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DISSERTATION ABSTRACT

Ellis Turnbull Roe

Doctor of Philosophy

Department of Physics

September 2019

Title: Theory of Contact-limited Solar Cells.

The International Panel on Climate Change has made it clear that drastic

action is required in order to prevent warming of global average temperatures from

reaching 1.5-2.0°C above the pre-industrial average. If this is to be achieved, global

power generation from photovoltaics will need to increase by more than an order

of magnitude. Most of the dominant and upcoming photovoltaic technologies,

including silicon and metal-halide perovskites, are limited more by their contacts than

recombination in the bulk of the absorber. While we have a very good understanding

of how bulk recombination limits the efficiency of a solar cell, we do not completely

understand how contact processes determine the efficiency of a solar cell.

This work attempts to fill this gap in the literature by considering a solar

cell model that is completely dominated by solar photon generation and contact

recombination. The partial currents of electrons and holes at both contacts to

an intrinsic absorber are assumed to be linearly proportional to the excess carrier

density at the contacts. By linking the currents across the device with the continuity

equation, assuming the quasi-Fermi levels are approximately flat, and adding the

partial currents at each contact, an expression for the current-voltage behavior can be
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algebraically calculated. The resulting analytic expression provides useful qualitative

and quantitative insights into how the four equilibrium exchange current densities,

which determine the rate of electron and hole extraction at both contacts, shape the

current-voltage curve. In particular, it demonstrates that the features of the curve

depend on the relative rate at which a particular carrier (electron or hole) is collected

at one contact vs. the other. The model provides a unified explanation for non-ideal

contact related behavior seen in the literature, such as S-shaped curves and dark/light

crossover (i.e. failure of superposition). The work will be insightful for researchers

investigating technologies with yet-to-be optimized contacts.

This dissertation includes both previously published/unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

Overview

This dissertation lays out the contact-limited solar cell theory I developed, with

the help of my adviser Mark Lonergan, over the last several years. The theory is

entirely analytic, and I have derived every unique equation presented myself, though

some initial calculations and the motivation to pursue this theoretical investigation

were provided by Mark. Numerical simulations were performed in order to evaluate

how various assumptions in the model hold up in more realistic devices, and those

presented were performed by me (with the sole exception of Fig. 9), though some of

the inspiration for a few of them was provided by Mark.

Chapter 1 introduces the essential motivation for studying solar cells (spoiler

alert: climate change is real and man-made) and very briefly introduces the most

essential concepts of semiconductors and solar cell current-voltage characterization.

It was written entirely for this dissertation and has not been published. Chapter 2

provides the reader with a sense of the literature previously published that relates

to the topic. First, it introduces some of the very basic theory relating to solar cells

and their limitations as has been known for decades, then it provides an overview

of recent literature pertaining to the effect contacts have on solar cell performance.

It is primarily taken from the Introduction section of E.T. Roe, K.E. Egelhofer,

M.C. Lonergan, “Exchange current density model for the contact-determined current-

voltage behavior of solar cells.” J. Appl. Phys. 2019. 125 (22) 225302 (Roe et

al. 2019).[1] Chapter 3 details the model on which the theory I have developed is

1



based, laying out the key assumptions and setting up the calculations that need

to be performed. It combines the Model sections of E.T. Roe, K.E. Egelhofer, M.C.

Lonergan, “Limits of Contact Selectivity/Recombination on the Open-Circuit Voltage

of a Photovoltaic.” Appl. Energy Mater. 2018. 1 (3), 1037-1046 (Roe et al. 2018)[2]

and Roe et al. 2019.[1] It has been re-written from the ground up to ensure that the

presentation is appropriate for all the results presented later on. Chapter 4 walks the

reader through the gory algebraic details of the calculations used to derive the primary

results of the work (those who are not mathematically curious may skip this chapter).

Chapter 4 is compiled from the supplementary materials of both works. Chapter 5

discusses the nature of the most important result derived, the contact limited solar

cell’s current-voltage curve. Some of it has been written for the purposes of the

dissertation, while the rest is taken from the Results and Discussion section of Roe et

al. 2019. Chapter 6 discusses the ramifications of the contact limited current-voltage

expression on the critical solar cell performance parameters and was compiled from

the Results sections of both works. Chapter 7 discusses the simulations performed

to evaluate the theory and was compiled from the Simulations section of the main

text and the supplementary material of Roe et al. 2019. Finally, Chapter 8 is new

material, written as a conclusion to the dissertation.

Throughout this dissertation, I will walk the reader through the calculations and

simulations I did both by hand and with the help of a computer. I will use the

pronoun ‘we’ colloquially when walking the reader through this, as I encourage the

reader to do the calculations and thinking with me. As I have learned throughout

my time in grad school, the only way to truly understand someone else’s work is

go through the physics, equation by equation, figure by figure, until you understand

what each one means and where it came from.

2



Solar Cell Basics

According to the International Panel on Climate Change (IPCC), global average

temperatures are at 1.0± 0.2°C above their pre-industrial levels as of 2017.[3] The

IPCC predicts that the effects of allowing the global average temperature to exceed

1.5°C will be devastating. While 1.5°C may not sound like much, this is an

average, and the temperature extremes on land at mid latitudes (where most human

beings live) are projected to warm up to about 3°C, or over 5°F. This will cause

continued rising sea levels, increased severity of droughts and desertification, increased

probability of hurricanes and other extreme weather, extinction of plant and animal

species and countless knock-on effects that will not be discussed here for the sake of

brevity.

Needless to say, the climate change skeptic need only look to our nearest heavenly

neighbor, the planet Venus, to observe the catastrophic effects of the run-away green-

house effect, primarily caused by carbon-dioxide (CO2).[4] The surface temperature

of Venus is approximately 470°C, or ∼740 K. The atmosphere of Venus is much more

dense than ours, and over 96% of it is CO2.[5] One can easily predict what the steady-

state temperature of the surface of Venus should be, if it were able to radiate energy

like a planet without a such a thick atmosphere (i.e. an emissivity of ∼1), given the

sun’s blackbody radiation and the distance between venus and the sun (0.7 AU). At

steady state, the power absorbed by Venus (Pin) must be equal to the power emitted

(Pout). The power absorbed is equal to the total luminosity of the sun times the solid

angle of Venus when viewed from the sun divided by 4π:

Pin = L�

(
πR2

v

4πD2
v

)
(1.1)

3



where Rv is the radius of Venus, Dv is the distance from Venus to the sun (which is

very close to constant, as Venus’ orbit is almost a perfect circle), and L� is the total

luminosity of the sun, given approximately by

L� = (4πR2
�)σT 4

� (1.2)

where σ is the Stefan-Boltzmann constant, T� is the surface temperature of the sun

(approximately 5800 K), and R� is the radius of the sun. Meanwhile, the power

emitted is given by

Pout = (4πR2
v)σT

4
v (1.3)

where Rv is the radius of Venus, and Tv is its temperature. Setting Pin = Pout and

solving for Tv readily gives the steady-state temperature of Venus:

Tv = T�

√
R�
2Dv

≈ 330K (1.4)

This is considerably warmer than the earth’s average temperature (which is pretty

well approximated by this calculation, for the time being). To give some perspective,

330 K is 134°F, which is about the hottest temperature that the earth’s surface ever

approaches (with the exception of volcanoes and related phenomena). However, the

actual temperature of Venus is ∼870°F, which is easily hot enough to melt lead; in

fact, it is around the temperature of lava crusts.[6, 7] While earth’s atmosphere will

never be as dense as Venus’, there is absolutely no question that increased carbon

concentrations are a threat to the delicate balance between the solar energy that the

earth absorbs, and that which it emits.
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Global average CO2 concentrations are above 400 parts-per-million (ppm) as

of 2017, while pre-industrial levels averaged around 250 ppm for the last 800,000

years.[8, 9] In the last two centuries, just as humankind began burning fossil fuels,

carbon dioxide levels have skyrocketed up to levels not seen in over 10 million

years.[10] The rate of increase of carbon concentration over the last two centuries

is orders of magnitude larger than the largest rate of change due to natural emissions

(such as volcanoes) in the last 800,000 years. There is no doubt that our burning of

fossil fuels is the primary cause of rising CO2 concentrations. While there are other

greenhouse gases that also contribute to global worming, CO2 is by far the most

dominant contributor.[11] The IPCC predicts that we will reach 1.5°C of warming

somewhere between 2030 and 2050 if we do not dramatically curb the amount of CO2

we are spewing into the atmosphere.[3]

The cumulative global installed photovoltaic capacity was over 300 GW as of

2016,[12] but this was only about 2% of total global electricity demand in 2016. In

total, all renewables only accounted for about 8% of total global energy demand (not

including hydro-electric sources). While no single renewable energy source should

be prioritized above all others, new innovations in photovoltaics will be necessary

in order to reach 10+ TW of installed photovoltaic capacity by 2030.[13] In order

to avoid the catastrophic effects of a 1.5-2°C increase in global temperature, we will

need to (among other things) increase our photovoltaic electricity generation by well

over an order of magnitude.

The two most important metrics for any given type of solar cell are its cost and its

power conversion efficiency (or just efficiency). Reducing cost and increasing efficiency

are both essential if we are to accelerate the growth of global installed photovoltaic

capacity. Both of these metrics are related, in different ways, to the choice of materials
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used to build the solar cell. While no fundamental thermodynamic limit exists for

the lowest possible cost of a solar cell given its materials, the efficiency of a solar cell

is limited by the semiconducting material chosen to absorb the solar photons (this

limit can be exceeded with tandem cells, but they have a high cost and are not a

significant fraction of global installed capacity as of 2016).[14] This limit is known

as the Detailed-Balance, or Shockley-Queisser (SQ) limit,[15] and it is critical when

assessing the possible gains from improving a given technology or whether or not a

new technology will be viable. However, this limit does not concern itself with the

limits due to materials used to contact the solar cell. In fact, as we will see, our

understanding of how solar cell contacts determine device performance is incomplete,

at best.

Before we get into that, a basic summary of semiconductor physics is in order.

A semiconductor is a material whose conductivity increases with temperature (as

opposed to a metal, whose conductivity decreases with increasing temperature). In

order to understand why a semiconductor’s conductivity increases with temperature,

some very basic quantum mechanics is necessary. In an extended solid such as a

semiconductor crystal, electron states are delocalized, and there are so many states

that they occupy quasi-continuous bands in energy-space (as opposed to the discrete

states of the hydrogen atom). The effect of the periodic potential provided by the

lattice nuclei is to create regions of energy space where there are no states (i.e. the

density of states is zero). The mathematical description of the density of states is

critical to the quantitative description of semiconductors, refer to Appendix A for the

derivation.

There are only so many electrons in a material, and they fill up states up to an

energy called the Fermi energy, Ef . At absolute zero temperature, every electronic
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state below the Fermi-energy is occupied with an electron, and every state above

it is unoccupied. The function that describes the occupancy of states according to

their energy (E) relative to the Fermi-energy as a function of temperature is the

Fermi-Dirac distribution:

f(E) =
1

e
E−Ef
kBT + 1

(1.5)

where kB is the Boltzmann constant. At absolute zero, f(E) is a step function

centered at Ef , and as temperature increases, the function becomes more and more

smooth. In the limit E − Ef � kBT , f(E) reduces to the Boltzmann distribution:

f(E) ≈ e
−

(E−Ef)
kBT (1.6)

Consider Fig. 1, which shows typical band diagrams for a metal, an intrinsic

semiconductor, and a doped semiconductor from left to right. The metal is

distinguished by the fact that the Fermi-level intersects a band. This means that,

even at a low temperatures, there are a very large number of accessible states that

are unoccupied and hence available for conduction.

In contrast, an intrinsic semiconductor’s Fermi-level is (roughly) halfway between

the two closest bands; the density of states at the Fermi-level is zero. The closest

band of states below the Fermi-level is called the valence band, while the closest band

above is called the conduction band. The energy difference between the conduction

and valence band edges is called the bandgap energy, Eg. Electrons in the valence

band are unable to conduct electricity, because there are no unoccupied states that

are next to them (the sum of momenta of electrons in a fully occupied band is zero).

A very small number of electrons, however, will have enough thermal energy to jump
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FIGURE 1. Energy band diagram for a generic metal (left), intrinsic semiconductor
(center), and n-type semiconductor (right). The rectangles indicate a band with many
continuous states, while the energies outside of the rectangles denote energies with
no states. Fermi-levels, Ef , are indicated with dashed lines, and occupied states are
filled in with gray. Note that the horizontal axis is meaningless.
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the bandgap, to the conduction band, where there are plenty of available states.

Those electrons that exist in the conduction band are called free-electrons as they

are free to conduct electricity. Additionally, the electrons leave behind unoccupied

states, which also conduct electricity. These are called holes, as they represent the

absence of electrons in a sea of electrons, in the same way a bubble represents an

absence of water in a sea of water. The density of both free electrons and holes

in a semiconductor increases with temperature because a larger fraction will have

sufficient energy to jump to the appropriate band, leading to a higher conductivity

at higher temperatures.

A doped semiconductor is similar to an intrinsic semiconductor, except that the

Fermi-level is much closer to one of the two bands (the right most band diagram

in Fig. 1 is that of an n-type semiconductor, as it’s Fermi-level is closest to the

conduction band). In an n-type semiconductor, there are relatively large numbers

of free electrons, and very, very few holes. Thus, in an n-type semiconductor,

electrons are usually called majority carriers, and holes are called minority carriers.

A balance between free electrons and holes is not necessary for conduction, however,

and a doped semiconductor is orders of magnitude more conductive than an intrinsic

semiconductor with the same bandgap at the same temperature. For a mathematical

description of the density of electrons and holes in a semiconductor as a function of

the Fermi energy, refer to Appendix B.

Semiconductors are unique in how they interact with light. Whether or not a

photon interacts with a semiconductor is governed, to a reasonable approximation,

by the relation between the photon energy (Eγ) and the bandgap energy. If a photon

incident onto a slab of semiconductor has energy Eγ > Eg, the photon will be absorbed

by the semiconductor, while those photons with Eγ < Eg will pass straight through

9



the semiconductor. Most of the time, when a photon is absorbed by a semiconductor,

the energy of the photon is transferred to an electron in the valence band, allowing

it to jump to the conduction band, leaving behind a hole. Thus, a free electron and

hole are generated. With large numbers of photons hitting a semiconductor (such as a

semiconductor out in the sun), many free electrons and holes are generated, creating

a large excess of free carriers (if the semiconductor is highly doped, the excess may

only be in the minority carrier).

To describe the densities of electrons and holes under non-equilibrium conditions

(such as under illumination or applied bias), separate Fermi-levels are required for

electrons and holes. These are dubbed Efn and Efp, respectively. The larger the

difference between Efn and Efp, the further the semiconductor is being driven from

equilibrium. Of course, nature does not like this, and there is a reverse process that

drives semiconductors back towards equilibrium. This is called direct recombination

(there other types of recombination, such as Auger and Shockley-Read-Hall (SRH)

recombination, but direct recombination is all that is necessary for us to understand

the basic operation of solar cells), in which the electron falls back to the hole in the

valence band, releasing a photon with E = Eg in the process. In steady state, the

rates of generation and recombination match so that the population, and hence the

quasi-Fermi levels, do not change with time.

The splitting of quasi-Fermi levels also represents energy that can be captured;

however, this can only be done by extracting the electrons and holes to an external

circuit. This is where the contacts to the semiconducting absorber come into play.

Because electrons and holes have opposite charge, they must be extracted from the

absorber at opposite contacts (if they are collected at the same contact, the net

current is zero; this amounts to contact recombination). Thus, some asymmetry in
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the contact properties must exist, in order for a solar cell to function. This asymmetry

can be achieved in multiple ways, some of which will be explored in Chapter 7.

The essential processes in a solar cell are the generation of electrons and holes

via photon absorption, transport of carriers to contacts before they can recombine in

the bulk of the absorber, and the selective extraction of electrons at one contact and

holes at the other. This work will investigate the limits that the rates of equilibrium

electron and hole extraction at both contacts determine the efficiency of a solar cell.

In order to understand how to think about improving the efficiency or

performance of solar cells, it is essential to understand the basic parameters and

performance metrics of solar cells. In the most basic sense, a photovoltaic device,

or solar cell, converts photon energy into electronic energy by absorbing photons

and separating the excited charge carriers to two different contacts. Like other

semiconductor based electronic devices, solar cells are characterized by their current-

voltage (I(V )) behavior. For a solar cell, it is of course important to distinguish

whether a measurement was made in the dark or in the light. In the dark, the ideal

solar cell has the I(V ) characteristics of an ideal diode. Generally, the current is

normalized by the area of the solar cell and thus a current density-voltage (J(V ))

curve is measured. The term ‘current density’ will regularly be shortened to ‘current’

throughout this work. However, the symbol I will always refer to current, while J

will always refer to a current density. The J(V ) characteristics of the ideal diode

(see Appendix C for derivation in the case of the p-n junction, and Appendix D for

derivation via detailed balance) are given by

J(V ) = J0

(
e
qV
kBT − 1

)
(1.7)

11



where J is the current density, q is the electron charge, V is the applied voltage, kB

the Boltzmann constant, J0 the saturation current or equilibrium exchange current

density and T is the temperature. In the dark, the solar cell consumes power at every

point on the J(V ) curve other than the origin. The power density used by the solar

cell, like any other device obeys

P = JV (1.8)

Since the dark J(V ) curve exists only in quadrants one and three, the J ×V product

is always positive. Our sign convention for power therefore indicates that a positive

power value refers to the solar cell consuming energy and visa versa for a negative

power.

When exposed to light, the solar cell will generate an additional current, JL,

which flows in the same direction as the reverse bias current. This is because

the current due to generation of electrons and holes must oppose that due to

recombination. Since recombination is the cause of the current in forward bias in the

dark (which is positive in the usual convention), the light current must be negative.

Ideal J(V ) behavior of a solar cell under illumination is given by

J = J0

(
e
qV
kBT − 1

)
− JL (1.9)

where JL is the illumination current density. Figure 2 is a plot of a light and dark

J(V ) curves, as well as the power density, for a sample ideal solar cell, with J0 =

10−9 mA/cm2 and at T = 298 K. Quadrant four is known as the ‘power quadrant’

because the current voltage product is negative thus indicating that power is being

generated, not consumed by the solar cell. We now define several important quantities
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used to characterize solar cells. The short-circuit current density (Jsc) is the current

at zero bias, equal to the illumination current for an ideal solar cell with no series

resistance. The open-circuit voltage (Voc) is the voltage at which the current crosses

zero. To determine the maximum power, one simply needs to maximize the JV

product, which is equivalent to finding the largest area rectangle that fits between

the origin and the J(V ) curve inside quadrant four (this is the gray rectangle in Fig.

2). Even for an ideal solar cell, the maximum power generated is less than Jsc × Voc,

as long as T > 0. The maximum power point is defined by the current Jm and voltage

Vm, and the fill factor (FF) is defined by

FF =
ImPm
JscVoc

. (1.10)

The power conversion efficiency (η), describes the efficiency of the solar cell in

terms of these parameters

η ≡ Pout
Pin

=
FFJscVoc

Pin
=
ImPm
Pin

(1.11)

where Pin is the total solar power incident on the device. When measuring solar

cell efficiency, the AM 1.5 spectrum is typically used, which corresponds to a total

incident power of ∼ 100mW/cm2. Therefore, the efficiency of the ideal solar cell

characterized in Fig. 2 in % is approximately equal to the maximum power. The

efficiency of the device shown is ∼ 21%, meaning that for every Joule of solar energy

incident on the device, 0.21 Joules of electric energy can be extracted as long as it is

operated at its maximum power point given by Vm.

Measuring the J(V ) curve under 1 sun is the fundamental way to characterize

a solar cell, as what we ultimately care about is how much electric power we get
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FIGURE 2. Light (solid black) and dark (dashed black) J(V ) curves for an ideal
solar cell, dictated by eq. 1.9 with T = 298 K , J0 = 10−9 mA/cm2, and JL = 0 for
dark and JL = 40 mA/cm2 for light. The power density (P ) as a function of voltage is
shown in red. Here, negative corresponds to power generated, and positive indicates
power is being consumed.
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out of it for the given spectrum of incident solar photons. Ultimately, if a researcher

makes in improvement to a given solar cell technology, that improvement is either

measured in reduced cost or increased efficiency (or both). However, it is generally

advantageous to have an understanding of why the solar cell improved, if its efficiency

increased. The goal of this work is to provide a more complete picture of how the

contacts to a solar cell determine the resulting J(V ) curve so that researchers may

more readily explain changes in J(V ) behavior in their devices, assuming they have

reason to believe their device is contact-limited. The next chapter will delve a little

bit into the history of theoretical calculations of solar cell limitations, and deeper into

existing literature that relates to how contacts can affect solar cell performance to

give the reader some perspective on what is currently known.
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CHAPTER II

BACKGROUND

This chapter will explore the motivation for why we need a better model for how

solar cell contacts determine performance. The majority of it is taken from Roe et

al. 2019, however changes have been made to make it appropriate for the dissertation

format, and the first several paragraphs have been modified to include a discussion of

the literature of the state of most relevant solar cell technologies. Numerous relevant

references have been added.

A solar cell, at its most basic level, must consist of an absorber material and

two contacts on either end. The choice of absorber material places limits on the

efficiency of the device. Very simply, the bandgap energy determines how much

of the solar spectrum is absorbed (which determines the Jsc of the device), but

it also places an upper limit on the energy per carrier that can be extracted (i.e.

the voltage). Therefore, a compromise must be reached to optimize a solar cell’s

efficiency in accordance with the solar spectrum. The first rigorous calculation of

this limiting efficiency was performed by Shockley and Queisser (SQ) in 1961,[15]

and it has been extensively expanded upon since.[16–19] SQ assumed that the rate

constant for radiative recombination was equal at thermal equilibrium and under

solar illumination, and they determined it by calculating the equal and opposite

rate of generation of electrons and holes in the absorber due to photons from a 300 K

environment (see Appendix D for a simplified derivation). In order to determine J(V ),

they also had to assume that the quasi-Fermi level splitting in the absorber was equal

to the voltage across the device. This is not always the case, however, because the

contacts to the absorber must be able to support this voltage by selectively allowing
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electrons to flow out one end of the device and holes out the other. Any difference

between the quasi-Fermi-level splitting in the bulk of the absorber and the voltage

across the device is related to the rate at which electrons and holes are able to be

extracted (see Chapter 6).

Considering the limitations that contacts place on a solar cell’s performance is

then critical to a more comprehensive understanding of solar cells. Furthermore, it so

happens that most of today’s prominent photovoltaic absorber technologies are near

the radiative limit described by SQ, and many are thought to be in fact limited by

contact passivation or other contact related limitations. GaAs, is the most efficient

single junction (i.e. single absorber) solar cell technology[20] and is also the closest

technology to its radiative limit of 33% according to recent studies.[21, 22] Meanwhile,

CdTe is thought to be limited by an undesirable barrier that is difficult to avoid at

the back contact,[23–26] while CIGS devices are strongly affected by the properties of

the CdS/CIGS interface.[27, 28] By far the most industrialized technology is silicon.

It has been known for some time that the dominant issue preventing silicon solar cells

from approaching the SQ limit is contact passivation.[29] This issue is still thought

to be the biggest limiting factor today in the traditional bulk junction design.[30, 31]

Even in the heterojunction interdigitated back contact structure, optimization of

contact passivation is still producing results.[32–34] Finally, metal-halide perovskite

absorbers are already near their radiative limit,[35–37] and significant recombination

limitations are introduced when the absorber is contacted.[36, 38–40]

In this work, we will calculate an analytic J(V ) curve as determined by all

four rates that dictate electron and hole extraction at each contact. Our approach

provides both quantitative and intuitive understanding of how a range of contacts

can determine solar cell performance. It is limited by the extent to which the layer(s)
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that make up the contacts can be effectively modeled by setting the boundary partial

currents proportional to the product of the excess carrier density times a voltage

independent constant. We call this boundary condition (see eq. 3.1) ‘ideal diode like’

in that it is a rate equation describing the net transfer of a given species that has an

upper bound in one direction but not the other.

The dependence of solar cell performance on contacts has long been recognized;

development of selective contacts for everything from silicon to organics and

perovskites has been extensive.[26, 32–34, 38, 41–49] Theoretical understanding of the

mechanisms by which contacts can limit or improve device performance is, however,

incomplete. Much of the recent literature, as discussed below, has focused on either

a contact’s ability to extract its intended carrier, or reject the ‘wrong’ carrier. Of

course, both contacts in a device must extract their intended carrier and reject the

wrong carrier to some extent in order for a solar cell to generate power, so a complete

understanding of the contacts’ limitations on a solar cell should consider all four of

these processes.

Throughout this work, I will refer to the collection of the ‘intended’ carrier at

a contact as the majority process for that contact, and to the associated carrier as

the majority carrier. Accordingly, the term minority is used for the ‘wrong’ process

/ carrier at a contact. Note that I will use the term ‘bulk majority/minority carrier’

explicitly when referring instead to the traditional definition based on the doping of

the semiconductor.

The notion that a solar cell’s performance can be limited by a contact’s ability

to extract its majority carrier is intuitive. Indeed, numerous studies have explored

how this can limit the open-circuit voltage (Voc) of a device.[50–55] Wagenpfahl et

al. calculated an analytic expression for the Voc of a solar cell due to an electric field

18



associated with the build up of majority carriers at a contact that is caused by the

reduction of the charge transfer velocity of majority carriers.[51] Simulated J(V ) also

suggested that a reduced charge transfer velocity of majority carriers at a contact

can be the cause of so-called S-shaped curves that can ruin the fill factor. This

notion was confirmed by Sandberg et al. whose simulations also showed S-shaped

curves being affected by the injection barrier, carrier mobilities, and trap densities

at the interface.[52] Niemegeers and Burgelman used a back-to-back diode equivalent

circuit to model the current ‘rollover’ effect (analogous to S-shaped curves) in CdTe

solar cells.[50] The saturation current of the back diode, quantifying the collection of

majority carrier holes, is limited by the work function alignment of the metal used for

the back contact; this was shown to determine the current value at which the J(V )

curve rolls over in forward bias, thus affecting the fill factor of the device.

It is equally intuitive that the failure of a contact to reject the wrong carrier,

or minority carrier, leads to unwanted surface recombination and, hence, reduced

efficiency. Mora-Sero and Bisquert considered a ‘sandwich’ model (i.e. an absorber

sandwiched by two different contacts) using one ideal contact paired with a contact

whose selectivity is reduced by allowing electrons to escape depending on ρ, the

resistivity to minority carrier flow at the contact.[56] They calculated a J(V )

curve whose Voc and Jsc are strongly affected by ρ. Sandberg et al. also

considered a sandwich-type solar cell architecture and derived analytic expressions

for the Voc in various regimes delineated by ohmic vs. non-ohmic contacts.[54]

For a single non-ohmic contact paired with an ohmic contact, regimes dominated

by diffusion-limited surface recombination and interface-kinetics-limited surface

recombination were considered. They calculated an effective diffusion velocity

parameter following Crowell and Sze [57] that, compared to the charge transfer
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velocity of minority carriers, can be used to determine whether kinetics or diffusion

determines recombination rates at Voc.

Brendel and Peibst defined selectivity as the ratio of the minority to majority

carrier resistivity of an interface and modeled J(V ) behavior with a diode

characterized by the minority-carrier resistivity in series with a resistor determined

by the majority-carrier resistivity.[53] This allowed them to determine the optimum

contact area for various types of silicon solar cells based on the selectivity (i.e.

resistivity) ratio of the contact. This model hints at the potential interplay between

both ‘majority’ and ‘minority’ processes at a contact determining device performance,

a concept touched on by others.[51, 58] However, none of the above models consider

all four processes independently.

It is instructive to take a step back from these focused studies and consider

a simpler, more general model. Perhaps the simplest theoretical model of contact

limited J(V ) behavior is a parallel combination of a diode governed by the ideal

diode equation and a current source whose current value is JL (i.e the light current).

The J(V ) curve for such a device obeys that of the ideal solar cell in eq. 1.9:

J(V ) = J0(eV/VT − 1)− JL. (2.1)

This is effectively the same equation as that derived in the SQ limit, except as we will

see, the J0 in this case is determined entirely by the contact(s) and not by radiative

recombination in the bulk. The maximum power (density) of a device obeying eq.

2.1 is determined by the balance of J0 and JL, given by

Pmax = J(Vmax)× Vmax (2.2)
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where

Vmax = VT

(
W

[
e(1 +

JL
J0

)

])
(2.3)

where W is the Lambert W function. As is commonly understood, the ratio of JL to

J0 determines the efficiency, thus minimizing J0 is critical to maximizing the device

efficiency.

The origin of J0 depends on which simple diode model we consider. In the case

of the Schottky diode, the J0 is determined by the potential barrier for bulk majority

carriers at the metal-semiconductor interface via thermionic emission:

J0 = A∗T 2e
− φb
qVT (2.4)

where φb is the barrier height (i.e. φb is the energy difference between the band of

the bulk majority carrier and the Fermi level at the interface at equilibrium) and

A∗ is the effective Richardson constant.[59] Note that while one considers the rate of

bulk majority carriers that are able to escape the potential barrier at the interface,

these carriers are the minority carriers at the interface. In other words, for a typical

Schottky diode based on a p-type semiconductor, the Fermi level of the isolated metal

used to make the contact is generally located in the top half of the bandgap, meaning

it is effectively an electron-selective contact. The J0 in this case measures the ability

of holes to travel over the potential barrier at the interface, where they are considered

minority carriers in this work.

Meanwhile, for the Shockley model of a p − n junction, the J0 is calculated by

considering the diffusion of minority carriers on either side of the depletion region.[60]

Here,
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J0 = q

(
Dppn0

Lp
+
Dnnp0
Ln

)
(2.5)

where Dp is the diffusion constant for holes, pn0 is the equilibrium concentration for

holes on the n-type side, and Lp is the hole diffusion length and visa versa for the

other term. The origin of this J0 is, of course, bulk recombination in the quasi-neutral

regions on both sides of the depletion region. However, because typical p−n junctions

have good ohmic contacts on both sides, the ‘interfaces’ between the depletion region

(in which recombination is neglected) and the quasi-neutral regions on both sides are

the rate-determining interfaces. In this way, the p and n quasi-neutral regions can

be thought of as the contacts to the depletion region. Thus the two terms in J0 are

determined by the recombination of minority carriers for each contact (i.e. holes on

the n-side and electrons on the p-side).

The performance of the simple solar cell model of eq. 2.1 is limited in both

cases by carriers escaping to the wrong contact. For the Schottky diode, only one

J0 is considered, associated with the rectifying contact. Meanwhile, with the p − n

junction, two J0’s are considered; one for each side of the junction resulting in the

two terms of eq. 2.5. In order to reduce the escape of minority carriers in the ideal

Schottky diode, one can either use a metal whose Fermi level is closer to the intended

carrier’s band or one can introduce a thin insulating layer that reduces the flow of both

carriers.[33, 61, 62] For the p− n junction, reduction of minority carrier leakage can

be achieved by strongly doping the n and p layers. This has already been recognized;

state-of-the-art silicon technology uses highly n and p doped regions as the electron

and hole selective contacts respectively.[33, 63]

It is critical to note that in both the Shockley model of the p − n junction and

the Schottky diode model, one effectively assumes that the bulk quasi-Fermi-level
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splitting is equal to the applied voltage. For the p − n junction, this is guaranteed

with the assumption of low injection of majority carriers at the edges of the depletion

region. With the Schottky diode, one implicitly assumes that the other contact to,

for instance, our p-type material is able to perfectly extract holes. In other words,

one assumes for both cases that the majority processes at each contact are very fast

so that no build up of that carrier is required at the contact in order to support the

current. This assumption is not generally valid, nor can one always assume perfect

rejection of minority carriers at a contact; a thorough contact-determined solar cell

model must consider the ability of majority carriers to escape as well as the ability

of minority carriers to escape at both contacts.

As discussed above, our analysis will focus on the effect of the J0’s on the

performance of the solar cell, and thus it is important to note that they are measurable

quantities associated with an interface.[64–68] For a given solar cell, there are four

J0’s to measure, two for each interface. The J0’s may not all be readily measurable

from the solar cell itself, measuring all four may require four different devices. To

measure the hole J0 of an electron selective contact for example, one could make a

device with a p-type wafer of the absorber in question with an ohmic contact at the

other end of the device. Measurement of the J(V ) curve in the dark can then be

performed to extract J0. In principle, one can then measure the electron J0 of this

same contact by contacting it to an n-type wafer, as long as one can make a contact

that is even more ohmic than the electron selective contact in question. If this is not

possible, it may be possible to calculate the majority J0 with additional information.

For example, in the case of a Schottky contact with a known barrier height to an

absorber with a known bandgap, one could calculate the approximate electron J0

from the barrier height and the hole J0.
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In this chapter, the motivation for a more comprehensive model of how solar cell

contacts determine the performance of solar cells is spelled out. It is clear that such

a model needs to account for all four J0’s of a solar cell. The next chapter will spell

out the model that we use in order to determine the contact-limited J(V ) curve as a

function of the four J0’s.
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CHAPTER III

MODEL

This chapter will describe the simplified physical model which was used to derive

the contact-determined performance of a solar cell. The model was used in both of

my first author papers.[1, 2] The model is described in both papers to some extent as

the two papers used it to calculate different things; this chapter presents the model in

a way that should prepare the reader for both sets of calculations (that of the J(V )

and the Voc/∆Ef ).

We assume a ‘sandwich’ solar cell model in that a 1-D semiconducting absorber is

sandwiched by two contacts on either end to extract electrons and holes. The absorber

is assumed to be intrinsic. Consider the life of an electron in the conduction band

of the absorber that was generated via photon absorption. There are different ways

the life of said electron could end (i.e. leave the conduction band of the absorber).

It could recombine with a hole in the bulk of the absorber via some form of bulk

recombination, it could recombine with a hole at one of the contacts, or if we are

lucky, it could escape the device to an external circuit where it can do work. SQ

neglected the second option (contact recombination) when calculating their limit; we

do the opposite and neglect bulk recombination, as we seek an understanding of how

contacts, rather than bulk recombination, limit device performance.

A diagram of our model is presented in Fig. 3. The 1-D absorber exists between

the positions xα and xβ, where it interfaces with the α and β contacts, respectively.

L = xβ − xα is the thickness of the absorber. The electron and hole partial current

densities (Jn and Jp) describe the rates at which electrons and holes escape to the

external circuit. The partial current densities must sum to a fixed current density
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absorber

JL
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Jn
α

Jp
α

Jn
β

Jp
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J= Jn
α+Jp

α J= Jn
β+Jp

β

Jp
β - Jp

α = JL

Jn
α - Jn

β = JL

FIGURE 3. Diagram depicting the essential processes considered in our model.
Electrons and holes are generated by photon absorption in the bulk of the absorber,
and travel to the contacts, where they either recombine or escape the device and
travel through an external circuit. JL is determined by the rate of electron and hole
generation. The equations highlighted are consequences of the continuity equation,
our assumptions, and current conservation, as spelled out in the text. They constrain
the partial currents so that we can calculate them as a function of the total current
in the device.

throughout the device, including at the contacts as long as the device is in steady

state, which will always be assumed. We will assume that current moving in the

positive x direction (to the right) is positive.

The generation of electrons and holes due to photon absorption is assumed to be

uniform, and determines the relation between the partial currents for each individual

carrier, as we will see later. We use the electrochemical potential, µ̄ = µ + zqφ,

where µ is the chemical potential, z is +1 for holes and −1 for electrons, and φ is the

electrostatic potential. We make the following critical assumptions:

1. Electrons and holes in the absorber are thermalized to the conduction and

valence bands respectively, so that they can be described by the electrochemical

potentials µ̄n and µ̄p. These are equivalent to the electron and hole quasi-Fermi

levels. This assumption is almost universally valid, as the relaxation times of
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electrons that are given more energy than the bandgap energy are much shorter

than the time needed to extract them from the absorber.[69–75]

2. There are no transport limitations in the absorber so that slopes in the quasi-

Fermi levels are negligibly small (i.e. dµ̄n
dx
≈ dµ̄p

dx
≈ 0)

3. Bulk recombination is neglected. 1

4. The boundary conditions for each of the four partial currents at the contacts

can be written as follows:

Jn(xα) = Jαn = Jα0n

(
n(xα)

n0(xα)
− 1

)
(3.1a)

Jp(x
α) = Jαp = −Jα0p

(
p(xα)

p0(xα)
− 1

)
(3.1b)

Jn(xβ) = Jβn = −Jβ0n
(
n(xβ)

n0(xβ)
− 1

)
(3.1c)

Jp(x
β) = Jβp = Jβ0p

(
p(xβ)

p0(xβ)
− 1

)
(3.1d)

where the J0n and J0p are electron and hole equilibrium exchange current

densities. The carrier densities and equilibrium carrier densities (i.e. n, p,

n0, and p0) are evaluated in the semiconductor at both the α and β interfaces.

The equilibrium densities are determined by contact properties.

5. The equilibrium carrier densities obey the law of mass action:

1Note that assumptions 2 and 3 are both implicitly assumed in both the Shockley model of the p-
n junction (recombination is considered in the quasi neutral regions, but not in the depletion region)
and the Schottky diode. The efficacy of these assumptions is tested in the Simulations chapter.
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n0(x)p0(x) = n2
i (3.2)

where ni is the intrinsic carrier density, given by

ni =
√
NcNve

− Eg
2qVt . (3.3)

6. The electric field in both contacts is zero, and their chemical potentials, µα and

µβ, are voltage independent.

Equation 3.1 is the set of boundary conditions relating the carrier densities

at the interfaces to the relevant partial currents. In essence, they state that

the partial currents are proportional to a voltage independent constant times the

excess carrier density at a contact. The excess carrier density is referenced to the

equilibrium density, which is usually determined by the contact Fermi-level, be it a

semiconductor or a metal. These boundary conditions are appropriate for a metal-

semiconductor contact, but can also be appropriate for Schottky contacts with an

insulator used to reduce the escape of minority carriers (i.e. a passivating layer),

and for doped semiconductor contacts. The extent to which these more complicated

device architectures can still be modeled by eq. 3.1 will be discussed in the Simulations

chapter.

Electrons and holes are always generated at equal rates in the bulk of our solar cell

absorber, as any photon with enough energy to promote an electron from the valence

band to the conduction band by definition leaves behind a hole. We assume, for the

sake of simplicity, that the generation rate is uniform throughout the absorber, so it is

easy to calculate the total rate of electrons and holes being generated by multiplying
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the generation rate by the thickness of the absorber. We define the light current

(density) as the product of the elementary charge times this rate:

JL = qGLL, (3.4)

where GL is the generation rate of electrons and holes per unit volume.

In general, the 1-D continuity equation for electrons in a semiconductor states

that

q
dn

dt
=
dJn
dx

+ q(GL −R), (3.5)

i.e. the number of electrons in some region of the absorber only changes if there are

more electrons flowing into the region than out (indicated by dJn
dx

, the 1-D divergence

of the electron current), if electrons are created from generation via photon absorption

(GL),2 or if they recombine (R). Given a uniform generation rate3 and assumption

3, the continuity equation at steady state (i.e. dn
dt

= 0) simplifies to

qGL = −dJn
dx

, (3.6)

which readily gives

Jαn − Jβn = qGLL = JL, (3.7)

2Note that we neglect thermal generation, as it is generally negligible compared to photon induced
generation. Additionally, it would be disingenuous to include thermal generation while we ignore
direct recombination, which is the reverse process.

3In reality, generation in a semiconductor is expected to follow Beer-Lambert law absorption, i.e.
the generation rate exponentially decays into the absorber according to the absorption coefficient.
However, given assumptions 2 and 3, we expect the generated carriers will readily distribute
themselves throughout the absorber, and thus the generation profile should not affect the result.
We will test this expectation in the Simulations chapter.
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using the fundamental theorem of calculus and eq. 3.4. This is a simple algebraic

expression relating the partial currents on either side of the absorber. Usually in

semiconductor physics, this relation would be much more complicated, and requires

a numerical solution to the continuity equation. We assumed that there was no bulk

recombination for the purposes of deriving the limiting behavior as determined by

contacts, but this assumption is also critical in allowing us to find an analytic, rather

than numerical solution to the continuity equation. As we will see, the analytic

solution is practical for developing an intuitive understanding of how the contact-

determined solar cell behaves.

By definition, the partial currents for each carrier sum to the total current

throughout the device. Therefore, at the contacts, we know that

J = Jαn + Jαp (3.8a)

J = Jβn + Jβp . (3.8b)

Thus, we now have three constraints for the four, in general unknown, partial

currents (or equivalently carrier densities via eq. 3.1) at the contacts. One more is

needed.

The final constraint comes from the assumption that the quasi-Fermi levels (i.e.

electrochemical potentials) for each carrier are constant throughout the absorber.

Evaluating the electrochemical potential for each carrier at each contact using its

definition gives
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VT ln
n(xα)

ni
− φα = VT ln

n(xβ)

ni
− φβ (3.9a)

VT ln
p(xα)

ni
+ φα = VT ln

p(xβ)

ni
+ φβ, (3.9b)

where we have chosen to reference the electrochemical potentials to that for which

n = p = ni and φ = 0. Eliminating φ(xα)− φ(xβ) from these equations yields

p(xβ)

p(xα)
=
n(xα)

n(xβ)
, (3.10)

or, equivalently,

n(xα)p(xα) = n(xβ)p(xβ). (3.11)

Equation 3.11 is a constraint on the carriers at each contact, but can be written

in terms of the partial currents via eq. 3.1. It can be thought of as a modified,

or non-equilibrium, law of mass action applied at each contact; it simply takes into

account that the quasi-Fermi-level splitting is in general non-zero (it is only zero at

equilibrium).

Equations 3.7, 3.8a, 3.8b, and 3.11 (written in terms of the partial currents via

eq. 3.1) then, are four algebraic constraint equations for the four unknowns, Jαn ,

Jαp , Jβn , Jβp in terms of the four J0’s, JL, the four equilibrium carrier densities at

the contacts, and the total current, J . Unfortunately, eq. 3.11 is nonlinear, so we

will have to do some algebraic gymnastics in order to solve them. One can readily

use Mathematica to solve this system of equations (in fact this is how they were
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first solved), however, this does not necessarily put them in useful or intelligible

forms. Detailed algebraic solutions are therefore provided in Chapter 4. I find the

algebraic solutions enlightening and rather elegant (despite the complexity of the

algebra involved), however the non-mathematically curious can skip Chapter 4.

There is one more thing to do before this though; the solutions to the partial

currents at the contacts, or the equivalent carrier densities don’t directly tell us about

what we want to know: the performance of the solar cell. For this, we need to know

how the voltage across the device relates to these quantities. By definition the voltage

difference across the device is proportional to the electrochemical potential difference

for electrons between the two contacts:

−qV = µ̄α − µ̄β. (3.12)

Note that µ̄α and µ̄β are not equivalent to µ̄(xα) and µ̄(xβ), respectively. The first two

refer to the electrochemical potentials in the contacts themselves, whereas the second

two refer to the electrochemical potentials in the semiconductor at the interfaces to

the contacts. Using the definition of µ̄ yields

−qV = µα − qφα − (µβ − qφβ). (3.13)

At equilibrium, the electrochemical potentials of the contacts must be equal:

µα0 − qφα0 = µβ0 − qφ
β
0 . (3.14)

Equations 3.13 and 3.14 can be combined with assumption 6 to the chemical

potentials, yielding:
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V = φα − φβ − (φα0 − φ
β
0 ). (3.15)

Writing the electrostatic potentials in terms of the chemical potentials via eq.

3.9 (evaluated at both a general applied bias and equilibrium) leads to

V = VT ln

(
n(xα)n0(xβ)

n0(xα)n(xβ)

)
= VT ln

(
p(xβ)p0(xα)

p0(xβ)p(xα)

)
(3.16)

In addition to the voltage across the device, the quasi-Fermi-level splitting (∆Ef )

can be calculated for arbitrary currents/voltages:

∆Ef
q

=
µ̄n − µ̄p

q
= VT ln

(
n(xα)p(xα)

n0(xα)p0(xα)

)
= VT ln

(
n(xβ)p(xβ)

n0(xβ)p0(xβ)

)
(3.17)

The model that has been layed out above is the basis of the theory presented in

both Roe et al. 2018 and Roe et al. 2019. In the next chapter, the current-voltage

curve, as well as the open circuit voltage and quasi-Fermi-level splitting at Voc will be

derived algebraically, using the constraints arrived at here. All of the algebra derived

in the next chapter, and all of the results discussed in the two subsequent chapters

rely on the assumptions of our model, as presented above.
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CHAPTER IV

PRIMARY DERIVATIONS

This chapter contains the necessary algebraic derivations leading to the

theoretical results presented in Chapters 5 and 6. It is taken from the Supporting

Information of both Roe et al. 2018 and Roe et al. 2019. A few semantic changes

have been made for clarity and continuity purposes, however the math remains the

same.

Voltage as a Function of Current

We solve the system of Eqs. 3.7, 3.8a 3.8b, and 3.11 for Jβn as a function of JL,

the four J0’s, and J . The solution for Jβn is easily used to obtain the other three

partial currents, by substituting back into Eqs. 3.7, 3.8a and 3.8b.

We first rewrite the modified law of mass action (Eq. 3.11) in terms of the partial

currents at the contacts using Eq. 3.1. Below are the necessary substitutions:

nβ = nβ0

(
1− Jβn

Jβ0n

)
(4.1a)

pβ = pβ0

(
1 +

Jβp

Jβ0p

)
(4.1b)

nα = nα0

(
1 +

Jαn
Jα0n

)
(4.1c)

pα = pα0

(
1−

Jαp
Jα0p

)
. (4.1d)

Thus, Eq. 3.11 reads:
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nβ0p
β
0

(
1− Jβn

Jβ0n

)(
1 +

Jβp

Jβ0p

)
= nα0p

α
0

(
1 +

Jαn
Jα0n

)(
1−

Jαp
Jα0p

)
. (4.2)

Using the equilibrium law of mass action (Eq.3.3) and dividing by n2
i , this simplifies

to:

(
1− Jβn

Jβ0n

)(
1 +

Jβp

Jβ0p

)
=

(
1 +

Jαn
Jα0n

)(
1−

Jαp
Jα0p

)
. (4.3)

Next, the constraints Jαp = J − Jαn and Jβp = J − Jβn (Eqs. 3.8a and 3.8b) are used to

eliminate Jαp and Jβp :

(
1− Jβn

Jβ0n

)(
1 +

J − Jβn
Jβ0p

)
=

(
1 +

Jαn
Jα0n

)(
1− J − Jαn

Jα0p

)
. (4.4)

The final constraint is that Jαn = JL + Jβn (Eq.3.7), giving:

(
1− Jβn

Jβ0n

)(
1 +

J − Jβn
Jβ0p

)
=

(
1 +

JL + Jβn
Jα0n

)(
1− J − (JL + Jβn )

Jα0p

)
. (4.5)

All variables except Jβn have been eliminated, next we manipulate the equation

so that it is in quadratic form. First, we multiply both sides by Jβ0nJ
α
0nJ

β
0pJ

α
0p:

(
Jβ0n − Jβn

)(
Jβ0p + J − Jβn

)
Jα0nJ

α
0p = Jβ0nJ

β
0p

(
Jα0n + JL + Jβn

) (
Jα0p − J + JL + Jβn

)
.

(4.6)

Expanding and collecting terms, we have:
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(
Jα0nJ

α
0p − J

β
0nJ

β
0p

)
(Jβn )2

+
(
Jα0nJ

α
0p(−J − J

β
0p − J

β
0n) + Jβ0nJ

β
0p(J − 2JL − Jα0n − Jα0p)

)
Jβn

+
(
Jα0nJ

α
0pJ

β
0nJ + Jβ0nJ

β
0p

(
J(Jα0n + JL)− JL(JL + Jα0n + Jα0p)

))
= 0. (4.7)

Dividing both sides by Jβ0nJ
β
0p and writing in terms of Λ =

Jα0nJ
α
0p

Jβ0nJ
β
0p

, this is simplified to:

(Λ− 1)(Jβn )2 +
(

Λ(−J − Jβ0p − J
β
0n) + (J − 2JL − Jα0n − Jα0p)

)
Jβn

+
(

ΛJβ0nJ +
(
J(Jα0n + JL)− JL(JL + Jα0n + Jα0p)

))
= 0. (4.8)

According to the quadratic formula then, the solution for Jβn is:

Jβn = 1
2(Λ−1)(

Λ
(
J + Jβ0p + Jβ0n

)
+
(
2JL + Jα0p + Jα0n − J

)
−

√√√√√
(

Λ
(
J + Jβ0p + Jβ0n

)
+
(
2JL + Jα0p + Jα0n − J

))2

+4(1− Λ)
(

ΛJβ0nJ +
(
J(Jα0n + JL)− JL(JL + Jα0n + Jα0p)

))
)

.

(4.9)

Note that we have dropped the ’+’ solution; the ’+’ solution sometimes results in Jβn

values that are not between −JL and 0 for J = 0 (recall that Jβn is negative in our

convention) and thus it is non-physical. In order to find the expression for J(V ), we

first re-write eq. 3.15 in terms of Jβn , giving:
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V = VT ln

1+
JL+J

β
n

Jα0n

1− J
β
n

J
β
0n


(4.10)

Plugging in the solution to Jβn ,

V = −VT ln

 1− 1

2Jβ0n(Λ−1)

(
2JL + Jα0p + Jα0n − J + Λ(J + Jβ0n + Jβ0p)−

√
R
)

1 + JL
Jα0n

+ 1
2Jα0n(Λ−1)

(
2JL + Jα0p + Jα0n − J + Λ(J + Jβ0n + Jβ0p)−

√
R
)
 .

(4.11)

For brevity, we have replaced the radicand in Jβn from eq. 4.9 with the symbol R. The

next step is to combine the denominator and numerator under a common denominator

for each:

V = −VT ln

 1

2Jβ0n(Λ−1)

(
J − 2JL − Jα0p − Jα0n + Λ(Jβ0n − J

β
0p − J) +

√
R
)

1
2Jα0n(Λ−1)

(
Jα0p − Jα0n − J + Λ(2JL + J + Jβ0n + Jβ0p + 2Jα0n)−

√
R
)
 .

(4.12)

Eliminating common factors in the numerator and denominator, writing out the Λ’s,

and multiplying both by Jβ0nJ
β
0p leads to:

V = −VT ln

(
Jα0n

Jβ0n

)
−

VT ln

(
Jβ0nJ

β
0p(J − 2JL − Jα0p − Jα0n) + Jα0nJ

α
0p(J

β
0n − J

β
0p − J) + Jβ0nJ

β
0p

√
R

Jβ0nJ
β
0p(J

α
0p − Jα0n − J) + Jα0nJ

α
0p(2JL + J + Jβ0n + Jβ0p + 2Jα0n)− Jβ0nJ

β
0p

√
R

)
.

(4.13)
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Next, we multiply top and bottom by the conjugate of the denominator to get rid of

the square root in the denominator. After factoring, the numerator is now equal to:

(
2Jα0n
Jβ0n

)
(JL + Jβ0n + Jα0n)

(Jβ0nJ
β
0p − Jα0nJα0p)×(

Jα0nJ
β
0pJ

α
0p + J(Jβ0nJ

β
0p + Jα0nJ

α
0p) + Jβ0n(Jα0n(Jβ0p − Jα0p)− J

β
0p(J

α
0p +
√
R))
)
.

(4.14)

The new denominator, below, has some common factors with the numerator:

4Jα0nJ
α
0p(JL + Jβ0n + Jα0n)(J + JL + Jα0n + Jβ0p)(J

α
0nJ

α
0p − J

β
0nJ

β
0p).

(4.15)

After canceling the common factors, the expression for V (J) is:

V = −VT ln

(
− Jα0nJ

β
0pJ

α
0p − J(Jβ0nJ

β
0p + Jα0nJ

α
0p)

−Jβ0n(Jα0n(Jβ0p − Jα0p)− J
β
0p(J

α
0p +
√
R))

)
− VT ln

(
2Jβ0nJ

α
0p(J + JL + Jα0n + Jβ0p)

)
(4.16)

After redistributing terms in a more sensible way in the numerator and in the

radicand, we now have a well-simplified V (J):
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V (J) = −VT ln

(
1

2Jβ0nJ
α
0p(J+JL+Jα0n+Jβ0p)(

−Jα0nJα0p
(
J − Jβ0n + Jβ0p

)
− Jβ0nJ

β
0p

(
J + Jα0n − Jα0p

)
+

√√√√√
(
Jα0nJ

α
0p

(
J + 2JL + Jβ0n + 2Jα0n + Jβ0p

)
− Jβ0nJ

β
0p

(
J + Jα0n − Jα0p

))2

+4Jα0nJ
α
0p

(
Jβ0nJ

β
0p − Jα0nJα0p

)(
JL + Jβ0n + Jα0n

)(
J + JL + Jα0n + Jβ0p

) ))
.

(4.17)

Current as a Function of Voltage

We could end this here, but it turns out the inverted expression for J(V ) is

simpler and more revealing. Thus, we proceed to derive J(V ). The first steps are

to divide by −VT , exponentiate both sides, and then multiply by the denominator of

the Log argument:

e−V/VT
(

2Jβ0nJ
α
0p(J + JL + Jα0n + Jβ0p)

)
=

−Jα0nJα0p
(
J − Jβ0n + Jβ0p

)
− Jβ0nJ

β
0p

(
J + Jα0n − Jα0p

)
+

√√√√√
(
Jα0nJ

α
0p

(
J + 2JL + Jβ0n + 2Jα0n + Jβ0p

)
− Jβ0nJ

β
0p

(
J + Jα0n − Jα0p

))2

+4Jα0nJ
α
0p

(
Jβ0nJ

β
0p − Jα0nJα0p

)(
JL + Jβ0n + Jα0n

)(
J + JL + Jα0n + Jβ0p

).

(4.18)

Next, the square root term is isolated, we divide by Jβ0nJ
β
0p, and re-substitute Λ =

Jα0nJ
α
0p

Jβ0nJ
β
0p

where appropriate:
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2e−V/VT
Jα0p

Jβ0p
(J + JL + Jα0n + Jβ0p)

+Λ
(
J − Jβ0n + Jβ0p

)
+
(
J + Jα0n − Jα0p

)
=

√√√√√
(

Λ
(
J + 2JL + Jβ0n + 2Jα0n + Jβ0p

)
−
(
J + Jα0n − Jα0p

))2

+4Λ (1− Λ)
(
JL + Jβ0n + Jα0n

)(
J + JL + Jα0n + Jβ0p

) .

(4.19)

Since we need to solve for J in the end, it is advantageous to write the left hand side

in descending order of J :

J

(
2e−V/VT

Jα0p

Jβ0p
+ 1 + Λ

)
+

(
2e−V/VT

Jα0p

Jβ0p
(Jα0n + Jβ0p + JL) + Λ(Jβ0p − J

β
0n) + Jα0n − Jα0p

)

=

√√√√√
(

Λ
(
J + 2JL + Jβ0n + 2Jα0n + Jβ0p

)
−
(
J + Jα0n − Jα0p

))2

+4Λ (1− Λ)
(
JL + Jβ0n + Jα0n

)(
J + JL + Jα0n + Jβ0p

) .

(4.20)

From this point, it is advantageous to use some variable substitutions in order to

simplify things:

c1 = JL + Jβ0p + Jα0n (4.21a)

c2 = JL + Jβ0n + Jα0n (4.21b)

c3 = Jα0n − Jα0p (4.21c)

c4 = 2e−V/VT
Jα0p

Jβ0p
. (4.21d)
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Thus, our equation becomes:

J (c4 + 1 + Λ) + (c4c1 + Λ(c1 − c2) + c3)

=
√

(Λ (J + c1 + c2)− (J + c3))2 + 4Λ (1− Λ) c2 (J + c1) .

(4.22)

Square both sides to get rid of the radical:

J2 (c4 + 1 + Λ)2 + 2J (c4 + 1 + Λ) (c4c1 + Λ(c1 − c2) + c3) + (c4c1 + Λ(c1 − c2) + c3)2

=(Λ (J + c1 + c2)− (J + c3))2 + 4Λ (1− Λ) c2 (J + c1) .
(4.23)

Collecting terms and writing in quadratic form gives:

J2
(
c2

4 + 2c4 + 2Λc4 + 4Λ
)

+ J
(
2c2

4c1 + 2c4c1 + 4Λc4c1 + 2c3c4 + 4Λc3 + 4Λc1 − 4Λc2 − 2Λc4c2

)
+
(
c2

4c
2
1 + 2c4c1c3 + 2Λc2

1c4 + 4Λc1c3 − 2Λc2c4c1 − 4Λc1c2

)
= 0. (4.24)

This can be factored. First, look for the quadratic coefficient in the linear coefficient

and factor a c1 out of the zeroth order term:

J2
(
c2

4 + 2c4 + 2Λc4 + 4Λ
)

+ J
(
c1(c2

4 + 2c4 + 2Λc4 + 4Λ) + c2
4c1 + 2c4c3 + 2Λc1c4 + 4Λc3 − 2Λc2c4 − 4Λc2

)
+ c1

(
c2

4c1 + 2c4c3 + 2Λc1c4 + 4Λc3 − 2Λc2c4 − 4Λc2

)
= 0. (4.25)
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Now divide through by the quadratic term coefficient:

J2 + J

(
c1 +

c2
4c1 + 2c4c3 + 2Λc1c4 + 4Λc3 − 2Λc2c4 − 4Λc2

c2
4 + 2c4 + 2Λc4 + 4Λ

)
+ c1

c2
4c1 + 2c4c3 + 2Λc1c4 + 4Λc3 − 2Λc2c4 − 4Λc2

c2
4 + 2c4 + 2Λc4 + 4Λ

= 0. (4.26)

Thus it is clear that the solutions for J are:

J = −c1 (4.27a)

J = −c
2
4c1 + 2c4c3 + 2Λc1c4 + 4Λc3 − 2Λc2c4 − 4Λc2

c2
4 + 2c4 + 2Λc4 + 4Λ

. (4.27b)

Plugging in the definition of c1 for the first solution, we have

J = −JL − Jα0n − J
β
0p. (4.28)

This solution is non-physical because in the dark, JL is zero, yet the current is non-

zero. Thus, we settle for the second solution. Before writing J explicitly in terms of

V , it is worth simplifying the expression as much as possible. First, we long divide

the solution:
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J =
−c1(c2

4 + 2c4 + 2Λc4 + 4Λ) + 2c4c1 + 4Λc1 + 4Λc2 + 2Λc4c2 − 2c3c4 − 4Λc3

c2
4 + 2c4 + 2Λc4 + 4Λ

(4.29)

= −c1 +
2c4c1 + 4Λc1 + 4Λc2 + 2Λc4c2 − 2c3c4 − 4Λc3

c2
4 + 2c4 + 2Λc4 + 4Λ

(4.30)

= −c1 + χ. (4.31)

The remainder, χ, can be simplified via partial fractions (note that the denominator

is easily factored):

χ =
2c4c1 + 4Λc1 + 4Λc2 + 2Λc4c2 − 2c3c4 − 4Λc3

(c4 + 2)(c4 + 2Λ)
=

ζ

c4 + 2
+

ι

c4 + 2Λ
. (4.32)

Multiplying both sides by (c4 + 2)(c4 + 2Λ) gives:

2c1(c4 + 2Λ) + 2Λc2(c4 + 2)− 2c3(c4 + 2Λ) = (c4 + 2Λ)ζ + (c4 + 2)ι. (4.33)

This equation must hold for all values of c4. Choosing convenient values for c4 allows

us to find ζ and ι. First, we choose c4 = −2. This easily produces:

ζ = 2(c1 − c3). (4.34)

Next, we choose c4 = −2Λ. This leads to:

ι = 2Λc2. (4.35)
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Thus, the solution for J is:

J = −c1 +
2Λc2

c4 + 2Λ
+

2(c1 − c3)

c4 + 2
. (4.36)

Finally, we must write out the explicit V dependence by substituting for the c’s and

Λ:

J = −(JL + Jα0n + Jβ0p) +
2
Jα0pJ

α
0n

Jβ0pJ
β
0n

(JL + Jα0n + Jβ0n)

2e−V/VT
Jα0p

Jβ0p
+ 2

Jα0pJ
α
0n

Jβ0pJ
β
0n

+
2(JL + Jβ0p + Jα0n − (Jα0n − Jα0p))

2e−V/VT
Jα0p

Jβ0p
+ 2

.

(4.37)

This is is easily simplified for the final expression for J(V ):

J = −(JL + Jα0n + Jβ0p) +
JL + Jα0n + Jβ0n

1 + e−V/VT
Jβ0n
Jα0n

+
JL + Jβ0p + Jα0p

1 + e−V/VT
Jα0p

Jβ0p

. (4.38)

Voc and ∆Ef at Voc

It is perfectly valid to solve for Voc by setting J = 0 in eq. 4.38 and solving for

V . However, if we instead set J = 0 in eq. 4.9, the resulting expression for Jβn can be

readily used to derive both Voc and the associated quasi-Fermi-level splitting. Doing

so, we have
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Jβn =
1

2(1− Λ)(
−Λ

(
Jβ0p + Jβ0n

)
−
(
2JL + Jα0p + Jα0n

)
+

√(
Λ
(
Jβ0p + Jβ0n

)
+
(
2JL + Jα0p + Jα0n

))2

− 4(1− Λ)JL(JL + Jα0p + Jα0n)

)
(4.39)

Note that we have multiplied both numerator and denominator by -1. Next, we define

fβ as

fβ = −J
β
n

JL
. (4.40)

fβ is therefore

fβ =
1 + ΛΓβ + Γα −

√
(ΛΓβ + Γα)2 + (Λ− 1)(1 + 2Γα)

1− Λ
. (4.41)

As long as no net current is flowing in the device, fβ is always between 0 and 1.

Expanding and combining terms in the square root and factoring, we arrive at

fβ =
1

1− Λ

[
1 +

(
ΛΓβ + Γα

) (
1−
√

1 + Y
)]
, (4.42)

where

Y =
2Λ(Γβ + Γα + 1

2
)

(ΛΓβ + Γα)2
(4.43)

and
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Γα =
Jα0n + Jα0p

2JL
(4.44a)

Γβ =
Jβ0n + Jβ0p

2JL
. (4.44b)

The calculation of Voc and ∆EF are straightforward from here. For Voc, we write Eq.

4.10 in terms of fβ, giving

Voc = VT ln

(1− fβ) JL
Jα0n

+ 1

fβ JL
Jβ0n

+ 1

 . (4.45)

Similarly, ∆EF/q is evidently

∆EF
q

= VT ln

[(
1 + fβ

JL

Jβ0n

)(
1 + fβ

JL

Jβ0p

)]
. (4.46)

With expressions derived for the entire J(V ) curve as well as the Voc and ∆EF

at Voc, we are now able to discuss the implications of these results in detail in the

following two chapters.

46



CHAPTER V

THE J(V ) CURVE

We now proceed to discuss the nature of the J(V ) curve derived in Chapter 4.

The chapter is almost entirely taken from the results section of Roe et al. 2019, with

some detail added for clarity.

The contact-determined J(V ) curve of our solar cell, as derived in the previous

chapter, is given by

J = −
(
JL + Jα0n + Jβ0p

)
+
JL + Jα0n + Jβ0n

1 + Jβon
Jαon
e−V/VT

+
JL + Jα0p + Jβ0p

1 +
Jαop

Jβop
e−V/VT

. (5.1)

It is remarkably simple, given the complexity of the algebra required to derive it.

With the voltage convention we have chosen, the power quadrant (if there is one)

is either quadrant II or IV. Given our assumptions discussed in the Model chapter,

this equation is exact (i.e. we need not specify limits on the J0’s or JL). It is very

quickly evident, though, that only certain combinations of JL’s and J0’s will produce

a meaningful power quadrant, and therefore a J(V ) curve worth studying:

1. The light current density must be larger than at least two of the four J0’s

2. The larger of the two electron J0’s must be at the opposite contact as that for

holes.

The first is intuitive if we consider that the smaller J0’s for each carrier can be

thought of as ‘leakage rates’ for each carrier; a solar cell will not work if it leaks carriers

through the contacts faster than it can generate them through photon absorption.

The second condition is also obvious in hindsight; there must be some built in
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asymmetry so that electrons prefer one contact while holes prefer the other in order to

generate a current (electrons and holes being collected at the same contact amounts

to recombination). This highlights the fact that the solar cell is fundamentally a two

carrier device, in that the behavior of both electrons and holes must be considered

(this is not true for some other semiconductor devices, such as the Schottky diode,

or even the transistor).

We restrict our consideration to a device that obeys the two conditions described

above. Furthermore, we now assume that the α contact is better at collecting holes

than electrons, and therefore dub it the ‘hole’ contact, replacing the α superscript with

h. We assume the opposite for the β contact, which we now call the electron contact.

It turns out that this assumption is not strictly necessary to create a functioning solar

cell (we will consider an exception to this later), but most working devices are likely

to fit into this category. To emphasize our assumptions about which J0’s are bigger

than others, we use boldface font for the majority, or larger J0’s and lower case for

the smaller (minority) J0’s such that

Je
0n � jh0n (5.2a)

Jh
0p � je0p. (5.2b)

Again, these assumptions are not necessary, but are expected to apply for most

functioning solar cells, and they aid us in developing an intuitive understanding of

the J(V ) curve. Note that we have replaced the α and β superscripts with h and e,
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referring to the hole and electron contacts respectively. Bearing these assumptions in

mind, the J(V ) curve becomes

J = −
(
JL + jh0n + je0p

)
+
JL + jh0n + Je

0n

1 + Je
on

jhon
e−V/VT

+
JL + Jh

0p + je0p

1 +
Jh
op

jeop
e−V/VT

. (5.3)

It should be noticed right away that this function is different from the ideal solar cell

equation (eq. 2.1) in that the light current is not simply subtracted off from the ‘dark

diode equation’; JL appears in the voltage dependent parts of the function. This has

obvious implications on the relation between light intensity and performance, and

will be further discussed later on.

Perhaps the most interesting feature of this function is that it is readily divided

into three terms, each of which has distinct features. The leftmost term is voltage

independent, and is simply an offset equal to the light current plus the two minority

J0’s or ‘leakage rates’. Given assumption 1 above, we know that JL � jhon and

JL � jeop, so the first term is always approximately equal to JL for any functional

solar cell. Meanwhile, the other two terms are both voltage dependent. Critically,

one only depends on electron J0’s and JL, while the other only depends on hole J0’s

and JL. The shape of both functions is essentially a smeared out step-function; thus

we dub one the ‘electron step’ and the other the ‘hole step’. The J(V ) curve is, in

general, a superposition of these three components.

Right away, one notices that the step-like nature of the curve is different from

the ideal solar cell equation because the current eventually levels off at a fixed value

in forward bias (positive V ), instead of increasing exponentially. The ‘height’ (i.e. the

difference between the current density at voltages above the step vs. below the step),

is given by JL+Je
0n+jh0n ≈ JL+Je

0n for the electron step and JL+Jh
0p+je0p ≈ JL+Jh

0p

for the hole step.
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The origin of the step-function nature of the J(V ) curve can be readily explained

by the diode-like boundary conditions for the partial currents (eq. 3.1) linked by the

continuity equation. Consider, for instance, the limits of the current in far reverse

bias given by eq. 5.3. The current must be negative throughout the device given

our convention, and minority carriers are being depleted at their contacts, while

there is a small excess of majority carriers at their respective contacts. Given eq.

3.1, however, minority currents can only be as large in magnitude as j0 when their

carriers are being depleted, as the carrier densities cannot go below zero. Because the

continuity equation restricts the difference between electron and hole partial currents

separately, to JL, the maximum possible current magnitude in reverse bias occurs

when the electron density at contact α and the hole density at contact β are pulled

down to zero, giving a total current of −jα0n − jβop − JL.

Meanwhile, in far forward bias, the opposite occurs; there is a large excess of

minority carriers at their contacts, while the densities of majority carriers are being

drawn down to zero. In principle, the current of minority carriers is unbounded when

they are in excess at a contact. However, the majority carrier partial currents are

bounded by the J0’s, for the exact same reason the minority partial currents are

bounded in reverse bias. Given the continuity equation, this leads to a maximum

current of Jβ0n + Jα0p + JL. The steps themselves are caused by minority carriers

being put into excess as the bias goes from reverse to forward. Initially, an excess

of minority carriers at their respective contacts does not contribute significantly to

the current because the associated j0’s are so small, however eventually, the minority

carrier densities exceed their equilibrium values by enough orders of magnitude that

they start to change the partial current at that contact. Because the associated

majority current at the opposite contact is linked by the continuity equation, this
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eventually forces the corresponding majority carrier density to be drawn down below

equilibrium. For a more detailed explanation, refer to Appendix E.

Note that in practice, the leveling off of the second step is unlikely to be observed

for the majority of solar cells. This is because there is usually at least one contact in

a solar cell that is really good at extracting its intended carrier, and thus the current

at which the J(V ) curve levels off is unlikely to be measured. Furthermore, for

real devices, bulk recombination will always kick in eventually in forward bias. This

allows for the difference between partial currents across the device to be unbounded,

allowing the current to go to infinity like a normal diode. This will occur in place of

the rollover of the second step whenever the J0 associated with bulk recombination

processes is larger than the smallest j0. Regardless, the physical origin of the second

step is useful in understanding the relative importance of electron and hole processes

in the operation of a solar cell.

The inflection point, or center (i.e. the voltage at which the current is exactly

halfway between the upper and lower current values of the step) can be easily

calculated. This ‘step’ voltage is

Vs,n = VT ln(
Jβ0n
jα0n

) = VT ln(Sn) (5.4a)

Vs,p = VT ln(
Jα0p

jβ0p
) = VT ln(Sp) (5.4b)

for electrons and holes respectively. Here, we have introduced the electron and hole

carrier selectivities as
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Sn =
Je
0n

jh0n
(5.5a)

Sp =
Jh
0p

je0p
(5.5b)

respectively. The S parameters characterize carrier selectivity because they describe

the relative rates of the electron or holes extraction ability across the device. The

greater S is, the greater the asymmetry in the rates of these processes. On a log scale,

S is the difference between the two J0 values.

Because the carrier selectivities necessarily contain J0’s from both contacts, they

are distinct from the notion of contact selectivity, which can be defined as the ratio

of the J0’s from a single contact. A critical result of the theory then, is that the

position of the steps in the J(V ) curve depend on the carrier selectivities, and not

the selectivities of an individual contact.

Equation 5.3 provides a unified treatment of non-ideal solar cell phenomena such

as dark/light crossover (i.e. failure of current superposition)[76, 77] and S-shaped

curves.[78] For instance, it is immediately evident from eq. 5.3, that the J(V ) curve

cannot be written in general as Jdark(V ) + Jlight where Jlight is voltage independent.

In fact, the voltage at which the current crossover occurs can easily be calculated by

setting eq. 5.3 equal to itself with and without JL and solving for V . The solution is

given by

Vcross = VT ln

√√√√Jβ0nJ
α
0p

Jα0nJ
β
0p

= VT ln
√
SnSp (5.6)
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This equation predicts that there is always dark/light crossover in every contact-

limited solar cell. However, if the product of the selectivities is large enough, one may

not be able to measure it because the current is likely to become strongly affected

by series resistance and/or bulk recombination far into forward bias. Not only does

crossover always happen in principle, the J(V ) is always S-shaped, in principle. Both

phenomena are natural consequences of including the limitations due to majority

carrier extraction for both carriers in the model. However, they only become relevant

to the power quadrant when JL is larger than the J0’s. This is discussed in more

detail below.

Figure 4 is an example J(V ) curve produced from eq. 5.3 demonstrating the

key features of the function. In reverse bias (V < 0), the current is approximately

JL, given that the j0’s are much smaller than JL. We can tell that the j0’s are small

relative to JL and the J0’s just by glancing at the curve; they must be small in order

for there to be an appreciable photovoltaic effect. In this example, the two steps are

well separated in voltage. The first step (i.e. the step that occurs at smaller forward

bias, colored blue in Fig. 4) is associated entirely with electron J0’s in this case.

We can immediately tell from where the electron step ends (at +10 mA cm−2) that

Jβ0n = 10 mA cm−2 because the height of the electron step is approximately equal to

JL + Jβ0n. Since the two steps are well separated in voltage, we can use the location

of the center of the electron step at ∼ 420 mV (labeled Vn in Fig. 4) to calculate

the value of jα0n from eq. 5.4a. Given a temperature of 300 K for Fig. 4, and that

Jβ0n = 10 mA cm−2 as discovered above, jα0n ≈ 10−6 mA cm−2. In this case, the value

for jα0n could also be determined or confirmed from the saturation current of a dark

J(V ) measurement, since jβ0p is much smaller than jα0n. The hole step, colored red in
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FIGURE 4. A sample J(V ) curve produced by eq. 5.3 using JL = 40, Jβ0n = 10, jα0n =
10−6, Jα0p = 100, jβ0p = 10−15 mA cm−2. In green, the current is fixed at approximately
JL. The blue section highlights the first step, whose location is determined, in this
case, by electron J0’s. The red section highlights the second step, in this case entirely
determined by hole J0’s.

Fig. 4, occurs entirely outside of the power quadrant, and therefore does not limit

the efficiency of the device.

In the case of Fig. 4, the solar cell is limited by the ‘electron selectivity’.

Therefore, any increase in that ratio, either from decreasing jα0n or by increasing

Jβ0n will improve the efficiency of the device while changing the hole-associated J0’s

will have no appreciable effect on the efficiency of the device. This knowledge is useful

because it tells us that an appropriate improvement in either contact will increase

device performance. Practically speaking, this means we might be able to improve the

device efficiency with a thin insulating layer inserted at the α contact. Although this

would likely decrease Jα0p, that does not affect the power quadrant, while reducing

jα0n would improve the electron selectivity by reducing electron leakage.
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Another consequence of the importance of carrier selectivity is that it is entirely

possible to create a functional solar cell where both contacts are electron selective

(or both are hole selective) as long as both carriers have at least some preference

for opposite contacts. Here, by electron selective contact, we mean a contact whose

electron J0 is larger than its hole J0 and visa-versa for a hole selective contact. Fig. 5

is an example of a J(V ) curve for a solar cell with two electron selective contacts, yet

there is still an appreciable photovoltaic effect. Despite the fact that both contacts

are electron selective, the holes still prefer the α compared to the β contact and visa

versa for electrons because one contact is much more selective than the other. Note

that while it is possible to create a functioning solar cell with two contacts of the same

selectivity type or even if one of the two contacts is not selective, it is not possible

to create a functioning solar cell if neither contact is selective. The requirement

to achieve an appreciable photovoltaic effect in all cases is simply that the contacts

encourage electrons to go to one contact and holes to the other contact. In other

words, if the electrons prefer contact β due to it having a larger electron J0 than

contact α, the opposite must be true for holes.

In principle, all contact-determined J(V ) curves produced by eq. 5.3 are a simple

superposition of the two steps centered at the step voltages for each carrier. However,

because the current in reverse bias is approximately equal to JL and because only

the power quadrant determines device performance, it is important to consider the

size of the steps relative to the light current. According to eq. 5.3, each step has

a minimum height of JL when the J0 associated with the step is small compared to

JL. Conversely, if the J0 associated with a step is much larger than JL, the height

of that step is approximately equal to that J0. These two limits naturally suggest

two regimes that delineate distinct behavior for each carrier. A carrier is in high
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FIGURE 5. An example of a J(V ) curve produced by eq. 5.3 in which the electron
J0’s of each contact are larger than the hole J0’s, meaning both contacts are electron
selective. Parameters values are JL = 40, Jβ0n = 106, Jα0n = 10−6, Jα0p = 10−8,

Jβ0p = 10−13 mA cm−2. Note that we have not used the J0, j0 convention because the
assumption that both contacts have the opposite selectivity is not valid in this case.

injection when the larger of the two J0’s of that carrier is much smaller than JL, i.e.

electrons are in high injection if JL � Jβ0n. The low injection limit applies to a carrier

if the J0 of the carrier is much larger than JL. These regimes correspond to different

orders of recombination at the contacts; the high injection regime is associated with

second order recombination while the low injection regime indicates the presence of

quasi-first-order recombination. The nature of recombination as it is determined by

high and low injection will be discussed in more detail in Chapter 6.

The motivation to separate these two regimes can be taken from eq. 3.1. The

majority process is a significant limitation to device performance when a large excess

of majority carriers is needed to provide a partial current on the order of JL, which

is necessary for any solar cell. In other words, the ‘high injection’ limit is that where

the majority carrier density at a contact interface must be much larger than the
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equilibrium density as set by the contact in order to generate JL of partial current.

The ‘low injection’ limit meanwhile implies than only a very small excess of majority

carriers at the contact is required to produce JL. This naturally leads to the direct

comparison of JL to the J0 for each carrier. The difference between our definition of

low and high injection and the usual definition is the density to which we compare the

majority carrier density; in usual device physics, one compares to the dopant density,

whereas here we compare to the equilibrium density as set by the contact. Note that

we could easily define such a limit for the minority carriers as well, however, one

cannot produce appreciable photovoltaic effect if j0 > JL, therefore, minority carriers

are always in ‘high injection’ for all practical solar cells.

Figures 6 a and b display J(V ) curves where the first, or limiting step, is in

low and high injection respectively. They reproduce the approximate performance

parameters and shape from Figures 5a and 6a from Das et al.,[79] respectively, where

various passivating amorphous silicon layers were used as selective contacts to either

side of a crystalline silicon absorber. For the low-injection case, the J(V ) curve will

always look qualitatively similar to Fig. 6a on the scale of JL. That is, there will

only be one visible step, and the current will not level off on the scale of JL. The

J(V ) curve is still S-shaped, but the S will not appear on the scale of JL, meaning

it will be irrelevant to the power quadrant, thus the superposition principle applies

in the power quadrant. This is perhaps the simplest case, and it can be shown (see

Appendix F) that the efficiency is solely dependent on the limiting j0. The only way

to improve such a device is to reduce the leakage rate of minority carriers, and because

holes are the limiting carriers in this case, this means decreasing jβ0p.

In contrast, the J(V ) curve can also look like Fig. 6b where the superposition

principle clearly fails, producing an S-shaped curve in the power quadrant because
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FIGURE 6. a) Dark (black) and light (orange) J(V ) curves produced from eq. 5.3
using JL = 30, Jβ0n = 3 × 103, jα0n = 10−15, Jα0p = 103, jβ0p = 10−10 mA cm−2. The
inset shows the J(V ) light curve on a current scale sufficient to observe the biggest
step. b) J(V ) curve produced using JL = 32, Jβ0n = 103, jα0n = 10−14, Jα0p = 10−1,

jβ0p = 2 × 10−8 mA cm−2. The inset again depicts the light J(V ) curve on a current
scale sufficient to see both steps in their entirety.
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the limiting carriers (holes in this case) are in high injection. The step for a carrier

that is in high injection always ends at J ≈ 0 (except when the steps occur at the

same voltage), leading to a less-than-ideal fill factor. While electron J0’s can effect

the Voc in this case, they do not have a significant effect on the power quadrant and

hence the efficiency as they are not the limiting carrier. As with Fig. 4, our model

states that one could improve the device efficiency both by increasing the limiting J0

(in this case, Jα0p), and by decreasing the limiting j0 (in this case, jβ0p). This might

be useful, if for instance, it is not clear how to improve the hole collection of contact

α. This is particularly insightful, because for instance, the thin-film/CdTe literature

has frequently correlated current rollover to limited built-in potential, caused by an

undesired barrier at the back contact.[50, 77, 80] Our explanation is consistent with

this because the back barrier is what determines the J0’s for that contact, but we

also show that improvements to the opposite contact would also be beneficial to

performance. If instead, one was able to increase Jα0p, an improvement of 2.5 orders

of magnitude would be useful after which reducing jβ0p would be the only way to

improve efficiency.

It is important to be precise about what we mean by ‘limiting step’ (or

equivalently ‘limiting carrier’). One might assume that the carrier with the smallest

step voltage (eq. 5.4) must be the limiting carrier, but this is only appropriate if both

carriers are in high injection. If a carrier is in low injection, then the step voltage is

not relevant to the power quadrant because the current at the step voltage will be

well above zero (i.e. outside the power quadrant). In this case, it is the ratio of JL

(instead of J0) to j0 that must be considered. We therefore define the critical voltages

for each carrier as:
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Vc,n = VT ln

(
Min

[
Jβ0n
jα0n

,
JL
jα0n

])
(5.7a)

Vc,p = VT ln

(
Min

[
Jα0p

jβ0p
,
JL

jβ0p

])
. (5.7b)

The carrier with the smallest critical voltage is the limiting carrier. If the critical

voltages are within a few kT/q of each other, both carriers will limit the device.

Note that if both contacts are ideal Schottky contacts, the carrier selectivities

will be equal. However, the critical voltages of each carrier may not be equal in that

case, depending on the work functions of the metals. Since many semiconductor-

metal interfaces do not behave as ideal Schottky contacts, and since many solar cells

use interfacial layers and/or doped semiconductors (as opposed to just a metal) as

contacts to the absorber, one would expect that in practice, the carrier selectivities

of electrons and holes will not generally be identical.

While knowledge of the shape of the J(V ) curve is useful, it is also essential to

understand how the critical performance parameters such as Voc, Jsc, and, ultimately,

η depend on the J0’s. This discussion will be held in Chapter 6.
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CHAPTER VI

PERFORMANCE PARAMETERS

This chapter derives and discusses the critical photovoltaic performance

parameters that can be calculated with our model (either from the J(V ) curve or

the constraints on the partial currents used to derive it). It contains material taken

from both Roe et al. 2018 and Roe et al. 2019, and the supplementary material of

the latter.

Short-circuit Current

The easiest parameter to derive from eq. 5.3 is the short circuit current. This is

easily done by setting the voltage to zero, though some further simplification is useful,

and will be presented here. We will make the same assumption as last chapter, namely

that the β contact is electron selective, and the α contact is hole selective, and we will

use the same J0/j0 convention. Again, this assumption is useful for understanding,

but it is not a necessary condition for an appreciable short circuit current. Setting

the current to zero in eq. 5.3, we have:

Jsc = −(JL + jh0n + je0p) +
JL + jh0n + Je

0n

1 +
Je
0n

jh0n

+
JL + je0p + Jh

0p

1 +
Jh
0p

je0p

. (6.1)

To further simplify, we re-write with a common denominator:
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Jsc =
−(JL+jh0n+Je

0n)
(

1+
Je0n
jh0n

)(
1+

Jh0p
je0p

)
(

1+
Je0n
jh0n

)(
1+

Jh0p
je0p

) +

(JL+jh0n+Je
0n)

(
1+

Jh0p
je0p

)
(

1+
Je0n
jh0n

)(
1+

Jh0p
je0p

) +
(JL+je0p+Jh

0p)
(

1+
Je0n
jh0n

)
(

1+
Je0n
jh0n

)(
1+

Jh0p
je0p

)
(6.2)

The terms in the denominator are distributed and canceled:

Jsc =
JL

(
1−

Je0nJh0p

jh0nj
e
0p

)
+jh0n

(
−Je0n
jh0n

−
Je0nJh0p

jh0nj
e
0p

)
(

1+
Je0n
jh0n

)(
1+

Jh0p
je0p

)

+
Je
0n

(
1+

Jh0p
je0p

)
+je0p

(
−

Jh0p
je0p
−

Je0nJh0p

jh0nj
e
0p

)
+Jh

0p

(
1+

Je0n
jh0n

)
(

1+
Je0n
jh0n

)(
1+

Jh0p
je0p

)
(6.3)

Everything except the JL terms in the denominator cancel:

Jsc =
JL

(
1− Je

0nJ
h
0p

jh0nj
e
0p

)
(

1 +
Je
0n

jh0n

)(
1 +

Jh
0p

je0p

) . (6.4)

We get rid of the fractions in the denominator and numerators by multiplying by

jh0nj
e
0p

jh0nj
e
0p

:
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Jsc =
JL
(
jh0nj

e
0p − Je

0nJh
0p

)(
jh0n + Je

0n

) (
je0p + Jh

0p

) (6.5a)

=
JL
(
jh0nj

e
0p + je0pJ

e
0n − je0pJe

0n − Je
0nJh

0p

)(
jh0n + Je

0n

) (
je0p + Jh

0p

) (S41b)

= JL

(
je0p
(
jh0n + Je

0n

)(
jh0n + Je

0n

) (
je0p + Jh

0p

) − Je
0n

(
je0p + Jh

0p

)(
jh0n + Je

0n

) (
je0p + Jh

0p

)) (S41c)

= JL

(
je0p

je0p + Jh
0p

− Je
0n

jh0n + Je
0n

)
. (S41d)

This is easily written in terms of the carrier selectivities (given in eq. 5.5):

Jsc = JL

(
1

1 + Sp
− 1

1 + S−1
n

)
. (6.6)

Immediately, we notice that Jsc is directly proportional to JL. This is significant

because it means that it doesn’t matter whether or not the solar cell is in high or

low injection; the Jsc is always affected by the light intensity in a linear fashion. The

maximum value (magnitude) of Jsc is reached when the either of the two terms in the

parentheses goes to zero, while the other goes to 1. This occurs as both selectivities

go to 0 or infinity (recall that a selectivity of 1 refers to a completely non-selective

contact). As we have assumed that electrons are prefered at the β contact, and visa

versa for holes, both selectivities are larger than one.

The biggest takeaway from eq. 6.6 is that the selectivities do not need to be

all that large in order to maximize Jsc; as long as both carrier selectivities are larger

than 100, the Jsc will be greater than or equal to 98% of JL. This should always be

the case for solar cells that demonstrate an appreciable photovoltaic effect.

63



Open-circuit Voltage and Quasi-Fermi-level Splitting

We now proceed to discuss the properties of the cell when no current is flowing

through it. The most natural thing to do would be to set the current equal to zero in

eq. 5.3 and solve for the voltage to calculate Voc. This is perfectly legitimate, however

in chapter 4, we chose to set the partial current across the device to zero and solve

for both the voltage across the device and the corresponding quasi-Fermi splitting, as

comparison of these quantities is instructive.

When no net current flows across the device, the partial currents must mirror

each other at each point in the device. This is illustrated in Fig. 7, with an example

of partial current profiles that would be a valid solution to the continuity equation

when no net current is flowing. Because the partial currents must sum to zero, and

the difference between a given partial current at each contact is JL, the magnitudes

of each partial current at the contact must be less than JL.

For our understanding, it is also useful to know the relationship between the

carrier densities at contacts and the Voc and ∆Ef . Given our assumption that the

quasi-Fermi levels are flat throughout the device, ∆Ef is single valued. The open-

circuit voltage is, of course, single valued as well. Because the Voc can be determined

either by analyzing holes or electrons and the ∆Ef can be determined by the carrier

densities at either contact, they are constrained in an elegant manner as shown in

Fig. 8.

In general, the Voc is not equal to ∆Ef , as should be obvious from eqs. 4.45

and 4.46. It is clear from Fig. 8 that the relative amount of excess holes at the hole

collecting contact as well as the excess electrons at the electron contact must be small

in order for Voc to approach ∆Ef . This is in fact intuitive; it simply means that in

order for the Voc to be large enough to be dictated by recombination (which is always
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FIGURE 7. Example plot of electron (blue) and hole (red) partial currents as they
are constrained at open-circuit. The magnitude of the slopes are determined by the
generation rate, GL. The partial currents must sum to zero at every point in the
device.
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FIGURE 8. Schematic depicting the carrier densities at both interfaces on a log scale,
and their relation to Voc and ∆Ef . The length of the arrows corresponds to the log
of the ratio of the carrier density over the equilibrium carrier density at the contact.

65



what limits ∆Ef in every solar cell), there must be no build up of majority carriers

at their associated contacts. In other words, to maximize Voc, the majority carriers

must be able to provide a partial current as large as the light current without a large

build up at the relevant contact. This, in fact, aligns precisely with our definition

of high and low injection. If the majority J0 of a carrier is much larger than JL,

then we don’t require much excess carrier density in order to extract JL of current

out of that contact. If the opposite is true, we’ll need to build up a lot of majority

carriers at the corresponding contact to extract JL. This means that there is not

enough asymmetry in the device to support a voltage as large as the quasi-Fermi

level splitting without help from an external power supply (which, of course would

nullify the point of making such a solar cell).

The general expressions for both Voc and ∆Ef , derived in chapter 4, are written

in terms of fβ = −Jβ0n
JL

. They are reproduced here:

Voc = VT ln

(1− fβ) JL
Jα0n

+ 1

fβ JL
Jβ0n

+ 1

 (6.7a)

∆EF
q

= VT ln

[(
1 + fβ

JL

Jβ0n

)(
1 + fβ

JL

Jβ0p

)]
. (6.7b)

where

fβ =
1

1− Λ

[
1 +

(
ΛΓβ + Γα

) (
1−
√

1 + Y
)]
. (6.8)

Given the definition of fβ, and the fact that no net current is flowing in the device, we

know that fβ must be between 0 and 1 (negative fβ corresponds to electrons flowing
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into the absorber, and fβ > 1 corresponds to partial currents larger than JL, both of

which can’t happen at Voc).

Equations 6.7a and b work for any values of the J0’s and JL, however they

are complicated functions and do not readily lead to any intuitive understanding.

Therefore, we will consider some limiting cases when the expressions can be simplified.

First though, we define a contact recombination parameter, Rm, that depends

on the nature of the recombination. We consider quasi-first-order recombination

(m = 1) to effectively depend only on the minority process at the contact, and define

an associated first-order recombination parameter, R1, as:

R1 ≡ j0 (6.9)

Second-order recombination (m = 2) depends on both minority and majority

processes, and we define a second-order recombination parameter R2 as:

R2 ≡
√

J0j0 (6.10)

The parameter R2 characterizes second-order recombination because it captures an

average of sorts of the electron and hole rate processes at the interface. Specifically, R2

is the average of J0 and j0 on a log scale. Note that we have defined the recombination

parameter as a property of a single contact, while the selectivity parameter considers

J0’s for a single carrier. This should be intuitive, because recombination requires

opposite carriers to combine at a single location in space, while selectivity can be

thought of as the built in asymmetry that a given carrier sees across a solar cell.
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The Two-J0 Case

It is illustrative to consider a simplified case that reduces the four J0 problem

to only two J0’s. To do this, we assume the J0 values at the two contacts to be

asymmetrically related so that Jβ0n = Jα0p = J0 and Jβ0p = Jα0n = j0. Therefore,

Rα
m = Rβ

m = Rm and Sn = Sp = S. By symmetry, fβ = 1/2, and eqs. 6.7 a and b

become:

∆EF
q

= VT ln

[(
JL
2J0

+ 1

)(
JL
2j0

+ 1

)]
(6.11)

Voc = VT ln

(
JL
2j0

+ 1
JL
2J0

+ 1

)
. (6.12)

Figure 9 shows contour plot representations of eqs. 6.11 and 6.12; ∆EF/q and Voc

are plotted as a function of log(J0/JL) and log(j0/JL). The contour plots are clipped

at values of ∆EF/q and Voc greater than one so that the minimum and maximum

values of the color scheme run consistently from 0 to 1. This can be seen as artificially

imposing a maximum value of ∆EF/q and Voc due to radiative recombination (V max
oc ),

and plotting ∆EF/qV
max
oc and Voc/V

max
oc .

The contours of both Figs. 9a and 9b clearly show two distinct regimes of

behavior, separated by the gray horizontal dashed line in both figures. This dashed

line represents the boundary between the high- and low-injection regimes, i.e. when

J0 = JL.

The gradient of ∆EF is different in the two regimes. In high-injection, it runs

perpendicular to the line log[J0]+log[j0] = constant or equivalently with the product

J0j0, i.e. R2. As ∆EF depends on contact recombination, this reflects the second-

order nature of recombination in high-injection. In low injection, the gradient is

parallel to the j0 axis; ∆EF only depends on j0, i.e. R1, reflecting the quasi-first-
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FIGURE 9. Contour plots of eqs. 6.11 and 6.12 showing: (a) ∆EF/q and (b) |Voc|
as a function of log(J0/JL) and log(j0/JL). The value of the contours run from 0 V
(dark green) to 1 V (yellow) with every other contour labeled in Volts. The plots are
clipped with the gray regions representing values greater than 1 V. The dashed gray
line at log(J0/JL) = 0 divides the low (above line) and high (below line) injection
regimes. Note that the region above the dotted gray line marking S = 0 corresponds
to J0 > j0, as considered in the text.
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order nature of the recombination. The quantitative dependencies of ∆EF on Rm

can be readily seen by evaluating eq. 6.11 in either of the two limits J0 � JL and

J0 � JL yielding:

∆EF
q
≈ mVT ln

(
JL

2Rm

)
(6.13)

with m = 1 for J0 � JL, and m = 2 for J0 � JL. The factor of two in the

denominator of the log accounts for the two interfaces in the system.

The behavior of Voc is also different in the two regimes. Comparison of Fig. 9a

and 9b show that Voc = ∆EF in low injection. Indeed, evaluating eq. 6.12 in the

limit J0 � JL yields:

Voc ≈ VT ln

(
JL

2R1

)
= VT ln

(
JL
2j0

)
, (6.14)

which is identical to the low injection expression for ∆EF . In low injection, the Voc is

recombination limited depending on the balance of generation and recombination via

leakage of minority carriers. In contrast, the high-injection Voc does not follow ∆EF .

Rather, the gradient of Voc in high injection runs perpendicular to log J0 − log j0 =

constant lines. Thus, it depends on the ratio J0/j0, i.e. S. Indeed, evaluating eq.

6.12 in the limit J0 � JL yields:

Voc ≈ VT ln
J0

j0

= VT lnS. (6.15)

The Voc is selectivity limited in high injection with Voc always remaining smaller than

∆EF ; this is because the selectivity in high injection is never sufficient to support the

full quasi-Fermi level splitting, which is always limited by recombination.
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To summarize, Voc, like ∆EF , is determined solely by JL/j0 as long as the

majority process is faster than JL (J0 � JL). Selectivity does not limit the

device, and the only way to improve a device in this regime is to decrease j0.

However, when J0 � JL, the device selectivity is not large enough to support

the recombination-determined ∆EF , and Voc becomes both selectivity limited and

illumination independent. In this regime, either an increase in the the contacts’

ability to extract majority carriers, or a decrease in the leakage rate of minority

carriers can improve the Voc.

The General Case in High and Low injection

The case of the previous section clearly illustrates how selectivity and contact

recombination combine to determine Voc, but because of its symmetry, it conflates

the asymmetry at a given contact with that seen by a given carrier across the device.

Hence, we return to treating the four J0’s considering both electrodes either in low

or high injection. Recombination at the two contacts no longer has to be balanced;

fβ no longer has to be 1/2.

The value of fβ is largely determined by the relative recombination rates at the

two contacts. To understand why, we simplify the general result, eq. 6.8, under the

assumptions of low and high injection. In low injection, the term Y in eq. 6.8 is much

less than one, and fβ can be reasonably approximated with a first-order expansion

of the square root term. In high injection, fβ can be simplified with an additional

constraint, namely that
√
Y � 1, which amounts to:

2

√
jα0nj

β
0p

jα0n + jβ0p

√
JL

Jβ0n

JL
Jα0p
� 1. (6.16)
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This inequality is satisfied when jα0n and jβ0p are not too different from one another as

compared to the difference between JL and the J0’s. With these approximations, the

limiting form for fβ is:

fβ ≈ 1

1 +Rα
m/R

β
m

. (6.17)

with m = 1 for J0 � JL, and m = 2 for J0 � JL. The partitioning of recombination

between the two contacts is determined by their relative Rm values.

The ∆EF is calculated by inserting eq. 6.17 into eq. 6.7b in the appropriate

limit yielding:

∆Ef
q
≈ mVT ln

(
JL

Rα
m +Rβ

m

)
, (6.18)

with the appropriate value of m. This is analogous to eq. 6.13 of the two-J0 case, but

it allows for asymmetries in the Rm values. When there is a significant imbalance,

the interface with the larger Rm dominates the recombination and ultimately limits

∆EF/q.

The Voc in the low-injection case equals ∆EF/q:

Voc ≈ VT ln

(
JL

Rα
1 +Rβ

1

)
= VT ln

(
JL

jα0n + jβ0p

)
. (6.19)

As in the two-J0 case, the Voc is limited by contact recombination, not selectivity, in

low injection. The classic expression for Voc relating the photocurrent to the minority

recombination current (jβ0p + jα0n) is obtained. If there is a significant imbalance

between jα0n and jβ0p, ∆EF and Voc are determined by the interface with the larger j0

value.
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The high-injection result for Voc is:

Voc ≈ VT ln

√√√√Jα0pJβ0n

jβ0pj
α
0n

. (6.20)

The Voc in the high-injection case is less than ∆EF/q. It is limited by the selectivity

as in the two-J0 case, but there is an important distinction. The Voc is determined

by the system or device selectivity, SD, as defined by:

SD =

√√√√Jα0pJβ0n

jβ0pj
α
0n

=
√
SnSp. (6.21)

With this definition and assumption 6.16, the Voc in eq. 6.20 is simply:

Voc ≈ VT lnSD. (6.22)

The SD is the average in log space of Sn and Sp. We see that the selectivity-limited

Voc cannot be described by the selectivity of only one of the carriers; the asymmetry

in the rate processes for the entire system must be considered. In this case, a factor

of 10 change in any one of the four J0’s will result in an equal magnitude shift in the

Voc. Of course, given what we know about the step nature of the J(V ) curve, it is

important to emphasize that it is likely that only one of the carrier’s selectivities will

have an effect on the location of the efficiency of the device, unless the two carrier

selectivities are identical.

Efficiency

While knowledge of the functional form of the contact-determined open-circuit

voltage and quasi-Fermi level splitting is revealing, the most important performance
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metric for any solar cell will always by its efficiency, as determined by its maximum

power point. Unfortunately, no general analytic expression exists for the voltage at

the maximum power point given the J(V ) curve given by 5.3; this must be solved

numerically. However, the J(V ) curve is easily simplified in low and high injection,

and under these assumptions, an analytic expression is readily available. The details

of both simplifications in both limits are provided in Appendix F.

If both carriers are in low injection, one can approximate the J(V ) (near the

power quadrant) as

J(V ) ≈
(
jα0n + jβ0p

)
eV/VT − JL. (6.23)

Note that this approximation requires the reasonable further assumption that the

ratio of the j0’s is not large compared to both J0 to JL ratios (see Appendix F for

details). This expression is remarkably simple; it is nearly identical to the J(V ) of

the SQ limit and the ideal solar cell (eq.2.1). The difference is simply that instead

of jα0n + jβ0p, the SQ limit contains a J0 determined by radiative recombination. It

is readily apparent from the form of eq. 6.23 that in this regime, the superposition

principle will apply, and the J(V ) will not be S-shaped around the power quadrant.

One might note that eq 6.23 does not strictly go to zero when V = 0 and JL = 0,

which is simply a consequence of assuming that the j0’s are negligibly small relative

JL.

Importantly, the power quadrant in low injection is essentially independent of

both J0’s. The recombination is quasi first-order, and is dictated by the leakage of

minority carriers at each contact. The voltage at the maximum power point, Vm, is

solved for in the usual fashion by finding the maximum of the power density function

(|(J(V )× V |). In the low injection limit,
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Vm ≈ VT

(
W

[
JLe

jα0n + jβ0p

]
− 1

)
. (6.24)

The efficiency (given by η = |J(Vm)×Vm|
Pinc

where Pinc is the incident power density) is

solely determined by the ratio of JL to jα0n + jβ0p and the temperature. Again, eq.

6.24 is identical to that derived in the SQ limit except that the J0’s are determined

by the contacts instead of being set by radiative recombination. The comparison

of the radiative J0’s to the contact-determined J0’s has already been considered in

the literature; Swanson recognized that leakage at the contacts is the primary issue

preventing silicon solar cells from approaching their optimal efficiency (after taking

into account Auger recombination, reflection, and other unpreventable losses).[29]

When both carriers are in high injection, the J(V ) curve in the power quadrant

can be approximated as

J(V ) ≈ JL

(
1

1 + Sne−V/VT
+

1

1 + Spe−V/VT
− 1

)
(6.25)

where we have replaced the J0/j0 ratios with the appropriate carrier selectivities. It

is clear that JL linearly scales the entire curve, and therefore the position of Voc is

independent of JL. This clearly violates superposition; in fact the voltage at which

the light and dark J(V ) curve will intersect is approximately Voc.

In order to derive an analytic expression for the maximum power point in high

injection, we must further assume that one carrier is limiting (i.e. we must assume

that one carrier selectivity is much larger than the other). If we do so, the J(V )

behavior in the power quadrant is solely determined by said carrier, and the voltage

at the maximum power point is equal to:
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Vm ≈ VT

(
W

[
S

e

]
+ 1

)
(6.26)

where S is the smaller (i.e. limiting) of the two carrier selectivities. As opposed to low

injection, the Vm in high injection is independent of the light current and depends on

both J0’s of the limiting carrier, similar to the Voc. Unlike Voc however, the maximum

power point is determined by the limiting carrier only, as long as the selectivities

are significantly different. This is intuitive given the nature of the J(V ) curve; the

curve is nearly flat at Voc in high injection, so the location of Voc does not necessarily

determine the efficiency because the fill factor can vary dramatically based on the

location of the second step.

To demonstrate how the efficiency in the low injection limit fits in with existing

limits on device performance, Fig. 10 compares the SQ efficiency as a function of

bandgap to our low-injection, contact-determined limit with a fixed j0 = jα0n + jβ0p.

The black curve shows the single absorber SQ efficiency as a function of bandgap,

where the bandgap is used to calculate JL by integrating the AM1.5 spectrum from

the bandgap energy to infinity. JL is determined in the same way for the other curves.

However, for the colored curves, the j0 is fixed by the contacts (as opposed to varying

according to detailed balance as it does in the SQ model). As the bandgap increases,

the j0 needed to match the SQ limit decreases, because in the SQ model, the radiative

recombination decreases strongly with bandgap. The point at which the SQ curve

uses the same j0 as the contact-limited model is where each of the curves intersect.

Therefore, if one is considering using an absorber with a bandgap of, for instance,

1.3 eV, it is clear that the contacts will need to provide equilibrium exchange current

densities for minority carriers as low as ∼ 10−15 mA cm−2 in order to approach the

SQ limiting efficiency.
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FIGURE 10. The SQ limiting efficiency as determined by radiative recombination
(black) as a function of bandgap compared to the low -injection contact-determined
efficiency (colors). In both cases, JL is determined by integrating the AM1.5 spectrum
from the bandgap energy to infinity. The j0 for the black curve is a function of
bandgap, as dictated by the SQ limit, whereas for the colored curves, j0 is a fixed
value determined by the contacts to the absorber, set to 10−5 (blue), 10−10 (orange),
10−15 (green) and 10−20 (red) mA cm−2.
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FIGURE 11. The SQ limiting efficiency as determined by radiative recombination
(black) as a function of bandgap compared to the high-injection contact-determined
efficiency. For all curves, JL is again calculated by integrating the AM1.5 spectrum
above the bandgap. The black curve uses j0’s determined via radiative recombination,
while the colored curves have fixed carrier selectivities, S, set to 105 (blue), 1010

(orange), 1015 (green) and 1020 (red). Temperature is set to 300 K.

Figure 11 compares the efficiency calculated from the contact limited model with

one limiting carrier in high injection, to the one-sun SQ limit. The limiting carrier

selectivity is fixed to a different ratio for each of the colored curves, while the SQ

limit, as a function of bandgap, is in black. As with low injection, the demands

on the contacts become more and more stringent as the bandgap of the absorber

increases. For a bandgap of ∼ 1.5 eV, the limiting carrier selectivity of a device must

be on the order of 1020 in order to approach the SQ limit.

The primary results of the contact-determined theory have been presented in

Chapters 5 and 6. These make testable predictions about the performance of solar

cells. The easiest way to test these is to simulate the entire device physics (i.e.

self consistent solutions to Poisson’s equation, and the continuity equation and
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drift-diffusion equations) of various solar cell architectures. Chapter 7 will present

simulations performed using the semiconductor module of COMSOL testing the

current voltage curves, as well as the performance parameters derived from the J(V )

curve.
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CHAPTER VII

SIMULATIONS

This chapter contains full device physics simulations performed by myself of

various solar cell architectures in an attempt to assess the theoretical predictions of

the previous two chapters. It is taken primarily from the Simulations section and

Supplementary Matieral of Roe et al. 2019, with some re-organizing and re-writing

for clarity.

Full device simulations were performed using the semiconductor module of

COMSOL Multiphysics. By ‘full’, we mean simulations that include the physics

that were neglected in the assumptions of the analytic model, i.e. bulk recombination

and mobility limitations. In practice, this is achieved by numerically solving Poisson’s

equation for the distribution of electric charge with the drift-diffusion equations for

current plugged into the continuity equations for electrons and holes. COMSOL uses

the finite-volume method to calculate the electric potential, electron density, and

hole density as a function of position throughout the device. For detailed information

about how it accomplishes this, refer to the COMSOL Multiphysics User’s Guide,

and the Semiconductor Module User’s Guide. Below, the general features of the

simulations will be described. Details specific to the device architecture under study

will be layed out in the appropriate section.

All simulations performed herein are 1-dimensional, and all are done at room

temperature, T = 298 K. We will consider multiple device structures, but we will

always use an absorber which is undoped. In COMSOL, one can make a 1-D device

out of an arbitrary number of semiconducting layers. Junctions between different

semiconducting layers will be modeled with thermionic emission (as opposed to
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assuming continuous quasi-Fermi levels). Metals are used as contacts to an external

circuit, and can either be modeled with a Schottky contact, or an ohmic contact to

the adjoining semiconductor.

In order to solve for the electric potential and the electron and hole densities,

boundary conditions must be specified. The boundary conditions for the electric

potential are simply the voltages at both ends of the device; the difference between

these is the applied voltage, or simply V , in the J(V ) curve. For each J(V ) curve

simulated herein, a voltage step of 0.01 V is used.

Boundary conditions for the electron and hole densities at either end of the device

depend on which type of metal contact we choose, Schottky or ohmic. For an ohmic

contact, local thermodynamic equilibrium is assumed to apply at the contact so that

the carrier densities are equal to the equilibrium densities, as defined by

neq =
1

2

(
N+
d −N

−
a

)
+

1

2

√(
N+
d −N−a

)2
+ 4n2

i (7.1a)

peq = −1

2

(
N+
d −N

−
a

)
+

1

2

√(
N+
d −N−a

)2
+ 4n2

i (7.1b)

where N+
d and N−a are the donor and acceptor densities, respectively, at the interface

to the absorber (while the absorber is intrinsic, we do consider a p-i-n architecture,

so these are not always zero). Meanwhile, for Schottky metal contacts, the carrier

densities are not necessarily at equilibrium, as defined by the Fermi level of the

adjoining metal. The boundary conditions are given by

81



Jn(xα) = qναn (n(xα)− n0) (7.2a)

Jp(x
α) = −qναp (p(xα)− p0) (7.2b)

Jn(xβ) = −qναn (n(xβ)− n0) (7.2c)

Jp(x
β) = qναp (p(xβ)− p0). (7.2d)

in conjunction with the constraint that Jn(xα) + Jp(x
α) = J = Jn(xβ) + Jp(x

β) at

steady state. νn and νp are the charge transfer velocities for electrons and holes

respectively, and the equilibrium carrier densities, n0 and p0, are set by the barrier

height at the contacts via

n0 = Nc exp

(
− φn
kBT

)
(7.3a)

p0 = Nv exp

(
− φp
kBT

)
. (7.3b)

where φn and φp are the electron and hole barrier heights, respectively, in eV. Note

that eq. 7.2 is identical to eq. 3.1, except that the charge transfer velocity ν is used

in place of J0. They are related by

Jy0x = qνyxx0 (7.4)

where x is either n or p for electrons or holes, and the superscript y is either α or

β to denote the appropriate contact/interface. The J0’s for Schottky interfaces were
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calculated with various barrier heights and A∗’s, specific to each individual situation,

according to

J0 = A∗T 2e
−Eg/2−∆φ/2

qVT (7.5a)

j0 = A∗T 2e
−Eg/2+∆φ/2

qVT . (7.5b)

The fact that there are only two J0’s is due to that fact that we assume the Richardson

constant is equal for both interfaces.

Recombination was considered in all semiconducting layers, while generation was

only considered in the absorber. Generation, denoted by G(x), followed Beer-Lambert

position dependence according to

G(x) = G0e
−αx (7.6)

where x is the depth into the absorber. The generation rate at the surface, G0, is set

by:

G0 = ΦL

(
αJL
q

)
(7.7)

where ΦL is a unitless quantity indicating the number of suns, and JL is the current

density if 100% of the AM 1.5 spectrum above 1.5 eV were absorbed (∼ 29 mA/cm2).

Throughout, we will use electron and hole mobilities of 1000 cm2V−1s−1. This value

is in line with what one can expect in both single crystal silicon and GaAs,[81–86]

though it allows us to clearly demonstrate how mobility can limit the accuracy of the

analytic model.
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Double Schottky Contacts

One of the simplest possible tests for our model is a 1-D device consisting of an

absorber with two Schottky metal contacts on either end. As Schottky contacts are

well modeled by eq. 3.1 as long as thermionic emission is the rate-limiting process,[64]

we expect that the simulations will only deviate from our theory because of limitations

imposed by mobility and bulk recombination. In other words, if we were to simulate

the J(V ) curve with unrealistically high mobility and low bulk recombination rates,

we should recover the theory exactly.

We consider a generic thin film absorber, with a thickness, L, of one micron and

a bandgap of 1.5 eV. The absorption coefficient, α, is chosen to be 3×104 cm−1 (note

that we are simplifying the absorption coefficient to a step function centered at the

bandgap, i.e. 0 below the bandgap and α above it). Generation is spatially dependent,

according to eq. 7.6. Direct recombination throughout the device is quantified by its

coefficient, B, which is uniform throughout the absorber. Given the assumption of a

step-function absorption coefficient, B can be approximated as

B =
αkBTE

2
ge
− Eg
kBT

π2~3c2n2
i

(7.8)

where ~ is the reduced Planck’s constant, c is the speed of light, and ni is the intrinsic

carrier density, equal to 2 × 106 cm−3 for a bandgap of 1.5 eV with Nc = Nv =

1 × 1019 cm−3. We will always assume these values for Nc and Nv unless otherwise

stated. Given these, B ≈ 1.5× 10−11 cm3s−1.

In COMSOL, a Schottky metal contact is distinguished by its work function, φm,

and its Richardson coefficient, A∗. In principle, there are four different A∗ values one

could set in the simulation (one for both electrons and holes at both contacts). For
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FIGURE 12. Schematic depicting the Fermi-level alignment in the double Schottky
contact model. The Fermi-levels of the metals are set so that the barrier heights, φ,
are equal for opposing carriers across the device. The difference in work functions
between the contacts is quantified by ∆φ, which is varied in the simulations.

the sake of simplicity, we assume these are identical in each simulation. The work

functions of the metal contacts are set so that the metal Fermi levels are symmetric

about the intrinsic level of the absorber, as in Fig. 12. For instance, if ∆φ = 0.2 V,

the work function of contact α is 0.1 eV below the intrinsic level and visa versa for

the β contact. Given these assumptions, we are effectively replicating the 2 J0 case

from Chapter 6. For a complete list of all the parameters used to model the device

in COMSOL, refer to Table 1.
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TABLE 1. Schottky Device Parameters

Symbol Description Value Unit
T temperature 298 K
ΦL no. of suns varied 1

absorber:
L absorber thickness 1 µm
Eg bandgap 1.5 eV
εr relative permittivity 10 1
NC effective conduction band DOS 1.0× 1019 cm−3

NV effective valence band DOS 1.0× 1019 cm−3

un electron mobility 1000 cm2 V−1 s−1

up hole mobility 1000 cm2 V−1 s−1

B radiative recomb. coeff. 1.5× 10−11 cm3 s−1

JL ‘perfect’ one sun Jsc 29.01 mA cm−2

Contacts:
∆φ contact work function difference varied in simulation eV
φαbn e− Schottky barrier at contact α Eg/(2) + ∆φ/2 eV
φαbp h+ Schottky barrier at contact α Eg/(2)−∆φ/2 eV

φβbn e− Schottky barrier at contact β Eg/(2)−∆φ/2 eV

φβbp h+ Schottky barrier at contact β Eg/(2) + ∆φ/2 eV

A∗n Richardson constant for electrons varied A K−2 cm−2

A∗p Richardson constant for holes varied A K−2 cm−2
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FIGURE 13. Plot of J(V ) comparing simulations (data points) to eq. 5.3 (solid lines)
for a 1.5 eV bandgap intrinsic absorber with Schottky metal contacts with varying
work functions as determined by ∆φ. The ∆φ increases from 0.2 to 1.3 eV in steps
of 0.1 and A∗ is fixed at A cm−2 K−2. Note that because all A∗’s are the same, the
electron and hole steps line up on top of each other, so that the size of the step is
twice as large as a single step.

Figure 13 compares the simulated vs. theoretical J(V ) curves of the device

described above. The A∗ was set to 3 A cm−2 K−2, within the wide range of reported

Richardson constants for thin-film semiconductors.[87–90] At low ∆φ, both electrons

and holes are in high injection. Because the two j0’s are equal as well as the two J0’s,

the electron and hole steps are on top of each other, thus we can only see one step.

The size of the step is approximately 2JL as long as the J0 is much smaller than JL.

As the J0 becomes comparable to JL at ∆φ = 0.6 eV, the J(V ) curve transitions to

low injection, and the step size becomes larger than 2JL.

The Voc’s as predicted by theory are accurate for every ∆φ value shown. However,

for many of the ∆φ values, the theoretical limit has a slightly larger fill factor than

the simulated data. For the lower ∆φ values, the fill factor is reduced in the simulated

data because the mobility limits current collection when the carrier densities are low.

At higher ∆φ, the higher carrier selectivities can support higher quasi-Fermi-level

splitting and thus larger carrier densities in the bulk. The larger carrier densities
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in the bulk allow for higher conductivities, thus reducing the need for high mobility,

and therefore the fill factor deficit is reduced. If direct recombination were to affect

the simulated data, one would expect to see limitations around Voc for the higher

∆φ values, as the rate is proportional to the product of n and p. Here, we see

no deviations at large ∆φ indicating that the radiative recombination limit has not

been approached. Indeed, one would not expect to see such limitations until the Voc

approaches 1.15 V for a bandgap of 1.5 eV and B = 1.5× 10−11 cm3/s.

Figure 14 compares the theoretical efficiency (calculated numerically from eq.

5.3) of the device under discussion to the simulated efficiencies. The illumination

intensity was varied exponentially from 10−3 to 102 suns. The region where the lines

converge denotes high injection, and each different light intensity curve moves off of

the high injection curve at different values of ∆φ, as expected from our definitions of

high and low injection. Whereas in high injection, the efficiency is independent of light

intensity, in low injection, the efficiency becomes quasi-logarithmically dependent on

light intensity as we expect. The simulated efficiencies in high injection are slightly

below the theoretical limit due to finite mobility, as discussed above. Like Fig. 13, the

simulated efficiencies are not yet being affected by bulk recombination as the voltages

at the maximum power point are not approaching 1.15 V.

Our theoretical model works well, then, for a generic device with direct

recombination and Schottky contacts as long as the mobility does not limit the rate

at which carriers escape to the contacts. The model is expected to become less

accurate as the mobility is decreased, or equivalently as the J0’s become larger with

a fixed mobility (i.e. when bulk transport starts to limit the speed at which carriers

can recombine at the contacts). This is indeed the case as can be seen in Fig. 15a

where the Richardson constant is varied from 10−2 A cm−2 K−2 to its ideal metal limit
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FIGURE 14. Simulated efficiency (data points) compared to that derived from eq.
5.3 (solid lines) for the same device as Fig. 13 with A∗ = 3 A cm−2 K−2 and ∆φ
increasing from 0.1 to 1.3 eV in steps of 0.1. The relative generation rate, ΦL, was
varied from 10−3 to 102 suns by factors of 10.

(∼ 100 A cm−2 K−2), with a fixed ∆φ = 1.0 eV. The model becomes less accurate as

A∗ approaches 100 A cm−2 K−2. Specifically, the fill factor and Jsc are poor relative to

theory, however, the Voc is actually larger than theory predicts. This concept has been

discussed extensively in the literature.[54, 91–94] Put simply, when the mobility is

reduced to the point where carriers generated in the bulk cannot reach the contacts as

fast as they recombine at the contacts, the actual contact recombination rate is smaller

than that predicted by the J0’s, leading to a larger-than-predicted Voc. However, the

limited mobility also reduces the fill factor and Jsc as previously discussed.

Similar deviations from theory occur in Fig. 15b, where the A∗ is varied over

the same range, but the asymmetry is reduced (∆φ = 0.5 eV). The deviation is much

more evident outside of the power quadrant for the largest A∗, and is expected given
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that the limited asymmetry/selectivity prevents large quasi-Fermi-level splitting,

limiting the carrier density and thus the conductivity in the bulk.
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FIGURE 15. Simulated J(V ) (data points) compared with theory (lines) for a
semiconductor (Eg = 1.5 eV) and Schottky metal contacts with metal work functions
set b: (a) ∆φ = 1.0 eV and (b) 0.5 eV. In both cases, A∗ was increased from 10−2

to 102 A cm−2 K−2 by factors of 10. Note that in b), the curves with lower A∗ lie on
top of each other, because in high injection, the J(V ) curve is only dependent on the
selectivity, not the magnitudes of the J0’s.
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For a more comprehensive survey of how mobility limitations affect all four

performance parameters, Jsc, Voc, FF , and η, consider the contour plots in Fig.

16. Here, we explore the parameter space of asymmetry and contact recombination

by varying ∆φ and A∗, respectively for Schottky contacts to the same Eg = 1.5 eV

absorber. The gray regions for all parameters indicate that the simulated performance

parameter is within 2.5% of the theoretical value, given by using the A∗’s and ∆φ to

calculate the J0 and j0’s in eq. 5.3. Meanwhile, pink and green colors indicate that the

simulated parameters are higher and lower than the theoretical values, respectively.

Straight away, we notice that for the entire parameter space, the Voc is either

equal to or larger than the theoretical limit, while the opposite is true for all the other

parameters. For both Jsc and FF , the problematic region is where the A∗’s are large,

and the ∆φ’s are low. The FF and Jsc are both dependent on carriers being able to

be transported from the bulk of the absorber to contacts; this transport is dependent

on the mobility and the carrier density. The carrier densities should be larger in the

bulk of the device when the leakage rates of minority carriers are smaller, allowing for

current to flow more easily. This will occur at smaller A∗ values and higher ∆φ values,

consistent with the accurate theoretical values, indicated in Fig. 16. Meanwhile,

the theoretical Voc is only significantly inaccurate for the combination of large A∗

and moderate ∆φ. One might imagine a situation in which the Voc underestimate

is large enough that the efficiency is also overestimated by our model (recall that

η = VocJscFF ), but this never occurs in this parameter space. Therefore, our model

is an upper limit for efficiency, for this parameter range at least.

As direct recombination does not limit the devices we have so far considered, it is

also worth simulating similar devices with larger values of B, the direct recombination

coefficient. Figures 17a and b are reproductions of Figs. 13 and 14 from identical
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FIGURE 16. Ratios of simulated performance parameters, to those calculated from
eq. 5.3 for an intrinsic, 1.5 eV bandgap absorber with radiative recombination and
fixed mobility µ = 1000 cm2V−1s−1. The generation rate is fixed at 1 sun. The contact
recombination is varied on the horizontal axis by varying the Richardson constant, A∗,
equal for both carriers at both contacts. As with Fig. 13, the asymmetry is controlled
by the parameter ∆φ, which determines how far each contact work function is from
the intrinsic level. The asymmetry is restricted so that the work functions of the
metal contacts are within 0.1 eV of the band edges. Pink indicates simulated values
larger than theoretical values, and green indicates the opposite.
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FIGURE 17. Comparison of simulated (data points) and theoretical (lines) J(V )
curves (a) and efficiencies (b). The theoretical curves were generated from eq. 5.3
using the same parameters as Fig. 13. The simulated data was generated from the
same device parameters as Fig. 13 (see Table 1), except B = 1.5× 10−8 cm3/s. The
∆φ parameter was varied from 0.1 to 1.3 eV in steps of 0.1 Part a. This was also
done in Part b, thought the different curves instead indicate the number of suns, ΦL.

devices, except B = 1.5 × 10−8 cm3/s, 1000 times larger than the radiative limit of

direct recombination. The simulated data in both figures are almost exactly identical,

except for at the highest ∆φ values. In Part a, the Voc is indeed reduced somewhat

from the theoretical limit, thought the rest of the curve appears unaffected. This
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deviation is also reflected in the calculations for efficiency for the largest value of ∆φ

in Part b.

p-i-n Heterostructure

For comparison, we have included simulations of a p-i-n structure with the

absorber described above, where the contacts are instead wider bandgap, doped

semiconductors. This structure bears resemblance to a large number of thin

film technologies, where an intrinsic or lightly doped absorber is sandwiched

by two thin, sometimes entirely different, semiconductors with opposite doping

type. In the simulation, the absorber is sandwiched by equally doped n and p

doped semiconductors with bandgaps 1.7 and 1.9 eV on either side (see Fig. 18).

The absorber/contact interface is simulated with thermionic emission boundary

conditions. The wide-bandgap contacts are in turn contacted by ohmic metal

contacts. To vary the selectivity in a similar manner as before, the doping density of

each contact is varied over a wide range of values. Note that there is no reason why

the dopant densities have to be equal; this choice is made for the sake of simplicity.

For a complete list of parameters used in the p-i-n simulations, refer to Table 2 below.

We calculate the effective J0’s for such a structure by using a barrier height

for either contact as set by the energy difference between the Fermi level and the

appropriate band edge (see Fig. 18). Thus, we are essentially treating the thin doped

semiconductors as Schottky contacts. This is only expected to work as long as the

Fermi levels of the contacts (as set by the dopant density) remain within the bandgap

of the absorber. We also expect that for thicker doped contacts, diffusion, rather

than thermionic emission will be the rate limiting process for the partial currents,
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TABLE 2. p-i-n device parameters

Symbol Description Value Unit
T temperature 298 K
ΦL number of suns varied 1

intrinsic absorber:
L absorber thickness 0.98 µm
Eg bandgap 1.5 eV
εr relative permittivity 10 1
NC effective conduction band DOS 1.0× 1019 cm−3

NV effective valence band DOS 1.0× 1019 cm−3

un electron mobility 1000 cm2 V−1 s−1

up hole mobility 1000 cm2 V−1 s−1

B radiative recomb. coeff. 1.5× 10−11 cm3 s−1

JL ‘perfect’ one sun Jsc 29.01 mA cm−2

χ electron affinity 1.0 eV

n-type contact:
L contact thickness 0.01 µm
Eg bandgap 1.7 eV
εr relative permittivity 10 1
NC effective conduction band DOS 1.0× 1019 cm−3

NV effective valence band DOS 1.0× 1019 cm−3

un electron mobility 1000 cm2 V−1 s−1

up hole mobility 1000 cm2 V−1 s−1

B radiative recomb. coeff. 1.5× 10−11 cm3 s−1

JL no generation assumed in contacts 0 mA cm−2

χ electron affinity 0.9 eV
Nd dopant density varied cm−3

p-type contact:
L contact thickness 0.01 µm
Eg bandgap 1.9 eV
εr relative permittivity 10 1
NC effective conduction band DOS 1.0× 1019 cm−3

NV effective valence band DOS 1.0× 1019 cm−3

un electron mobility 1000 cm2 V−1 s−1

up hole mobility 1000 cm2 V−1 s−1

B radiative recomb. coeff. 1.5× 10−11 cm3 s−1

JL no generation assumed in contacts 0 mA cm−2

χ electron affinity 0.8 eV
Nd dopant density varied cm−3
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n-doped

contact
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p-doped
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FIGURE 18. Schematic depicting the device structure (before equilibrating) used
for the p-i-n simulations. Note that the x-axis is not to scale. Fermi levels for each
layer are indicated by the dashed lines; the contact-Fermi levels are determined by
the doping density, which is varied in the simulation. The electron affinity of each
layer is set so that the intrinsic layers of each semiconductor are aligned and that the
offsets of both bands at a given interface are equal. The effective barrier heights used
to calculate each of the four J0’s are indicated by the dashed red and blue arrows.

The Fermi level (dashed line) of the n contact is set by Ec−Ef = kBT ln
(
Nc
Nd

)
while

the Ef − Ev = kBT ln
(
Nv
Nd

)
sets the Fermi level of the p contact.
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and thus the J0’s for the contacts would be governed by the Shockley model. See Fig.

20 below for simulations detailing the transition between the two regimes.

The effective A∗ is calculated according to

A∗ = A∗h = A∗e =
4πm∗k2

Bq

h3
(7.9)

where h is Planck’s constant, and m∗ is the carrier effective mass, given by

m∗ = m∗h = m∗e =
h2

2πkBT

(
Nc

2

)2/3

(7.10)

The effective masses and thus A∗’s are equal because we have assumed that Nc = Nv.

Given a value of 1×1019 cm−3 for each of the effective densities of states, both effective

A∗’s are equal to 65 A cm−2 K−2.

Figure 19a compares simulated J(V ) curves for the p-i-n heterostructure to those

calculated with eq. 5.3 with A∗’s given by eq. 7.9 and barrier heights set by the blue

and red φe’s and φh’s from Fig. 18. The dopant density of each contact, Nd, is

varied in unison from 107 to 1015 cm−3 to produce the different curves. Two steps are

observed in most of the curves, because although the A∗’s on each side are identical,

the effective barrier heights are not, leading to different selectivities for electrons

and holes. The transition from low to high injection occurs around Nd = 1011 cm−3,

meaning most practical devices of this type would operate in low injection under one

sun. While the theory does not exactly match the simulation for voltages beyond Voc,

it is quite accurate inside of the power quadrant.

Finally, Fig. 19b compares the p-i-n heterojunction simulations with theory for a

fixed Nd = 1012 cm−3 for both contacts while the generation rate is varied. Therefore,

J0’s are fixed, while only JL varies. The model is able to reproduce both steps,
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as well as the transition from low to high injection, which occurs around 10 suns

in this case. The dopant density of the contacts is quite low here; for higher dopant

densities, unrealistically high generation rates are required to push the device into high

injection. With an absorber whose bandgap is 1.5 eV, it is clear that most practical

dopant densities will result in the device working in low injection, at which point the

device will be limited by recombination, as opposed to selectivity/asymmetry. This is

not surprising; doped heterojunction and homojunction contacts are among the most

effective contact technologies, as long as an ohmic contact can be made to the doped

semiconductors.

Thermionic Emission or SRH Recombination?

The keen observer may have questioned whether it was appropriate to use

thermionic emission to calculate the J0’s in the p-i-n heterostructure. The reason

thermionic emission was used as opposed to the Shockley model was simply because

the contact thickness was much smaller than the diffusion length implied by the direct

recombination lifetime.

Here, we demonstrate that if we include SRH recombination in the smaller

bandgap contact, the contact thickness can be varied over orders of magnitude so

that the effective J0 transitions from that determined by the effective barrier height

(i.e. thermionic emission) to the Shockley junction J0 (as determined by minority

diffusion into the quasi neutral region of the contact):

J0 =
qpn0Dp

Lp
(7.11)

where pn0 is the equilibrium hole density in the n doped layer, Dp is the hole diffusion

constant, and Lp =
√
Dpτp is the hole diffusion length (τp is the hole SRH lifetime).
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FIGURE 19. Simulated J(V ) curves (data points) compared with eq. 5.3 (lines)
for the p-i-n heterostructure. In a), the dopant density Nd of both contacts is
simultaneously stepped from 107 to 1015 cm−3, by factors of 10. For b), the dopant
densities of the contacts are fixed at 1012 cm−3, the number of suns ΦL is varied from
10−3 to 102 by factors of ten, and the current density is normalized by the short
circuit current for each different light intensity.
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Note that the smaller bandgap is chosen because it has the larger j0 (calculated with

the barrier heights as described in the text).

To demonstrate this, we used the same device structure from the previous section

with a couple of changes:

– The thickness of the n-type contact was varied from 10 nm to 100µm

– SRH recombination was added to the n-type contact with a lifetime of 100 ns

– The dopant density for each contact was fixed at 1014 cm−3

The dopant density is chosen so that all of the curves are in low injection, thus

the difference in Voc can be attributed solely to the difference in the effective j0’s of the

contacts. The J(V ) curve that results from the different contact thicknesses is shown

in Fig. 20. As the thickness of the n-type contact is increased, the Voc increases until

it reaches a maximum when the contact thickness significantly exceeds the diffusion

length (which is approximately 16µm in this case). Thus, the simulation transitions

from a regime in which the effective J0 is determined by thermionic emission to

one where it is determined by diffusion/recombination, as predicted. Note that the

simulated curves with the largest Voc start to have series resistance limitations due to

the length of the contact, hence the sloping in the J(V ) curve around Voc.

To summarize, then, it is clear that one can model the j0’s of a doped contact to

an intrinsic absorber by considering the barrier heights as is done in the text, as long

as the thickness of the contacts is much less than the diffusion length as determined

by the SRH lifetime in the contact.

The following chapter will summarize the essential findings of this work,

describing how results from each chapter have contributed to a better understanding

of how contacts determined solar cell performance.
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FIGURE 20. Simulated J(V ) curves of the p-i-n heterostructure device described
above with the n-type (1.7 eV) contact thickness varied from 10 nm to 100µm
increasing from smaller to larger Voc (i.e. increasing thickness from left to right).
Note that the wider gap p-type contact and absorber thicknesses were fixed at 0.01µm
and 0.98µm respectively. The left solid black curve is eq. 6.23 evaluated using j0’s
calculated via ‘thermionic emission’ using the barriers from Fig. 18 in (smaller Voc)
and the right black curve was eq. 6.23 evaluated using Shockley j0’s (eq. 7.11).
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CHAPTER VIII

CONCLUSION

In this work, I have presented theoretical and simulated results describing the

limitations that contacts place on a solar cell’s performance. The model requires

knowledge of the four equilibrium exchange current densities (J0’s) that describe the

rate of transfer of majority and minority carriers at both contacts to a semiconducting

absorber. An analytic expression has been derived that quantitatively relates the

J(V ) curve and performance parameters to the four J0’s and JL, the total current

due to generation from solar photons.

The analytic expression provides a unified explanation for both the S-shaped

curve and current crossover/failure of superposition phenomena that are often signs

of unoptimized contacts. In the ideal solar cell model/ideal diode models, there is no

limit to the maximum possible current in forward bias. However, in our model, there

is a such a maximum possible current, hence J(V ) curve always levels off, making an

S-shaped curve. Because the maximum currents of such a curve in reverse and forward

bias are asymptotically limited by minority and majority processes respectively, and

because both values move in opposite directions due to changes in light current, the

contact-limited solar cell will never obey the superposition principle. However, since

the limitation of majority carrier injections can occur at very large current densities

with a well-optimized contact, one will not always observe S-shaped behavior in the

J(V ) curve around the power quadrant, which is typically all that is measured when

characterizing a solar cell. In fact, comparing the majority J0’s (J0’s) to JL will

predict whether or not one will measure such non-ideal behaviors within sight of the

power quadrant. This comparison delineates the high and low injection regimes.
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In low injection, the contact recombination can be described as a first-order

process, as it only depends on the leakage rate of minority carriers at the contacts.

Here, Voc and ∆EF/q are equal, because the J0’s are large enough that no significant

excess of majority carriers is required to provide JL’s worth of current. They are

solely dependent on the balance of generation and recombination, quantified by ratio

of the light current to the sum of the j0’s. The J(V ) curve will always look ideal in

the vicinity of the power quadrant, in that the there will be no light/dark crossover

and it will not be S-shaped. The only way to improve such a device is to reduce the

leakage rate of minority carriers at the contacts.

Meanwhile, in high injection, majority carrier limitations become relevant

because a large excess of majority carriers is required to generate JL worth of current.

The ∆EF/q is still determined by the balance of recombination and generation,

however the recombination is a second-order process, because it depends on both

J0’s and j0’s. Meanwhile the Voc no longer depends on this balance; it is limited by

the asymmetry, or selectivity of the device. The majority carrier limitations typically

lead to leveling off of the J(V ) curve at J ≈ 0 leading to an S-shaped curve in the

power quadrant and a less-than ideal fill factor. The efficiency of such a device would

be improved by reducing the appropriate j0, or by increasing the appropriate J0.

Critically, the two ‘steps’ that are always present in a contact-limited J(V ) curve

are determined separately, by electron and hole J0’s. Improving a contact limited solar

cell always amounts to moving these steps as far into forward bias as possible. Each

step at a minimum brings J up to zero or larger current, so that it generates power at

voltages more forward than the first step. Therefore, most of the time, only one of the

two carrier’s J0’s will limit the device. If a device is in low injection, then reducing

the leakage of the limiting carrier at the contact that is intended to extract the other
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carrier is the only way to improve the device. However, if the limiting carrier is in

high injection, one can move the ‘step’ further into forward bias both by reducing the

leakage rate of the carrier at the contact intended to extract the other carrier, or by

increasing the extraction of said carrier at its intended contact.

Simulations have been performed to test how bulk transport, bulk recombination,

and more complicated device structures affect the validity of the theory. It is clear

that bulk mobility plays a strong role in determining the theory’s accuracy. In general,

the effect of limited mobility is to reduce the Jsc and FF from the theoretical limit,

while the Voc may actually be slightly improved over the theoretical value. These

effects are most pronounced when the asymmetry of the contacts is limited, and in

the case of Schottky diodes, when the Richardson constant approaches the ideal metal

limit. Meanwhile, bulk recombination can reduce the Voc from the theoretical limit,

but this only occurs at larger asymmetries. I have also shown that the theory can

be applied to a p-i-n heterostructure, where the J0’s of the contacts are calculated

assuming thermionic emission is the rate limiting process, as long as the contacts are

much thinner than the diffusion length set by SRH recombination.

The model I have developed makes it clear how terms like contact recombination

and carrier selectivity are related to solar cell performance. For most good solar cells,

the J(V ) looks ideal, meaning the J(V ) is not S-shaped around the power quadrant.

This means the device is in low injection, and therefore the term selectivity is only

tangentially related to solar cell performance. One can increase the carrier selectivity

of electrons or holes, but this does not necessarily decrease the leakage rate of said

carrier because the selectivity involves a ratio of J0’s to j0’s. It is correct, however,

to say that reducing contact recombination will always improve such a device, as

long as said contact’s recombination is the dominant recombination process in the
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device. In solar cells with yet-to-be optimized contacts, one is more likely to come

across non-ideal J(V ) behaviors such as S-shaped curves in the power quadrant,

indicating the device is in high injection. Here, it is correct to say that the device is

limited by asymmetry or selectivity. One may still improve the device performance by

reducing contact recombination, however any such change that leads to an increase

in performance will also signify an increase in selectivity. In the end, it is best to

simply refer to the set of four J0’s, as they fundamentally determine the J(V ) curve

of the contact-limited solar cell.
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APPENDIX A

THE DENSITY OF STATES IN A SEMICONDUCTOR

To derive the density of states (DOS) of electrons and holes in a semiconductor,

we approximate the electrons as nearly free, Bloch electrons. The physics of Bloch

electrons is a very rich topic, but for our purposes, it will suffice to know that our

electrons and holes are essentially free (meaning that they feel no potential) but they

have effective masses, m∗e and m∗h respectively, that differ from the mass of a truly

free electron. The value of the effective mass depends on the curvature of the detailed

band structure of the conduction and valence bands of the semiconductor and is a

highly non-trivial calculation that cannot in general be performed in an exact manner

and thus will not be covered here.

To calculate the energetic DOS, we first need to estimate the number of k

states within the Fermi-sphere in k−space. The wavefunction of a free electron in

a potential-less crystal is proportional to sin (kxx) sin (kyy) sin (kzz), and it must be

zero outside of the crystal. Thus, the allowed values for kx are

kx = ±2π

Lx
n (A.1)

where n is an integer. Thus, there is one kx in every 2π
Lx

interval in kx. As this is

analogously true for ky and kz, the three dimensional DOS in k-space is

DOSk =
LxLyLz

(2π)3 =
V

(2π)3 (A.2)
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where V is the volume of the crystal. The number of possible k−states within a

sphere of radius k is then easily calculated

N(k) = 2
V

(2π)3

4πk3

3
=
V k3

3π2
(A.3)

where the extra factor of two accounts for electron spin degeneracy. Inverting the

E(k) relationship for Bloch electrons to solve for k,

k(E) =

√
2m∗Ek
~2

(A.4)

we can now write down the number states as a function of energy:

N(Ek) =
V

3π2

(
2m∗Ek
~2

) 3
2

(A.5)

Dividing by volume and differentiating, we obtain the free electron density of states

per unit volume in energy space

DOSE =
1

2π2

(
2m∗

~2

) 3
2 √

Ek. (A.6)

The energy of electrons in the conduction band is

E = Ec + Ek = Ec +
~2k2

2m∗
. (A.7)

And thus, the DOS for electrons in the conduction band is

gc(E) =
1

2π2

(
2m∗e
~2

) 3
2 √

E − Ec (A.8)
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Analogously for the valence band,

gv(E) =
1

2π2

(
2m∗p
~2

) 3
2 √

Ev − E (A.9)

where the effective masses for conduction and valance bands are m∗e and m∗p

respectively.
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APPENDIX B

EQUILIBRIUM CARRIER CONCENTRATIONS

The concentration of free electrons (n) and holes (p) are important quantities in

a semiconductor as one cannot calculate the current in a device without them. The

electron concentration is given by

n =

∫ ∞
Ec

gc(E)f(E)dE (B.1)

In general, semiconductors are operated in the regime such that Ec − Ef � kBT .

Practically speaking, this means that the doping of the semiconductor must not bring

the Fermi level within less than a few kBT of either band edge. As kBT is roughly

26 meV at room temperature, this is certainly the case for most solar cell absorbers

under standard operating conditions. Thus, the Fermi-Dirac distribution can be

approximated by the Boltzmann distribution,

f(E) ≈ e
−(E−Ef)

kBT . (B.2)

We now proceed to carry out the integral,

n(Ef ) =
1

2π2

(
2m∗e
~2

) 3
2
∫ ∞
Ec

√
E − Ec e

−
E−Ef
kBT dE

=
1

2π2

(
2m∗ekBT

~2

) 3
2

e
−
Ec−Ef
kBT

∫ ∞
0

√
u e−udu

= 2

(
m∗ekBT

2π~2

) 3
2

e
−
Ec−Ef
kBT

= Nce
−
Ec−Ef
kBT ,

(B.3)
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where we have used the substitution u = E−Ec
kBT

, and introduced the constant, Nc,

called the effective conduction band density of states:

Nc = 2

(
m∗ekBT

2π~2

) 3
2

(B.4)

Analogously for holes, we have

p(Ef ) = Nve
Ev−Ef
kBT (B.5)

where the effective valence band density of states, Nv, is defined as

Nv = 2

(
m∗pkBT

2π~2

) 3
2

(B.6)
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APPENDIX C

THE J(V ) CHARACTERISTICS OF THE P −N JUNCTION

To derive the ideal p − n junction J(V ) characteristics, we will follow the

derivation of Sze, section 3.4.[95] We assume an abrupt depletion edge, that the

electron and hole currents are uniform across the depletion region, and that the

semiconductor is neutral outside of this region. The built in potential, Vbi, is defined

as the difference in potential of either the conduction or valence bands between the

two neutral regions. It can be shown that

Vbi =
kBT

q
ln
NAND

n2
i

(C.1)

where ni is the intrinsic carrier concentration. At equilibrium on the n side of the

junction, nn0 ≈ ND and on the p side of the junction, pp0 ≈ NA where we use the

subscript n0 to indicate the n side of the junction, at equilibrium. The law of mass

action dictates that

n2
i = pp0np0

= pn0nn0

(C.2)

We can now write the carrier concentrations in terms of their respective values on the

other side of the junction using C.1 and C.2

nn0 = np0e
qVbi
kBT

pp0 = pn0e
qVbi
kBT

(C.3)
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We now assume that under an applied bias, we can relate the carrier densities across

the junction with the following modification:

nn = npe
q(Vbi−V )
kBT (C.4)

where we have dropped the 0 subscript because the applied bias, V , is driving us away

from equilibrium. Note that we assume low injection conditions, i.e. that the injected

minority carrier density is small so that the majority carrier density is unchanged.

Using C.3, we find that

np = np0e
qV
kBT . (C.5)

for the electron concentration at the edge of the depletion region on the p side. We

then subtract np0 and write

np − np0 = np0

(
e
qV
kBT − 1

)
. (C.6)

Similarly for holes, we find that

pn = pn0e
qV
kBT . (C.7)

and

pn − pn0 = pn0

(
e
qV
kBT − 1

)
. (C.8)

for the concentration at the edge of the depletion edge on the n side. We assume

that there is no generation and recombination in the depletion region, and thus the

current of each carrier is equal on each side of the depletion region. Since there is

assumed to be no electric field in the neutral region, the continuity equation reduces
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to

d2pn
dx2
− pn − pn0

Dpτp
= 0 (C.9)

at steady state. This is a second order, homogeneous linear differential equation

which can easily be solved for pn. The particular solution to the full equation is just

the constant pn0. Thus the general solution is

pn − pn0 = c1e
x
Lp + c2e

− x
Lp (C.10)

where Lp =
√
Dpτp, the hole diffusion length. At x = ∞, we know that pn must be

equal to the equilibrium concentration and thus c1 = 0. At x = xn, the edge of the

depletion layer on the n side, we use C.7 as a boundary condition, and find that

c2 = pn0

(
1− e

qV
kBT

)
e
xn
Lp (C.11)

Putting it all together then, we find that

pn(x)− pn0 = pn0

(
1− e

qV
kBT

)
e
− (x−xn)

Lp . (C.12)

As we have already assumed that the field is zero at xn, the current can be easily

calculated,

Jp(xn) = −qDp
dpn
dx
|xn =

qDppn0

Lp

(
e
qV
kBT − 1

)
. (C.13)

The analogous calculation for the electron current on the p side of the junction gives

Jn(−xp) =
qDnnp0
Ln

(
e
qV
kBT − 1

)
. (C.14)
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Using our assumption that the current is constant across the depletion region, the

total current throughout the device is equal to

J(V ) = Js

(
e
qV
kBT − 1

)
(C.15)

where Js is the saturation current density, defined as

Js =
qDppn0

Lp
+
qDnnp0
Ln

(C.16)
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APPENDIX D

THE SHOCKLEY-QUESSIER LIMIT

This derivation will highlight the essential quantities derived in Shockley and

Queisser (SQ)’s seminal paper, titled ‘Detailed Balance Limit of Efficiency of pn

Junction Solar Cells.’ [15] Everything in the original work was calculated assuming

the sun’s spectrum was a 6000 K blackbody. Here, we will first assume this in the

initial derivation, then consider the additional information that we can glean from

using the actual AM 1.5 spectrum.

SQ derive the J(V ) curve of a solar cell based on just a few parameters, namely

the temperature of the cell (Tc), the bandgap of the absorber, (Eg), and the fraction

of recombination that is direct recombination (f). To start off, consider all possible

processes for free electrons and holes in the solar cell absorber:

1. Fs, the total rate (in carriers per second) at which electrons and holes in the

device are generated via absorption of solar photons. This is independent of

voltage because, for practical purposes, the conduction band will always be

mostly empty of electrons and the valence band mostly empty of holes.

2. Fc = Fc0 × np
n2
i

= Fc0 × e
∆Ef
kBT , the total rate of radiative recombination in the

device. It is a function of voltage, as we will discuss.

3. non-radiative generation

4. non-radiative recombination

5. I/q, the rate of carriers taken away by the external circuit.
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In order to calculate the steady-state current, one simply sums these processes, sets

them equal to zero, and solves for I. In order to understand the voltage dependence,

S-Q assumed that ∆Ef = V , the applied voltage. For their purposes, this was

sufficient. However, as is illustrated in Chapter 6, this is not always the case, as

contacts can prevent efficient extraction of carriers.

Regardless, we are essentially trying to solve the macroscopic continuity equation

for electrons and holes in the device (which is also what is done with different

assumptions in the present work). To find the resulting efficiency (η), one calculates

the maximum power of the I(V ) curve, then devides by the total solar power incident

on the device (Ps). Therefore, we must first calculate Fs, Fc0, and Ps.

To do so, we consider a model in which our solar cell is a flat plate with area Ac

on both sides, surrounded by 2π steradians of 300 K blackbody in both hemispheres

(see Fig. 21). Both Ps and Fs involve a calculation of solar photons that are incident

on the solar cell from above, while Fc0 considers photons from a 300 K blackbody

incident on the cell from all 4π steradians of both hemispheres.

To calculate the total rate of generation of electron and hole pairs from solar

photons, we assume that any above gap photon incident on the solar cell will generate

free carriers, while photons with energy Eγ < Eg generate none. We treat the sun as

a blackbody, with temperature Ts. It has a radius of rs and is a distance ds from the

solar cell. The number of solar photons per unit energy per volume traveling towards

the solid angle dΩ is given by:[96]

dnγ
dE

=
1

4π3~3c3

E2dΩ

e
E

kBTs − 1
(D.1)

where E is the photon energy and nγ is the number density of photons. To calculate

the total rate of above gap photons hitting the solar cell, we need to know the flux
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θ

dΩds

Ac

V

FIGURE 21. Schematic of the geometric considerations (not to scale) for a flat solar
cell connected to a power sink (V), used to calculate Fs, Fc0, and Ps. The distance
to the sun is ds, dΩ is the solid angle subtended by the solar cell from the point of
view of the sun, and Ac is the area of the flat side of the solar cell (meaning the total
surface area is 2Ac). The angle of incidence of solar radiation, θ, is measured from
grazing incidence, so that θ = π/2 for normal incidence.

heading that direction, and we sum over all energies above the bandgap. The flux is

calculated by multiplying dnγ
dE

by the projected area of the sun (As = πr2
s) and the

speed at which the photons are traveling (c):

Fs =

∫ ∞
Eg

dnγ
dE

dE × Asc (D.2a)

=
2πr2

sdΩ

h3c2

∫ ∞
Eg

E2dE

e
E

kBTs − 1
(D.2b)

Note the change from ~ to h. The solid angle of the solar cell from the point of view

of the sun, dΩ, is Ac sin θ
d2
s

. Substituting x for E
kBTs

, we find

Fs =
2Ac sin (θ) Ωs (kBTs)

3

h3c2

∫ ∞
xg

x2dx

ex − 1
(D.3)

117



where we have used Ωs = πr2
s

d2
s

and xg = Eg
kBTs

. Next, we want to know the total

power density incident on our solar cell, Ps, so that we may eventually calculate the

efficiency. Luckily, this uses almost the exact math as Fs, but instead of considering

the number distribution of photons (dnγ
dE

), we use the energy distribution instead:

dEγ
dE

=
1

4π3~3c3

E3dΩ

e
E

kBTs − 1
(D.4)

Otherwise, the arguments are exactly the same, and we end up with

Ps =
2Ac sin (θ) Ωs (kBTs)

4

h3c2

∫ ∞
xg

x3dx

ex − 1
(D.5)

Finally, we need to calculate the total rate of above gap photons incident on the

solar cell from the background 300 K environment. We assume that the temperature

of the cell, Tc, is also 300 K. This calculation starts in the same place, with density of

photons from the blackbody, but is slightly more complicated, as we must integrate

over the hemisphere (given symmetry, we can do this once and multiply the end

result by two). To get the total rate, we must integrate over the area of a fictional

hemisphere surrounding the upper half of the solar cell. We can use any radius we

like (it does not matter in the end). This integral is mandated by the fact that dΩ

depends on which area of the sky we are looking at the solar cell from. Again, we

also multiply by c to calculate the rate:

Fc0 = 2

∫ ∫
dnγ
dE

dEdA× c (D.6a)

=
4Ac (kBTc)

3

h3c3d2
s

∫ ∞
xg

x2

ex − 1
dx

∫ 2π

0

∫ π/2

0

sin θ sin (π/2− θ) d2
sdθdφ (D.6b)
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where we have again used dΩ = Ac sin θ
d2
s

. Note that we neglect the small solid angle of

the sky whose 300 K photons would be replaced by solar photons during the day, as

this fraction of the sky is negligible. After simplification, this becomes

Fc0 =
4πAc (kBTs)

3

h3c2

∫ ∞
xg

x2

ex − 1
dx (D.7)

We know that the rate of direct recombination at equilibrium (i.e. when the

cell is surrounded by 4π steradians of 300 K blackbody) must be equal to Fc0. The

same is true for indirect generation and recombination, which we denote as R(0) and

R(V ), respectively. In steady state, the sum of these four processes and the current

extracted, I, must be zero (otherwise the carrier densities would change with time):

0 = Fs + Fc0 − F (V ) +R(0)−R(V )− I/q (D.8)

where the sign of each term corresponds to whether that term adds or removes carriers

from the absorber. For simplicity, we will now assume that R(V ) = R(0) = 0

(i.e, f = 1). This assumption is often synonymous with the SQ limit, as direct

recombination is the most fundamental process that can’t be mitigated, no matter

how perfect one’s absorber is. 1

Thus, the SQ current voltage curve is simply

I = qFs + qFc0(1− eV/VT ) (D.9)

1Technically, Auger recombination is fundamental in a similar matter, but it has a more
complicated voltage dependence, so we’ll ignore it, as the more elegant presentation simply balances
radiative recombination and generation.
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Note that this equation uses the opposite current convention as the present work

(i.e. the power quadrant is quadrant I, as opposed to quadrant IV). The short circuit

current is obviously

Isc = qFs (D.10)

while the open circuit voltage is easily determined by setting I = 0 and solving for

V :

Voc = VT ln

(
1 +

Fs
Fc0

)
(D.11)

As usual, the maximum power point occurs when d(I × V )/dV = 0. The voltage at

the maximum power point is

Vm = VTW

(
(e(1 +

Fs
Fc0

)

)
(D.12)

where W is the Lambert W function.

What many refer to as the SQ limit is a plot of efficiency vs. bandgap, seen in

Fig. 22 for both a 6000 K blackbody as the sun, and the AM1.5 spectrum. The basic

rise and decline are readily explained by the need for a balance of maximizing the

product of the current times the voltage; larger bandgaps lead to smaller currents, but

larger voltages increase the energy/voltage per electron/hole extracted, so there is a

moderate bandgap that will maximize this product. The details of exactly where this

occurs depend, of course, on the incident spectrum. For the actual AM1.5 spectrum,

there are two maxima that give similar efficiency values of 33-33.5 % at about 1.15

and 1.35 eV.
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FIGURE 22. Plot of the SQ limiting efficiency as a function of bandgap for a single
absorber solar cell, using a 6000 K blackbody as the sun (blue), and the AM1.5G
spectrum (red).
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APPENDIX E

PHYSICAL EXPLANATION OF CONTACT-LIMITED J(V ) BEHAVIOR

Here, we explain the physics determining the behavior of a sample J(V ) curve

produced by eq. 5.3 by plotting the partial currents determined by eq. 3.1 at several

critical points along the curve. Consider the sample curve, shown in Fig. 23a. The

curve, as usual, features a constant negative current in reverse bias (∼ −10 mA/cm2),

two steps in forward bias, and finally a constant positive current far into forward bias

(∼ 50 mA/cm2).

The ratios of each carrier density at each contact to the corresponding equilibrium

density are plotted in Fig. 23b as a function of voltage. They are calculated by using

the appropriate equation from eq. 4.1 after solving for the corresponding partial

current as described in Section 1 above. In reverse bias, the majority carriers (solid

lines) are slightly in excess at their contacts, while there is a deficit of minority carriers

(dashed lines) at both contacts. Far into forward bias, it is the minority carriers that

are in excess (many orders of magnitude more than their equilibrium densities), while

the majority carrier densities are drawn below equilibrium. The voltages at which

the steps in current occur are consistent with the kinks in the carrier density plot.

In general, the cause of the current step (with or without light) is that as the device

is pushed further into forward bias, minority carriers start to form a large enough

excess for current to be noticeable compared to the J0 of that carrier. Therefore, the

voltage at the steps are determined by the ratios of the J0’s for a given carrier, i.e.

the carrier selectivities. This plot is a useful guide in explaining the partial currents

at four insightful voltages: 1) far into reverse bias, 2) at open circuit, 3) between the

first and second steps in forward bias, 4) far in forward bias, after both steps have
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occurred. These are plotted in Fig. 24. Note that the partial currents are linear,

which is dictated by the assumption of uniform generation. Non-uniform generation

would change the shape of the partial current profiles, but only the difference between

partial current values at the contacts matters for the explanation presented here.
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FIGURE 23. a) Sample J(V ) curve produced by eq. 5.3 using JL = 10, Jβ0n = 10,
jα0n = 10−3, Jα0p = 30, jβ0p = 10−8 mA cm−2. b) Log base 10 of the ratio of the carrier
density to the corresponding equilibrium density for each carrier at each contact (i.e.
the fraction terms in eq. 3.1) plotted vs. applied voltage.

First, consider the current in reverse bias (Fig. 24a), which is approximately

equal to −JL (recall that we can always assume that the j0’s are much smaller than

JL if we have an appreciable photovoltaic effect). In reverse bias, the minority carrier

densities are drawn down to zero. For electrons, this means that the electron partial

current at the α contact is approximately zero. The continuity equation then dictates

that the electron current at the β contact is −JL, which requires a small excess of

electrons at contact β. Similar logic applies for holes. Note that this is consistent

with Fig. 23.

Meanwhile, at open-circuit(fig. 24b), the total current in the device must be

zero. The current therefore increased significantly from −JL in reverse bias, and

this is caused by whichever carrier has the smallest critical voltage (eq. 5.7), in this

case, electrons. The partial current profile for holes is approximately the same as in
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FIGURE 24. Plots of electron (blue) and hole (red) partial currents, as well as total
current (purple) as a function of position from the α contact to the β contact for a)
reverse bias, b) at Voc, c) between the steps, and d) after the second step in forward
bias. As has been our assumption throughout, the β contact is electron selective
while the α contact is hole selective, and positive current flows from left to right.

reverse bias, as the hole step has yet to occur. Meanwhile, the electron density at the

α contact is much higher than the equilibrium density (as seen in Fig. 23), so that the

corresponding partial current is +JL. The continuity equation then dictates that the

electron current at the β contact must be zero, meaning the electron concentration

at contact β is at equilibrium.

After the first step has occurred and before the second step (fig. 24c), the

total current is approximately equal to Jβ0n according to fig. 23a. This is again

explained by the carrier densities in Fig. 23b; the hole step has yet to occur while the
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electron density at the β contact is being drawn to approximately zero, meaning the

corresponding current is maximized at Jβ0n. The continuity equation dictates that the

electron current must be JL + Jβ0n at the α contact, requiring a very large excess of

electrons, given by the flat value after the kink in the dashed blue curve in Fig. 23.

Finally, the current levels off at JL + Jβon + Jα0p after the hole step occurs in far

forward bias (fig. 24d). Here, the hole density at the α contact is being drawn down

to zero, providing the maximum possible partial current of Jα0p. The hole density at

the β contact dramatically exceeds its equilibrium value, in order to supply a partial

current of JL + Jα0p.
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APPENDIX F

DERIVATION OF LOW AND HIGH INJECTION LIMITS OF THE

CONTACT-DETERMINED J(V ) CURVE

Low Injection

Our definition of low injection for both carriers is that Jβ0n � JL and Jα0p � JL.

Note that we will simplify the J(V ) curve assuming both carriers are in low injection.

It is also fair to only consider one of the steps and completely neglect the other if

one is only interested in the power quadrant as long as the limiting carrier selectivity

is much smaller than the other. We will assume that the electron J0 for contact β

is the majority process and visa versa for the α contact, thus we will use the J0, j0

convention as is done in the text. We will assume the both j0’s are small compared

to both JL and the J0’s. Neglecting these appropriately, we have

J(V ) ≈ −JL +
Jβ0n

1 +
Jβ0n
jα0n
e−V/VT

+
Jα0p

1 +
Jα0p

jβ0p
e−V/VT

. (F.1)

This can be re-written as:

J(V ) ≈ JL +
Jβ0n − JL − JL

Jβ0n
jα0n
e−V/VT

1 +
Jβ0n
jα0n
e−V/VT

+
Jα0p − JL − JL

Jα0p

jβ0p
e−V/VT

1 +
Jα0p

jβ0p
e−V/VT

. (F.2)

We can again neglect the −JL’s in the numerator given the assumption of low

injection:
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J(V ) ≈ JL +
Jβ0n

(
1− JL

jα0n
e−V/VT

)
1 +

Jβ0n
jα0n
e−V/VT

+

Jα0p

(
1− JL

jβ0p
e−V/VT

)
1 +

Jα0p

jβ0p
e−V/VT

. (F.3)

Given that the Voc in low injection is approximately VT ln

(
JL

jα0n+jβ0p

)
, the exponential

terms in the denominators will be much greater than one within the power quadrant as

long as
Jβ0n
JL
� jα0n+jβ0p

jα0n
and

Jα0p
JL
� jα0n+jβ0p

jβ0p
. In other words, we must further assume that

the j0’s are not too different from one another as compared to the ratios of the J0’s to

JL. Note that if we cannot make this assumption, it will suffice to simply ignore the

step of the non-limiting carrier completely, leading to an even simpler function. That

derivation is not shown, but proceeds analogously to this one, ignoring the irrelevant

step. If we do make this assumption, we have

J(V ) ≈ JL +
Jβ0n

(
1− JL

jα0n
e−V/VT

)
Jβ0n
jα0n
e−V/VT

+

Jα0p

(
1− JL

jβ0p
e−V/VT

)
Jα0p

jβ0p
e−V/VT

. (F.4)

which can easily simplified to

J(V ) ≈
(
jα0n + jβ0p

)
eV/VT − JL. (F.5)

Note that this approximation is only guaranteed to be accurate for biases less than

or equal to Voc (i.e. in the power quadrant and in reverse bias).

High Injection

Recall that our definition for high injection for both carriers is that Jβ0n � JL

and Jα0p � JL. The approximation for J(V ) in high injection is very easily derived

from eq. 5.3 by neglecting the J0’s much smaller than JL in each of the three terms:
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J(V ) ≈ −JL+
JL

1 +
Jβ0n
jα0n
e−V/VT

+
JL

1 +
Jα0p

jβ0p
e−V/VT

= −JL+
JL

1 + Sne−V/VT
+

JL
1 + Spe−V/VT

.

(F.6)
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