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DISSERTATION ABSTRACT 
 
Regina Kathryn Ciszewski 
 
Doctor of Philosophy 
 
Department of Chemistry and Biochemistry 
 
September 2019 
 
Title: Vibrational Sum Frequency Spectroscopy Investigations of Mixed Surfactant 

Systems at the Oil – Water Interface 
 
 

The boundary between two immiscible liquids is known to play host to 

numerous chemical reactions and interactions despite making up a relatively small 

fraction of the overall system as a whole.  Surfactants, the primary classification of 

the compounds studied herein, are known to preferentially order at an oil-water 

interface and lower the surface tension between the two fluids.  A thorough 

understanding of surfactant behavior is necessary in order to make the most efficient 

use of their properties in applications as wide reaching as enhanced drug delivery, 

waste water treatment, oil spill recovery and oil remediation to name a few.   

 In this dissertation, vibrational sum frequency spectroscopy, a surface 

selective vibrational non-linear optical technique, is used to measure selected 

surfactant vibrational modes in order to obtain a fundamental understanding of 

surfactant and co-surfactant behavior and interaction at the often difficult to probe 

buried oil-water interface.  Additional surface tensiometry measurements help to shed 

light on these complex interfacial behaviors and work to aid in the subsequent VSFS 

analysis.   
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 Interfacial studies specifically designed to identify and characterize the 

cationic head group behavior of hexadecyltrimethylammonium bromide (CTAB) are 

presented first.  The identification of the head group modes was aided through the use 

of selectively deuterated CTAB surfactants.  The behavior of the CTAB head group 

was found to be concentration dependent and can act in future studies as a valuable 

proxy for determining the relative interfacial environment experienced by the 

surfactant head group.  The knowledge acquired from the head groups of CTAB 

coupled with the alkyl tail behavior now serve as the baseline system and deviations 

measured due to the presence of an additional surfactant introduced to the system can 

be properly evaluated.   

CTAB mixed with 1-hexanol serves as our model mixed cationic/nonionic 

system and displays unusual surface synergy.  Hexanol is shown to be surface active 

but disordered at the interface when alone in solution.  When CTAB is introduced to 

the system a reorientation of both surfactants is observed even as hexanol helps to 

promote additional co-adsorption of CTAB to the interface.   

This dissertation includes both published and unpublished co-authored 

materials. 
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CHAPTER I 

INTRODUCTION 

 

Surfactants are organic compounds known to preferentially order at an interface 

and lower the surface tension between two immiscible fluids, the most common being an 

oil-water interface.1-4  The name surfactant itself is from a blend of “Surface Active 

Agent”.  Their unique structure is comprised of a hydrophobic alkyl chain tail, which 

preferentially resides within the oil phase, while its hydrophilic head group prefers to 

remain solvated within the aqueous phase.  Surfactants are classified according to the 

formal charge present on their head group, and can be labeled as: cationic (positively 

charged), anionic (negatively charged), nonionic (uncharged), and amphoteric, or 

zwitterionic, (contains both a positive and negative charge under standard pH conditions).  

The most common cationic surfactants, widely used in industrial purposes, are generally 

comprised of quaternary ammonium groups, while anionic surfactant head groups are 

those with carboxylate, sulfate, sulfonate, or phosphate groups attached.  The nonionic 

surfactants are primarily derived from alcohols, alkyl phenols, or ethylene oxide/ 

propylene oxide compounds.   

Surfactants that aggregate at liquid-liquid interfaces, specifically the oil-water 

interface, have frequent and varied uses in a host of fields.  Most commonly surfactants 

are used as detergents in household and industrial cleaning solvents,5-6 in groundwater 

and wastewater treatment facilities,7-8 and to stabilize oil-water emulsions for use in 

cosmetics,9-11 food,12-13 oil recovery,14-15 oil remediation16-17 and pharmaceutical drug 

delivery.18-20  The disparate use of surfactants in a wide range of fields is possible 
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because of both the molecular diversity in surfactant composition with respect to both the 

head group charge and alkyl chain tail structure, but also because surfactant mixtures are 

frequently employed.21   

Mixed surfactant systems are of great interest due to their enhanced, or 

synergistic, behavior observed and measured at the oil-water interface.22-24  When used in 

conjunction the overall quantity of surfactant needed to perform some task is significantly 

less than if either surfactant was used individually for the same purpose.25  Such 

enhancement is desirable for a number of economical, toxicological and environmental 

reasons.  On a molecular level, mixed surfactants work together to lower the critical 

micelle concentration and surface tension of a solution to a greater degree than either 

surfactant could accomplish on its own.26  Mixtures are widely varied, with the most 

common being anionic/anionic, cationic/cationic, nonionic/nonionic, cationic/nonionic, 

anionic/nonionic, and anionic/cationic.  In general synergy between surfactants is seen to 

increase as the degree of charge difference increases.27  Meaning synergy between 

cationic/cationic is less than cationic/nonionic, which in turn is even less than 

cationic/anionic.  However even within a single category such as cationic/nonionic the 

synergy between co-surfactants is often unpredictable, thus requiring further study of 

mixed surfactant behavior on a molecular level at the oil-water interface where these 

compounds reside.28   

Cetyltrimethylammonium bromide (CTAB) is a commonly used cationic 

surfactant found in many personal care products, and the primary surfactant studied 

within this dissertation.  Ultimately, a fundamental understanding of CTAB on its own at 

the oil-water interface is necessary, before more complex mixed systems can be explored.  
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Though CTAB has been investigated before, both its behavior in the bulk,29-33 and at the 

air-water, solid-water, and oil-water interface,34-39 most of these studies have chosen to 

focus on the behavior of the surfactant tail and the surrounding coordinated water.  A 

study focused solely on head group behavior at the oil-water interface is much needed.  

This is a major shortcoming in the literature, as hydrophilic head group interactions, 

especially between co-surfactants, remain largely unexplored and hold a wealth of 

information about co-surfactant interactions at the oil-water interface.   

In order to probe surfactant molecular interactions at the buried oil-water interface 

Vibrational Sum Frequency Spectroscopy (VSFS) is used.  VSFS is a powerful surface 

specific technique uniquely designed to provide a vibrational spectrum of molecules that 

are oriented at an interface.40-42  Encapsulated within the vibrational spectrum produced is 

additional information about surfactant orientation, aqueous bonding environment, and 

interactions between chemical species.  Due to the wealth of information provided within 

a single spectrum it is non-trivial to decouple what molecular level phenomena has 

occurred to induce a spectral change.  Thus in order to aid in our analysis, pendent drop 

surface tensiometry measurements are analyzed in conjunction with VSFS spectra to help 

piece together a complete molecular picture of individual and mixed surfactant behavior 

at the oil-water interface.43   

Chapter II provides further in-depth detail on the underlying theory of VSFS and 

surface tensiometry, which will serve as a foundation for the subsequent spectral analysis 

presented herein.  The bare, or neat, oil-water interface is examined using both 

techniques.  A through understanding of the most basic system provides a framework 
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with which to examine perturbations in the presence of more complex surfactant and 

mixed surfactant systems.   

The studies presented in this dissertation make use of VSFS along with interfacial 

tension measurements to study CTAB, both on its own and in the presence of a nonionic 

surfactant at the carbon tetrachloride-aqueous (CCl4-H2O and CCl4-D2O) interface.  The 

nonionic surfactant mixed with CTAB is 1-hexanol (C6OH, hexanol).  Cationic/nonionic 

surfactant mixtures are most commonly employed in detergency.44-45  The inclusion of 

nonionic surfactants is responsible for reducing several undesirable interactions of the 

cationic surfactant with the surrounding environment.  For example, cationic surfactants 

are naturally attracted to many negatively charged natural surfaces, or are known to 

precipitate out of solution when in the presence of polyvalent cations.  These negative 

effects are largely mitigated in the presence of a nonionic surfactant.  Similarly nonionic 

surfactants are often mixed with cationic surfactants due to their antibacterial 

properties.46  Although tailoring the proper mixture ratios has led to more finely tuned 

macroscopic properties, a molecular level understanding of the interactions between co-

surfactants is still sorely lacking.   

Chapter III details the adsorption and orientation of CTAB at the oil-water 

interface.  VSFS and pendant drop surface tensiometry are employed to help characterize 

the behavior of CTAB at the interface.  Through a series of carefully selected deuteration 

studies, the head group stretching modes of CTAB are identified.  A series of 

concentration studies reveal changes to both the CTAB alkyl chain tail orientation as well 

as changes to the head group orientation.  The details of this paper have been submitted 

to the Journal of Physical Chemistry B.  Undergraduate student Benjamin Muller aided in 
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reproducing some of the pendant drop data and Bri Gordon assisted with data fitting and 

editing of the subsequent paper but all VSFS data acquisition, analysis and interpretation 

were conducted independently.   

Chapter IV provides a more in-depth look at CTAB mixed with 1-hexanol at the 

oil-water interface.  Hexanol is known in the literature to be surface active on its own, but 

its alkyl chains lack a structured order at the interface.  The alcohol on its own is 

therefore invisible to both VSFS and surface tensiometry techniques.  However in the 

presence of CTAB, the alkyl tails of hexanol are induced to order as they intercalate 

between the CTAB head groups.  As hexanol acts as a polar spacer between CTAB head 

groups it is able to help reduce the repulsive forces felt between closely packed charged 

CTAB head groups.  Undergraduate researcher Benjamin Muller aided in taking a portion 

of the surface tensiometry measurements shown and Bri Gordon helped with spectral fits 

and editing of the subsequent paper.  This work was included in the paper submitted to 

the Journal of Physical Chemistry B.   

Chapter V concludes with an overview of the experimental results, along with a 

discussion of possible future work.  The molecular level picture of CTAB alone and in 

the presence of nonionic surfactants is evaluated.  The fundamental results obtained are 

designed to serve as building blocks towards studying more complex and 

environmentally relevant systems. 
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CHAPTER II 

VIBRATIONAL SUM FREQUENCY SPECTROSCOPY THEORY AND OTHER 

EXPERIMENTAL CONSIDERATIONS 

 

 This chapter details the underlying theory of vibrational sum frequency 

spectroscopy (VSFS) from the standpoint of light interacting with matter.  The resultant 

vibrational spectrum contains a wealth of information, so a discussion of normalization 

and fitting routines is discussed.  Next the laser configuration and other experiential 

considerations necessary to obtain the VSFS spectra showcased within this dissertation 

are provided.  A brief discussion of the neat carbon tetrachloride – water (CCl4 – H2O) 

interface is included.  Spectral changes to the neat interface can provide further clues and 

context for how surfactants and co-surfactants are adsorbing to and orientating at the 

interface.  Finally pendant drop surface tensiometry is used as a complementary 

technique to help analyze VSFS spectra, its underlying theory and experimental 

considerations are provided here.   

 

Vibrational Sum Frequency Spectroscopy Theory 

 

 The fundamental theory of VSFS is based on a second order non-linear optical 

process in which two photons of frequency ω1,VIS and ω2,IR generate a third photon with 

the sum frequency ω3,SF = ω1,vis+ ω2,IR.47   

 When light interacts with a material system, the valence electrons of the material 

are affected by the light’s electric field (E).  The result is an induced dipole moment 
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within the material that oscillates at the same frequency as the light.  Collectively, the 

induced dipole moment per unit volume of a bulk material is known as polarization (P) 

and is expressed as:  

𝐏 = 𝜀!𝜒 ! 𝑬                                                              (2.1) 

where P and E are vector quantities, χ(1) is a second rank tensor defined as linear 

susceptibility, and ε0 is the constant permittivity of free space and gives P in SI units.  In 

linear spectroscopies, such as IR and Raman, this linear approximation describes 

properties such as reflection and refraction.   

 As the E field is increased, due to pulsed laser beams, the linear approximation is 

no longer valid, and higher order terms must now be considered.  In this case, the induced 

polarization P is expressed as a power series of the electric field 

𝐏 = ε! χ ! 𝐄+ χ ! 𝐄! + χ ! 𝐄! +⋯                           (2.2) 

= P(1) + P(2) + P(3) + … 

where χ(2) and χ(3) are the second- and third-order susceptibilities.  The second term 

involving χ(2) is responsible for the second order non-linear optical processes of VSFS.  

When two electric fields are incident upon a media the surface E field is expressed as the 

sum of two incident fields of frequencies ω1 and ω2.  Focusing on the second order term 

of the induced polarization, P(2) 

𝐏(!) = ε!χ ! (𝐄! cosω! t+ 𝐄! cosω! t)!                                 (2.3) 

An expansion of the squared term gives rise to a DC field (no frequency dependence), 

second harmonic generation when ω1=ω2, difference frequency generation (ω1 - ω2), and 

sum frequency generation (ω1+ω2).   
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This dissertation focuses on the sum frequency generation component where the 

incident beams are a fixed visible (ωvis) and a tunable infrared beam (ωIR) depicted in 

Figure 2.1.  The incoming visible and infrared beams are overlapped spatially and 

temporally at an interface thus generating a third sum frequency beam. 

 

 
Figure 2.1.  Schematic of the VSFS process at a C∞ interface, in which the laser beams 
propagate in the xz-plane (shown in blue), and the interface lies in the xy-plane.  Incident 
and resultant laser beams are depicted in the ssp polarization.   
 

VSFS is a Surface Specific Technique 
 

 
At liquid interfaces the z-axis is shown to have C∞ symmetry, and it is therefore 

true that x=-x, y=-y, but z≠-z.  Using this coordinate system, we can express the second-

order nonlinear susceptibility from Equation 2.3 as 𝜒!,!,!
(!) .  Due to the symmetry of the 

interface it is true that 𝜒!,!,!
(!) ≠ 𝜒!!,!!,!!

(!)  or −𝜒!,!,!
(!) .  This is different than in bulk media 

where all directions are equivalent and it is therefore necessary that  

𝜒!,!,!
(!) = 𝜒!!,!!,!!

(!) = −𝜒!,!,!
!                                             (2.4) 
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which is only the case when 𝜒!,!,!
(!) =0.  Therefore sum frequency is an inherently surface 

specific technique.  As a third rank tensor element 𝜒!,!,!
(!)  has 33 elements, however by 

applying the operations that compose the C∞ point group to each element 𝜒!,!,!
(!) = 𝜒!!,!!,!

(!)  

is reduced from 27 elements to 7 non-vanishing elements, where only 4 of these elements 

are unique because the x and y axes are seen to be interchangeable.  These symmetry 

elements along with their corresponding polarization combinations capable of probing 

them are given in Table 2.1.  The polarization schemes apply to the incident and outgoing 

beams and are listed in order of decreasing energy: SF, visible, IR.  p-polarized light 

oscillates within the xz-plane, or the plane of incidence, while s-polarized light oscillates 

perpendicular to the xz-plane.  

  

Table 2.1. List of the non-zero elements of 𝜒!,!,!
(!)  for a surface with C∞ symmetry and 

their corresponding polarization schemes that probe them. 
Non-Zero Elements of 𝜒!,!,!

(!)  Polarization Scheme 

𝜒!!"
(!) = 𝜒!!"

(!)  
 

ssp 
 

𝜒!"!
(!) = 𝜒!"!

(!)  
 

sps 
 

𝜒!""
(!) = 𝜒!""

(!)  
 

pss 
 

𝜒!!!
(!)  ppp 

 

This dissertation will focus on ssp and ppp polarization schemes.  ssp is capable 

of probing vibrational modes which have a component of their dipole moment that lies 

perpendicular to the oil-water interface.  sps and pss probe vibrational modes parallel to 

the interface, and ppp measures dipoles both parallel and perpendicular to the interface.   
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Implementation of Vibrational Sum Frequency Spectroscopy 

 

 In order to obtain a VSFS spectrum a fixed visible and a tunable infrared beam 

are overlapped in space and time at an interface.  The resulting intensity of the sum 

frequency beam is given by 

I ω!" ∝ χ ! !
I ω!"# I ω!"                                              (2.5) 

Delving further into the second-order nonlinear susceptibility term it can be expanded 

and rewritten as 

χ(!) = χ!"
(!) + χ!!

(!)

!

                                                     (2.6) 

where χ!"
(!) expresses the non-resonant nature of the interface.  It has been shown 

previously that the non-resonant component at the oil-water interface is negligible,48-51 

however for other systems such as the air-liquid or solid-liquid interface the non-resonant 

component is of a significant magnitude, largely invariant with frequency, and cannot be 

ignored.52-54  Therefore the resonant component of χ(!) is what we focus on here, which is 

known to be dependent upon both the number of molecules, N, present at the interface as 

well as their average molecular hyperpolarizabilities β!   

𝜒!!
(!) =

𝑁
𝜀!

𝛽!                                                            (2.7) 

In other words VSFS not only requires that molecules be present at the interface, but that 

their dipoles contain an overall net orientation.  It is the β components that change as a 

function of the incident IR frequency, resulting in a change to χ(!) and the overall SF 

signal.  The equation for β is calculated from 
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𝛽! =
1
2ħ

𝑀!"𝐴!
𝜔! − 𝜔!" − 𝑖Γ!

                                                  (2.8) 

assuming that the dipole approximation holds, and that the visible and sum frequency 

beam frequencies are far away from any electronic transitions.  In equation 2.8, 𝜔! is the 

vibrational resonance frequency, 𝜔!" is the frequency of the incident tunable IR beam, Γ! 

is the relaxation time of the resonance state, 𝑀!"is the Raman transition moment, and 𝐴! 

is the infrared transition moment.  Therefore, a vibrational mode must be both Raman and 

IR active in order to be sum frequency active.  To summarize, VSFS is a powerful 

spectroscopic technique that produces a vibrational spectra of molecules at an interface 

that have an ordered averaged net orientation.   

 

Fitting and Interpretation of VSFS Spectra 

 

 All spectral data taken were averaged, normalized to gold, and then spectrally fit.  

Because the sum frequency intensity is equal to the square of χ(!), there will exist 

interferences between different resonant modes, leading to constructive and destructive 

interferences that must be taken into account when fitting.  Additionally each resonant 

component 𝜒!!
(!) has an associated amplitude and phase, therefore visual inspection of 

peak amplitude, width, and position is insufficient when working up data.   

The spectral fitting routine employed was first published by Bain et al.55 and 

further discussed by Moore et al.52 and is given as 

|𝜒 ! 𝜔!" |! =  𝜒!"
(!)𝑒!!!" +

𝐴!𝑒!!!𝑒
!
(!!!!!)

!!

!

𝜔! − 𝜔!" − 𝑖Γ!

!

!!!

𝑑𝜔!

!

            (2.9) 
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The first component accounts for the non-resonant phase and amplitude, which is known 

to be negligible at the planar oil-water interface. The second term describes the resonant 

features, which have an associated amplitude (𝐴!), phase (𝜑!), a Lorentzian width (Γ!), a 

Gaussian width (Γ!), and a frequency (𝜔!).  The overall line shape is a Voigt profile, 

which is a convolution of a Lorentzian and a Gaussian distribution.  The Lorentzian takes 

into account homogeneous broadening due to individual molecular transitions, while the 

Gaussian takes into account inhomogeneous broadening due to the local environments 

experienced by the molecules (FWHM, 2𝑙𝑛2Γ!). 

The fitting routine requires the input of 5 variables for each resonant mode: an 

amplitude, phase, Lorentzian width, Gaussian width, and peak frequency.  As it is 

possible to have several non-unique fits to a single spectrum, additional care and 

consideration must be taken to eliminate non-viable solutions.  The phases for each peak 

are held to be either 0 or π, denoting the vibrational mode as orienting either into the 

aqueous phase or into the oil phase.  Lorentzian peak widths are also fixed at previously 

calculated values depending upon the vibrational lifetimes.56-59  Peak frequencies were 

first approximated based on previously published IR, Raman, and VSFS literature values, 

and then constrained as necessary.  Amplitudes as well as Gaussian widths were allowed 

wider ranges to vary in order to account for the different local environments experienced 

by the molecules.   

 

The Laser System 

 

All VSFS data obtained was taken on a commercially available laser built by 

Ekspla (Lithuania).  A general depiction of the laser table layout is shown in Figure 2.2.   
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Figure 2.2. A simple schematic of the Ekspla laser system used to generate the visible 
(green lines) and infrared (red lines) beams need to generate VSFS.   
 

An Nd:YAG laser (model PL2343A/SH) generates a 1064nm, ~30 picosecond pulse at 

10Hz, with ideal peak energies at ~500µJ per pulse.  A flash lamp is used to pump the 

Nd:YAG rod that generates the 1064nm pulse.  The pulse will complete about 200 round 

trips through the oscillator where it is stabilized via active and passive mode locking 

achieved through the use of pockel cells and a solid-state saturable absorber (later 

replaced by a dye absorbed due to aging of the solid state absorber).  The stabilized pulse 

is then sent via another pockel cell to the regenerative amplifier.  Once in the regenerative 

amplifier, pulses are ideally amplified to around 450-500µJ, after which they are sent via 

a third pockel cell into the double pass power amplifier.   

 The power amplifier holds a second Nd:YAG rod pumped by two flash lamps.  

As the timing between the two flash lamps is optimized the 1064nm pulse is amplified 

with energy output up to 30mJ.  From here the 1064nm beam is split, and a portion is sent 

through a KD*P (potassium dideuterium phosphate) crystal, which frequency doubles the 

beam to generate 532nm visible light.  A small portion of the 532nm beam is split off, 
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where it is subsequently filtered, collimated and sent through an adjustable delay stage so 

that it can be overlapped spatially and temporally with the IR beam at the sample stage.  

The remainder of the 532nm and 1064nm beams are used to generate tunable IR light via 

an optical parametric generation (OPG)/ optical parametric amplification (OPA)/ 

difference frequency generation (DFG) set up (model PG501/DFG2-10P). 

 First the 532nm beam is split again into 2 lines.  The first line is sent through a 

heated BBO crystal (OPG) before it is spectrally narrowed through the use of a 

diffraction grading.  This spectrally narrowed beam, along with the other 532nm beam, 

are then double passed through a second heated BBO crystal (OPA) creating a signal and 

idler beam.  A Glan prism polarizer separates the signal and idler, and the idler is sent to 

the difference frequency generation crystal (DFG, AgGaS2) where is it overlapped with 

the 1064nm beam in order to generate tunable infrared light (2-10 microns).  From here 

the IR is sent through a periscope to select the polarization before moving on to the 

sample stage.  The sample cell along with the optics and equipment along the detection 

line are shown in Figure 2.3.  The sample cell is machined from a single piece of 

polychlorotrifluoroethlene (Kel-F), which is known to be highly chemical resistant and 

has no adverse reactions with any of the surfactants studied.  The window facing the 

incident beams is a CaF2 window which allows both the visible and IR beams to enter the 

cell without depleting their energy.  The exit window is made from a piece of BK7 glass.  

Both windows are sealed with perfluoropolymer O-rings. 
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Figure 2.3. Schematic representation of the detection line, where incident visible and IR 
beams are overlapped at the CCl4 - aqueous interface to generate a third resultant sum 
frequency beam, which is detected by a monochromator and PMT.   
 

Carbon tetrachloride is used for the oil phase because it has no IR absorbance in 

the regions of interest that are scanned and therefore allows the IR light to transmit to the 

interface with minimal energy loss.  With the cell assembled and the oil-water interface 

established, the visible (~80µJ) and IR (50-300µJ) beams are sent to the interface in a 

total internal reflection (TIR) geometry.  By sending the beams through the higher index 

medium at their critical angle, there is an enhancement in the SF response by several 

orders of magnitude using reflection geometry.60-61  The visible beam is set to an incident 

angle of 24.3° relative to the plane of the interface, while the IR incident angle is set to 

14.3°.  Spatial overlap is achieved through the use of a motorized mirror controlled by a 

LabView program that allows mirror overlap positions to be stored and saved.  Adjusting 

the prism delay stage along the visible path length maximizes temporal overlap.   

The detection line of the cell is aligned to the visible beam, because the SF beam 

tracks extremely closely with it.  The detection line begins with a filter meant to block the 

532 beam while allowing the SF beam to continue, a lens then focuses the SF beam, 

before a Glan prism polarizer/half wave plane combination cleans up the polarization and 
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sends the SF signal through the monochromator (Solar TII MS2001) before being 

detected by a photomultiplier tube (PMT, Hamamatsu R7899).  

Once the interface was established, data collection began shortly thereafter.  All 

spectra included in this dissertation are an average of at least 3 scans with 100 shots per 

data point collected.  Laser step size was set to 3-5 cm-1.  Gold scans were taken daily and 

used to normalize experimental data.  Normalization involved dividing the experimental 

data with the gold spectra in order to account for day-to-day variances in laser efficiency, 

IR and ambient water absorption, and changes in timing and overlap as the IR 

wavelength is scanned.   

 

The Neat Oil-Water Interface 

 

The neat carbon tetrachloride – water (CCl4 – H2O) interface acts as the baseline 

scan and was taken daily to ensure cleanliness.  On a fundamental level it is vital to 

understand the bare system before more complex surfactant or mixed surfactants systems 

can be studied.  Though on a macroscopic level the neat interface might seem relatively 

simplistic, years of fundamental research were required to understand how water behaves 

at an interface on the molecular level.62-67  A neat CCl4 – H2O interface is shown in 

Figure 2.4, along with underlying fits.  The neat interface is generally defined as a region 

~10Å deep, with decreased hydrogen bonding present closer to the oil phase.68-69   
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Figure 2.4.  VSFS spectra (ssp polarization) of the neat CCl4 – H2O interface, with 
labeled Free-OH and coordinated water region.  Below is a cartoon representation of the 
Free-OH residing in the oil phase with no hydrogen bonding, the companion mode, and 
more tetrahedrally bound water molecules.   
 

The region between 2800-3800 cm-1 is scanned with prominent water features 

seen from 3000-3700 cm-1.  The lack of peak intensity from 2800-3000 cm-1 (the C-H 

region) is a good indication that no alkyl contaminants are present at the interface.  The 

neat CCl4 – H2O spectrum itself is known to be incredibly complicated, but broadly 

speaking two general regions can be identified.  The first is a sharp peak at 3670 cm-1, 

identified as the “free-OH”.  This prominent feature, shown in green in Figure 2.4, arises 

from an O-H oscillator that resides largely in the oil phase and is not participating in 

hydrogen bonding with any nearby water molecules.  Previous research approximates that 
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20-25% of surface waters contribute to the free-OH peak.70  The presence or absence of 

the free-OH peak serves as a proxy indicator of surface coverage.71  A decrease in the 

free-OH peak is indicative of other species that have migrated to and now reside at the 

interface having displaced these water molecules.   

The second peak region is broader, from 3000-3600 cm-1.  Interpretation of this 

broad feature has been controversial and remains an area of active research.  The reason 

for this uncertainty is due largely to the many different hydrogen-bonding environments 

experienced by water molecules based on their position relative to the interface, which 

makes spectral interpretation difficult.  The following spectral parameters come from 

studies that have gradually doped D2O with H2O, forming HOD and allowing for 

decoupling between the two oscillators and simplifying spectral analysis.72-77   

The more coordinated water region is fit to three peaks: one at ~3500 cm-1 (dark 

blue) arising from hydrogen bonding with the O-H oscillator opposite the free-OH, 

known as the companion mode, and two peaks at 3440 cm-1 (purple) and 3228 cm-1 (light 

blue) arising from more tetrahedrally bound water molecules that still retain a net 

orientation due to the inherent electric field present at the interface.  Bulk water far away 

from the interface is isotropic, and therefore sum frequency inactive.  As will be shown 

later in Chapter III, the presence of a charged surfactant works to enhance and further 

broaden the coordinated water region as water molecules specifically orient themselves 

preferentially about the charged head groups.   
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Pendant Drop Surface Tensiometry Measurements 

 

As has been previously discussed VSFS spectral interpretation is challenging 

because spectral changes could be due to a greater number of molecules residing at the 

interface, a change in the average orientation of molecules already present at the 

interface, or some combination of the two.  To help decouple what these changes could 

be arising from pendant drop surface tensiometry is used as a complementary technique.  

Pendant drop is a useful technique used to measure the amount of surfactant present at an 

interface.   

Interfacial tension measurements were performed on a KSV optical tensiometer 

using the pendant drop method.  Pendant drop also has the advantage of using small 

volumes (~10µL) allowing experiments with costly reagents to be sensibly conserved.  

The relatively smaller length scales within the droplet also allow for diffuse equilibration 

to occur on smaller time scales.  The technique is relatively straightforward and relies on 

a camera, a sample stage, and an LED backlight to ensure high quality photo resolution 

as depicted in Figure 2.5.   

 

 
Figure 2.5. The pendant drop surface tensiometry set up used, showing camera, sample 
stage with hooked needle and backlight LED along with fitting parameters obtained from 
droplet.    
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The sample stage consists of a 1x1 cm2 cuvette filled with CCl4 (oil/heavy phase) and a 

1mL Hamilton gas tight syringe with a hooked needle filled with water or sample 

(aqueous/light phase).  A thin layer of water was placed on top of the CCl4 in order to 

slow its evaporation.   

 A neat scan was taken every morning before sample data collection began to 

ensure cleanliness and to have a clean surface tension reading with which to normalize 

data day-to-day.  The neat measurement was compared to the known CCl4 – H2O 

interfacial tension value of 45mN/m.78-79  Values between 44-46mN/m were considered 

to be clean.  Pictures of the drop shape were recorded once a minute until the interfacial 

tension value no longer changed with time.  The images were then fit using internal 

software to the Young-Laplace equation, a series of differential equations: 

𝑑𝑥
𝑑𝑥 = 𝑐𝑜𝑠𝜙 

𝑑𝑧
𝑑𝑥 = 𝑠𝑖𝑛𝜙                                                           (2.10) 

𝑑𝜙
𝑑𝑠 = 2+ 𝛽𝑧 −

𝑠𝑖𝑛𝜙
𝑥  

to solve for the shape factor, β.  The shape factor is then used to calculate the surface 

tension γ defined as: 

𝛾 =
∆𝜌𝑔𝑅!!

𝛽                                                              (2.11) 

where ∆𝜌 is the density difference between the two liquids, g is the gravitational constant, 

and R0 is the radius of curvature of the drop at its apex.  As an aside, a neat droplet that is 

not elongated by gravity will be a spherical cap.43  However, in order for drop shape 

analysis to remain valid the droplet must be sufficiently deformed by gravity so that an 



 21 

accurate surface tension value can be obtained.  The shape factor β was initially defined 

because it was discovered that when droplets are not sufficiently deformed by gravity, the 

code used to fit the image profiles gave largely inaccurate interfacial tension values.  

Ideally β > ~0.15 and could lead to γ values with errors of less than 0.01mN/m.80   

 Interfacial tension data will be reported as surface pressure.  The surface pressure 

is calculated by subtracting the surface tension of the CCl4/H2O/sample system from the 

surface tension of the neat CCl4/H2O system.  This is done to normalize any day-to-day 

fluctuations that might occur.   

 

Cleaning Procedures and Materials 

 

 VSFS is an incredibly sensitive technique that can detect molecules at the 

interface at concentrations in the nanomolar range.  Therefore, the sum frequency sample 

cell, all glassware, solvents and samples must be rigourously cleaned.  HPLC grade 

99.9% pure CCl4 is purchased from Sigma Aldrich and then double distilled before use.  

All glassware as well as the Kel-F cell is soaked in an H2SO4 – NoChromix bath for a 

minimum of 12 hours.  Glassware is then transferred to a water bath and left to soak 

before being copiously rinsed with water from a Barnstead E-pure filtration system with a 

resistivity of 18.2 MΩ-cm.  Finally glassware is dried in a 140°C oven for a minimum of 

1 hour.  Special consideration was taken when cleaning the CaF2 cell window because it 

is soluble in both water and sulfuric acid.  It was allowed to sit in the H2SO4 for 20 

minutes before being immediately rinsed with water and then aspirated dry.  To ensure 

cleanliness, a neat oil-water VSFS spectrum was taken at the beginning of each day.   
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 Hexadecyltrimethylammonium Bromide (99+%) was purchased from Acros, n-

Hexadecyl-d33-trimethylammonium Bromide (98.9% D), n-Hexadecyltrimethyl-d9-

ammonium Bromide (99.5% D), and n-hexyl-d13 Alcohol (98.5% D) were purchased 

from CDN Isotopes, 1-Hexanol (98%) was purchased from Sigma Aldrich, and D2O 

(99.9%) was purchased from Cambridge Isotope Laboratories.  All of the above 

surfactants and solvents were used as received. 

 

Conclusions 

 

The techniques and underlying theory of VSFS and pendant drop surface tensiometry 

discussed within this chapter lay the groundwork for all future data to be presented within 

this dissertation.  To form a more complete molecular image of surfactants and surfactant 

mixtures at the oil-water interface a combination of these techniques will be necessary.  

Using these suites of tools will be necessary in order to develop a better-formed image of 

surfactant and mixed surfactant behavior at the oil-water interface.   
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CHAPTER III 

BEHAVIOR OF CTAB AT THE OIL-WATER INTERFACE 

 

 The cationic surfactant hexadecyltrimethylammonium bromide (CTAB) is 

designed to aggregate at interfaces, frequently the oil-water interface.  Its natural 

antibacterial properties have made it a staple ingredient in many cosmetic formulas and 

personal care products.81-84  At the molecular level it is used frequently as a model system 

due to its long unbranched alkyl chain.  Previous interfacial studies have also been 

performed examining CTAB at the air-water,85-93 solid-water,94-96 and oil-water37-39, 97 

interfaces, with much attention being placed on the interfacial water structure and alkyl 

chain conformational ordering.  What is largely missing from these surface studies is the 

role that the head group of CTAB is playing in its interfacial assembly.  Gaining 

information on the CTAB head group by vibration spectroscopy is complicated because it 

requires resolving and differentiating the N-CH3 head group from the terminal methyl 

along the alkyl chain. 

 To this end vibrational sum frequency spectroscopy (VSFS), a surface specific 

technique is utilized to specifically study the head group of CTAB at the carbon 

tetrachloride – water (CCl4 – H2O) interface by probing the N-CH3 head group.  The use 

of specifically deuterated CTAB allows for the differentiation between head and tail 

methyl groups.  Computational DFT harmonic frequency calculations provide additional 

insight into the specific displacements giving rise to the experimental VSFS spectra.  To 

provide a full molecular picture of CTAB the alkyl chain behavior is discussed here as 

well.  Spectral features arising from the C-H region of the spectra are shown to be 
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predominantly arising from the alkyl tails, with some minor contributions from the head 

group.  Results show both the CTAB head and alkyl tail orientations are dependent on 

concentration and reorder to efficiently minimize repulsive charge-charge head group and 

tail-tail hydrophobic interactions at the oil-water interface. 

Complementary surface tension measurements taken by undergraduate researcher 

Benjamin Muller help to show adsorption time scales and are used to calculate interfacial 

head group molecular area at the interface. 

 

Introduction 

 

 Surfactants are known to aggregate at the oil-water interface allowing them to 

play a vital role in applications such as detergency, oil remediation, food chemistry, drug 

delivery and are often found in a wide variety of personal care products.4-5, 8, 98-107  The 

behavior of surfactants in bulk is generally well understood due to techniques such as 

NMR, optical microscopy, and dynamic light scattering.30, 33, 108-109  In general, 

surfactants in an aqueous environment exist as individual molecules until some critical 

concentration is reached known as the critical micelle concentration (cmc).  At the cmc 

and above it become more favorable for surfactants to aggregate together to form 

micelles with their hydrophobic tails oriented in the center to reduce interactions with the 

aqueous phase, and the hydrophilic head groups preferentially facing outwards into the 

aqueous phase.110   

 This chapter explores the molecular level details of the commonly used cationic 

surfactant CTAB at the carbon tetrachloride – water (CCl4 – H2O) interface.  VSFS and 
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surface tensiometry are used to explore changes to the interfacial behavior as surfactant 

concentration is varied.  Care was taken to ensure the CTAB concentration remained 

below the cmc (0.92mM) simplifying our VSFS studies.26  Surfactant head group 

behavior at the oil-water interface remains an area of study often overlooked for CTAB, 

due to the challenge of needing to distinguish between the terminal methyl along the 

alkyl chain and the N-CH3 that comprise the CTAB head group.  This study has 

alleviated that issue by purchasing CTAB that has been selectively deuterated, thus 

making distinguishing between vibrational modes much less complex.  One deuteration 

scheme swapped the 9 hydrogen atoms on the head group for deuterium (d9-CTAB), 

while the other swapped the 33 hydrogen atoms along the tail for deuterium (d33-CTAB).  

The molecular structures of CTAB, along with the two corresponding CTAB deuteration 

schemes are given in Figure 3.1.   

 

 
Figure 3.1.  Chemical structure of fully hydrogenated CTAB, deuterated head group 
CTAB (d9-CTAB), and deuterated tail CTAB (d33-CTAB).   
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For the studies presented here, some attention is paid to the tail configuration, but 

identification of the head group and its behavior is the predominant focus.  In later studies 

detailed in Chapters IV when we examine what affect the additions of co-surfactant has 

on CTAB it is vital to be able to differentiate between head group effects versus tail 

effects.   

 

CTAB at the Oil-Water Interface 

 

CTAB is known to readily adsorb to the oil-water interface.111-112  Figure 3.2 

shows the surface pressure of CTAB as a function of concentration (blue), where a larger 

surface pressure indicates more surfactant is present at the interface.  CTAB surface 

pressure measurements above 0.4mM were found to be unstable (the drops too short 

lived) and are therefore not reported.  The corresponding red trace in Figure 3.2 gives the 

calculated CTAB head group molecular area with respect to the bulk concentration.  In 

order to calculate head group area one must first calculate the limiting surface coverage, 

Γi, using the Gibbs equation:1 

Γ! =
1

𝑛!𝑅𝑇
𝜕Π

𝜕 ln 𝐶! !
                                                    (3.1) 

where 𝑛! is the number of solute species at the interface that change when bulk 

concentration is changed, for CTAB n=2 to account for the Br- counter-ion.  Π is the 

interfacial pressure in mN/m, T is room temperature (298K), and [Ci] is the bulk 

concentration in mM.  Note that in other forms of this equation [Ci] is replaced with ai, 

the activity.  For sufficiently dilute solutions, as are utilized here, the activity is replaced 

by the bulk concentration.  From the surface pressure data and the limiting surface 
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coverage, the surface excess at any bulk concentration can be calculated using the 

Frumkin equation:1 

Π = −𝑅𝑇Γ!  𝑙𝑛 1−
Γ!
Γ!

                                                     (3.2) 

where Γ2 is the surface excess at a given interfacial pressure.  By taking the inverse of Γ2: 

𝑎! =
10!"

𝑁!Γ!
                                                                 (3.3) 

we are able to calculate the head group molecular area of any given bulk concentration in 

units of Å2/molecule.  Literature values of CTAB head group area at the water-alkane 

interface are reported in the range of ~28-36Å2/molecule,113-114 lower than the head group 

areas reported here, possibly due to the use of different oil phases.   

 

 
Figure 3.2.  CTAB surface pressure data (blue, left axis) as a function of concentration 
and corresponding head group area values (red, right axis). 
 

Our head group areas more closely resemble those of the CTAB head group calculated at 

the air-water interface: 62-72Å2/molecule.92, 115-118  In general, surfactant adsorption at 

the interface is known to be dependent upon concentration as well as overall molecular 

structure.119 
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Characterization of its charged head group behavior is central to understanding 

perturbations in the interfacial molecular structure of CTAB as a result of changing 

concentration and when in the presence of co-surfactant.  The inherent asymmetry of the 

interface creates a unique environment were surfactant adsorption, solvation, and 

electrostatic interactions can all influence head group orientation and behavior.  Selective 

deuteration of CTAB is used to decouple and spectrally isolate the alkyl modes of the 

CTAB head group N-CH3 and the terminal alkyl chain methyl, as the resulting C-D 

modes are red-shifted into the 2050 – 2250 cm-1 range.  To this end, CTAB with a 

deuterated head group (d9-CTAB) and CTAB with a deuterated tail (d33-CTAB) are 

examined in comparison to fully hydrogenated CTAB. 

Figure 3.3 displays the VSFS C-H stretching region spectra of surface adsorbed 

CTAB (black), d9-CTAB (green), d33-CTAB (blue) respectively at the CCl4 – D2O 

interface. All spectra taken were performed with D2O as the aqueous phase to minimize 

interference between the water O-H and surfactant C-H vibrational modes.  

VSF spectra of the C-H region are often difficult to interpret, due to the 

convolution of overlapping modes, constructive and destructive interference effects, the 

consideration of Fermi resonances and overtones, and the underlying molecular 

composition of the interface itself.  With this in mind, each of the underlying CTAB 

modes have been assigned letter designation in alphabetical order from lowest to highest 

frequency position. These letters are mapped to their respective peaks by the dotted gray 

lines in Figure 3.3. To further clarify the source of each mode, the letters are colored-

coded to the modes arising from the head (blue) and tail (green), as indicated by the 

brackets alongside the CTAB molecule in Figure 3.3. The letter designations, vibrational 
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assignments and peak positions are listed in Table 3.1, along with corresponding 

literature values for comparison.  All spectra reported here were taken in the ssp 

polarization scheme, which specifically probes vibrational modes of molecules that have 

a component of their dipole perpendicular to the oil-water interface. 

 

 
Figure 3.3.  Offset VSFS spectra (ssp polarization) of the C-H region at the CCl4 – D2O 
interface of 0.1mM fully hydrogenated CTAB (black), 0.1mM d9-CTAB (green), and 
0.1mM d33-CTAB (blue, scaled by a factor of 20x for clarity).  Solid lines are fits to the 
data.  Dashed grey vertical lines map fit peak locations to their denoted letter, with the 
green and blue letters corresponding to the tail and head group vibrations, respectively. 
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The red-most peak at 2831 cm-1 (denoted ‘A’) in Figure 3.3(a, c) arises solely 

from the N-CH3 head group of d33-CTAB.  No corresponding intensity at this position is 

seen from the d9-CTAB alkyl tail spectrum (Fig. 3.3b).  Based on the fitted location, this 

peak is assigned to an overtone of the head group N-CH3 symmetric bending mode. This 

is in agreement with crystalline and solid powder FTIR studies of CTAB by 

Venkataraman et al.120 as well as Viana et al.121 who observed the N-CH3 symmetric 

bending mode at ~1396 cm-1.  Since the bending modes of CTAB are known to be highly 

Raman and IR active, its overtones would likely produce detectable sum frequency as 

well.121  Tyrode et al.94 assigned a peak within this region to an overtone of the terminal 

alkyl chain CH3 deformation at 2725 cm-1, but no indication of this peak is observed here. 

The peak at 2852 cm-1 (denoted ‘B’) in Figure 3.3(a, b) is assigned to the CH2 SS 

(d+) modes of CTAB, consistent with previous literature assignments.38, 122  The absence 

of signal intensity at this location from d33-CTAB (Fig. 3.3c) confirms this assignment 

and also acts as an indicator that there is little-to-no hydrogen contamination along the 

deuterated chain of d33-CTAB.  The peak at 2871 cm-1 (denoted ‘C’) in Figure 3.3(a, b) is 

assigned to the CH3 SS (r+) from the terminal methyl along the alkyl tail of CTAB, again 

consistent with previous VSFS assignments.38   

Inspection of the intensity ratio (Id
+/Ir

+) of the CH2 SS (d+, 2852 cm-1) and CH3 SS 

(r+, 2871 cm-1) modes provides a relative measure of CTAB alkyl tail chain order and its 

dependence on surfactant concentration at the interface.  For highly ordered, all-trans 

alkyl chains the methylene orientation can be thought of as centrosymmetric and 

consequently would not be both Raman and IR active, and therefore would not be SF 

active.  However gauche defects along the chain and the hyperpolarizabilities of the 
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methylene modes perturbed by the terminal functional group cause a break in the 

molecular symmetry.  This allows for SF signal to be detected from these d+ modes, 

though the signal from highly ordered monolayers would be rather weak.  Previous work 

has shown that the lower the measured intensity ratio (Id
+/Ir

+) the fewer gauche defects 

are present along the alkyl chain, resulting in a more ordered alkyl chain.96, 123  The 

intensity of the r+ and d+ modes was chosen because of their sharp peaks and sensitivity 

to orientation.  Guyot-Sionnest et al.124 first demonstrated this technique with a SFS 

experiment of a Langmuir-Pöckels film of pentadecanoic acid.  Figure 3.4 shows the 

Id
+/Ir

+ as a function of CTAB concentration and two corresponding cartoons showing 

possible CTAB tail configurations at low and high concentration.  At concentrations  

 

 
Figure 3.4.  Plot of the calculated Id+/Ir+ as a function of CTAB concentration (mM).  The 
cartoon at low CTAB concentration shows gauche defects present along the surfactant 
alkyl chains.  The cartoon at high CTAB concentration shows fewer gauche defects 
present along the alkyl chains as surfactants pack tighter at the interface. 

 



 32 

around 1% of the cmc, the Id
+/Ir

+ is calculated to be 1.1 ±0.05, while at 60% of the cmc 

and above Id
+/Ir

+ plateaus at 0.7 ±0.05, indicating that the CTAB alkyl tail has adopted a 

more ordered configuration at the higher concentration. As an additional note, the d33-

CTAB spectrum (Fig. 3.3c) displays no intensity at 2871 cm-1, which confirms that the 

N-methyl head group stretches do not interfere with the previously discussed Id
+/Ir

+ ratio 

or the aforementioned assumptions on alkyl tail chain conformation order/disorder at the 

oil-water interface. 

The peak at ~2909 cm-1 has overlapping contributions from both the alkyl tail and 

head group modes as both d9-CTAB and d33-CTAB spectra show intensity at this 

location.  From the alkyl tail, the CH2 d+ Fermi resonance is assigned to this peak 

(denoted ‘D’), while the head group vibrational mode here is tentatively assigned to an 

overtone of the N-CH3 asymmetric bending mode (denoted ‘D*’).  For the fully 

hydrogenated CTAB (Fig. 3.3a) the head group peak itself is deeply buried within this 

region and only measureable when the alkyl tail of CTAB is deuterated.  The next peak at 

2937 cm-1 (denoted ‘E’) in Figure 3.3(a,b) is assigned to a Fermi resonance due to the 

splitting of the tail CH3 SS with the overtone of a CH3 bend and is consistent with 

literature assignments.38  This peak has contributions due solely to the alkyl tail of 

CTAB, as no peak intensity from d33-CTAB (Fig. 3.3c) is seen at this wavelength. 

The final two peaks between 2960-2990 cm-1 (denoted ‘F’ and ‘G’, respectively) 

in Figure 3.3(a,c), are due solely to the head group modes, as no intensity is seen at these 

locations from the d9-CTAB spectrum (Fig. 3.3b).  These two peaks are assigned to 

distinct N-CH3 symmetric stretches herein referred to as N-CH3’ SS (2962-2972 cm-1
, F) 

and N-CH3 SS (2975-2987 cm-1
, G).  Multiple N-CH3 symmetric stretches of the head 
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group are reasonable, considering that while the head group as a whole is geometrically 

symmetric, individual motions of each methyl group can be in-phase or out-of-phase 

relative to each other. Two observable N-CH3 SS peaks have been seen before for CTAB 

in the solid and crystalline phase at slightly lower frequencies 120-121 (see Table 3.1), but 

have not been reported for CTAB at the oil-water interface. Tyrode et al.94 assigned a 

single N-CH3 SS to appear at 2985 cm-1 from the silica-water interface, but was unable to 

resolve two peaks. 

 

Table 3.1.  Experimental VSFS (ssp), and Literature CTAB vibrational frequencies (cm-1) and 
assignments. 

Mode VSFS 
CCl4/H2Oa 

Tyrode et al.94  
VSFS Silica/H2O 

Venkataraman et al.120 
IR & Raman 

Viana et al.121 
FTIR-ATR Assignmentb  

 - 2725 - - 2*δasym CH3 
A 2819-2831  - - 2*δsymN-CH3 
B 2852 2852 2848 >2849 νCH2 SS  
C  2871 ~2870 2872 2870 νCH3 SS 

 - 2890 2918 >2917 νCH2 AS 
D 2905 2928 - - CH2 d+ FR 

  D* 2902-2909  - - - 2*δasymN-CH3 
E 2937 2928 - - CH3 r+ FR 

 - ~2960 2945 2943 νCH3 AS 
F 2962 – 2972  2960 2949 νN-CH3 SS’ 
G 2975 - 2987 ~2985 2972 2959 νN-CH3 SS 

 - - 3009 3009 νN-CH3 AS 

 - - 3016 3016 νN-CH3 AS 

 - ~3040 3030 3030 νN-CH3 AS 
a : All peak centers have an uncertainty of ±6 cm-1 arising from laser pulse width  
b: (δ = bend; ν=stretching) 

 

No intensity was observed from the N-CH3 asymmetric stretching (AS) modes, 

which are reported in the literature between 3000-3040 cm-1.94, 120-121  This lack of 

intensity is plausible considering polarization selection rules indicate that AS modes are 

less favorable for ssp VSFS.125  Furthermore, Campbell et al.93 failed to resolve AS 

modes in their studies of CTAB monolayers at the air-water interface using ER-FTIR. 
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To further confirm these peak assignments, gas phase DFT harmonic frequency 

calculations were performed within the Gaussian126 program package for the fully trans 

conformation of CTAB, d9-CTAB, and d33-CTAB.  Unfortunately, the size of CTAB (62 

atoms) and corresponding computational expense precludes the calculation of 

anharmonic corrections of the characteristically high harmonic frequency positions, 

impeding direct comparison with experimental values.  However, the harmonic 

calculations do provide displacements and activities (both IR and Raman) of CTAB’s 

normal modes that are sufficient to offer a valuable molecular level picture of the 

associated vibrational displacements. 

The DFT results show three symmetric stretching motions of the head group are 

contributing within this spectral region at 3134 cm-1 (a single head group methyl 

stretching with minimal displacement of the other two), 3138 cm-1 (one methyl stretch 

occurring out-of-phase with the other two methyl groups) and 3145 cm-1 (all three methyl 

groups stretching in-phase together).  While VSF spectra are only able to resolve two of 

these features, it is plausible that the two lower frequency DFT predicted modes jointly 

contribute to the 2972 cm-1 N-CH3 SS’ (F) peak, but cannot be resolved due to their close 

spacing (separated by only 4 cm-1 in the DFT results.) 

 

Concentration Dependent CTAB Head Group Behavior 

 

VSFS studies of CTAB as a function of concentration were performed with d33-

CTAB to investigate how changes in surface population affect CTAB’s head group 

behavior.  Figure 3.5 shows the spectral variation from low 0.05mM (5% cmc, red) to 
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high 1mM (100% cmc, blue) concentrations of d33-CTAB.  All spectra of d33-CTAB in 

the C-H region are fit to the four assigned head group peaks discussed above.  Fits to the 

data show that the peak intensities at 2831 cm-1 (A, 2*δsym N-CH3), 2909 cm-1 (D*, 

2*δasymN-CH3), and ~2972 cm-1 (F, N-CH3 SS’) all increase with concentration.  In 

conjunction with the surface pressure results given in Figure 3.2, this increase is ascribed 

to a greater amount of CTAB adsorbing to and orienting at the interface.  In contrast, an 

overall decrease in peak intensity at ~2987 cm-1 (G, N-CH3 SS) is observed, which is 

especially evident for higher concentrations of d33-CTAB.  At 0.5mM d33-CTAB (50% 

cmc, green) and 1.0mM d33-CTAB (100% cmc, blue), the N-CH3 SS (G, 2987 cm-1) 

intensity is greatly reduced, while all three other head group peak intensities continue to 

increase with concentration.  In addition to changes in peak intensities, all 4 of the head 

group peaks red shift by approximately 10cm-1 as the CTAB concentration is increased 

and more surfactant adsorbs at the interface.  To understand the alternating changes in 

peak intensity between the two N-CH3 SS modes and the red shifting of the peak 

positions a closer look at surfactant head group area at the interface is required. 

Considering the surface pressure (Fig. 3.2) and spectroscopic data (Fig. 3.5) 

together, under conditions of low surfactant concentration, large head group areas 

(~138Å2/molecule) correspond with the presence of a dominant N-CH3 SS (G) peak as 

compared to the N-CH3 SS’ (F).  We conclude that the spectral changes reflect CTAB’s 

changing head group environment and orientation as the interface becomes more 

congested.  At concentrations well below the cmc, the charged CTAB head groups are 

spaced farther apart (138Å2/molecule), remain relatively unencumbered by other nearby 

charged head groups, and are therefore freer to adopt a range of surface orientations.112 
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Figure 3.5.  VSF spectra (ssp polarization) in the C-H region of 0.05mM (red), 0.1mM 
(yellow), 0.5mM (green) and 1.0mM (blue) d33-CTAB at the CCl4 – D2O interface.  The 
solid lines are fits to the data. 

 

Alternatively, at higher surfactant concentrations the CTAB, the head group area 

decreases to 56Å2/molecule as configuration(s) that minimize repulsive forces become 

preferred.  Spectrally, this appears as an increase in the N-CH3 SS’ (F) and the loss of 

intensity from the N-CH3 SS (G), likely due to lesser contributions from the vertical 

component of its vibrational dipole being oriented perpendicular to the interface.  Spectra 

taken with other polarization schemes were attempted, but failed to produce any signal 

that rose above the noise level of the instrument.  Conversely, the vibrational motion of 

the N-CH3 SS’ (F) is seen to increase, consistent with CTAB continuing to adsorb to the 

oil-water interface.   
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Of further consideration is the red shifting of the CTAB head group peaks with 

increasing concentration and corresponding increase in surface population.  No 

significant peak shifts are observed for any of the CTAB tail spectral features over the 

same concentration range. The CTAB N-CH3 SS head group modes, specifically the 

asymmetric and symmetric bending modes are known to be highly sensitive to the 

charged surfactant head group packing conditions, specifically head-head interactions 

between surfactants.120-121, 127-129  Studies of solid and crystalline CTAB also show peaks 

red shifted relative to solution phase CTAB.120-121, 130  Those N-CH3 modes were at lower 

frequencies than the ones observed here, providing an estimated limit on the red-shift for 

a highly ordered liquid interface. 

While the underlying cause of these frequency shifts has yet to be fully explored, 

they are ascribed here as arising from inductive effects. It is well established that alkyl 

groups are electron donating via the inductive effect,131-134 and it is this electron donation 

from the adjacent methyl groups to the head group nitrogen that shifts their C-H 

stretching modes to higher frequencies relative to those of the methyl along the alkyl 

tail.135-143  Furthermore, in sp3 hybridized quaternary ammonium cations (such as the 

nitrogen of the CTAB head group) the positive charge is distributed among the methyl 

hydrogen atoms.134, 144-147  This creates the potential for what is referred to as an 

“improper” hydrogen bond that forms between the methyl hydrogen and an electron lone 

pair on water (CH•••O H-bond).137-138, 140-142, 146-152  Interestingly, for such sp3 hybridized 

central atoms, this sort of improper hydrogen bond yields a bond contraction, causing the 

C-H modes to shift to even higher frequencies.137, 140-141, 146-147, 150-151, 153  Thus, when well 

solvated, as is the case at low concentrations of CTAB, the C-H frequencies shift higher 
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than they would from inductive effects alone.  It follows that with increasing CTAB 

concentration and a corresponding decrease in solvation, the modes are red-shifted down 

again from these higher frequency positions. 

While it is clear that solvation has a role to play in the CTAB head group 

behavior, due to stereoelectronic effects the relative conformation of the head group may 

also affect the strength of these improper hydrogen bonds and in turn the resulting head 

group C-H frequency shifts.147, 154  For this reason changes in the solvation environment 

cannot be completely decoupled from reorientation with respect to these frequency shifts.  

Therefore the red-shift observed with increasing CTAB concentration could be due to a 

less solvated head group environment and/or changes in head group configuration that 

make CH•••O H-bonds less favorable. 

 

Conclusions 

 

 As more complex mixed systems are developed for macroscopic use, the need to 

understand the underlying molecular characteristics of these systems increases as well.  

The results reported in this chapter present a molecular level picture of how the cationic 

surfactant CTAB preferentially adsorbs to and orients at the oil-water interface.  Though 

only a single surfactant system, a thorough description of this surfactants behavior at the 

buried oil-water interface serves to lay the groundwork for more complex systems 

described in later chapters.  The results seek to demonstrate that both the alkyl tail and 

the head group of CTAB display concentration dependent behavior.  The overall order of 

the terminal alkyl chains at the interface are found to be slightly disordered at lower 
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concentrations, while at higher concentrations fewer gauche defects are present due to an 

increased surface presence.  This increased surface density was confirmed through 

surface pressure measurements and corresponding molecular head group area 

calculations that decreased from 138 Å2/molecule to 56 Å2/molecule.  Identification of 

the CTAB head group modes through select deuteration and the concentration dependent 

behavior of the two N-CH3 SS peaks work to act as an indicator for head group order and 

surface behavior in the presence of additional interfacial species.  The ability to 

differentiate between head and alkyl tail spectral contributions will allow for more 

precise characterizations of mixed systems at the environmentally relevant oil-water 

interface.  The next chapter will detail with what happens on a molecular level when 

CTAB is mixed with 1-hexanol (Chapter IV).  Using the results presented within this 

chapter will allow for direct measurement of induced changes that occur to the CTAB 

head group and tail in the presence of a nonionic co-surfactant along with measurement 

of spectral changes to 1-hexanol. 
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CHAPTER IV 

BEHAVIOR OF CTAB AND HEXANOL AT THE OIL-WATER INTERFACE 

 

Mixed surfactant systems at the oil-water interface play a vital role in applications 

ranging widely from drug delivery to oil-spill remediation.  Synergistic mixtures are 

superior emulsifiers and more effective at modifying surface tension than either 

component alone. Mixtures of surfactants with dissimilar polar head groups are of 

particular interest because of the additional degree of control they offer.  The interplay of 

hydrophobic and electrostatic effects in these systems are not well understood, in part 

because of the difficulty in examining their behavior at the buried oil-water interface 

where they reside.  Here, surface-specific vibrational sum frequency spectroscopy 

(VSFS) is utilized in combination with surface tensiometry and computational methods to 

probe the cooperative molecular interactions between a cationic surfactant 

cetyltrimethylammonium bromide (CTAB) and a non-ionic alcohol (1-hexanol) that 

induce the two initially reluctant surfactants to co-adsorb synergistically at the interface.  

A careful deuteration study of CTAB reveals that hexanol cooperates with CTAB such 

that both molecules preferentially orient at the interface for sufficiently large enough 

concentrations of hexanol.  This work’s methodology is unique and serves as a guide for 

future explorations of macroscopic properties in these complex systems.  Results from 

this work also provide valuable insight into how interfacial ordering impacts surface 

tensiometry measurements for nonionic surfactants. 
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Introduction 

 

Commercial surfactants continue to be a mainstay in products that serve a 

multitude of purposes in our everyday lives.8, 102-107  Accompanying their pervasive use 

are environmental concerns especially when they are used or accumulate in high 

concentrations.17, 155  There is a growing interest in the use of co-surfactants rather than 

single surfactant systems, as many of these mixtures can work synergistically to achieve 

the desired function with lower total surfactant concentrations.16, 21-22, 44, 156-158  While 

many co-surfactant systems have proven themselves in environmental,16, 155 and 

biological103, 159-160 applications, the underlying forces driving their cooperative behavior 

is still up for debate.  A deeper understanding of the molecular factors that drive these 

synergistic interactions at the oil-water interface will significantly accelerate their 

adoption and use in applications such as drug delivery161-163 or oil-remediation.16   

As a model system we have chosen the common cationic surfactant, 

cetyltrimethylammonium bromide (CTAB) mixed with a simple alkyl alcohol, 1-hexanol.  

CTAB is used in chemical, biochemical, industrial and pharmaceutical applications due 

to its antibacterial properties and ability to stabilize regular emulsions.159, 164-169  As a lone 

surfactant, its behavior is well characterized in aqueous solutions with both its critical 

micelle concentration (cmc) and micelle structure documented.26, 95, 109, 122, 170-173 

Prior work has also shown that the addition of a medium length, unbranched alkyl 

chain alcohol (as a co-surfactant) can change surfactant composition and induce shape 

transitions in surfactant aggregates.102, 164, 174-178  In particular, mixtures of CTAB and 

hexanol can form a variety of aggregates with unique morphologies and microstructures 
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depending upon the surfactant to co-surfactant ratio, including vesicles, lamellar phases, 

and micelles (both disk and rod-like).179-181   With the addition of hexanol, CTAB forms 

reverse emulsions, which have found applications as drug delivery vehicles, nanoscale 

reaction vessels, therapeutic gene delivery, protein purification, and nanoparticle 

templating.162-163, 182-183  Solution studies of these mixed systems have shown that the 

addition of medium and long chain length alcohols act to lower the cmc of CTAB.184-185  

Unknown at this point is what role hydrophilic/hydrophobic interactions between the 

polar head group and non-polar alkyl regions of these co-surfactants play in contributing 

to the changes in size, shape, and surfactant packing structure at the oil-water interface 

where these molecules reside. 

The molecular details of the co-adsorption of CTAB and hexanol at the carbon 

tetrachloride – water (CCl4 – H2O) interface are studied using a combination of 

vibrational sum frequency spectroscopy (VSFS) and surface tensiometry.  The previously 

characterized CTAB head groups act as an invaluable tool in characterizing this highly 

complex model system.   

 These studies provide an intimate view of how CTAB and hexanol co-adsorb at 

the oil-water interface. As their relative concentrations are varied, a molecular dance 

ensues that eventually results in highly synergistic adsorption and orientation of both 

species at the interface.  Unlike CTAB, which shows significant interfacial molecular 

ordering at all concentrations, hexanol alone in the aqueous phase does not show any 

interfacial ordering.  However, at a specific CTAB concentration, the hexanol begins to 

change from its random interfacial orientation to one that mimics the chain ordering of 

CTAB.  Increasing amounts of interfacial hexanol subsequently results in changes in the 
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adsorptive behavior of CTAB.  This co-surfactant behavior has implications for better 

understanding the molecular level interactions that give rise to tunable macroscopic 

configurations.  For this particular system of co-adsorbates at these concentrations, it 

indeed takes two to tango. 

 

CTAB and Hexanol at the Oil-Water Interface 

 

Hexanol is a common surfactant and co-surfactant that is known to be surface 

active at the air-water interface186-189 and is often used to help stabilize regular and 

reverse emulsions at the curved oil-water interface.113, 118, 190-197  This medium chain 

length alcohol enjoys frequent use because of its ability to induce changes in micelle and 

emulsion shape as its concentration in solution is varied.  We have chosen hexanol with 

its 6-carbon long alkyl tail because of its common use as a co-surfactant, as longer chain 

1-alkanols are considered insoluble in water, and shorter chain 1-alkanols are generally 

classified as co-solvents rather than co-surfactants.198-200   

As a first step hexanol was studied alone at the CCl4 – water interface using both 

surface tensiometry and VSFS.  Interestingly, neither technique was able to detect the 

presence of hexanol at this interface.  Surface pressure data of hexanol alone, for a range 

of concentrations, was found to be essentially at our detection limit with a maximum 

value of 0.6mN/m recorded.  VSF spectra showed no deviation from the neat CCl4 – D2O 

interface. To confirm hexanol was not migrating through the interface to solubilize in the 

oil phase, aliquots of CCl4 were removed after VSFS experiments were performed and 

analyzed by FT-IR, with no deviation from regular CCl4 observed.   
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 While this would suggest that hexanol is not surface active, previous literature in 

experimental and computational studies of hexanol at the oil-water interface indicate that 

it is present at the interface but not molecularly ordered enough to cause a significant 

increase in surface coordination, indicating it would yield negligible SP and VSF 

response.201  Caminati et al.202 studied hexanol at the water-dodecane and water-

hexadecane interfaces using surface tensiometry and found the surface pressure to be less 

than 2 mN/m within the concentration regime discussed here.  They also observed that 

the SP was highly dependent on the oil phase.  Chen et al.195 were able to observe 

hexanol sum-frequency scattering signal at the curved hexadecane-D2O interface, but the 

resulting amplitudes were minimal for the concentration regime discussed here.  

Molecular dynamics (MD) simulations of hexanol at the water-hexane interface by 

Pohorille et al.203 revealed that hexanol did preferentially partition to the interface with 

the alcohol head group hydrated within the aqueous phase and the alkyl tail in the oil 

phase. Yet, the orientation of the alkyl tail was “strongly non-uniform” with no 

preferential orientation within the oil phase, instead taking on “a wide array of 

conformations relative to the surface normal”.  Similar results were observed in studies of 

protonated lauric acid at the CCl4 – water and hexane-water interfaces reported from our 

laboratory by Holte et al.,204 where both experimental VSFS and surface tensiometry 

techniques failed to detect its presence at the oil-water interface.  These studies employed 

MD simulations to investigate the underlying behavior, finding that protonated lauric acid 

does indeed partition to the interface but was disordered such that the surface tension of 

the interface remained unchanged.  Given the likely desire for the hexanol head group to 
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be solvated at the interface, we concur with the conclusions of the previous studies that 

hexanol is most likely present but disordered at the oil-water interface.   

Though hexanol alone did not produce a measurable change in the surface 

pressure above the neat system, CTAB and hexanol mixtures do yield a small increase in 

surface pressure above that of CTAB alone, as is shown in Figure 4.1. 

 

 
Figure 4.1.  Surface pressure measurements for 0.1mM CTAB alone (blue dashed line) 
and when mixed with 0.01mM hexanol (green), 0.1mM hexanol (yellow), and 1mM 
hexanol (red).    
 

Figure 4.2 provides the VSFS spectra of 0.1mM d33-CTAB alone (blue), and 

mixed with 0.01mM (green), 0.1mM (yellow), and 1mM (red) 1-hexanol at the CCl4 – 

D2O interface.  With increased addition of hexanol mixed with 0.1mM d33-CTAB 

(deuterated tail) the hexanol C-H modes become observable, indicative of conformational 

ordering of the alkyl chains.  Just as the CTAB alters the interfacial behavior of hexanol, 

the CTAB behavior, notably the head group, is altered by the more prominent presence of 

interfacial hexanol.  Additional letters have been assigned to peaks arising from hexanol 

and are mapped to their respective resonances with dotted grey lines.  These peaks are: 
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the methylene symmetric stretch at 2853 cm-1 (denoted ‘H’), the methyl symmetric 

stretch as 2872 cm-1 (denoted ‘I’), the methylene Fermi resonance at 2905 cm-1 (denoted 

‘J’) which also lays atop the CTAB head group overtone mode D*, the methyl Fermi 

resonance at 2937 cm-1 (denoted ‘K’), and another methylene Fermi resonance at 2958 

cm-1 (denoted ‘L’).  The letter designations, vibrational assignments, peak positions, and 

corresponding literature values are listed together in Table 4.1.  Due to the hydrogen-

deuterium exchange between hexanol and D2O, it was not possible to study the O-D 

alcohol group of hexanol, which are buried under the coordinated O-D water modes.  Per 

convention, the VSFS spectra were fit to the minimum number of peaks necessary, which 

overall agreed well with the peak assignments of previous literature sources. 

For the mixture of 0.1mM d33-CTAB with 0.01mM hexanol (CTAB in excess, 

Fig. 4.2c, green), no hexanol peaks rises sufficiently above the noise to be interpreted, but 

the head group N-CH3 modes D*, F and G all show increases in intensity.  The added 

presence of even small amounts of hexanol in solution is clearly causing more CTAB to 

adsorb to the interface.  As alcohols are known to be able to act as polar spacers to 

“dilute” charge density in mixed surfactant systems, this enhancement in CTAB 

adsorption is attributed to reduced electrostatic repulsion between the cationic head 

groups due to the co-adsorbed hexanol.205 

The ability of hexanol to draw more CTAB to the interface is maximized at this 

concentration ratio; higher concentrations of hexanol do not result in more CTAB 

adsorbing to the interface.  As shown in Figure 4.2b (yellow), for the equimolar mixed 

solution the N-CH3 SS head group peak intensities (F and G) are the same as when the 

concentration of hexanol was 0.01mM (Fig. 4.2c, green).  Instead, peaks attributed to the 
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Figure 4.2.  Offset VSFS spectra (ssp polarization) of the C-H region at the CCl4 – D2O 
interface of 0.1mM d33-CTAB (blue) alone and mixed with hydrogenated 0.01mM 
hexanol (green), 0.1mM hexanol (yellow), and 1mM hexanol (red).  Solid lines are best 
fits to the data.  Dashed grey vertical lines map fit peak locations to their denoted letter, 
with the blue and back letters corresponding to the head vibrations of CTAB and the tail 
vibrations of hexanol, respectively.   
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hexanol alkyl tail are seen to grow in at positions H (CH2 SS), I (CH3 SS), J (CH2 FR), 

and K (CH3 FR), confirming its presence and increased orientation at the interface in the 

presence of CTAB.   

Evidence of ordered hexanol in the presence of 0.1mM d33-CTAB is observed at 

concentrations as low as 0.05mM (not shown).  The low VSF signal arising from the 

hexanol peaks and increasing with additional hexanol indicates that synergistic co-

adsorption is at play.  This induced hexanol ordering and initial increase in CTAB 

adsorption to the interface is contributing to the minimal increase in surface pressure 

observed in Figure 4.1, even for low concentrations of hexanol.   

When the hexanol concentration exceeds that of 0.1mM d33-CTAB (Fig. 4.2a, 

red) there is again a corresponding increase in the intensity of peaks H, I, J, and K, 

indicating a greater number of hexanol molecules that are conformationally ordered at the 

interface.  This ordering enhancement contributes to the further increase in surface 

pressure (Fig. 4.1), as the interfacially adsorbed hexanol intercalates between the charged 

head groups of CTAB.  In turn this induces interfacial ordering of the interdigitated 

hexanol once a particular CTAB surface concentration is reached, although it is not clear 

from these measurements whether CTAB draws additional hexanol to the interface 

beyond what is already in the surface region for a given hexanol concentration.  Above 

0.01 mM hexanol, the intensity of the CTAB head group N-CH3 SS F and G peaks 

remains constant with increasing hexanol concentration, signifying that it is not inducing 

any additional CTAB to adsorb to the interface. Contrary to what is seen for higher 

concentrations of CTAB alone at the interface (Fig. 3.5), the frequency positions of the 

CTAB head group modes were not found to red-shift with increasing surface population, 
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meaning that the head group is still forming CH•••O H-bonds and is in a similar dielectric 

environment to that of low concentration CTAB alone.  

This supports a picture of hexanol dispersed throughout the interface (not 

clumping together), where the intercalated hexanol hydroxyl head group is able to act as 

a polar spacer between positively charged CTAB head groups while also providing lone 

electron pairs to form CH•••O H-bonds.  Due to its smaller size, hexanol at higher 

concentrations is able to continually adsorb to the interface and slot itself between CTAB 

head groups and in doing so helps to reduce the repulsive forces felt between closely 

packed charged head groups.  Excess hexanol would enhance this effect by allowing its 

polar region to play a role in continually solvating and hydrogen bonding with the CTAB 

head group. The apparent lack of reorientation or change in overall solvation 

environment indicates that in the presence of hexanol the CTAB head group behavior is 

likely less dependent on interfacial congestion and more influenced by electrostatics and 

hydrogen bonding. 

 

Table 4.1. Experimental VSFS (ssp) and Literature hexanol vibrational frequencies (cm-1) and 
assignments are listed in black.  d33-CTAB assignments are listed in blue.   

Mode 
VSFS oil/water  

d33-CTAB & 
1-hexanol 

Van Loon et al.186 
VSFS Vapor/1-hexanol 

Lu et al.187 VSFS  
Vapor/1-hexanol Assignmentb  

A  2827 - - CTAB: 2*δsym CH3 
H  2853 2856 2848 νCH2 SS 

I  2872 2878 2868 νCH3 SS 
J/L 2905/2958 2903/2922/2947 2904/2918/2954 CH2 FR 
D* 2905 - - CTAB: 2*δasym CH3 
K 2937 2939 2932 CH3 FR 
F 2967 - - CTAB: νN-CH3’ SS 
G 2982 - - CTAB: νN-CH3 SS 

a : All peak centers have an uncertainty of ±6 arising from laser pulse width 

b: (δ = bend; ν=stretching) 
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To determine what effect the presence of hexanol has on the alkyl chain 

orientation of CTAB, hexanol was full deuterated (d14-hexanol) and CTAB left 

hydrogenated.  The resultant spectra are shown in Figure 4.3.  For the same three 

concentration ratios of 0.1mM CTAB mixed with varying amounts of hexanol no change 

was observed in the Id+/Ir+ ratio of the CTAB alkyl chains (0.9 ±0.05).  Therefore hexanol 

interacts with the head group of CTAB and prefers to remain with its head residing in or 

near to the aqueous phase.  The hydrophilic region of hexanol does not alter the CTAB 

chain-chain interactions. 

 

 
Figure 4.3.  VSF spectra (ssp polarization) at the CCl4 – D2O interface of 0.1mM CTAB 
alone (black) and mixed with 0.01mM (green), 0.1mM (yellow), and 1mM (red) d14-
hexanol.  The Id+/Ir+ for each of the four spectra is calculated to be 0.9 ± 0.05.  Solid lines 
are fits to the data. 
 

The appearance of hexanol peaks in the presence of CTAB establishes that the net 

conformational ordering of adsorbed hexanol has become more restricted, with both its 

methylene and methyl dipoles perpendicular to the interface, assisted by hydrophobic 

interactions with the oriented alkyl tails of CTAB.  The methyl intensity is clearly 
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stronger than the methylene intensity with the Id+/Ir+ ratio of hexanol calculated to be 0.6± 

0.05 for both the equimolar and hexanol-in-excess mixtures.  Although this ratio relative 

to CTAB would suggest fewer gauche defects, there are also fewer methylene modes (six 

versus sixteen).  Thus, it is clear that the addition of surface absorbed CTAB induces a 

net ordering of hexanol’s alkyl chain within the oil phase.   

 

Conclusions 

 

 Mixed surfactant systems represent a growing field that will continue to receive 

widespread attention due to their variability and allowance for specific tunability factors.  

However molecular level details about co-surfactant interactions at the buried oil-water 

interface are still sorely lacking and would help provide much-needed fundamental 

information about their still often-unpredictable surface behavior.  This study has 

contributed to this effort by providing unique insights into the molecular interplay 

between CTAB and hexanol co-adsorption at an oil-water interface using a combination 

of vibrational sum frequency spectroscopy (VSFS), surface tensiometry, and 

computational density functional theory (DFT) calculations. Central to the success of 

these studies was the use of selective deuteration of the cationic surfactant CTAB that 

allowed for the identification and assignment of CTAB’s head group modes at the oil-

water interface.   

 The CTAB head group is seen to be highly sensitive to both orientation and 

solvation environment, as indicated by the intensity and frequency shifts with varying 

CTAB concentration.  This spectral sensitivity, specifically between the two identified 
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split N-CH3 (F/G) symmetric stretches can now be used in the future to act as a valuable 

indicator for the relative interfacial environment experienced by the surfactant head 

group.  The utility of this was demonstrated here using the CTAB-hexanol mixed 

surfactant system. 

Figure 4.4 presents the findings of this work regarding the behavior of both 

CTAB and hexanol alone compared to that of the mixed surfactant system.  For hexanol 

alone in solution (Fig. 4.4a), the alcohol does adsorb to the interface with its polar head 

group in the aqueous phase and nonpolar tail in the oil phase, but its alkyl tail exhibits a 

high degree of freedom.  This is depicted in Figure 4.4a with purple arrows indicating 

that the alkyl tails of hexanol take on a wide array of conformations relative to the surface 

normal, which are too disordered to be detectable by VSF.  Meanwhile, the hydroxyl 

head group is able to hydrogen bond with water in such a way that it does not alter the 

measured surface pressure value.   

For CTAB absorbed to the oil-water interface alone in solution, at lower 

concentrations (Fig. 4.4b) the alkyl tails are spaced far enough apart to allow for gauche 

defects to be present along the alkyl tail.  Intriguingly, electron donation from the head 

group methyls to the nitrogen results in a net positive charge on the head group 

hydrogens, allowing for the formation of “improper” hydrogen bonds with the electron 

lone pairs on water (CH•••O H-bond).151  At higher CTAB concentrations (Fig. 4.4c) 

where more surfactant absorbs to the interface, it packs more tightly, resulting in more 

ordered alkyl tails with fewer gauche defects, as well as a reorientation of the head group.   

When CTAB in excess is mixed with hexanol (Fig. 4.4d), the smaller alcohol has 

enough room to interdigitate between CTAB without causing any observable 



 53 

conformational ordering of hexanol’s alkyl tail.  This allows its hydroxyl head group to 

both replace water as a hydrogen-bonding partner and act as a polar spacer between the 

positively charged N-CH3 head groups, promoting additional CTAB adsorption above 

what is found for the same concentration of CTAB alone.  Additionally, in the mixed 

system, the CTAB head group shows no indication of reorientation despite the increased 

interfacial congestion. This suggests that electrostatics and solvation rather than 

interfacial packing influences the reorientation observed for CTAB alone. 

When hexanol is further added up to the equimolar concentration of CTAB and 

beyond (Fig. 4.4e,f), no further increase in CTAB adsorption is observed but spectral 

signatures for the alcohol C-H modes from its alkyl chains appear, demonstrating that as 

hexanol continues to absorb to the interface, hydrophobic interactions between the 

hexanol and CTAB alkyl tails assist in conformational ordering of hexanol.  

Overall, the results provide an intimate picture of the interplay between the charged alkyl 

surfactant (CTAB) and medium chain nonionic surfactant (1-hexanol) as they co-adsorb 

at the interface and offer insight into potential avenues for the macroscopic tunablity of 

these systems. An additional interesting factor in this interplay is the role of the changing 

solvation environment of the CTAB head group with packing and intercalated alcohol, 

specifically the improper hydrogen bond.  Such bonds are most often studied in reference 

to intermolecular protein interactions where they are thought to be “competitive if not 

stronger than interpeptide NH•••O H-bonds”.147  Extrapolating from this, it is plausible 

that the potential for CH•••O H-bonding could play a role in the formation and stability 

of the resulting CTAB bulk macrostructures.  Additionally, the interplay between the 

hexanol acting as a polar spacer and the resulting CTAB head group configurations with 
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increasing hexanol concentration may have significant implications for variability in the 

geometry of the structures that these mixed systems can form.  It is known that spacers 

play a crucial role in determining the growth and interfacial curvature of micelles.206-208  

In micelles composed of these sort of mixed surfactant systems, the alcohols can 

preferentially aggregate in regions of “lower-curvature” where they stabilize the interface 

by reducing the electrostatic strain.205  Furthermore, the relative polarity, size, and 

hydrogen-bonding potential of the co-surfactant spacer could also directly affect the 

orientation of the CTAB head group and thereby the interfacial packing.  Factoring in all 

of these potential permutations offers substantial opportunity for tuning the macroscopic 

properties of these mixed surfactant systems. 
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Figure 4.4.  Graphical representations of proposed oil-water interfacial behavior for 
solutions of: (a) hexanol alone (purple arrows indicate high degree of freedom and 
disorder), (b) low and (c) high concentration CTAB, (d) Increased CTAB presence at the 
interface when mixed in excess with small amounts of hexanol, (e) equimolar mixture of 
CTAB and hexanol, and (f) CTAB mixed with excess hexanol.   
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

 The dynamic oil-water interface remains an area of active research and ongoing 

investigation due to its often-overlooked molecular complexity.  Fundamental research 

that probes the molecular level behavior of surfactants and co-surfactants at this buried 

interface is a vital component used to help further our understanding of larger and more 

complex macroscopic system phenomena.  One example of the importance to 

understanding co-surfactant behaivor is in oil spill remediation efforts.  One solution used 

to mitigate these types of environmental catastrophes is to corral the lighter oil phase 

using booms and then burn it away.  However this action leads to the release of toxic 

gases, hydrocarbons, and other environmentally harmful particulates into the atmosphere, 

which in turn go on to cause further non-ideal ecological repercussions.  An alternative 

solution for oil remediation is the use of oil dispersant, such as the proprietary mixture 

trademarked as Corexit, used by companies such as Exxon and BP.  The blend of 

chemicals (a complex multi surfactant blended mixture209) works to disperse the oil into 

small emulsions that can more easily be broken down and biodegraded by bacteria and 

other microorganisms.  Unfortunately, though the concoction does aid in oil spill 

remediation it has been linked to negative health side effects.210-212  Furthermore there are 

many open questions about how and why this and other mixtures work, if they are 

working as efficiently as possible, and how thier behavior might be improved to be more 

environmentally friendly.  Similar questions are also asked and will apply to a variety of 

other scientific and industrial fields.  The fundamental research presented here focuses on 
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studying how surfactant molecular interactions at the environmentally relevant oil-water 

interface need to be characterized and understood in order to answer these and other basic 

questions. 

 The experiments presented in this dissertation have addressed some of these open 

questions, specifically looking to categorize and examine the interactions between CTAB 

both alone and in the presence of a nonionic co-surfactant, hexanol.  This and other 

ionic/nonionic mixed systems see frequent use in detergency applications and are also 

involved in the use of many personal care products due to CTABs inherent antibacterial 

effects.  Within this dissertation CTAB was first studied as a single surfactant at the oil-

water interface and then in the presence of hexanol, using vibrational sum frequency 

spectroscopy and surface tensiometry measurements.  Based upon the co-surfactant 

mixing ratio, a variety of three-dimensional structures can be generated in the bulk based 

upon what structure is optimal for performing the desired macroscopic function, such as 

encapsulation of a hydrophilic or hydrophobic drug in a regular or reverse emulsion. 

 The experimental results presented in Chapter III portray a molecular level picture 

of CTAB alone at the CCl4 – D2O interface.  Complementary surface tensiometry 

measurements found that CTAB moved rapidly to the oil-water interface.  CTABs 

sixteen-carbon long alkyl chain is known to reside preferentially in the oil phase and was 

found to display concentration dependent behavior.  At low concentrations, the CTAB 

alkyl tail contained several gauche defects along its length, as it was not inhibited by 

nearby hydrophobic chain-chain interactions with other surfactants.  However, at higher 

concentrations as the interface became more congested the alkyl tails were more 

constrained and therefore adopt a more ordered configuration.  Additionally, the N-CH3 
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head group vibrational modes of CTAB were identified through the use of selectively 

deuterated commercially available CTAB.  The head group N-methyl stretches were 

identified and found to display concentration dependent behavior.  Like the alkyl tail, the 

CTAB head groups were found to reorient at higher concentrations in order to reduce 

repulsive charge-charge interactions as the head group molecular area became smaller.  

Coupled together the concentration dependent behavior of the CTAB head group modes 

along with the alkyl tail configuration act as spectral clues and serve as excellent 

indicators that can be used to examine interfacial packing conditions, molecular 

configurations, solvation environment and interactions between co-surfactants in later 

chapters.   

 The studies described in Chapter IV examine a more complex co-surfactant 

system of CTAB mixed with hexanol at the oil-water interface. The studies detailed 

previously describe an unusual synergistic system, in which hexanol is known to be 

surface active on its own, with its hydroxyl head group penetrating into the aqueous 

phase and its medium chain length alkyl tail disordered within the hydrophobic phase.  

Such behavior makes hexanol invisible to our usual suite of experimental (VSFS and SP) 

tools but literature precedence strongly affirms its disordered presence at the oil-water 

interface.  Such a system presented an interesting challenge and required an adaptive 

methodology in order to fully examine the interfacial dynamics of this mixed system.  In 

the presence of a sufficiently large CTAB concentration, hexanol was shown to 

preferentially order at the interface and interdigitate between the head groups of CTAB.  

Hexanol was also seen to promote the co-adsorption of more CTAB from the bulk to the 

interface.  Hydrophobic tail-tail effects between co-surfactants were considered but found 
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to be negligible, the presence of hexanol did not affect the orientation of the CTAB alkyl 

chains.  However the head group of hexanol preferred to remain oriented such that its 

hydroxyl head group stayed solvated within the aqueous phase and acted as a polar spacer 

between the CTAB head groups.   

 Overall, the results presented within this dissertation have served to build a 

beginning molecular picture of co-surfactant adsorption at the oil-water interface.  Co-

surfactant behavior has been shown to be unpredictable, and further research is needed in 

order to understand the complex molecular interactions that take place between 

surfactants as the oil-water interface.  These studies presented here are meant to serve as 

a starting point, helping to probe and identify interfacially active and environmentally 

relevant systems, as we look towards the future and tailoring more complex and realistic 

systems for study. 
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APPENDIX A 
 

FITTING PARAMETERS FOR CTAB AND DEUTERATED CTAB 

 

Table A.1.  Paramaters used to fit CTAB, d9-CTAB and d33-CTAB in Chapter III.  All 
peak positions have an uncertainty of ±6 cm-1.   

Peak Position 
(cm-1) 

Phase 
(Rad.) 

ΓL 
(cm-1) 

Assignment 

2819-2831 3.14 2 Overtone N-CH3 Sym. Bend 
2852 3.14 2 CH2 SS 
2871 3.14 2 CH3 SS 

2902-2909  0 2 Overtone N-CH3 Asym. Bend/ 
CH2 FR 

2937 3.14 2 CH3 FR 
2962 – 2972 3.14 2 N-CH3 SS’ 
2975 - 2987 3.14 2 N-CH3 SS 
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APPENDIX B 
 

FITTING PARAMETERS FOR CTAB WITH HEXANOL 

 

Table B.1.  Paramaters used to fit d33-CTAB mixed with 1-hexanol in Chapter IV.  All 
peak positions have an uncertainty of ±6 cm-1.   

Peak Position 
(cm-1) 

Phase 
(Rad.) 

ΓL 
(cm-1) 

Assignment 

2827 3.14 2 CTAB: Overtone N-CH3 Sym. Bend 
2853 3.14 2 Hexanol: CH2 SS 
2872 3.14 2 Hexanol: CH3 SS 

2905 0 2 Hexanol:CH2 FR /  
CTAB: Overtone N-CH3 Asym. Bend 

2937 3.14 2 Hexanol: CH3 FR 
2958 0 2 Hexanol: CH2 FR 
2967 3.14 2 CTAB: N-CH3 SS’ 
2982 3.14 2 CTAB: N-CH3 SS 
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