 equiv of tetra‐n‐

butylammonium fluoride (TBAF) resulted in a nearly instantaneous dethreading event 

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0005
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0005
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which was accompanied by a dramatic 123‐fold increase in emission intensity (Figure 

4.5d), effectively serving as proof‐of‐concept for a highly responsive self‐immolative 

rotaxane sensor. Additionally, through density functional theorem (DFT), it was found that 

the frontier molecular orbitals of IV.9d are redistributed relative to 

macrocycle IV.3 (Figure 4.5f). Specifically, for macrocycle IV.3 (Figure 4.14), both the 

highest‐occupied molecular orbital (HOMO) and the lowest‐unoccupied molecular orbital 

(LUMO) reside over the nanohoop backbone. In contrast, in the case of IV.9d, the HOMO 

is localized on the macrocyclic component and the LUMO is localized over the electron‐

deficient nitrobenzene stopper, consistent with a charge‐transfer quenching mechanism. 

These results highlight the importance of electronic structure in the design of new non‐

emissive rotaxanes such as IV.9d, and we expect that through a computationally guided 

design approach, a wide range of new analyte‐selective, turn‐on scaffolds can be prepared. 

For example, the analyte recognition site (TIPS stopper) of IV.9d can likely be replaced by 

a range of small yet effective analyte‐sensitive stopper groups such as boronates, amides, 

and esters, a key advantage of using a rigid macrocycle with small diameter. Moreover, we 

anticipate that this design can be applied to our larger macrocycle, IV.4, as a means to 

access different emission wavelength and higher quantum yield. Work is currently 

underway toward the preparation and application of these structures and will be reported in 

due course. 

 

4.3. Conclusions 

In conclusion, this work demonstrates that by embedding a 2,6‐pyridine 

coordination motif into the backbone of a nanohoop macrocycle, a range of diverse  

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0005
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201901984#anie201901984-fig-0005
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Figure 4.5. a) Structure of emissive triazole rotaxanes IV.9b, IV.9c and b) emission 

spectra: 8.6 μm, CHCl3 (IV.9b) of metalated and demetalated rotaxane IV.9b. c) Structure 

of non‐emissive diyne rotaxane IV.9d. d) Emission spectrum (8.6 μm, CHCl3) of IV.9d 

before and after addition of 1.0 equivalent of TBAF. e) X‐ray structure of 

[2]rotaxane IV.9d in space‐filling representation and f) DFT calculated (B3LYP/6–31g) 

frontier molecular orbitals. 

 

[2]rotaxanes are accessible via two different CuI‐catalyzed active‐metal template reactions. 

Based on fundamental metal coordination experiments with triazole‐embedded 

[2]rotaxanes formed via AT‐CuAAC reactions, we have found that two metals, CuI and 

PdII, effectively shuttle the nanohoop macrocycle along the length of a triazole‐

functionalized thread. A key result from these studies was the observation that in both 
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organic and aqueous conditions, metal binding is easily monitored by dramatic changes in 

fluorescence emission. Expanding on this finding, we then designed and prepared, via an 

AT‐CC reaction, a metal‐free, non‐emissive nanohoop [2]rotaxane that has been stoppered 

with a fluorescence‐quenching 3,5‐dinitrobenzyl unit and fluoride‐cleavable TIPS group. 

On bond cleavage, the quenching moiety is no longer in close proximity to the fluorophore, 

which results in a dramatic 123‐fold increase in emission intensity, effectively serving as 

proof‐of‐concept for nanohoop rotaxane turn‐on fluorescence sensors. Particularly 

noteworthy is that this self‐immolative nanohoop [2]rotaxane was constructed in a modular 

fashion and therefore should be easily adaptable to other types of analytes and applications. 

More broadly, we expect that this active template synthetic strategy will provide efficient 

pathways for generating a wide array of very compact π‐rich interlocked molecules as well 

as materials. Finally, owing to the highly tunable and rigid π‐rich pores, catalytic metals 

bound to the interior of nanohoops represent an intriguing area of future exploration. 

 

4.4. Experimental Sections 

4.4.1. General Experimental Details 

1H NMR spectra were recorded at 500 MHz on a Varian VNMR spectrometer, 500 

MHz on a Bruker, or 600 MHz on a Bruker.  All 1H NMR spectra are referenced to residual 

CHCl3 (δ 7.26 ppm).  All 13C NMR spectra are referenced to residual CHCl3 (δ 77.16 ppm).  

All reagents were obtained commercially.  All glassware was flame-dried and cooled under 

an inert atmosphere of nitrogen unless otherwise noted.  Moisture sensitive reactions were 

carried out under an inert atmosphere of nitrogen using standard syringe/septa technique.  

Silica column chromatography was conducted with Zeochem Zeoprep 60 Eco 40-63 uM 
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silica gel while alumina chromatography, where noted, utilized Sorbent Technologies 50-

200 um Basic Activity II-II Alumina.   

H2SnCl4, where noted, was prepared in the following manner:  To a solution of 

SnCl2•2H2O (180.0 mg, 0.796 mmol, 1.00 equiv) in 10 mL THF was added conc. HCl 

(133.0 µL, 1.59 mmol, 2.0 equiv.).  The resulting solution was then stirred for 15 minutes 

and used as needed.  This procedure was scaled as needed. 
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Figure 4.6. The compounds in this figure: IV.1,24 IV.S1,24 IV.5a,31 IV.8a,31 IV.5b,39 

IV.8b,52 IV.8c39 and IV.S452 were prepared via literature procedures.  IV.6b and IV.6a 

were prepared by treating IV.5b and IV.5a, respectively, with NBS and AgNO3.53    
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Figure 4.7. Synthesis of IV.9d.   

 

4.4.2. Synthetic Details 
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Synthesis of IV.S2. To a flame-dried 2 L round bottom flask equipped with a stir bar was 

added IV.S124 (2.10 g, 1.33 mmol, 1.00 equiv.), 2,6-dibromopyridine (0.330 g, 1.40 mmol, 

1.05 equiv.), and Pd SPhos G2 (0.0958 g, 0.133 mmol, 0.10 equiv.).  The flask was 

evacuated and back-filled with N2 5 times, followed by addition of 1,4-dioxane (700 mL). 

This solution was then vigorously sparged with N2 for 30 min at which point it was then 

placed into an 80 oC oil bath for 30 min.  At this point, an N2 sparged aqueous solution of 

2M K3PO4 (70.0 mL, 35.0 mmol, 26.3 equiv.) was added, quickly turning the solution to a 

bright yellow.  The reaction was monitored until all starting material was consumed 

(typically 1h), at which point the solution was allowed to cool to room temperature. After 

removal of the solvent via rotary evaporation, the resulting yellow/brown oil was extracted 

with DCM (3 x 75 mL), followed by washing of the combined organic phases with H2O (3 

x 100 mL), brine (1 x 100 mL), and finally placed over sodium sulfate.  Removal of the 

organic phase gave a yellow oil, which, on addition of acetone (5 mL), caused the 

precipitation of a white solid which was then collected via filtration to give IV.S2 as a 

white solid (0.810 g, 45%).  1H NMR (500 MHz, Chloroform-d) δ 8.05 (d, J = 8.4 Hz, 4H), 

7.78 (t, J = 7.8 Hz, 1H), 7.67 (d, J = 7.8 Hz, 2H), 7.52 – 7.41 (m, 12H), 6.14 (s, 4H), 6.05 

(d, J = 10.0 Hz, 4H), 5.90 (d, J = 10.1 Hz, 4H), 0.98 (m, 18H), 0.91 (m, 36H), 0.70 (m, 



96 
 

12H), 0.59 – 0.50 (m, 24H). 13C NMR (126 MHz, Chloroform-d) δ 156.28, 147.25, 146.11, 

145.75, 138.04, 132.67, 131.80, 131.22, 126.75, 126.12, 125.93, 118.06, 71.67, 70.97, 

69.86, 7.29, 6.74, 6.67, 6.58. MS (MALDI-TOF) (m/z): [M]+ calculated for 

C83H121NO6Si6, 1395.780; found, 1395.820    

N

 

Synthesis of IV.4.  To a flame-dried 100 mL round bottom flask equipped with a stir bar 

was added IV.S2 (0.360 g, 0.257 mmol, 1.00 equiv.), followed by THF (20 mL).  To this 

solution was slowly added TBAF (1M in THF, 2.57 mmol, 2.58 mL, 10.0 equiv.), resulting 

in a tan suspension.  After stirring for 45 min, the THF was removed via rotary 

evaporation, followed by addition of H2O (20 mL) resulting in a white precipitate.  The 

white solid was collected via filtration, washed with H2O (50 mL), DCM (5 mL) and was 

then transferred to a flame-dried 100 mL RBF with stir bar.  After addition of THF (20 

mL), H2SnCl4 (4.00 equiv.) was added dropwise, turning the colorless solution to a bright 

orange over 20 minutes.  This was then allowed to stir for 45 min, at which point the 

reaction contents were neutralized with 1M NaOH, quickly turning the solution from bright 

orange to bright yellow.  The THF was removed via rotary evaporation, followed extraction 

of the resulting yellow/orange aqueous suspension with DCM (3 x 50 mL).  The combined 

organic phases were washed with H2O (3 x 50 mL), brine (1 x 50 mL) and then dried over 

sodium sulfate.  After removal of DCM under reduced pressure, the resulting yellow solid 
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was run through a short alumina plug using DCM as eluent, providing IV.4 as a 

yellow/white solid (0.111 mg, 53%).  1H NMR (500 MHz, Chloroform-d) δ 7.81 (t, J = 7.8 

Hz, 1H), 7.68 (d, J = 8.2 Hz, 4H), 7.58 (d, J = 7.8 Hz, 2H), 7.56 – 7.46 (m, 16H), 7.36 (d, J 

= 8.4 Hz, 4H), 7.33 (d, J = 8.5 Hz, 4H). 13C NMR (126 MHz, CDCl3) δ 158.93, 141.60, 

140.40, 139.41, 138.17, 138.08, 137.97, 137.86, 137.04, 129.30, 128.22, 128.05, 127.93, 

127.91, 127.36, 127.06, 117.48. MS (MALDI-TOF) (m/z): [M+H]+ calculated for 

C47H32N, 610.251; found, 610.210. 
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Synthesis of IV.9a. To a flame-dried 25 mL flask equipped with a stir bar was added 

ligand IV.4 (11.7 mg, 0.0192 mmol, 1.00 equiv.), Cu(MeCN)4PF6 (6.4 mg, 0.0184 mmol, 

0.96 equiv.), azide IV.8a (0.115 g, 0.192 mmol, 10.0 equiv.) and alkyne IV.5a (0.104 g, 

0.192 mmol, 10.0 equiv.).  The flask was then evacuated and refilled with N2 5 times.  A 

septum was then placed on the flask, followed by the addition of 5 mL DCM.  The reaction 

was followed with TLC and allowed to stir until complete consumption of azide or alkyne.  

At this point, the reaction was quenched with an NH3-EDTA (2 mL) and then allowed to 
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stir for 10 min.  The layers were separated, followed by additional washing of the aqueous 

phase with DCM (2x 20 mL).  The combined organic phases were washed with H2O (3 x 

20 mL), and brine (1 x 20 mL), and dried over sodium sulfate to give a bright yellow solid, 

which after chromatography (50% diethyl ether/hexanes, SiO2), yielded the desired 

rotaxane IV.9a as a yellow solid/oil (23.5 mg, 70%).1H NMR (500 MHz, Chloroform-d) δ 

7.56 (t, J = 7.9 Hz, 1H), 7.50 – 7.28 (m, 30H), 7.24 – 7.08 (m, 26H), 6.97 (d, J = 8.8 Hz, 

2H), 6.76 (d, J = 8.4 Hz, 2H), 5.73 (s, 1H), 4.74 (s, 2H), 1.92 (t, J = 6.7 Hz, 2H), 1.86 (d, J 

= 4.8 Hz, 2H), 1.32 (s, 27H), 1.29 (s, 27H), -0.17 – -0.21 (m, 2H), -0.51 – -0.65 (m, 2H).  

13C NMR (126 MHz, CDCl3) δ 148.59, 148.50, 144.40, 144.24, 141.01, 140.55, 139.01, 

136.89, 132.48, 131.88, 130.87, 130.84, 129.27, 128.17, 127.85, 127.53, 127.34, 127.17, 

124.35, 124.26, 122.35, 117.49, 113.26, 63.27, 34.50, 34.46, 31.57, 31.54.  MS (MALDI-

TOF) (m/z): [M]+ calculated for C128H128N4O2, 1753.003; found, 1752.858.   

 

N

O O
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Synthesis of IV.7a. To a flame-dried 25 mL flask equipped with a stir bar was added 

ligand IV.4 (17.8 mg, 0.0292 mmol, 1.00 equiv.), Cu(MeCN)4PF6 (10.4 mg, 0.0280 mmol, 

0.96 equiv.), bromo alkyne IV.6a (0.0190 g, 0.0350 mmol, 1.2 equiv.), terminal alkyne 

IV.5a (0.0217 g, 0.0350 mmol, 1.2 equiv.), and potassium bicarbonate (20.1 mg, 0.146 
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mmol, 5.00 equiv.).  The flask was then evacuated and refilled with N2 5 times.  A septum 

was then placed on the flask, followed by the addition of 5 mL toluene.  The reaction was 

then heated to 80 oC and the reaction progress was followed with TLC. On completion, the 

reaction was quenched with an NH3-EDTA (2 mL) solution and then allowed to stir for 10 

min.  The layers were separated, followed by additional washing of the aqueous phase with 

DCM (2x 20 mL).  The combined organic phases were washed with H2O (3 x 20 mL), and 

brine (1 x 20 mL), and dried over sodium sulfate to give a bright yellow solid/oil, which 

after chromatography (50% diethyl ether/hexanes), yielded the desired rotaxane IV.7a as a 

yellow solid (25.2 mg, 51%).1H NMR (500 MHz, Chloroform-d) δ 7.77 (t, J = 7.8 Hz, 1H), 

7.57 (d, J = 7.9 Hz, 4H), 7.54 (d, J = 7.8 Hz, 2H), 7.43 – 7.36 (m, 8H), 7.30 (d, J = 8.5 Hz, 

16H), 7.27 (s, 4H), 7.21 (t, J = 8.5 Hz, 8H), 7.09 (d, J = 8.4 Hz, 12H), 6.78 (d, J = 8.7 Hz, 

4H), 5.70 (d, J = 8.9 Hz, 4H), 3.56 (s, 4H), 1.33 (s, 54H). 13C NMR (126 MHz, CDCl3) δ 

148.59, 148.50, 145.90, 144.40, 144.24, 141.01, 140.55, 139.01, 136.89, 132.48, 131.88, 

130.87, 130.84, 129.27, 128.17, 127.85, 127.53, 127.34, 127.17, 124.35, 124.26, 117.49, 

113.26, 63.27, 34.50, 34.46, 31.57, 31.54. MS (MALDI-TOF) (m/z): [M]+ calculated for 

C127H121NO2, 1691.944; found, 1692.020.   

N

TESO

TESO OTES

OTES

 

Synthesis of IV.2. To a 1 L round bottom flask equipped with a stir bar was added IV.124 

(2.50 g, 2.16 mmol, 1.00 equiv.), 2,6-dibromopyridine (764.6 mg, 3.24 mmol, 1.50 equiv.), 

and Pd SPhos G2 (0.167 g, 0.216 mmol, 0.10 equiv.).  The flask was evacuated and back-
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filled with N2 5 times, followed by addition of 1,4-dioxane (450 mL). This solution was 

then vigorously sparged with N2 for 30 min at which point it was then placed into an 80 oC 

oil bath for 30 min.  At this point, an N2 sparged aqueous solution of 2M K3PO4 (45.0 mL, 

90.0 mmol, 42.0 equiv.) was added, quickly turning the solution to a bright yellow.  The 

reaction was monitored until all starting material was consumed (~15 min), at which point 

the solution was allowed to cool to room temperature. After removal of the solvent via 

rotary evaporation, the resulting yellow/brown oil was extracted with DCM (3 x 100 mL), 

followed by washing of the combined organic phases with H2O (3 x 100 mL), brine (1 x 

100 mL), and finally placed over sodium sulfate.  Removal of the organic phase gave a 

yellow oil, which, was then chromatographed (40% DCM/Hexanes, SiO2) to give IV.2 as a 

white solid (1.61 g, 76%).  On larger scale reactions, the desired product IV.2 can be 

isolated via the addition of acetone (5 mL) to the yellow oil obtained after workup, 

followed by sonication and collection of the solid via filtration to give IV.2 as a white 

solid.  1H NMR (500 MHz, Chloroform-d) δ 7.83 – 7.73 (m, 5H), 7.55 (d, J = 7.5 Hz, 2H), 

7.50 (d, J = 7.6 Hz, 4H), 7.01 (s, 4H), 6.07 (d, J = 8.9 Hz, 4H), 5.74 (d, J = 8.8 Hz, 4H), 

1.04 – 0.91 (m, 36H), 0.78 – 0.57 (m, 24H).  13C NMR (126 MHz, CDCl3) δ 157.96, 

146.11, 144.80, 142.10, 137.94, 131.76, 131.56, 129.24, 125.75, 125.66, 116.16, 71.42, 

71.28, 7.26, 7.19, 6.75, 6.57.  HRMS (ESI-TOF) (m/z): [M]+ calculated for C59H83NO4Si4, 

981.5400; found, 981.5406   
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N

 

Synthesis of IV.3. To a flame-dried 100 mL round bottom flask equipped with a stir bar 

was added IV.2 (1.60 g, 1.63 mmol, 1.00 equiv.), followed by THF (20 mL).  To this 

solution was slowly added TBAF (1M in THF, 13.0 mmol, 13.0 mL, 8.00 equiv.), resulting 

in a tan suspension.  After stirring for 1h, the THF was removed via rotary evaporation, 

followed by addition of H2O (20 mL) resulting in a white precipitate.  The white solid was 

collected via filtration, washed with H2O (50 mL), DCM (15 mL) and was then transferred 

to a flame-dried 100 mL RBF with stir bar.  After addition of THF (20 mL), H2SnCl4 (5 

equiv.) was added dropwise, turning the colorless solution to a bright orange over 20 

minutes.  After stirring for 1h, the solution was neutralized with 1M NaOH, quickly turning 

the solution from bright orange to bright yellow.  The THF was removed via rotary 

evaporation, followed extraction of the resulting yellow/orange aqueous suspension with 

DCM (3 x 100 mL).  The combined organic phases were washed with H2O (3 x 50 mL), 

brine (1 x 50 mL) and then dried over sodium sulfate.  After removal of DCM under 

reduced pressure, the resulting yellow solid was run through a short alumina plug using 

DCM as eluent, providing IV.3 as a yellow solid (0.701 g, 94%).  1H NMR (500 MHz, 

Chloroform-d) δ 7.81 (t, J = 7.8 Hz, 1H), 7.68 (d, J = 8.2 Hz, 4H), 7.58 (d, J = 7.8 Hz, 2H), 

7.56 – 7.46 (m, 16H), 7.36 (d, J = 8.4 Hz, 4H), 7.33 (d, J = 8.5 Hz, 4H). 13C NMR (126 

MHz, CDCl3) δ 158.93, 141.60, 140.40, 139.41, 138.17, 138.08, 137.97, 137.86, 137.04, 
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129.30, 128.22, 128.05, 127.93, 127.91, 127.36, 127.06, 117.48.  HRMS (ESI-TOF) (m/z): 

[M]+ calculated for C35H23N, 457.1831; found, 457.1843. 

O O
t-Bu

t-Bu

t-Bu

t-Bu

t-Bu
t-Bu

N

 

Synthesis of IV.7b. To a flame-dried 25 mL flask equipped with a stir bar was added 

ligand IV.3 (22.2 mg, 0.0485 mmol, 1.00 equiv.), Cu(MeCN)4PF6 (17.0 mg, 0.0461 mmol, 

0.95 equiv.), bromo alkyne IV.6a (36.5 mg, 0.0582 mmol, 1.2 equiv.), terminal alkyne 

IV.5a (31.4 mg, 0.0582 mmol, 1.2 equiv.), and potassium bicarbonate (33.5 mg, 0.243 

mmol, 5.00 equiv.).  The flask was then evacuated and refilled with N2 5 times.  A septum 

was then placed on the flask, followed by the addition of 5 mL toluene.  The reaction was 

then heated to 80 oC and the reaction progress was followed with TLC. On completion, the 

reaction was quenched with an NH3-EDTA (2 mL) solution and then allowed to stir for 10 

min.  The layers were separated, followed by additional washing of the aqueous phase with 

DCM (2x 20 mL).  The combined organic phases were washed with H2O (3 x 20 mL), and 

brine (1 x 20 mL), and dried over sodium sulfate to give a bright yellow solid/oil.  This oil 

was then loaded onto SiO2, eluted with 15% EtOAc/Hexanes to separate IV.3 from IV.7b.  

Next, crude IV.7b was purified on SiO2 (30%DCM/Hexanes) to give the desired rotaxane 

as a yellow solid (40.4 mg, 54%).1H NMR (600 MHz, Chloroform-d) δ 7.57 (t, J = 7.7 Hz, 



103 
 

1H), 7.34 (s, 4H), 7.30 (d, J = 7.7 Hz, 2H), 7.25 – 7.21 (m, 16H), 7.18 (d, J = 1.1 Hz, 8H), 

7.10 (d, J = 8.6 Hz, 12H), 7.05 (d, J = 8.8 Hz, 4H), 7.02 (d, J = 8.9 Hz, 4H), 3.22 (s, 4H), 

1.30 (s, 54H).  13C NMR (151 MHz, CDCl3) δ 159.84, 155.40, 148.50, 144.20, 141.25, 

140.58, 140.18, 137.88, 137.68, 136.43, 136.13, 132.13, 130.84, 129.99, 128.18, 128.15, 

128.05, 127.86, 124.26, 116.51, 112.99, 73.54, 70.71, 63.24, 55.20, 34.45, 31.54, 29.86.  

HRMS (ESI-TOF) (m/z): [M]+ calculated for C115H113NO2, 1539.8771; found, 1539.8601.   

 

O O

N

 

Synthesis of IV.7c. To a flame-dried 25 mL flask equipped with a stir bar was added 

ligand IV.3 (22.2 mg, 0.0485 mmol, 1.00 equiv.), Cu(MeCN)4PF6 (17.0 mg, 0.0461 mmol, 

0.95 equiv.), bromo alkyne IV.6b (36.5 mg, 0.0582 mmol, 1.2 equiv.), terminal alkyne 

IV.5b (31.4 mg, 0.0582 mmol, 1.2 equiv.), and potassium bicarbonate (33.5 mg, 0.243 

mmol, 5.00 equiv.).  The flask was then evacuated and refilled with N2 5 times.  A septum 

was then placed on the flask, followed by the addition of 5 mL toluene.  The reaction was 

then heated to 80 oC and the reaction progress was followed with TLC. On completion, the 

reaction was quenched with an NH3-EDTA (2 mL) solution and then allowed to stir for 10 

min.  The layers were separated, followed by additional washing of the aqueous phase with 

DCM (2x 20 mL).  The combined organic phases were washed with H2O (3 x 20 mL), and 
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brine (1 x 20 mL), and dried over sodium sulfate to give a bright yellow solid/oil.  This oil 

was then loaded onto SiO2, eluted with 15% EtOAc/Hexanes to separate IV.3 from IV.7c.  

Next, crude IV.7c was purified on SiO2 (20%DCM/Hexanes) to give the desired rotaxane 

as a yellow solid (40.4 mg, 54%).1H NMR (500 MHz, Chloroform-d) δ 7.73 (t, J = 7.5, 

1H), 7.50 (s, 4H), 7.46 (d, J = 7.7, 2H), 7.33 – 7.28 (m, 8H), 7.20 (d, J = 7.9, 4H), 7.01 – 

6.91 (m, 6H), 6.28 (s, 4H), 2.92 (s, 4H), 1.28 (s, 36H).  13C NMR (126 MHz, CDCl3) δ 

159.93, 157.14, 152.10, 141.38, 141.14, 138.34, 137.78, 136.99, 136.46, 130.03, 128.60, 

128.55, 128.23, 116.78, 115.17, 108.51, 74.33, 70.46, 55.00, 35.09, 31.63.  HRMS (ESI-

TOF) (m/z): [M]+ calculated for C69H69NO2, 943.5328; found, 943.5315.   
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Synthesis of IV.9b. To a flame-dried 25 mL flask equipped with a stir bar was added 

ligand IV.3 (30.1 mg, 0.0658 mmol, 1.00 equiv.), Cu(MeCN)4PF6 (23.3 mg, 0.0625 mmol, 

0.95 equiv.), azide IV.8b (0.180 g, 0.658 mmol, 10.0 equiv.) and alkyne IV.8c (0.163 g, 

0.658 mmol, 10.0 equiv.).  The flask was then evacuated and refilled with N2 5 times.  A 

septum was then placed on the flask, followed by the addition of 10.0 mL DCM.  The 

reaction was followed with TLC and allowed to stir until complete consumption of azide or 

alkyne.  At this point, the reaction was quenched with an NH3-EDTA (2 mL) and then 

allowed to stir for 10 min.  The layers were separated, followed by additional washing of 

the aqueous phase with DCM (2x 20 mL).  The combined organic phases were washed 

with H2O (3 x 20 mL), and brine (1 x 20 mL), and dried over sodium sulfate to give a 
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bright yellow solid, which after chromatography (50% DCM/Hexanes to remove unreacted 

IV.3, then 050% EtOAc/hexanes to elute IV.9b, SiO2), yielded the desired rotaxane 

IV.9b as a yellow oil (29.6 mg, 45%). 1H NMR (500 MHz, Chloroform-d) δ 8.39 (s, 1H), 

8.36 (s, 1H), 7.90 (s, 2H), 7.75 (t, J = 8.5 Hz, 1H), 7.64 (s, 2H), 7.60 (d, J = 9.0 Hz, 2H), 

7.55 (s, 2H), 7.53 – 7.44 (m, 8H), 7.38 (d, J = 8.7 Hz, 4H), 7.21 (d, J = 8.4 Hz, 2H), 7.10 

(d, J = 8.9 Hz, 2H), 7.01 (d, J = 9.5 Hz, 2H), 6.38 (s, 1H), 5.18 (s, 2H), 4.06 (s, 6H), 3.97 

(s, 6H), 1.68 – 1.64 (m, 2H), 1.42 (t, J = 7.5 Hz, 2H), -1.40 (q, J = 8.5 Hz, 2H). 13C NMR 

(126 MHz, CDCl3) δ 166.48, 166.13, 159.96, 158.99, 158.60, 142.09, 141.51, 139.52, 

137.92, 136.97, 135.85, 135.62, 132.28, 132.07, 130.32, 130.05, 129.97, 129.46, 128.62, 

128.48, 127.87, 127.51, 126.58, 124.70, 123.80, 122.72, 122.19, 120.13, 119.37, 118.05, 

64.08, 62.83, 52.77, 52.72, 44.96, 25.78.MS (ESI-TOF) (m/z): [M]+ calculated for 

C61H50N4O10, 998.3527; found, 998.3525. 
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Synthesis of IV.9c. To a 50 mL flask equipped with a stir bar was added rotaxane IV.9b 

(20.2 mg, 0.0202 mmol, 1.00 equiv.) and NaOH (242.6 mg, 6.07 mmol, 300.0 equiv.) 

followed 20.0 mL of a 1:1 THF:H2O solution.  The resulting suspension was heated at 55 

oC for 16h, at which point the THF was removed via rotary evaporation.  The resulting 

bright green/yellow solution was then acidified with 1M HCl and extracted with EtOAc (3 
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x 25 mL).  The combined organic phases were washed with H2O (3 x 20 mL), and brine (1 

x 20 mL), and dried over sodium sulfate to give IV.9c as a bright yellow/orange solid (40.4 

mg, 99%).1H NMR (500 MHz, D2O) δ 8.05 (s, 1H), 7.98 (s, 1H), 7.83 – 7.78 (m, 3H), 7.70 

(d, J = 8.0 Hz, 4H), 7.66 (d, J = 8.5 Hz, 4H), 7.50 (d, J = 7.8 Hz, 2H), 7.44 (d, J = 8.9 Hz, 

2H), 7.41 – 7.34 (m, 6H), 7.19 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 8.4 

Hz, 2H), 6.53 (s, 1H), 5.35 (s, 2H), 1.71 (t, J = 7.0 Hz, 2H), 1.17 – 1.14 (m, 2H), -1.39 (q, J 

= 8.4 Hz, 2H). 13C NMR (126 MHz, D2O) δ 174.84, 173.98, 159.51, 157.81, 156.85, 

141.98, 141.44, 138.75, 138.49, 138.32, 138.19, 136.63, 135.73, 135.40, 130.22, 129.81, 

128.83, 128.58, 128.48, 128.29, 127.52, 127.43, 127.08, 125.25, 123.88, 122.99, 121.19, 

118.70, 118.05, 117.64, 64.05, 61.80, 44.72, 24.54.  HRMS (ESI-TOF) (m/z): [M]+ 

calculated for C57H42N4O10, 942.2901; found, 942.2942.   
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Synthesis of IV.9d. To a flame-dried 25 mL flask equipped with a stir bar was added 

ligand IV.3 (35.2 mg, 0.0770 mmol, 1.00 equiv.), Cu(MeCN)4PF6 (27.2 mg, 0.0731 mmol, 

0.95 equiv.), bromo alkyne IV.S3 (72.8 mg, 0.231 mmol, 3.0 equiv.), terminal alkyne 

IV.S4 (52.3 mg, 0.231mmol, 3.0 equiv.), and potassium bicarbonate (53.1 mg, 0.385 

mmol, 5.00 equiv.).  The flask was then evacuated and refilled with N2 5 times.  A septum 
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was then placed on the flask, followed by the addition of 8.0 mL toluene.  The reaction was 

then heated to 80 oC and the reaction progress was followed with TLC. On completion, the 

reaction was quenched with an NH3-EDTA (2 mL) solution and then allowed to stir for 10 

min.  The layers were separated, followed by additional washing of the aqueous phase with 

DCM (2x 20 mL).  The combined organic phases were washed with H2O (3 x 20 mL), and 

brine (1 x 20 mL), and dried over sodium sulfate to give a bright yellow solid/oil.  This oil 

was then loaded onto SiO2, eluted with 50% DCM/Hexanes to separate IV.3 from IV.9d.  

Next, crude IV.9d was purified via size exclusion chromatography to give the desired 

rotaxane as an orange foam/solid (20.1 mg, 29%).1H NMR (500 MHz, Chloroform-d) δ 

8.79 (s, 1H), 7.77 (t, J = 7.7 Hz, 1H), ), 7.69 – 7.65 (m, 8H), 7.57 (s, 2H), 7.45 (d, J = 7.7 

Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.9 Hz, 2H), 7.19 (s, 2H), 7.10 (d, J = 8.4 

Hz, 2H), 6.88 (d, J = 8.3 Hz, 2H), 6.80 (d, J = 8.9 Hz, 2H), 3.74 (t, J = 6.9 Hz, 2H), 2.42 (t, 

J = 6.9 Hz, 2H), 1.90 (s, 2H), 1.77 (s, 2H), 1.09 – 1.08 (m, 21H). 13C NMR (126 MHz, 

CDCl3) δ 159.92, 147.61, 144.06, 141.59, 139.64, 138.12, 137.31, 136.30, 136.17, 131.22, 

131.15, 129.33, 129.06, 128.78, 128.06, 127.41, 127.15, 126.70, 126.55, 124.04, 117.29, 

116.83, 83.64, 78.06, 72.76, 71.91, 67.20, 66.52, 61.77, 57.82, 25.18, 23.97, 18.16, 12.14. 

HRMS (ESI-TOF) (m/z): [M]+ calculated for C58H55N3O6Si, 917.3860; found, 917.3832.   
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Synthesis of IV.S3. To a flame-dried 100 mL flask equipped with a stir bar was added 3,5-
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dinitro benzyl alcohol (1.06 g, 0.00535 mol, 1.00 equiv.) and THF (20 mL). The resulting 

solution was then cooled at 0 oC for 15 minutes, at which point NaH (0.158 mg, 0.00657 

mol, 1.30 equiv.) was added, quickly resulting in a brown/purple suspension.  After stirring 

for an additional 10 minutes at 0 oC, propargyl bromide (0.956 g, 0.00803 mol, 1.50 equiv.) 

was added, followed by warming to room temperature.  After stirring for 24 hours at room 

temperature, the reaction was quenched with H2O (10 mL).  The THF was then removed 

via rotary evaporation and the resulting aqueous suspension was extracted with EtOAc (3 x 

50 mL).  The combined organic phases were washed with H2O (3 x 20 mL), and brine (1 x 

20 mL), and dried over sodium sulfate to give a brown oil.  This oil was then passed 

through a small alumina pad (eluted with 100% DCM) to give the corresponding crude 

terminal alkyne as a yellow oil (0.253 mg, 21%).  This oil was then transferred to a 100 mL 

flask, followed by the addition of AgNO3 (0.182 mg, 1.07 mmol, 1.00 equiv.), NBS (0.285 

mg, 1.61 mmol, 1.50 equiv.), and 50 mL acetone.  After stirring for 1h at room 

temperature, the solvent was removed and the resulting yellowish solid was loaded onto a 

small pad of SiO2.  At this point, the SiO2 pad was flushed several times with 100% 

hexanes followed by 100% DCM to elute IV.S3 as a yellow oil which crystallized on 

standing (0.317 mg, 94%).  1H NMR (500 MHz, Chloroform-d) δ 8.97 (s, 1H), 8.56 (s, 

2H), 4.80 (s, 2H), 4.37 (s, 2H).  13C NMR (126 MHz, CDCl3) δ 148.72, 142.59, 127.37, 

118.19, 75.23, 69.57, 59.57, 48.20.  HRMS (ESI-TOF) (m/z): [M]+ calculated for 

C10H7N2O5Br, 313.9538; found, 313.9673. 

 

4.4.3. NMR Titrations 
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Figure 4.8. NMR Titration of IV.9b with [Cu(MeCN)4]PF6 from 0.0 to 1.0 equivalents.  

Conditions: 5.0 mM IV.9b (CDCl3), 100 mM [Cu(MeCN)4]PF6 (Acetonitrile-d3), 

performed at 298K. 

 

Figure 4.9. NMR Titration of IV.9b with [Pd(MeCN)4](BF4)2 from 0.0 to 1.0 equivalents.  

Conditions: 5.1 mM IV.9b (CDCl3), 100 mM [Pd(MeCN)4](BF4)2 (Acetonitrile-d3), 

performed at 298K. 
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4.4.4. Photophysical Characterization 

The quantum yields of IV.3, IV.4, IV.7a-c and IV.9a-c were determined as 

described by Jobin Yvon Horiba using anthracene (ethanol) and quinine sulfate (0.1M 

H2SO4) as standards while exciting at 325 nm. The fluorescence of IV.4, IV.9a and IV.7a 

were integrated from 415-600 nm, IV.3, IV.7b-c, IV.9b and IV.9c were integrated from 

450-640 nm, anthracene was integrated from 360-480 nm and quinine sulfate was 

integrated from 400-600 nm. Compounds IV.3, IV.4, IV.9a, and IV.7a-c were measured in 

DCM while compound IV.9b was determined in MeCN and compound IV.9c was 

measured in PBS buffer. 

For the metal titration experiments, compound IV.9b was measured in chloroform 

and IV.9c was measured in PBS buffer. Both compounds were prepared as 20.6 uM 

solutions, excited at 325 nm and the fluorescence for each measurement was integrated 

from 450-640 nm to determine relative intensity. Palladium stock solutions were prepared 

at 20 mM in MeCN and EDTA solutions were prepared in 6% NH3OH at 20 mM. The 

quantum yields of IV.3, IV.4, IV.7a-c and IV.9a-b were determined as described by Jobin 

Yvon HoribaXX using anthracene (ethanol) and quinine sulfate (0.1M H2SO4) as standards 

while exciting at 325 nm. The fluorescence of IV.4, IV.9a and IV.7a were integrated from 

415-600 nm, IV.3, IV.7b-c, IV.9b and IV.9c were integrated from 450-640 nm, anthracene 

was integrated from 360-480 nm and quinine sulfate was integrated from 400-600 nm. 

Compounds IV.3, IV.4, IV.9a, and IV.7a-c were measured in DCM while compound 

IV.9b was determined in MeCN and compound IV.9c was measured in PBS buffer. 

For the fluoride titration experiments, a 206 μM stock solution of compound IV.9d 

was first prepared in chloroform.  The emission spectra of an 8.6 uM concentration solution 
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was then measured.  Next, 1.0 equivalent of TBAF was added to a vial containing 125.0 μL 

of a 206 μM solution of IV.9d in chloroform.  The vial was then sonicated for 5 minutes, 

quickly turning light purple.  The solution was then diluted to 8.6 μM and the emission was 

recorded. 

Summary of Optical Properties 
Compoundλabs (nm) ε (M-1 cm-1) λem (nm) φF 

IV.4 323 7.0 x 104 476 0.62 
IV.9a 325 2.9 x 104 477 0.50 
IV.7a 325 4.2 x 104 479 0.53 
IV.3 322 3.5 x 104 509 0.14 

IV.7b 322 5.0 x 104 515 0.15 
IV.7c 322 7.0 x 104 513 0.13 
IV.9b 318 3.2 x 104 511 0.10 
IV.9c 327 3.3 x 104 516 0.07 
IV.9d 326 2.6 x 104 -- -- 

Figure 4.10. Summary of photophysical properties of all relevant compounds 

 

 

Figure 4.11. Absorption spectra of all relevant compounds in dichloromethane. 
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Figure 4.12. Emission spectrum of water soluble rotaxane IV.9c in the presence of 1.0 

equivalent of Pd(II) (dotted trace) and demetallation of Pd(II)-IV.9c with 1.0 equivalent of 

EDTA (solid trace). 

 

4.4.5. Crystallographic Data 

Crystallographic Data for IV.4: C49H35Cl4N, C47H31N·(CH2Cl2)2, M = 779.58, 0.22 x 0.18 

x 0.12 mm, T = 173(2) K, Triclinic, space group  P-1, a = 12.3367(8) Å, b = 15.3339(10) 

Å, c = 22.9899(15) Å, α = 98.146(3)°, β = 91.411(3)°, γ = 111.537(3)°, V = 3990.6(3) Å3, Z 

= 4, Dc = 1.298 Mg/m3, μ(Cu) = 2.963 mm-1, F(000) = 1616, 2θmax = 133.65°, 55669 

reflections, 14063 independent reflections [Rint = 0.0433],  R1 = 0.0453, wR2 = 0.1229 and 

GOF = 1.036 for 14063 reflections (867 parameters) with I>2s(I), R1 = 0.0526, wR2 = 

0.1268 and GOF = 1.036 for all reflections, max/min residual electron density +0.191/-

0.195  eÅ-3. CCDC# = 1851935 

 

Crystallographic Data for IV.7b: C115H113NH2O2, M = 1541.06, 0.15 x 0.12 x 0.04 mm, T 

= 173(2) K, Triclinic, space group  P-1, a = 11.8752(4) Å, b = 19.0169(6) Å, c = 

21.4758(7) Å, α = 99.972(2)°, β = 100.647(2)°, γ = 103.394(2)°, V = 4516.9(3) Å3, Z = 2, 

Dc = 1.133 Mg/m3, μ(Cu) = 0.496 mm-1, F(000) = 1652, 2θmax = 133.42°, 64826 
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reflections, 15906 independent reflections [Rint = 0.0531],  R1 = 0.0593, wR2 = 0.1641 and 

GOF = 1.054 for 15906 reflections (1063 parameters) with I>2s(I), R1 = 0.0715, wR2 = 

0.1764 and GOF = 1.061 for all reflections, max/min residual electron density +0.732/-

0.426  eÅ-3. CCDC# = 1851936 

 

Crystallographic Data for IV.7c: C69H69NO2, M = 944.25, 0.13 x 0.11 x 0.06 mm, T = 

173(2) K, Triclinic, space group  P-1, a = 9.6861(3) Å, b = 16.6342(5) Å, c = 17.4806(5) 

Å, α = 94.164(2)°, β = 93.992(2)°, γ = 99.564(2)°, V = 2760.43(14) Å3, Z = 2, Dc = 1.136 

Mg/m3, μ(Cu) = 0.509 mm-1, F(000) = 1012, 2θmax = 133.29°, 41514 reflections, 9697 

independent reflections [Rint = 0.0471],  R1 = 0.0499, wR2 = 0.1374 and GOF = 1.041 for 

9697 reflections (781 parameters) with I>2s(I), R1 = 0.0628, wR2 = 0.1485 and GOF = 

1.041 for all reflections, max/min residual electron density +0.487/-0.205  eÅ-3. CCDC# = 

1854176 

 

Crystallographic Data for IV.9b: C65H56N10O10, M = 1137.19, 0.15 x 0.12 x 0.08 mm, T = 

173(2) K, Monoclinic, space group  P21/c, a = 17.9478(5) Å, b = 24.3248(7) Å, c = 

25.2984(7) Å, β = 95.194(1)°, V = 10999.3(5) Å3, Z = 8, Dc = 1.373 Mg/m3, μ(Cu) = 0.775 

mm-1, F(000) = 4768, 2θmax = 133.34°, 94936 reflections, 19445 independent reflections 

[Rint = 0.0563],  R1 = 0.0577, wR2 = 0.1651 and GOF = 1.012 for 19445 reflections (1459 

parameters) with I>2s(I), R1 = 0.0740, wR2 = 0.1849 and GOF = 1.012 for all reflections, 

max/min residual electron density +1.294/-0.354  eÅ-3. CCDC# = 1897177 

 

Crystallographic Data for Cu(I)-IV.9b: C65H60Cl6CuF6N4O12P, M = 1510.38, 0.15 x 0.10 x 
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0.02 mm, T = 173(2) K, Triclinic, space group  P-1, a = 14.5355(11) Å, b = 14.7688(13) Å, 

c = 17.1644(13) Å, α = 81.085(6)°, β = 66.303(5)°, γ = 80.201(5)°, V = 3309.5(5) Å3, Z = 2, 

Dc = 1.516 Mg/m3, μ(Cu) = 3.626 mm-1, F(000) = 1548, 2θmax = 101.26°, 21568 

reflections, 6947 independent reflections [Rint = 0.0859],  R1 = 0.0880, wR2 = 0.2294 and 

GOF = 1.027 for 6947 reflections (820 parameters) with I>2s(I), R1 = 0.1299, wR2 = 

0.2529 and GOF = 1.027 for all reflections, max/min residual electron density +1.079/-

0.723  eÅ-3. CCDC# = 1897179 

 

Crystallographic Data for IV.9d: C58H55N3O6Si, M = 918.14, 0.13 x 0.06 x 0.01 mm, T = 

173(2) K, Monoclinic, space group P21/c, a = 16.0398(11) Å, b = 33.042(3) Å, c = 

9.3543(7) Å, β = 99.334(6)°, V = 4892.1(7) Å3, Z = 4, Dc = 1.247 Mg/m3, μ(Cu) = 0.864 

mm-1, F(000) = 1944, 2θmax = 118.11°, 27770 reflections, 7040 independent reflections 

[Rint = 0.1036], R1 = 0.0610, wR2 = 0.1355 and GOF = 1.011 for 7040 reflections (631 

parameters) with I>2σ(I), R1 = 0.1225, wR2 = 0.1631 and GOF = 1.011 for all reflections, 

max/min residual electron density +0.240/-0.259 eÅ3. CCDC# = 1897178 

 

 

Figure 4.13. X-ray structures of (a) IV.9b and (b) IV.Cu(I)-9b showing locations of 

macrocycle IV.3 over thread unit. 
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4.4.6. Computational Data 

All calculations were carried out with the Gaussian 09 package[6] using B3LYP-6-31G 

level of theory. All excited state calculations (TD-DFT) were performed on the fully 

optimized structures.  Energy calculations for IV.9d were acquired from the solid-state 

structure obtained via XRD. 

 

 

Figure 4.14. DFT (B3LYP/6-31G) minimized structure of ligand IV.3 showing (a) cavity 

dimensions and (b) frontier molecular orbitals. 

 

4.5. Bridge to Chapter V 

 In this chapter, we show that by embedding a 2,6-pyridine unit into a nanohoop 

framework, we can successfully generate a wide-range of nanohoop-based [2]rotaxanes 

through an active-metal template strategy.  The resulting structures are highly emissive, 

which we then leverage toward in design of a self-immolating [2]rotaxane fluorescent 

sensor.  Ultimately, through a supramolecular design strategy, we have shown that dative 

bonds can be combined with the unique properties of a nanohoop macrocycle to construct a 

new platform for sensing.  While coordination chemistry is a powerful tool in the context 
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of supramolecular design, we became interested in how other types of non-covalent 

interactions could be applied to the nanohoop framework.  In the next chapter, we show 

that by fluorinating cycloparaphenylenes, weak arene-perfluoroarene interactions can be 

used to assemble nanohoops into large solid-state nanotube-like structures.  
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CHAPTER V 
 
 

PRECISION NANOTUBE MIMICS VIA SELF-ASSEMBLY OF PROGRAMMED 

CARBON NANOHOOPS 

 

Adapted with permission from Leonhardt, E. J.; Van Raden, J. M.; Miller, D. J.; 

Zakharov, L. N.; Aleman, B. J.; Jasti, R. A Bottom-Up Approach to Solution-Processed, 

Atomically Precise Graphitic Cylinders on Graphite. Nano Lett. 2018, 18, 7991-7997.  

Copyright 2018 American Chemical Society.   Additionally, this chapter includes 

unpublished work.  The excerpt included was written by myself with assistance from Erik 

Leonhardt.  The experimental work included from the published material was performed 

by myself with assistance from Erik Leonhart and David Miller.  Lev N. Zakharov 

provided crystal structure analysis of the final products discussed in the experimental 

section.  Professor Ramesh Jasti provided editorial assistance.  

Extended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit 

remarkable properties but are difficult to synthesize uniformly. Herein, we present a new 

class of carbon nanomaterials constructed via the bottom-up self-assembly of cylindrical, 

atomically precise small molecules. Guided by supramolecular design principles and 

circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in 

the solid state, self-assembles into nanotube-like arrays with channel diameters of 

precisely 1.63 nm. A mild solution-casting technique is then used to construct vertical 

“forests” of these arrays on a highly ordered pyrolytic graphite (HOPG) surface through 

epitaxial growth. Furthermore, we show that a basic property of nanohoops, fluorescence, 

is readily transferred to the bulk phase, implying that the properties of these materials can 
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be directly altered via precise functionalization of their nanohoop building blocks. The 

strategy presented is expected to have broader applications in the development of new 

graphitic nanomaterials with π-rich cavities reminiscent of CNTs. 

 

5.1. Introduction 

Carbon nanotubes (CNTs) exhibit a wide range of unique properties depending on 

their precise atomic structure. The remarkable optical and electronic properties of CNTs are 

intimately connected to CNT chirality.(1) The scalable preparation of single-chirality 

CNTs, therefore, has been a longstanding goal in the field of nanoscience.2-4 Similarly, the 

unique frictionless channels of CNTs exhibit fascinating mass transport behavior, but only 

when the channel diameters are smaller than 2 nm,5,6 again highlighting the need for 

precise CNT structural control. In addition to chirality and diameter, the position and 

orientation of CNTs on substrates (for example, the vertical alignment of CNTs into 

surface-bound “forests”)7 is important for fully realizing potential applications such as 

membranes,8 sensors,9, 10 and electronics.11 While much progress has been made in the 

synthesis and deposition of CNTs, a completely new approach to these types of cylindrical 

materials may open up new opportunities. Herein, we disclose a “bottom-up” synthesis 

strategy based on self-assembly of short fragments of CNTs (i.e., cycloparaphenylenes or 

carbon nanohoops, (Figure 5.1a) to produce vertically oriented “forests” of graphitic 

cylinders on surfaces with precise structural control. 

javascript:void(0);
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Figure 5.1. (a) Cartoon representation of a [12,12] armchair CNT and an X-ray crystal 

structure of its smallest cross-sectional fragment, [12]CPP (crystal structure data from 

ref 36). (b) (Left) schematic depiction of hexagonal circle packing, in which the central 

circle in the lattice is symmetrically surrounded by six other circles. CPPs can be seen as 

geometrically equivalent to perfect circles. (Right) stacking sheets of hexagonally packed 

hollow circles resulting in the formation of channels with diameters defined by the 

constituent circles. 

 

Inspired by the work of Smalley regarding the amplification of CNTs,12 the 
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synthesis of cycloparaphenylenes (CPPs) aimed to provide ideal templates or building 

blocks for the uniform fabrication of CNTs.13-15 Since their initial synthesis in 

2008,16 methods have been developed to synthesize these “carbon nanohoops” in various 

sizes17-20 and with numerous functionalities.21-23 More recently, “carbon nanobelts” have 

been synthesized by Itami and co-workers, again in hopes of accessing effective seed 

molecules for CNT growth.24, 25 As a consequence of their curved geometries and cyclic 

conjugation, carbon nanohoops and nanobelts exhibit unique size-dependent electronic and 

photophysical properties.24-27 Despite their fascinating circular geometries, CNT-like pores, 

and highly tunable properties, CPPs and related structures have only recently begun to be 

explored in the context of solid-state materials.28-32 Seeking to expand on this, we 

envisioned the development of a new class of CPP-based carbon nanomaterials that would 

mimic the tubular structures of CNTs. Through the vertical self-assembly of CPPs, we 

speculated that it would be possible to construct arrays of noncovalent nanotubes with 

diameters that could be synthetically altered with atomic precision. Moreover, the 

properties of these materials could be fine-tuned via the bottom-up functionalization of 

nanohoop building blocks. In this work, we merge synthetic organic chemistry, 

supramolecular design, and fundamental circle packing theory to construct arrays of 

noncovalent nanotubes with uniform channel diameters of precisely 1.63 nm via the self-

assembly of functionalized nanohoop building blocks. We then prepare vertically oriented 

“forests” of these structures on a highly ordered pyrolytic graphite (HOPG) surface through 

epitaxial growth using a simple solution-casting approach. 

 

5.2. Results and Discussion 
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CPPs are unique among macrocyclic small molecules in that their full 

sp2 hybridization and para connectivity gives rise to a circular geometry. Thus, we were 

curious to what extent CPPs could be treated as geometrically perfect circles, as this would 

allow for elementary circle packing concepts in our design.33 Inspired by the dense 

arrangements found within CNT bundles,34 we ultimately targeted a hexagonal circle 

packing motif, the densest arrangement for circles of identical diameters.33 This packing 

requires each circle in the 2D lattice to be symmetrically surrounded by six other circles 

(Figure 5.1b). Stacking these hexagonal “sheets” vertically would then afford the desired 

CNT-like columns (Figure 5.1b). Translating all of this into practical molecular design 

necessitated a supramolecular strategy that would allow for both face-to-face (horizontal) 

and edge-to-edge (vertical) interactions between nanohoops. Unfunctionalized CPPs do not 

exhibit face-to-face arene–arene stacking, as is often observed in linear acene systems35 and 

instead tend to adopt dense herringbone-like packing motifs with inaccessible pores as a 

result of the hoops “filling” one another.27, 36 However, arene–perfluoroarene interactions 

have yet to be thoroughly explored as a self-assembly strategy in CPP systems and were 

viewed as an attractive alternative to induce the desired face-to-face arrangement. Arene–

perfluoroarene interactions, which result from the favorable electronic interaction between 

electron-rich aryl rings and electron-deficient perfluorinated aryl rings,37 have proven 

useful in supramolecular design due to their powerful and relatively predictable self-

assembly capabilities.38, 39 Conveniently, aryl C–H···F interactions are also known to be 

powerful guiding forces in systems containing fluorinated aryl moieties.40 Therefore, we 

hypothesized that a drive to maximize C–H···F contacts would “lock” V.1 into a vertical 

assembly. 
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Nanohoop V.1 (Figure 5.2a) was designed to leverage the symmetry of the 

[12]CPP backbone to afford six arene–perfluoroarene interactions per hoop, where every 

interaction represents one of the six hoop-to-hoop contacts needed to achieve hexagonal 

packing. Additionally, we hypothesized that C–H···F interactions would align V.1 into 

nanotube-like channels. Yamago and co-workers have recently found that incorporation of 

fluorines into a nanohoop backbone can indeed result in tubular solid-state structures via 

fluorine–hydrogen interactions.41 The synthesis of (Figure 5.2) V.1 relied on previously 

established synthetic routes toward the size-selective synthesis of [n]CPPs.17, 19 Here, a new 

synthesis involved subjecting intermediates V.3 and V.7, which can be easily accessed on a 

multigram scale, to a dilute Suzuki–Miyaura cross-coupling reaction, a common aryl–aryl 

bond forming reaction,42 to afford macrocycle V.8 in 22% yield (Figure 5.2). Next, the 

triethylsilyl (TES) groups on the macrocycle were removed with tetrabutylammonium 

fluoride (TBAF) in the presence of excess acetic acid to afford an intermediate alcohol-

functionalized compound. Finally, the cyclohexadiene moieties of this macrocycle were 

converted to benzene rings via reductive aromatization under mild tin-mediated conditions 

to afford nanohoop V.1 in a 40% yield over two steps (versus 4% in the original 

preparation) as an off-white powder. We attribute the initial low yield to difficulty in the 

reductive aromatization step, a problem that also plagued Yamago and co-workers when 

employing the same aromatization conditions to their syntheses of fluorinated 

cycloparaphenylenes.41 Halogenated cycloparaphenylenes have been calculated to have 

higher strain energies than their all-hydrocarbon counterparts which could be contributing 

to the low yields.43  
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Figure 5.2. Synthesis of fluorinated nanohoop V.1.  

 

 

 

Figure 5.3. (a) X-ray crystal structure of nanohoop V.1, showing that the compound self-

assembles into noncovalent nanotubes in the solid state. (b) Cross-section of a nanotube 

of V.1, highlighting the 1.63 nm diameter. (c) Aryl C–H···F interactions (dotted lines) that 

guide the vertical assembly of V.1, which range in distance from 2.53 to 2.62 Å. (d) Top-

down view showing the hexagonal circle packing of V.1, which is guided by six arene–

perfluoroarene interactions that measure at 3.69 Å (purple dotted lines) (chloroform solvent 

molecules omitted for clarity). 

 

Nanohoop V.1 was found to readily form colorless, needle-like crystals via slow 

evaporation from chloroform. X-ray diffraction of these crystals revealed 
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that V.1 assembles into the desired nanotube-like structures, exhibiting a uniform array of 

1.63 nm channels (Figure 5.3a, c). The vertical assembly of V.1 appeared to be guided by 

a multitude of aryl C–H···F interactions (Figure 5.3c), resulting in perfectly linear 

columns. Thirty-six C–H···F interactions per hoop were found in the crystal packing 

of V.1, ranging from 2.53 to 2.62 Å.41 The ability of the top and bottom “edges” of 

macrocycles with radially oriented π systems to take part in a large number of weak 

contacts has been observed previously44 and highlights a potential advantage of using 

nanohoop-like structures to maximize vertical interactions in the construction of molecular 

crystalline systems. Upon closer inspection of this solid-state packing, we also observed six 

well-defined arene-perfluoroarene interactions per nanohoop with centroid-to-centroid 

distances of 3.69 Å (Figure 5.3d), well within the range of approximately 3.4–3.9 Å 

commonly observed in other studies.38, 39 Importantly, these interactions result in an ideal 

2D hexagonal circle packing motif, which is beautifully reflected in the symmetric, 

diamond-shaped unit cell of the lattice with vertices located at the centers of four 

nanohoops. 

At the outset of this work, one of our primary goals was to mimic vertically 

oriented CNT “forests” through the vertical assembly of V.1 on surfaces. Substrate-

templated epitaxial growth has previously been shown to be an effective strategy for 

accessing well-oriented molecular assemblies.45 Thus, we chose highly oriented pyrolytic 

graphite (HOPG) as a possible template, since HOPG has a lattice constant of a factor of 8 

less than the horizontal lattice constants of 1 (a = 2.46 Å for HOPG vs a/b = 19.81 Å for 1). 

On the basis of this idea of lattice matching, we predicted that HOPG would serve as a 

suitable template for epitaxial growth of vertically aligned structures of V.1. We found that 

javascript:void(0);
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drop-casting V.1 from a chloroform solution onto a HOPG substrate at humid ambient 

conditions resulted in the rapid (∼1–2 min) formation of numerous hexagonal and needle-

like crystalline structures that were easily observable via optical microscopy (Figure 5.4a). 

Scanning electron microscopy (SEM) revealed that the hexagonal crystals were in fact 

nanowire-like pillars that form dense arrays on many regions of the substrate 

(Figure 5.4b). The structures displayed in Figure 5.4b range in size from 1 to 2 μm in both 

height and width, although various other morphologies, such as tall and thin pillars (5–10 

μm in height and 0.2–0.5 μm in width) and short and wide structures (200–500 nm in 

height and 1–2 μm in width) were also found.  The largest pillars and densest pillar 

populations were found along the chloroform drying rings that resulted from solution 

casting, an observation that could inform future optimization of this solution processing 

technique. Focused ion beam (FIB) microscopy of individual hexagonal pillars revealed 

that these structures do indeed exhibit six well-defined walls and a flat hexagonal top 

(Figure 5.4c). Satisfyingly, the hexagonal geometries of these pillars directly reflected the 

hexagonal molecular packing observed in the crystal structure of V.1, supporting the notion 

that the pillars we observed were composed of vertically aligned columns of V.1. These 

pillars were also successfully fabricated on multilayer graphene surfaces grown on copper 

foil. It is worth noting that deposition of the nonfluorinated analog ([12]CPP) onto an 

identical graphene–copper substrate produced no such structures, and instead affords flat 

plate-like structures consistent with the morphology of solution grown crystals of [12]CPP. 
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Figure 5.4. (a) Optical microscopy of hexagonal pillars and needle-like structures on 

HOPG surface. (b) Angled-SEM of an array of hexagonal pillars. Dense forests of 

hexagonal pillars are scattered across the sample with heights ranging from a few hundred 

nanometers to several microns. (c) Angled focused ion beam (FIB) microscopy of isolated 

hexagonal pillars. The flat hexagonal faces and top are readily apparent. (d) (Left) segment 

of a larger (25 μm × 16 μm) SEM image of short pillars showing growth templated by the 

substrate. The pillars are preferentially aligned in one of two angles, separated by ∼23.5°. 

(Right) histogram of orientation angles in the full 25 μm × 16 μm image. A total of 290 

hexagons are identified in the full image and nearly all of them are oriented in one of two 

angles. (e) FIB image of needle-like structures formed by V.1, which preferentially orient 

at 60° relative to one another on the HOPG surface. 

 

Further inspection of the hexagonal pillars of V.1 revealed preferential orientations 

on the HOPG surface, which is indicative of epitaxial growth on the graphite lattice. We 
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used a home-built image processing algorithm to identify hexagons and quantify their 

angles relative to an arbitrary normal. This allowed us to map regions of high pillar density 

and analyze the relative orientations of grouped pillars. Two distinct orientations for a 

given area emerged, averaging at 26.0° rotation and 49.5° rotation from an arbitrary 

normal, which were observed in relatively equal quantities (Figure 5.4d). We currently 

hypothesize that these populations represent two energetically favorable orientations 

that V.1 can adopt on the HOPG surface. This notion is supported by a recent theoretical 

study implying that nanohoops should indeed exhibit energetically preferred orientations 

on graphene surfaces.46 However, while our findings clearly indicate substrate-directed 

preferential orientation of the observed hexagonal pillars, further studies are required to 

elucidate the mechanisms behind the growth and orientation of nanohoop-based structures 

on graphite. Interestingly, we observe that the needle-like structures align to the graphite 

surface in multiples of 60° (Figure 5.4e), consistent with the 3-fold symmetry of the 

graphite lattice. This again supports the notion that the HOPG surface exhibits a heavy 

influence on the growth and orientation of the structures formed by V.1. Importantly, this 

well-templated growth offers the potential for deterministic growth of hexagonal wires.  

   While fluorination successfully oriented the nanohoops (V.1) into the desired 

CNT-like geometry, it was not clear the extent to which this self-assembly strategy could 

be regarded as a general strategy to CNT mimics.  For example, we only examined the self-

assembly of a single diameter nanohoop with a very specific fluorination pattern, raising 

the question of generality.  We also recognized that in order for these materials to be 

considered genuine CNT mimics, these self-assembled systems would also have to exhibit 

some degree of CNT functionality.  Accordingly, we then expanded this work by 
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demonstrating that these fluorinated, self-assembling nanohoops exhibit structural features 

and functions that have been previously observed in traditional CNTs, ultimately 

establishing fluorinated nanohoops as a new CNT-like precision nanomaterial.  First, we 

describe the synthesis of two new fluorinated derivates—a reduced diameter [10]CPP 

analog and a [12]CPP derivative with a lesser degree of fluorination, both of which 

assemble into the desired CNT mimic structures.  Next, we show that the [10]CPP analog 

is capable of linearly aligning C60 molecules as observed in CNT@C60 peapod structures.  

Neither of the above functionalities are observed in the respective non-fluorinated analogs, 

supporting our hypothesis that fluorination of the nanohoop backbone is an effective 

general strategy towards fabricating robust CNT solid-state mimics.   
A primary aim was to determine if the supramolecular design strategy we had 

employed with nanohoop V.1 was amenable to nanohoops of varying diameter and 

fluorination patterns.  Additionally, we sought to develop a modular synthetic strategy 

where access to fluorinated structures of differing diameter and fluorination patterns could 

be quickly obtained via common intermediates.  Ultimately, we aimed to synthesize (figure 

nanohoops V.5 (a [10]CPP analog) and V.6 (a [12]CPP analog), which each bear two 

symmetrically placed tetrafluorophenylene moieties.  Critical to our investigation was the 

acquisition of single crystals of V.5 and V.6 suitable for x-ray diffraction in order to 

unambiguously determine the solid state packing of these materials and also to allow for 

the detailed analysis of arene-perfluoroarene and C—H---F interactions present in the 

solid-state arrangements. 

   With this in mind, we proceeded toward both V.5 and V.6 via the curved building 

blocks shown Figure 5.5.  Importantly, each of these intermediates can be prepared on 
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multi-gram scale in excellent yield.  Under dilute Suzuki-Miyaura cross-coupling 

conditions, triethylsilyl (TES) protected macrocycles V.9 and V.10 were synthesized in 

modest yields (Figure 5.5).  Typically, after cleavage of the silyl protecting groups, the 

cyclohexadiene units can undergo reductive aromatization to give the final fully conjugated 

nanohoop, however, we found that treatment of macrocycles V.9 and V.10 with 

tetrabutylammonium fluoride (TBAF) consistently resulted in decomposition.  We 

reasoned that the electron-withdrawing nature of the fluorinated aryl rings can promote a 

retro-addition reaction, ultimately resulting in a cyclohexadienone and an unstable anionic 

tetrafluoraryl ring.  After screening various conditions, we found that the addition of excess 

acetic acid to the reaction mixture allowed for clean conversion to the desired free-alcohol  

functionalized macrocycles.  However, as reported by both the Yamago group41 and our 

previous work, initial attempts at reductive aromatization with H2SnCl4 lead to the desired 

products in low yield (15% and 12% for V.5 and V.6, respectively).  Through slight 

modification of the conditions reported by Yamago and coworkers,41 we were able to 

improve the yield of both V.5 (58% yield) and V.6 (28% yield), providing ample material 

for our ongoing investigations. 

As previously mentioned, nanohoop V.1 self-assembles into perfectly linear 

nanotube-like arrays in the solid state, forming channels that are precisely 1.63 nm in 

diameter (Figure 5.3).  The three-fold symmetry of the molecule allows for six arene-

perfluoroarene interactions per hoop, each of which measure at 3.68 Å (Figure 5.3).33  This 

results in an ideal hexagonal circle-packing motif, which is the densest theoretical packing 

possible for circles of identical diameter.33  Vertical assembly in the solid-state architecture 

of V.1 is guided by eighteen C—H---F interactions per hoop dimer (Figure 5.3), which  
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Figure 5.5. Synthetic routes towards nanohoops V.5 and V.6. 

 

range in distance from 2.53 – 2.62 Å.27  The readily apparent organofluorine interactions 

observed in the crystal packing of V.1 provide an excellent reference point when analyzing 

the x-ray crystal structures of V.5 and V.6.      

Following the synthesis of nanohoop V.5, needle-like single-crystals suitable for X-

ray crystallography were obtained by slow evaporation of a THF solution of fluorinated 

nanohoop V.5.  The solid-state packing of V.5 affords staggered nanotube-like columns 

(Figure 5.6) with channel diameters of precisely 1.38 nm.  As was observed previously for 

V.1, the horizontal arrangement of V.5 was found to be guided by arene-perfluoroarene 

interactions.  Four of these interactions can be found in the crystal structure of V.5, all 

measuring at 3.78 Å (Figure 5.6)  Likewise, the vertical alignment of V.5 in the solid state 

is dictated by a multitude of  C—H---F interactions, as was also the case with V.1.   A total 
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of sixteen C—H---F interactions were observed, measuring between 2.53 – 2.85 Å (Figure 

5.6).  It should be stressed that the packing of V.5 is significantly different than that of 

parent [10]CPP,47 which adopts a herringbone-type motif—a common observation in the 

all-hydrocarbon parent nanohoops.    

 

Figure 5.6. Columnar packing, arene-perfluoroarene interactions (highlighted in purple), 

and C—H---F interactions (dotted lines) observed in the crystal packings of nanohoops V.1 

(a-c), V.5 (d-f), and V.6 (g-i).  

 

   Pseudo-slow evaporation of V.6 in dichloromethane (DCM), achieved via the 

reverse vapor diffusion of the DCM solvent into pentane, afforded needle-like crystals 

similar in appearance to those formed by V.1 and V.5.  Single-crystal XRD analysis 
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revealed that V.6 also self-assembles into tubular arrays (Figure 5.6), again in stark 

contrast to the herringbone-like packing of the all-hydrocarbon analog of [12]CPP.  Upon 

closer inspection of the crystal structure of V.6, we observed four aryl-perfluoro aryl 

distances measuring at 3.69 Å (Figure 5.6) and thirteen C—H---F interactions ranging 

between 2.48 and 2.84 Å (Figure 5.6).  The solid-state packing of V.6 in comparison to 

V.1 results in linear channels (Figure 5.6) and an ideal hexagonal circle packing 

arrangement, the two-fold symmetry of V.5 affords staggered columns and a pseudo-

hexagonal horizontal assembly. Also, due to the inclusion of only two tetrafluorophenylene 

moieties, V.5 exhibits two fewer arene-perfluoroarene interactions and twenty-three fewer 

C—H---F interactions than found in the crystal structure of V.1 (Figure 5.6).  Thus, we 

predict that organofluorine interactions may also allow for the further construction of 

tubular nanohoop-based assemblies with slightly varied morphologies but identical 

diameters.       

However, it should be noted that the two-fold symmetry such as that found in V.5 

and V.6 has been shown to result in non-tubular arrangements in fluorinated nanohoop 

systems.  Indeed, Yamago and coworkers found that a two-fold symmetric fluorinated 

[6]CPP analog exhibits herringbone-like packing, presumably since this staggered 

arrangement allows for the maximization of solid-state C—H---F interactions.41  Likewise, 

the same study by Yamago provided an example of a three-fold symmetric nanohoop (a 

[9]CPP analog) that assembles into tubular arrangements without the guidance of arene-

perfluoroarene interactions, instead appearing to rely solely on C—H---F interactions.  

Therefore, we conclude that both nanohoop diameter and skeletal symmetry (i.e. the 

number of phenylene moieties present) are crucial factors to consider in the design of such 
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systems.   

 A notable application of CNT channels is the uptake and confinement of small 

molecule guests into 1D channels.48, 49  Thus, we were curious if the nanotube-like channels 

formed by fluorinated nanohoops are accessible to guests.  As an initial approach, we 

sought to leverage the size and shape complementarity of fluorinated nanohoop V.5, a 

[10]CPP derivative, with C60.  Indeed, macrocycles with radially oriented pi-conjugation,50 

in particular [10]CPP and its derivatives,51, 52 have been shown to be strong hosts for C60 in 

both solution and the solid-state.  Similar to the case of C60@ [10]CPP, we found that the 

addition of C60 to fluorinated nanohoop V.5 resulted in a decrease in the fluorescence 

intensity of fluorinated nanohoop V.5 (Figure 5.7).  From these fluorescence quenching 

data, we determined a binding constant (Ka) of 8.1 ± 0.2 x 105 L-1 mol between fluorinated 

nanohoop V.5 and C60 (Figure 5.11), a value that is lower than most binding constants 

reported [10]CPP hosts.  For example, as compared to the parent [10]CPP host, the Ka is 

reduced (C60@[10]CPP complex = 2.71 ± 0.03 x 106 L-1 mol)52 by nearly 30%.  Despite 

this lowered affinity, the value is still relatively high amongst various fullerene hosts—a 

factor that allowed for a detailed investigation into the solid-state chemistry between 

nanohoop V.5 and C60.  Dark red single-crystals of the C60@V.5 complex suitable for X-

ray crystallography were grown via vapor diffusion of diethyl ether into a dilute THF/1,2-

dichlorobenzene/toluene (1:1:1) solution of fluorinated nanohoop V.5 and C60 (1:1).  

Interestingly, crystal structure analysis revealed cylindrical packing (Figure 5.7), but with 

the absence of perfluoroarene-arene interactions; however, numerous C—H---F 

interactions were found measuring from 2.54-2.87 Å (Figure 5.13).  These interactions 

appear to be the driving force behind the linear arrangement of the C60@V.5 complex in the 
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solid-state, as the analogous all-hydrocarbon [10]CPP@C60 complex has been previously 

shown to adopt a staggered packing motif (Figure 5.7).34  The packing of V.5@C60 bears 

a striking aesthetic resemblance to CNT@C60 peapod structures, which have been shown to 

exhibit numerous exotic properties unique from bulk C60.  While not reported here, we 

expect that this arrangement can be adopted to align both endohedral and exohedrally 

functionalized fullerenes, a prospect that will likely result in new charge transport 

properties.  Furthermore, given that the host-guest chemistry between nanohoops is just 

beginning to emerge, we anticipate that fluorinated nanohoops can potentially direct and 

pre-organize other guest molecules into columnar 1D arrays in a highly size-selective 

manner leading to new strategies for applications such as templated polymerizations and 

organic electronic materials. 

 

Figure 5.7. a) Observed emission response of nanohoop V.5 to increasing quantities of C60. 

b) Peapod-like crystal packing of the V.5@C60 complex (top) and views of a single host-

guest complex (bottom); c) X-ray crystal structure of the [10]CPP@C60 complex in the 

solid-state.  Fluorine atoms are colored in green, hydrogens in white, carbons in grey, and 

C60 has been colored purple. 
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5.3. Conclusions 

   In conclusion, we have presented a scalable, size-selective strategy for accessing 

functional CNT mimic systems.  Two novel fluorinated nanohoops (V.5 and V.6) were 

synthesized via a general route using common intermediates, and a new synthetic approach 

was developed to access previously reported nanohoop V.1 on the gram scale.  Through x-

ray crystallographic analysis, it was determined that nanohoops V.1, V.5, and V.6 all self-

assemble into CNT mimic systems in the solid state via organofluorine interactions and 

boast uniform channel diameters defined by the diameters of their respective constituent 

nanohoops.  Aside from the aesthetic similarities between CNTs and the mimic systems 

disclosed herein, CNT-like properties were also found to emerge as a result of tubular 

nanohoop alignment.  Neither of these functionalities are observed in the analogous non-

fluorinated nanohoop systems, implying that the arene-perfluoroarene and C—H---F 

interactions observed in the crystal structures of the CNT mimics are effective in 

maintaining a tubular architecture.  The ability to fabricate these CNT mimics in a discrete, 

size-selective fashion is expected to benefit studies in nanofluidics and general nanoscale 

confinement, where access to atomically precise nanopores is difficult due to the inability 

to selectively produce CNTs or graphene nanopores.  Furthermore, we believe the 

combined experimental and theoretical analysis of the CNT mimics presented may serve as 

an initial blueprint for the predictable design of other tubular systems based on the self-

assembly of curved macrocycles, opening the door to a variety of new precision 

nanomaterials.       

 

5.4. Experimental Sections 
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5.4.1.  General Experimental Details 

1H NMR spectra were recorded at 500 MHz on Varian VNMR spectrometer, 500 

MHz on a Bruker, or 600 MHz on Bruker. All 1H NMR spectra are referenced to TMS (δ 

0.00 ppm), CH2Cl2 (δ 5.32 ppm), or (CH3)3CO (δ 2.05 ppm). All 13C NMR spectra are 

references to a residual CHCl3 (δ 77.16 ppm), CH2Cl2 (54.00 ppm), or (CH3)3CO (δ 

29.84 ppm). All reagents were obtained commercially and used without further purification 

unless otherwise noted. All glassware was flame-dried and cooled under an inert 

atmosphere of nitrogen unless otherwise noted. Moisture sensitive reactions were carried 

out under an inert atmosphere of nitrogen using standard syringe/septa technique. Silica 

column chromatography was conducted with Zeochem Zeoprep 60 Eco 40-63 μM silica gel 

while alumina chromatography utilized Sorbent Technologies 50-200 um Basic Activity II-

II Alumina.  

SEM (Scanning Electron Microscopy), FIB (Focused Ion Beam), and EDS (Energy 

Dispersive X-Ray Spectroscopy) analysis were performed in an FEI Helios 600i FIB-SEM. 

The SEM images were taken with an accelerating voltage 5 kV while the Ga+ FIB was 

operated at 30 kV Angled SEM and FIB was performed at an angle of 52°. EDS data was 

acquired with a 5 kV electron beam.  

Widefield fluorescent imaging was performed on a Nikon Eclipse Ti-U 

epifluorescence optical microscope with a 50x objective lens using a Nikon DAPI filterset 

(Excitation Filter at 375 nm, Dichroic Mirror at 415 nm, and a barrier filter at 460 nm).  

Quantitative nanomechanical mapping was performed with a Bruker Dimension 

Icon atomic force microscope with an OTESPA-R3 probe (nominal spring constant 26 

N/m) in PeakForce tapping mode. The force set-point was 60 nN, which was high enough 
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to indent both the hexagonal structures as well as the HOPG substrate. We use the known 

elastic modulus of HOPG (~18 GPa) to infer the modulus of the hexagons (~12 GPa). 

Raman spectroscopy was performed in a WiTec alpha300 confocal  

Raman spectrometer with a 532 nm excitation laser and a 60x, 0.7 NA objective. 

Laser power was kept low to minimize damage to the hexagonal structures.  

Measurements of the excitation and emission spectra were performed using a 

homebuilt fluorescence microscope with a 100x, 0.7 NA objective. A monochromator was 

used to select a 5 nm FWHM wavelength band from a Mercury/Xenon excitation source, 

which was then focused onto the sample with a spot-size comparable to a single hexagon. 

The S3 excitation power of all bands was measured after the objective and used to 

normalize the emission intensity. The emitted light was separated from the incident light 

using a 50:50 beamsplitter and spectra were acquired using an Ocean Optics Flame 

Spectrometer with an integration time of 1 second. 

 

5.4.2.  Sample Preparation for Surface Measurements.  

Samples were prepared on either a freshly cleaved highly-ordered pyrolytic 

graphite (HOPG) substrate (SPI supplies HOPG Advanced Ceramics Brand Grade ZYH 

and Mikromasch HOPG Grade ZYA, both 12x12x2 mm) or on multi-layer graphene grown 

on Cu foil (Graphenen). A 1 mg/ml solution of 1 in chloroform was prepared and heated to 

roughly 45-50 °C, causing the solution to go from cloudy to clear. A small crystallizing 

dish was then filled halfway with deionized water and covered with a sheet of aluminium 

foil with small holes cut into it. The dish was then heated 85 °C on a hotplate. Next, the 

chosen substrate was carefully placed on the foil covering the dish so as to be centered and 
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level. The substrate was then flooded (approx. 0.05-0.1 mL) with the chloroform solution 

of 1 via dropcasting through a syringe filter (0.2 µm PTFE membrane). Subsequently, an 

appropriately-sized watch glass was quickly placed on top of the dish to induce a crude 

humid environment. The substrate was removed once the chloroform had completely 

evaporated (1-2 min.). 

 

 

5.4.3. Synthetic Details 
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Figure 5.8. Synthesis of V.S7 from V.S6.19 
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Figure 5.9. Synthesis of V.S2. 
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Figure 5.10. Synthesis of V.S3. 
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Figure 5.11. Synthesis of V.2. 
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Synthesis of V.2S.  To a flame-dried 100 mL flask containing THF (30 mL) was added 

diisopropylamine (0.774 mL, 5.49 mmol, 2.60 equiv).  This flask was then cooled to 0 °C 

at which point nBuLi (2.5 M in hexanes, 1.94 mL, 4.85 mmol, 2.30 equiv.) was added 

dropwise.  After stirring for 10 minutes at 0 °C, the flask was then was then cooled to -

78 °C over 45 minutes.  To this flask was then added 1,2,4,5-tetrafluorobenzene (neat) (240 
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uL, 2.11 mmol, 1.00 equiv) followed by bromo ketone19 (as a solution in 3 mL THF) (2.0 

g, 5.27 mmol, 2.5 equiv) resulting in a bright yellow solution that slowly became 

brown/orange over the course of 1 h.  After 1 hour of stirring, the reaction was slowly 

quenched with a 20% acetic acid/methanol solution (5 mL), resulting in a colorless solution 

which was then brought to room temperature.  The organic solvents were then removed via 

rotary evaporation and the remaining slightly yellow aqueous layer was extracted with 

ethyl acetate (3 x 75 mL).  The combined organic phases were washed with H2O (3 x 100 

mL), and brine (1 x 100 mL), and dried over sodium sulfate.  The solvent was removed 

under reduced pressure to afford a faint yellow oil.  Chromatography (0 to 10% 

EtOAc/Hexanes) of this oil yielded V.2S as a colorless oil (1.41 g, 74%).  1H NMR (500 

MHz, Chloroform-d) δ 7.41 (d, J = 8.7 Hz, 4H), 7.21 (d, J = 8.5 Hz, 4H), 6.30 (d, J = 10.2 

Hz, 4H), 6.01 (d, J = 10.1 Hz, 4H), 2.55 (s, 2H), 0.99 (t, J = 7.9 Hz, 18H), 0.69 (q, J = 7.9 

Hz, 12H). 13C NMR (126 MHz, CDCl3) δ 143.96, 134.16, 131.48, 127.64, 127.41, 121.43, 

71.06, 68.02, 7.18, 6.58. 19F NMR (471 MHz, Chloroform-d) δ -138.00 (s).  δ HRMS 

(TOF, ES+) (m/z): [M+2Na]+ calculated for C42H47O4Na2Br2F4Si2, 951.1111; found, 

951.1354. 

 

F F

FF

TESO

TESO
OTES

OTES

Br

Br
V.S3  

Synthesis of V.S3. Imidazole (0.420 g, 6.16 mmol, 4.0 equiv), and V.2S (1.40 g, 1.54 

mmol, 1.00 equiv.) were added to a 100 mL flame-dried RBF, then dissolved in 25 mL 
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DMF.  The resulting solution was heated to 40 °C at which point chlorotriethylsilane 

(TESCl) (0.700 g, 4.63 mmol, 3.00 equiv.) was added dropwise.  The reaction was 

monitored via 1H NMR until all the starting material was consumed (typically 4 hours).  

Once complete, the reaction was neutralized with sodium bicarbonate followed by 

extraction of the resulting white suspension with EtOAc (3 x 75 mL).  The combined 

organic phases were washed with 5% LiCl (5 x 100 mL), followed by H2O (1 x 100 mL), 

brine (1 x 100 mL), and then placed over sodium sulfate.  Removal of solvent via rotary 

evaporation yielded a yellow oil which was then triturated with MeOH followed by 

filtration and collection of the resulting white solid to give V.S3 (1.52 g, 89%).  1H NMR 

(500 MHz, Chloroform-d) δ 7.32 (d, J = 8.7 Hz, 4H), 7.13 (d, J = 8.7 Hz, 4H), 6.35 (d, J = 

9.7 Hz, 4H), 5.95 (d, J = 10.2 Hz, 4H), 0.99 – 0.86 (m, 36H), 0.70 – 0.53 (m, 24H). 13C 

NMR (126 MHz, CDCl3) δ 144.58, 132.84, 131.32, 129.09, 127.32, 121.29, 71.15, 69.87, 

7.17, 6.92, 6.53, 6.33. 19F NMR (471 MHz, CDCl3) δ -136.88 (s). δ LRMS (TOF, MALDI) 

(m/z): [M]+ calculated for C54H76O4Br2F4Si4, 1134.315; found, 1136.425. 
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Synthesis of V.S4. To a 100 mL flame-dried flask was added Pd(OAc)2 (11.0 mg, 0.0484 

mmol, 0.100 equiv), 2-dicyclohexylphosphino-2′,6′dimethoxybiphenyl (50.0 mg, 0.121 

mmol, 0.250 equiv), bis(pinacolato)diboron (0.492 g, 1.94 mmol, 4.00 equiv.), V.S3 (0.550 

g, 0.484 mmol, 1.00 equiv.), and K3PO4 (0.520 g, 2.45 mmol, 5.00 equiv.). After the solids 
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were added, the flask was evacuated and backfilled with nitrogen 5 times. 1,4-dioxane (30 

mL) was then added to the flask resulting in an orange solution, which was then placed into 

an 80 °C oil bath.  After 3 h, the resulting black solution was brought to room temperature 

and the solvent was removed under reduced pressure. To this black solid was added H2O 

(50 mL), followed by extracted with hexanes (3 x 75 mL). The combined organic phases 

were then washed with water (3 × 50 mL), brine (1 × 100 mL), and then dried over sodium 

sulfate. After removing the organic solvent via rotary evaporation, the resulting white solid 

was then washed with plenty of methanol, which after filtration, gave V.S4 as a white solid 

(2.99 g, 92%).  1H NMR (500 MHz, Chloroform-d) δ 7.66 (d, J = 8.4 Hz, 4H), 7.27 (d, J = 

8.2 Hz, 4H), 6.34 (d, J = 10.1 Hz, 4H), 5.99 (d, J = 10.2 Hz, 4H), 1.30 (s, 24H), 0.98 – 0.88 

(m, 36H), 0.68 – 0.56 (m, 24H).  13C NMR (126 MHz, CDCl3) δ 148.48, 134.84, 133.04, 

128.90, 124.86, 83.78, 71.57, 69.96, 25.00, 7.19, 6.95, 6.59, 6.33. 19F NMR (471 MHz, 

CDCl3) δ -137.01 (s). δ HRMS (TOF, ES+) (m/z): [M+Na]+ calculated 

C66H100O8NaF4Si4B2, 1253.6515; found, 1253.6544. 
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Synthesis of V.9. To a flame-dried 250 mL round bottom flask equipped with a stir bar 

was added V.S3 (0.268 g, 2.36 mmol, 1.00 equiv.), V.S4 (0.290 g, 2.36 mmol, 1.00 equiv.), 

and SPhos-Pd-G2 (16.9 mg, 0.0236 mmol, 0.100 equiv.).  The flask was evacuated and 

back-filled with N2 5 times, followed by addition of 1,4-dioxane (118 mL). This solution 

was then vigorously spared with N2 for 2 h at which point the solution was placed into an 

oil bath at 80 oC.  At this point, an aqueous solution of 2M K3PO4 (11.8 mL, 23.6 mmol, 

10.0 equiv) was added, quickly turning the colorless solution bright yellow.  The solution 

was allowed to stir for 1h, at which point the solution was allowed to cool to room 

temperature followed by removal of the solvent via rotary evaporation.  The resulting 

yellow/brown oil aqueous phase was extracted with hexanes (3 x 100 mL), followed by 

washing of the combined organic phases with H2O (3 x 100 mL), brine (1 x 100 mL), and 

finally placed over sodium sulfate.  After solvent removal, the brown oil was dissolved in 

hexanes and then filtered using a fritted funnel.  The brown solids were washed with plenty 

of hexanes and the resulting yellow filtrate was concentrated to a yellow oil.  The addition 

of acetone caused the precipitation of a white solid, which after collection via filtration and 

washing with acetone yielded V.9 as a white solid (0.207 g, 45%).  1H NMR (500 MHz, 

Chloroform-d) δ 7.15 (d, J = 8.4 Hz, 8H), 7.07 (d, J = 8.5 Hz, 8H), 6.37 (d, J = 10.2 Hz, 

8H), 6.00 (d, J = 10.4 Hz, 8H), 1.01 – 0.81 (m, 72H), 0.76 – 0.53 (m, 48H). 13C NMR (126 

MHz, CDCl3) δ 144.06, 139.70, 133.48, 129.01, 127.01, 125.52, 71.32, 70.16, 7.20, 6.93, 

6.59, 6.30. 19F NMR (471 MHz, CDCl3) δ -136.43 (s). δ LRMS (TOF, MALDI) (m/z): 

[M]+ calculated for C108H152O8F8Si8, 1952.951; found, 1954.126. 
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Synthesis of V.S5. To a flame-dried 100 mL round bottom flask equipped with a stir bar 

was added V.9 (0.180 g, 0.0922 mmol, 1.00 equiv.) followed by THF (20 mL).  To this 

solution was then added glacial acetic acid (0.530 mL, 9.22 mmol, 100.0 equiv.), followed 

by tetrabutylammonium fluoride (1M in THF, 1.84 mL, 1.84 mmol, 20.0 equiv.) dropwise.  

The resulting colorless solution was then stirred for 18 h at which point H2O (10 mL) was 

added, followed by removal of THF via rotary evaporation. The white solid was then 

filtered and washed with H2O (30 mL) and DCM (3x 10 mL) to give V.S5 (0.0901 g, 

94%).  1H NMR (500 MHz, DMSO-d6) δ 7.47 (d, J = 8.5 Hz, 8H), 7.35 (d, J = 8.4 Hz, 8H), 

6.20 (d, J = 9.9 Hz, 8H), 5.97 – 5.91 (m, 12H), 5.61 (s, 8H).19F NMR (471 MHz, DMSO) δ 

-138.55 (s).  Due to insolubility, 13C NMR data could not be obtained.  δ HRMS (TOF, 

ES+) (m/z): [M+Na]+ calculated for C60H40F8O8Na, 1063.2493; found, 1063.2474. 

 



145 
 

FF

FF

F F

FF

V.5
 

Synthesis of V.5.  To a flame-dried 100 mL round bottom flask equipped with a stir bar 

was added V.S5 (0.0901 g, 0.0866 mmol, 1.00 equiv.), followed by THF (40 mL).  To this 

suspension was added H2SnCl42 (0.40 M in THF, 0.683 mmol, 1.73 mL, 5.00 equiv), 

resulting in a faint-yellow/white suspension which was stirred for 18h at 50 oC.  After 

cooling to room temperature, aqueous (18 w/w%) ammonia (10 mL) was added followed 

by filtration using a fritted funnel.   The resulting faint blue filtrate was then collected in a 

round bottom flask which, after removal of THF via rotary evaporation, gave an off-white 

solid.  This solid was then washed with a combination of hexanes, ethyl acetate, and 

ethanol to give V.5 as a pristine white solid (15.3 mg, 16%).  1H NMR (500 MHz, 

Chloroform-d) δ 7.71 – 7.45 (m, 32H). 19F NMR (471 MHz, CDCl3) δ -143.52 (s).  Due to 

insolubility, 13C NMR data could not be obtained.  δ HRMS (TOF, ES+) (m/z): [M]+ 

calculated for C60H32F8, 904.2376; found, 904.2380. 
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Synthesis of V.10. To a flame-dried 250 mL round bottom flask equipped with a stir bar 

was added V.2 (0.334 g, 0.271 mmol, 1.00 equiv.), V.S3 (0.325 g, 0.271 mmol, 1.00 

equiv.), and SPhos-Pd-G2 (0.039 g, 0.0542 mmol, 0.200 equiv.). The flask was evacuated 

and back-filled with N2 5 times, followed by addition of 1,4-dioxane (90 mL). This solution 

was then vigorously spared with N2 for 1 h at which point the solution was placed into an 

oil bath at 80 °C. At this point, an aqueous solution of 2M K3PO4 (9.03 mL, 4.52 mmol, 

17.0 equiv) was added. The solution was allowed to stir for 12 hr, after which the solution 

was brought to room temperature and the solvent was removed under reduced pressure.  

Water (50 mL) was added, followed by extraction with DCM (3 x 50 mL).  The combined 

organic phases were washed with water (3 x 50 mL), brine (1 x 50 mL), and dried over 

sodium sulfate.  The solvent was removed via rotary evaporation, and the resulting brown 

solid was purified via column chromatography (0-40% DCM/Hexanes) using basic 

alumina as the stationary phase.  This afforded V.10 as a white solid (0.199 g, 35%).  1H 

NMR (500 MHz, Chloroform-d) δ 7.36 (d, J = 7.9 Hz, 8H), 7.28 (d, J = 7.7 Hz, 8H), 6.40 
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(d, J = 9.7 Hz, 8H), 5.99 (d, J = 9.3 Hz, 8H), 0.99 (t, J = 7.8 Hz, 36H), 0.94 (t, J = 8.0 Hz, 

36H), 0.69 (q, J = 7.9 Hz, 24H), 0.61 (q, J = 7.8 Hz, 24H).  13C NMR (126 MHz, 

Chloroform-d) δ 144.12, 139.60, 139.06, 133.18, 128.59, 127.09, 126.62, 125.66, 71.37, 

69.95, 7.08, 6.80, 6.43, 6.20.  19F NMR (471 MHz, Chloroform-d) δ -136.37 (s).  δ HRMS 

(MALDI,TOF), m/z calculated for C120H160F8O8Si8 (M)+ 2106.02, found 2106.02. 
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Synthesis of V.6. To a flame-dried 100 mL round bottom flask equipped with a stir bar 

was added V.10 (0.036 g, 0.0171 mmol, 1.00 equiv.) followed by THF (10 mL).  To this 

solution was then added glacial acetic acid (0.049 mL, 0.854 mmol, 50.0 equiv.), followed 

by tetrabutylammonium fluoride (1M in THF, 0.427 mL, 0. mmol, 25 equiv.) dropwise.  

The resulting colorless solution was then stirred for 18 h at which point H2O (10 mL) was 

added, followed by removal of THF via rotary evaporation. The white solid was then 

filtered and washed with H2O (30 mL) to afford the deprotected intermediate as a white 

solid.  Without further purification, the intermediate was placed in a flame-dried 50 mL 

round bottom flask equipped with a stir bar followed by THF (8 mL).  To the resulting 

cloudy-white solution was added 1,8-Diazabicyclo[5.4.0]undec-7-ene (0.020 mL, 0.137 

mmol, 8 equiv), followed by PBr3 (0.013 mL, 0.137 mmol, 8 equiv) dropwise, resulting in 
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an white precipitate.  After ~5 min of stirring, anhydrous SnCl2 (0.026 g, 0.137 mmol, 8 

equiv.) was added as a solid, turning the solution yellow.  After 1 h of stirring, the solution 

was quenched with 10% NaOH (5 mL) and THF was removed via rotary evaporation.  To 

the resulting yellow suspension was added 125 mL of H2O, followed by excessive 

extractions with DCM (6x50 mL).  This was followed by washes with H2O (3x50 mL) and 

brine (1x50 mL).  The organic layer was then dried over sodium sulfate and filtered, 

followed by solvent removal via rotary evaporation.  Purification via column 

chromatography (0-40% DCM/Hexanes) afforded V.6 as an off-white solid (0.005 g, 28%).   

1H NMR (500 MHz, Chloroform-d) δ 7.70 – 7.63 (m, 30H), 7.57 (d, J = 8.4 Hz, 10H).  19F 

NMR (471 MHz, Chloroform-d) δ -143.86 (s).  Due to insolubility, 13C NMR data could 

not be obtained.  δ HRMS (MALDI,TOF), m/z calculated for C72H40F8 (M)+ 1056.30, 

found 1056.30. 
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Synthesis of V.7S. To a 250 mL flame-dried flask was added V.S619 (18.56 g, 28.0 mmol, 

2 equiv), 1,4-dibromo-2,3,5,6-tetrafluorobenzene (4.27 g, 14.0 mmol, 1 equiv), and 

[1,1’bis(diphenylphosphino) ferrocenedichloropalladium (1.01 g, 1.39 mmol, 0.100 equiv).  

After the solids were added, the flask was evacuated and backfilled with nitrogen 3 times 

(it is recommended to keep evacuations to a minimum as 1-bromo-2,3,5,6-

tetrafluorobenzene is quite volatile).  The flask was then purged with N2 for 20 min.  1,4-

dioxane (100.0 mL) was then added to the flask, after which aqueous 2M K3PO4 (0.660 
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mL, 1.32 mmol, 5.5 equiv), sparged for 1 h prior to use, was added.  The solution was then 

placed in an 80 °C oil bath and allowed to stir for 12 h.  The next day, the reddish-black 

solution was allowed to come to room temperature before removing the solvent under 

reduced pressure.  The resulting reddish-black sludge was dissolved in DCM and run 

through a plug of celite with a small pad of silica on top.  This was followed by  removal of 

DCM solvent from the eluent via rotary evaporation.  The resulting yellow oil was washed 

with MeOH, causing the product to precipitate as a white solid.  Vacuum filtration, 

followed by additional MeOH rinses, afforded V.7S as a white solid (14.70 g, 88%).  1H 

NMR (500 MHz, Chloroform-d) δ 7.45 (dd, 8H), 7.32 (d, J = 8.5 Hz, 4H), 7.26 (d, 4H), 

6.09 – 5.97 (dd, 8H), 0.97 (dt, J = 11.2, 7.9 Hz, 36H), 0.65 (dq, J = 21.6, 7.9 Hz, 24H).  13C 

NMR (126 MHz, Chloroform-d) δ 146.81, 144.51, 133.13, 131.59, 131.45, 130.01, 128.30, 

127.36, 126.40, 126.03, 71.38, 71.09, 7.03, 6.45.  19F NMR (471 MHz, Chloroform-d) δ -

144.35.   
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Synthesis of V.7. To a 100 mL flame-dried flask was added Pd(OAc)2 (0.135 g, 0.602 

mmol, 0.05 equiv), 2-dicyclohexylphosphino-2’6’dimethoxybiphenyl (0.618 g, 1.50 mmol, 

0.125 equiv), bis(pinacolato)diboron (15.30 g, 60.2 mmol, 5 equiv), V.7S (14.45 g, 12.0 

mmol, 1 equiv), and K3PO4 (5.91 g, 60.2 mmol, 5 equiv).  After the solids were added, the 

flask was evacuated and backfilled with nitrogen 5 times.  The flask was then purged with 
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N2 for 20 min.  1,4-dioxane (100.0 mL) was then added to the flask and the solution was 

sparged for 20 min. before being placed in an 80 °C oil bath overnight.  The next day, the 

black solution was brought to room temperature and the solvent was removed under 

reduced pressure.  The resulting black sludge was dissolved in DCM and run through a 

plug of celite with a small pad of silica on top.  After removing the DCM solvent from the 

eluent via rotary evaporation, the resulting dark-orange oil was washed with methanol, 

causing the product to precipitate as a white solid.  Vacuum filtration afforded V.7 as a 

white solid (15.54 g, 93%). 1H NMR (500 MHz, Chloroform-d) δ 7.74 (d, J = 8.0 Hz, 4H), 

7.45 (d, J = 8.4 Hz, 4H), 7.40 (d, J = 8.2 Hz, 8H), 6.05 (d, J = 10.1 Hz, 4H), 5.99 (d, J = 

10.1 Hz, 4H), 1.33 (s, 24H), 0.94 (dt, J = 25.1, 7.9 Hz, 36H), 0.67 (q, J = 7.9 Hz, 12H), 

0.57 (q, J = 7.9 Hz, 12H).  13C NMR (126 MHz, Chloroform-d) δ 149.02, 147.00, 145.00, 

143.15, 134.76, 131.58, 131.41, 129.95, 128.18, 126.25, 126.02, 125.93, 125.27, 83.76, 

71.45, 24.88, 7.06, 7.04, 6.48, 6.44.  19F NMR (471 MHz, Chloroform-d) δ -144.37.  δ 

HRMS (TOF, ES+) (m/z): [M]+ calculated for C78H108B2O8F4NaSi4, 1405.7141; found, 

1405.7163. 

 

OTESTESO

OTES

OTES

TESO

TESO

F F

F

F

F

F

F

F

F

F

F

F

V.8

 

Synthesis of V.8. To a flame-dried 2000 mL round bottom flask equipped with a stir bar 

was added V.S7 (14.44 g, 10.40 mmol, 1.00 equiv.), V.3 (10.80 g, 10.40 mmol, 1.00 
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equiv.), and SPhos-Pd-G2 (1.50 g, 2.08 mmol, 0.200 equiv.). The flask was evacuated and 

back-filled with N2 5 times, followed by 30 min. of purging with N2. Next, 1,4-dioxane 

(1000 mL) was added to the flask via cannula to afford a 10 mM solution. This solution 

was then vigorously spared with N2 for 2 h at which point the solution was placed into an 

oil bath at 80 °C. At this point, an aqueous solution of 2M K3PO4 (103.9 mL, 207.8 mmol, 

20.0 equiv) was added. The solution was allowed to stir for 12 hr, after which the solution 

was brought to room temperature and the solvent was removed under reduced pressure.  

The resulting brown oil was dissolved in DCM and run through a plug of celite with a 

small pad of silica on top.  The eluent was then dried via rotary evaporation to afford a 

sticky white solid.  Purification via column chromatography (0-40% DCM/Hexanes) 

afforded V.8 as a white solid (4.46 g, 22%) (alternatively, the crude material can be washed 

with hexanes to precipitate the product at a loss of yield).  1H NMR (500 MHz, 

Chloroform-d) δ 7.53 (d, J = 8.2 Hz, 12H), 7.45 (d, J = 8.0 Hz, 12H), 6.10 (s, 12H), 0.99 (t, 

J = 7.9 Hz, 54H), 0.68 (q, J = 7.9 Hz, 36H).  13C NMR (126 MHz, Chloroform-d) δ 146.97, 

145.21, 143.05, 131.53, 130.02, 126.42, 126.09, 71.48, 7.05, 6.49.  19F NMR (471 MHz, 

Chloroform-d) δ -144.38.  MALDI TOF, m/z calculated for C108H126FF12O6Si6 (M)+ 

1915.80, found 1915.96.  
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Synthesis of V.1. To a flame-dried 50 mL round bottom flask equipped with a stir bar was 

added V.8 (0.174 g, 0.091 mmol, 1.00 equiv.) followed by THF (10 mL). To this solution 

was then added tetrabutylammonium fluoride (1M in THF, 2.27 mL, 2.27 mmol, 25.0 

equiv.) dropwise. This solution was then stirred for 2 h at which point H2O (10 mL) was 

added, followed by removal of THF via rotary evaporation.  The resulting suspension was 

vacuum filtered, washed with water and allowed to fully dry.  Without further purification,  

the crude white solid was placed in a flame-dried 250 mL round bottom flask equipped 

with a stir bar followed by THF (100 mL).  The flask was then placed in an ice bath (0 °C) 

and allowed to cool for 30 min. After 30 min, 1,8-Diazabicyclo[5.4.0]undec-7-ene (0.027 

mL, 0.292 mmol, 8 equiv) was added, followed by PBr3 (0.044 mL, 0.292 mmol, 8 equiv) 

dropwise, resulting in a white precipitate.  After ~5 min of stirring, anhydrous SnCl2 (0.055 

g, 0.292 mmol, 8 equiv.) was added as a solid, turning the solution yellow.  After 1 h of 

stirring, a majority of the THF solvent was removed via rotary evaporation and the 

concentrated reaction mixture was poured directly onto a basic alumina plug.  Flushing the 

plug with DCM caused only the product to elute.  The eluent was dried under reduced 

pressure to afford V.1 as an off-white solid (1.06 g, 40%).  1H NMR (500 MHz, 

Chloroform-d) δ 7.69 (d, J = 6.2 Hz, 24H), 7.59 (d, J = 8.2 Hz, 12H).  19F NMR (471 MHz, 

Chloroform-d) δ -143.82 (s). Due to insolubility, 13C NMR data could not be obtained.  

MALDI TOF, m/z calculated for C72H36F12 (M)+ 1128.2625, found 1128.0620. 
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Synthesis of V.S2. To a 100 mL flame-dried flask was added V.S4 (0.296 g, 0.240 mmol, 

1 equiv), 1-bromo-4-chlorobenzene  (0.276 g, 1.44 mmol, 6 equiv), and [1, 

1’bis(diphenylphosphino)ferrocenedichloropalladium (0.018 g, 0.024 mmol, 0.100 equiv).  

After the solids were added, the flask was evacuated and backfilled with nitrogen 5 times.  

1,4-dioxane (10.0 mL) was then added to the flask and the solution was sparged with N2 for 

10 min. before aqueous 2M K3PO4 (0.660 mL, 1.32 mmol, 5.5 equiv), sparged with N2 for 

1 h prior to use, was added.  The solution was then placed in an 80 °C oil bath and allowed 

to stir for 12 h.  The next day, the reddish-black solution was allowed to come to room 

temperature before removing the solvent under reduced pressure.  Next, H2O (50 mL) was 

added, followed by extraction with hexanes (3 x 50 mL).   The combined organic phases 

were then washed with water (3 x 50 mL), brine (1 x 75 mL), and dried over sodium 

sulfate.  After removal of solvent via rotary evaporation, the resulting yellow oil was 

purified via column chromatography (2-5% EtOAc/Hexanes) to afford a V.S4 as a clean, 

colorless oil that was pure via NMR.  If desired, the oil can be washed with methanol to 

access the compound as a white solid (0.276 g, 96%).  1H NMR (500 MHz, Chloroform-d) 

δ 7.40 – 7.35 (m, 8H), 7.31 (dd, J = 15.0, 8.0 Hz, 8H), 6.37 (d, J = 9.7 Hz, 4H), 6.01 (d, J = 

9.7 Hz, 4H), 0.98 (t, J = 7.7 Hz, 19H), 0.91 (t, J = 8.9, 7.1 Hz, 19H), 0.67 (q, J = 7.9 Hz, 
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13H), 0.59 (q, J = 7.9 Hz, 13H).  13C NMR (126 MHz, Chloroform-d) δ 144.74, 139.15, 

138.72, 133.27, 133.02, 128.81, 128.77, 128.17, 126.69, 125.91, 71.21, 69.84, 7.06, 6.80, 

6.44, 6.21.  19F NMR (471 MHz, Chloroform-d) δ -136.83.  δ HRMS (TOF, ES+) (m/z): 

[M+Na]+ calculated for C66H84O4NaF4Si4Cl2, 1221.4658; found, 1221.4629.     
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Synthesis of V.2. To a 100 mL flame-dried flask was added Pd(OAc)2 (0.003 g, 0.029 

mmol, 0.05 equiv), 2-dicyclohexylphosphino-2’6’dimethoxybiphenyl (0.015 g, 0.036 

mmol, 0.125 equiv), bis(pinacolato)diboron (0.584 g, 2.30 mmol, 8 equiv), V.S4 (0.353 g, 

0.290 mmol, 1 equiv), and K3PO4 (0.228 g, 2.30 mmol, 8 equiv).  After the solids were 

added, the flask was evacuated and backfilled with nitrogen 5 times.  1,4-dioxane (8.0 mL) 

was then added to the flask and the solution was sparged with N2 for 10 minutes before 

being placed in an 80 °C oil bath overnight.  The next day, the black solution was brought 

to room temperature and the solvent was removed under reduced pressure.  To the resulting 

black solid was added H2O (50 mL), followed by extraction with DCM (3 x 50 mL).  The 

combined organic phases were then washed with water (3 x 50 mL), brine (1 x 100 mL), 

and then dried over sodium sulfate.  After removing the solvent via rotary evaporation, the 
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resulting brown solid was washed with methanol, which after filtration afforded V.2 as a 

white solid (0.374 g, 93%).  1H NMR (500 MHz, Chloroform-d) δ 7.82 (d, J = 7.4 Hz, 4H), 

7.52 (d, J = 7.4 Hz, 4H), 7.45 (d, J = 7.6 Hz, 4H), 7.33 (d, J = 7.9 Hz, 4H), 6.36 (d, J = 9.8 

Hz, 4H), 6.01 (d, 8H), 1.35 (s, 24H), 0.98 (t, J = 7.9 Hz, 18H), 0.90 (t, J = 7.6 Hz, 18H), 

0.67 (q, J = 7.9 Hz, 12H), 0.59 (q, J = 7.9 Hz, 12H).  13C NMR (126 MHz, Chloroform-d) δ 

144.66, 143.42, 139.71, 135.16, 133.07, 128.70, 126.93, 126.29, 125.79, 83.77, 71.25, 

69.85, 24.88, 7.07, 6.80, 6.44, 6.19.  19F NMR (471 MHz, Chloroform-d) δ -136.83 (s).  δ 

HRMS (TOF, ES+) (m/z): [M+Na]+ calculated for C78H108O8NaB2F4Si4, 1405.7141; 

found, 1405.7137.  

 

Synthesis of V.S3. To a 100 mL flame-dried flask was added diboronate19 (0.224 g, 0.300 

mmol, 1 equiv) and [1, 1’bis(diphenylphosphino)ferrocenedichloropalladium (0.022, 0.030 

mmol, 0.100 equiv).  After the solids were added, the flask was evacuated and backfilled 

with nitrogen 5 times.  1,4-dioxane (8.0 mL) was then added to the flask, followed by 1-

bromo-2,3,5,6-tetrafluorobenzene (0.412 g, 1.80 mmol, 6 equiv), and the solution was 

sparged with N2 for 10 minutes before 2M K3PO4 (0.825 mL, 1.65 mmol, 5.5 equiv), 

sparged for 1 h prior to use, was added.  The solution was then placed in an 80 °C oil bath 

and allowed to stir overnight.  The next day, the black solution was allowed to come to 

room temperature before removing the solvent under reduced pressure.  Next, H2O (50 mL) 
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was added, followed by extraction with hexanes (3 x 50 mL).   The combined organic 

phases were then washed with water (3 x 50 mL), brine (1 x 75 mL), and dried over sodium 

sulfate.  After removing the solvent via rotary evaporation, the crude, yellow-orange oil 

was purified via column chromatography (2-5% EtOAc/Hexanes) and V.S3 was isolated as 

a pale-yellow oil (0.175 g, 74%).   1H NMR (500 MHz, Chloroform-d) δ 7.47 (d, J = 7.7 

Hz, 2H), 7.37 (d, J = 7.9 Hz, 2H), 7.04 (p, J = 8.4 Hz, 2H), 6.07 (s, 4H), 0.96 (t, J = 7.9 Hz, 

18H), 0.64 (q, J = 7.8 Hz, 12H).  13C NMR (126 MHz, Chloroform-d) δ 146.95, 131.58, 

129.94, 126.12, 71.38, 7.03, 6.46.  19F NMR (471 MHz, Chloroform-d) δ -139.24 (m, J = 

22.4, 11.3 Hz), -143.81 (m, J = 21.1, 12.7, 7.4 Hz).  δ HRMS (TOF, ES+) (m/z): [M+Na]+ 

calculated for C42H44O2NaF8Si2, 811.2650; found, 811.2651.   

 

Synthesis of V.3. To a 250 mL flame-dried flask was added 20 mL THF and distilled 

diisopropylamine (0.093 mL, 0.666 mmol, 3 equiv).  This solution was placed in a 0 °C ice 

bath and allowed to stir for 20 minutes before n-butyllithium (2.2 M in hexanes, 0.252 mL, 

0.555 mmol, 2.5 equiv) was added dropwise.  The solution was allowed to stir for 15 

minutes before being transferred to a -78 °C dry ice bath, after which the solution was 

allowed to cool for 45 minutes.  Next, V.S3 (0.175 g, 0.222 mmol, 1 equiv), dissolved in 

minimal THF (approx. 2 mL), was added dropwise and the solution was allowed to stir for 
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10 minutes before I2 (0.279 g, 1.11 mmol, 5 equiv.), dissolved in minimal THF (approx. 2 

mL), was added quickly, turning the solution dark orange-brown.  The solution was 

allowed to stir for 2 h before being quenched with concentrated Na2S3O3 (approx. 100 mL), 

resulting in an off-white solution.  The solution was brought under reduced pressure to 

remove THF and 50 mL of water was added, followed by a workup in EtOAc (3 x 50 mL).  

The combined organic phases were washed with water (3 x 50 mL), brine (1 x 50 mL), and 

dried over sodium sulfate.  After removing the solvent via rotary evaporation, the crude 

yellow-brown oil was purified via column chromatography (10-25% DCM/Hexanes), 

resulting in a waxy clear oil.  Washing with methanol then afforded V.3 as a white 

powdery solid, which was collected via vacuum filtration (0.190 g, 82%).  1H NMR (500 

MHz, Chloroform-d) δ 7.47 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 6.07 (s, 4H), 0.95 

(t, J = 7.9 Hz, 18H), 0.64 (q, J = 7.9 Hz, 12H).  13C NMR (126 MHz, Chloroform-d) δ 

147.16, 131.57, 129.87, 126.18, 71.38, 7.03, 6.46.  19F NMR (471 MHz, Chloroform-d) δ -

120.77 (m), -141.47 (m).  δ HRMS (TOF, ES+) (m/z): [M]+ calculated for 

C44H41O2F8Si2I2, 1063.0607; found, 1063.0608.    

 

5.4.4. Binding Affinity 

Binding constants were determined via fluorescence quenching experiments as 

reported by the Yamago53 groups.  In a typical experiment, a solution of C60 in toluene 

(1.01 x 10-5 mol L-1) was added to a solution of fluorinated nanohoop V.5 in toluene (5.00 

x 10-7 mol L-1).  The change in fluorescence emission intensity at 460 nm was then 

monitored for each addition.  
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Figure 5.12. Change in emission intensity fluorinated nanohoop V.5 with increasing 

concentration of C60.  The initial concentration of V.5 was 5.00 X 10-7 mol L-1, while the 

concentration of C60 was varied from 0.00 – 2.88 x 10-7 mol L-1. 

 

The Ka was then determined by fitting the data to following equation (1): 

                    F/Fo=(1+ kf/ksf *Ka*[C60])/(1+Ka*[C60])    (1) 

Where F, Fo, kf, ks, Ka, [C60] is fluorescence intensity, fluorescence of fluorinated nanohoop 

V.5 prior to the addition of C60, a proportionality constant of the complex, a proportionality 

constant of the host, the binding constant of C60, and the concentration of C60, respectively. 

The data from Figure 5.10 have been fit to equation 1 and are shown in Figure 5.11. 
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Figure 5.13. Correlation of [C60] on the fluorescence intensity of fluorinated nanohoop V.5 

in toluene.  The change in fluorescence at 460 nm (obtained from Figure 5.10) was fit to 

equation 1 to obtain the Ka. 

 

5.4.5. Crystallographic Details 

Crystallographic Data for V.1: C77H41Cl15F12, M = 1725.85, 0.13 x 0.02 x 0.02 mm, T = 

173(2) K, Trigonal, space group P-3, a = 19.8149(6) Å, b = 19.8149(6) Å, c = 13.6041(6) 

Å, α = 90°, β = 90°, γ = 120°, V = 4625.8(3) Å3, Z = 2, Dc = 1.239 Mg/m3, μ(Cu) = 4.606 

mm-1, F(000) =1732,2θmax = 133.18°, 33778 reflections, 5443 independent reflections 

[Rint = 0.1426], R1 = 0.0829,wR2 = 0.2261 and GOF = 1.033 for 5443 reflections (313 

parameters) with I>2(I), R1 = 0.1466, wR2 = 0.2475 and GOF = 1.033 for all reflections, 

max/min residual electron density +0.683/-0.594 eÅ-3. 
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Crystallographic Data for V.5: C84H80F8O6, C60H32F8 ·6(OC4H8), M = 1337.48, 0.12 x 0.08 

x 0.05 mm, T = 173(2) K, Monolinic, space group P21/c, a = 13.4645(7) Å, b = 19.5258(12) 

Å, c = 26.8045(16) Å, β = 94.711(4)°, V = 7023.2(7) Å3, Z = 4, Dc = 1.265 Mg/m3, μ(Cu)= 

0.764 mm-1, F(000) = 2816, 2θmax = 98.79°, 26273 reflections, 7163 independent 

reflections [Rint = 0.0655], R1 = 0.0769, wR2 = 0.2115 and GOF = 1.021 for 7163 

reflections (833 parameters) with I>2σ(I), R1 = 0.1071, wR2 = 0.2453 and GOF = 1.022 

for all reflections, max/min residual electron density +0.559/-0.506 eÅ-3.  

 

Crystallographic Data for V.6: C91H84Cl8F8, C72H40F8·4(CH2Cl2)·3(C5H12), M = 1613.18, 

0.15 x 0.08 x 0.03 mm, T = 173(2) K, Triclinic, space group  P-1, a = 13.3910(4) Å, b = 

20.0066(6) Å, c = 20.2292(6) Å, α = 119.204(2) °, β = 97.369(2) °, γ = 102.306(6) °, V = 

4447.3(2) Å3, Z = 2, Dc = 1.205 Mg/m3, μ(Cu) = 2.795 mm-1, F(000) = 1676, 2θmax = 

133.39°, 61640 reflections, 15617 independent reflections [Rint = 0.0524],  R1 = 0.0499, 

wR2 = 0.1240 and GOF = 1.045 for 15617 reflections (775 parameters) with I>2s(I), R1 = 

0.0691, wR2 = 0.1313 and GOF = 1.045 for all reflections, max/min residual electron 

density +0.434/-0.404  eÅ-3. 

 

Crystallographic Data for V.5@C60: C150H88F8O4, C120H32F8·4(OC4H10)·2(C7H8), M = 

2106.20, 0.12 x 0.06 x 0.02 mm, T = 173(2) K, Monolinic, space group C2/c, a = 

25.1372(10) Å, b = 20.9252(9) Å, c = 19.7816(8) Å, β = 108.436(2)°, V = 9871.1(7) Å3, Z 

= 4, Dc = 1.417 Mg/m3, μ(Cu) = 0.759 mm-1, F(000) = 4368, 2θmax = 133.13°, 39936 

reflections, 8726 independent reflections [Rint = 0.0514], R1 = 0.0964, wR2 = 0.2870 and 

GOF = 1.030 for 8726 reflections (577 parameters) with I>2σ(I), R1 = 0.1143, wR2 = 
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0.3028 and GOF = 1.030 for all reflections, max/min residual electron density +1.271/-

0.391 eÅ-3.  

 

Figure 5.14. C—H---F interactions (dotted lines) observed in the crystal packing of 

V.5@C60. 

 

CONCLUDING REMARKS 

 In summary, the findings in this dissertation illustrate how heteroatoms such as 

nitrogen can be used a post-synthetic functional handle for nanohoop macrocycles.  For 

example, through a combination of diameter changes and extent of N-alkylation, the 

electronic structure of can be fine-tuned.  Additionally, by incorporating multiple nitrogen 

heteroatoms in the backbone of [8]CPP, initial investigations into nanohoop coordination 

complexes have been performed which highlight their potential as redox-active ligands or 

cylindrical building blocks metal organic frameworks.  Since this initial report, the ability 

to use nanohoops as macrocyclic ligands has now been demonstrated via active metal 

template reactions. This result has lead to a variety of investigations into how these unique 

macrocycles can be employed as building blocks for new mechanically interlocked 

architectures.  Ultimately, these reports provide a foundation for exploring how nanohoop 
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macrocycles can be combined with the principles of coordination chemistry to access a 

range of new molecular architectures with unusual properties. 
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