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DISSERTATION ABSTRACT 
 
Forrest Alfred Lloyd Laskowski 
 
Doctor of Philosophy 
 
Department of Chemistry 
 
September 2019 
 
Title: Semiconductor | Catalyst Interfaces in Photoelectrochemical Devices: Charge 

Transport Theory, Experimental Technique Development, and Nanoscale 
Applications 

 
 

Photoelectrochemical energy conversion is a promising method to harvest incident 

sunlight and convert/store the energy in stable hydrogen gas bonds. The process is reliant 

on coupling between a light-absorbing semiconductor and an electrocatalyst responsible 

for enhancing the oxygen/hydrogen evolution reaction. However, photoelectrochemical 

energy storage remains inefficient, in part because the semiconductor|catalyst interface is 

not well understood. Attaining a clearer understanding of the interface is critically 

important because it is responsible for separation and collection of photogenerated charge.  

In the following dissertation the behavior of the semiconductor|catalyst interface is 

experimentally and theoretically analyzed. Chapter 1 introduces the reader to two 

experimental techniques which facilitate interfacial understanding: dual-working-electrode 

photoelectrochemistry and potential sensing electrochemical atomic force microscopy. 

These techniques enable direct observation of potential and current transport across the 

semiconductor|catalyst interface during device operation. Chapter 2 applies these 

techniques to examine two common electrochemical experimental methods. The results 

suggest that analyzing the semiconductor|catalyst interface with the two methods is more 

challenging than previously appreciated. Chapter 3 presents an analytical model describing 
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charge transport across the semiconductor|catalyst interface. In Chapter 4 the experimental 

techniques from Chapter 1 are applied to analyze the semiconductor|catalyst behavior of 

two model systems with interfacial heterogeneity. The anomalously good performance of 

some devices is attributed to an increase in interfacial selectivity caused by the “pinch-off” 

effect.  

This work builds upon and improves understanding of the semiconductor|catalyst 

interface in photoelectrochemical devices.  The dissertation contains previously published 

and un-published co-authored materials.   
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CHAPTER I: INTRODUCTION 

 

This chapter is divided into two sub-sections encompassing two completed bodies of work: 

a review published in the Journal of the American Chemical Society and a perspective published 

in Accounts of Chemical Research. These publications provide the reader an introduction to 

catalyzed oxygen evolution on photoanodes and the various techniques discussed throughout this 

thesis. Experiments reliant of dual-working-electrode (DWE) photoelectrochemistry are featured 

extensively in later chapters and are well introduced by the subsequent two publications. The DWE 

techniques are employed in Chapter 2 to better interpret data resulting from transient photocurrent 

and hole scavenger experimental methods. In Chapter 4, the semiconductor|catalyst junction 

behavior of n-Si photoanodes is initially elucidated using DWE experiments. The DWE concept is 

then adapted onto an atomic force microscope to probe the junction behavior of nanoscale features. 

The atomic force microscope adaption is referred to as potential-sensing electrochemical atomic-

force microscopy (PS-EC-AFM) and this is also covered throughout the subsequent two 

publications.  

Section A, Metal Oxide/(oxy) hydroxide Overlayers as Hole Collectors and Oxygen-

Evolution Catalysts on Water-Splitting Photoanodes, contains co-authored material previously 

published as: Laskowski, F. A. L.‡; Nellist, M. R.‡; Qiu, J.; & Boettcher, S. W. Metal Oxide/(oxy) 

hydroxide Overlayers as Hole Collectors and Oxygen-Evolution Catalysts on Water-Splitting 

Photoanodes. Journal of the American Chemical Society, 141(4), 13941405 (2018). ‡joint 

authorship  

Section B, Semiconductor–Electrocatalyst Interfaces: Theory, Experiment, and 

Applications in Photoelectrochemical Water Splitting, contains co-authored material previously 

published as: Nellist, M. R.‡; Laskowski, F. A. L.‡; Lin, F.; Mills, T. J.; & Boettcher, S. W. 

Semiconductor–Electrocatalyst Interfaces: Theory, Experiment, and Applications in 

Photoelectrochemical Water Splitting. Accounts of Chemical Research, 49(4), 733-740 (2016). 

‡joint authorship 

Prof. Boettcher, M. Nellist, and I conceived of the review/perspective directions. I 

coauthored all drafts of these publications and produced most figures. M. Nellist and I shared equal 

writing burden and intellectual contribution in each case. Prof. Boettcher extensively edited each 

draft of the manuscript with editorial assistance from J. Qiu. Author ordering between M. Nellist 

and I on these two publications was determined by an impartial coin flip, courtesy of M. G. Kast.  
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Paper A 

 

 Metal Oxide/(oxy)hydroxide Overlayers as Hole Collectors and Oxygen-Evolution 

Catalysts on Water-Splitting Photoanodes 

 

Forrest A. L. Laskowski,† Michael R. Nellist,†  Jingjing Qiu, Shannon W. Boettcher* 

 
† These authors contributed equally to the work. 

 

1. Introduction 

Solar-water-splitting provides a mechanism to convert and store solar energy in the form 

of stable chemical bonds. Water-splitting systems often include semiconductor photoanodes, such 

as n-Fe2O3 and n-BiVO4, which use photogenerated holes to oxidize water. These photoanodes 

often exhibit improved performance when coated with metal-oxide/(oxy)hydroxide overlayers that 

are catalytic for the water oxidation reaction. The mechanism for this improvement, however, 

remains a controversial topic. This is, in part, due to a lack of experimental techniques that are able 

to directly track the flow of photogenerated holes in such multicomponent systems. In this 

Perspective we illustrate how this issue can be addressed by using a second working electrode to 

make direct current/voltage measurements on the catalytic overlayer during operation in a 

photoelectrochemical cell. We discuss examples where the second working electrode is a thin 

metallic film deposited on the catalyst layer, as well as where it is the tip of a conducting atomic-

force-microscopy probe. In applying these techniques to multiple semiconductors (Fe2O3, BiVO4, 

Si) paired with various metal-(oxy)hydroxide overlayers (e.g. Ni(Fe)OxHy and CoOxHy), we found 

in all cases investigated that the overlayers collect photogenerated holes from the semiconductor, 

charging to potentials sufficient to drive water oxidation. The overlayers studied thus form charge-

separating heterojunctions with the semiconductor as well as serve as water-oxidation catalysts. 

Semiconductors coated with electrocatalysts are key components of photoelectrochemical 

water-splitting systems that generate hydrogen and oxygen gas from sunlight and water.1 Oxide 

semiconductors, such as Fe2O3 and BiVO4, have been studied extensively for driving the oxygen-

evolution half reaction because they are in principle inexpensive and chemically stable under 

oxidizing conditions.2-5 To increase performance such photoanodes are typically coated by 

electrocatalyst layers.6-9 However, the mechanisms of charge transfer and the fate of 

photogenerated carriers in these combined systems are not well understood.10-11 The 

semiconductors are generally polycrystalline with various facets and grain boundaries which affect 



3 
 

electronic transport.4, 12-13 The surfaces are often defective, populated by surface states with varying 

densities and energies.14-15 Water-oxidation catalysts are typically (photo)electrodeposited metal 

(oxy)hydroxides such as nickel-iron oxyhydroxide (Ni(Fe)OxHy) or cobalt oxyhydroxide phosphate 

(CoPi), and the resulting catalyst films are disordered, porous and often permeable to electrolyte.16-

20 

The precise role of the catalytic layers remains a central question and is the focus of this 

Perspective. The layers are generally referred to as “catalysts” because when applied to conductive 

electrodes (in the dark) they evolve oxygen at low overpotentials.16-19 When applied to 

semiconductor (sem) photoanode surfaces they typically enhance the photocurrent onset potential 

and/or the total photocurrent for water oxidation.1, 21 The origin of this enhancement, however, is 

the subject of significant discussion. Many have assumed a simple model where the catalyst (cat) 

collects holes from the semiconductor and then uses those holes to drive water oxidation at more 

cathodic potential than is possible in the absence of the catalyst (Figure A.1a).6, 22 Recent work 

using impedance analysis by the Hamann and Gamelin groups have supported this, indicating that 

CoPi on Fe2O3 serves to collect photogenerated holes.22-23 Others have argued that catalysts play 

an indirect role in enhancing photoelectrode performance by, for example, chemically passivating 

defects on the semiconductor surface responsible for electron-hole pair recombination.14-15, 24-25 In 

this view, the semiconductor’s ability to oxidize water improves because a larger steady-state 

concentration of surface holes is available to drive water oxidation (Figure A.1b). A related 

hypothesis suggests that the catalyst passivates semiconductor surface states responsible for Fermi-

level pinning.22, 26 Once passivated, the semiconductor band bending increases for a given applied 

potential and the near-surface concentration of conduction-band electrons is decreased, thus 

decreasing the forward recombination electron current. Finally, the catalyst could create a solid-

state heterojunction with more-favorable band bending (Figure A.1c) than the semiconductor/liquid 

junction.9, 27-29 Examples of the possible behaviors for catalyst layers on semiconductor 

photoanodes are given in Figure A.1.  
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Figure A.1. Comparison of different roles of catalytic overlayers on semiconductor-coated 

photoanodes. The photoanodes depicted in the left column show the illuminated band diagram 

before catalyst deposition. The right column illustrates how the behavior changes once a catalyst is 

deposited for each case. All depictions are shown with the same arbitrary applied potential such 

that oxygen evolution occurs. Ef,n is the quasi-Fermi level of the electrons, Ef,p is the quasi-Fermi 

level of the holes, Esol is solution Fermi level (taken to be equal to q𝜀𝜀𝑂𝑂2/𝑂𝑂𝑂𝑂− where 𝜀𝜀𝑂𝑂2/𝑂𝑂𝑂𝑂− is the 

thermodynamic potential for water oxidation), and Ecat is Fermi level of the catalyst overlayer. (a) 

Slow OER kinetics on the semiconductor surface inhibits facile oxygen evolution. The catalyst 

enhances oxygen evolution by collecting photo-generated holes from the semiconductor and using 

them to oxidize water. (b) The presence of surface states results in significant recombination 

current. The “catalyst” effectively passivates these states and enables greater water oxidation on 

the semiconductor surface as the surface hole concentration is increased at steady state. (c) A large 

electron concentration at the conduction-band edge promotes forward recombination electron 

current. This diminishes the semiconductor’s ability to drive OER because holes are lost to 

recombination. Deposition of a catalyst results in greater band-bending which decreases the 

forward electronic dark current. The increased hole population allows the semiconductor to more 

effectively oxidize water. Note: for the schemes in (b) and (c) water oxidation may occur directly 

on the semiconductor surface (through the electrolyte-permeable catalyst overlayer). 
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Several experimental techniques have been developed/applied to differentiate between the 

various hypotheses describing how catalytic layers improve performance. Durrant and coworkers, 

among others, have employed transient absorption spectroscopy (TAS) and photoinduced-

absorption (PIA) optical techniques to investigate the fate of photogenerated holes on CoPi-coated 

hematite (Fe2O3) and bismuth vanadate (BiVO4).9, 27-43 The TAS technique is a pump-probe 

technique in which “fingerprints” of the holes in the transient optical-absorption spectra, following 

an excitation pulse, are identified and their decay monitored as a function of time. PIA is similar 

but the optical signature of accumulated holes is monitored at quasi-steady state. These techniques 

are powerful in that the authors show changes in the optical absorption spectra, with applied 

potential, which correlate to changes in the measured OER current. However, various assumptions 

are required when using the absorption signal to follow the fate of photogenerated holes. For 

example, one must be able to assign a given optical signal to a hole trapped in the semiconductor 

itself, on the semiconductor surface, or in the catalyst. One must also carefully calibrate for the 

quantity of catalyst present and its optical extinction coefficient. Using these optical techniques 

Durrant and coworkers concluded that although isolated CoPi is a water oxidation catalyst, it does 

not drive water oxidation either on Fe2O3 or BiVO4 and instead primarily serves to passivate surface 

states (Figure A.1b).9, 27, 29 

Intensity-modulated photocurrent spectroscopy (IMPS), has also been used to examine the 

role of CoPi and Ni(Fe)OxHy catalysts on Fe2O3 and BiVO4.24-26, 44-48 In the IMPS technique, the 

semiconductor is illuminated with a periodically modulated light source at a constant applied 

potential and the photocurrent response is measured as a function of the modulation frequency. The 

resulting data can be analyzed by applying a first-order kinetic model which accounts for minority 

carrier generation and collection (modeled via the Gärtner hole current), the hole concentration in 

surface states, recombination with conduction-band electrons at surface states, and charge transfer 

to solution.47 Apparent recombination and transfer rate constants can then be extracted from the 

data. Interestingly, for both CoPi on BiVO4, and Ni(Fe)OxHy on Fe2O3, the “catalyst” was found to 

significantly decrease the apparent recombination rate constant while not significantly affecting the 

apparent rate constant for transfer to solution (i.e. catalysis).25-26, 47 It was thus concluded that these 

catalysts serve to passivate surface states, not increase water oxidation kinetics. We note that this 

interpretation relies on the validity of the model used to analyze the IMPS data. The original model 

was developed for a simple system in the absence of a catalyst and contains only two kinetic 

processes.45, 47 The catalyst-coated semiconductor system is more complex because forward and 
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reverse hole and electron transfer between semiconductor, surface state, catalyst, and solution 

subsystems may all occur.  

In this perspective we focus on “dual-working-electrode” methods developed in our 

research group to directly probe the flow of charge carriers in catalyst-coated photoanodes.49-57 The 

techniques all rely upon electrical contact to the catalyst layer to directly measure the catalyst’s 

operating potential in-situ during photoelectrochemical experiments. The work builds on previous 

efforts to measure quasi-Fermi levels using secondary electrodes in dye-sensitized58 and bulk-

semiconductor photoelectrochemical cells,59 as well as work on semiconductor|conducting-

polymer60 and semiconductor|nanoparticle interfaces.61 In one example, this contact is a thin 

electrolyte-permeable OER-inert metal film deposited on top of the catalyst layer (Figure A.2a).49-

50, 53-54 In another example, the second contact is the metallized tip of a conducting atomic-force-

microscope (AFM) probe (Figure A.2b).51, 55 These techniques are straightforward in that 

simplifying assumptions are not required to draw conclusions from the obtained data. For example, 

the accumulation of holes in the catalyst layer during photoelectrochemistry can be directly sensed 

by the potential of the second working electrode. We find, contrary to the results of the TAS/PIA 

and IMPS studies, that typical catalysts such as CoPi and Ni(Fe)OxHy collect holes and drive water 

oxidation across the studied semiconductor systems. Others have used these techniques to examine 

TiO2-protected cathodes,62 properties of semiconductor-liquid junctions,63 and buried junctions in 

water-splitting dye-sensitized photoelectrochemical cells.64  

 
Figure A.2. Comparison of dual-working-electrode photoelectrochemistry techniques. In both 

cases, the first working electrode (WE1) is attached to the semiconductor backside via an ohmic 

contact. (a) For the macroscopic technique, a porous Au thin film is deposited onto the surface of 

the catalyst and electrically connected to the second working electrode (WE2). (b) For the 

nanoscale approach, a conductive nanoelectrode AFM probe is used instead of the Au film.   
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2. Dual-working-electrode photoelectrochemistry – from macroscopic to nanoscopic 

measurements 

 The basic concepts underlying the fundamental and practical aspects of dual-working-

electrode photoelectrochemistry (DWE PEC) have been previously reviewed.50, 56 As in traditional 

PEC measurements, the DWE PEC setup features a semiconductor whose potential can be 

manipulated by a potentiostat through an ohmic back contact.  We refer to this connection as the 

primary working electrode (WE1) and it can be used to measure current response while sweeping 

the semiconductor potential Vsem. As discussed above, photoanodes are often studied with catalyst 

surface layers which reduce the potential required to drive water oxidation at a given current 

density. For DWE PEC experiments, a second contact is applied to the catalyst layer by thermally 

evaporating an Au film onto the catalyst surface to serve as the second working electrode (WE2). 

Au is selected due to its low intrinsic OER activity, high conductivity, and electrolyte permeability 

(at sufficiently thin deposition thicknesses). The second working electrode enables the 

current/potential to be measured or controlled at the catalyst film independent of the semiconductor 

and WE1.  

 The DWE technique has been applied to study a variety of well-defined sem|cat systems, 

such as TiO2, Si and planar Fe2O3 with uniform catalyst layers, and will be discussed below. 

However, many of the most commonly studied photoelectrodes for water oxidation consist of three-

dimensionally structured semiconductors coupled to catalysts which may not uniformly cover the 

photoelectrode surface.52 Application of a thin Au top contact is challenging on these types of 

systems because the Au may short to the underlying semiconductor surface (creating a Schottky-

type junction). For especially rough surfaces the Au may not interconnect well when deposited at 

thicknesses sufficiently thin for electrolyte permeability.56  

To overcome these challenges, we translated the technique to the nanoscale using recently 

developed nanoelectrode AFM probes.51 These nanoelectrode AFM probes are conductive, with a 

thin insulating layer coating the entire probe except for the exposed tip (Figure A.3a).  By scanning 

the electrode surface, the probes can be used to image the morphology and catalyst coverage. For 

photoanodes with incomplete catalyst coverage, this initial image allows the semiconductor surface 

to be distinguished from locations with catalyst coating. Once a topological map is acquired, the 

AFM can land the probe at a selected location and collect surface-potential data for the duration of 

a (photo)electrochemical experiment. This setup is depicted in Figure A.2b. For operando AFM 

experiments a custom electrochemical cell and AFM stage were built to enable back illumination 

and the use of an Ag/AgCl reference electrode.  
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 To demonstrate the ability of the probe to measure surface potential, we imaged an 

electrode consisting of Au/Ti-coated glass in the electrochemical AFM cell. With the nanoelectrode 

probe contacting the submerged Au surface (in a potassium phosphate buffer), the potential of the 

Au was stepped using WE1 and measured using the probe (WE2). As expected, the measured 

potential at WE2 traced the applied potential at WE1 (Figure A.3b).  This result demonstrated that 

the nanoscale AFM probe can accurately measure the surface potential of a biased electrode in 

solution. 

 
Figure A.3. Using nanoelectrodes to measure surface potential. (a) Scanning electron 

microscopy (SEM) image of nanoelectrode AFM probes used for nanoscale potential sensing. The 

Si probes coated with a conductive material (e.g. Pt) that is fully insulated except at the exposed 

tip. (b) Stepping the potential of an Au electrode anodically in 100 mV increments, while measuring 

the potential of the Au electrode using a nanoelectrode probe resting on the Au surface. This data 

shows the nanoscale electrode probe can be used to measure the surface potential of a biased 

electrode in an electrochemical cell. Adapted from Ref 55. 

 

 The importance of the nanoscale DWE technique, which we refer to as potential-sensing 

electrochemical atomic-force microscopy (PS-EC-AFM), is that the surface electrochemical 
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potential – i.e. the free energy of the reactive electrons – on a catalyst can be measured in situ 

without evaporation of a macroscopic second-working-electrode contact. This allows for a large 

diversity of samples to be studied. Additionally, because the technique is AFM-based it, in 

principle, enables simultaneous topographic and potential mapping of the electrode surface. This 

might help guide design of improved photoanodes by relating spatial heterogeneity of the 

photoelectrode interface to desirable electrochemical properties.65 

 

3. Using DWE to Understand the Role(s) of Catalytic Layers in Oxygen-Evolving 

Photoanodes  

The experimental approaches described above provide an opportunity to study the 

fundamental role of overlayers in enhancing oxygen evolution on photoanodes. Here we provide 

an overview of the range of behaviors we have observed via DWE measurements. These behaviors 

are consistent with the model depicted in Figure A.4. In the model, the catalyst sits on the surface 

of the semiconductor and remains inactive in its reduced resting state while in the dark. Upon 

illumination, a hole-quasi-Fermi level is established in the semiconductor and holes accumulate at 

the semiconductor surface. Transfer of the surface holes into the catalyst, which is often an 

extended electronic system, is thermodynamically favorable and occurs efficiently compared to 

direct transfer to solution which requires driving the oxygen-evolution reaction. Holes injected into 

the catalyst layer increase the electrochemical potential of the catalyst until steady state is achieved. 

Because the catalysts studied are typically permeable to electrolyte and redox active (e.g. they 

contain Ni or Co cations that have multiple oxidation states accessible19-20, 49, 66), holes can 

accumulate throughout the “bulk” of the catalyst layer. The system reaches steady state when the 

net flux of holes into the catalyst is equal to the net flux out of the catalyst. This occurs when either 

(1) the rate of holes recombining with conduction band electrons equals the rate of hole injection 

into the catalyst or (2) the catalyst electrochemical potential becomes sufficient to directly drive 

OER at the rate of injected holes minus the rate of recombination (Figure A.4c). The catalyst’s 

ability to perform OER can be thought of in terms of Butler-Volmer or Tafel kinetics where the 

catalytic current depends exponentially on potential,67 as can be measured directly by supplying 

potential via WE2 in the dark and measuring the resulting current at WE2 (demonstrated in the 

subsequent section). This direct measurement allows us to unambiguously relate the rate of oxygen 

evolution for a catalyst sitting on a semiconductor surface to the catalyst’s electrochemical 

potential. As the applied semiconductor bias or light intensity increases (causing an increase in 

photocurrent), the catalyst charges to a more-positive electrochemical potential to maintain current 
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continuity. Below we provide data across several catalyst/semiconductor systems that support this 

model. 

 
Figure A.4. Conceptual model showing how a catalyst-coated photoanode might operate 

under various conditions. (a) In the dark the Fermi levels equilibrate and the catalyst rests in an 

inactive state. Here Esem, Ecat, and Esol represent the electrochemical potential of the semiconductor, 

catalyst, and solution. Vsem is the applied potential between the semiconductor back contact and the 

thermodynamic reference point for reversible oxygen evolution (𝜀𝜀O2/OH−). (b) Upon illumination, 

a hole quasi-Fermi level (𝐸𝐸f,p) is generated. Holes at the sem|cat interface transfer to the catalyst if 

easily-oxidized catalyst species are present (e.g. driving the Ni2+/3+ or Co2+/3+ redox couple in 

(oxy)hydroxide catalysts). (c) At steady state two broad regimes can be identified depending on the 

applied potential.  At sufficiently low applied potentials the hole current from the valence band to 

catalyst (𝐽𝐽vb,cat) is balanced by the recombination current from electrons in the conduction band to 

catalyst (𝐽𝐽cb,cat). In this regime the catalyst might become oxidized but does not reach a sufficient 

potential to drive oxygen evolution (it cannot be sufficiently charged because 𝐽𝐽vb,cat = −𝐽𝐽cb,cat at 

steady state).  At sufficiently larger (positive) applied potentials the recombination current 

diminishes (as the electron concentration at the conduction band edge is decreased) and the catalyst 

is charged to an oxidizing potential where it can match the net junction current.  In this case 𝐽𝐽vb,cat +

𝐽𝐽cb,cat = 𝐽𝐽cat,sol at steady state.   
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3.1 Ni-Protected Si Photoanodes 

The macroscopic DWE technique was applied to Si photoanodes to better understand 

efficiency increases reported when applying sufficiently thin catalyst/protection layers. Because Si 

is oxidized under OER conditions, the catalyst must play a protective role in addition to a catalytic 

role.68-69 We studied devices where 3, 5, and 20 nm of Ni were thermally evaporated onto the Si 

surface. During operating conditions (illuminated and at anodic applied potentials) some of the Ni 

converts to Ni(Fe)OxHy and serves as the catalyst. For these devices the junction is considered 

“buried”, meaning the charge-separating junction is not exposed to electrolyte. This condition 

precludes the OER from occurring on the semiconductor surface, therefore the photocurrent must 

pass through the catalyst layer (note: any exposed Si is unable to perform OER as it is preferentially 

oxidized). Aside from the increased understanding of Si photoanodes, the results are important 

because they illustrate how DWE measurements behave on a system where photogenerated charge 

clearly transfers to the catalyst layer.   

 
Figure A.5. Evolution of the photoelectrochemical response over many electrochemical cycles 

for a Ni-coated n-Si photoanode. Bottom panel: Using WE1 the illuminated photoanode is cycled 

through the potential range shown. After every 50th cycle, the experiment is paused while 

voltammetry data is collected via WE2. Top panel: The data collected via WE2 every 50 cycles 

shows the catalyst’s intrinsic activity.  The results demonstrate the DWE’s ability to separate 

catalytic effects from junction effects. Although the onset of photocurrent shifts cathodic with 

continued cycling as shown in the bottom panel, this shift is not accounted for by changes in the 

intrinsic catalytic activity shown in the top panel. After an initial 50-cycle activation period, the 

catalyst activity remains largely constant while the photoelectrode performance continues to 

improve with additional cycling. Adapted from Ref 54. 
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The DWE technique was used to determine that thin Ni catalyst/protection layers enhance 

Si photoanodes via changes to the rectifying junction compared to thick Ni layers. With sufficiently 

thin layers, the solution permeates regions of the protection layer and passivates the underlying Si. 

The increase in activity was attributed to the development of pinched-off Ni|Si point contacts.54 

The DWE technique was useful in achieving this understanding because it allowed for separation 

of catalytic-enhancement from junction-enhancement effects. As the photoanodes were 

electrochemically cycled the onset of water oxidation improved (Figure A.5 – bottom panel). By 

using WE2 the catalyst layer was independently cycled (Figure A.5 – top panel) and it was shown 

that the catalytic activity remained constant (after an initial activation period) and therefore changes 

in catalytic activity could not be causing the overall enhanced photoanode performance with 

cycling. The electrochemical potential of the catalyst layer was measured as a function of potential 

applied to the semiconductor back contact and revealed a ~440 mV photovoltage for the best 

devices, after activation. This represents a 300 mV increase in the photovoltage compared to 

devices with thicker (~20 nm) Ni protection layers. Further DWE tests indicated that even the best 

devices retained their buried-junction behavior indicative of direct contact between remaining 

metallic Ni nanoparticles and the Si surface. Through these measurements, the DWE technique 

enabled us to identify that the enhanced photoelectrode efficiency originated specifically from 

changes to the rectifying junction and that the junction remained buried despite these changes.  

The presence of junction inhomogeneity presents an opportunity to more-rigorously 

understand photoanodes by employing spatially resolved DWE measurements. These opportunities 

are discussed alongside the nanoscale DWE technique in a later section.  

 

3.2 Catalyst-Coated Fe2O3 Photoelectrodes 

We have studied the behavior of several catalysts on hematite (α-Fe2O3); a system which 

significantly differs from Si. Hematite is stable under oxidative conditions and thus the catalyst 

need not chemically protect the semiconductor surface. In fact, the systems that exhibit the highest 

efficiency use (photo)electrodeposited electrolyte-permeable catalysts such as CoPi and 

Ni(Fe)OxHy.17-19, 21 Water oxidation can in principle happen on either the semiconductor surface or 

within the catalyst – the fate of photogenerated holes is not known a priori. Hematite also exhibits 

significant surface-state density which may serve to trap photogenerated carriers and mediate the 

water oxidation activity on the semiconductor surface. By employing DWE experiments we show 

that electrolyte-permeable catalysts quantitatively collect photogenerated holes and directly drive 

the OER when placed on hematite. 
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To apply the DWE methods, we obtained smooth, pinhole-free hematite films that were 

fabricated using atomic layer deposition (ALD) by Hamann and coworkers70-71  and coated them 

with smooth films of Ni0.8Fe0.2OxHy catalyst using photochemical metal-organic deposition.52-53 The 

surface uniformity allowed for deposition of a continuous, electrolyte-permeable Au film (to serve 

as WE2) that only contacts the catalyst layer without shunting to the underlying hematite film.  

 

 
Figure A.6. Photogenerated hole transfer at the 𝛼𝛼-Fe2O3|Ni0.8Fe0.2OxHy interface. With Vsem 

held at 0 V vs. 𝜀𝜀𝑂𝑂2/𝑂𝑂𝑂𝑂−, Jsem and Jcat are measured as a function of Vcat and the illumination condition 

(light/dark). Under illumination Jsem measures ~0.4 mA cm-2 and Jcat exhibits a ~0.4 mA cm-2 

decrease in current density relative to Jcat in the dark. To hold Vcat at a constant potential, WE2 must 

inject electrons to neutralize any holes collected from the semiconductor. Since the difference 

between Jcat,light and Jcat,dark is comparable to Jsem,light, the result indicates that the photogenerated 

holes responsible for the photocurrent are collected by the catalyst. Adapted from Ref 53. 

 

Two key measurements were made to understand the fate of the photogenerated holes in 

the hematite. In the first (Figure A.6), we independently measure the photocurrent at WE1 (Jsem) 

and the catalyst current at WE2 (Jcat) while holding the catalyst potential (Vcat vs. 𝜀𝜀𝑂𝑂2/𝑂𝑂𝑂𝑂−) at a 

series of fixed potentials. Upon illumination, the current measured at WE1 increases while the 

current measured at WE2 decreases by the same amount (Figure A.6). For the WE2 contact to hold 

the catalyst at a fixed potential, it must compensate for any injected holes by injecting electrons 
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into the catalyst (or, equivalently, removing the injected holes). The DWE PEC measurement can 

thus be used to directly track the flow of photogenerated holes and demonstrates that the majority 

of those holes transfer into the catalyst film over a wide range of conditions.  

In a second experiment, we assessed whether the potential reached by the catalyst film on 

hematite was sufficient to drive water oxidation. First, we deposited a catalyst film on conducting 

indium-tin oxide (ITO), followed by a thin Au layer on top of the catalyst. The oxygen-evolution 

current was then measured at a series of applied potentials to the ITO and plotted versus the 

potential measured on the top Au contact (Figure A.7a). Next, a catalyst layer with identical 

composition and thickness was deposited on a hematite film, followed by a thin Au layer on top of 

the catalyst. Under illumination, the potential of the catalyst was measured (at the top Au contact) 

as a function of the photocurrent measured at the semiconductor back contact. We found that the 

catalyst layer is charged to similar potentials driving OER for a given current density independent 

of whether the holes originate from ITO or are photogenerated in hematite (Figure A.7a). This 

shows Ni0.8Fe0.2OxHy is oxidized by the photogenerated holes to an operating potential sufficient to 

drive water oxidation at rates commensurate with the measured photocurrent (on WE1). Thus, the 

Ni0.8Fe0.2OxHy catalyst layer acts as both a hole collector and OER catalyst on hematite thin films.  

The macroscopic DWE measurements are limited to systems with smooth electrocatalyst 

layers that are stable to vacuum deposition of the secondary contact. This limits the range of 

systems that can be explored, most notably precluding examination of the electrodeposited CoPi 

catalyst on Fe2O3.55 To address this issue, we used the potential-sensing electrochemical AFM (PS-

EC-AFM) technique. This enables surface/catalyst potential measurements on systems that were 

not previously possible, including photo-electrodeposited catalyst on metal-oxide semiconductors.  

We used the PS-EC-AFM to monitor, during (photo)electrochemical oxygen evolution, the 

operating electrochemical potential of a CoPi catalyst layer when paired with an illuminated Fe2O3 

semiconductor or a non-illuminated ITO conductive substrate (Figure A.7b). This allows us to 

directly sense when holes accumulate in the catalyst and whether enough holes accumulate to drive 

water oxidation. The experiment is straightforward to execute (although we note the specialized 

tips are fragile, currently expensive, and require practice/care to use) and the data easy to directly 

interpret. For this system we demonstrated that the CoPi accepts sufficient holes to undergo 

oxidation and then reaches an electrochemical potential where it drives water oxidation at a rate 

commensurate with the measured photocurrent. This was consistent to what we found for 

Ni(Fe)OxHy coated Fe2O3 using the macroscopic DWE technique. 
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Figure A.7. In-situ measurements of catalyst potential for Ni0.8Fe0.2OxHy and CoPi on 

hematite and ITO. (a) The potential of the catalyst (Vcat), as measured by a macroscopic second 

electrode, related to the current passing through the Ni0.2Fe0.2OxHy-coated hematite photoanode 

under illumination (orange curve). The result was compared to the analogous system of 

Ni0.8Fe0.2OxHy-coated ITO electrode where current is driven solely by the potential applied to the 

ITO (black points). (b) The potential of the catalyst (Vtip), as measured by the nanoelectrode probe, 

related to the current passing through the CoPi-coated hematite photoanode under illumination 

(green points). The result was compared to the behavior of CoPi-coated ITO (black points). 

Because ITO is a poor OER catalyst, we know, in the case of Ni0.8Fe0.2OxHy and CoPi on ITO, all 

the OER current flows through the catalyst. We thus also know precisely what catalyst potential is 

required to pass a given OER current. If the catalyst did not act as an OER catalyst on hematite, 

then its potential would be lower at a given (photo)current when on hematite than when on ITO. 

The fact that the potential of the catalysts, for a given current density, was the same, regardless of 
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the type of substrate and source of holes, indicates Ni0.2Fe0.8OxHy and CoPi drive the OER in both 

cases. Adapted from Ref. 53 and 55. 

 

3.3 Catalyst-coated BiVO4 Photoelectrodes 

The most-efficient oxide-based photoanodes for oxygen evolution are comprised of 

catalyst-coated BiVO4 nanostructures.72-73 Recent efforts have aimed to understand the degree to 

which catalyst overlayers on BiVO4 are responsible for driving water oxidation relative to water 

oxidation occurring on the BiVO4 surface itself.29, 36 Some studies have applied photo-induced 

absorption measurements in which changes in the optical absorbance of CoPi catalyst on BiVO4 

are related to the extent of catalyst oxidation. The results show that the density of photoinduced 

Co3+ species is threefold lower on CoPi | BiVO4 devices than on a control CoPi | FTO sample, when 

both are driving the same current. This suggests CoPi never reaches sufficiently anodic potentials 

to drive water oxidation because holes on the BiVO4 surface oxidize water directly. Related recent 

work by van de Krol and others using intensity-modulated photocurrent spectroscopy came to a 

similar conclusion for BiVO4|CoPi under low applied potentials (Vsem < 1 V vs. RHE).74 At higher 

potentials, they hypothesize that water oxidation partially occurs via the CoPi as BiVO4 kinetics 

for water oxidation are too slow.   

To complement these studies, we investigated CoPi | BiVO4 using the PS-EC-AFM. In 

Figure A.8a, the measured catalyst potential is plotted as a function of the potential applied to the 

semiconductor back ohmic contact (WE1) and overlaid on a conventional J-V curve for the same 

device collected through WE1. A large step in the catalyst potential (Figure A.8a) is measured as 

the catalyst transitions from nominally Co2+ to Co3+ near the onset of water oxidation. This is a 

result of the conversion of electrically-insulating Co(OH)2 to the conductive and OER-active 

CoOOH within the CoPi. As the photocurrent increases at higher applied potentials to WE1, so 

does the catalyst potential measured at WE2. This is direct evidence that the catalyst is charged by 

holes from the semiconductor.  

As with the Fe2O3 experiments, we assess whether the catalyst is sufficiently charged by 

BiVO4 to drive water oxidation at the photocurrent density. To do this we again compare the surface 

potentials of CoPi on BiVO4 to CoPi on fluorine-doped tin oxide (FTO) conductive glass over a 

range of current densities (in the former case the current originates from photoinjected holes, 

whereas in the latter case holes are directly injected from the conducting glass in the dark).  For all-

examined current densities, the surface potential of CoPi is nearly identical irrespective of the 

substrate (Figure A.8b). This result shows that on BiVO4, the CoPi reaches an electrochemical 

potential where CoPi-mediated water oxidation accounts for and equals the observed photocurrent. 
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The holes that are consumed for water oxidation first transfer to the catalyst – they do not appear 

to drive water oxidation on the BiVO4 surface. A useful next experiment would be to perform the 

optical photo-induced absorption measurements29, 36 on the exact-same set of samples with which 

the potential-sensing measurements are made so that the discrepancy between the two 

measurements can be resolved. 

 

   
Figure A.8. Nanoelectrode potential measurements for CoPi on BiVO4 and FTO. (a) The 

measured Vtip reports on the catalyst potential as a function of the potential applied to the BiVO4 

back contact (Vsem). The large step in the Vtip corresponds to the transfer of photogenerated holes 

from BiVO4 to CoPi, causing it to oxidize to CoOOH which is electrically conductive and whose 

potential can be sensed accurately. (b) The data relates the potential of CoPi (Vtip) to the current 

density measured at WE1. The results compare CoPi on BiVO4 to CoPi on FTO and show that the 

CoPi reaches the same electrochemical potential in both cases. This indicates CoPi is driving water 

oxidation on BiVO4. Adapted from Ref 69. 
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3.4 Relating Shunt Recombination in Catalyst-Coated Photoelectrodes to Catalyst Carrier 

Collection 

In much of our previous work we have focused on single-crystal or polycrystalline thin-

film model systems. However, the highest-performing photoelectrodes typically feature high-

surface-area and porous semiconductors.72-73, 75 We discovered a simple but critically important 

mechanism of recombination that is unique to catalyst-coated semiconductors of this type. For these 

systems, pinholes in the porous semiconductor can fill with catalyst during deposition and act as 

shunt pathways to the back contact (Figure A.9a). Under illumination, photogenerated holes 

transfer to the catalyst but then recombine with electrons at the catalyst|conductor interface.  

 
Figure A.9. Shunt recombination in catalyst-coated porous semiconductors. (a) The presence 

of pinholes throughout the semiconductor film could lead to the conductive substrate being 

exposed. With sufficient catalyst deposited on the surface, a shunting pathway is generated which 

results in high rates of recombination. (b) High-resolution TEM cross-section showing a pinhole in 

an electrodeposited Fe2O3 film which allows the Ni80Fe20OxHy catalyst to directly contact the 

conductive FTO substrate.  Adapted from Ref. 52. 

 

To explore this shunting-recombination mechanism we examined hematite thin films as a 

model system. One film was deposited by ALD and was free of pinholes, the other film was 
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deposited by electrodeposition and small holes in the film were apparent by cross-sectional TEM 

(Figure A.9b). The incomplete coverage of the semiconductor on the conducting-oxide film for the 

electrodeposited hematite film could also be ascertained from the voltammetry behavior of the 

electrode in the presence of a reversible redox couple like ferro/ferricyanide.  

The shunting mechanism manifested itself in a number of different ways. (1) We found 

that use of an electrically conductive catalyst, such as Ni0.8Fe0.2OxHy, dramatically reduced the 

photoanode performance of electrodeposited hematite but enhanced the performance of pinhole-

free ALD hematite. Electrically insulating Ni0.2Fe0.8OxHy, however, did not show shunt 

recombination on either sample. (2) Very thin coatings of photoelectrodeposited conductive 

catalysts worked for both samples because the catalyst layers weren’t thick enough to significantly 

contact both semiconductor and conductive oxide substrate. (3) Two sets of catalyst 

oxidation/reduction peaks were observed in illuminated cyclic voltammograms when the catalyst 

was shunting to the conducting electrode. The more-anodic set represents catalyst domains 

near/touching the conductive substrate. The more-cathodic peak set represents catalyst domains 

further from the conductive substrate that are in contact with the semiconductor and are shifted 

cathodic by the photovoltage. At applied potentials between the two sets of peaks, photogenerated 

holes from the Fe2O3 can oxidize the catalyst, but electrons from the conducting substrate work to 

reduce it. Thus, only a portion of the catalyst, further from the conductor, is oxidized. (4) Current 

flowing through the shunts was directly measured using the dual-working-electrode configuration. 

Similar results were found for spincast BiVO4 thin films, indicating that the shunting recombination 

mechanism is general across materials and catalyst systems as well as deposition techniques.76 

These features described above can therefore be used to generally identify whether or not shunt 

recombination is affecting the performance of any given photoanode system.  

Eliminating the shunt pathways through the catalyst is critical to achieving high-

performance catalyst-coated photoanodes. There are several ways to do this. If one is building a 

three-dimensional nanostructured/porous semiconductor one could completely coat the conducting 

electrode support with a thin layer of the semiconductor prior to depositing the nanostructured 

semiconductor. Selective photo-assisted electrodeposition of thin catalyst layers on the 

semiconductor surface or using electrically insulating catalyst layers also prevent shunting. A final 

option is to passivate the pinholes selectively with an insulator to block direct contact. This might 

be possible with electrodeposition of an insulator.77 

Finally, we note that these observations of shunt recombination support the mechanistic 

picture where the catalyst collects photogenerated holes from the semiconductor and drives the 
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OER (Figure A.4). If holes did not transfer to the catalyst to drive OER, then one would not observe 

the shunting behavior seen here.  

 

4. Outlook 

The results discussed here demonstrate that for a variety of semiconductor (BiVO4, Fe2O3, 

Si) and catalyst (CoPi, Ni(Fe)OxHy) systems, the catalyst overlayer functions both as a hole 

collector and the site for water oxidation. In all examined sem|cat systems, macroscopic or 

nanoscopic DWE measurements revealed that the catalyst reaches an electrochemical potential 

sufficient to drive OER at the same rate as the measured photocurrent. We note that these findings 

are straightforward and unambiguous; the DWE technique features a direct electrical probe of the 

catalyst surface and requires no modeling or assumptions to measure the catalyst electrochemical 

potential.  

Limitations. The techniques described here, however, cannot measure surface-state 

density nor the possible effects of catalyst materials in passivating surface states, as has been 

suggested by others.9, 25, 29 The measurements can only identify the surface potential and extent of 

photogenerated charge which reaches the catalyst. It is indeed likely that the catalyst plays multiples 

roles in many cases. That is, catalyst application could enhance photoelectrochemical performance 

by simultaneously passivating surface-recombination centers, by improving the sem|cat 

heterojunction’s built-in electric field, and/or by improving the kinetics for the OER. The details, 

however, of how (oxy)hydroxide catalyst layers might chemically passivate semiconductor 

surfaces remain to be discovered. Nonetheless, these may all be important considerations for the 

improved design of photoanodes.  

The results discussed here may not universally apply to all sem|cat systems. Different 

materials preparation routes may give rise to larger semiconductor surface-recombination velocities 

and/or native catalytic activity as well as different magnitudes of equilibrium band banding due to 

the presence of varying types of surface terminations and defects. Upon application of the catalytic 

surface layer, enhanced photoelectrode performance could, in some cases, thus be more-attributable 

to changes in junction behavior than to a decrease in catalytic overpotential. Nonetheless, we 

generally suspect that in all cases the metal oxide/(oxy)hydroxide catalysts accept photogenerated 

holes from the illuminated semiconductor – the kinetics of driving redox chemistry in a transition 

metal oxide/(oxy)hydroxide catalyst layer should be significantly faster than driving oxygen redox 

chemistry directly on the semiconductor surface. The hole quasi-Fermi level in the semiconductor 

is thus expected to be in quasi-equilibrium with the catalyst Fermi level under steady-state 

conditions. Researchers investigating sem|cat photoanodes who find evidence of water oxidation 



21 
 

occurring directly on the semiconductor surface could use the macroscopic or nanoscopic DWE 

techniques to directly verify these findings. Finally, although we examine redox-active Ni/Co/Fe-

based catalysts here, we note that the measurement techniques discussed will work equally well on 

any catalytic material that is electronically conductive and therefore amenable to potential sensing. 

Further technique development/implementation. Additional information might be 

learned from combining several techniques on the same samples. For example, a challenge in the 

TAS and PIA techniques is knowing precisely what population of holes the optical-absorption 

spectrum represents.  Does it represent all holes that are OER intermediates, only a subset of those 

holes, or is it a different population of holes that is in quasi-equilibrium with the OER intermediate 

population? By using DWE to monitor the catalyst electrochemical potential during TAS/PIA 

experiments, one could directly correlate changes in the optical signal to charging/discharge of the 

catalyst as well as the rate at which the catalyst is performing OER. This might allow one to 

differentiate between holes trapped in the catalyst layer from those trapped in, for example, shallow 

defect states.9, 33 The combination of DWE photoelectrochemistry and IMPS analysis may also be 

useful. For example, the second working electrode can be used to affect the catalyst’s 

electrochemical potential during IMPS experiments. Doing this might allow one to systematically 

map how the catalyst electrochemical potential affects the apparent recombination and charge-

transfer rate constants.  

Further development of the techniques reported here is also possible. For example, using 

the PS-EC-AFM to spatially map catalyst potential across a surface may enhance understanding of 

how semiconductor morphology affects the operational catalyst potential – the locations of the 

highest catalyst potentials should correlate to locations of the largest photocurrent driven by the 

semiconductor. Such a measurement would only work, however, if the catalyst did not form a 

continuous conductive film that would all sit at the same potential. In another example, the 

technique might better illustrate the function of the n-Si|Ni electrodes discussed above where the 

development of barrier-height inhomogeneity led to increased PEC performance. It may be possible 

to locally monitor this development in-situ. If key contributors to efficiency can be identified, one 

might intentionally engineer an improved junction. Another possible use of PS-EC-AFM is in 

examining how grain boundaries and crystalline facets influence the local photovoltage of a sem|cat 

junction. In these types of experiments the semiconductor surface might be topographically and 

electrically characterized (for example using (photo)conducting AFM)65 in air using the 

nanoelectrode AFM tip, before catalyst deposition. Without moving the cell, a catalyst deposition 

solution could then be introduced to photodeposit a catalyst of interest. After flushing the deposition 
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solution, the local catalyst deposits would be characterized for photovoltage, with the result mapped 

back onto the bare semiconductor surface characterization.  

There are practical challenges that must be overcome, however, to enable PS-EC-AFM 

spatial mapping of catalyst surface potentials. The measurement time is set by how quickly the tip 

electronically equilibrates with the catalyst. While this is fast (< 1 s) when the tip is in direct contact 

with a highly conductive metallic surface (e.g. Au), it can be quite slow (i.e. ~ 30 s) when contacting 

the much-less-conductive Ni/Co/Fe oxyhydroxide layers.55 The measurement time constant might 

be improved with better-designed potential-measurement electronics (which we have not yet 

attempted) or by increasing the interaction force between the tip and substrate (which risks the tip 

integrity). A second challenge is that imaging the surface topography with the tip in contact (for 

potential measurement) rapidly degrades the conductive point of the tip. Practically, we have found 

that the simplest approach to gain spatially relevant surface-potential information is to first image 

the sample in tapping mode, without collecting electrical data, and then land the tip on key areas of 

interest for surface-potential measurements. The operando cell and sample stage must be 

engineered such that drift is minimized and features remain in place for a sufficient time after taking 

the initial topographic image. 

For the macroscopic DWE devices, there may be opportunities to employ impedance-type 

analyses which are not possible with traditional electrodes. In a typical three-electrode PEC 

experiment, potential applied to the semiconductor back contact can result in electrostatic potential 

drops across the semiconductor depletion region and the Helmholtz double layer. Interpretation of 

impedance results then requires the use of more-complicated equivalent circuits, especially in the 

presence of surface states and catalyst layers.23, 78 Introduction of the second working electrode 

allows one to hold the catalyst, and possibly surface states, at a fixed potential and thereby measure 

directly the capacitance of the sem|cat junction. These types of measurements may further elucidate 

the role that surface states play in catalyzed photoanodes.  For example, one could measure the flat-

band potential of the semiconductor as a function of the potential of the catalyst (controlled by 

WE2). For an electrolyte-permeable catalyst this might provide information on the surface-state 

density if these are in quasi-equilibrium with the catalyst electronic states. 

Although we have discussed primarily potential-sensing measurements in this Perspective, 

the dual-working-electrode techniques can also be used to measure the current-voltage behavior 

across the sem|cat junction directly. We have previously demonstrated this on model n-TiO2|cat 

systems with a macroscopic second working electrode.49 The experiment is performed by holding 

the catalyst at a fixed potential (where it is electrically conductive such that resistance through the 

catalyst layer does not dominate the response) with WE2, while sweeping the potential of the 
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semiconductor back contact and recording the current as a function of VWE1-VWE2. Similar 

measurements could in principle be made on a single catalytic nanoparticle using the conducting 

nanoelectrode AFM tip as WE2, although background currents may be significant and will likely 

need to be corrected for. 

Improving photoelectrodes. The ability to measure and understand the role of catalyst 

layers is important in developing improved designs for photoelectrodes. Identifying the catalyst’s 

primary influence(s) on photoanode performance informs researchers on what could be further 

optimized and to what extent. The DWE analysis discussed here is straightforward, involving few 

assumptions, and indicates that the electrocatalytic layers on the photoanodes tested here harvest 

the photogenerated holes from the semiconductor and use them for oxygen evolution. Because the 

catalyst serves as a hole collector, future research could focus on using interfacial layers to improve 

the sem|cat junction by reducing forward electronic current while still allowing for sufficiently 

facile hole collection, as is often done for solid-state solar cells79-82 (this can be thought of 

increasing the interface carrier selectivity83). Mechanisms by which such an interfacial layer could 

reduce the forward electron current at the sem|cat junction include increasing the electrostatic 

barrier height (thereby reducing the density of surface majority electrons), passivating surface 

states84 (which reduces the number of accepter states for surface electrons to transfer into), or 

adding a tunneling barrier (that decreases the transmission coefficient for electrons).85 The results 

also indicate that the electrical conductivity of the catalyst, its stability/transformation under 

electrochemical conditions, and its kinetics for the OER are all important considerations when 

designing photoanodes.   
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1. Introduction 

Light-absorbing semiconductor electrodes coated with electrocatalysts are key components 

of photoelectrochemical energy conversion and storage systems. Efforts to optimize these systems 

have been slowed by an inadequate understanding of the semiconductor-electrocatalyst (sem|cat) 

interface. The sem|cat interface is important because it separates and collects photoexcited charge 

carriers from the semiconductor. The photovoltage generated by the interface drives “uphill” 

photochemical reactions, such as water splitting to form hydrogen fuel. Here we describe efforts to 

understand the microscopic processes and materials parameters governing interfacial electron 

transfer between light-absorbing semiconductors, electrocatalysts, and solution.  

We highlight the properties of transition-metal oxyhydroxide electrocatalysts, such as 

Ni(Fe)OOH, because they are the fastest oxygen-evolution catalysts known in alkaline media and 

are (typically) permeable to electrolyte. We describe the physics that govern the charge-transfer 

kinetics for different interface types, and show how numerical simulations can explain the response 

of composite systems. Emphasis is placed on “limiting” behavior. Electrocatalysts that are 

permeable to electrolyte form “adaptive” junctions where the interface energetics change during 

operation as charge accumulates in the catalyst, but is screened locally by electrolyte ions.  

Electrocatalysts that are dense, and thus impermeable to electrolyte, form buried junctions where 

the interface physics are unchanged during operation. 

Experiments to directly measure the interface behavior and test the theory/simulations are 

challenging because conventional photoelectrochemical techniques do not measure the 

electrocatalyst potential during operation. We developed dual-working-electrode (DWE) 

photoelectrochemistry to address this limitation. A second electrode is attached to the catalyst layer 

to sense or control current/voltage independent from that of the semiconductor back ohmic contact. 

Consistent with simulations, electrolyte-permeable, redox-active catalysts such as Ni(Fe)OOH 

form “adaptive” junctions where the effective barrier height for electron exchange depends on the 

potential of the catalyst. This is in contrast to sem|cat interfaces with dense electrolyte-impermeable 

catalysts, such as nanocrystalline IrOx, that behave like solid-state buried (Schottky-like) junctions. 

These results elucidate a design principle for catalyzed photoelectrodes. The buried 

heterojunctions formed by dense catalysts are often limited by Fermi-level pinning and low 

photovoltages. Catalysts deposited by “soft” methods, such as electrodeposition, form adaptive 

junctions that tend to provide larger photovoltages and efficiencies. We also preview efforts to 

improve theory/simulations to account for the presence of surface states and discuss the prospect 

of carrier-selective catalyst contacts. 
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High-efficiency photoelectrochemical water-splitting systems require integrating 

electrocatalysts (cat) onto light-absorbing semiconductors (sem). Despite the central role that the 

sem|cat interface plays in collecting one carrier over the other and generating photovoltage, the 

energetics and charge transfer processes at catalyzed semiconductor interfaces are poorly 

understood. A simple picture is that the semiconductor absorbs light and separates charge while the 

catalyst increases the rate of the hydrogen- or oxygen-evolution reaction (HER or OER, 

respectively). Experiments by different groups, however, show that after deposition of OER 

catalysts onto n-type semiconductors, the photoelectrode characteristics (e.g. the photovoltage, 

photocurrent, and fill-factor) change in a way often inconsistent with this view.1,2 Parallel 

hypotheses have attributed this behavior to changes in surface recombination,3,4 band bending,5 

interface-charge trapping,6 optical effects,7 or kinetics.8-11 Several factors make unravelling these 

different effects difficult. First, electrocatalysts are not well-defined electronic materials (e.g. a 

metal or semiconductor), but are often porous, hydrated, and redox-active solids. How does one 

describe such non-traditional electronic interfaces? Second, most of the semiconductor systems that 

have been studied are polycrystalline and/or nanostructured, which makes interpreting elementary 

processes difficult. Third, there is a lack of experimental tools to directly measure the interfacial 

processes. 

In this Account we discuss our use of simulation and new photoelectrochemical 

experiments to clarify the microscopic details of electron transfer in catalyzed water-oxidizing 

photoelectrodes. We connect the microscopic processes to the observable current-voltage 

responses, and discuss possible design principles for high-performance systems. 

 

 
Figure B.1. Band diagram depiction of charge transport through 

semiconductor/catalyst/solution interfaces. Steady-state currents and Fermi levels are depicted 

for an illuminated electrocatalyst-modified n-type semiconductor in solution. The symbols are 

defined in the text. 
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Figure B.1 shows basic processes in a catalyzed photoelectrode. The semiconductor, 

catalyst, and solution are all characterized by electrochemical potentials (Fermi levels) which 

equilibrate in the dark (Ef,n, Ecat, and Esol, respectively). Under illumination the concentration of 

minority holes increases and thus the hole quasi-Fermi level Ef,p drops down from the electron level 

Ef,n to create a photovoltage Vph at the sem|cat interface. During steady-state photodriven oxygen 

evolution, Ecat is driven lower on the electron energy scale (more positive on the electrochemical 

scale) than Esol (the thermodynamic oxygen potential), such that there is a net positive current from 

catalyst to solution. The degree to which Ef,p separates from Ef,n at the semiconductor surface is 

governed by the relative forward and reverse rates of electron and hole transport at the sem|cat 

interface in addition to the rates of bulk recombination (Rb) and generation (G). The hole current 

density is given by Jp = µpp∇𝐸𝐸f,𝑝𝑝 where µp is the hole mobility and ∇𝐸𝐸𝑓𝑓,𝑝𝑝 is the hole quasi-Fermi-

level gradient.  

Traditional photoelectrochemical measurements use an ohmic contact to the back of the 

semiconductor (i.e. the left side of the diagram in Figure B.1) to sweep the semiconductor potential 

Esem (which is also the majority-carrier Fermi level Ef,n in the bulk), and measure the resulting 

current in both the light and dark. It is difficult from such measurements to determine how the 

individual charge-transfer, catalysis, and recombination steps affect the J-V response. First, it is not 

possible to determine which portion of the total applied potential (i.e. qVapp = Esem -  Esol) drops at 

the sem|cat interface versus at the cat|sol interface because one cannot determine Ecat. Further, the 

current measured is the sum of the net electron and hole currents and it is not possible to distinguish 

whether the holes or electrons flow into the catalyst or directly into the solution.  

A number of techniques have been used to augment traditional photoelectrochemical 

measurement. Transient absorption spectroscopies12 provide insight into the various recombination 

processes,5,6 though data interpretation is complicated by the pulsed-laser excitation – 

photoelectrodes operate at steady state under low light intensity. Methods based on impedance are 

powerful,13 but rely on fitting equivalent circuits, which are complicated for multicomponent 

systems. Here we describe alternative methods that provide direct information about the interface, 

as well as theory and simulation to corroborate the measurements. 

 

2. Materials: Semiconductors and Electrocatalysts 

Among device geometries proposed for a solar-water-splitting system, one compelling 

option employs two semiconductors in series, with different bandgaps, to absorb different portions 

of the solar spectrum.14 One semiconductor, operating as a photoanode, drives water oxidation to 
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form O2(g), while the other, operating as a photocathode, drives water reduction to form H2(g). 

Electrocatalysts decorate both semiconductors to increase the kinetics of the fuel-forming reactions. 

While the sem|cat interface is important in both, we focus here on the photoanode. 

Semiconductors. Oxides, such as Fe2O3, BiVO4, and WO3, have been studied extensively 

as water-oxidizing photoanodes, in part because they can be simply made and, being already 

oxidized, are reasonably stable under the appropriate-pH OER conditions.15 The oxides are 

typically polycrystalline and the sem|cat interface thus likely non-uniform. Recently, there has been 

a revived interest in using thin oxide films to stabilize n-Si and n-GaAs photoanodes which have 

superior electronic properties (mobility, carrier lifetime) but corrode under anodic conditions.16 

Fabrication of high-quality pn junctions, that provide for large photovoltages, is straightforward on 

Si/GaAs. For oxide photoelectrodes there are limited methods to fabricate solid-state pn junctions; 

tuning the properties of the sem|cat interface is therefore particularly important.  

Electrocatalysts. To understand the interface, it is critical to understand the 

electrocatalyst’s electronic and electrochemical properties. In the simplest case the catalyst is a 

dense solid with high electrical conductivity (e.g. a metal or degenerate semiconductor). The 

sem|cat interface is thus expected to form a Schottky-type heterojunction. For example, 

nanocrystalline IrO2 films exhibit metallic conductivity while nanocrystalline Co3O4 films are p-

type semiconductors.17 

Many catalysts, however, are not dense crystalline solids.18 Under alkaline conditions the 

fastest known water oxidation catalysts are Ni-Fe oxyhydroxides (Ni1-xFexOyHz with x ~ 0.25).19,20 

These oxyhydroxide catalysts appear thermodynamically stable; Ni-oxide-based catalysts 

reconfigure to the oxyhydroxide structure under OER conditions.19 They are highly disordered but 

locally consist of Ni(Fe)OOH nanosheets.21,22 Each Ni in the film is electrochemically active and 

can be cycled between the 2+ and 3+/4+ oxidation states.23 This requires both electrical and ionic 

conductivity throughout the “solid” catalyst. We term this catalyst type “electrolyte-permeable” 

(Figure B.2a). Electrolyte-permeable catalysts display interesting electronic properties. 

Ni(Fe)(OH)2 in the resting state is an electronic insulator. Once oxidized to Ni(Fe)OOH it becomes 

conductive.  Other common catalysts also show “bulk” redox behavior and “volume activity” 

consistent with electrolyte-permeability. These include Co(Fe)OOH (which also shows 

conductivity-switching),24,25 “CoPi” and “NiBi” in near-neutral solutions,26,27 and electrodeposited 

hydrous oxides of IrOxHy and RuOxHy.28,29 Thermally prepared IrO2 oxides don’t display volume 

electrochemistry; they are dense and electrolyte-impermeable.  
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Figure B.2. Comparison of electrolyte-permeable and non-permeable catalyst layers. (a) 

Electrolyte-permeable catalysts screen electronic charge on the catalyst with mobile solution ions 

(inset), resulting in no electrostatic potential drop across the catalyst. (b) Dense films are 

impermeable to electrolyte; any charge on the catalyst is balanced by a classical double layer.  

 

2. Classification of Interface Types 

The physical structure of the catalyst (dense solid or electrolyte permeable) dramatically 

affects the nature of the sem|cat interface and how it behaves in the dark and under illumination. 

The qualitative basis for this hypothesis is simple. Dense catalysts, such as Pt, crystalline NiO, or 

crystalline IrO2, must accommodate injected charge near the electrolyte/catalyst boundary to 

achieve charge neutrality (Figure B.2b). This results in change in the electrostatic potential drop 

across a classical Helmholtz layer (∆VH). As catalytic activity decreases, ∆VH,cat across the cat|sol 

interface required to drive the reaction at a given photocurrentcurrent density increases. We refer 

to sem|cat interfaces with electrolyte-impermeable and electronically conductive catalysts as 

“buried” junctions, consistent with photoelectrochemical terminology.30,31  

If the catalyst is electrolyte-permeable and redox active, holes that accumulate in the 

catalyst drive oxidative redox chemistry (one example is Ni(OH)2 + OH- → NiOOH + H2O + e-). 

Because the electronic charge is compensated by the coupled ion motion within the electrolyte-

permeated catalyst, no electrostatic potential drop is expected within the catalyst layer or across 

the cat|sol interface (Figure B.2a). This also assumes good catalyst electronic conductivity, as we 

demonstrated experimentally for NiOOH/CoOOH based systems.18 Instead the “work function” of 

the catalyst changes in situ (Figure B.3b). This type of interface is practically important because, 

as discussed above, the most-active Ni(Fe)OOH and Co(Fe)OOH OER catalysts in neutral-to-basic 

media are electrolyte permeable. Such catalysts have been used in the best-performing oxide 

photoanodes for water oxidation, e.g. hydrous IrOx catalyzed Fe2O3 and FeOOH/NiOOH catalyzed 
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BiVO4.11,32 We have termed these sem|cat interfaces “adaptive”, following work on photoactive 

mixed ionic/electronic conducting polymer interfaces.33  

Whether a sem|cat interface is expected to be of the “buried” or adaptive type is determined 

by whether or not electrolyte can physically permeate between the catalyst and semiconductor 

layers and thus completely screen catalyst charge. A physically realizable adaptive junction 

interface could thus also be one where crystalline OER catalysts with an electrolyte-permeable shell 

are deposited on a semiconductor surface. Dispersed nanoparticle catalysts that form mixed buried 

and electrolyte junctions and that are spatially inhomogeneous are another interface class that will 

not be discussed here.14 

 

  
 

Figure B.3. Band diagrams for sem|cat interfaces in dark and illuminated conditions. (a) 

Dense and (b) electrolyte-permeable catalysts at (left) dark equilibrium and (right) under 

illumination at a fixed current density. Evac is the vacuum energy level; other symbols are defined 

in the text. The barrier height ϕb is the separation between the semiconductor conduction band edge 

and the catalyst Fermi level. For the buried junction, ϕb remains constant between dark and light 

conditions. For the adaptive junction, the effective barrier height, ϕb,eff increases under illumination 

at a fixed current density as a result of catalyst oxidation. The hole quasi-Fermi level is shown to 

decay back to the bulk Fermi level at the back contact over a shortened distance for clarity. 
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3. Semiconductor-Catalyst Interfacial Charge Transfer 

Theory and simulation help in predicting the behavior of catalyzed photoelectrodes and 

determining whether experimental data are consistent with proposed microscopic mechanisms. 

Although the theory of sem|sol interfaces is well developed,34 there has been limited work to 

account for surface-attached electrocatalysts.  Previously, equivalent electrical circuits were used 

to model sem|cat|sol systems.35-37 This approach implicitly assumes that the electrocatalytic process 

at the cat|sol interface is independent of the photovoltage generation and charge separation process 

at the sem|cat interface. This assumption is valid when the catalyst layer is dense and electrically 

conductive (i.e. a buried junction, Figure B.3a), or when the catalyst is coated on a solid-state 

photovoltaic cell.38 Equivalent-circuit models cannot model photoelectrodes with electrolyte-

permeable catalysts where, as the catalyst drives OER, the catalyst and the interface both change 

(Figure B.3b). 

We developed a model for sem|cat|sol systems that accounts for the kinetics of charge 

transfer between the semiconductor, catalyst, and solution for both buried and adaptive junctions.39 

We numerically simulate generation, recombination, drift, and diffusion in the semiconductor.  We 

derive the boundary conditions for the semiconductor/catalyst current (𝐽𝐽jxn) based on the simulated 

equilibrium (𝑛𝑛s ,𝑝𝑝s), and non-equilibrium (𝑛𝑛s ,𝑝𝑝s) surface electron and hole concentrations.  

We tested the model with buried junctions where the results from simpler equivalent 

circuits are expected to be valid. We use 

 

 𝐽𝐽jxn,buried = 𝑘𝑘p�𝑝𝑝s −  𝑝𝑝s� −  𝑘𝑘n(𝑛𝑛s −  𝑛𝑛s) (1) 

 

where 𝑘𝑘p and 𝑘𝑘n are the forward rate constants for hole and electron transfer, respectively, between 

the semiconductor and the dense catalyst. The first term, 𝑘𝑘p�𝑝𝑝s −  𝑝𝑝s�, represents forward and 

backward hole currents, respectively, and the second term, forward and backward electron currents. 

Here, 𝐽𝐽jxn,buried does not depend on the catalyst potential because charge accumulates and causes 

a potential drop at the cat|sol interface, without affecting the buried interface. This expression 

simplifies to the ideal photodiode equation if a constant photogenerated hole flux 𝐽𝐽ph  = 𝑘𝑘p�𝑝𝑝s −

 𝑝𝑝s�  is assumed (thereby ignoring backwards hole current) and the electrons are in quasi-

equilibrium such that 𝑘𝑘n(𝑛𝑛s −  𝑛𝑛s) = 𝐽𝐽0(𝑒𝑒−𝑞𝑞𝑞𝑞/𝑘𝑘𝑘𝑘 − 1). Notice that, for an n-type 

semiconductor, the majority-carrier reverse current (electrons moving from catalyst to 
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semiconductor) is the equilibrium exchange current, 𝐽𝐽0,𝑛𝑛 = 𝑘𝑘n𝑛𝑛s, which is set by the equilibrium 

barrier height at the sem|cat interface. 

For electrolyte-permeable catalysts (adaptive junctions) the situation is different, since the 

redox state of the electrocatalyst film is variable. This effectively changes the “work-function” of 

the catalyst during operation. The sem|cat interface current 𝐽𝐽jxn,adapt now depends on the 

electrochemical potential of the catalyst layer 𝑉𝑉cat as  

 

 𝐽𝐽jxn,adapt = 𝑘𝑘p�𝑝𝑝s −  𝑝𝑝s𝑒𝑒
𝑞𝑞𝑉𝑉cat/𝑘𝑘𝑘𝑘� −  𝑘𝑘n�𝑛𝑛s −  𝑛𝑛s𝑒𝑒−𝑞𝑞𝑉𝑉cat/𝑘𝑘𝑘𝑘� (2) 

 

Note that the forward currents (𝑘𝑘n𝑛𝑛s and 𝑘𝑘p𝑝𝑝s) are the same as the buried junction case. This relies 

on the assumption that changing the charge state of the electrocatalyst film does not substantially 

alter the electronic states in the catalyst that are at energies near the semiconductor valence and 

conduction band edges.  It also ignores the role of surface states in mediating charge transfer, which 

we discuss below.40 The reverse currents, however, are influenced by the change in the catalyst 

potential (Vcat), through the addition of the 𝑒𝑒−𝑞𝑞𝑉𝑉cat/𝑘𝑘𝑘𝑘 term. This term accounts for the fact that the 

Fermi level in the catalyst layer moves independent of the semiconductor band positions, thus 

modeling the “effective” barrier height(s) for charge transfer into the semiconductor from the 

catalyst. 

The catalyst further reacts with the solution, which we model using a Butler-Volmer 

expression that represents the typical experimental response,19 

 

 𝐽𝐽cat = 𝐽𝐽o,cat�𝑒𝑒𝑞𝑞𝑉𝑉cat/2𝑘𝑘𝑘𝑘 −  𝑒𝑒−𝑞𝑞𝑉𝑉cat/2𝑘𝑘𝑘𝑘� (3) 

 

where 𝐽𝐽o,cat is the exchange current density for the OER reaction on the catalyst. Equations (1) - 

(3) thus govern the carrier fluxes between the semiconductor, catalyst, and solution in the two cases 

discussed. We also simulated molecular catalyst systems.39 

The most significant simulation result is the observation that for the electrolyte-permeable 

catalyst, the J-V curves are nearly insensitive to the catalyst activity 𝐽𝐽o,cat (when Ev is much more 

positive than Esol), in contrast to the buried junction case (Figure B.4). This behavior is explained 

by the steady-state band diagrams shown in Figure B.4b. For the electrolyte-permeable case, the 

catalyst Fermi level moves down (more anodic) under operation to compensate for slow OER 

kinetics. This leads to a larger “effective” barrier height ϕb,eff and thus a larger sem|cat photovoltage. 
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In the case of the dense catalyst, increased activity requires the accumulation of charge at the cat|sol 

interface “consuming” a portion of the photovoltage in the semiconductor. These simulation results 

provide a platform from which to interpret experimental data discussed below. For mesoscopic or 

highly nanostructured semiconductor photoelectrodes, the form of the expressions governing the 

surface carrier concentrations would be different, but the fundamental differences between 

electrolyte screening in dense and permeated catalysts systems is the same. 

 
  

Figure B.4. Simulated J-V behavior and energy diagrams for sem|cat junctions. (a) 

Comparison of simulated illuminated J-V curves for a range of Jo,cat (i.e. catalyst activities) for the 

buried and adaptive models.39 Catalyst-only dark curves are shown also. Qualitative band diagrams 

under illumination for the (b) “adaptive” sem|cat interface at short circuit (Vsem = 0 vs. Vsol) and (c) 

the “buried” sem|cat interface at the applied potentials of 0.2 V (green, fast catalyst) to 0.5 V 

(purple, slow catalyst) needed to maintain a the same current in each case. Ecat, Ef,p, and Esol are 

sketched as colored curves that correspond to those in (a) for the catalyst layers with different 

exchange currents (i.e. slow versus fast), but the same resting state Fermi level (Ecat  = Esol). 

Quantitative simulations can be found in reference 40. 
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4. In Situ Electrical Measurements of sem|cat Interfaces  

 To address the experimental limitations of conventional photoelectrochemistry and to 

collect data that can be directly compared to theory, we developed a “dual-working-electrode” 

photoelectrochemical (DWE PEC) measurement platform (Figure B.5).41  

 

 
Figure B.5. Depiction of Dual-working-electrode photoelectrochemistry. Semiconductor and 

electrocatalyst potentials are independently measured/varied relative to the reversible oxygen 

potential, ɛO2/OH- (which is equivalent to Esol in the model). WE1 makes an ohmic contact to the 

semiconductor and WE2 is attached to a thin, electrolyte-porous gold layer deposited onto the 

catalyst.  

 

We tested the platform by characterizing catalyst-coated single-crystal n-TiO2, which is 

useful for fundamental studies. TiO2 is commercially available as single crystals with well-defined 

surfaces, has reproducible photoelectrochemical response and is essentially insoluble at all pH. 

We spin-cast or electrodeposit catalyst films on the TiO2 surface and make ohmic contact 

to the back. The catalyst is coated with a thin Au (~10 nm) layer using vacuum evaporation. We 

ensure no shorting between Au and TiO2 using electrical measurements. The Au forms a porous 

conductive film on the catalyst surface that is electrolyte permeable and optically transmissive. We 

confirm the layer is permeable by measuring the reversible electrochemistry and OER activity of 

the catalyst layer using the top Au film as the working electrode. 

The Au makes electrical contact to the catalyst film and thus can be used to measure or 

control the catalyst potential in situ and monitor the current passed through the catalyst. The DWE 

PEC experiment is implemented using a bipotentiostat, which allows simultaneous control of the 

two working electrode (WE) potentials. We define WE1 as the back contact to the TiO2 and WE2 

as the Au-catalyst surface contact. Despite direct solution contact, the Au is assumed to be in quasi-

equilibrium with the catalyst layer because the kinetics for oxygen evolution and reduction on Au 

are slow. 
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We focused our initial study on two catalyst materials – nanocrystalline IrOx and 

Ni(Fe)OxHy films that were predicted to form buried and adaptive junctions, respectively.41 We first 

monitored the flow of holes and electrons in the light and dark, respectively, by collecting the 

carriers that flow into the catalyst with WE2. The data shows that the holes generated in TiO2 flow 

first into the catalyst, prior to driving OER. This result was important because for the related Co-

Pi/Fe2O3
 system, it was suggested that the holes bypass the catalyst and directly react with the 

electrolyte.42  

We measured the sem|cat junction Voc by varying Ecat and measuring Esem at steady state 

under illumination. The difference between Ecat and Esem is the sem|cat Voc, which cannot be 

measured using conventional photoelectrochemistry. The data (Figure B.6) show that the junction 

Voc is independent of Ecat for TiO2|IrOx and a linear function of Ecat for TiO2|Ni(OH)2, as predicted 

from simulations for a buried and adaptive junction, respectively. Other DWE measurements were 

also consistent with the adaptive and buried junction concepts.41  

 

 
Figure B.6. Experimental sem|cat open-circuit photovoltages. (top) IrOx-coated and (bottom) 

Ni(OH)2/NiOOH-coated TiO2. For buried junctions, the sem|cat Voc is independent of the catalyst 

potential Vcat. 

 

5. Catalyst Activity and Electrolyte Permeability 

The DWE technique is limited by the need for devices with an integrated second working 

electrode. Fabricating such structures and ensuring that the Au layer does not short to the 
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underlying semiconductor layer can be technically challenging. To test a wide range of 

electrocatalysts on single-crystal TiO2, and further test the predictions of theory, we also used 

conventional current-voltage and impedance analysis.17 

We found that for electrolyte-permeable catalysts electrodeposited on TiO2 (hydrous IrOx, 

CoOxHy, FeOxHy, and NiOxHy) the photovoltage output and fill factor for the combined system was 

independent of the catalyst identity (Figure B.7, top). When the catalysts were spun cast in a dense, 

nanocrystalline form, the junction performance varied dramatically for the different catalysts and 

was worse than with the electrolyte-permeable catalysts. Electrochemical impedance-spectroscopy 

analysis of the electrodes showed that the electrolyte-permeable catalysts did not effect the 

semiconductor band positions, while the dense catalyst layers caused large changes to the 

impedance data. These observations are consistent with our simulations39 that predict for 

semiconductors with deep valence bands, like TiO2, the device performance should be independent 

of the electrocatalyst activity if it is electrolyte permeable. 

For photoelectrodes with smaller bandgaps, and thus less-positive valence-band positions, 

the activity of the electrocatalyst is important. This is because Ecat, even in the adaptive-junction 

limit, cannot move more positive than the valence-band edge. Analyzing the interface properties as 

a function of catalyst activity for small band gap semiconductors such as BiVO4 or n-Si, will thus 

be important for future work.  
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Figure B.7. Experimental J-V curves for dense and electrolyte-permeable catalysts. (a) Dense 

oxide catalysts (dashed) on TiO2 show varied response due to different junction properties, while 

permeable electrodeposited catalysts on TiO2 (solid) show similar responses. (b) The response of 

the same series of catalysts deposited on conductive electrodes.  

 

6. The Role of Surface States  

Surface states cause a variety of photoelectrode behavior including increasing surface 

recombination,6 storing charge,43 and pinning the Fermi-level.8,44 While the basic effects of surface 

states on the steady-state and dynamical response of photoelectrodes have been derived, 45-48 there 

is no predictive model to describe the effect of surface states in the presence of a catalyst overlayer. 

The concept of a “surface state” (ss) itself is poorly defined in the case of a boundary between two 

phases where an interphase region may exist, as pointed out by Peter.48 The surface interphase may 

trap electronic charge, but also may or may not allow for partial permeation of electrolyte (consider 

the possibility of an α-Fe2O3 crystal with a hydrated FeOOH surface layer). Existing models do not 

account for the possible effects of electrolyte screening on ss charge. They also make various 

simplifying assumptions (e.g. the Gärtner approximation, neglecting backwards transfer from 

surface states to semiconductor, or assuming surfaces states only communicate with either the 

semiconductor or the solution).49  
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We developed a model describing the semiconductor physics (generation, recombination, 

drift, diffusion) combined with the kinetics of carrier exchange between coupled surface-state, 

catalyst, and solution subsystems. We account for cases where charge in the surface states is 

screened by electrolyte and where it is not. While the simulations will be published elsewhere, we 

highlight key insight in this Account. 

 The effects of surfaces states are most pronounced when the catalyst layer is electrolyte 

permeable and the charge in the surface state cannot be screened by the electrolyte (e.g. because 

the state is directly on the dense semiconductor, solution ions cannot permeate around it). We 

assume that the surface states are in quasi-equilibrium with the catalyst (i.e. that they have the same 

Fermi level) because the electron-exchange rates between the metal cations of the catalyst and 

surface states are faster than those of water oxidation. As the filling of the surface state changes 

there is thus a change in the Helmholtz potential (∆VH,ss) at the semiconductor surface.  

Simulations show that adding catalyst to a semiconductor surface can change the surface-

state charge by reducing the potential needed to drive holes into solution. This can lead to an 

apparent “passivation” of the states. The effect, however, is not chemical passivation. Figure B.8a 

and 8c show how, for a poor catalyst, Ecat must move far positive of Esol in order to drive the 

catalytic reaction at the light-limited photocurrent rate. Because the surface state and catalyst are 

in quasi-equilibrium, they “charge” together. The surface states thus charge more for a slow catalyst 

than for a fast one. These results may help explain the photoelectrochemical response of Co 

oxyhydroxide/phosphate (CoPi) catalysts on n-Fe2O3, which is known to have a high surface-state 

density.5,6,10,12,13,42,50 We suggest CoPi increases the rate of water oxidation, moving the steady-state 

surface potential more negative, reducing the surface-state charging (and hence ∆VH,ss), and thus 

shifting the photocurrent onset potential cathodic. Some evidence for such an effect of CoPi on n-

Fe2O3 has been observed.50 

In the limit of low surface-state density, the surface states do not hold enough charge to 

significantly change ∆VH,ss and the interface behaves as an adaptive junction where catalyst activity 

doesn’t substantially affect photoelectrode response (Figure B.8c and d). 
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Figure B.8. Effect of surface states on permeable catalysts. In the limit of a large surface-state 

density (a and b), permeable catalysts behave like buried junctions and changes in catalyst activity 

cause changes in VH,ss. In the low-surface-state-density limit (c and d), changes in surface-state 

filling don’t affect VH,ss and the system behaves like the adaptive junction. 

 
7. Outlook: Designing Improved Interfaces 

The PEC and simulation results discussed here demonstrate the role of electrolyte-

permeability and catalyst charging on interface properties and photoelectrode response. The 

“adaptive-junction” concept explains why the best-performing oxide photoanodes use catalysts 

deposited using “soft” conditions (e.g. electrodeposition) where the catalyst remains disordered and 

electrolyte-permeated.32 These findings are expected to apply to photoelectrodes with smaller band-

gaps (e.g. Fe2O3, BiVO4, or Si) although the adaptive interface may not be able to entirely 

compensate catalyst overpotential as on TiO2. 

There are additional strategies/principles for the design of improved sem|cat|sol interfaces. 

One approach is to create optimized buried junctions with conductive and chemically stable 

surfaces onto which the highest-activity catalysts, such as Ni(Fe)OOH, can be deposited. This 

approach works well for Si and GaAs, because processes are established to fabricate solid-state 

junctions that generate photovoltages approaching the theoretical bulk-recombination limits.51 For 
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many materials, such as oxides, methods to manufacture solid-state junctions are not well 

developed.  

Fundamentally, the rate of forward electron transfer (i.e. recombination current) must be 

minimized to maximize photoanode performance (see Eqn. 2). One way to reduce electron transfer 

is to move the band-edge positions to maximize band bending and minimize the surface 

concentration of electrons ns.52 The second is to selectively reduce the rate constant for electron 

transfer into the catalyst over that for holes, i.e. make the catalyst a carrier-selective contact.53 By 

tuning composition one might create a catalyst with few electronic states available at the 

appropriate energy to accept electrons from the conduction band, and many states available to 

accept holes (Figure B.9).  

 
Figure B.9. Effect of catalyst on interface carrier selectivity.  
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CHAPTER II: UNDERSTANDING AND IMPROVING UPON 

PHOTOELECTROCHEMICAL EXPERIMENTAL METHODS USING DUAL 

WORKING ELECTRODE STRATEGIES 

 

Having established the utility of the dual-working-electrode technique in the previous 

chapter, here they are applied to better understand existing photoelectrochemical experimental 

methods.  This chapter is divided into two sub-sections encompassing a previously published body 

of work and a yet-to-be published manuscript. The first is an investigation of a commonly employed 

photocurrent transient method and is published in Sustainable Energy & Fuels. The work finds that 

behavior of photocurrent transients, produced when the illumination incident on a photoanode is 

switched on or off, is atypical if a redox active catalyst is present on a photoanode surface. This 

finding is important because the effect on photocurrent transient behavior, which is often analyzed 

to determine the lifetime of photogenerated carriers, is significant and would lead to incorrect 

interpretations if not accounted for. The findings would not have been possible without the DWE 

technique, which allowed the electrochemical potential of the catalyst to be monitored during 

transient decays.  

The second paper features an investigation of hole scavenger methods which we anticipate 

submitting to ACS Energy Letters. The work questions a common assumption in hole scavenger 

based experiments: that the hole scavenger (an easily oxidized compound added to the solution) 

will quantitatively harvest any photogenerated holes arriving at the photoanode/solution interface. 

Photocurrents measured in the presence of hole scavengers are often compared to those measured 

without, under the assumption that the photoanode behaves similarly in each case. However, results 

show that behavior of redox active catalysts on the photoanode surface can be affected by hole 

scavenger presence. Whereas a Ni-based catalyst was oxidized to nominally NiOOH during water 

oxidation, it remained in a reduced Ni(OH)2 state when a H2O2 hole scavenger was present. This 

difference changes the conductivity of the catalyst layer and can impede the arrival of holes at the 

photoanode/solution interface. The findings suggest that care should be taken when assessing hole 

scavenged photocurrents, often used to calculate water oxidation kinetics, in the presence of a redox 

active catalyst. These findings were enabled by the DWE technique, which was used to monitor 

the oxidation state of the catalyst and examine its intrinsic activity in the presence of a hole 

scavenger.  

Section A, Transient Photocurrents on Catalyst-Modified n-Si Photoelectrodes: Insight 

from Dual-Working Electrode Photoelectrochemistry, contains co-authored material previously 

published as: Laskowski, F. A. L; Qiu, J.; Nellist, M. R.; Oener, S. Z.; Gordon, A. M.; Boettcher, 
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S. W. (2018). Transient Photocurrents on Catalyst-Modified n-Si Photoelectrodes: Insight from 

Dual-Working Electrode Photoelectrochemistry. Sustainable Energy & Fuels, 2(9), 1995-2005 

(2018). 

 Section B, Investigation of Hole Scavenger Experiments for Catalyzed Photoanodes, 

contains co-authored material yet to be published as: Laskowski, F. A. L.; Nellist, M. R.; Qiu, J.; 

Gordon, A. M.; Boettcher, S. W. Interpretation of Hole Scavenged Photoanode Behavior from Dual 

Working Electrode Photoelectrochemistry, In Preparation. (style of ACS Energy Letters). 

Prof. Boettcher and I conceived of these projects. I performed and directed experiments, 

collected data with help from A. Gordon, and analyzed data with help from M. Nellist, J. Qiu, S. 

Oener, and A. Gordon. I wrote the paper with help from Prof. Boettcher and editorial assistance 

from all authors. 

 

Paper C 

 

 Transient Photocurrents on Catalyst-Modified n-Si Photoelectrodes: Insight from Dual-

Working Electrode Photoelectrochemistry 

 

Forrest A. L. Laskowski, Jingjing Qiu, Michael R. Nellist, Sebastian Z. Oener, Adrian M. 

Gordon, Shannon W. Boettcher* 

 

1. Introduction 

Semiconductor photoelectrodes coated with electrocatalysts are an important component 

of water-splitting cells that convert and store solar energy. Surface states on light-absorbing 

semiconductors can function as recombination centers and lower the performance of water-splitting 

systems. To characterize the presence and impact of surface states on catalyst-coated 

semiconductors, transient photoelectrochemical behavior is often studied. These experiments 

typically assume that the filling/emptying of surface states at the semiconductor interface causes 

transients to occur whenever the incident illumination intensity is perturbed. Analyzing transients 

may then reveal the density of surface states and their effect on carrier recombination. However, 

the transient technique does not directly measure the origin of the transient behavior, and utility of 

the experiment requires assuming the underlying process. Here, we use a dual-working-electrode 

technique applied to Ni-protected n-Si photoanodes coated with Ni (oxy)hydroxide catalyst to 

examine transient behavior of catalyst-coated photoelectrodes. We find that the most pronounced 

transients are due to catalyst redox activity. By directly measuring the catalyst redox state, we 
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confirm that transients are related to either catalyst oxidation to NiOOH or reduction to Ni(OH)2. 

We also find that the redox-active catalyst moderates how quickly the depletion region and 

Helmholtz electrostatic potentials relax after each illumination perturbation. The results indicate 

that a redox-active catalyst can serve as a “parallel capacitor” which influences both the decay time 

and shape of transients. This data shows that photocurrent transients on catalyzed photoanodes are 

influenced by the catalyst’s redox-activity and are not solely based on surface state 

loading/emptying.   

Photoelectrochemical water splitting, achieved by integrating a photocathode and 

photoanode, converts and stores solar energy in the form of hydrogen fuel.1 Integrated systems 

absorb sunlight and use the photo-generated carriers to drive the oxygen evolution (OER) and 

hydrogen evolution (HER) reactions, simultaneously. However, various processes limit efficiency, 

especially for the photoanode. The presence of surface states on semiconductors has been shown 

to increase carrier recombination, thereby decreasing conversion efficiencies.2-13 To enhance 

performance, photoanodes are often functionalized with a catalyst which is thought to suppress 

surface recombination,14-16 improve OER kinetics,17,18 and/or improve the carrier-selectivity of the 

interface (e.g. increased band bending).19,20 Some have attributed catalyst enhancement more 

specifically to the passivation of surface states.21,22 To quantify the impacts of surface states, 

transient photocurrent analysis has been often applied to understand catalyst-coated 

photoanodes.9,23   

Transient photocurrent analysis interprets the dynamic response of a photoelectrode as the 

incident light intensity is modulated.24-26 In a typical experiment, current response is collected as 

an incident light source is periodically switched on and off. Current spikes which rapidly decay to 

a steady-state value, termed transients, oftentimes occur directly after each switch. Transients are 

thought to be the sum of short-term non-faradaic processes and the steady-state faradaic current 

(e.g. OER, HER).27-32 The exact nature of the non-faradaic processes is system dependent and, for 

some systems, subject to on-going debate. However, the non-faradaic responses are typically 

attributed to charge accumulation in the semiconductor depletion region, in the Helmholtz double-

layer, or at surface states.9,13,23,29,33-44 For systems where the precise mechanism is deduced, 

integration of the current-time transient trace is used to characterize the magnitude of charge 

accumulation.9,45-48 Fitting transient decays, and extracting time constants, has been used to 

characterize the apparent lifetime of the photogenerated “carriers” (presumably at surface sites) and 

decay times (from peak to steady-state) have been used to differentiate between plausible decay 

mechanisms.30,38,47,49-51  



43 
 

Application of transient photocurrent analysis to catalyzed photoanodes has produced 

diverse results. For Fe2O3 photoanodes decorated with cobalt oxyhydroxide phosphate (Co-Pi) 

catalyst, numerous studies have concluded that the presence of the catalyst increases both the 

integrated charge in the transient and its amplitude relative to bare photoanodes.20,23,52-55 Others 

have found that Co-Pi catalysts suppress the integrated charge in the transient when applied to 

Fe2O3.9,56 One study found that Co-Pi application yields smaller but broader transients.57 

Application of Ni- and Ir-based catalysts has been reported to increase the integrated charge in the 

transient while a report on a Fe-based catalyst found that transients were suppressed.32,50,58-60  

Reports on a “carbon-dot” catalyst and a sub-monolayer Co oxyhydroxide catalyst both found no 

impact on Fe2O3 transients.61,62 For BiVO4 photoanodes, Co-Pi and Ru-based catalysts have been 

shown to result in more pronounced transients with increased integration.21,63 But others have found 

that Co-Pi catalysts and In2O3 coatings suppress transients on BiVO4.64-68 Meanwhile, reports on 

Ta3N5 photoanodes suggest that IrO2 catalysts suppress transients while Ni- and Fe-based catalysts 

significantly increase them.69-71  

The extent of diverse results has led to a variety of fundamental explanations. In explaining 

increased amplitude and charge integral of transients, some studies have found that the integrated 

charge in the transient increases as a function of catalyst loading.23,50,52,55 They suggest that on-

transients represent catalyst oxidation and off-transients represent reduction. More general 

hypotheses suggest that recombination pathways are introduced by catalyst deposition.54,72 This has 

been attributed to the catalyst creating more surface states which increases recombination or by 

simply increasing the surface capacitance.53,58 A related explanation suggests that catalysts can 

function as hole storage layers which increases charge integration of transients by promoting 

recombination with conduction-band electrons.32,71 One group has suggested that slower transient 

decay times represent longer lifetimes for photogenerated charges.21 Explanations for transient 

suppression generally suggest that the catalyst suppresses recombination. It has been concluded 

that catalysts may reduce recombination within the depletion region, although the mechanism by 

which this would occur is unclear.65 Others report that transients represent surface-state 

recombination and that catalysts act to “deload” the surface states before recombination can 

occur.48,59,68 Decreased transients have also been attributed to general suppression of recombination 

at the semiconductor/liquid interface.73 Still others have suggested that transients represent charge 

build up at the semiconductor/liquid interface or in surface states; the catalyst acts to consume this 

charge instead of allowing build-up.69,74 We note that many of these explanations could occur 

simultaneously; for instance, application of a catalyst could increase surface capacitance while 

simultaneously passivating surface states.    
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To better understand photocurrent transients on catalyst-coated semiconductor 

photoelectrodes we employ a well-defined Si-based model system.75 Since Si self-passivates under 

OER conditions when making solution contact, we use a Ni protection layer which doubles as the 

catalyst. An advantage in examining this system is that the surface state density on Si is thought to 

be significantly smaller than either Fe2O3 or BiVO4.22,76-81 Since the Si surface must be buried under 

the protection layer, it is unlikely that Si|Ni interface states are affected during experiments where 

additional catalyst is electrodeposited. Thus, we assume that defect-state related charging effects 

are minor by comparison to other systems. The Si photoanodes protected by a conformal protection 

layer, are also amenable to the dual-working-electrode (DWE) photoelectrochemical technique.82,83 

In this technique an electrolyte permeable Au contact, deposited on the catalyst surface, is used to 

sense the catalyst activity. We employ the DWE technique to directly measure the electrochemical 

potential of a Ni-based catalyst, during transient experiments. We find that transients are most 

pronounced in the potential region where illumination changes lead to catalyst redox transitions (as 

measured by the secondary electrode). The integrated charge of the transients in this potential 

region is larger than that at other potentials. We also find that the transient shape is influenced by 

the extent of catalyst loading. Since the rectifying junction is buried under a protection layer (and 

thereby unaffected by additional catalyst loading), this finding suggests that the redox-active 

catalyst acts as a capacitor which slows the photoanodes transition to steady-state after each 

illumination change. Based on these results we discuss the impacts of redox-active catalysts on 

interpretation of photocurrent transients.   

 

2. Methods   

2.1 Photoanode fabrication and electrochemical characterization 

The fabrication of photoanodes closely followed the preparation described in our previous 

work.75 P-doped [100] n-Si wafers (resistivity 0.65-0.95 ohm·cm) were diced into 1 × 1 cm squares and 

sonicated for 10 min in acetone (99.8%, Fisher Chemical), iso-propyl alcohol (99.9%, Fisher Chemical) 

and nanopure water (18.2 MΩ). Diced squares were then cleaned for 30 min in boiling Piranha (3:1 by 

volume H2SO4 : H2O2, 100 oC, both procured from Fisher Chemical), rinsed twice and dried under filtered 

N2 (0.01 micron – McMaster-Carr). The Ni protection layer and catalyst were deposited without 

removing the native oxide via electron beam evaporation (Amod evaporation system) at ∼0.1 Å s−1 from 

a Fabmate crucible (Kurt Lesker) packed with Ni pellets (Kurt Lesker, 1/4” diameter & 1/2” length, 

99.995%). In a typical deposition, 5 nm of Ni metal was deposited; this produces lower performing 

photoanodes (decreased photovoltage) relative to our previous work but ensures photoanode longevity 
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and protects against shorting during DWE deposition.75 An ohmic back contact was achieved by 

scratching through the native oxide on the backside of the n-Si, wetting with Ga-In eutectic (≥99.99%, 

Sigma Aldrich), and then affixing a Sn-Cu wire (30 AWG) within the eutectic. The Sn-Cu wire was 

affixed via hot glue and threaded through a 3.5 mm-diameter glass tube which serves as the electrode 

stem. The backside of the Si and the Sn-Cu wire were then sealed off, to prevent solution contact, with 

epoxy (Loctite Hysol 1C).   

Before additional fabrication steps, the electrodes were activated by cycling 50 times at 100 mV 

s-1 in pH 9.5 1 M potassium borate buffer (K-borate). Cycles were performed under ~1 sun AM1.5G 

illumination (Abet Technologies, model 10500) in a potential window with endpoints 200 mV cathodic 

of the Ni reduction peak and 200 mV anodic of the Ni oxidation peak. This process converts a portion of 

the Ni protection layer to an active Ni(Fe)(OH)2/Ni(Fe)OOH catalyst. To examine the impacts of catalyst 

loading, additional Ni(Fe)OOH was electrochemically photodeposited by saturating the buffer with 

NiCl2 (calculated to 0.1 M NiCl2) and then continuing the illuminated cycling (15-30 additional cycles).  

We note that unintentional trace Fe cations incorporate into the catalyst, but since this is not the focus of 

the present work we will hereafter refer to the catalyst as Ni(OH)2/NiOOH.84-86 

The secondary working electrode was deposited in one of two ways, depending on the intended 

experimental purpose. To sense the catalyst electrochemical potential, 10 nm of Au was thermally 

deposited directly after the electrochemical NiOOH deposition. This ensures that the Au does not short 

to the metallic protection layer and only senses the redox-active catalyst. To sense the protection layer 

electrochemical potential, the 10 nm of Au were thermally deposited directly prior to electrochemical 

NiOOH deposition. The difference between these two configurations is reflected in the data obtained 

from the second working electrode (WE2). The data is either characteristic of conductivity transitions 

when sensing the catalyst electrochemical potential (Ni (oxy)hydroxide is only conductive when 

oxidized) or depicts conductive behavior irrespective of applied potential when sensing the metallic Ni 

protection layer electrochemical potential.86 In both cases, the Au was thermally deposited at ∼2 Å s−1 

from an alumina-coated boat (Kurt Lesker). A schematic depiction of the two different DWE deposition 

strategies can be found in Figure C.S1.   

Electrodes were electrochemically characterized in 50 mL of aq. 1 M K-borate buffer (pH ~9.5) 

using a BioLogic SP200 bipotentiostat. All experiments were performed with a Pt counter electrode and 

either a Ag/AgCl or Hg/HgO reference electrode. Cyclic voltammograms were not corrected for 

uncompensated series resistance. For transient experiments the photoanode was poised at various applied 

potentials while the light was manually switched off/on each minute. Three off-transients and three on-

transients were collected at each applied potential. All experiments were performed with mild stirring. 
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At least three electrodes were examined for each experiment described below; a single representative 

electrode is selected for explanation of results. All the potentials are referenced to 𝜀𝜀O2/OH− according 

to the following equation:  

 

𝑉𝑉 (𝑣𝑣𝑣𝑣. 𝜀𝜀O2/OH−) =  𝑉𝑉experimental  (𝑣𝑣𝑣𝑣. 𝜀𝜀reference) + 𝜀𝜀reference (𝑣𝑣𝑣𝑣. SHE) + 0.059 ∗ 𝑝𝑝𝑝𝑝 − 1.23 𝑉𝑉 

 

 3. Effects of catalyst loading on transient photocurrent response 

To understand if redox-active catalysts influence photocurrent transients, we first 

examined Ni-protected n-Si photoanodes with varied catalyst loadings. For these devices we 

iterated between collecting illuminated cyclic voltammograms (CVs), collecting photocurrent 

transient data, and photo-depositing additional redox active NiOOH. Photodeposition was 

performed by saturating the solution with NiCl2 and performing 15 CVs, under illumination, as 

described in the experimental section.  To quantify the extent of redox-active NiOOH present, the 

cathodic redox peak from each CV (corresponding to NiOOH reduction) was integrated (Figure 

C.1).  

 

 
Figure C.1.  Illuminated voltammetry collected after each transient experiment as a function 

of photodeposited catalyst loading.  All experiments were performed on the same electrode where 

catalyst loading (low, moderate, high) was increased after each transient experiment (immediately 

after the CVs shown here). The inset shows the results of the integration of the cathodic redox peak, 

which is proportional to the number of redox-active Ni sites in the catalyst layer. The data shows 

the extent of redox-active catalyst present during each transient experiment.   

 



47 
 

Transients are first collected with the photoelectrode poised at an applied potential (Vsem) 

within the reduction wave of the catalyst (~ -0.2 V vs. the thermodynamic potential for water 

oxidation, 𝜀𝜀O2/OH−) and then at each 25 mV increment as the photoelectrode is stepped 600 mV 

anodic of the starting potential (Figure C.2). The photoanode is held at each potential step for 7 

min, during which time the light is switched off at the beginning of each odd numbered minute and 

on at the beginning of each even numbered minute. Anodic and cathodic transients exist over the 

entire applied potential range. However, integration of the current transients reveals a potential 

region (>250 mV), for each experiment, where transient integrated charge is increased. As 

additional catalyst is photodeposited the region of increased integrated charge shifts cathodic and 

the integrated charge increases.  

The region of increased integrated charge can be attributed to oxidation/reduction of the 

Ni catalyst. This conclusion is supported by comparing the integrated charge for each photo-

deposition step (Figure C.S2). As more catalyst is photodeposited, the integrated charge in the 

voltammetry (Figure C.1) and the transient (Figure C.2) increase together. The cathodic shift of the 

region of increased integrated charge is attributed to an increase in the photovoltage as the 

photoelectrode ages (Figure C.2 and Figure C.S3). The ageing phenomenon, explained in our 

previous work, relates to the protection layer becoming increasingly electrolyte permeable.75 This 

explanation is consistent with the anodic shift in OER onset seen when comparing voltammograms 

immediately before and after the first transient experiment (Figure C.S3).  The data in this section 

thus shows that (1) the catalyst layer affects the transient response, (2) the effect is most pronounced 

in the region of increased integrated transient charge, and (3) that higher loading of catalyst yields 

larger integrated charge in the transients.  
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Figure C.2.  Transient response as a function of catalyst loading. The bottom pane shows Vsem 

vs. 𝜀𝜀O2/OH−  as a function of time. The middle pane depicts the transient photocurrent response 

collected every 1 ms. The top pane depicts the integration of the transients which reveals a >250 

mV range where integrated charge is most prominent. Comparison between the different extents of 

catalyst loading: (a) low, (b) moderate, and (c) high, shows that increased loading produces larger 

integrated charge in the transients.    

 

4. Dual-working-electrode measurements of catalyst potential during photocurrent transients 

To directly measure the catalyst behavior during transient experiments, the dual-working-

electrode (DWE) photoelectrochemistry technique was used. In these experiments, the first 

working electrode (WE1) was attached to an ohmic contact on the backside of the n-Si 

semiconductor and the second working electrode (WE2) was attached to a thin electrolyte-

permeable Au top-contact (see Figure C.S1 for additional details). The Au layer was evaporated 

onto the photoanode after both activation and additional NiOOH had been photodeposited. Due to 

the fragile nature of this secondary contact (it tends to be exfoliated by prolonged oxygen 

evolution), WE1 is stepped in 100 mV increments instead of 25 mV increments. Data is collected 

every 100 ms to accentuate the region of increased integrated transient charge. Illumination 

chopping periodicity and all other experimental parameters remain the same as in Section 3.1. 
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During each experiment the current density at WE1 (Jsem) and the voltage at WE2 (Vcat) are 

simultaneously recorded (Figure C.3).  

     

 
Figure C.3. Measurement of catalyst potential during transient experiments.  Three light-

on/light-off transient sets were recorded for each potential (Vsem) step. Three regions of activity are 

denoted (discussed in the main text) on each panel. (a) Transient Jsem response (red) as a function 

of time and hence WE1 applied potential (Vsem). Transients are only apparent in region 2. (b) Vcat 

(WE2) response (green) for the same transients. When the light is turned off, two regions of Vcat 

decay (panel b) are exhibited in region 2: a quick decay followed by a slower decay which fails to 

reach a steady-state value before the light is turned back on. Insets in both panels show one set of 

transients in region 2. The data shows that the catalyst potential Vcat, for regions 2 and 3, varies in 

tandem with the transient photocurrent response – i.e. during on-transients the catalyst is oxidized 

and during off-transients the catalyst is reduced.  

 

The chopped illumination data exhibits three regions of distinct transient behavior (Figure 

C.3). In the first region, corresponding to the first six Vsem voltage steps (-0.65 to -0.15 V 

vs. 𝜀𝜀O2/OH−), transients are absent or very small. The catalyst potential, Vcat, measured via WE2 

and the semiconductor current density, Jsem, remain constant in this region (Figures C.3a and 3b); 

i.e. Jsem and Vcat are nonresponsive to both the applied Vsem and to changes in the illumination 

condition. Catalyst voltammograms (collected via WE2 directly after transient experiments, see 

Figure C.S4) show that the onset of catalyst oxidation occurs at ~ 0.3 V vs. 𝜀𝜀O2/OH−. Because Vcat 

remains near -0.3 V vs. 𝜀𝜀O2/OH− throughout region 1 of the transient experiment, the catalyst 

remains in its non-conductive Ni(OH)2 state.  
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In region 2, on- and off-transients are observed for Vsem potentials between -0.05 and 0.25 

V vs. 𝜀𝜀O2/OH−. As the light is turned on both Jsem and Vcat quickly increase before decaying to a 

steady-state value (Figure C.3a). Integration of the largest Jsem on-transient (6.5 mC cm-2) compares 

favorably to integration of the redox wave in the catalyst voltammograms shown in Figure C.S4 (8 

mC cm-2). The on-transients thus represent catalyst oxidation in this region. When the light is 

switched off both Jsem and Vcat simultaneously decrease. Jsem exhibits a negative current transient 

before decaying back to ~0 mA cm-2.  

For many of these electrodes, the magnitudes of the integrated Jsem off-transients are ~ 30 

% smaller than the integrated on-transients. Additionally, for these electrodes, Vcat exhibits a quick 

initial decay (through the first ~200 mV) followed by a much slower decay thereafter (Figure C.3b 

- inset). These two findings are explained as follows. When the light turns off the hole population 

collapses and hole quasi-Fermi level returns to the majority electron Fermi level. Electrons are then 

transferred from the conduction band to the catalyst directly in contact with the semiconductor, 

reducing NiOOH to Ni(OH)2. Because Ni(OH)2 is an electronic insulator, reduction of the near-

surface NiOOH may electronically isolate regions of the catalyst further from the 

semiconductor|catalyst interface. For these isolated catalyst areas, the catalyst cannot be re-reduced 

from the semiconductor and thus the oxidized state must relax via a slower equilibrium with the 

solution (i.e. to discharge and generate oxygen gas). Hence the light-off Vcat response is 

characterized by a quick decay followed by a slow decay (Figure C.3b - inset). This picture is 

supported by the fact that the slow Vcat decay occurs after Jsem has reached its dark steady-state 

value (~0 mA cm-2).   

 In Region 3 (Vsem = 0.35 - 0.95 V vs. 𝜀𝜀O2/OH−), no transients are observed. However, unlike 

region 1, both Jsem and Vcat are responsive to the light condition. As the light is turned on, Jsem and 

Vcat simultaneously increase and achieve a steady-state. When the light is turned off they each relax 

to respective lower values and achieve a new steady-state. The fact that Vcat reaches steady-state in 

the dark demonstrates that the catalyst remains oxidized and that WE2 is in electronic contact with 

the semiconductor. This is further evidenced by the lack of a second slower Vcat decay, and the lack 

of the Jsem on/off-transients. We also note that, in Region 3, Vcat remains positive of ~ 0.3 V vs 

𝜀𝜀O2/OH− (the oxidation onset potential measured for the catalyst alone, see Figure C.S4). This data 

indicates that the surface majority carrier Fermi-level is no longer capable of reducing the catalyst 

in the dark. Instead, the small leakage current from the semiconductor is sufficient to keep the 

catalyst oxidized. During light-on, Vcat increases but no redox transition occurs. 
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The data presented above for regions 1, 2 and 3 indicate that a significant transient response 

only occurs when the dark-to-light range of Vcat (ΔVcat) overlaps the catalyst’s redox-active potential 

range. The catalyst’s redox activity range can be measured directly using WE2 for the same device 

on which transients are measured. For the device in Figure C.3 catalyst reduction occurs at ~ 0.25 

V vs. 𝜀𝜀O2/OH− and oxidation occurs at ~ 0.3 V vs. 𝜀𝜀O2/OH− (Figure C.S4). For regions 1 and 3, the 

measured Vcat remains below or above this redox activity range, respectively (Figure C.3b). 

However, for region 2 where transients are most pronounced, Vcat transitions through the redox 

range immediately following each light switch. This directly shows that the most pronounced 

transient behavior is associated with the oxidation and reduction of the catalyst. The appearance of 

transients is an indication that ΔVcat is partially or fully eclipsing the range of catalyst redox activity.  

To help explain this finding, band diagrams for the processes occurring in region 2 are 

depicted in Figure C.4. In the dark, the applied potential is such that the majority carrier Fermi level 

(Ef,n) rests slightly cathodic of the catalyst’s redox-activity region. Once illuminated, the generated 

minority-carrier profile results in a photovoltage which drives the oxidation of the catalyst. Charge 

accumulation at the solution interface pushes the protection-layer Fermi level (ENi) through the 

region of catalyst redox activity. The catalyst Fermi level (Ecat) remains in quasi-equilibrium with 

the protection layer and this results in the catalyst oxidation. Removal of the light source leads to 

re-reduction of the catalyst as the hole quasi-Fermi-level (Ef,p) equalizes with Ef,n. Thus, the 

transient behavior depicted in region 2 occurs as a function of the applied potential and the 

photovoltage. Significant transients occur whenever the applied Vsem places Ef,n  cathodic of the 

redox activity region in the dark and the photovoltage is sufficiently large such that the 

photogenerated holes can drive water oxidation in the light. 

 

 

 
Figure C.4. Schematic band diagrams of transition of system between dark and light states. 

The green catalyst represents Ni(OH)2 while the red catalyst represents NiOOH. The transition 

behavior (panel b) depicts a gradient in redox states that may occur as the catalyst transitions from 
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Ni(OH)2 to NiOOH. The semiconductor, metallic Ni protection layer, redox active catalyst and 

solution are represented by sem, Ni, cat, and sol, respectively. ENi, Ecat, and Esol represent the 

electrochemical potential for the protection layer, catalyst, and solution, respectively. The quasi-

Fermi levels are depicted by Ef,n and Ef,p. A redox activity region (gray box) represents a catalyst 

“redox density of states (DOS)” which are filled/emptied during redox transitions. The vacuum 

level, represented by Evac, is shown as modified by the electrostatic potential. Vsc and VH represent 

the depletion region electrostatic potential and Helmholtz electrostatic potential, respectively. Note 

here that during transient experiments ΔVsc must equal -ΔVH to maintain Esem fixed versus Esol, as 

is controlled by the potentiostat. For region 2, the dark majority carrier level is sufficiently cathodic 

to reduce the catalyst (panel a). Once illuminated, holes arriving at the solution interface force an 

increase in VH which eventually moves ENi to the redox activity region (panel b). Ecat maintains 

quasi-equilibrium with ENi and this causes oxidation of the catalyst (panel c). The temporal 

transition to the illuminated steady-state is slowed by the catalyst layer because holes that would 

be contributing to increasing VH are now partially being consumed for catalyst redox chemistry. 

Since ΔVsc = -ΔVH, the band unbending is also slowed, and the transient photocurrent response is 

characterized by larger currents over a longer duration.   

 

5. Dual-working-electrode measurements of the protection-layer potential during 

photocurrent transients 

We next consider the shape of the transient responses and explain it in terms of a band 

picture. We make measurements on electrodes where the thin electrolyte-permeable Au layer is 

deposited after photoanode activation, but before additional NiOOH catalyst is photodeposited onto 

the surface. This results in contact between the Au WE2 and the Ni metallic protection layer, as can 

be seen by the fact that Vcat is now responsive to light on/off cycles at all potentials (Figure C.S5); 

i.e. the measurement is not limited by the insulating nature of the reduced Ni(OH)2 form of the 

catalyst. Measuring the surface potential does not require that the catalyst is in an electrically 

conductive state. Instead of sensing the redox-active catalyst electrochemical potential, the contact 

now equilibrates with the protection layer electrochemical potential. Since the protection layer 

consists of dense metallic Ni, during transients its electrochemical potential can only be modified 

by charge built-up at the metal|solution interface (the catalyst layer is permeable to electrolyte). 

Thus, by observing the protection layer electrochemical potential we sense changes to the 

Helmholtz electrostatic potential (shown in Figure C.4c).  

Figure C.5 shows cathodic Jsem transients and the associated VNi response for a device with 

the second working electrode attached directly to the metallic Ni protection layer. Transient 
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integrated charge and the complete Jsem and VNi dataset can be found in Figure C.S5. We select five 

of the cathodic transients to examine in more detail. Figure C.5a depicts a cathodic transient from 

region 1, i.e. at Vsem cathodic of the catalyst redox activity. Transients shown in Figure C.5b, C.5c, 

and C.5d are from region 2, in order of increasing anodic applied potentials. The transient shown 

in Figure C.5e is from region 3, at Vsem anodic of the catalyst redox potential region. When the 

catalyst redox activity is not present (regions 1 and 3), the current transient completely decays to 

steady-state within 1 s (Figure C.5a and C.5e). The VNi response mirrors the decay time and the 

decay shape. For the transients in Figure C.5b and 5c, the photocurrent decays over a much longer 

timeframe (>5 s) and deviates from the visibly exponential shape of those in Figure C.5a and 5e. 

The exponential current decay to steady-state is interrupted by a region of more moderate decay 

(diminished slope). VNi decays over the same timeframe and visibly mirrors the shape of the current 

decay. Finally, the transient in Figure C.5d lacks the complex shape of the previous two, but decays 

over a longer timeframe than either transient in Figure C.5a or 5e.  All three transients selected 

from region 2 show significantly slower decay times and exhibit VNi responses which mirror the 

Jsem decay shape.  

 

 
Figure C.5. Sensing the protection layer electrochemical potential. Results depict Jsem and VNi 

from five representative transients as sensed via WE1 and WE2, respectively. Panel (a) shows a 

transient from region 1.  Panels (b), (c) and (d) show transients from region 2 in order of 

increasingly anodic applied potential.  Panel (e) shows a transient in region 3.  This data shows that 

when the off-transient causes VNi to traverse the onset of catalyst reduction (at ~ 0.20 vs  𝜀𝜀O2/OH−) 

the decay in the protection layer electrochemical potential is slowed (Figure C.S6). The decay shape 

for Jsem becomes visibly more complex and this shape is mirrored by the VNi decay.  
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The above results indicate that the redox-active Ni (oxy)hydroxide catalyst acts as a 

“capacitor” which moderates how quickly the semiconductor depletion region and Helmholtz 

electrostatic potentials relax when moving from light to dark.  For the transients in Figure C.5b and 

5c, VNi collapses quickly in each case until it reaches ~ 0.2 V vs. 𝜀𝜀O2/OH−.  This potential is 

consistent with where the redox-active catalyst is converted from NiOOH to Ni(OH)2, and so it 

represents the edge of the catalyst’s “redox density of states (DoS)” (Figure C.S6a). Once the 

Helmholtz potential has decayed to place ENi near the catalyst reduction onset, electrons injected 

from the conduction band can reduce the catalyst, in addition to accumulating at the Ni|solution 

interface. If charge is not injected into the catalyst, for example due to slow charge transfer kinetics 

between Ni and catalyst, the fast exponential decay would continue without any region of slowed 

transient decay.9,47,87,88  However, the data above shows that the decay is slowed, indicating that 

charges are injected into the catalyst once VH has sufficiently relaxed.   

The potential range for the more moderate slope in region 2 of the transient decays is 

associated with the catalyst’s redox DoS. In the Figure C.5b transient, the “diminished” VNi decay 

occurs through a ~40 mV range, while for the Figure C.5c transient the “diminished” decay occurs 

through a ~38 mV range. This data suggests that the catalyst contains a redox DoS spanning 38-40 

mV, which is consistent the redox peak widths for WE2 voltammetry collected at 1 mV s-1 (Figure 

C.S6b). Once the Helmholtz electrostatic potential aligns ENi with the edge of this 38-40 mV region, 

the redox states begin to compete for consumption of injected electrons; any change in the 

Helmholtz electrostatic potential must correlate with the same potential change in the catalyst redox 

DoS. Upon filling the catalyst DoS the catalyst “parallel capacitance” vanishes, and current/voltage 

decay can once again continue exponentially. This final point is experimentally supported by the 

resumed rapid VNi decay after the 38-40 mV have transpired (Figures C.5b and C.5c).  

For further evidence that the catalyst redox DoS moderates the transient 

photocurrent/photovoltage decay we return to the loading dependence data from Section 3.1. In 

Figure C.6a all three transient loadings are compared at a constant applied potential near the OER 

onset. To account for shifts in the transient integration region due to different photovoltages 

provided by the rectifying junction, in Figure C.6b the transients which exhibit maximum charge 

integration at each loading are also compared. In both cases, increased loading produces not only 

an increase in the integration of the anodic transient but also a broadened transient decay shape. 

The cathodic transients exhibit more-exponential behavior but their decay to zero current is also 

broadened as loading increases. The cathodic transients at moderate and high catalyst loading fail 
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to reach zero current before the light is switched on again. By contrast, the low loading cathodic 

transient returns to zero in both examples. These results demonstrate that larger absolute transient 

currents are sustained for longer when more catalyst is coated onto the photoanode.  

The catalyst loading results can be related to the band-bending model in Figure C.4. For 

the anodic light-on transients, where photocurrent decay is governed by the rate of electrons 

injected from the conduction band, increased catalyst loading causes the semiconductor bands to 

unbend more slowly. For the cathodic transients, where decay is related to how quickly the bands 

regain their dark equilibrium state, increased catalyst loading causes the bands to re-bend over a 

longer duration. These findings are consistent with the above understanding, where interaction with 

the catalyst redox states slows how quickly the Helmholtz electrostatic potential responds to 

changes in the illumination. As the number of catalyst redox states increases the electrostatic 

potential transition further slows and so the transient relaxation time increases.    

 
Figure C.6. Transients vs. catalyst loading on the same sample shown in Figure C.2. One set 

of on/off transients selected from the overall data. (a) All three loadings compared at -50 mV vs. 

𝜀𝜀O2/OH−. (b) Comparison of the transient with largest charge integration at each catalyst loading 

extent. The applied potential for each loading is shown in the inset. Increased loading in each case 

results in broader transient features. Anodic transients exhibit non-exponential decay as loading 

increases. The results show that increased catalyst loading causes broader transients oftentimes 

with complex decay shapes.   

 

6. Conclusions 

Experiments on Ni-protected n-Si illustrate how photocurrent transients are affected by the 

presence of a redox-active catalyst. The application of the catalyst produces three distinct regions 

of transient activity. At sufficiently low and high applied potentials, only very quick transients 
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appear with relatively small charge integration. Between these two regions of activity exists a 

region with large charge integration and relatively slow decay times. Here, we find that the 

integrated charge is related to the quantity of redox-active catalyst on the semiconductor surface. 

DWE experiments reveal that this behavior takes place when the applied potential is such that: (a) 

the majority carrier Fermi level can reduce the catalyst in the dark and (b) the minority carrier Fermi 

level can oxidize the catalyst once illuminated. Since the photovoltage is given by the difference 

between the two quasi-Fermi levels, photoanodes with greater photovoltages are expected to exhibit 

this behavior over a greater applied potential range.   

The presence of a redox-active catalyst slows the electrostatic relaxation events during 

transient experiments. This occurs whenever an illumination switch causes the surface 

electrochemical potential at the protection layer to pass through the catalyst’s redox density of 

states. With little or no catalyst, relaxation is characterized by carriers injected from the 

semiconductor interacting to increase/decrease the Helmholtz electrostatic potential at the Ni 

protection layer surface. In the presence of the Ni (oxy)hydroxide catalyst this relaxation process 

is slowed because some of the carriers are now consumed for catalyst redox activity. A larger 

catalyst redox density of states promotes this effect, by essentially acting as a larger parallel 

capacitor, and gives rise to more complex and extended transient decay shapes. This explains, in 

part, the more complex and/or extended decay shapes that arise after catalyst application in many 

recent reports on a variety of oxide photoanodes.23,32,52,55,57,63,66,70-73,89-91 We note that this behavior 

is dependent on the catalyst being in quasi-equilibrium with the surface electrochemical potential. 

For systems without quasi-equilibrium (slow transfer between semiconductor and catalyst), the 

electrostatic profile may relax before redox activity takes place. One situation where such behavior 

occurs is in the re-reduction of the oxidized Ni (oxy)hydroxide catalyst during the off-transient; 

initial discharge can result in an electrically insulating near-semiconductor layer which prevents 

complete reduction of the catalyst from the semiconductor. Similarly, in systems employing the 

Co-Pi catalyst, lack of cathodic off-transients may be related to slow reduction kinetics.16,23,64,74,90   

The utility of transient photocurrent experiments relies on assigning transients to a specific 

process. For example, using transient integration to quantify surface states requires attributing the 

transient response to surface state filling/emptying. However, we show that redox-active catalysts 

can influence transients, causing increased integrated charge in the transient, extended decay times, 

and complex decay shapes. These findings have general implications for analyzing 

photoelectrochemical transients – those on catalyzed systems may represent more processes than 

the filling/emptying of surface states. If the catalyst’s redox DoS overlaps a surface-state DoS then 

transients are expected to be influenced by both. For these transients, decay time characterization 
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and transient integration describe the conflated relaxation processes and may not accurately depict 

either isolated process. Additionally, for systems with larger photovoltages (e.g. BiVO4, Fe2O3), 

we anticipate that this conflated relaxation response occurs over a greater applied potential range. 

Comparison of photocurrent transients as a function of catalyst mass loading can be employed to 

indicate if and where the catalyst is influencing transients. When catalyst influence is present, 

multi-exponential decay fits may be useful in isolating processes that occur before/after interaction 

with the catalyst redox DoS. Several groups have reported that single exponential fits are 

insufficient for fitting decay time constants for catalyzed systems and have relied on multi-

exponential fits.49,50,55 However, for processes occurring at similar time scales, the DWE technique 

is useful as it provides a direct measure of the catalyst charging. The DWE measurement could be 

used to separate out the extent of transient behavior due to catalyst charging, relative to that due to 

surface-state charging.  

 

Paper D 

 

Behavior of Catalyst-Modified n-Si Photoelectrodes in the Presence of a Sacrificial Hole 

Scavenger: Insight from Dual-Working Electrode Photoelectrochemistry 

 

Forrest A. L. Laskowski, Michael R. Nellist, Jingjing Qiu, Adrian M. Gordon, and Shannon W. 

Boettcher 

 

1. Introduction 

Hole scavengers – easily oxidized soluble solution species – are routinely used to 

quantitatively characterize photoelectrochemical devices. For solar water splitting devices, hole 

scavengers can be used to capture photogenerated minority carriers that arrive at the 

semiconductor|liquid junction which might otherwise recombine or be consumed in water 

oxidation. Hole scavenger-based analysis assumes that hole scavenger presence results in efficient 

collection of all photogenerated holes arriving at the semiconductor|liquid or catalyst|liquid 

junction. By taking the ratio of the steady state photocurrents with and without hole scavenger 

presence, at a given applied potential, an overall charge injection efficiency for water oxidation is 

calculated. This charge injection efficiency represents the deviation from the “ideal” case where 

the hole scavenger is present. Using a dual-working-electrode approach, we demonstrate that 

presence of a hole scavenger does not always result in ideal charge injection especially when 

common redox-active catalysts (e.g. Ni-, Co-, and Fe-based (oxy)hydroxides) are present on the 
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photoanode surface. We show that hole scavenger presence can force the catalyst to remain in a 

lower oxidation state than would be present for water oxidation, sans hole scavenger. If the reduced 

catalyst state is electrically insulating, then charge collection will decrease and thereby artificially 

inflate the hole-scavenger-based calculation of charge injection efficiency. The results demonstrate 

a common misconception in the application of hole scavenger analysis and should facilitate more 

target application of the technique.  

Poor photoanode performance limits the viability of many solar-water-splitting systems.1 

One challenge is slow oxygen-evolution reaction kinetics on the photoanode surface.1-5 

Photogenerated holes arriving at the semiconductor/solution surface cannot efficiently inject into 

oxygen-evolution acceptor states. Slow injection results in a large surface hole concentration which 

promotes electron-hole recombination and thereby lowers device efficiency. The addition of 

catalytic layers onto the surface of the photoanode is one way to address sluggish charge injection. 

However, the charge injection efficiency of many catalyzed photoanodes remains sub-optimal.6-9 

To characterize the charge injection efficiency of promising photoanodes, researchers have turned 

to hole scavengers, easily oxidized hole species, which facilitate charge collection.10-12 Comparison 

of a photoanode current-potential response with and without hole scavenger presence is used to 

calculate a promising photoanode’s charge injection efficiency. Thus, the hole scavenger technique 

is one way to measure the impact of oxygen evolution reaction kinetics on the photoanode. The 

charge injection efficiency can be used to identify promising photoanodes (e.g. by showing that 

many holes arrive the active surface) or to guide the improvement of existing photoanodes (e.g. by 

quantifying the deficiency in surface catalytic rate).   

The utility of the hole scavenger technique has led to widespread adoption since Dotan et 

al. popularized the H2O2 hole scavenger in 2011.10, 11 Since then, the hole scavenger technique has 

been most commonly used to quantify charge injection efficiency on photoanodes without catalyst 

layers, especially when investigating Fe2O3 photoanodes.10, 13-63 The technique has also been 

commonly applied to BiVO4,64-85 CuWO4,86-91 and WO3
92-100 photoanodes using either H2O2 or 

Na2SO3 as the hole scavenger species. A few groups have also used hole scavengers to characterize 

the charge injection efficiency of TiO2 photoanodes101-104 and a variety of more unique photoanode 

systems.105-121 More recently, hole scavenger analysis has been increasingly applied to catalyzed 

systems, most commonly to calculate the charge injection efficiency of BiVO4 and Fe2O3 

photoanodes coated with Co-, Fe-, or Ni-based electrocatalysts.6, 7, 122-147   

Here we use a dual-working-electrode (DWE) technique to explore the interaction between 

catalyzed photoanodes and hole scavengers.148-150 The technique makes use of a second working 

electrode deposited on top of the catalyst layer that is able to sense the catalyst’s electrochemical 
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potential during device operation. The findings reveal that the photoresponse of the catalyst-coated 

photoanode, with and without hole scavenger presence, originates from two physically different 

systems. In electrolyte without hole scavenger, water oxidation generally occurs with the catalyst 

in an oxidized form (e.g. Ni(Fe) oxyhydroxide). Whereas, in the presence of a hole scavenger, 

oxidation of the hole scavenger occurs with the catalyst in a reduced form (e.g. Ni(Fe) hydroxide). 

If the reduced form of the catalyst is electrically insulating (as is true for Ni- and Co-based 

(oxy)hydroxide catalysts), retention of the reduced form can inhibit charge injection during hole 

scavenger characterization. We explore these findings on a model n-Si photoanode and then briefly 

discuss additional findings on a Fe2O3 photoanode.  

 

2. Experimental 

Photoanode fabrication resembles that previously reported.149 Briefly, P-doped [100] n-Si 

(resistivity 0.65-0.95 ohm·cm), diced into 1 × 1 cm squares, were used as substrates. For cleaning, 

the Si squares were sequentially sonicated, for 10 min, in acetone (99.8%, Fisher Chemical), iso-

propyl alcohol (99.9%, Fisher Chemical), and nanopure water (18.2 MΩ). The squares were then 

submerged in boiling Piranha (3:1 by volume H2SO4 : H2O2, 100 oC, Fisher Chemical) for 30 min, 

rinsed twice with nanopure water, and dried under N2. Since n-Si lacks stability when contacting 

the electrolyte solution, a 5-nm-thick Ni protection layer was deposited via E-beam evaporation at 

∼0.1 Å s−1.151, 152 In-Ga eutectic (≥99.99%, Sigma Aldrich) was applied to the backside of the Si to form 

an ohmic contact. A Sn-Cu wire, serving as the back-contact, was placed within the eutectic. The other 

end of the Sn-Cu wire was threaded through a 3.5 mm-diameter glass tube which serves as an electrode 

stem. The Si backside, eutectic, Sn-Cu wire, and glass tube were sealed with epoxy (Loctite Hysol 1C) 

to preclude solution contact.  

Before deposition of the second contact, the electrodes were cycled 50 times in 1 M aq. 

potassium borate buffered to pH ~9.5, under illumination, through a potential range with endpoints 

defined 200 mV cathodic of NiOOH reduction and 200 mV anodic of Ni(OH)2 oxidation, using a 

BioLogic SP200 bipotentiostat. This activation procedure generates a layer of redox active 

Ni(OH)2/NiOOH on the Ni protection layer surface. We note that Fe incorporates into the catalyst during 

the activation step as the electrolytes were not rigorously Fe-free.153-155 After activation, the surface was 

rinsed with nanopure water and dried under flowing N2. The second working electrode contact, Au, was 

thermally deposited at ~2 Å s−1 to a thickness of X nm on top of the catalyst layer and onto the surrounding 

epoxy in which the electrode was embedded. A Sn-Cu wire was affixed to this layer via silver paint. 

Electrodes were electrochemically characterized in aq. 1 M potassium borate buffer (pH ~9.5) while 
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using a Pt counter electrode and an Ag/AgCl reference electrode. For hole-scavenged experiments, H2O2 

was introduced into the electrolyte such that 0.5 M H2O2 concentration was achieved. An Abet 

Technologies solar simulator was used to generate ~1 sun of AM1.5G illumination. Experiments were 

performed with mild stirring and in triplicate. A representative sample is used to explain each set of 

results.   

 

3. Results & Discussion 

To understand how hole scavengers affect catalyzed photoanodes, we use a dual-working-

electrode (DWE) technique to independently monitor/control the catalyst potential. The n-Si 

photoanodes were coated with a 5-nm-thick Ni protection layer which was partially converted into 

a redox-active Ni(Fe)OOH/Ni(Fe)(OH)2 catalyst by electrochemical cycling. After cycling, a thin 

Au layer, serving as the secondary working electrode (WE2), was thermally evaporated onto the 

catalyst surface. Since the Au layer only contacts the catalyst, it can either be used to monitor the 

catalyst electrochemical potential during electrochemical experiments or it can be used to directly 

control the catalyst potential.149 Direct control of the catalyst potential through WE2 allows for one 

to measure the catalyst’s intrinsic oxygen evolution reaction (OER) activity. Comparing the 

intrinsic catalyst J-E response collected by controlling the potential of WE2 to the illuminated 

photoanode curve, collected by controlling the potential of the primary electrode (WE1), reveals a 

difference in OER onset (Figure D.1). This onset difference is caused by the Fermi-level splitting 

during illumination and can be thought of as the photovoltage. Repeating the same DWE 

experiments in the presence of the H2O2 hole scavenger allows us to independently monitor the 

changes in catalysis and photovoltage. 

 The Ni-based catalyst exhibits OER onset (measured versus WE2) when the potential 

applied to the catalyst (Vcat) = ~ 0.4 V vs. the thermodynamic potential for water oxidation 

(𝜀𝜀O2/OH−), in the absence of the hole scavenger (Figure D.1 – 𝑐𝑐𝑐𝑐𝑐𝑐H2O curve). The same experiment, 

in the presence of H2O2, reveals the onset of H2O2 oxidation at ~ -0.3 V vs. 𝜀𝜀O2/OH− (Figure D.1 – 

𝑐𝑐𝑐𝑐𝑐𝑐H2O2  curve). The difference in onset is expected as 𝜀𝜀O2/𝐻𝐻2𝑂𝑂2  lies 550 mV cathodic of 𝜀𝜀O2/OH− 

and the rate constant for H2O2 oxidation is 10-100 larger than for H2O oxidation.10, 11 Data collected 

through the semiconductor contact (WE1), under illumination but in the absence of the hole 

scavenger, exhibits OER onset when the potential applied to the semiconductor (Vsem) = ~ 0.3 V 

vs. 𝜀𝜀O2/OH− (Figure D.1 – 𝑠𝑠𝑠𝑠𝑠𝑠𝐻𝐻2𝑂𝑂 curve). Thus, for water oxidation, the photoanode exhibits a 

photovoltage of only ~ 100 mV (i.e. this is the difference in OER onset potentials measured at WE1 

and WE2). This low photovoltage is due to the thick Ni layer used in this particular experiment.  
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Once H2O2 is introduced, the onset of H2O2 oxidation on the illuminated photoanode occurs 

at ~ 0 V vs. 𝜀𝜀O2/OH− (Figure D.1 – 𝑠𝑠𝑠𝑠𝑠𝑠H2O2  curve). This result is surprising, because the 

illuminated photoanode performs H2O2 oxidation at potentials less cathodic than the Ni-based 

catalyst in isolation – it is harder to perform H2O2 oxidation on the catalyst-coated photoanode than 

the catalyst alone. The photovoltage of the n-Si/Ni system for H2O2 oxidation is apparently a 

negative number (~ -300 mV), which is not physically meaningful. Because the hole scavenger is 

serving to enhance charge injection into solution, it is surprising that the photovoltage would 

change when moving from H2O to H2O2 oxidation.  

 
Figure D.1.  Comparison of electrochemical behavior for a n-Si | Ni photoanode with and 

without a 0.5 M H2O2 hole scavenger.  All experiments were performed on the same electrode 

without altering its position relative to the 1 sun solar simulator source. The curves labeled with 

the H2O subscript indicate experiments without hole scavenger, whereas the H2O2 subscript 

indicates 0.5 M H2O2 hole scavenger was added to the electrolyte. Curves labeled “sem” indicate 

that cyclic voltammetry data was collected with the potentiostat controlling potential at the 

semiconductor back-contact. Curves labeled “cat” indicate that the data was collected by 

controlling the potential to the secondary Au contact. The two dashed curves represent the sem 

behavior in the dark and show that leakage current is minimal both cases. The difference in OER 

onset for the 𝑠𝑠𝑠𝑠𝑠𝑠H2O and 𝑐𝑐𝑐𝑐𝑐𝑐H2O is the photoanode’s photovoltage. Unexpectedly, the 

photovoltage is not retained once H2O2 is introduced, instead 𝑐𝑐𝑐𝑐𝑐𝑐H2O2  shows a more cathodic 

current onset for H2O2 oxidation than 𝑠𝑠𝑠𝑠𝑠𝑠H2O2.    

 

 To deduce why the apparent photovoltage changes, we monitor the catalyst 

electrochemical potential through WE2 while controlling the semiconductor back-contact potential 
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through WE1 (Figure D.2). From the redox wave in Figure D.1 for 𝑐𝑐𝑐𝑐𝑐𝑐H2O, catalyst oxidation 

occurs at ~ 0.3 V vs. 𝜀𝜀O2/OH− (i.e. where the anodic wave is observed). For H2O oxidation through 

the semiconductor back-contact, the catalyst surface potential passes this oxidation threshold when 

Vsem = ~ 0.2 V vs. 𝜀𝜀O2/OH−. This value is consistent with the appearance of the oxidative redox peak 

and with the 100 mV photovoltage previously discussed. Thus at Vsem = ~ 0.2 V vs. 𝜀𝜀O2/OH− the 

catalyst converts to its oxidized NiOOH form. However, for H2O2 oxidation through the 

semiconductor back-contact, the measured catalyst surface potential never passes this oxidation 

threshold. When the light-limiting photocurrent is reached for H2O2 oxidation, the surface potential 

saturates at ~ 0.2 V vs. 𝜀𝜀O2/OH−, 100 mV short of the oxidation threshold. This finding indicates 

that the catalyst remains in its reduced, electrically insulating Ni(OH)2 form during H2O2 oxidation. 

Because the hole scavenger readily accepts surface holes, it prevents the catalyst from charging to 

the electrochemical potential required for catalyst oxidation. 

 

 
Figure D.2.  Comparison of electrochemical behavior for a n-Si | Ni photoanode with and 

without a 0.5 M H2O2 hole scavenger while sensing the catalyst’s electrochemical potential.  

The data was collected on the same electrode as in Figure D.1. The curves labeled with the H2O 

subscript indicate experiments without hole scavenger, whereas the H2O2 subscript indicates the 

presence of hole scavenger. Curves labeled “sem” indicate that cyclic voltammetry data was 

collected with the potentiostat controlling the semiconductor back-contact potential (WE1). Curves 

labeled Vsurface, represent the potential being sensed by the WE2 gold contact during the experiment. 

“Catalyst oxidation threshold” is the Vcat value from Figure D.1 where the 𝑐𝑐𝑐𝑐𝑐𝑐H2O oxidative redox 

peak occurs. The results show that the catalyst is oxidized when the photoanode is used for water 

oxidation but remains reduced during H2O2 oxidation.    
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 The finding that the catalyst remains reduced during H2O2 oxidation is corroborated by 

three additional results.  First, in Figure D.1 both H2O oxidation curves exhibit distinct redox peaks 

associated with the redox chemical conversions of the Ni-based catalyst. For the H2O2 oxidation 

curves the redox peaks are absent, suggesting that the catalyst never changes oxidation state in the 

presence of the hole scavenger. Second, NiOOH is known to be less optically transmissive than 

Ni(OH)2.156, 157 This fact is reflected in the light-limited photocurrent when controlling the 

semiconductor back-contact potential. For H2O oxidation the light-limited photocurrent reaches 

~16 mA cm-2, whereas it reaches ~18 mA cm-2 for H2O2 oxidation (Figure D.2). The difference in 

the light-limited photocurrent indicates that more light is absorbed in the case of H2O2 oxidation, 

which is consistent with retention of the more optically transmissive Ni(OH)2 species. Finally, the 

𝑐𝑐𝑐𝑐𝑐𝑐H2O2  curve in Figure D.1 demonstrates that the catalyst only needs to reach ~ 0.2 V vs. 𝜀𝜀O2/OH− 

to match the light-limited photocurrent of 18 mA cm-2 for H2O2 oxidation and thus satisify current 

continuity across the semiconductor/catalyst interface. Because catalyst oxidation does not occur 

until ~ 0.3 V vs. 𝜀𝜀O2/OH−), the catalyst need not be oxidized during H2O2 oxidation.   

 The apparent photovoltage change for the catalyst-coated n-Si discussed above when 

moving from H2O to H2O2 oxidation is attributed to retention of the reduced, insulating catalyst 

during H2O2 oxidation. Since Ni(OH)2 is much more electrically resistive than NiOOH, we 

hypothesize that the retained Ni(OH)2 acts as a charge injection barrier. Photogenerated holes 

arriving at the Ni(OH)2 either experience an iR loss when passing to the solution interface or must 

tunnel through the Ni(OH)2 prior to H2O2 oxidation. To support this hypothesis, we repeated the 

DWE experiments while using a 5-nm-thick Ir metal catalyst deposited by thermal vacuum 

evaporation. The Ir OER catalyst is selected because it’s oxidized surface (IrOx) remains 

electrically conductive over a wide potential range. As expected, the ~250 mV photovoltage 

exhibited during H2O oxidation on the Ir-catalyzed system is largely retained during H2O2 oxidation 

(Figure D.3). The intrinsic H2O2 oxidation activity (𝑐𝑐𝑐𝑐𝑐𝑐H2O2) measured via the Au WE2 on the n-

Si|Ir|Au sample (Figure D.3) is comparable to that measured for the n-Si|Ni|Au same (Figure D.1). 

Thus, the photovoltage is retained not because of a change in H2O2 oxidation kinetics when 

introducing the Ir catalyst. The photovoltage is retained because the Ir-catalyzed 𝑠𝑠𝑠𝑠𝑠𝑠H2O2  curve 

has shifted cathodic of the 𝑐𝑐𝑐𝑐𝑐𝑐H2O2 curve. This result shows that without Ni(OH)2 present the 

apparent photovoltage is the same for both H2O and H2O2 oxidation. Because the H2O2 catalyst 

activities are similar, we conclude that the Ir-catalyst eliminated the charge injection barrier which 

existed for the Ni-catalyst. 
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Figure D.3.  Comparison of electrochemical behavior for a n-Si | Ir photoanode with and 

without a 0.5 M H2O2 hole scavenger.  All experiments were performed on the same electrode 

without altering its position relative to the 1 sun solar simulator source. The curves labeled with 

the H2O subscript indicate experiments without hole scavenger present, whereas the H2O2 subscript 

indicates hole scavenger was present. Curves labeled “sem” indicate that cyclic voltammetry data 

was collected by applying the potential to the semiconductor back-contact. Curves labeled “cat” 

indicate that the data was collected by applying the potential to the secondary Au contact. The two 

dashed curves represent the sem behavior in the dark and show that leakage current is minimal. The 

difference in OER onset for the 𝑠𝑠𝑠𝑠𝑠𝑠H2O and 𝑐𝑐𝑐𝑐𝑐𝑐H2O is the photoanode’s photovoltage. The results 

show that the photovoltage is retained once H2O2 is introduced. In this case, the H2O2 acts to 

enhance charge injection in to solution at more cathodic potentials without holding the catalyst in 

a reduced, insulating state.  

 

4. Conclusions 

The findings in this work indicate that redox-active catalysts may behave as a charge 

injection barrier during hole scavenger experiments. This behavior is expected to occur for catalysts 

where the reduced form is an electronic insulator – a characteristic shared by many common Fe-, 

Co-, and Ni- based oxy(hydroxide) catalysts.158-162 For systems where this behavior occurs, 

calculation of the charge injection efficiency will be inflated because the denominator (hole 

scavenged activity), assumed to represent quantitative charge injection, may not actually represent 

quantitative charge injection. Instead, the denominator is the photoanodes behavior in the presence 

of a charge injection barrier which would not exist under non-scavenger operating conditions. We 

anticipate that highly engineered systems, with multi-layer catalysts, bay also be affected by the 
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charge injection barrier described here.132, 145, 152 This is because the outer levels of the catalyst are 

at risk of being electronically segregated from the semiconductor’s surface during hole scavenger 

experiments. For these systems, calculation of charge injection efficiency may become a 

comparison of the highly engineered structure in H2O to a much less engineered structure in hole 

scavenger.   

An important generality consideration for the results presented is the lack of a 

semiconductor | solution interface on the n-Si model system. Because many common photoanode 

semiconductors (BiVO4, Fe2O3, CuWO3) are tolerant of solution contact, solution-permeable 

catalysts are often electrodeposited.163 For these systems, it may be that the reduced catalyst simply 

acts as a spectator while hole scavenger oxidation occurs at the semiconductor | solution interface. 

Although we do not conclusively answer this question, we did briefly examine Fe2O3 catalyzed by 

Co-Pi (results in Figure D.S2). The H2O2 oxidation results showed that bare Fe2O3 outperforms Co-

Pi catalyzed Fe2O3 at sufficiently cathodic potentials but performs worse at more anodic potentials. 

If the catalyst were only acting as spectator, we might expect both curves to be identical. A possible 

explanation for the behavior seen here is that the deposition of the catalyst passivated some surface 

states, leading to increased activity at sufficiently anodic potentials. However, the reduced catalyst 

may also act to block a portion of the surface catalytic area (relative to bare Fe2O3), resulting in 

lower activity at sufficiently cathodic potentials.  

Due to the inability to control for surface state passivation we cannot definitively say how 

ion permeable catalysts impact hole scavenger results. However, investigators should remain 

cognizant when interpreting hole scavenger results on catalyzed photoanodes. The results herein 

show that the presence of a hole scavenger can cause the catalyst to retain a state which differs 

from its state during comparable H2O oxidation experiments. The difference in catalyst state may 

impact the catalyst’s ability to accept photogenerated holes, result in a charge injection barrier and 

cause a decrease in the photoanode’s catalytic active area. For these systems, the charge injection 

efficiency calculated from the hole scavenger technique will be artificially inflated – with results 

suggesting that the photoanode is performing closer to perfect charge injection than it is.  
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 CHAPTER III: ANALYTICAL AND NUMERICAL APPROACHES FOR MODELING 

CHARGE TRANSPORT IN PHOTOELECTROCHEMICAL DEVICES 

 

In the previous chapter the dual-working-electrode technique was used to monitor a 

catalyst’s electrochemical state during photoanode operation. The work investigated two common 

photoelectrochemical experimental methods and identified how those methods are affected by 

redox active catalysts. The results suggest that analyzing photocurrent transients (to determine 

minority carrier lifetimes) and hole-scavenged photocurrents (to determine charge injection 

efficiency) is not straightforward when redox active catalysts are present. Since many of the best 

performing photoanodes feature redox active catalysts (e.g. oxides of Ni, Co, and Fe), it is often 

challenging to understand the role electrocatalysts play in enhancing the oxygen evolution reaction. 

This is unfortunate because the catalyst’s role is heavily contested in the photoanode literature base. 

Many publications suggest that it collects charge from the semiconductor and then provides a more 

kinetically facile oxygen evolution route. Others have suggested that its primary role is to passivate 

defects on the semiconductor surface which would otherwise enhance recombination. Still others 

have said that it serves to improve band bending within the semiconductor depletion region which 

improves charge separation. A better understanding of the electrocatalysts role is desirable and 

would lead to more targeted design principles for improving photoanodes.   

The electrocatalysts role in enhancing oxygen evolution has been previously analyzed by 

the Boettcher lab through numerically modeling current continuity. However, numerical 

approaches are not ideal because they require significant computational resources (based on 

iteratively solving coupled differential equations) and may be challenging for researchers without 

computer science training to implement. This chapter focuses on deriving analytical expressions to 

describe how electrocatalysts fundamentally enhance photoelectrochemical water oxidation. 

Particular attention is payed to how the electrocatalyst behaves with and without the presence of 

semiconductor surface states. Solving the expressions requires limited computational resources and 

should be significantly more accessible than the previous numerical approach. We anticipate 

submitting this yet-to-be published manuscript to Physical Review Letters.  

Section A, Theory and Simulation for the Effects of Surface States on Charge Transport in 

Photoelectrochemical Devices, contains co-authored material yet to be published as: Laskowski, F, 

A, L.; Nellist, M. R.; Dette, C.; Boettcher, S. W. Unified Theory and Simulation for Surface State 

Influence on Photoelectrodes, In Preparation. (style of Physical Review Letters) 
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Prof. Boettcher and I conceived of the project. I performed the simulation work and 

analyzed data with help from M. Nellist and C. Dette. I wrote the paper with help from Prof. 

Boettcher, initial mathematical direction from T.J. Mills, and editorial assistance from M. Nellist. 

 

Paper E 

 

 Theory and Simulation for the Effects of Surface States on Charge Transport in 

Photoelectrochemical Devices 

 

Forrest A. L. Laskowski, Michael R. Nellist, Christian Dette, Thomas J. Mills and Shannon W. 

Boettcher 

 

1 Introduction  

Understanding how electrocatalysts modify the oxygen evolution reaction (OER) on 

semiconducting photoelectrodes is broadly important in improving photoelectrochemical (PEC) 

based energy storage solutions. Recent studies have identified similar trends on several 

semiconductor materials (i.e. Fe2O3, TiO2, BiVO4, and WO3) when coated with oxide based 

electrocatalysts of Co, Ni, Fe, Ga, and Al.1-14 Addition of this thin oxide overlayer tends to 

cathodically shift the potential of photocurrent onset and/or increases the maximum photocurrent, 

leading to greater collection efficiencies. To achieve highly efficient devices, it is important to 

understand the origin of this behavior and the factors that can lead to its optimization. 

Numerous mechanisms have been proposed to explain the oxide’s role, each supported by 

data from a range of analysis methods. It is generally agreed that carrier recombination is the main 

loss pathway and that the overlayers function to suppress surface recombination, but there are 

several ways in which this might occur. Transient absorption spectroscopy (TAS) has demonstrated 

that water oxidation requires the existence of long-lived photogenerated holes in bare Fe2O3, TiO2, 

and WO3.15-19 At sufficiently positive biases carrier recombination is reduced because the space 

charge region is depleted of electrons; consequently, increased photo-generated hole lifetimes 

promote water oxidation. Experiments involving Co and Ga oxide overlayers, where OER onset is 

cathodically shifted, suggest that these oxides enhance hole lifetimes.14, 16, 20 Such a phenomenon 

could be explained by the semiconductor-oxide interface forming an n-p heterojunction, by the 

oxide depleting electron density from the semiconductor space charge region, or by the oxide 

increasing the band bending in the semiconductor; these explanations are not all entirely distinct 

from one another, but they all imply that the oxide plays a non-catalytic role in facilitating the OER. 
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It only enhances the oxidation rate indirectly, by modifying the nature of the semiconductor-

electrolyte interface. 

Other evidence, particularly on Co oxide layers, points towards a catalytic role.5, 10-11, 21 It 

has been suggested that Co oxide layers function to increase the kinetics of the OER, by removing 

the bottleneck of charge transfer to solution. In this view, the overlayer does not modify the 

energetics of the interface, but functions like a traditional catalyst by speeding up the interfacial 

charge transfer. By moving positive charge out of the semiconductor this mechanism also has the 

ultimate effect of decreasing surface recombination. Another view suggests that oxide overlayers 

chemically passivate semiconductor surface states, thus suppressing surface recombination directly 

rather than through modifying either the nature of the space charge region or the surface hole 

concentration.8-9 

To better understand these mechanisms, we build upon our previous numerical models. 

Here, we show how semiconductor charge transport can be analytically approximated - removing 

the need for numerical differential equation solvers. We derive expressions accounting for the 

presence of surface states which are used to calculate the surface state filling and the potential drop 

caused by surface charge. We obtain a simple analytical approximation that is easily solved to yield 

the relevant system energetics and the steady-state 𝐽𝐽(𝑉𝑉) response. The proposed mechanisms are 

evaluated in the context of this model to explain the enhancement conferred by the oxide overlayers.  

 

2. Model 

2.1 Terminology: catalyst sites and surface states 

From a modeling perspective, surface states and catalyst sites are very similar; both can 

react with electrons and holes in the semiconductor, functioning as recombination centers, and both 

can transfer charge to the solution, acting as OER sites.2-3 However, in this work we investigate 

only catalytic overlayers, so we will use the term “catalyst” to refer to these overlayers, bearing in 

mind that surface states can also act catalytically. Hence, the main distinguishing feature of surface 

states and catalyst sites is that surface states are an intrinsic part of the semiconductor material, 

whereas catalysts form a separate phase attached to the surface, and are often thin, porous 

overlayers.5, 13 

We will assume in this work that the catalysts are ion-permeable. Because of this ion 

permeability, ions from the solution can intercalate into the catalyst and screen the electric field 

there.22-23 Thus, the Helmholtz layer and its potential drop occur at the semiconductor surface rather 

than the catalyst-solution interface. Additionally, we assume that catalyst sites can be screened by 
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solution ions, but surface states cannot. Surface states often occur in high enough concentration 

that charging them can affect the Helmholtz potential, thus also altering the potential drop across 

the semiconductor depletion region and in turn the surface electron and hole concentrations.24-26 

Further, we exclude transfer directly from semiconductor to solution as this is unlikely to 

be a significant current source.5 For simplicity we will assume that the surface states are all at a 

single energy (𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 ), as is done in the traditional Shockley-Read-Hall surface recombination 

model.27-28 We will also treat a one-electron redox reaction instead of the actual four-electron OER 

to avoid the complications of multi-step reactions. We neglect changes in the flat-band potential by 

the addition of an overlayer. This is consistent with the use of very thin overlayers where Mott-

Schottky analysis has shown that the flat-band potential is not appreciably modified by the 

addition.29 

 

2.2 Notation, variables, and parameters 

Notations and formalisms for our model are exhaustively described in supporting 

information E.S1. Electron and hole densities in the semiconductor are labeled n and p, 

respectively, with the subscript s indicating the value at the semiconductor surface. We generally 

use overbars (e.g. 𝑛𝑛�) to indicate equilibrium quantities, but in the case of current densities overbars 

indicate exchange currents (i.e. the unidirectional equilibrium currents rather than the total 

equilibrium current, which is zero). Current densities are labeled Jy,z, where current flows from 

subsystem y to z.  The subscripts sem, vb, cb, ss, cat, and sol are used as respective abbreviations 

for the semiconductor, valence band, conduction band, surface states, catalyst, and the solution. 

Energies and potentials are treated as unitless quantities, reduced by the thermal energy (𝑘𝑘𝑘𝑘) and 

the thermal voltage (𝑘𝑘𝑘𝑘/𝑞𝑞), respectively. The semiconductor interface is at 𝑥𝑥 = 0 and the edge of 

the depletion region is at 𝑥𝑥 = −𝑤𝑤, where 𝑤𝑤 is the depletion region width. 

 

2.3 Treatment of semiconductor hole transport 

It is commonly assumed2, 30 that the surface electrons are at quasi-equilibrium with the bulk 

(En ≈ 0), and that the hole current (𝐽𝐽𝑝𝑝) is equal to the Gärtner current (𝐽𝐽𝐺𝐺).31 The Gärtner current is 

an analytical expression which neglects the behavior of the holes in the depletion region, assuming 

perfect hole conductivity with no limitation. It has been recognized that the Gärtner model is 

insufficient when the reaction kinetics are slow due to buildup of minority carriers in the depletion 

region.32-34  
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Our previous work numerically solved the semiconductor transport and continuity 

equations to obtain the surface hole and electron densities 𝑝𝑝𝑠𝑠 and 𝑛𝑛𝑠𝑠.23 We found that setting 𝐽𝐽𝑝𝑝 =

𝐽𝐽𝐺𝐺  is not always a good approximation, particularly for ion-permeable catalysts. This is because, as 

the catalyst becomes oxidized, there are fewer available neutral sites to oxidize. To sustain the 

current more holes are required to further oxidize the catalyst, and so a larger 𝑝𝑝𝑠𝑠 is needed. The 

semiconductor may not be able to provide enough holes for the current to reach 𝐽𝐽𝐺𝐺 , in which case 

the forward current is limited by transport of holes to the interface. This effect is more pronounced 

in systems with ion-permeable catalysts, because the catalyst can become highly oxidized at much 

lower biases than in systems with impermeable catalysts.23  

To account for the hole transport limitation, we require a generalization of the Gärtner 

model that treats the depletion region. There are two main effects of the buildup of minority carriers 

in the depletion region: a large diffusional back-current due to the high concentration gradient, and 

increased recombination in the depletion region. The latter effect has been treated before33, 35-36 but 

the analysis is rather involved; here we use a simple approximation of the hole concentration profile 

to treat depletion region recombination. We discuss the approximation error in supporting 

information E.S6. 

 

2.3.1 The Generalized Gärtner Model 

This derivation closely follows the original one by Gärtner.31 We make two 

generalizations: (1) the hole concentration at the edge of the depletion region can be non-zero 

(thereby relaxing Gärtner’s fast surface kinetics assumption), and (2) recombination occurs in the 

depletion region. The full derivation is shown in supporting information E.S5 to illustrate how the 

generalizations fit naturally into the original treatment.  

The hole distribution in the bulk is explicitly computed in supporting information E.S5. In 

the depletion region, the transport equations can be solved (also see E.S5) to write the hole 

concentration profile 𝑝𝑝(𝑥𝑥) in terms of the hole concentration at the edge of the depletion region 𝑝𝑝𝑤𝑤, 

 

 𝑝𝑝(𝑥𝑥) ≈  𝑝𝑝𝑤𝑤𝑒𝑒−𝜙𝜙 (1) 

 

where 𝜙𝜙 is the electrostatic potential. The error in this approximation is on the order 𝜆𝜆/𝛿𝛿; thus, this 

holds when the Debye length is much smaller than the diffusion length. In supporting information 

E.S6 we show that, even when this assumption is relaxed, the current takes the same form as the 

original Gärtner current in that it is linear in 𝐽𝐽𝐺𝐺  and 𝑝𝑝𝑤𝑤.  
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The hole continuity equation is 

 

 1
𝑞𝑞
𝑑𝑑𝐽𝐽𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝐺𝐺(𝑥𝑥) − 𝑅𝑅(𝑥𝑥) (2) 

 

where 𝑞𝑞 is the elementary charge, 𝐽𝐽𝑝𝑝 is the hole current, 𝐺𝐺(𝑥𝑥) is generation, and 𝑅𝑅(𝑥𝑥) is 

recombination. Integrating across the depletion region gives, 

 

 𝐽𝐽𝑝𝑝 = 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐽𝐽𝛷𝛷,𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐽𝐽𝑅𝑅,𝑑𝑑𝑑𝑑𝑑𝑑 (3) 

 

Where 𝐽𝐽𝑝𝑝 = 𝐽𝐽(0) is the total hole current passing through the surface, 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐽𝐽(−𝑤𝑤) is the hole 

cur-rent from the bulk to the depletion region, 𝐽𝐽𝛷𝛷,𝑑𝑑𝑑𝑑𝑑𝑑 is the current generated by illumination in the 

depletion region, and 𝐽𝐽𝑅𝑅,𝑑𝑑𝑑𝑑𝑑𝑑is the depletion recombination current. Assuming quasiequilibrum for 

holes (𝑝𝑝𝑠𝑠 = 𝑝𝑝𝑤𝑤𝑒𝑒𝑉𝑉𝑠𝑠𝑠𝑠) and solving the differential equations with the boundary conditions 𝑝𝑝(−∞) =

𝑝̅𝑝 and 𝑝𝑝(−𝑤𝑤) = 𝑝𝑝𝑤𝑤 yields the expression 

 

 𝐽𝐽𝑝𝑝 = 𝐽𝐽𝐺𝐺 − 𝐽𝐽𝑅̅𝑅𝑒𝑒𝑉𝑉
�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠

𝑝𝑝𝑠𝑠
𝑝̅𝑝𝑠𝑠

 (4) 

 

where 𝑉𝑉𝑠𝑠𝑠𝑠is the total electrostatic drop across the semiconductor depletion region. 𝐽𝐽𝑅̅𝑅 is the depletion 

back-current and recombination current at equilibrium:  

 

 
𝐽𝐽𝑅̅𝑅 = 𝑞𝑞 �

𝐷𝐷𝑝𝑝
𝛿𝛿

+ 𝑘𝑘𝑅𝑅𝑤𝑤𝑛𝑛�� 𝑝̅𝑝𝑠𝑠𝑒𝑒−𝑉𝑉
�𝑠𝑠𝑠𝑠 (5) 

 

where 𝐷𝐷𝑝𝑝 is the hole diffusion coefficient, 𝛿𝛿 is the hole diffusion length, and 𝑘𝑘𝑅𝑅 is the second-order 

recombination constant. (Note that due to the appearance of 𝑤𝑤, this quantity is not exactly constant, 

but can be treated as such for practical purposes.) 

The result is the original Gärtner equation modified by two terms that arise from the relaxed 

assumptions. The first term, 𝑞𝑞𝐷𝐷𝑝𝑝𝑝̅𝑝𝑠𝑠𝑒𝑒−𝑉𝑉
�𝑠𝑠𝑠𝑠/𝛿𝛿, describes the diffusive current of holes back into the 

bulk and the second term, 𝑞𝑞𝑘𝑘𝑅𝑅𝑤𝑤𝑛𝑛�𝑝̅𝑝𝑠𝑠𝑒𝑒−𝑉𝑉
�𝑠𝑠𝑠𝑠 , describes direct depletion recombination. Since the end 

outcome of both terms is a recombination event, we refer to them collectively as “depletion 
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recombination”. This generalization of the Gärtner current enables analytical description of the 

semiconductor transport, generation, and recombination processes.  

 

2.4 Interfacial electron transfer: surface states, catalyst, and solution 

For simplicity, we use a single-energy surface state model (as in the Shockley-Read-Hall 

model) and broad density of states (DOS) catalyst and solution models. Interfacial electron transfers 

are all modeled with second-order reaction kinetics. 

 

2.4.1 Electron transfer model 

For transfer between subsystems 1 and 2, we write 𝑑𝑑𝑖𝑖(𝜖𝜖) for an electron donor species and 

𝑎𝑎𝑖𝑖(𝜖𝜖) for an electron acceptor species in subsystem i and electron energy 𝜖𝜖. At each value of 𝜖𝜖, the 

basic reaction is 

 

 𝑎𝑎1(𝜖𝜖) + 𝑑𝑑2(𝜖𝜖) ↔ 𝑎𝑎2(𝜖𝜖) + 𝑑𝑑1(𝜖𝜖) (6) 

 

with the reaction proceeding to the right representing positive current from subsystem 1 to 2. The 

current, proportional to the total reaction rate, is computed by integrating the rate densities over the 

electron energy 𝜖𝜖. 

The donor and acceptor distributions can be written as the product of an electronic DOS 

function 𝑔𝑔𝑖𝑖(𝜖𝜖) and an occupancy probability (Fermi-Dirac) function 𝑓𝑓𝑖𝑖(𝜖𝜖), where 𝑓𝑓𝑖𝑖(𝜖𝜖) = 1/(1 +

𝑒𝑒𝜖𝜖−𝐸𝐸𝑖𝑖); 

 

 𝑑𝑑𝑖𝑖(𝜖𝜖) = 𝑔𝑔𝑖𝑖(𝜖𝜖)𝑓𝑓𝑖𝑖(𝜖𝜖)     𝑎𝑎𝑖𝑖(𝜖𝜖) = 𝑔𝑔𝑖𝑖(𝜖𝜖)[1 − 𝑓𝑓𝑖𝑖(𝜖𝜖)] (7) 

 

The current integral is then 

 

 𝐽𝐽1,2 = 𝑞𝑞�𝑘𝑘1,2(𝜖𝜖)𝑔𝑔1(𝜖𝜖)𝑔𝑔2(𝜖𝜖)[𝑓𝑓1(𝜖𝜖) − 𝑓𝑓2(𝜖𝜖)]𝑑𝑑𝑑𝑑 (8) 

 

The DOS function used for the semiconductor and catalyst are constants; for the surface 

states, an impulse function [𝑔𝑔𝑠𝑠𝑠𝑠(𝜖𝜖) = 𝑁𝑁𝑠𝑠𝑠𝑠𝛿𝛿(𝜖𝜖 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 )]; and for the solution, the large-λ limit of the 

Marcus-Gerischer DOS37  
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 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠(𝜖𝜖) = 𝑐𝑐𝑒𝑒−(𝜖𝜖−𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠)/2   𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠(𝜖𝜖) = 𝑐𝑐𝑒𝑒−(𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠−𝜖𝜖)/2 (9) 

 

We define s and s+ for the neutral and oxidized surface state concentrations, respectively. 

We define 𝑐𝑐𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑠𝑠𝑠𝑠+  for the neutral and oxidized occupation of catalyst sites at energy 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 .  

 

2.4.2 Interfacial currents 

The reaction of semiconductor holes and electrons with surface states is described by, 

 

 
𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 �

𝑝𝑝𝑠𝑠𝑠𝑠
𝑝̅𝑝𝑠𝑠𝑠̅𝑠

−
𝑠𝑠+

𝑠̅𝑠+
� (10) 

 

 
𝐽𝐽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 �

𝑠𝑠
𝑠̅𝑠
−
𝑛𝑛𝑠𝑠𝑠𝑠+

𝑛𝑛�𝑠𝑠𝑠̅𝑠+
� (11) 

 

Reaction of surface states with catalyst and solution must consider that the surface states 

are at an electrostatic potential +𝑉𝑉𝐻𝐻 with respect to the catalyst and solution (see supporting 

information E.S2); this shift puts the surface state energy at 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 = 𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 + 𝑉𝑉𝐻𝐻. The current then 

depends on the surface state concentration and the catalyst occupancy at energy 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 : 

 

 
𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 �

𝑠𝑠+𝑐𝑐𝑠𝑠𝑠𝑠
𝑠̅𝑠+𝑐𝑐𝑠̅𝑠𝑠𝑠

−
𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠+

𝑠̅𝑠𝑐𝑐𝑠̅𝑠𝑠𝑠+
� (12) 

 

Current flow from surface states to the solution is 

 

 
𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑠𝑠+

𝑠̅𝑠+
𝑒𝑒∆𝑉𝑉𝐻𝐻 2⁄ −

𝑠𝑠
𝑠̅𝑠
𝑒𝑒−∆𝑉𝑉𝐻𝐻 2⁄ � (13) 

 

where ΔV𝐻𝐻 represents deviation from equilibrium for the Helmholtz potential. 

The expressions we used previously23 to model the current between semiconductor and 

ion-permeable catalyst are modified to account for the electrostatic potential drop between the 

semiconductor surface and the catalyst: 

 

 𝐽𝐽𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑝𝑝𝑠𝑠
𝑝̅𝑝𝑠𝑠
− 𝑒𝑒−∆𝑉𝑉𝐻𝐻−𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐� (14) 
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 𝐽𝐽𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 �𝑒𝑒∆𝑉𝑉𝐻𝐻+𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 −
𝑛𝑛𝑠𝑠
𝑛𝑛�𝑠𝑠
� (15) 

 

The catalyst-solution current is modeled by 

 

 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 �𝑒𝑒
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐
2 − 𝑒𝑒−

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐
2 � (16) 

 

which does not depend on 𝑉𝑉𝐻𝐻 because the catalyst and solution always remain at the same 

electrostatic potential. These interfacial current expressions are all derived by evaluating the current 

integral Eq. (9); see supporting information E.S4 for explicit derivations and exchange current 

definitions. 

 

2.5 Solution to the model equations 

There are four variables in the model: 𝑝𝑝𝑠𝑠, 𝐸𝐸𝑠𝑠𝑠𝑠, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐, and 𝑉𝑉𝐻𝐻. To obtain a solution, four 

equations are required - the electroneutrality condition  

 

 𝑞𝑞𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑠𝑠𝑠𝑠 = 𝑞𝑞𝐻𝐻 (17) 

 

and the subsystem current continuity conditions 

 

 𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  (18) 

 

 𝐽𝐽𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐽𝐽𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 (19) 

 

 𝐽𝐽𝑝𝑝 = 𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 (20) 

 

where 𝐽𝐽𝑝𝑝 is defined in Eq. (4). Solving this system presents numerical challenges in that variables 

may vary by many orders of magnitude. The method we adopted is to numerically approximate the 

equilibrium Helmholtz potential and open-circuit voltage, begin the numerical solution at this 

applied bias with all potentials set to zero, then scan the applied bias in small increments away from 

there, using the previous solution as an initial guess for the next step. More details and a 
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Mathematica implementation of this algorithm are included in the supporting information sections 

E.S8 and E.S14. 

 

3 Results and Discussion 

3.1 Non-ideal photodiodes 

The addition of depletion recombination decreases the maximum current obtainable from 

the semiconductor under otherwise ideal conditions (i.e. fast OER kinetics at the surface states 

and/or catalyst). Before discussing the roles of surface states and catalyst, we analyze the deviation 

of the semiconductor response from its ideal behavior. 

The ideal photodiode equation is a simple model that describes the 𝐽𝐽(𝑉𝑉) behavior obtained 

from an ideal system (fast hole transfer from the semiconductor and fast OER kinetics), 

 

 𝐽𝐽𝑖𝑖𝑖𝑖 = 𝐽𝐽𝐺𝐺 − 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒−𝑉𝑉 (21) 

 

which results from assuming a constant forward hole current 𝐽𝐽𝐺𝐺  (ignoring depletion recombination), 

quasiequilibrium of electrons in the semiconductor, and quasiequilibrium of the surface states and 

catalyst with the solution, where 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 is the effective exchange current. It 

provides a simple means of estimating 𝑉𝑉𝑜𝑜𝑜𝑜, 

 

 
𝑉𝑉𝑜𝑜𝑜𝑜

(0) ≈ − ln�
𝐽𝐽𝐺𝐺

𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠
� (22) 

 

However, in the presence of depletion layer recombination, the hole current must be 

modified according to the generalized Gärtner model, Eq. (4). This gives the “non-ideal” 

photodiode equation, 

 

 𝐽𝐽𝑛𝑛−𝑖𝑖𝑖𝑖 =
𝐽𝐽𝐺𝐺

1 + (𝐽𝐽𝑅̅𝑅/𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠)𝑒𝑒−𝑉𝑉
− 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒−𝑉𝑉 (23) 

 

which is shown in Figure E.1 for various values of 𝐽𝐽𝑅̅𝑅/𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠. This is the highest current obtainable 

from the semiconductor in the presence of depletion recombination. Including this effect leads to a 

shift of 𝑉𝑉𝑜𝑜𝑜𝑜 ≈ 𝑉𝑉𝑜𝑜𝑜𝑜
(0) + 𝑉𝑉𝑜𝑜𝑜𝑜

(1), where 
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𝑉𝑉𝑜𝑜𝑜𝑜

(1) = − ln ���1
4

+ 𝐽𝐽𝐺𝐺𝐽𝐽𝑅̅𝑅
1+𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠

− 1
2
� ∙ �𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠

𝐽𝐽𝐺𝐺𝐽𝐽𝑅̅𝑅
��  (24) 

 

 
Figure E.1. Response for a “non-ideal” photodiode. The limiting current obtainable from a fast 

catalyst, for different values of 𝐽𝐽𝑅̅𝑅/𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠 (marked). 

 

Note that the decrease in current is not due to changes in band bending; it is due only to 

increased recombination in the depletion region. 

 

3.2 Basic transfer models 

We begin by investigating the transfer mechanisms of two simplified systems: sem|cat|sol 

(no surface states) and sem|ss|sol (no catalyst). We show that these correspond to the adaptive and 

metallic models we previously defined in our simulation work.23  

 

3.2.1 Adaptive catalysts — no surface states 

First, we examine the model without surface states. The catalyst potential shifts to 

accommodate slower catalysts (smaller 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠), until depletion recombination sets in and decreases 

the hole current, as can be seen in Figure E.2. With high values of 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 remains close to 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠. As 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 decreases, the catalyst potential shifts to increase the reaction rate and compensate 

for the slower kinetics. However, at sufficiently low 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 values, the attainable current is limited 

by the rate of hole transfer out of the semiconductor (i.e. where 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 approaches 𝐸𝐸𝑝𝑝,𝑠𝑠). When the 

surface hole density becomes sufficiently large, depletion recombination leads to a much slower 
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𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 increase for any positive 𝛥𝛥𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎; this in turn limits 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 and therefore limits the total current at 

a given 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎.  

 

 
Figure E.2. Adaptive catalyst model. (top) 𝐽𝐽(𝑉𝑉) curves for varying values of 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠. (bottom) 
𝐸𝐸𝑝𝑝,𝑠𝑠 and 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 corresponding to the curves above. 

 

The key potentials can be quantified. When 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 is high enough to obtain 𝐽𝐽 = 𝐽𝐽𝐺𝐺, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 

levels off to a constant value, 

 

 
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐[𝐽𝐽𝐺𝐺] ≈ 2 ln�

𝐽𝐽𝐺𝐺
𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠

� (24) 

 

However, the bias at which this potential is reached is limited by depletion recombination. When 

depletion recombination occurs, the maximum 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 at bias 𝑉𝑉 is 
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 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐[𝑚𝑚𝑚𝑚𝑚𝑚] ≈ 𝑉𝑉 + ln �
𝐽𝐽𝐺𝐺
𝐽𝐽𝑅̅𝑅
� (25) 

 

When depletion recombination occurs, the current will not reach 𝐽𝐽𝐺𝐺  until the bias reaches 

 

 
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎[𝐽𝐽𝐺𝐺] = ln�

𝐽𝐽𝐺𝐺3

𝐽𝐽𝑅̅𝑅𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠
 2 � (26) 

 

At high values of 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 , the surface hole concentration is determined by whatever is 

necessary to pass current 𝐽𝐽𝐺𝐺  from the valence band to the catalyst, 

 

 
𝐸𝐸𝑝𝑝[𝑚𝑚𝑚𝑚𝑚𝑚] = ln�

𝐽𝐽𝐺𝐺
𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐

� (27) 

 

However, when the catalyst is slow, a greater hole concentration is necessary to reach 𝐽𝐽𝐺𝐺 . In this 

case 𝐸𝐸𝑝𝑝,𝑠𝑠 tends to 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐[𝐽𝐽𝐺𝐺]; in fact, from interpolation between the minimum value and 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 we can 

write 

 

 
𝐸𝐸𝑝𝑝,𝑠𝑠 ≈ ln �

𝐽𝐽𝐺𝐺
𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐

+ �
𝐽𝐽𝐺𝐺

𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠
�
2

� (28) 

 

A crucial aspect of adaptive catalysts, that allows them to respond so effectively to a low 

𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠, is that 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 can swing very quickly from negative to positive values near 𝑉𝑉𝑜𝑜𝑜𝑜. Indeed, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 

(𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 > 𝑉𝑉𝑜𝑜𝑜𝑜), sans depletion recombination is 

 

 
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐[𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎] ≈ 2ln�

𝐽𝐽𝐺𝐺 − 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒−𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎

𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠
� (29) 

 

This function swings very rapidly from negative values to 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐[𝐽𝐽𝐺𝐺] as 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 passes through 

𝑉𝑉𝑜𝑜𝑜𝑜, as reflected in Figure E.2. The results are analogous to the simulation work in our previous 

publication23, but here we note that the depletion recombination is analytically treated. This allows 

us to explicitly assign the performance limitation, due to depletion recombination, to the region of 

decreased slope in Figure. E.2 (bottom).  



79 
 

 

3.2.2 Unscreened metallic surface states – no catalyst 

In many systems with surface states, particularly those with lower redox potentials (𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 <

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠), the states will always be partially filled. When this excess charge cannot be screened by ions 

(as with surface species embedded in the semiconductor rather than surface-attached species), they 

will produce a substantial Helmholtz potential. Consequently, band bending in the semiconductor 

is reduced, leading to more electron and less hole current.  

The presence of the surface states causes the system to act in many ways analogously to 

dense metallic Schottky junctions. For these, a large density of states resides at an electrochemical 

potential which is essentially controlled by the electrostatic potential 𝑉𝑉𝐻𝐻. This is the same physical 

situation as found for impermeable catalysts, which also contain a large quantity of unscreened 

charge states and hence can only be affected by a change in the electrostatic potential drop between 

the catalyst and the solution. 

The equilibrium Helmholtz potential 𝑉𝑉�𝐻𝐻 is always greater than 𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 , the amount depending 

on 𝑁𝑁𝑠𝑠𝑠𝑠. This potential is essentially lost to the system, in that the equilibrium barrier height is 

reduced by 𝑉𝑉�𝐻𝐻. This leads to a shift in 𝑉𝑉𝑜𝑜𝑜𝑜 and the 𝐽𝐽(𝑉𝑉) response, as seen in Figure E.3 (top). Hence, 

these systems behave in the same way as those with a dense metallic catalyst whose Fermi level 

differs from the solution potential by the amount 𝑉𝑉�𝐻𝐻. 
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Figure E.3. Metallic surface state behavior. (top) 𝐽𝐽(𝑉𝑉) curves for varying values of 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 . 
(middle)  𝐸𝐸𝑝𝑝,𝑠𝑠 and 𝐸𝐸𝑠𝑠𝑠𝑠 corresponding to the curves above. (bottom)  𝑉𝑉𝐻𝐻 the corresponding to the 
same. 
 

The decreased band bending in systems with metallic behavior leads to an earlier onset of 

electron current as 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  decreases, because of the greater electrostatic potential required to drive 

the reaction. Before the current reaches 𝐽𝐽𝐺𝐺 , we have 
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𝑉𝑉𝐻𝐻 ≈ 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 + ln�

𝐽𝐽𝐺𝐺
𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠

� = 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑉𝑉𝑜𝑜𝑜𝑜 (30) 

 

In this regime, 

 

 𝐸𝐸𝑠𝑠𝑠𝑠 ≈ 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 − 𝑉𝑉𝐻𝐻 + ln � 𝑁𝑁𝑠𝑠𝑠𝑠
𝐶𝐶𝐻𝐻𝑉𝑉𝐻𝐻

− 1� ≈ 𝑉𝑉 + 𝑉𝑉𝑜𝑜𝑜𝑜 − 𝑉𝑉�𝐻𝐻 + ln[𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 (𝑉𝑉 + 𝑉𝑉𝑜𝑜𝑜𝑜)]  (31) 

 

This small deviation from 𝑉𝑉 + 𝑉𝑉𝑜𝑜𝑜𝑜 − 𝑉𝑉�𝐻𝐻 is visible in Figure E.3 (middle), and represents 

the minor deviation from our previous impermeable catalyst model. It is a result of the interaction 

between charge neutrality and catalyst kinetics. 

In other respects, it behaves like the metallic model, except that the transfer coefficient in 

this case is 1 instead of 1/2 due to the localized DOS. The potential at 𝐽𝐽 = 𝐽𝐽𝐺𝐺 is 

 

 
𝐸𝐸𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 + ln�

𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒−∆𝑉𝑉𝐻𝐻(1 + 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 )
𝐽𝐽𝐺𝐺

− 1� (32) 

 

and the bias required to reach this current is 

 

 
𝑉𝑉 = 𝑉𝑉�𝐻𝐻 + ln �

𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠

𝐽𝐽𝐺𝐺 2
�
𝑠𝑠+

𝑠̅𝑠+
�� (33) 

 

In supporting information E.S7 we derive a model for the surface state mediated 

recombination current (𝐽𝐽𝑟𝑟𝑠𝑠𝑠𝑠). Recombination increases as 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  decreases, because the smaller 𝑉𝑉𝑠𝑠𝑠𝑠 

promotes electron current (supporting information E.S11). Note that there is substantial 

recombination current even when the total current is near zero; in this regime, the electron current 

is balanced by the hole current, so all of it results in surface recombination. 

 

3.3 Full transfer models 

We now study the interaction between the surface states and catalyst overlayer by 

examining the system where 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 10−2 mA cm−2, from the unscreened surface state (metallic) 

model above (Figure E.3), and adding a catalyst overlayer to it. We discuss two behavior regimes 

to demonstrate the interaction effects: a regime in which the catalyst operates primarily in series 

with the surface states and one in which it operates in parallel.  
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3.3.1 Series behavior — surface-state mediated transfer 

First, we investigate a “series” catalyst, one where charge transfer between the surface 

states and catalyst is facile. Here we assume that 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 is large, so that the surface states and 

catalyst are at quasiequilibrium. This is reflected in the equality of Fermi levels, 𝐸𝐸𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐, as 

evident in Figure E.4 (middle). Because quasiequilibrium exists we term this surface state-mediated 

transfer.38 

The results are shown in Figure E.4. With a slow catalyst (sky blue curve), the result is 

essentially the same as that obtained in the metallic model (Figure E.3). As 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 is increased, the 

total current tends toward the limiting curve of high 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠  in the adaptive model.  

Since the catalyst is at quasiequilibrium with the surface states, and functions in series with 

them, the catalyst effectively increases the rate of transfer from surface states to solution, i.e. 

increases the effective value of 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠; 

 

 
𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠[𝑒𝑒𝑒𝑒𝑒𝑒] = 𝑒𝑒∆𝑉𝑉𝐻𝐻𝐽𝐽𝐺𝐺𝑠𝑠+ �1 +

𝑒𝑒𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜
� (34) 

 

In the metallic model, slow 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  values resulted in surface state mediated recombination. Here, 

the quicker catalysts “harvest” some of the holes and prevent recombination by transfer into the 

solution. For slower catalysts, the surface states act as a “hole sink” (Figure E.4 – bottom), serving 

as recombination centers for conduction band electrons and catalyst holes.  

The driving force for catalysis is dependent on the ratio of 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  to 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠  (supporting 

information E.S13). With the lowest value of 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠, the current is all produced by the surface 

states. In the next (green) curve, the catalyst is carrying nearly 1/4th of the total current, the rest 

provided by the surface states. As 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 increases further, however, practically all the current is 

carried by the catalyst, and the curves tend toward the ideal photodiode curve, with the barrier 

height reduced by 𝑉𝑉�𝐻𝐻 as discussed in Sec 3.2.2.  
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Figure E.4. Full model – series behavior where 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠  is fixed at 10-2 mA·cm-2.  (top) 
𝐽𝐽(𝑉𝑉) curves for varying values of 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠. (middle)  𝐸𝐸𝑝𝑝,𝑠𝑠, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐸𝐸𝑠𝑠𝑠𝑠 corresponding to the curves 
above. (bottom) Surface state mediated current between the cb and catalyst. Derived in supporting 
information E.S7. 
 

The maximum attainable 𝑉𝑉𝑜𝑜𝑜𝑜 for this system is still limited by the equilibrium Helmholtz 

potential 𝑉𝑉�𝐻𝐻. Because the catalyst is effectively only increasing the rate of transfer from surface 

states to solution, there is no mechanism by which it can alter 𝑉𝑉�𝐻𝐻. So while the catalyst can increase 
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the effective exchange current between surface states and solution, thereby increasing the total 

current, it cannot increase the attainable photovoltage or 𝑉𝑉𝑜𝑜𝑜𝑜. 

 

3.3.2 Parallel effect — compensating for VH 

We now discuss “parallel” effects of the catalyst, where ss-cat transfer is negligible, but 

semiconductor-catalyst transfer is comparable to the rate of semiconductor-surface state transfer. 

The total current 𝐽𝐽 is shown in Figure E.5 (top). With a small value of 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 , the system 

behaves like the parent curve in the metallic model. However, even with a low value of 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 , a 

small current is passed through the catalyst (supporting information E.S12). Comparing the 

𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 = 10−2 curve in the parallel model against the series model reveals higher performance in 

the parallel model (Figures E.4 and E.5 – top). This occurs because, without quasiequilibrium 

between the surface states and catalyst (Figure E.5 – middle), the surface states no longer act as a 

hole sink. Instead, in the slower two curves catalysis is predominantly driven through the surface 

states (supporting information E.S12). Whereas in the quicker curves, the catalyst harvests most 

holes and then never equilibrates with the surface state Fermi level. For this latter behavior, the 

system acts as in the adaptive catalyst model (Sec 3.2.1), where 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 remains below 𝐸𝐸𝑝𝑝,𝑠𝑠 for 

sufficiently quick kinetics (Figure E.5 – middle). 

When catalyst kinetics are slow, the accumulation of holes in the surface states leads to 

surface state mediated recombination (Figure E.5 – bottom). These curves approach the limit given 

by the parent curve in the metallic model (supporting information E.S11). The surface states result 

in a unique effect in that the catalyst Fermi level behaves as if it were dependent on the Helmholtz 

potential. As the surface states fill, the Helmholtz potential shifts both 𝐸𝐸𝑝𝑝,𝑠𝑠 and 𝐸𝐸𝑠𝑠𝑠𝑠 to higher 

potentials. Since the surface states cannot deload the catalyst, sufficiently slow catalysts will remain 

in quasiequilibrium with 𝐸𝐸𝑝𝑝,𝑠𝑠 and will also experience this potential shift.  
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Figure E.5. Full model – parallel behavior where 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠  is fixed at 10-2 mA·cm-2. (top) 

𝐽𝐽(𝑉𝑉) curves for varying values of 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠. (middle)  𝐸𝐸𝑝𝑝,𝑠𝑠, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 and 𝐸𝐸𝑠𝑠𝑠𝑠 corresponding to the curves 

above. (bottom) Surface state mediated recombination. Derived in supporting information E.S7. 

 

When catalyst kinetics are quick, the system circumvents the 𝑉𝑉�𝐻𝐻 limitation from the 

metallic model. Despite the existence of a non-negligible Helmholtz potential (supporting 

information E.S12), since the catalyst need not equilibrate with the surface states, it circumvents 

the 𝑉𝑉�𝐻𝐻 limitation by transitioning to a potential where current continuity is achieved. As in the 
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adaptive model, this transition is limited by depletion recombination when 𝐸𝐸𝑝𝑝,𝑠𝑠 is sufficiently large 

(supporting information E.S12) Thus, unlike the series regime, parallel catalyst behavior can 

improve the attainable photovoltage or 𝑉𝑉𝑜𝑜𝑜𝑜, but this affect is limited by depletion recombination. 

 

4 Conclusion 

We have developed a simple analytical model for predicting the impacts of surface states 

on photoanodes. This work is an improvement, over our previous modeling efforts, on three 

accounts: (1) The analytical solution is solved in a trivial amount of time (seconds) compared to 

the days oftentimes required for differential equation based numerical methods.23 (2) The modeling 

approach is sufficiently simplistic such that investigators can adapt it without already possessing 

extensive computer programing knowledge.  (3) The results corroborate our previously defined 

“adaptive” and “metallic” models while also accounting for the additional complexity of surface 

states.   

We have defined two regimes for surface state behavior. For surface states behaving in 

series with the catalyst, the surface states will tend to act as a “hole sink”. As the catalyst is oxidized, 

its quasiequilibrium condition with the surface states requires that it simultaneously charge the 

surface states. This surface state filling increases surface state mediated recombination, increases 

the Helmholtz potential, and limits both 𝐸𝐸𝑝𝑝,𝑠𝑠 and 𝐸𝐸𝑐𝑐𝑎𝑎𝑎𝑎. Presence of surface states result in an 

increased 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 requirement to reach 𝐽𝐽𝐺𝐺 , as compared to a photoanode with no surface states and an 

equivalent  𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠. 

For surface states behaving in parallel with the catalyst, 𝐽𝐽(V) performance compares more 

favorably to the equivalent system without surface states. Although a Helmholtz electrostatic 

increase is also realized in this system, the catalyst Fermi level is not directly limited by surface 

state recombination. Growth in the catalyst Fermi level is predominantly inhibited by depletion 

recombination, as in the adaptive model. For this reason, at 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 = 10−2 mA cm-2, the parallel 

system exhibits near ideal-diode 𝐽𝐽(V) behavior, whereas the series model exhibits a significant 

cathodic shift. In effect, surface states which act in parallel can be compensated for by a sufficiently 

fast adaptive catalyst. The fast catalyst enables the system to ignore the performance reducing 

effects that would otherwise be caused by the increased Helmholtz potential.  

In real devices, these two behavior regimes operate in tandem - the degree depending on 

the 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 exchange current.  For a photoanode with sufficient surface states, a catalytically poor 

catalyst coating may outperform a catalytically superior coating, simply by limiting 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐. In terms 

of the proposed mechanisms (introduction), a catalyst with poor OER kinetics tends to confer no 
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benefit to the system. However, we note that this would change if the equilibrium band bending 

was influenced by the addition of the overlayer and/or if addition chemically passivated surface 

states. Without these effects, the addition of the oxide overlayer improves the current only when 

catalyst kinetics are sufficiently large. This improves the current (in the series model) by increasing 

transfer from the surface states to the solution, and improves the 𝑉𝑉𝑜𝑜𝑜𝑜 (in the parallel model) by 

effectively bypassing the Helmholtz potential.   
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 CHAPTER IV: IDENTIFYING NANOSCALE PHENOMENA AT 

PHOTOELECTROCHEMICAL INTERFACES: THE PINCH-OFF EFFECT 

 

In the previous chapter analytical expressions were developed which ultimately describe 

charge transport through semiconductor/catalyst/solution interfaces. Charge transport can also be 

examined experimentally with the previously described dual-working-electrode (DWE) technique. 

A key strength of the DWE technique is that the semiconductor/catalyst interfacial behavior can be 

monitored during photoanode operation. That is, the bias across the interface and the current 

passing through it are directly observable. These observations are valuable because the 

semiconductor/catalyst interface is thought to play a significant role in charge separation. In this 

chapter, the DWE technique is applied to understand the semiconductor/catalyst interface of two 

model systems which exhibit unexpected oxygen evolution performance. In the first model system, 

photoanodes comprised of a 3-nm-thick Ni film evaporated onto n-Si exhibit significantly better 

photocurrent onsets (~300 mV) than photoanodes with a 20 nm Ni film. In the second model 

system, photoanodes formed from a 5-s electrodeposition of Ni nanoislands onto n-Si exhibit 

significantly better photocurrent onsets (~300 mV) than photoanodes with a 60-s electrodeposition. 

The difference in onset is surprising because, in each case, the photoanodes with more 

electrocatalyst on the surface exhibit significantly diminished photocurrent onset potentials.   

The results of these two studies indicate that the “pinch-off” effect explains the unexpected 

photocurrent onset behavior. The pinch-off effect is a phenomena in which semiconductor/catalyst 

junctions with poor charge selectivity (i.e. low barrier heights) become more selective through 

interaction with adjacent high barrier regions. In the first body of work, published in Energy and 

Environmental Science, the thinnest Ni films age during photoelectrochemical cycling to produce 

a heterogenous interface. Some regions of this interface retain the original n-Si/Ni character (low 

barrier) while other areas evolve to n-Si/SiOx/NiOOH interfaces (larger barrier). Charge primarily 

travels through the n-Si/Ni interfaces but the selectivity is enhanced via pinch-off caused by the n-

Si/SiOx/NiOOH interfaces. In the second body of work, currently in review at Nature Materials, 

the pinch-off effect is more rigorously analyzed by using potential-sensing electrochemical atomic 

force microscopy (PS-EC-AFM) to directly examine the selectivity of single nanojunctions formed 

between n-Si and variably-sized Ni islands. During photoelectrochemical cycling a portion of the 

Ni island is converted to Ni(OH)2/NiOOH and this forms a high barrier n-Si/SiOx/NiOOH interface 

surrounding the n-Si/Ni interface. By PS-EC-AFM the photovoltages produced by individual nano-

interfaces are shown to increase as the island radii decreases, a result consistent with analytical 

descriptions of the pinch-off effect. Discovering that the pinch-off effect is responsible for the 
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unexpected oxygen evolution performance in these two cases suggests that the effect could be used 

to design improved photoanodes.  

Section A, Junction Behavior of n-Si Photoanodes Protected by Thin Ni Elucidated from 

Dual Working Electrode Photoelectrochemistry, contains co-authored material published as: 

Laskowski, F. A. L.; Nellist, M. R.; Venkatkarthick, R.; & Boettcher, S. W. Junction Behavior of 

n-Si Photoanodes Protected by Thin Ni Elucidated from Dual Working Electrode 

Photoelectrochemistry. Energy & Environmental Science, 10(2), 570579 (2017). 

Section B, Nanoscale Semiconductor/Catalyst Interfaces in Photoelectrochemistry, 

contains co-authored material currently under review as: Laskowski F. A. L.; Oener, S. Z.; Nellist 

M. R.; Gordon, A. M.; Bain, D. C.; Fehrs, J. L.; Boettcher S.W. Nanoscale Semiconductor/Catalyst 

Interfaces in Photoelectrochemistry, Under Review at Nature Materials.   

Prof. Boettcher and I conceived of the projects. I performed and directed experiments. I 

collected data with help from S. Oener, D. Bain, M. Nellist, and A. Gordon. I analyzed data with 

help from the aforementioned, as well as R. Venkatkarthick and J. Fehrs. I wrote the papers with 

help from Prof. Boettcher and editorial assistance from all authors. 

 

Paper F 

 

 Junction Behavior of n-Si Photoanodes Protected by Thin Ni Elucidated from Dual 

Working Electrode Photoelectrochemistry 

 

Forrest A. L. Laskowski, Michael R. Nellist, Radhakrishnan Venkatkarthick, and Shannon W. 

Boettcher* 

 

Broader Context 

Si is a desirable photoanode material for use in photoelectrochemical water-splitting 

devices.  However, Si self-passivates during the oxygen evolution half reaction and requires a 

protection layer to maintain high photoanodic efficiency. Thin evaporated metallic Ni layers have 

been reported to protect Si while also enhancing the kinetics for oxygen evolution. Maximizing 

performance of these and related protected/catalyzed semiconductors requires a fundamental 

understanding of the semiconductor | catalyst | solution interface. We use dual-working-electrode 

(DWE) photoelectrochemistry measurements to directly measure the interface’s electronic 

properties in situ during operation. By controlling the Ni thickness (3, 5, and 20 nm), we confirm 

that favorable shifts in photocurrent onset are correlated with thinner protection layers. 
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Photoelectrochemical DWE measurements are used to test various prevailing hypotheses for the 

origin of this behavior. We find evidence that increased photovoltage is due to the development of 

a spatially inhomogeneous buried junction wherein high barrier regions arise via adventitious SiO2 

growth. Thinner protection layers more readily promote this behavior by facilitating solution 

permeation to the n-Si | Ni interface. Repeated electrochemical cycling of thicker catalyst layers 

can achieve similar behavior and improve the photocurrent onset by as much as 300 mV. The results 

are discussed in the context of the general design principles for metal-insulator-semiconductor 

protected photoanodes.  

Tandem photoelectrochemical water splitting devices rely on integration of a photoanode 

and a photocathode for solar energy conversion to a storable chemical fuel such as H2 gas. These 

photoelectrodes must be simultaneously efficient and stable over the required device lifetime to 

meet cost targets. To date, efficiency losses at the photoanode have been considered the limiting 

factor in fabricating an efficient tandem cell. Si is a near-ideal solar material, which could be 

employed in an efficient photoanode to overcome these limitations. However, Si self-passivates 

under oxygen evolution conditions, forming an electronically insulating oxide. Recent work has 

demonstrated that ultrathin Ni metal layers can protect n-Si photoanodes and simultaneously 

enhance catalytic activity for the oxygen-evolution half-reaction. Sufficiently thin Ni protection 

layers have been shown to yield enhanced photocurrent onsets, and thus performance, by providing 

an anomalously large photovoltage relative to thicker layers. Using new dual-electrode 

photoelectrochemical techniques, we provide a fundamental picture of the operational mechanisms 

of these devices while highlighting the underlying design principles and tradeoffs. This mechanistic 

insight is important in future device design for protected and catalyzed semiconductor 

photoelectrodes. 

 

1. Introduction 

Solar water splitting to produce H2 allows for the direct capture and storage of solar energy. 

Identification of materials that are both stable and efficient remains a key challenge, particularly 

for the oxygen evolution half reaction (OER). Stable photoanode materials, such as Fe2O3 or TiO2, 

suffer from low photovoltages, photocurrents, or both, that severely limit water-splitting 

efficiency.1 Use of traditional high-quality semiconductors, such as Si or GaAs, is limited by 

inherent material instabilities in aq. electrolyte or under OER conditions.2-7 To address stability 

limitations, protective films which segregate unstable semiconductors from solution have been 

developed.5,8-14 Ideally, protective films facilitate charge transport without impeding photoanode 

efficiency; in practice, films can introduce optical losses and electrical series resistance. The 
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addition of new layers can further affect interfacial recombination processes (e.g. at defects) and 

interfacial band alignment, and these affects could be spatially heterogeneous. To improve 

protected photoanodes the fundamental understanding of light-absorbing semiconductors in series 

with OER catalysts must be expanded to account for the various effects of the protection layer.  

Photoanode protection strategies can generally be grouped into four categories: thin 

“tunnel” insulators11,14-16, thick “leaky” insulators13,14, thin conductive oxides4,9,17-25, or thin 

metals12,23,26-28. Efficiency losses introduced by the protection layer affect all these categories, but 

to varying degrees. For thin tunnel oxides, parasitic optical losses are small compared to losses 

from tunneling resistance as the protective film thickness increases. As thicker protection layers 

afford better stability, tunnel oxide protection research has focused on minimizing charge extraction 

barriers and series resistance through the oxide layer.11,13,29 For thick “leaky” oxides, series-

resistance voltage losses are reduced, but the presence of conductive defect states appears to 

influence the junction voltage for n-Si heterojunctions.11,30,31 Continued research on “leaky” oxides 

has focused on tuning the junction properties to control the illuminated open circuit potential (Voc).31 

Work on thin conductive oxides and thin metal protection layers has largely focused on passivation 

of interface states responsible for Fermi level pinning in heterojunctions and recombination losses 

in buried homojunctions.8,30,32-35  Various barrier height (ϕb) tuning strategies have been explored 

for heterojunctions in order to limit dark-current recombination losses.12,18,21,25 The optical 

reflectivity and absorption properties of the protection layers have been non-trivial sources of light 

loss and improving optical transmittance is an area of continued research.22,35 

To better understand the fundamental interface-energetics and charge-transfer-kinetics 

aspects of protection layers we investigate the metallic nickel (Ni) coated n-Si photoanodes first 

studied by Kenney et al.28 The Ni appears to simultaneously serve as a protection layer, 

electrocatalyst for oxygen evolution (when oxidized), and some type of charge-separating 

heterojunction to the n-Si. These photoanodes exhibit dynamic photoelectrochemical (PEC) 

response and a high photovoltage at sufficiently thin Ni coatings (≤ 5 nm) relative to thicker 

coatings. The origin of the photovoltage increase for thin films remains unclear but various 

explanations have been suggested, including: a solution-equilibrated ϕb increase due to incomplete 

screening from the Ni metal28,36,37, the development of an “adaptive” junction8 (discussed in more 

detail below), and decreased optical losses for thin films3. Research on a similar architecture, 

wherein metallic Co was electrodeposited as a protection layer, suggests that sufficiently thin layers 

may enable an SiOx mediated surface-state passivation effect and the development of high barrier 

regions.12  
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We seek to identify the primary cause(s) of the apparent changes in interface energetics 

and/or charge-transfer kinetics. A major consideration in doing so is evaluation of the junction 

behavior for the n-Si | Ni architecture. Establishing whether the photoanode behaves in the so-

called “adaptive” regime or buried regime is one key to designing improved devices.38-40 So-called 

adaptive junctions are those where the changes in electrochemical potential of the catalyst under 

operational conditions (i.e. due to photo-oxidation) lead to changes in the semiconductor | catalyst 

interface energetics (e.g. increases in the effective interface ϕb).40 In buried junctions the energetics 

are fixed by a solid-state interface and invariant under operational conditions (e.g. a solid state pn 

junction or Schottky diode, coated with catalytic material). Junction characterization, however, is 

difficult with conventional PEC techniques which conflate information about the catalyst, 

semiconductor, and protection layer into the combined photoelectrode current-voltage response.  

 

 
Figure F.1. Schematic depicting a n-type photoanode protected with a catalyst material and 

a second working electrode for DWE measurements. Fermi levels are labeled for the bulk 

semiconductor (Esem), the hole quasi Fermi level (Ef,p), the electron quasi Fermi level (Ef,n), the 

catalyst Fermi level (Ecat), and the solution potential (Esol). The primary working electrode (WE1) 

controls/senses the semiconductor potential while the secondary working electrode (WE2) 

controls/senses the catalyst potential. WE2 is deposited as a thin, 10 nm gold layer which results in 

an electrolyte-porous but electronically interconnected surface. The effective electronic barrier 

height (ϕb) between semiconductor and catalyst is labeled for clarity.  

 

Dual-working-electrode (DWE) PEC techniques enable separation of catalyst, 

semiconductor, and interface effects from the overall photoelectrode response.39 Measurements are 

made using a second working electrode (WE2) that independently probes the catalyst potential (or 

the current flowing through the catalyst) in situ, during PEC operation, while the semiconductor 

potential/current is simultaneously monitored/controlled through the first working electrode (WE1). 
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The technique was used previously on model TiO2 single-crystal electrodes which provided a well-

defined and stable semiconductor | catalyst junction.38,39 The DWE experiments demonstrated that 

electrocatalysts deposited on TiO2 can yield either buried or adaptive junction behavior, depending 

on catalyst preparation. Electrolyte-permeable catalyst layers, arising from electrodeposition of Ni 

oxyhydroxide or hydrated iridium oxide, produced adaptive junctions with high photovoltages, 

consistent in magnitude with the TiO2 flat band position and bandgap.38,41 Electrolyte impermeable 

layers composed, for example, of annealed nanocrystalline IrO2, produce buried junctions that had 

small and static barrier heights, resulting in low photovoltages. The presence of such distinct 

junction behaviors based on catalyst permeability indicates that control of the semiconductor | 

catalyst interface is a critical design principle for enhancing photoanode performance.8,40  

Here we use DWE photoelectrochemistry to systematically probe interface energetics and 

efficiency loss mechanisms in Ni protected n-Si photoanodes. We establish that resistive and 

optical losses are not instrumental in producing the anomalously high photovoltage of sufficiently 

thin Ni protection layers relative to thicker ones. While potential cycling under illumination 

consistently improves photoanode response, concomitant with oxidation of the Ni layer to form 

Ni(Fe)OOH, DWE experiments reveal that even the conditioned devices do not behave as adaptive 

junctions. The data suggest that these devices are, in fact, spatially inhomogenous buried junctions. 

These results are generally useful in understanding n-Si protection strategies and are applicable for 

enhancing photoanodes reliant on transition metal and/or thin conductive-oxide protection. 

 

2. Methods 

2.1 Photoanode Fabrication and Electrochemical Characterization 

P-doped [100] n-Si wafers (resistivity ~0.1 ohm·cm) were cleaned by sonication in iso-

propyl alcohol (IPA) for 10 min, dried under N2, and diced into 1 × 1 cm squares. Ni films were 

deposited onto the squares, without etching the native oxide, by thermal evaporation at ~ 0.1 Å s-1
 

from an Al2O3-coated W boat (Kurt Lesker) using Ni powder (Alfa Aesar ~120 mesh). Ohmic 

contact was achieved via wetting the back surface with Ga-In eutectic, placing a Sn-Cu wire within 

the eutectic, and fixing both in place with epoxy (Loctite Hysol 1C). The Sn-Cu wire was then 

threaded through a 3.5-mm-diameter glass tube and the n-Si chip was affixed to one end with epoxy. 

A standard activation protocol was used, unless otherwise noted, to achieve reproducible 

electrochemical behavior. Electrodes were electrochemically cycled 50 times at 100 mV s-1. For 

each cycle the anodic sweep was terminated 200 mV past the Ni(OH)2 oxidation peak and the 

cathodic sweep was terminated 200 mV negative of the NiOOH reduction peak. This range was 

found to be ideal across all experimental configurations; notably, cycling procedures with more 
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anodic sweeps appeared to promote bubble-mediated mechanical exfoliation of the Au WE2 contact 

for DWE devices.   

 For long-term cycling experiments an additional layer of Ni was electrodeposited to 

increase stability of the Au WE2 contact. This was accomplished by photodeposition under 1 sun 

illumination in a 0.1 M NiCl2 / 1.0 M potassium-borate (K-borate) solution. During illumination, 

an anodic current (0.1 mA cm-1) was passed through each electrode for 2 min and the electrodes 

were then cycled 50 times as described as the standard activation above. Electrodes were removed 

from the NiCl2 solution before characterization.  

Application of the WE2 contact is challenging. Au layers must be sufficiently thin as to 

allow solution to reach the electrode; a relatively smooth deposition surface is therefore required 

to retain lateral electrical contact across the Au film. Additionally, ultrathin Ni layers used in this 

study increase the likelihood of direct shorting from the Au WE2 layer to the Si. Prior to Au 

deposition Ni coated wafers were plasma cleaned for 10 min and thermally annealed for 5 min at 

150 oC on a hot plate. Electrodes were then electrochemically cycled as described above and rinsed 

with 18.2 MΩ·cm water. The Au WE2 was then deposited on a subset of the samples (~ 2 Å s-1). 

The optimal Au thickness for WE2 was found to be ~ 10 nm. Samples were tested for shorting (i.e. 

direct Au contact to n-Si) with dry two-electrode current-voltage measurements (see supporting 

information (SI) Section F.S1 for additional details). Despite recent reports of Au mediated 

catalytic enhancement, we note no significant enhancement to the OER kinetics upon deposition 

of the Au contact.42 This discrepancy is likely due to the thicker Ni(OH)2 layers generated in our 

study, where ~19 monolayer equivalents are calculated via redox integration for the devices 

protected by 3 nm of Ni. However, parasitic optical absorption by the Au causes the limiting 

photocurrent densities to decrease. Comparison of limiting photocurrent densities before and after 

Au application reveals a transmittance through the thin Au of 54% ± 1%.   

Electrochemical characterization was conducted using a BioLogic SP200 bipotentiostat. 

Electrodes were characterized in a three-neck flask containing 50 mL of aq. 1 M potassium borate 

(K-borate) buffered to pH ~9.5. For photo-electrochemical characterization, a solar simulator (Abet 

Technologies, model 10500) was calibrated to deliver ~1 sun AM1.5G illumination at the electrode 

surface. A Pt counter electrode and an Ag/AgCl reference electrode were used to collect cyclic 

voltammetry data without iR compensation. Prior to characterization the cells were sparged with 

O2 flow for 10 min; mild stirring was used during characterization.  

For Fe-free studies a previously described procedure was used to produce Fe-free K-borate 

electrolyte.43 In short, 2 g of 0.99% Ni(NO3)3 was dissolved in 4 mL of 18.2 Ω·ohm H2O and then 

precipitated with 20 mL of semiconductor grade KOH. The solution was agitated for 10 min, 



95 
 

centrifuged at 7000 rpm for 5 min, and the supernatant was decanted. Two more wash cycles were 

employed to remove nitrates; in each 20 mL of 18.2 Ω·ohm H2O and 2 mL of KOH were added to 

the precipitate, it was redispersed, agitated for 10 min, centrifuged at 7000 rpm, and decanted. K-

borate buffer was added to the Ni(OH)2 powder, agitated for 10 min, and the solution was left to 

sit for 24 h. The solution was then centrifuged at 7000 rpm for 5 min and the supernatant was 

collected for use as electrolyte. To prevent possible Fe leaching associated with glass 

electrochemical cells, a custom HDPE cell was employed with a quartz window. Electrodes 

fabricated for Fe-free experiments used hot glue in place of epoxy (due to Fe leeching from the 

latter).44 Fe incorporation experiments were accomplished by addition of 10 µL of 0.1 M Fe(NO3)2 

(to 50 mL of Fe-free K-borate present in the electrochemical cell) followed by gentle stirring for 

~10 s.   

Measurement of precise photocurrent onset potential shifts is experimentally challenging 

due to the proximity of the NiOOH anodic redox peak. To overcome this, photocurrent onset shifts 

were calculated at a current density where the onset slope was clearly distinguishable from the 

anodic redox peak. The specific current density used is explicitly stated for each measurement. 

 

2.2 Material Characterization 

 Elemental and oxidation state composition analysis was accomplished via X-ray 

photoelectron spectroscopy (XPS) using an ESCALAB 250 ThermoScientific with an Al Kα 

monochromated source (150 W, 20 eV pass energy, 500 µm spot size). Depth profiles were 

performed with an Ar sputter (2 keV, 3 µA, 5 s step-1, 4 mm2 spot). Peaks were fit using 

ThermoScientific Avantage 4.75 software and cross referenced to the NIST database. Scanning 

electron microscopy (SEM) analysis was accomplished with a Zeiss Ultra SEM (5 keV, 30 µm 

aperture). Atomic force microscopy (AFM) data was collected with a Bruker Dimension Icon using 

tapping mode and a Tespa v2 probe (scan rate 1 Hz, 512 lines). Nanoscope v1.5 software was 

employed for 1st order flattening of all AFM data.  

 

3. Results and Discussion 

3.1 Photoelectrode and Junction Behavior as a Function of Ni Thickness 

To understand the n-Si | Ni interface and photoelectrode response, we first measured the 

photoelectrode properties as a function of the Ni film thickness (Figure F.2). As the film thickness 

increases from 3 to 20 nm, the light-limited photocurrent density decreases and the photocurrent 

onset shifts anodic (i.e. the photovoltage generated by the n-Si | Ni interface decreases). The 
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decrease in photocurrent is easily explained by increased parasitic optical absorption as the Ni layer 

increases in thickness (illumination is incident on the system from the catalyst side of the device).  

 

 
Figure F.2. Comparison of WE1 and WE2 for devices with varied Ni thickness. (a) Illuminated 

cyclic voltammetry comparison of 3, 5, and 20 nm thermally deposited Ni films on n-Si. An optical 

filter, comprised of 17 nm of Ni deposited on a transparent quartz slide, is placed between the 3 nm 

coated photoanode and the light source. (b) Illuminated photocurrent onsets of n-Si with 10 nm Au 

deposited prior to the 3 nm and 20 nm thick Ni layers. Both experiments were performed under 100 

mW cm-2 of AM1.5G solar simulation in pH 9.5 K-borate buffer. 

 

The shift in onset potential, however, cannot be explained by the decreased optical 

transmission through the Ni protection layer for thicker films. The photoelectrodes with 20 nm Ni 

show a ~340 mV anodic shift in the onset potential relative to those with 3 nm Ni (when measured 

at 2.5 mA cm-2 photocurrent density). The ideal diode equation, however, predicts only a ~60 mV 

decrease in junction photovoltage for each order-of-magnitude decrease in photocurrent. When the 

light intensity is reduced on the photoelectrode with 3 nm Ni by use of an inline optical filter 

(consisting of 17 nm of deposited Ni metal film on quartz), only a small ~60 mV shift in onset 

potential is observed (when measured at 2.5 mA cm-2 photocurrent density) for a ~6-fold decrease 

in photocurrent. These experiments demonstrate that the fundamental junction properties of the n-
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Si | Ni interface – and thus ability to generate photovoltage – depend sensitively on the thickness 

of the Ni layer. 

 The voltammetry in Figure F.2 features the characteristic wave associated with, nominally, 

nickel hydroxide/oxyhydroxide redox, Ni(OH)2 + OH- → NiOOH + H2O + e-. The position of the 

wave in Figure F.2a depends on the thickness of the Ni layer protecting the n-Si electrode, 

consistent with the above conclusion that photovoltage generated by the n-Si | Ni interface is 

dependent on the Ni thickness. For the 3 nm, 5 nm and 20 nm thick Ni films, the integrated intensity 

corresponds to ~ 71, 21, and 5 % of the total Ni atoms in the film, respectively. This measurement 

therefore illustrates that for the thin films, the majority of the initial metallic Ni film is oxidized to 

NiOOH during operation; while for the 5 and 20 nm films significant areas of metallic Ni remain, 

and likely producing a buried n-Si | Ni junction (see below). This finding is consistent with X-ray 

photoelectron spectroscopy (XPS) elemental depth profile showing persistent metallic Ni trapped 

below an outer oxidized Ni layer after 5 h of continuous PEC operation.28 

To confirm that OER onset shift is largely dictated by junction properties, control samples 

were fabricated where a 10 nm Au interlayer was deposited between the Ni and n-Si (Figure F.2b). 

In doing so, the interface is controlled by the n-Si | Au Schottky junction and energetic losses 

associated with the bulk catalyst layer are distinguishable from Ni-thickness-dependent junction 

effects. The n-Si | Au with 20 nm Ni exhibits an anodic onset shift of ~50 mV at 2.5 mA cm-2 

relative to the n-Si | Au sample with 3-nm Ni. This shift is attributed to parasitic optical absorption 

in the thicker Ni that lowers the minority carrier injection level and thus photovoltage (in agreement 

with the optical filter experiment shown in Figure F.2a). Both electrodes have similar shaped 

photocurrent onset profiles, indicating no significant difference in the electrical resistance of the 

catalyst layer, in contrast to thin oxide protected photoanodes where charge extraction barriers and 

series resistance can be significant.11,13,29 These control samples corroborate the previous analysis, 

indicating that the ~340 mV onset shift between n-Si photoanodes protected with 3 nm and 20 nm 

Ni coating is due to changes in the details of the photovoltage-generating n-Si | Ni interface.   

 

3.2 Effect of electrochemical “activation”  

The observations that the 3 nm Ni layers generate higher photovoltage and also exhibit 

~70% redox-active Ni species (oxidized to NiOOH under operating conditions) suggest that 

oxidation of the protection layer is linked to increased performance. To test this hypothesis, we 

studied the junction properties as a function of electrochemical activation (Figure F.3). Samples 

were fabricated with 5 nm Ni and 10 nm of (electrolyte-permeable) Au as a top contact to serve as 
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WE2.  NiOOH was then photodeposited on top of the Au to improve long-term stability during 

cycling and DWE experiments by slowing the apparent delamination of the Au top contact. 

 

 
Figure F.3. Illuminated cycling of n-Si protected with 5 nm Ni in pH 9.8 K-borate buffer. To 

fully capture catalyst activation, the electrodes were not pre-activated in this experiment. (a) 

Cycling of WE1 results in a ~300 mV OER onset shift. (b) Illuminated catalyst WE2 response on 

the same electrode exhibits little change after the initial 50 cycles. The integrated charge in the Ni 

redox waves measured at both WE1 and WE2 are similar for the first 200 cycles (after which the 

sample begins to degrade). For example, at cycle 50 both cathodic waves measured at WE1 and 

WE2 both yield 17 mC of charge. This suggests both WE1 and WE2 are interrogating the entire 

catalyst film.  

 

 The illuminated photoanode performance improves notably over the first 250 CV cycles 

(Figure F.3a), with the photocurrent onset potential shifting by ~300 mV and the light-limited 

photocurrent increasing by a factor of 1.5.  The change in photocurrent density is attributed to 

partial dissolution of the photo-deposited NiOOH/Ni(OH)2, which parasitically absorbs light. The 

change in photocurrent onset could be due to two factors, (1) increased catalytic activity as the Ni 

is electrochemically conditioned to form Ni(Fe)OOH, and/or (2) increased junction photovoltage 

induced by the same oxidation of Ni.43,45,46 Using the DWE approach we can differentiate between 

these two possibilities. Figure F.3b shows the voltammetric response of WE2, which is directly 

connected to the catalyst layer. After the first 50 cycles the electrocatalytic current onset measured 

directly through WE2 reaches a nominal steady state, while the photocurrent onset measured 

through WE1 continues to shift cathodically. Of the ~300 mV shift measured via WE1 at 10 mA 

cm-2, only ~110 mV can be explained by the increased catalytic activity measured through WE2. 
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This finding reveals that most of the activity enhancement when cycling arises from an increase in 

junction photovoltage. The increased junction photovoltage is further corroborated by the cathodic 

shift in the oxidation peaks through WE1 (Figure F.3a) and the absence of a comparable shift 

through WE2 (Figure F.3b). 

To confirm this result, control devices were again fabricated by depositing a 10 nm Au 

interlayer between the n-Si and Ni (see SI Section S2). For the control samples, the catalyst activity 

measured through WE2 once again saturates after 50 cycles and little shift in the Ni redox wave 

potential is observed. When illuminated J-E curves are measured through the semiconductor (WE1), 

no significant shifts in the photocurrent onset or Ni redox wave potential are found. These 

observations are consistent with the expected behavior of the buried n-Si | Au junction in series 

with the Ni-based catalyst layer and further indicate that the cathodic shifts in photocurrent onset 

are produced specifically by changes to the n-Si | Ni junction. 

After long-term cycling, the performance of all the Ni-protected photoanodes declines (see 

SI Sections S2 and S3). For n-Si with 5-nm Ni this begins at ~350 cycles. On samples with only 2 

nm of Ni the deactivation occurs over the first 20 cycles. During the deactivation process the Ni 

redox peaks split successively further apart with cycling and decrease in intensity, while the slope 

of the photocurrent onset decreases. These observations are consistent with oxidation of the 

underlying n-Si to form a SiO2 layer that blocks current flow by presenting a large series resistance. 

n-Si protected only with Ni (oxy)hydroxide catalysts deposited by cathodic electrodeposition or 

photo-assisted anodic electrodeposition, which are known to be completely electrolyte permeable, 

also degraded quickly, within 10 CV cycles (see SI Section S3). Furthermore, related work on PEC 

ageing of n-Si photoanodes protected with Ni has revealed pinhole formation in thin ~2 nm 

protection layers and pitting behavior in thicker ~10 nm protection layers.3 In both instances, after 

sufficient PEC ageing, the growth of interfacial SiO2 was apparent by XPS elemental depth 

profiling and more-prevalent in areas with pinholes/pitting.  

The results discussed above suggest that photovoltage increases are connected to increased 

Ni porosity and/or thin adventitious SiO2 growth. Thicker Ni films on n-Si do not fully activate, 

and therefore the photoelectrodes with such films appear to be limited by the small n-Si | Ni 

Schottky barrier.47,48 Ni films that are too thin (e.g. 2 nm), or catalysts consisting only of electrolyte 

permeable Ni (oxy)hydroxide, generate relatively large photovoltages but cannot protect the 

electrode from oxidation. Intermediate thickness Ni films (3-5 nm) provide a degree of protection, 

while simultaneously providing for large photovoltages. 

  

 



100 
 

3.3 Elucidation of junction behavior through dual working electrode photoelectrochemistry 

Understanding the junction behavior (e.g. adaptive, buried, or mixed) for the n-Si with 

optimal Ni thickness of 3-5 nm may provide general insight into interface design for 

catalyzed/protected photoanode devices. To distinguish between these junction behaviors, and to 

identify the source of photocurrent onset enhancement, we employ DWE PEC techniques (first 

demonstrated on TiO2 model systems39). To test for the presence of adaptive behavior in the n-Si 

with 3 nm of Ni, the catalyst potential Ecat (sensed with WE2) is measured as a function of the 

semiconductor potential Esem controlled by WE1 (Figure F.4). The measured response shows three 

distinct regions, discussed in detail below.  

At low potentials (i.e. cathodic of -0.25 V vs. 𝐸𝐸O2/OH−) the apparent Ecat is not affected by 

changes in Esem. Illumination also has no effect on the measured catalyst potential and Ecat slowly 

drifts cathodic with time. This behavior is consistent with the surface of the Ni catalyst being 

converted to Ni(OH)2/NiOOH during activation. When WE1 is poised between -0.7 and -0.25 V vs. 

𝐸𝐸O2/OH−, the catalyst layer remains in the reduced Ni(OH)2 form because the photovoltage 

generated by the junction is not sufficient to drive the oxidation to (nominally) NiOOH. Ni(OH)2 

is highly electrically resistive and thus WE2 is electrically isolated from the semiconductor surface 

and remains unable to measure a meaningful catalyst potential. 

At Esem = ~-0.2 V vs. 𝐸𝐸O2/OH−, Ecat rapidly increases to ~0.25 V vs. 𝐸𝐸O2/OH−, a potential 

that is sufficient to oxidize the catalyst to electrically conductive NiOOH.43,45,46 A ~440 mV 

interface photovoltage is directly measured between the electrically conductive Ni/NiOOH and the 

n-Si. When Esem is between -0.2 and +0.2 vs. 𝐸𝐸O2/OH−, Ecat changes linearly with Esem with a slope 

of ~1. This suggests a type of buried-junction behavior which will be discussed in detail below.  

For Esem > 0.25 vs. 𝐸𝐸O2/OH−, Ecat saturates at ~0.55 vs. 𝐸𝐸O2/OH−. This is consistent with 

the constant photocurrent measured in this potential regime. Because current through the 

semiconductor and catalyst systems must be conserved, a constant photocurrent through WE1 leads 

to a constant catalytic current and thus constant Ecat as measured with WE2. 

 



101 
 

 
Figure F.4. Catalyst electrochemical potential sensing via WE2. Illuminated (100 mW cm-2) 

chronoamperometry experiments for n-Si protected with 3 nm Ni (red) and intentionally buried 

with 10 nm Au + 3 nm Ni (black). Samples were activated in pH 9.8 K-borate buffer. Data was 

recorded after a 3 min equilibration at each constant potential. 

 

The samples are compared to intentionally buried controls where 10 nm Au is deposited 

between the n-Si and Ni layers (Figure F.4 – dark grey curve). From -0.5 to +0.3 V vs. 𝐸𝐸O2/OH−, 

Ecat is a linear function of Esem indicating that any potential changes applied to WE1 drop 

predominantly at the catalyst | solution interface – as expected for a buried junction device.39,49 At 

more-positive Esem, Ecat again saturates, as the photocurrent becomes constant and the applied 

potential drops across the buried junction instead of the catalyst | solution interface. The limiting 

Ecat for the control samples is lower than for the n-Si | Ni samples because the additional light-

blocking Au layer results in lower saturated photocurrent. The fact that no “non-conductive” 

catalyst region is observed suggests pinholes that provide electrical conductivity between the two 

Au layers for this control sample. The fact that the both intentionally buried control sample and the 

n-Si with 3 nm of Ni exhibit the same linear Ecat vs. Esem response over the region where the catalyst 

is conductive suggest the n-Si | Ni junction is behaving as a buried system.39 By contrast, 

simulations show that an adaptive junction would typically produce a switching behavior (slope of 

Ecat vs. Esem >>1) over a narrow WE1 potential range before saturating, as is observed for the 

TiO2/NiOOH junction.38,39,49  

To further understand the nature of the buried junction we measured the dark J-E response 

of the junction directly (Figure F.5). Ecat is held fixed versus the reference through WE2, while Esem 

is swept linearly through WE1. For Ecat = 0.0 and 0.1 V vs. 𝐸𝐸O2/OH−, the catalyst is reduced and 
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electrically insulating, yielding the J-E curves that are highly resistive in both scan directions. For 

Ecat = 0.3, 0.4, and 0.5 V vs. 𝐸𝐸O2/OH−, the catalyst is oxidized and electrically conductive. The 

current voltage curves are highly rectifying, but their magnitude and shape in both forward and 

reverse bias are nearly identical for these Ecat. This behavior demonstrates that the interface ϕb (i.e. 

energetics) is unaffected by changes in catalyst potential and further suggests that the junction is 

buried, in contrast to that observed for adaptive junctions such as TiO2/NiOOH.38,39  

The intentionally buried control samples with Au in between the Ni and n-Si were also 

tested (see SI Figure F.S3). As expected, these samples exhibited buried junction behavior where 

the J-E curves remained independent of Ecat for all applied potentials when normalized to the 

junction voltage. The same buried-junction behavior was observed when electrolyte-impermeable 

IrOx was deposited on the TiO2.39 

 

 
Figure F.5. Dark J-V characteristics for the 5 nm n-Si photoanodes. The inset shows the same 

data but with Esem referenced to the solution potential as the x-axis.  

 

3.4 In-situ Tuning of Catalyst Activity to Assess Interface Properties 

 Fe cation impurities in electrolyte media have been shown to dramatically increase the 

OER activity of Ni-based catalysts.43 This effect provides a method for changing the catalyst 

activity in situ, for the same electrode, without significantly affecting other junction properties. For 

a buried-junction photoelectrode, reduction of the catalyst overpotential corresponds directly to 

cathodic shifts in the catalyzed photoelectrode three-electrode J-E behavior, while for an adaptive 

junction this is not typically the case.38,49 Here, DWE electrodes with 3 nm of Ni deposited were 

cycled (as per the activation protocol) in Fe-free electrolyte until the WE2 catalyst activity saturated 
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(typically after ~50 cycles). Voltammograms were collected through WE1 under illumination 

beginning one cycle before Fe was introduced. Voltammograms were also collected through WE2 

before and after Fe incorporation. Fe incorporation cathodically shifts the photocurrent onset 

potential by ~120 mV when measured through WE1 at 10 mA/cm2 (Figure F.6). Similarly, when 

measured through WE2 the onset dark catalytic onset shifted by ~100 mV at 10 mA/cm2
 (see SI 

Section S5 for additional information). These results indicate that the photocurrent onset of the 

activated n-Si | Ni system is enhanced almost entirely through increased activity of the catalyst and 

not via a change in junction dynamics. Direct measurements of the junction photovoltage before 

and after Fe incorporation confirm that the photovoltage is unaffected by Fe incorporation. These 

results are expected for a photoanode in which the critical junction is buried and ion-impermeable, 

with the Fe thus only modulating the catalyst activity. We note that different behavior was found 

for similar experiments on adaptive TiO2 | Ni(Fe)OOH junctions.38  

 

 
Figure F.6. Illuminated PEC response due to Fe incorporation as measured through the 

semiconductor electrode and the catalyst electrode (100 mW cm-2).  Data through the 

semiconductor electrode was collected continuously; Fe was introduced at the beginning of cycle 

1 (where cycle 1 is the first cycle after the activation protocol). Data through the catalyst electrode 

was collected before and after the semiconductor CVs. 

 

3.5 Physical picture of junction behavior  

The data and analysis presented above can be used to develop a physical picture for the Ni-

coated n-Si system. For thick Ni layers, the behavior is consistent with the presence of a buried 

junction (generating a small photovoltage) in series with surface oxidized Ni (nominally 

Ni(Fe)OOH) serving as the OER catalyst. For very thin films (~2 nm Ni) or for films composed of 



104 
 

directly (photo)electrodeposited NiOOH, the n-Si rapidly passivates and no stable photoelectrode 

response is observed. For intermediate layer thicknesses (3-5 nm of Ni) both comparatively large 

photovoltages and relatively stable responses are exhibited. All the DWE PEC analyses indicate 

that samples with 3-5 nm Ni form buried junctions with the underlying n-Si, despite the catalyst 

layer being largely comprised of redox active and thus electrolyte-permeable Ni(Fe)OOH after 

activation. XPS depth profile analysis of these samples, after activation, show the presence of 

residual metallic Ni as well as nickel silicides (see SI Section S6). Simultaneous examination of 

the Si regional spectra, indicates that the metallic Ni is in close proximity with the n-Si (SI Figure 

F.S9). 

These data are consistent with a picture where (1) protective metallic Ni regions are 

retained despite electrochemical cycling, providing low resistance pathways for photo-generated 

hole collection, and (2) the remainder of the surface is passivated n-Si | SiO2 | Ni(Fe)OOH resulting 

in an interface ϕb increase relative to the pre-cycled samples. Such an interface might be considered 

a spatially “inhomogeneous” buried junction. Evidence for junction inhomogeneity is observed for 

many of the photoelectrodes with 3-5 nm Ni (see SI Section S7 for additional information). For 

example, in Figure F.6, light-limited photocurrent does not saturate at a constant value as Esem is 

raised to more-anodic potentials. The sloped photocurrent in reverse bias is not accounted for by 

the dark voltammetry (which show negligible dark current) and generally becomes more 

pronounced with continued cycling. This effect can be explained if the majority of the n-Si surface 

is comprised of a sufficiently thick SiO2 layer that prevents hole transfer to the catalyst. All the 

photocurrent must thus travel to regions of retained Ni metal where it can be collected (likely across 

a much thinner native oxide layer). Collecting photocurrent to these small regions and driving it 

across a resistive contact likely leads to additional voltage losses and produces potential-dependent 

“saturated” photocurrents. 

In the above physical picture, increased photovoltage may be explained by the “pinch-off” 

effect. With sufficient spatial heterogeneity, carrier depletion required to reach charge neutrality in 

the high-barrier regions can spill into the low-barrier regions and increase the local built in potential 

(Vbi). Although current still travels through the low-barrier regions of retained Ni metal islands, the 

added band bending effectively increases the ϕb of this current pathway. The low-barrier region is 

then said to exhibit a pinched-off “saddle point” because the resulting ϕb vs. distance profile of the 

region is a non-constant “saddle” buoyed between two high-barrier regions. The effective barrier 

height (ϕb,eff) of the spatially heterogeneous contact is greater than the ϕb generated by homogenous 

contact of the low-barrier materials.50-53 Suppression of dark conduction current, due to the increase 

in ϕb,eff, results in a photocurrent onset shift to more cathodic potentials. This physical picture, 
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where the cathodic shift in the photocurrent onset is mediated by an inhomogenous buried junction, 

is also in agreement with recent Co | n-Si work where inhomogeneous barriers were proposed to 

arise given sufficiently thin electrodeposited metallic Co.12  

 

 
Figure F.7. Schematic of ultrathin Ni protection on n-Si. Adventitious SiO2 passivates the edges 

of Ni regions producing higher photovoltages via the pinch-off effect. 

 

The development of high-barrier-height regions is likely a byproduct of Ni oxidation and 

SiO2 formation during OER conditions. The pre-activated junction is expected to be pinned by the 

metallic Ni work function and/or by any interface defect states introduced during thermal 

evaporation of Ni.48 As the photoanode is cycled, the majority of the Ni oxidizes and adventitious 

SiO2 forms where semiconductor-solution contact occurs. Adventitious SiO2 can then suppress 

pinning by spatially separating the Ni from the n-Si, causing the n-Si Fermi level to equilibrate with 

defect states in the SiO2. Adventitious SiO2 may also passivate shallow defect states responsible 

for pinning the n-Si Fermi level. Discerning between these possibilities is difficult. However, both 

are similar in that they produce a higher ϕb by decreasing relatively shallow Fermi level pinning. 

Interface defect pinning has recently been reported in a number of NiOx-based TCO protection 

strategies on n-Si photoanodes. Passivation of these defects with a thin Al2O3 interlayer33, and 

separately with a thin SiOx/CoOx bilayer9,21,35, was demonstrated to significantly enhance the 

respective photovoltages. Similarly, recent work relying on TiO2 and Ir metal protection has shown 

that defect-heavy SiO2 layers may limit attainable photovoltages.29,30  

The process of adventitious SiO2 growth has been examined by Han et al. in their study on 

PEC ageing of Ni protected n-Si photoanodes.3 Over 6.5 days of continuous PEC activity using n-

Si coated with ~5 nm of Ni, they document progressive increases in surface roughness (consistent 

with transformation to Ni(OH)2/NiOOH), the formation of large holes in the Ni film, and a 0.4 nm 

increase in interfacial SiO2 thickness. In parallel analysis with ~2 nm Ni protection layers and 24 h 
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of continuous PEC testing, they document the formation of solution-permeable pinholes (ultimately 

leading to complete passivation) and a 1.2 nm increase in interfacial SiO2 thickness. In our 

assessment, the decreased lifetime and the increased adventitious SiO2 growth exhibited by their 

~2 nm Ni protected devices is attributable to the ease with which solution can reach the n-Si | Ni 

junction. For thinner protection layers, solution not only permeates over a quicker timeframe but 

also through more areas of the film. For our results, this ease of solution permeability explains why 

thinner depositions exhibit higher photovoltages after shorter durations of PEC testing. 

Adventitious SiO2 growth more readily occurs through thinner protection layers and rapidly 

produces high-barrier pinched-off Ni regions (schematic in Figure F.7). This interpretation is 

supported by AFM and SEM analysis (SI Figures F.S14 and F.S15, respectively) on the electrode 

before and after PEC cycling that show increased morphological heterogeneity and surface 

roughness. It is also supported by XPS depth profiling, which confirms the presence of persistent 

metallic Ni near the n-Si | Ni interface after cycling (SI Figures F.S9, F.S10, and F.S12).  

Our analysis is thus different than that of other contemporary junction behavior hypotheses, 

where photocurrent onset improvements are thought to arise as a result of semiconductor 

equilibration with the solution Fermi level.28,36,37 In this view, a high Vbi occurs when the solution 

is only partially screened by a sufficiently thin/porous Ni protection layer. Since the semiconductor 

passivates upon solution contact, photocurrent must still travel through Ni before reaching the 

solution, even in regions of partial screening. Pinholes in the Ni that could give rise to partial 

screening, by allowing solution-semiconductor contact, likely passivate with SiO2. To identify the 

extent of n-Si electronic equilibration with the solution Fermi level, open circuit photovoltages 

were measured with two different redox electrolytes:  100:1 and 1:100 ferri:ferro cyanide (10 mM). 

Despite spanning a solution potential range of ~240 mV the measured open circuit photovoltages 

were statistically identical (436 ± 21 mV and 445 ± 9 mV for the 1:100 and 100:1 solutions, 

respectively). Since solution potential does not significantly affect the open circuit photovoltage, 

we conclude that partial solution screening does not occur. If partial screening were occurring, we 

would also expect to observe some adaptive character as the Ni(OH)2/NiOOH phase equilibrates 

with the semiconductor. Lack of adaptive behavior corroborates the open circuit photovoltage data 

and suggests that increased ϕb is not caused by incomplete Ni screening. 

Our electrochemical analysis also contrasts with suggestions that improved photocurrent 

onset is caused by the development of adaptive behavior given sufficiently thin protection layers.8 

Instead, our results indicate that the device behaves as a buried junction for all Ni protection-layer 

thicknesses tested. Results compare well to work on Co-protected n-Si by Hill et al. wherein 

photocurrent onset enhancements where attributed to SiOx mediated surface state passivation and 
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the development of spatially inhomogeneous high-barrier regions.12 They speculate that high-

barrier regions arise when n-Si electronically equilibrates with redox active CoOOH located on the 

edges of nanometer scale Co islands. Using the DWE approach, we demonstrate that the analogous 

equilibration with NiOOH does not take place for Ni-protected n-Si. Results in Figures F.4, F.5, 

and F.6 all depict buried-junction behavior, indicating that ϕb is independent of the 

Ni(OH)2/NiOOH Fermi level.  

 

Conclusions 

We used a number of DWE PEC techniques to analyze the junction behavior of n-Si 

protected by thin Ni coatings. This work therefore provides for the first time a direct measurement 

of the catalyst | semiconductor junction behavior in-situ for a small bandgap photoelectrode, 

building substantially on our previous initial report of using DWE PEC to study catalyzed TiO2 

model systems. We found that, contrary to previous hypotheses, the improved photocurrent onset 

potential at sufficiently thin Ni coatings is not due to the presence of adaptive junction behavior or 

incomplete screening effects. Across all Ni thicknesses studied, the photoanodes solely exhibited 

buried-junction behavior. Devices with sufficiently thin Ni layers, i.e. those with improved 

photocurrent onset, displayed characteristics consistent with a spatially heterogeneous junction. We 

suggest that the formation of high-barrier regions is due to in situ adventitious SiO2 growth, which 

decreases shallow Fermi-level pinning, and that low barrier regions are due to remaining metallic 

Ni contacting the Si. This hypothesis is supported by PEC data as well XPS depth profiling that 

shows both oxidized and reduced Ni species in the film (SI Figure F.S9). Although direct 

measurement of the pinch-off effect is experimentally difficult, future directions could employ 

Auger depth profile spectroscopy and/or in-situ current-sensing electrochemical atomic force 

microscopy (EC-AFM) to spatially resolve and correlate pinched-off-region chemical features and 

electronic properties, respectively.54,55  

The inability to observe adaptive junction behavior on Ni-protected n-Si photoanodes is 

likely broadly applicable to catalyzed Si photoanodes where the catalyst layer is in direct contact 

with the Si. If the catalyst layer is electrolyte permeable, and thus allows the formation of an 

adaptive junction where catalyst charging modulates the effective interface barrier height, then the 

Si surface oxidizes to prevent current flow and the device quickly loses functionality. If the catalyst 

layer retains metallic or dense-oxide components in contact with Si, then it forms a buried junction 

whose interface properties are unlikely to be optimal for generating a high photovoltage in Si. 

In light of these findings, it appears that Si photoanode design should focus on engineering 

buried junctions for high photovoltage output while engineering low resistance electrical contact 
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to the catalyst layer. A number of recent examples that follow this approach have been reported in 

the literature.9,11,14,19,21,29 Other viable approaches might make use of engineered micro or 

nanopatterning of the charge-collecting contacts (that are electrically in contact with the catalyst 

layer), while leaving the rest of the surface passivated behind a thick chemically inert oxide that 

passivates the Si surface to recombination and to corrosion, similar in design to the so-called point-

contact photovoltaic cell.56,57 
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1. Introduction 

Semiconductor structures (e.g. films, wires, particles) used in photoelectrochemical 

devices are often decorated with nanoparticles that catalyze fuel-forming reactions, such as water 

oxidation, hydrogen evolution, or carbon-dioxide reduction. For high performance, the catalyst 

nanoparticles must form charge-carrier-selective contacts with the underlying light-absorbing 

semiconductor, facilitating either hole or electron transfer while inhibiting collection of the 

opposite carrier. Despite the key role that such selective contacts play in photoelectrochemical 

energy conversion and storage, the underlying nanoscale interfaces are poorly understood because 

it is challenging to directly measure their properties, especially under operating conditions. Using 

an n-Si/Ni photoanode model system and potential-sensing atomic-force microscopy, we measure 

interfacial electron-transfer processes and map the photovoltage generated during 

photoelectrochemical oxygen evolution at nanoscopic semiconductor/catalyst interfaces. We 

discover interfaces where the hole-selectivity of low-Schottky-barrier n-Si/Ni contacts is enhanced 

via a nanoscale size-dependent pinch-off effect produced when surrounding high-barrier regions 

develop during device operation. These results thus demonstrate both the ability to make nanoscale 

operando measurements of contact properties under practical photoelectrochemical conditions and 

illustrate a design principle to control the flow of electrons and holes across catalyst/semiconductor 

junctions broadly relevant to different photoelectrochemical devices. 

Nanoscale interfaces play a central role in devices for photoelectrochemical energy 

conversion and storage. Catalyst nanoparticles are often sparsely deposited onto photoactive 
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semiconductors such that they selectively collect either electrons or holes, drive fuel-forming 

reactions at low overpotentials, and minimally block incoming light1-3. The properties of the 

resulting semiconductor/catalyst nanojunctions are likely heterogeneous and vary substantially 

based on surface treatment, deposition method, particle size, or with electrochemical 

conditioning4,5. Additionally, heterogeneous nanoscale interfaces may be formed during device 

operation from initially homogeneous interfaces. For example, Ni catalyst films on n-Si 

photoanodes are thought to transform into isolated nanojunctions during photoelectrochemical 

operation6,7. Heterogeneous nanoscale catalyst/semiconductor interfaces are difficult to 

characterize electrically, especially with the required nanoscale resolution under relevant 

photoelectrochemical conditions. While the properties of uniform planar semiconductor/metal 

interfaces (Schottky contacts) have been studied in detail and provide a valuable reference8, large 

changes in interfacial electrical behavior occur as the contact dimensions approach or become 

smaller than the semiconductor depletion width (~10 – 1000 nm)9. 

 Techniques have been developed for mapping heterogenous interfacial properties in 

photovoltaic and (photo)electrochemical systems. Nanoscale open-circuit-voltage mapping of 

solid-state photovoltaics is possible via Kelvin-probe force microscopy (KPFM)10. The application 

of KPFM, or related electrochemical-force microscopies11, to (photo)electrochemical systems are 

challenged by the presence of practical electrolyte concentrations12. Photoconductive atomic-force 

microscopy (AFM) has been used to illustrate heterogeneous electrical-transport properties in 

semiconductor photoelectrodes13, but the measurements are performed ex-situ and the details of 

how nanoscale electrocatalysts interface with the semiconductor remain unexplored. Scanning-

electrochemical microscopy (SECM)14,15 and scanning-electrochemical-cell microscopy 

(SECCM)16 can map catalytic reaction rates by monitoring product formation but do not directly 

provide information on the electrical properties of underlying semiconductor/catalyst interfaces. 

Scanning electrochemical potential microscopy can be used to measure potential gradients through 

electrical double layers or map constant-potential surfaces. However, it is challenging to map non-

constant surface potentials on most experimental systems because the measurement conflates 

potential with topography17,18. Recently, we developed a potential-sensing electrochemical AFM 

(PS-EC-AFM) technique to measure the surface potential of continuous metal-oxyhydroxide 

catalyst films on metal-oxide photoelectrodes, showing how the oxyhydroxides behaved as both 

hole-collecting layers and catalysts for water oxidation6,19. 

Here we use PS-EC-AFM to spatially resolve the interfacial electronic properties of 

nanoscale semiconductor/catalyst interfaces. As a model system, we study nominally hemispherical 

Ni nanocontacts electrodeposited onto n-Si, following work by Loget et al.20. The n-Si/Ni interface 
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has been studied extensively as a “stabilized” photoanode for water oxidation under neutral-to-

basic conditions6,7,21-23. Generally n-Si photoelectrodes with thinner Ni films or smaller Ni 

nanoparticles perform better (following electrochemical conditioning) than those with higher Ni 

loading22,23. Here we find that electrodeposition of Ni nanoparticles on n-Si leads to low-Schottky-

barrier (~0.61 V) contacts which under dry conditions yield photovoltages of only ~ 300 mV, 

independent of the Ni nanoparticle size. After photoelectrochemical potential cycling, the surfaces 

of the Ni nanocontacts convert into nickel (oxy)hydroxide (i.e. Ni(OH)2 or NiOOH). Further ex-

situ electrical measurements of the semiconductor/catalyst junction are not possible because the 

catalyst resting state, Ni(OH)2, is electrically insulating. During photoelectrochemical oxygen 

evolution, the Ni(OH)2 is oxidized to electrically conducting NiOOH. Operando photovoltages 

measured on individual nanoscale n-Si/Ni/NiOOH junctions by PS-EC-AFM dramatically increase 

with cycling and show a strong dependence on nanocontact size. We explain the size dependence 

quantitatively by the pinch-off effect9,24,25, where the oxidized (high-work-function) NiOOH 

induces a large depletion region surrounding the n-Si/Ni interface during operation that increases 

the effective n-Si/Ni interface barrier and enhances hole selectivity22,23,26. This finding not only 

represents the first direct nanoscale measurement of the pinch-off effect in a photoelectrochemical 

system27, but also illustrates a potentially useful contact behavior where minority carrier 

selectivity28 is enhanced, during operation, by oxidation of an electrochemically-active 

surrounding region. Such pinch-off or surface-gating effects are relevant to any semiconductor-

based solar-energy-conversion devices involving nanoscale elements29. 

 

2. Photoelectrochemistry of n-Si decorated with Ni nanoislands 

The photoelectrochemical behavior of semiconductor photoanodes typically depends on 

the amount of catalyst deposited. We study n-Si photoanodes (with dopant density of 5 - 8 · 1015 

cm-3) onto which Ni-metal islands have been deposited from 0.01 M NiCl2 in aq. 0.1 M H3BO3 at 

-1.5 V vs. Ag/AgCl for 5, 15, or 60 s. The photoelectrochemical response of these photoanodes, 

after 50 cyclic voltammograms (CVs) in aq. 1 M KOH under ~1 sun illumination, is shown in 

Figure G.1a. This photoelectrochemical activation converts the outer portion of the Ni to 

Ni(OH)2/NiOOH. Fe impurities that catalyze the OER are incorporated from the electrolyte and are 

assumed to be present in all catalysts studied30. The formation of the Ni (oxy)hydroxide is apparent 

from the increasing size of the Ni redox wave at potentials negative of the photocurrent onset 

(Figure G.1a) and from cross-sectional transmission-electron microscopy (Fig. G.1b, 

Supplementary Section G.1). Samples prepared with a 5-s deposition produced photoanodes with 

the most-negative photocurrent-onset potentials (i.e. the highest photoanode performance) and 
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spatially-distributed Ni nanoislands with radii ranging from 35-150 nm (Fig. G.1b and 1c). The 15-

s and 60-s depositions produce successively larger Ni islands (Fig. G.1c). The thicker Ni leads to 

more-positive photocurrent-onset potentials as well as lower photocurrents due to parasitic light 

absorption. 

 

 
Figure G.1. Characteristics of photoanodes fabricated by electrodepositing Ni nanoislands 

onto n-Si. (a) Photoelectrochemical data for n-Si/Ni collected at 50 mV s-1 in 1 M KOH under 100 

mW cm-2 AM1.5G illumination (one sun) after 50 CVs to activate the photoelectrode. The 

photocurrent onset, defined at 1 mA cm-2, is improved by ~ 350 mV for the 5-s Ni deposition 

relative to the 60-s one. The inset depicts characteristic chronoamperometry data for a 5, 15, and 

60-s deposition. (b) AFM data collected immediately after 5, 15 and 60-s depositions with height 

line scans shown above each image. The results are characteristic of each specific surface, although 

regions of larger/smaller islands can sometimes be found. For the 5-s deposition, the Ni-island radii 

ranged from 35 to 150 nm. (c) High-resolution transmission electron microscopy (TEM) images 

and the associated energy-dispersive x-ray (EDX) analysis line scan data show that activation of 

the n-Si/Ni photoelectrode converts the Ni surface to Ni(OH)2/NiOOH. (d) EDX composition maps 

shown before (top) and after (bottom) photo-anodic activation of n-Si with 5 s of Ni deposition. 

The maps illustrate the conversion of Ni to Ni(OH)2/NiOOH. Additional elemental maps for non-
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activated and activated islands are in Supplementary Section G.1. (e) Scanning electron microscope 

(SEM) image (at 45°) characteristic of a 5-s Ni deposition. 

 

The Schottky barrier heights at individual n-Si/Ni nanocontacts were measured ex situ (i.e. 

in air) via conductive AFM prior to photoelectrochemical activation. A representative area was 

topographically imaged, single Ni nanocontacts were brought into contact with the conductive 

AFM tip (0.5 V piezo-deflection voltage), and dark J-V curves were collected (Figure G.2a, inset). 

The barrier heights were calculated from the exchange-current density, 𝐽𝐽0 = 𝐴𝐴∗𝑇𝑇2�𝑒𝑒−𝑞𝑞𝜙𝜙b/𝑘𝑘𝑘𝑘� 

where A* is the effective Richardson constant, T is the temperature, q is the elementary charge, and 

k is the Boltzmann constant, by extrapolating the linear forward-bias region of the dark ln |J|-V 

curves to the y-intercept (ideality factors are in Supplementary Section G.2). The fits show that the 

barrier height is independent of Ni-island size (Figure G.2a) with a value (0.61 ± 0.01 V) near that 

of bulk n-Si/Ni contacts (~0.58 V)31. 

The illuminated Voc of each nanocontact was measured under ~5-sun-equivalent flux using 

a 690-nm laser contained in the AFM unit (Supplementary Section G.3). The Voc values of 310 ± 

10 mV show little dependence on island size and agree with the calculated Voc of 284 mV for a 0.61 

V n-Si/Ni Schottky barrier under the experimental illumination (Figure G.2b). These barrier-height 

and Voc results indicate that size-dependent interface behavior is not present for the as-deposited 

nanocontacts and thus cannot alone explain the photocurrent-onset potential differences with Ni 

deposition time (Figure G.1a).    

We next studied the nanocontacts under photoelectrochemical conditions. Conductive 

AFM cantilevers in which the entire tip was isolated from the solution by a dielectric layer except 

for the apex32 were used (inset of Figure G.2c). The custom AFM photoelectrochemistry cell and 

measurement details are presented in Supplementary Section G.3. Under illumination the 

semiconductor back ohmic contact was biased at a potential such that the catalyst particles were 

held in the electrically conductive NiOOH state while few bubbles were produced (i.e. near the 

photocurrent onset potential; vigorous bubble generation interferes with the AFM measurement). 

The surface was then topographically imaged and the photovoltage, i.e. the difference between the 

measured AFM tip potential and the potential applied to the semiconductor ohmic contact (Vph = 

Vtip - Vsem), was measured individually on each island. Photovoltages were collected both before 

and after activation with 50 photoanodic CV cycles (Figures G.2c and G.2d, this activation was 

used because, even for the smallest islands, most of the original metallic Ni remains and the 

nanoislands retain a well-defined hemispherical shape). Notably, the photovoltages are not only 
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substantially larger (in some cases > 500 mV) than those measured under dry ex-situ conditions but 

they also depend on contact area (taken to be the two-dimensional geometric area in the AFM 

topography image) and increase with activation time. These results indicate a size-dependent 

mechanism for enhancing the Ni-nanocontact hole selectivity that is operative only in the presence 

of the OER-active NiOOH surface layer.  

 

 
Figure G.2. Characterization of n-Si/Ni photoelectrodes obtained from the 5-s deposition. (a) 

n-Si/Ni barrier heights collected ex-situ from electrodes without activation show no dependence on 

Ni nanocontact radius. The inset shows ln|J|-V curves for the four colored points. (b) Voc 

measurements extracted ex situ, under ~5-sun-effective illumination (690 nm), from electrodes 

without activation also show no significant dependence on Ni nanocontact radius. (c) Operando 

photovoltages collected using PS-EC-AFM prior to significant electrochemical activation, by 

landing the AFM tip on individual nanocontacts. The inset shows an SEM image of the PS-EC-
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AFM Pt nanoelectrode tip. (d) Operando photovoltages collected at a different location after 

cycling the electrode under illumination from -0.35 to 0.35 V vs. ℰO2/OH− 50 times.  

 

3. Analytical Model of Size-Dependent Photovoltages – The Pinch-off Effect 

The experimentally observed size-dependent photovoltage can be explained by the “pinch-

off” effect25, which occurs when an interface has spatially heterogeneous electrostatic barrier 

heights with low-barrier patches (here φb
Ni) surrounded by a higher-barrier background φb

0  (Figure 

G.3a). Pinch-off occurs when the depletion region induced by the adjacent higher-barrier region 

overlaps with the patch’s depletion region (i.e. with decreasing contact size the contact’s selectivity 

is increasingly dominated by the work function of its surrounding). For the system studied here, 

the electron conductivity decreases resulting in an increased photovoltage due to reduced 

recombination at the more-hole-selective contact. This model has been invoked to explain low-

temperature deviations from ideal Schottky junction transport models8 and used to control contact 

selectivity in nanowire-type devices by utilizing high/low-work-function layers acting as a surface 

gate.29 In electrochemistry, the pinch-off effect has been used to explain the macroscopic behavior 

of intentionally patterned semiconductor photoelectrodes23,27; the effect, however, has never been 

studied by examining individual pinched-off nanocontacts. 

We fit the experimental size-dependent photovoltage data to an analytical pinch-off model 

with a circular patch geometry (see Figure G.3a for model schematic and Supplementary Section 

G.4 for additional discussion).9,24,25 The expression for the current through the nanocontact is given 

by a modified ideal-diode equation 

 
𝐼𝐼patch = 𝐴𝐴∗𝑇𝑇2𝐶𝐶𝑎𝑎 �𝑒𝑒

−𝑞𝑞𝜙𝜙b
0

𝑘𝑘𝑘𝑘 +𝐶𝐶b� �𝑒𝑒
𝑞𝑞𝑉𝑉app
𝑛𝑛𝑛𝑛𝑛𝑛 − 1� (1) 

where Ca represents the effective contact area and Cb a decrease in the barrier height relative to the 

background barrier φb
0 . The exact forms of these perturbations are dependent on the dopant density 

(ND), band bending (Vbb), nanocontact radii (r), and Δ, the difference between φb
Ni and φb

0: 
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The photovoltage data was assessed by assuming a patch barrier height of φb
Ni = 0.61 V 

(the average n-Si/Ni contact barrier height) and then fitting the background barrier (φb
0) to the 

analytical model using to reproduce the contact-size dependence (Supplementary Section G.4). The 

fits indicate  φb
0  = 0.82 V for the n-Si/Ni sample prior to intentional activation and φb

0  = 0.91 V 

after photoelectrochemical activation (Figure G.3b). The chemical nature of this high-barrier region 

and the feasibility of the extracted φb
0  values are discussed in the subsequent section.  

Pinch-off increases minority-carrier selectivity by reducing the flow of majority carriers 

that lead to recombination in the contact. Significant pinch-off behavior is expected when ∆
𝑉𝑉bb

>

 2𝑟𝑟
𝑊𝑊

 , where W is the depletion-region thickness33. For φb
0  of 0.82 V and 0.91 V with φb

Ni = 0.61 V, 

significant pinch-off is predicted for contacts with radii below ~ 110 and 140 nm, respectively. The 

Ni particles studied here have radii between 30 and 150 nm. To illustrate the effect of pinch-off on 

carrier selectivity we plot the calculated conduction-band-potential (ECB) profile as a function of 

both the distance from the center of a 60-nm-radius Ni nanocontact and the depth into the 

semiconductor (Figure G.3c). The junction is shown poised at open circuit under 1 sun illumination 

(corresponding to photoelectrochemical conditions where the back contact of the semiconductor is 

held at a potential near the photocurrent onset). A pinched-off “saddle point” in the conduction-

band energy with a maximum value near 0.8 V and a confined cross section relative to the 120-nm 

Ni-particle diameter (Figure G.3b) is apparent. This increased barrier (relative to the macroscopic 

barrier of 0.61 V) results in a lower electron conductivity and hence improved hole-selectivity and 

reduced recombination. The pinch-off effect thus leads to photovoltages that are not only dependent 

on the contact’s work function, but also its size, its geometry, and the work function of the 

surrounding medium. 

The pinch-off model can explain the observed current-potential data for the n-Si/Ni 

oxygen-evolving photoanodes (Figure G.1a). The experimental data is modeled by solving current 

continuity for the modified diode expression in series with a circuit element representing the 

catalyst driving the OER. The OER potential drop is obtained from a Butler-Volmer expression 

based on the measured OER activity of Ni electrodeposited on Pt (see Supplementary Section G.4).  

The model is consistent with the experimental data for electrodes with 5-s depositions when the 

diode expression represents uniform Ni catalyst nanocontacts that have radii of 60 nm and 15% 

surface coverage (we observed 10-20% experimentally). The result suggests that, at least near the 

photocurrent onset, the current is primarily passed through surface islands smaller than the average 



116 
 

(80 ± 25 nm radii) that have larger effective barrier heights. This model illustrates that the 

photocurrent-onset-potential shift observed for the small particles is completely accounted for by 

enhanced hole selectivity due to the pinch-off effect. The 60-s deposition produces Ni particles too 

large to leverage pinch off and thus the photoelectrode response in that case is consistent with the 

bulk n-Si/Ni Schottky junction driving charge separation (Figure G.3d). 

 

 
Figure G.3. Simulations showing how the pinch-off model explains performance 

enhancements with catalyst nanocontacts. (a) Tung’s model33 for the circular patch geometry is 

used where a small barrier 𝜙𝜙bNi = 0.61 V representing the n-Si/Ni contact is surrounded by a region 

with larger barrier height 𝜙𝜙b0. (b) With 𝜙𝜙bNi = 0.61 V the pinch-off model indicates a surrounding 

barrier of 0.82 V and 0.91 V for the non-activated and activated interfaces, respectively. The 

surrounding barrier height (𝜙𝜙b0) is the only fitting parameter. (c) The conduction-band energy (ECB) 

is plotted at Voc under 1 sun illumination for a 60-nm-radius island with 𝜙𝜙b0 = 0.91. The inset shows 

a cross-section of the barrier through the center of the island (radial distance = 0 nm) and at the 

edge of the island (radial distance = 60 nm). A pinched-off saddle point occurs with an effective 

barrier near 0.8 V – a value significantly larger than the average 0.61 V barrier height measured ex 

situ. (d) The macroscopic voltammetry is consistent with that predicted by the pinch-off model. 
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The photoelectrochemical data for n-Si with 5 s of Ni deposition is consistent with 𝜙𝜙b0 = 0.91 V, 

assuming uniform islands with 60-nm radii covering 15% of the surface. 

 

4. Chemical Identity of the High-Barrier Region  

Although the model shows that the photovoltage trend with nanocontact size can be 

explained by pinch-off, this requires the presence of a high-barrier region surrounding the n-Si/Ni 

contact. Since the experimentally measured dry barrier heights and illuminated Voc values are 

independent of the Ni nanocontact size (Figure G.2a and G.2b) such a region is not present prior to 

photoelectrochemical activation. The activation process results in oxidation of any exposed Si to 

SiOx and converts a portion of the Ni to Ni(OH)2/NiOOH. To evaluate the barrier height in surface 

regions only covered by the SiOx layer (and not NiOOH or Ni) we performed Mott-Schottky 

impedance analysis in a ferro/ferri-cyanide electrolyte (aq. 1 M KCl, 0.05 M K3Fe(CN)6, and 0.35 

M K4Fe(CN)6) on bare n-Si photoanodes. The ferro/ferricyanide solution potential sets the barrier 

height at the n-Si/electrolyte interface to ~0.7 V (larger than the n-Si/Ni barrier height of ~0.6 V). 

Anodic cycling of the n-Si leads to the growth of a SiOx passivation layer. Subsequent Mott-

Schottky analysis shows that the SiOx layer lowers the barrier height to ~ 0.5 V (Supplementary 

Section G.5). This data indicates that SiOx cannot be responsible for setting the proposed large 

background barrier height around the Ni islands. 

Another possible mechanism is that oxidized catalyst with a large work function induces 

the large background barrier. To evaluate the barrier height of the Ni(OH)2/NiOOH on n-Si, we 

fabricated dual-working-electrode devices by (i) depositing a 2-nm-thick uniform Ni-metal layer 

on the n-Si via  electron-beam evaporation, (ii) photodepositing additional Ni (oxy)hydroxide from 

saturated NiCl2 solution in 1 M K-borate buffer (pH 9.5) by applying 0.625 V vs. ℰO2/OH− under 

one-sun illumination for 30 s, (iii) photoelectrochemically cycling the electrode in 1 M K-borate 

buffer until no photocurrent was evident (which oxidized remaining Ni metal and the n-Si surface), 

and (iv) depositing a 10-nm-thick porous Au contact layer on the catalyst surface (Figure G.4a and 

Supplementary Section G.6). The Au contact on these metal-oxide-semiconductor-type devices 

was biased, in an electrochemical cell, to hold the catalyst layer in either its reduced, Ni(OH)2, or 

oxidized, NiOOH, form while impedance spectroscopy was performed at a series of DC biases 

between the Au and back semiconductor contact (Figure G.4b). Mott-Schottky26 analysis of the 

extracted bias-dependent depletion capacitances yield the dopant densities consistent with the 

manufacturer specifications (5 - 8 · 1015 cm-3) and show that the interfacial barrier depends on the 

redox state of the catalyst (Figure G.4b inset). When the Au top contact is poised to hold the catalyst 
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in the Ni(OH)2 state, the barrier height is 0.65 V. When the catalyst is oxidized (i.e. in the OER-

active state) the barrier is 1.04 V, similar to the large background barrier heights indicated by the 

fit to the analytical pinch-off model (Figure G.3b). Figures G.4c, 4B.4d, and 4B.4e depict the band-

bending and barrier-height differences between Ni, Ni(OH)2, and NiOOH contacts to n-Si, 

respectively. This result is conceptually similar to so-called “adaptive junctions” where the barrier 

height of a contact to an n-type semiconductor is enhanced during operation as the electrolyte-

permeable contact is converted to a higher oxidation state by accumulated holes.34,35 The result is 

also consistent with n-Si/Al2O3/Pt/Ni photoanodes where the barrier height was increased by 0.23 

V upon oxidation of the Ni catalyst, although the thin Pt layer was noted to partially screen the 

effect.36  

 

 
Figure G.4. Dual-working-electrode (DWE) device measurements show that high-barrier 

contacts are formed from the oxidized NiOOH during operation. (a) The schematic illustrates 

how DWE devices are fabricated. Connections to the backside of the n-Si and to the Au layer are 

used to perform impedance experiments while the Ni(OH)2/NiOOH layer is potentiostatically held 

in either it’s reduced (Vcat = 0.125 V vs. ƐO2/OH−) or oxidized  (Vcat = 0.425 V vs. ƐO2/OH−) state. (b) 

The voltammograms show the Ni(OH)2/NiOOH redox behavior as it is cycled through the Au 

secondary working electrode at 20 mV s-1 in 1 M K-borate buffer at pH 9.5. Mott-Schottky analysis 

on the impedance data collected between the Au and semiconductor back contact (inset) shows that 
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oxidation Ni(OH)2 to NiOOH causes the barrier height to increase from 0.66 V to 1.04 V. Band-

bending diagrams, as deduced from Mott-Schottky analysis, are shown for (c) metallic Ni, (d) 

Ni(OH)2, and  (e) NiOOH contacts to the n-Si. The barrier heights increase as the Ni is successively 

oxidized to higher oxidation states. The symbols 𝐸𝐸f, 𝐸𝐸Ni, 𝐸𝐸Ni(OH)2, 𝐸𝐸NiOOH and 𝐸𝐸sol represent the 

electrochemical potential for the semiconductor, Ni, Ni(OH)2, NiOOH and solution (𝐸𝐸sol =

 qƐO2/OH−), respectively. The magnitude of 𝑞𝑞𝑉𝑉cat is depicted in (d) and (e) and corresponds to the data 

points in panel (b). See Supplementary Section G.6 for further discussion. 

 

The above results are consistent with the n-Si/Ni photoanodes exhibiting an emergent 

pinch-off phenomenon. After photoanodic generation of NiOOH, high-barrier regions on the n-Si 

are produced because the work function of NiOOH (> 5.3 eV)37 is larger than that of metallic Ni 

(5.0 eV). The large barrier is also consistent with the Ni(OH)2/NiOOH redox potential (~1.35 V vs. 

RHE) being > 1 V more positive than the flat-band potential of n-Si (~ 0.25 V vs. RHE)38. The 

improved photocurrent onset potentials for activated devices with smaller Ni particles (5-s 

deposition) are therefore due to low-barrier n-Si/Ni interfaces “pinched-off” by high-barrier n-

Si/SiOx/NiOOH interfaces (Figure G.5). The pinched off n-Si/Ni junctions form hole-selective 

contacts and suppress majority-carrier electron transfer to the catalyst, compared to non-pinched-

off analogues, while maintaining direct low-resistance electrical connection between the Ni and n-

Si. Photoanodes decorated with large islands (e.g. radii > 140 nm) or those that have not been 

activated to form the NiOOH layer (Supplementary Figure G.S7) show poor performance due to 

the lack of this pinch-off phenomena improving the Ni nanocontact hole selectivity. Continued 

activation (beyond 50 cycles) further improves the photocurrent onset until the underlying n-Si is 

oxidized when the Ni is completely converted to electrolyte-permeable NiOOH, blocking all 

current flow (Supplementary Section G.7). This improvement is attributed to increased Ni 

oxidation which enhances pinch-off by decreasing the n-Si/Ni contact area. The extent of NiOOH 

necessary to produce pinch-off is discussed in Supplementary Section G.8 and supported by 

COMSOL finite-element simulations of the nanoscale junction. 
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Figure G.5.  n-Si/Ni nanocontacts produce a pinched-off junction after activation.  (a) 

Schematic illustrating the depletion regions produced by the surface contacts before and after 

activation. Although the initial depletion region is small, the conversion of surface Ni to NiOOH 

produces a larger depletion region which causes the n-Si/Ni contact to become pinched-off and 

increase in hole selectivity. The necessary extent of conversion required to produce pinch-off is 

discussed in Supplementary Section G.8. Simulation shows that the NiOOH likely extends on the 

surface beyond the clearly evident shell.  (b) The pinch-off hypothesis is corroborated by examining 

devices with cumulative 60-s electrodepositions where the pinched-off junction is intentionally 

retained. By halting the electrodeposition after 5 and 10 s to perform activation cycles that generate 

an interfacial SiOx, the photocurrent onset remains near that of the devices with 5 s of Ni 

electrodeposition.  

 

To further test the pinch-off hypothesis we deposited Ni for 5 s, oxidized the Si and Ni 

surface via 50 photoelectrochemical potential cycles, then electroplated Ni for an additional 55 s 

(Figure G.5b). These devices showed a photocurrent-onset potential ~250 mV more positive than 

n-Si/Ni fabricated with a continuous 60-s Ni electrodeposition (Supplementary Section G.9). The 
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light-limited photocurrent and integrated redox peaks for the samples, however, are similar 

indicating a comparable Ni surface area. These results are explained by the fact that the potential 

cycling step oxidizes the underlying Si surface in regions where Ni has not been deposited and 

subsequent Ni deposition serves only to grow the existing Ni nanoparticles without increasing n-

Si/Ni contact area. The pinched-off junction is thus maintained. 

 

5. Pinch-off in Photoelectrode Devices 

 Our direct measurements of pinch-off explain previous observations for a variety of 

catalyst-coated semiconductor photoelectrodes. Kenny et. al. found that 2-nm-thick Ni layers on n-

Si show a photocurrent onset 200 mV more negative than 5-nm-thick layers.21 This difference 

cannot be explained by resistive losses through the thicker catalyst layer or parasitic light loss.7 The 

data is readily explained, however, by electrochemical activation of the 2-nm Ni film which 

produces nanoscale low-barrier semiconductor/metal contacts pinched-off by high-barrier 

semiconductor/oxide/metal-oxyhydroxide contacts7. Similar observations have been noted for 

devices where catalyst nanocontacts were intentionally deposited. Loget et al. noted a ~200 mV 

improvement in photocurrent-onset potential after 40 photoelectrochemical conditioning cycles 

when comparing n-Si coated with Ni nanoislands (59 ± 17 nm diameter) to n-Si coated with a 

uniform Ni film.20 Xu et al. found a similar improvement in photocurrent onset, without activation, 

when NiOOH was photodeposited after initial Ni-metal island formation.39 Annealing the Ni metal 

nanoparticles to oxidize their surface has also been shown to improve photocurrent onset without 

requiring electrochemical cycling.40 For n-Si/Co photoanodes the barrier height was found to be a 

function of Co coverage with low coverage (i.e. coalesced islands of 21 ± 8 nm in diameter) 

yielding photoanodes with a 360-mV improvement in photocurrent onset relative to uniform Co 

films (pinch-off was also hypothesized and rationalized in this work, but not analyzed via direct 

measurement).26 For p-GaAs photocathodes, the better HER performance was achieved by using 

small Pt nanoparticles 10 nm in diameter, relative to 90-nm particles.41 p-Si nanowires decorated 

with NiCoSex nanoparticles show a 110 mV improvement in the flat-band potential relative to a 

planar NiCoSex/p-Si.42 For particulate semiconductors, size-dependent photocatalytic activity has 

been observed for particulate n-TiO2 decorated with Au nanoparticles, with the smallest 

nanoparticles being the most active.43 The above results are likely due to pinch-off where the high-

barrier region is attributed either to contact with oxidized catalyst or with the electrolyte.  

 The insight illustrated here may be useful in designing improved devices by engineering 

nanocontact selectivity. Although high-performance selective contacts to Si can be achieved by 
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forming doped-semiconductor homo/heterojunctions,44 for some applications carrier-selective 

junctions formed by depositing electrochemically stable contacts may be useful.45 This approach is 

difficult, however, because of the lack of materials that form carrier-selective heterojunctions while 

remaining stable and electrically conductive under electrochemical conditions. An alternative 

strategy might focus on depositing stable/conductive nanocontacts before engineering the 

surrounding surface to induce selectivity via pinch-off (see Supplementary Section G.9). For 

emerging photoelectrode materials, particularly oxides1 such as BiVO4 or photoactive particulate 

semiconductors like TiO2 and SrTiO3
46,47, designing carrier-selective contacts is even more 

difficult. This challenge might be addressed by using sufficiently small catalytic contacts and 

engineering the surrounding surface (which does not need to provide catalytic sites nor collect 

charge) to induce a large interface electrostatic barrier. The redox activity of such a selectivity-

inducing material might be leveraged to improve selectivity during operation. 

 

6. Conclusions 

Understanding and controlling the selective flow of electron and holes is critical in the 

design of efficient photoelectrochemical devices. We provide the first example of spatially resolved 

potential measurements on electronically isolated nanoscale features in operating 

photoelectrochemical systems. This capability enables the interfacial behavior of nanoscale 

contacts to semiconductor photoelectrodes to be directly interrogated. By translating the approach 

to polycrystalline thin-film13 or nanostructured48 photoelectrodes coated with nanoparticle catalyst 

particles, heterogeneity in the underlying semiconductor properties could be probed through their 

effect on the photovoltage measured at individual nanoparticle semiconductor/catalyst contacts. 

The technique should further enable studies of catalyst-contact properties in particulate 

photoelectrochemical systems where both anode and cathode catalyst are dispersed on the same 

semiconductor particle47,49. We further provide the first measurement of pinch-off achieved by 

characterizing individual nanocontacts in photoelectrochemical devices. For photoelectrochemical 

devices, the pinch-off effect has only been experimentally studied previously via macroscopic 

current-voltage measurements utilizing intentionally nanofabricated monodisperse contacts and a 

reversible redox couple.27 The pinch-off phenomena studied here provide evidence that the effect 

can be utilized, possibly in a wide range of semiconductor and catalyst systems, to create 

photoelectrochemical devices with high efficiency. 

The ability to measure local surface potentials with PS-EC-AFM could be useful in other 

areas. The technique and data interpretation are straightforward, with measurements only reliant on 

electrochemical-potential equilibration between the AFM tip and the feature of interest. Nanoscale-
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resolved surface-potential sensing is perhaps useful in measuring heterogeneity of processes in 

fuel-cell/electrolyzer catalyst-ionomer structures50 and intercalation/deintercalation phenomena in 

battery electrodes51,52. The technique might aid biological research, where potential measurements 

in physiologically relevant electrolyte is challenging12,53, by allowing direct measures of bacterial53 

and membrane surface potentials54. The technique could also be adapted to apply potential to 

nanoscale features instead of sensing potential. It may be possible to locally study charge-transfer 

processes and extract basic parameters related to conductivity, catalytic rates, and double-layer 

capacitance on isolated nanoscale features in operating (photo)electrochemical systems.  
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CHAPTER V: CONCLUSIONS 

 

The impacts of these works on the photoelectrochemical energy conversion field largely 

remain to be seen. However, at the time of writing, the dual-working-electrode (DWE) technique 

has been adopted by at least four other groups. Potential-sensing electrochemical atomic force 

microscopy (PS-EC-AFM) has yet to be adopted but represents a significant improvement over 

DWE analysis because it can measure nanoscale semiconductor|catalyst interfaces. Many current 

efforts in photoelectrochemical water splitting (e.g. those employing nanowire semiconductors and 

overall water splitting particulates) could foreseeably benefit from nanoscale potential sensing. 

Currently the main limitation of the PS-EC-AFM technique is slow data collection, where a 

topographical image must be captured prior to sensing the potential at a single location. Future 

iterations of the approach might look to sense surface potentials in tandem with the initial topology 

mapping.   

The analytical descriptions of charge transport across the semiconductor|catalyst interface 

presented herein are far simpler than traditional numerical modeling approaches. The analytical 

equations should make prediction and modeling of semiconductor|catalyst interfacial behavior 

much easier for researchers. The equations also provide significant insight on how semiconductor 

surface states (often invoked to qualitatively explain unexpected behavior) affect charge transport 

through the semiconductor|catalyst interface.  

Finally, an understanding of how the “pinch-off” effect can influence photoelectrochemical 

devices was largely absent from the literature base prior to this work. The “pinch-off” effect likely 

underpins numerous results in the literature base, as discussed in Chapter 4, and this knowledge 

should aid investigators in better interpreting results. Intentional application of the “pinch-off” 

effect to enhance carrier selectivity may be useful for designing more efficient photoelectrodes. For 

oxide semiconductors (e.g. BiVO4 & Fe2O3), where charge separating homojunctions are difficult 

to fabricate, “pinch-off” engineering to create selective heterojunctions is a promising alternative.  
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APPENDICES 

 

APPENDIX A. SUPPORTING INFORMATION FOR PAPER C 

 

Transient Photocurrents on Catalyst-Modified n-Si Photoelectrodes: Insight from Dual-

Working Electrode Photoelectrochemistry 

 

 
Figure C.S1. Two dual-working-electrode (DWE) deposition strategies. Both strategies begin 

by activating the metallic Ni protection layer via electrochemically cycling 50 times through 

potentials that span the redox wave under ~ 1 sun illumination. For a DWE that senses the 

protection layer electrochemical potential (depicted by the left fork), the thin porous Au contact is 
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deposited immediately after activation. The NiOOH layer is sufficiently thin such that areas of 

contact form between the metallic Ni and the Au film. Additional NiOOH is then electrodeposited 

(photo-assisted) on top of the Au contact.  For a DWE that senses the catalyst electrochemical 

potential (depicted by the right fork), the additional NiOOH catalyst is deposited prior to the porous 

Au layer. This prevents the Au film from contacting the protection layer.  

 

 
Figure C.S2. Transient integration comparison between the different extents of catalyst 

loading. All data is collected on the same electrode with NiOOH loading sequentially increased 

via photo-assisted electrodepositions. Increasing the amount of redox active catalyst results in 

transients with larger charge integrals.  

 

 
Figure C.S3. Comparison of electrode activity before and after the first transient experiment.  

Cyclic voltammograms are collected on the same electrode as in Figure C.1 of the main text. The 

transient experiment results in a cathodic shift of oxygen evolution onset and an increase in the 



127 
 

redox peak integrations. The data indicates that the transient experiment ages the electrode and 

converts some of the protection layer to redox active NiOOH/Ni(OH)2. The cathodic onset shift is 

attributed to an increase in the photovoltage. Increased photovoltage also explains the cathodic shift 

in the region of large integrated transient charge for Figure C.1 and Figure C.S2. 

 

 
Figure C.S4. Cyclic voltammogram through the WE2 contact after transient experiments 

showing position of the oxidation and reduction waves for the catalyst.  The data is from the 

same electrode as in Figure C.3 of the main text; i.e. WE2 is in direct contact with the outer catalyst 

layer. Note that redox integration is small here, most likely due to mechanical exfoliation of the Au 

contact during the experiment. Onset of catalyst oxidation occurs at ~ 0.3 vs. 𝜀𝜀O2/OH− while 

reduction occurs at ~ 0.25 vs. 𝜀𝜀O2/OH−.  

 

 
Figure C.S5. Full transient behavior for the electrode used to sense the protection layer 

electrochemical potential (from Figure C.5). (a) The photocurrent transients as a function of 

time. The regions of transient activity are denoted as in Figure C.3 of the main text. These are 
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assigned by examining the redox integration in Figure C.S7. (b) VNi response during transient 

experiments. The voltage sensed by WE2 always responds to changes in the applied potential or 

light condition. This indicates that the porous Au layer is in contact with the protection layer and 

is not influenced by the catalyst’s conductivity transitions.   

 

 
Figure C.S6. Cyclic voltammogram through the WE2 contact after transient experiments.  

The data is from the same electrode as in Figure C.5 of the main text; i.e. WE2 is in direct contact 

with the Ni protection layer. (a) Data collected at 100 mV s-1 shows that onset of oxidation occurs 

at ~ 0.3 vs. 𝜀𝜀O2/OH− while reduction occurs at ~ 0.2 vs. 𝜀𝜀O2/OH−.  (b) Data collected at 1 mV s-1 

approximates steady-state behavior and shows that redox states exist over a 40-50 mV range. This 

range is comparable with the region of diminished decay in Figures C.5b and C.5c.   
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Figure C.S7.  Integration of the photocurrent transients from Figure C.5 of the main text. 

Behavior is very similar to the transients from Figure C.2, where a region of increased integrated 

transient charge occurs. The region with increased integration is defined as “region 2”. The 

bottom pane shows Vsem vs. 𝜀𝜀O2/OH− as a function of time.   
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APPENDIX B. SUPPORTING INFORMATION FOR PAPER D  

 

Behavior of Catalyst-Modified n-Si Photoelectrodes in the Presence of a Sacrificial Hole 

Scavenger: Insight from Dual-Working Electrode Photoelectrochemistry 

 

 
Figure D.S1.  Comparison of electrochemical behavior for a n-Si | Ir photoanode with and 

without a 0.5 M H2O2 hole scavenger.  All experiments were performed on the same electrode 

without altering its position relative to the 1 sun solar simulator source. The curves labeled with 

the H2O subscript indicate experiments without hole scavenger presence, whereas the H2O2 

subscript indicates hole scavenger presence. Curves labeled “Sem” indicate that cyclic voltammetry 

data was collected by applying the potential to the semiconductor back-contact. Curves labeled 

“Cat” indicate that the data was collected by applying the potential to the secondary Au contact. 

The two dashed curves represent the Sem behavior in the dark and show that leakage current is 

minimal. The difference in OER onset for the SemH2O and CatH2O is the photoanodes 

photovoltage. The results show that the photovoltage is retained once H2O2 is introduced. In this 

case, the H2O2 acts to enhance charge injection without holding the catalyst in a reduced, insulating 

state.  
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Figure D.S2. Comparison of H2O2 and H2O oxidation responses before and after Co-Pi 

deposition on a Fe2O3 photoanode. All linear sweep voltammograms are collected on the same 

electrode, in 1 M potassium phosphate buffer (pH 9.5), without repositioning between experiments.  

Co-Pi deposition was achieved by draining the electrolyte, introducing a CoCl2 solution into the 3-

neck electrochemical cell and performing a photo-assisted (1 sun) deposition. During the 10 min 

photo-assisted deposition the potentiostat maintained chronopotentiometry at 10 μA cm-2. The 

solution was then drained, rinsed, and refilled with the potassium phosphate buffer. The results 

show differences in the hole scavenged behavior before and after Co-Pi electrodeposition. At 

sufficiently cathodic potentials (Vsem < -0.5 vs. vs. 𝜀𝜀O2/OH−), the bare photoanode exhibits higher 

current densities. Whereas at more anodic potentials Co-Pi decorate photoanode exhibits higher 

current densities.  These results suggest that the catalyst is not merely an inactive spectator. It may 

be that the increased activity at anodic potentials is due to catalyst-mediated passivation of surface 

states which would otherwise act as recombination centers. The decreased activity at cathodic 

potentials could then be explained in catalytic active area; the reduced Co-Pi catalyst blocks some 

of the surface area that was available prior to catalyst deposition.    
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APPENDIX C. SUPPORTING INFORMATION FOR PAPER E 

 

Theory and Simulation for the Effects of Surface States on Charge Transport in 

Photoelectrochemical Devices 

 

Section E.S1 Notation and Modeling Conventions 

Section E.S1.1 Notation 

The semiconductor surface is at x = 0, and the semiconductor extends in the negative x 

direction, so that positive currents represent net current into the solution. The total semiconductor 

width is assumed to be large relative to the depletion width so that the bulk semiconductor 

corresponds to x ∼ −∞. Electron and hole densities in the semiconductor are labeled n and p, 

respectively, with a subscript s indicating the value at the surface (x = 0). Current density is labeled 

J and has two subscripts corresponding to transfer between two subsystems, except where 

indicated. The subsystems are labeled vb (valence band), cb (conduction band), sc (semiconductor), 

ss (surface states), cat (catalyst), and sol (solution). The electrostatic potential is labeled 𝜙𝜙 and the 

total electrostatic potential drop across the entire system is 𝑉𝑉. The total electrostatic potential is 

portioned into two sub-components, that in the semiconductor depletion region (𝑉𝑉𝑠𝑠𝑠𝑠) and the 

Helmholtz potential (𝑉𝑉𝐻𝐻).  Electrochemical potentials (quasi-Fermi levels) of the subsystems are 

labeled E with a subscript indicating the subsystem, except for EC, EV which represent the 

conduction and valence band edge energies, and En, Ep which represent the electron and hole quasi-

Fermi levels. The energy level (standard potential) of the surface states is 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 . Overbars (e.g. 𝑛𝑛�) 

generally indicate equilibrium quantities; in the case of current densities, overbars indicate 

exchange currents (i.e. the unidirectional equilibrium currents rather than the total equilibrium 

current, which is zero). In the case of 𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜  the overbar denotes the standard surface state potential in 

the absence of the Helmholtz potential. The equilibrium electron 𝑛𝑛� and hole 𝑝̅𝑝 concentrations 

without subscripts indicate the bulk concentrations. Standard symbols are used for physical 

constants: k, T, q, ε, indicate the Boltzmann constant, absolute temperature, magnitude of 

elementary charge, and vacuum permittivity, respectively. Material parameters are the hole 

diffusion coefficient (Dp), effective density of states constants for the conduction and valence bands 

(NC and NV), semiconductor absorption coefficient (α), and the semiconductor diffusion length (δ). 

A few quantities are computed from these parameters: the semiconductor Debye length λ ≡

 �𝜀𝜀𝜀𝜀𝑜𝑜𝑘𝑘𝑘𝑘/𝑞𝑞2𝑁𝑁𝑑𝑑, where Nd is the donor density semiconductor (Nd ≈ 𝑛𝑛� for an n-type semiconductor); 
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and the semiconductor hole diffusion length δ ≡  �𝐷𝐷𝑝𝑝𝑘𝑘𝑅𝑅/𝑛𝑛� where kR is the second-order 

recombination rate constant. 

 
Figure E.S1. Model schematic depictinga a semiconductor/surface states/catalyst/solution 

interface. Terms and parameters are described in detail in the paragraph above. 

 

All quantities are written in physical units except for energies and potentials, which are 

treated as unitless quantities that have been reduced by the thermal energy kT (for energies) or the 

thermal voltage kT/q (for potentials). Because of this variable reduction, there are many equations 

in this work that appear to treat potentials and energies as though they have the same units - the 

reader should keep in mind that in physical units there exists a proportionality factor of q. 

 

Section E.S1.2 Model Conventions 

All energies are referenced to the solution potential Esol ≡ 0, and the sign convention is 

chosen to produce a hole energy scale, so that more positive potentials are more oxidizing. The 

electrostatic potential is referenced to the bulk semiconductor, 𝜙𝜙(−∞) ≡ 0, so that the electrostatic 

potential in the solution is 𝜙𝜙sol = −V. Note that energies and electric potentials are referenced to 

opposite ends of the system (x = ∞ for energies, x = −∞ for potentials); this assignment facilitates 

modeling. Relating energies in combined solid state-electrochemical systems can be challenging 

because of the different energy scales used; for a thorough exposition on understanding energy 

diagrams, we refer the reader to the work of Bisquert,1 which uses similar notation to ours. 
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For the isolated semiconductor (i.e. with flat bands), 𝐸𝐸𝑛𝑛 = 𝐸𝐸𝑝𝑝 = 𝐸𝐸�𝑠𝑠𝑠𝑠, 𝐸𝐸𝐶𝐶 = 𝐸𝐸�𝐶𝐶, and 𝐸𝐸𝑉𝑉 =

𝐸𝐸�𝑉𝑉. The carrier concentrations are given by 

 

 𝑛𝑛� = 𝑁𝑁𝐶𝐶𝑒𝑒𝐸𝐸
�𝐶𝐶−𝐸𝐸�𝑆𝑆𝑆𝑆         𝑝̅𝑝 = 𝑁𝑁𝑉𝑉𝑒𝑒𝐸𝐸

�𝑆𝑆𝑆𝑆−𝐸𝐸�𝑉𝑉  (S1.1) 

 

After equilibration with the rest of the system, the band positions shift according to:  

 

 𝐸𝐸𝐶𝐶(𝑥𝑥) = 𝐸𝐸�𝐶𝐶 + (𝜙𝜙(𝑥𝑥) − 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠)            𝐸𝐸𝑉𝑉(𝑥𝑥) = 𝐸𝐸�𝑉𝑉 + (𝜙𝜙(𝑥𝑥) − 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠) (S1.2) 

 

where 𝜙𝜙(𝑥𝑥) - 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠 is the electrostatic potential offset from solution to semiconductor at position x, 

defined as a positive quantity. The bulk carrier concentrations remain at their pre-equilibrium 

values. Quasi-Fermi levels and carrier concentrations are then related by: 

 

 𝑛𝑛(𝑥𝑥) = 𝑛𝑛�𝑒𝑒−𝐸𝐸𝑛𝑛(𝑥𝑥)+𝜙𝜙(𝑥𝑥)              𝑝𝑝(𝑥𝑥) = 𝑝̅𝑝𝑒𝑒𝐸𝐸𝑝𝑝(𝑥𝑥)−𝜙𝜙(𝑥𝑥) (S1.3) 

 

The Helmholtz potential is defined as the difference in potential between the semiconductor 

surface and the solution, 𝑉𝑉𝐻𝐻 ≡ 𝜙𝜙𝑠𝑠 − 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠, where 𝜙𝜙𝑠𝑠 is the potential at the semiconductor surface (x 

= 0). The potential drop in the semiconductor depletion region is defined as the difference in 

potential between the bulk semiconductor and the semiconductor surface, 𝑉𝑉𝑠𝑠𝑠𝑠 ≡ 𝜙𝜙(−∞) − 𝜙𝜙𝑠𝑠 =

−𝜙𝜙𝑠𝑠. The total electrostatic potential drop at equilibrium is 𝑉𝑉� ≡ −𝐸𝐸�𝑠𝑠𝑠𝑠, which is equivalent to 𝑉𝑉� ≡

𝑉𝑉�𝐻𝐻 + 𝑉𝑉�𝑠𝑠𝑠𝑠. The applied bias is defined as a deviation from the equilibrium value, 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 ≡ 𝑉𝑉 − 𝑉𝑉� ; this 

can also be expressed as a difference in electrochemical potentials, 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 ≡ 𝐸𝐸𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠. The surface 

electron and hole concentrations are therefore given by: 

 

 𝑛𝑛𝑠𝑠 = 𝑛𝑛�𝑒𝑒−𝐸𝐸𝑛𝑛,𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠              𝑝𝑝𝑠𝑠 = 𝑝̅𝑝𝑒𝑒𝐸𝐸𝑝𝑝,𝑠𝑠+𝑉𝑉𝑠𝑠𝑠𝑠  (S1.4) 

 

Or alternatively, expressed in terms of the Helmholtz potential drop, by: 

 

 𝑛𝑛𝑠𝑠 = 𝑛𝑛�𝑒𝑒−𝐸𝐸𝑛𝑛,𝑠𝑠−(𝑉𝑉−𝑉𝑉𝐻𝐻)           𝑝𝑝𝑠𝑠 = 𝑝̅𝑝𝑒𝑒𝐸𝐸𝑝𝑝,𝑠𝑠+(𝑉𝑉−𝑉𝑉𝐻𝐻) (S1.5) 
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E.S1.3 Complete List of Model/Paper Terms  

𝑥𝑥 distance coordinate 

𝑥𝑥 = −∞ bulk semiconductor position 

𝑥𝑥 = 0 semiconductor surface position 

𝜙𝜙 electrostatic potential 

𝜙𝜙𝑠𝑠 electrostatic potential at the semiconductor surface 

𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠 electrostatic potential in the solution 

𝑉𝑉𝐻𝐻 Helmholtz potential drop 

𝑉𝑉𝑠𝑠𝑠𝑠 potential drop in semiconductor depletion region 

𝑉𝑉 total potential drop (𝑉𝑉 = 𝑉𝑉𝑠𝑠𝑠𝑠 + 𝑉𝑉𝐻𝐻 = −𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠)  

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 externally applied bias (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠) 

𝑉𝑉�𝐻𝐻 Helmholtz potential drop at equilibrium 

𝑉𝑉�𝑠𝑠𝑠𝑠 potential drop in semiconductor depletion region at equilibrium 

𝑉𝑉�  total potential drop at equilibrium 

𝛥𝛥𝛥𝛥𝐻𝐻 Helmholtz potential deviation from equilibrium (𝛥𝛥𝛥𝛥𝐻𝐻 = 𝑉𝑉𝐻𝐻 − 𝑉𝑉�𝐻𝐻) 

𝛥𝛥𝛥𝛥𝑠𝑠𝑠𝑠 semiconductor depletion region potential deviation from equilibrium 

𝑛𝑛, 𝑝𝑝 charge carrier concentrations 

𝑛𝑛𝑠𝑠, 𝑝𝑝𝑠𝑠 charge carrier concentration at the semiconductor surface 

𝑝𝑝𝑤𝑤 hole concentration at depletion width edge 

𝑝𝑝†(𝑥𝑥) hole concentration deviation from quasi-equilibrium 

𝑛𝑛�, 𝑝̅𝑝 charge carrier concentrations at equilibrium 

𝑛𝑛�𝑠𝑠, 𝑝̅𝑝𝑠𝑠 charge carrier equilibrium concentration at semiconductor surface 

𝑐𝑐, 𝑐𝑐+ reduced and oxidized catalyst states 

𝑐𝑐̅, 𝑐𝑐̅+ reduced and oxidized catalyst states at equilibrium 

𝑐𝑐𝑠𝑠𝑠𝑠, 𝑐𝑐𝑠𝑠𝑠𝑠+  catalyst states occupancy at the surface state formal potential 

𝑐𝑐𝑠̅𝑠𝑠𝑠, 𝑐𝑐𝑠̅𝑠𝑠𝑠+  equilibrium catalyst states occupancy at the surface state formal 

potential 

𝑠𝑠, 𝑠𝑠+ reduced and oxidized surface state concentrations at equilibrium 

𝑠̅𝑠, 𝑠̅𝑠+ reduced and oxidized surface state concentrations at equilibrium 
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𝐸𝐸𝑠𝑠𝑠𝑠 semiconductor bulk Fermi level 

𝐸𝐸�𝑠𝑠𝑠𝑠 semiconductor bulk Fermi level - isolated semiconductor 

𝐸𝐸𝑝𝑝, 𝐸𝐸𝑛𝑛 quasi-Fermi levels 

𝐸𝐸𝑝𝑝,𝑠𝑠, 𝐸𝐸𝑛𝑛,𝑠𝑠 quasi-Fermi levels at the semiconductor surface 

𝐸𝐸�𝑝𝑝, 𝐸𝐸�𝑛𝑛 equilibrium quasi-Fermi levels 

𝐸𝐸�𝑝𝑝,𝑠𝑠, 𝐸𝐸�𝑛𝑛,𝑠𝑠 equilibrium quasi-Fermi levels at the semiconductor surface 

𝐸𝐸𝑉𝑉, 𝐸𝐸𝐶𝐶  valence and conduction band energies 

𝐸𝐸�𝑉𝑉, 𝐸𝐸�𝐶𝐶  valence and conduction band energies – isolated semiconductor 

𝐸𝐸𝑠𝑠𝑠𝑠 surface state Fermi level 

𝐸𝐸�𝑠𝑠𝑠𝑠 equilibrium surface state Fermi level 

𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜  surface state standard potential - also isoenergetic transfer level 

𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜  surface state standard potential - neglecting 𝑉𝑉𝐻𝐻 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 catalyst Fermi level 

𝐸𝐸�𝑐𝑐𝑐𝑐𝑐𝑐 equilibrium catalyst Fermi level 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 solution Fermi level (set to 0 by model definition) 

𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 valence band to surface state current density 

𝐽𝐽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 conduction band to surface state current density 

𝐽𝐽𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 valence band to catalyst current density 

𝐽𝐽𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 conduction band to catalyst current density 

𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 surface state to catalyst current density 

𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 surface state to solution current density 

𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 catalyst to solution current density 

𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠, 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠, 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐, 

𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐, 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐, 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠, 

𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 

equilibrium exchange currents for each current density 

𝑘𝑘𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠, 𝑘𝑘𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠, 

𝑘𝑘𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐, 𝑘𝑘𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐, 

2nd order rate constant for each transfer process 
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𝑘𝑘𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐, 𝑘𝑘𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠, 

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 

𝐽𝐽𝐺𝐺  Gärtner current 

𝐽𝐽𝑅̅𝑅 depletion recombination current 

𝐽𝐽𝑝𝑝 total hole current (transfer from vb to ss plus from vb to cat) 

𝐽𝐽𝑟𝑟𝑠𝑠𝑠𝑠 surface state recombination current 

𝐽𝐽𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠  surface state mediated current density from valence band to catalyst  

𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠  surface state mediated current density from valence band to solution  

𝐽𝐽𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠  surface state mediated current density from conduction band to catalyst  

𝐽𝐽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠  surface state mediated current density from conduction band to solution  

𝑁𝑁𝑉𝑉, 𝑁𝑁𝐶𝐶  effective DOS for the valence and conduction bands 

𝑁𝑁𝑠𝑠𝑠𝑠 DOS for the surface states at 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜  

𝑁𝑁𝐷𝐷 semiconductor dopant density 

𝐶𝐶𝐻𝐻 Helmholtz capacitance 

𝑞𝑞𝑠𝑠𝑠𝑠 excess charge in semiconductor depletion region 

𝑞𝑞𝑠𝑠𝑠𝑠 excess charge in surface states 

𝑞𝑞𝐻𝐻 excess charge in Helmholtz layer 

𝑘𝑘𝐵𝐵 Boltzmann constant 

𝑇𝑇 absolute temperature 

𝑞𝑞 elementary charge 

𝜀𝜀 vacuum permittivity 

𝜀𝜀𝑜𝑜 vacuum permittivity constant 

𝐷𝐷𝑝𝑝 hole diffusion coefficient 

𝛿𝛿 hole diffusion length 

𝜆𝜆 Debye length 

𝑘𝑘𝑅𝑅 second order recombination rate constant 

𝑤𝑤 depletion width 

𝛼𝛼 absorption coefficient 

𝛷𝛷 incident photon flux 
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𝛷𝛷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 incident photon flux absorbed in bulk of semiconductor 

𝛷𝛷𝑑𝑑𝑑𝑑𝑑𝑑 incident photon flux absorbed in semiconductor depletion region 

𝐺𝐺(𝑥𝑥) generation at position 𝑥𝑥 

𝑅𝑅(𝑥𝑥) recombination at position 𝑥𝑥 

𝑎𝑎𝑖𝑖 acceptor state in subsystem 𝑖𝑖 

𝑑𝑑𝑖𝑖 donor state in subsystem 𝑖𝑖 

𝑔𝑔𝑖𝑖(𝜖𝜖) DOS as a function of energy 𝜖𝜖 – subsystem 𝑖𝑖 

𝑓𝑓𝑖𝑖(𝜖𝜖) Fermi-Dirac occupancy probability as a function of energy 𝜖𝜖 – 

subsystem 𝑖𝑖 

Table E.S1 Definition for all terms found in the charge transport modeling.  

 

Section E.S2 Charge Neutrality Treatment and Electrostatics 

The electrostatic potential drops across the semiconductor depletion region 𝑉𝑉𝑠𝑠𝑠𝑠 ≡ −𝜙𝜙𝑠𝑠 and 

the Helmholtz layer drop 𝑉𝑉𝐻𝐻 ≡ 𝜙𝜙𝑠𝑠 − 𝜙𝜙𝑠𝑠𝑠𝑠𝑠𝑠 are determined by the electroneutrality, i.e. by equality 

of charge on either side of the semiconductor-solution interface: 

 

 𝑞𝑞𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑠𝑠𝑠𝑠 = 𝑞𝑞𝐻𝐻 (S2.1) 

 

where qsc is the excess charge in the depletion region of the semiconductor, qss is that in the 

semiconductor surface states, and qH is that in the Helmholtz layer. The sum of the potential drops 

should equal the total potential drop across the entire system, 

 

 𝑉𝑉𝑠𝑠𝑠𝑠 + 𝑉𝑉𝐻𝐻 = 𝑉𝑉 (S2.2) 

 

With a small amount of surface charge qss, ions in the Helmholtz layer compensate the 

charge in the depletion region qsc; because the electrolyte concentration is generally much higher 

than the dopant density, the Helmholtz potential drop is typically quite small in the absence of 

surface charge. When sufficient charge accumulates in the surface states (𝑞𝑞𝑠𝑠𝑠𝑠 ≫ 𝑞𝑞𝑠𝑠𝑠𝑠), more ions 

will be needed to balance the charge, and the Helmholtz potential drop is increased. Since the 

catalyst charge is distributed throughout the ion-permeable catalyst layer, ions from the solution 

can balance the catalyst charge outside of the Helmholtz layer, so we can assume that the catalyst 

charge does not influence the interfacial charge neutrality condition [Eq. S2.1]. 
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An important consequence of the Helmholtz potential is that it shifts the energy of the 

surface states 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜  relative to the solution. Denoting by 𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜  the value of 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜  in the absence of a 

Helmholtz potential, we have 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 = 𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 + 𝑉𝑉𝐻𝐻  . 

Using the depletion layer approximation,2 the charge in the semiconductor depletion 

region, assuming 𝑉𝑉𝑠𝑠𝑠𝑠 > 0, is 

 

 𝑞𝑞𝑠𝑠𝑠𝑠 = 𝑞𝑞𝑁𝑁𝐷𝐷𝑤𝑤 (S2.3) 

 

To write 𝑞𝑞𝑠𝑠𝑠𝑠 in terms of 𝑉𝑉𝑠𝑠𝑠𝑠 we first define the dopant density 𝑁𝑁𝐷𝐷 

 

 
𝑁𝑁𝐷𝐷 =  

𝜀𝜀𝑘𝑘𝐵𝐵𝑇𝑇
𝑞𝑞2𝜆𝜆2

 (S2.4) 

 

and the depletion width 𝑤𝑤 as 

 

 
𝑤𝑤 =  �

2𝜀𝜀𝑉𝑉𝑠𝑠𝑠𝑠
𝑞𝑞𝑁𝑁𝐷𝐷

 (S2.5) 

 

Substitution of 𝑁𝑁𝐷𝐷 into the expression for 𝑤𝑤 yields 

 

 
𝑤𝑤 =  𝜆𝜆�2𝑉𝑉𝑠𝑠𝑠𝑠  �

𝑞𝑞
𝑘𝑘𝑘𝑘

 (S2.6) 

 

which we substitute into the abrupt depletion approximation to yield and expression for 𝑞𝑞𝑠𝑠𝑠𝑠 

 

 
𝑞𝑞𝑠𝑠𝑠𝑠 =  𝑞𝑞𝑁𝑁𝐷𝐷𝜆𝜆�2𝑉𝑉𝑠𝑠𝑠𝑠�

𝑞𝑞
𝐾𝐾𝐵𝐵𝑇𝑇

≈ 𝑞𝑞𝑁𝑁𝐷𝐷𝜆𝜆�2𝑉𝑉𝑠𝑠𝑠𝑠  (S2.7) 

 

The excess charge in the surface states is determined by the surface state electrochemical potential 

Ess and the surface state DOS function, 𝑔𝑔𝑠𝑠𝑠𝑠 

 

 𝑞𝑞𝑠𝑠𝑠𝑠 =  𝑞𝑞�𝑔𝑔𝑠𝑠𝑠𝑠(𝜖𝜖)𝑓𝑓(𝜖𝜖 − 𝐸𝐸𝑠𝑠𝑠𝑠)𝑑𝑑𝑑𝑑 (S2.8) 
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Since the surface states are treated mono-energetically – only existing at 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 , the DOS function, 

𝑔𝑔𝑠𝑠𝑠𝑠(𝜖𝜖), is represented using a delta-Dirac expression 

 

 𝑔𝑔𝑠𝑠𝑠𝑠(𝜖𝜖) =  𝑁𝑁𝑠𝑠𝑠𝑠𝛿𝛿(𝜖𝜖 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 ) (S2.9) 

  

Occupancy (excess holes in the surface states) is expressed via the following Fermi-Dirac 

expression 

 

 𝑓𝑓(𝜖𝜖 − 𝐸𝐸𝑠𝑠𝑠𝑠) =  
1

1 + 𝑒𝑒𝜖𝜖−𝐸𝐸𝑠𝑠𝑠𝑠
 (S2.10) 

 

Substitution of S2.9 and S2.10 into S2.8 yields the 𝑞𝑞𝑠𝑠𝑠𝑠 expression 

 

 𝑞𝑞𝑠𝑠𝑠𝑠 =  𝑞𝑞𝑁𝑁𝑠𝑠𝑠𝑠
1

1 + 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 −𝐸𝐸𝑠𝑠𝑠𝑠
 (S2.11)  

 

The Helmholtz region is essentially a capacitor in which one electrode is the semiconductor 

surface and the other is the layer of ions in the Helmholtz plane, with a neutral region between 

them. The excess charge in the Helmholtz layers is expressed in terms of the Helmholtz capacitance 

(𝐶𝐶𝐻𝐻) 

 

 𝑞𝑞𝐻𝐻 =  𝐶𝐶𝐻𝐻𝑉𝑉𝐻𝐻 (S2.12) 

 

Substitution of S2.7, S2.11, and S2.12 into S2.1 yields the complete charge neutrality equation 

 

 𝑞𝑞𝑁𝑁𝐷𝐷𝜆𝜆�2𝑉𝑉𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑁𝑁𝑠𝑠𝑠𝑠
1

1 + 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 −𝐸𝐸𝑠𝑠𝑠𝑠
≈ 𝐶𝐶𝐻𝐻𝑉𝑉𝐻𝐻 (S2.13) 

 

Equation (S2.13) determines the division of the total electrostatic potential V into Vsc and VH in 

terms of the parameters and the surface state potential Ess. At equilibrium Ess = 0, and the 

equilibrium potential drops 𝑉𝑉�𝑠𝑠𝑠𝑠 and 𝑉𝑉�𝐻𝐻 are constants determined by the parameters. Figure E.S2 

shows 𝑉𝑉�𝐻𝐻 as a function of Nss for 𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜  = −0.25 to 0.5 V. To examine the limits of behavior we must 

rewrite 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜  in terms of 𝑉𝑉𝐻𝐻 
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 𝑞𝑞𝑁𝑁𝐷𝐷𝜆𝜆�2𝑉𝑉𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑁𝑁𝑠𝑠𝑠𝑠
1

1 + 𝑒𝑒𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 +𝑉𝑉𝐻𝐻−𝐸𝐸𝑠𝑠𝑠𝑠
≈ 𝐶𝐶𝐻𝐻𝑉𝑉𝐻𝐻 (S2.14) 

 

If 𝑉𝑉𝐻𝐻 is assumed to be negligible in the absence of surface states, consistent with a high electrolyte 

concentration relative the semiconductor dopant density, then the following simplification can be 

made in the presence of surface states 

 

 𝑞𝑞𝑁𝑁𝑠𝑠𝑠𝑠
1

1 + 𝑒𝑒𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 +𝑉𝑉𝐻𝐻−𝐸𝐸𝑠𝑠𝑠𝑠
≈ 𝐶𝐶𝐻𝐻𝑉𝑉𝐻𝐻 (S2.15) 

   

At the limit where 𝑁𝑁𝑠𝑠𝑠𝑠 → 0, the 𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜  term dominates in the Fermi-Dirac expression and 

equation S2.15 can be solved to reveal that 𝑉𝑉�𝐻𝐻 depends linearly on 𝑁𝑁𝑠𝑠𝑠𝑠: 

 

 𝑉𝑉�𝐻𝐻 ≈
𝑞𝑞𝑁𝑁𝑠𝑠𝑠𝑠
𝐶𝐶𝐻𝐻

 (S2.16) 

   

When 𝑁𝑁𝑠𝑠𝑠𝑠 is large, 𝑉𝑉�𝐻𝐻 surpasses 𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜  - the surface state energy has been shifted all the way past the 

solution potential - and its dependence on 𝑁𝑁𝑠𝑠𝑠𝑠 becomes much weaker, 

 

 
𝑉𝑉�𝐻𝐻 ≈ ln�

𝑞𝑞𝑁𝑁𝑠𝑠𝑠𝑠
𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 𝐶𝐶𝐻𝐻

� − 𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜  (S2.17) 

 

This limit is shown in dotted lines for 𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜  = -0.5 V. In this case, there are enough surface states 

that, if they remained filled, would produce a very large potential; the system acts to move the 

surface state energy 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜  sufficiently positive to minimize the potential by emptying states. Under 

applied bias, this principal continues to work and acts to keep the Helmholtz potential roughly 

constant; this is known as the Fermi level pinning regime. Since this effect occurs when 𝑉𝑉�𝐻𝐻 reaches 

𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 , we will be in the pinning regime approximately when: 

 

 
𝑁𝑁𝑠𝑠𝑠𝑠 > −

𝐶𝐶𝐻𝐻𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜

𝑞𝑞
 (S2.18) 
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Note that the above analysis requires that 𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜  < 0 and that the contribution from the depletion layer 

can be neglected. 

 

 
Figure E.S2. Equation S2.13 solved for equilibrium Helmholtz potential at various values of 

𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 . The small and large 𝑁𝑁𝑠𝑠𝑠𝑠 limits, corresponding to equations S2.16 and S2.17, are shown in black 

and red, respectively.   

 

Section E.S3 Occupancy Expressions 

To build an electron transfer model we first define the concentration of oxidized and neutral 

species in each subsystem. We write 𝑑𝑑𝑖𝑖(𝜖𝜖) for an electron donor species and 𝑎𝑎𝑖𝑖(𝜖𝜖) for an electron 

acceptor species in subsystem i and energy 𝜖𝜖. At each value of 𝜖𝜖, the basic reaction is 

 

 𝑎𝑎1(𝜖𝜖) + 𝑑𝑑2(𝜖𝜖) ↔ 𝑎𝑎2(𝜖𝜖) + 𝑑𝑑1(𝜖𝜖) (S3.1) 

 

The donor and acceptor distributions can be written as the product of an electronic density of states 

(DOS) function 𝑔𝑔𝑖𝑖(𝜖𝜖) and an occupancy probability (Fermi-Dirac) function 𝑓𝑓𝑖𝑖(𝜖𝜖), where 

𝑓𝑓𝑖𝑖(𝜖𝜖 − 𝐸𝐸𝑖𝑖) = 1/(1 + 𝑒𝑒𝜖𝜖−𝐸𝐸𝑖𝑖), such that 

 

 𝑑𝑑𝑖𝑖(𝜖𝜖) = 𝑔𝑔𝑖𝑖(𝜖𝜖)𝑓𝑓𝑖𝑖(𝜖𝜖 − 𝐸𝐸𝑖𝑖)               𝑎𝑎𝑖𝑖(𝜖𝜖) = 𝑔𝑔𝑖𝑖(𝜖𝜖)𝑓𝑓𝑖𝑖(𝐸𝐸𝑖𝑖 − 𝜖𝜖) (S3.2) 
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The DOS function used for the semiconductor and catalyst are constants. For the surface states, a 

delta dirac function is employed to produce a mono-energetic model [𝑔𝑔𝑠𝑠𝑠𝑠(𝜖𝜖) = 𝑁𝑁𝑠𝑠𝑠𝑠𝛿𝛿(𝜖𝜖 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 )]. 

For the solution, we use the large reorganization energy (𝜆𝜆𝑅𝑅) limit of the Marcus-Gerischer DOS3  

 

 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠(𝜖𝜖) = 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒(𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠−𝜖𝜖)/2              𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠(𝜖𝜖) = 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒(𝜖𝜖−𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠)/2 (S3.3) 

 

Here, 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 is 

 

 
𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 =  �

[𝐷𝐷][𝐴𝐴]
4𝜋𝜋𝜆𝜆𝑅𝑅𝑘𝑘𝐵𝐵𝑇𝑇

𝑒𝑒
−𝜆𝜆𝑅𝑅

4�  

 

(S3.4) 

where [D] and [A] are total concentrations of donor and acceptor species in solution.  

We write s and s+ for the neutral and oxidized surface state concentrations, respectively 

 

 𝑠𝑠 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑓𝑓(𝐸𝐸𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 )                  𝑠𝑠+ = 𝑁𝑁𝑠𝑠𝑠𝑠𝑓𝑓(𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 − 𝐸𝐸𝑠𝑠𝑠𝑠) (S3.5) 

 

and  𝑐𝑐𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑠𝑠𝑠𝑠+  for the fraction of neutral and oxidized catalyst sites at energy 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 , 

 

 𝑐𝑐𝑠𝑠𝑠𝑠 = 𝑓𝑓(𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 )                     𝑐𝑐𝑠𝑠𝑠𝑠+ = 𝑓𝑓(𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 − 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐) (S3.6) 

 

Note here that the catalyst occupation expressions are evaluated at 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜  because the catalyst is 

assumed to be isoenergetic with the surface states. For modeling purposes, it is convenient to write 

these expressions in terms of the Helmholtz potential. Doing so produces the following expressions 

 

 𝑠𝑠 = 𝑁𝑁𝑠𝑠𝑠𝑠
1

1+𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠−𝐸𝐸�𝑠𝑠𝑠𝑠
𝑜𝑜 −𝑉𝑉𝐻𝐻

                  𝑠𝑠+ = 𝑁𝑁𝑠𝑠𝑠𝑠
1

1+𝑒𝑒𝐸𝐸�𝑠𝑠𝑠𝑠
𝑜𝑜 +𝑉𝑉𝐻𝐻−𝐸𝐸𝑠𝑠𝑠𝑠

 (S3.7) 

 

and 

 

 𝑐𝑐𝑠𝑠𝑠𝑠 = 1
1+𝑒𝑒𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−𝐸𝐸�𝑠𝑠𝑠𝑠

𝑜𝑜 −𝑉𝑉𝐻𝐻
                  𝑐𝑐𝑠𝑠𝑠𝑠+ = 1

1+𝑒𝑒𝐸𝐸�𝑠𝑠𝑠𝑠
𝑜𝑜 +𝑉𝑉𝐻𝐻−𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

 (S3.8) 

 

Equilibrium values occur where 𝐸𝐸𝑠𝑠𝑠𝑠 = 0, 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 = 0, and 𝑉𝑉𝐻𝐻 = 𝑉𝑉�𝐻𝐻. Solving for the equilibrium 

concentrations gives rise to the following expressions 
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 𝑠̅𝑠 = 𝑁𝑁𝑠𝑠𝑠𝑠
1

1+𝑒𝑒−𝐸𝐸�𝑠𝑠𝑠𝑠
𝑜𝑜 −𝑉𝑉�𝐻𝐻

                  𝑠̅𝑠+ = 𝑁𝑁𝑠𝑠𝑠𝑠
1

1+𝑒𝑒𝐸𝐸�𝑠𝑠𝑠𝑠
𝑜𝑜 +𝑉𝑉�𝐻𝐻

 (S3.9) 

 

and  

 

 𝑐𝑐𝑠̅𝑠𝑠𝑠 = 1
1+𝑒𝑒−𝐸𝐸�𝑠𝑠𝑠𝑠

𝑜𝑜 −𝑉𝑉�𝐻𝐻
                  𝑐𝑐𝑠̅𝑠𝑠𝑠+ = 1

1+𝑒𝑒𝐸𝐸�𝑠𝑠𝑠𝑠
𝑜𝑜 +𝑉𝑉�𝐻𝐻

 (S3.10) 

 

The equations in S3.7 – S3.10 are used in developing current density equations based on 2nd order 

kinetic expressions (Section E.S4).  

 

Section E.S4 Modeling Current Densities – 2nd Order Kinetic Expressions 

Section E.S4.1 General Scheme 

The model for interfacial electron transfer is based on simple second-order reaction 

kinetics. Recall that for transfer between subsystems 1 and 2, the reaction at each value of 𝜖𝜖 is  

 

 𝑎𝑎1(𝜖𝜖) + 𝑑𝑑2(𝜖𝜖) ↔ 𝑎𝑎2(𝜖𝜖) + 𝑑𝑑1(𝜖𝜖) (S4.1) 

 

with the reaction proceeding to the right representing positive current from subsystem 1 to 2. The 

current, proportional to the total reaction rate, is computed by integrating the rate densities over the 

energy range 𝜖𝜖, such that 

 

 𝐽𝐽1,2 = 𝑞𝑞�𝑘𝑘1,2(𝜖𝜖)[𝑎𝑎1(𝜖𝜖)𝑑𝑑2(𝜖𝜖) − 𝑎𝑎2(𝜖𝜖)𝑑𝑑1(𝜖𝜖)]𝑑𝑑𝜖𝜖 (S4.2) 

 

Substitution of the occupancy expressions gives the current integral  

 

 𝐽𝐽1,2 = 𝑞𝑞�𝑘𝑘1,2(𝜖𝜖)𝑔𝑔1(𝜖𝜖)𝑔𝑔2(𝜖𝜖)[𝑓𝑓1(𝜖𝜖) − 𝑓𝑓2(𝜖𝜖)]𝑑𝑑𝑑𝑑 (S4.3) 

 

Note that for the purposes of modeling we formulate each expression in terms of a deviation from 

the equilibrium state.  This is accomplished by strategically defining the exchange currents.   
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Section E.S4.2 𝑱𝑱𝒔𝒔𝒔𝒔,𝒄𝒄𝒄𝒄𝒄𝒄 

For the current from surface states to the catalyst 𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐, transfer only occurs at 𝜖𝜖 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜  

and so the integral evaluates to 

 

 𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠+𝑐𝑐𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠+ ) (S4.4) 

 

To formulate a meaningful exchange current we use the relationship  𝑐𝑐𝑠̅𝑠𝑠𝑠/𝑐𝑐𝑠̅𝑠𝑠𝑠+ = 𝑠̅𝑠/𝑠̅𝑠+ = 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 +𝑉𝑉�𝐻𝐻  to 

write 

 

 
𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑠̅𝑠+𝑐𝑐𝑠̅𝑠𝑠𝑠+ 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠

𝑜𝑜 +𝑉𝑉�𝐻𝐻 �
𝑠𝑠+𝑐𝑐𝑠𝑠𝑠𝑠
𝑠̅𝑠+𝑐𝑐𝑠̅𝑠𝑠𝑠

−
𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠+

𝑠̅𝑠𝑐𝑐𝑠̅𝑠𝑠𝑠+
� (S4.5) 

 

This expresses 𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 in terms of a deviation from equilibrium and simplifies to 

 

 
𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 �

𝑠𝑠+𝑐𝑐𝑠𝑠𝑠𝑠
𝑠̅𝑠+𝑐𝑐𝑠̅𝑠𝑠𝑠

−
𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠+

𝑠̅𝑠𝑐𝑐𝑠̅𝑠𝑠𝑠+
� (S4.6) 

 

where 

 

 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑠̅𝑠+𝑐𝑐𝑠̅𝑠𝑠𝑠+ 𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠
𝑜𝑜 +𝑉𝑉�𝐻𝐻  (S4.7) 

 

is the exchange current - a constant.   

 

Section E.S4.3 𝑱𝑱𝒗𝒗𝒗𝒗,𝒄𝒄𝒄𝒄𝒄𝒄 and 𝑱𝑱𝒄𝒄𝒄𝒄,𝒄𝒄𝒄𝒄𝒄𝒄 

In our previous work on adaptive junctions, current between the semiconductor and catalyst 

was modeled as a function of the deviation from the equilibrium carrier concentration and a 

perturbation to the barrier height  

 

 𝐽𝐽𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑘𝑘𝑝𝑝�𝑝𝑝𝑠𝑠 − 𝑝̅𝑝𝑠𝑠𝑒𝑒𝑞𝑞𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘𝑇𝑇⁄ � − 𝑘𝑘𝑛𝑛�𝑛𝑛𝑠𝑠 − 𝑛𝑛�𝑠𝑠𝑒𝑒−𝑞𝑞𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘𝑘𝑘⁄ � (S4.8) 

 

In this work, we simplify the expression into the two constituent currents:  
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 𝐽𝐽𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑝𝑝𝑠𝑠
𝑝̅𝑝𝑠𝑠
− 𝑒𝑒𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−𝛥𝛥𝑉𝑉𝐻𝐻� (S4.9) 

 

 𝐽𝐽𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 �𝑒𝑒𝛥𝛥𝑉𝑉𝐻𝐻−𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 −
𝑛𝑛𝑠𝑠
𝑛𝑛�𝑠𝑠
� (S4.10) 

 

where 

 

 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐𝑝̅𝑝𝑠𝑠 (S4.11) 

 

and 

 

 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛�𝑠𝑠 (S4.12) 

 

Note here that Helmholtz terms are introduced to account for the realignment of 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 relative to the 

band edges, when sufficient surface state filling has occurred. The 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 term is technically a 

deviation from its equilibrium value, but the equilibrium value is set to zero in this model.   

 

Section E.S4.4 𝑱𝑱𝒔𝒔𝒔𝒔,𝒔𝒔𝒔𝒔𝒔𝒔 

For the current from surface states to the solution 𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 , the initial integral is 

 

 𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑞𝑞�𝑘𝑘𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  𝑁𝑁𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿(𝜖𝜖

− 𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 ) �[𝑓𝑓𝑠𝑠𝑠𝑠(𝜖𝜖 − 𝐸𝐸𝑠𝑠𝑠𝑠)]𝑒𝑒𝜖𝜖 2⁄ − [𝑓𝑓𝑠𝑠𝑠𝑠(𝐸𝐸𝑠𝑠𝑠𝑠 − 𝜖𝜖)]𝑒𝑒−𝜖𝜖 2⁄ � 𝑑𝑑𝑑𝑑 
(S4.13) 

 

Once integrated this becomes 

 

 𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠�𝑠𝑠+𝑒𝑒𝐸𝐸𝑠𝑠𝑠𝑠
𝑜𝑜 2⁄ − 𝑠𝑠𝑒𝑒−𝐸𝐸𝑠𝑠𝑠𝑠𝑜𝑜 2⁄ � (S4.14) 

 

The substitution 𝐸𝐸𝑠𝑠𝑠𝑠0  = 𝐸𝐸�𝑠𝑠𝑠𝑠0 + 𝑉𝑉�𝐻𝐻 + ∆𝑉𝑉𝐻𝐻 is made to facilitate the development of a meaningful 

exchange current, and the expression is then rewritten 
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 𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠�𝑠𝑠+(𝑒𝑒𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 2⁄ )(𝑒𝑒𝑉𝑉�𝐻𝐻 2⁄ )(𝑒𝑒∆𝑉𝑉𝐻𝐻 2⁄ )

− 𝑠𝑠(𝑒𝑒−𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 2⁄ )(𝑒𝑒−𝑉𝑉�𝐻𝐻 2⁄ )(𝑒𝑒−∆𝑉𝑉𝐻𝐻 2⁄ )� 
(S4.15) 

 

By factoring out 𝑒𝑒−𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 2⁄ , 𝑒𝑒−𝑉𝑉�𝐻𝐻 2⁄  and 𝑠̅𝑠, we further simplify to 

 

 
𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠̅𝑠𝑒𝑒−𝐸𝐸

�𝑠𝑠𝑠𝑠𝑜𝑜 2⁄ 𝑒𝑒−𝑉𝑉�𝐻𝐻 2⁄ �
𝑠𝑠+(𝑒𝑒𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 )(𝑒𝑒𝑉𝑉�𝐻𝐻)(𝑒𝑒∆𝑉𝑉𝐻𝐻 2⁄ )

𝑠̅𝑠
−
𝑠𝑠(𝑒𝑒−∆𝑉𝑉𝐻𝐻 2⁄ )

𝑠̅𝑠
� (S4.16) 

 

Using the relationship 𝑠𝑠̅
𝑠𝑠̅+

= 𝑒𝑒𝐸𝐸�𝑠𝑠𝑠𝑠𝑜𝑜 +𝑉𝑉�𝐻𝐻  we can write   

 

 
𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠�𝑠̅𝑠𝑠̅𝑠+ �

𝑠𝑠+

𝑠̅𝑠+
𝑒𝑒∆𝑉𝑉𝐻𝐻 2⁄ −

𝑠𝑠
𝑠̅𝑠
𝑒𝑒−∆𝑉𝑉𝐻𝐻 2⁄ � (S4.17) 

 

Thus, we arrive at 

 

 
𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑠𝑠+

𝑠̅𝑠+
𝑒𝑒∆𝑉𝑉𝐻𝐻 2⁄ −

𝑠𝑠
𝑠̅𝑠
𝑒𝑒−∆𝑉𝑉𝐻𝐻 2⁄ � (S4.18) 

 

where 

 

 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠�𝑠̅𝑠𝑠̅𝑠+ (S4.19) 

 

 

Section E.S4.5 𝑱𝑱𝒄𝒄𝒄𝒄𝒄𝒄,𝒔𝒔𝒔𝒔𝒔𝒔 

For the current from catalyst to the solution 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠, the initial integral is 

 

 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 �𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓(𝜖𝜖 − 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐)𝑒𝑒𝜖𝜖 2⁄ − 𝑓𝑓(𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜖𝜖)𝑒𝑒−𝜖𝜖 2⁄ � 𝑑𝑑𝑑𝑑 (S4.20) 

 

After integration this evaluates to  

 

 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑜𝑜𝑜𝑜 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠[𝐼𝐼𝑓𝑓(𝜖𝜖 − 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐) − 𝐼𝐼𝑏𝑏(𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜖𝜖)] (S4.21) 

 



148 
 

where the functions 𝐼𝐼𝑓𝑓 and 𝐼𝐼𝑏𝑏 are defined: 

 

 
𝐼𝐼𝑓𝑓(𝜖𝜖 − 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐) =  �

𝑒𝑒𝜖𝜖 2⁄

1 + 𝑒𝑒𝜖𝜖−𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐
∞

−∞
 (S4.22) 

 

 
𝐼𝐼𝑏𝑏(𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜖𝜖) =  �

𝑒𝑒−𝜖𝜖 2⁄

1 + 𝑒𝑒𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−𝜖𝜖
∞

−∞
 (S4.23) 

 

To simplify these integral functions, the substitution 𝜖𝜖 = 𝜖𝜖 + 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 can be employed (note that this 

is a valid substitution because the full energy range is still integrated despite the substitution) 

 

 
𝐼𝐼𝑓𝑓(𝜖𝜖 − 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐) =  �

𝑒𝑒(𝜖𝜖+𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐) 2⁄

1 + 𝑒𝑒𝜖𝜖
∞

−∞
= 𝜋𝜋𝑒𝑒𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐/2 (S4.24) 

 

 
𝐼𝐼𝑏𝑏(𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜖𝜖) =  �

𝑒𝑒−(𝜖𝜖+𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐) 2⁄

1 + 𝑒𝑒−𝜖𝜖
∞

−∞
= 𝜋𝜋𝑒𝑒−𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐/2 (S4.25) 

 

The finalized expression then becomes 

 

 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 =  𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 �𝑒𝑒
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐
2 − 𝑒𝑒−

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐
2 � (S4.26) 

 

where 

 

  𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋 

 
(S4.27) 

 

Section E.S4.6 𝑱𝑱𝒗𝒗𝒗𝒗,𝒔𝒔𝒔𝒔 and 𝑱𝑱𝒄𝒄𝒄𝒄,𝒔𝒔𝒔𝒔 

The reaction of semiconductor holes and electrons with surface states is modeled using the 

quasi-second order expressions: 

 

 
𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 �

𝑝𝑝𝑠𝑠𝑠𝑠
𝑝̅𝑝𝑠𝑠𝑠̅𝑠

−
𝑠𝑠+

𝑠̅𝑠+
� (S4.28) 
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𝐽𝐽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 �

𝑠𝑠
𝑠̅𝑠
−
𝑛𝑛𝑠𝑠𝑠𝑠+

𝑛𝑛�𝑠𝑠𝑠̅𝑠+
� (S4.29) 

 

Note here that the 1st order terms are consistent with the assumption that the concentrations of 

valence band electrons and conduction band holes are not meaningfully altered under realistic 

operating conditions.   

 

Section E.S5 Gärtner Generalization – Full Derivation  

In deriving the generalized Gärtner model we explicitly write each step to show the 

similarity to Gärtner’s original formulation.4 The generalizations we make allow for (1) a non-zero 

value of the hole concentration at the edge of the depletion region (corresponding to relaxing 

Gärtner’s original assumption of fast surface kinetics), and (2) recombination in the depletion 

region, which requires approximating the hole concentration profile in this region. Extensive 

analyses of the minority carrier profiles and depletion region recombination have been conducted 

by Albery et. al.;5,6 for comparison purposes the error in our treatment is explored the in subsequent 

section (E.S6). Our method and results are closely related to those of El Guibaly et. al.7 but we use 

simple second-order recombination rather than trap-mediated recombination. 

 

 
Figure E.S3. Hole concentration profile and the currents generated by the generalized 

Gärtner model.  

 

Figure E.S3 shows quantities relevant to the derivation of the generalized Gärtner model. 

The incoming photon flux Φ is split into a portion that is absorbed in the depletion region, Φdep, and 

in the bulk, Φbulk, so that Φ = Φdep + Φbulk. The semiconductor interface is at x = 0 and the inside of 
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the depletion region is at x = −w, where w is the depletion region width. The generated carriers per 

unit time is 

 

 𝐺𝐺(𝑥𝑥) ≡  𝛷𝛷𝛷𝛷𝑒𝑒𝛼𝛼𝛼𝛼 (S5.1) 

 

Recombination is assumed to follow a simple second-order law 

 

 𝑅𝑅(𝑥𝑥) ≡  𝑘𝑘𝑅𝑅𝑛𝑛𝑛𝑛 (S5.2) 

 

The electrons are assumed to be at quasiequilibrium throughout the semiconductor, so that 

 

 𝑛𝑛(𝑥𝑥) =  𝑛𝑛�𝑒𝑒𝜙𝜙 (S5.3) 

 

The hole distribution in the bulk will be computed explicitly below. In the depletion region, 

the transport equations can be solved to relate the hole concentration profile p(x) to the 

concentration at the edge of the depletion region pw, 

 

 𝑝𝑝(𝑥𝑥) =  𝑝𝑝𝑤𝑤𝑒𝑒−𝜙𝜙 + 𝑝𝑝†(𝑥𝑥) (S5.4) 

 

where  

 

 
𝑝𝑝†(𝑥𝑥) =  𝑒𝑒−𝜙𝜙(𝑥𝑥) � 𝜃𝜃(𝑥𝑥′)𝑒𝑒𝜙𝜙(𝑥𝑥′) 𝑑𝑑𝑥𝑥′

𝑥𝑥

−𝑤𝑤
 (S5.5) 

 

 
𝜃𝜃(𝑥𝑥) =  −𝐹𝐹𝑝𝑝 + � 𝐺𝐺(𝑥𝑥′) − 𝑅𝑅(𝑥𝑥′)𝑑𝑑𝑥𝑥′

0

𝑥𝑥
 (S5.6) 

 

 
𝜙𝜙(𝑥𝑥) =  −

(𝑥𝑥 + 𝑤𝑤)2

2𝜆𝜆2
 (S5.7) 

 

 

 𝑤𝑤 =  𝜆𝜆√2𝑉𝑉 (S5.8) 
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Note that p† represents the deviation from quasiequilibrium. We assume that p† = 0 which is 

equivalent to assuming that the holes are at quasiequilibrium throughout the depletion region. Thus, 

the following simplification is made 

 

 𝑝𝑝(𝑥𝑥) ≈  𝑝𝑝𝑤𝑤𝑒𝑒−𝜙𝜙 (S5.9) 

 

The error in using this approximation is on the order of 𝜆𝜆/𝛿𝛿; this approximation therefore holds 

when the Debye length is much smaller than the diffusion length. In the subsequent section (E.S6) 

it is shown that, even when this assumption is relaxed, the current takes the same form in that it is 

linear in 𝐽𝐽𝐺𝐺  and  𝑝𝑝𝑤𝑤.  

The time dependent continuity equation for holes is 

 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
1
𝑞𝑞
𝑑𝑑𝐽𝐽𝑝𝑝
𝑑𝑑𝑑𝑑

+ 𝐺𝐺(𝑥𝑥) − 𝑅𝑅(𝑥𝑥) (S5.10) 

 

Evaluation at steady state (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 0) produces 

 

 1
𝑞𝑞
𝑑𝑑𝐽𝐽𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝐺𝐺(𝑥𝑥) − 𝑅𝑅(𝑥𝑥) (S5.11) 

 

After integrating across the depletion region, this can be represented via the form 

 

 𝐽𝐽𝑝𝑝 = 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐽𝐽𝛷𝛷,𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐽𝐽𝑅𝑅,𝑑𝑑𝑑𝑑𝑑𝑑 (S5.12) 

 

where Jp = J(0) is the total hole current passing through the surface, Jbulk = J(−w) is the hole current 

from the bulk to the depletion region, 𝐽𝐽𝛷𝛷,𝑑𝑑𝑑𝑑𝑑𝑑 is current from holes generated in the depletion region, 

 

 𝐽𝐽𝛷𝛷,𝑑𝑑𝑑𝑑𝑑𝑑 ≡ 𝑞𝑞𝛷𝛷𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑞𝑞 ∫ 𝐺𝐺 𝑑𝑑𝑑𝑑0
−𝑤𝑤 = 𝑞𝑞𝑞𝑞(1 − 𝑒𝑒−𝛼𝛼𝛼𝛼) = 𝑞𝑞 ∫ Φ𝛼𝛼𝑒𝑒𝛼𝛼𝛼𝛼0

−𝑤𝑤 𝑑𝑑𝑑𝑑 = 𝑞𝑞Φ(1 −

𝑒𝑒−𝛼𝛼𝛼𝛼)  
(S5.13) 

 

 and 𝐽𝐽𝑅𝑅,𝑑𝑑𝑑𝑑𝑑𝑑 is current due to recombination in the depletion region  
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𝐽𝐽𝑅𝑅,𝑑𝑑𝑑𝑑𝑑𝑑 ≡ 𝑞𝑞� 𝑅𝑅 𝑑𝑑𝑑𝑑

0

−𝑤𝑤
=  𝑞𝑞� 𝑘𝑘𝑅𝑅𝑛𝑛�𝑝𝑝𝑤𝑤

0

−𝑤𝑤
𝑑𝑑𝑑𝑑 = 𝑞𝑞𝑘𝑘𝑅𝑅𝑤𝑤𝑛𝑛�𝑝𝑝𝑤𝑤 (S5.14) 

 

Jbulk is obtained by assuming that there is no field in the bulk and that the electron concentration 

remains unperturbed from its equilibrium value 𝑛𝑛�. Therefore, in the bulk the hole continuity 

equation is 

 

 
−
𝑑𝑑2𝑝𝑝
𝑑𝑑𝑥𝑥2

=
𝛷𝛷𝛷𝛷𝑒𝑒𝛼𝛼𝛼𝛼

𝐷𝐷𝑝𝑝
−
𝑝𝑝 − 𝑝̅𝑝
𝛿𝛿2

 (S5.15) 

 

By substituting 𝑑𝑑
2𝑝𝑝

𝑑𝑑𝑥𝑥2
= 𝑃𝑃′′ and 𝛷𝛷𝛷𝛷𝑒𝑒𝛼𝛼𝛼𝛼 = 𝑔𝑔(𝑥𝑥) we simplify to 

 

 
𝐷𝐷𝑝𝑝𝑝𝑝′′ − (𝑝𝑝 − 𝑝̅𝑝)

𝐷𝐷𝑝𝑝
𝛿𝛿2

+ 𝑔𝑔(𝑥𝑥) = 0 (S5.16) 

 

Solving the second order differential equation, with the boundary conditions 𝑝𝑝(−∞) =

𝑝̅𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝(−𝑤𝑤) = 𝑝𝑝𝑤𝑤, yields: 

 

 
𝑝𝑝 =

−𝑒𝑒𝑥𝑥𝑥𝑥𝛼𝛼𝛿𝛿2𝛷𝛷 − 𝐷𝐷𝑝𝑝𝑝̅𝑝 + 𝐷𝐷𝑝𝑝𝛼𝛼2𝛿𝛿2𝑝̅𝑝
𝐷𝐷𝑝𝑝(−1 + 𝛼𝛼𝛼𝛼)(1 + 𝛼𝛼𝛼𝛼)

+ 𝑒𝑒
𝑤𝑤+𝑥𝑥
𝛿𝛿 �−

−𝑒𝑒−𝑤𝑤𝑤𝑤𝛼𝛼𝛿𝛿2𝛷𝛷 − 𝐷𝐷𝑝𝑝𝑝̅𝑝 + 𝐷𝐷𝑝𝑝𝛼𝛼2𝛿𝛿2𝑝̅𝑝
𝐷𝐷𝑝𝑝(−1 + 𝛼𝛼𝛼𝛼)(1 + 𝛼𝛼𝛼𝛼) + 𝑝𝑝𝑤𝑤� 

(S5.17) 

 

The derivative of p with respect to position yields, 

 

 
𝑝𝑝′ =

−𝑒𝑒𝑥𝑥𝑥𝑥𝛼𝛼2𝛿𝛿2𝛷𝛷
𝐷𝐷𝑝𝑝(−1 + 𝛼𝛼𝛼𝛼)(1 + 𝛼𝛼𝛼𝛼)

+
𝑒𝑒
𝑤𝑤+𝑥𝑥
𝛿𝛿

𝛿𝛿
�−

−𝑒𝑒−𝑤𝑤𝑤𝑤𝛼𝛼𝛿𝛿2𝛷𝛷 − 𝐷𝐷𝑝𝑝𝑝̅𝑝 + 𝐷𝐷𝑝𝑝𝛼𝛼2𝛿𝛿2𝑝̅𝑝
𝐷𝐷𝑝𝑝(−1 + 𝛼𝛼𝛼𝛼)(1 + 𝛼𝛼𝛼𝛼) + 𝑝𝑝𝑤𝑤� 

(S5.18) 

 

Substitution of  𝑝̅𝑝 = � −𝐷𝐷𝑝𝑝𝑝̅𝑝+𝐷𝐷𝑝𝑝𝛼𝛼2𝛿𝛿2𝑝̅𝑝
𝐷𝐷𝑝𝑝(−1+𝛼𝛼𝛼𝛼)(1+𝛼𝛼𝛼𝛼)

� enables simplification to  
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𝑝𝑝′ =

−𝑒𝑒𝑥𝑥𝑥𝑥𝛼𝛼2𝛿𝛿2𝛷𝛷
𝐷𝐷𝑝𝑝(−1 + 𝛼𝛼𝛼𝛼)(1 + 𝛼𝛼𝛼𝛼)

+
𝑒𝑒
𝑤𝑤+𝑥𝑥
𝛿𝛿

𝛿𝛿
�

𝑒𝑒−𝑤𝑤𝑤𝑤𝛼𝛼𝛿𝛿2𝛷𝛷
𝐷𝐷𝑝𝑝(−1 + 𝛼𝛼𝛼𝛼)(1 + 𝛼𝛼𝛼𝛼) − 𝑝̅𝑝 + 𝑝𝑝𝑤𝑤� 

(S5.19) 

 

which is further simplified to 

 

 
𝑝𝑝′ =

−𝑒𝑒𝑥𝑥𝑥𝑥𝛼𝛼2𝛿𝛿2𝛷𝛷 + 𝑒𝑒−𝑤𝑤𝑤𝑤𝑒𝑒
𝑤𝑤+𝑥𝑥
𝛿𝛿 𝛼𝛼𝛼𝛼𝛼𝛼

𝐷𝐷𝑝𝑝(−1 + 𝛼𝛼𝛼𝛼)(1 + 𝛼𝛼𝛼𝛼) − 𝑒𝑒
𝑤𝑤+𝑥𝑥
𝛿𝛿

(𝑝̅𝑝 − 𝑝𝑝𝑤𝑤)
𝛿𝛿

 (S5.20) 

 

Since no field exists in the bulk semiconductor, only diffusion is treated. The diffusive 

current can be calculated by solving −𝑞𝑞𝐷𝐷𝑝𝑝𝑝𝑝′(𝑥𝑥) at the edge of the depletion layer: 

 

 
−𝑞𝑞𝐷𝐷𝑝𝑝𝑝𝑝′(−𝑤𝑤) =

𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑒𝑒−𝑤𝑤𝑤𝑤

(1 + 𝛼𝛼𝛼𝛼) +
𝑞𝑞𝐷𝐷𝑝𝑝(𝑝̅𝑝 − 𝑝𝑝𝑤𝑤)

𝛿𝛿
 (S5.21) 

 

Solving with boundary conditions 𝑝𝑝(−∞) = 𝑝̅𝑝 and 𝑝𝑝(−𝑤𝑤) = 𝑝𝑝𝑤𝑤 gives the solution for 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≡

𝑞𝑞(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)(𝑤𝑤), 

 

 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐽𝐽𝛷𝛷,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐽𝐽𝐷𝐷,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (S5.22) 

 

The current due to generation in the bulk is 

 

 𝐽𝐽𝛷𝛷,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑞𝑞𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏Φ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (S5.23) 

 

where 

 

 𝛷𝛷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝛷𝛷𝑒𝑒−𝛼𝛼𝛼𝛼            𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝛼𝛼𝛼𝛼
1+𝛼𝛼𝛼𝛼

 (S5.24) 

 

Here ηbulk is the fraction of charges generated in the bulk that reach the edge of the depletion region 

before recombining. The diffusion current term is 
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 𝐽𝐽𝐷𝐷,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑞𝑞𝐷𝐷𝑝𝑝
𝑝̅𝑝 − 𝑝𝑝𝑤𝑤
𝛿𝛿

 (S5.25) 

 

which is the current due to diffusion across one diffusion length just inside the bulk region, as 

depicted in Figure E.S3. The concentration profile shown here is a schematic one; in reality, the 

hole concentration varies throughout the bulk and in general has a nonlinear profile that is 

dependent on the magnitude of generation and recombination, but the diffusional current is 

mathematically equivalent to the simple conceptual illustration in the figure. Note that the original 

Gärtner model assumes 𝑝𝑝𝑤𝑤 = 0. 

We substitute these results into Eq. S5.12, and make the following simplifications to relate 

our results to the Gärtner model: 

 

 𝐽𝐽𝑝𝑝 = 𝐽𝐽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐽𝐽Φ,𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐽𝐽𝑅𝑅,𝑑𝑑𝑑𝑑𝑑𝑑 (S5.12) 

 

Substitution of Eq. S5.13, S5.14 and S5.22, into S5.12 produces 

 

 
𝐽𝐽𝑝𝑝 =  qΦ𝑒𝑒−𝛼𝛼𝛼𝛼

𝛼𝛼𝛼𝛼
1 + 𝛼𝛼𝛼𝛼

+ 𝑞𝑞Φ(1 − 𝑒𝑒−𝛼𝛼𝛼𝛼) + 𝑞𝑞𝐷𝐷𝑝𝑝
𝑝̅𝑝 − 𝑝𝑝𝑤𝑤
𝛿𝛿

− 𝑞𝑞𝑘𝑘𝑅𝑅𝑛𝑛�𝑝𝑝𝑤𝑤𝑤𝑤 (S5.26) 

 

The expression is simplified by factoring out Φ, 

 

 
𝐽𝐽𝑝𝑝 =  qΦ�𝑒𝑒−𝛼𝛼𝛼𝛼

𝛼𝛼𝛼𝛼
1 + 𝛼𝛼𝛼𝛼

+ (1 − 𝑒𝑒−𝛼𝛼𝛼𝛼)� + 𝑞𝑞𝐷𝐷𝑝𝑝
𝑝̅𝑝 − 𝑝𝑝𝑤𝑤
𝛿𝛿

− 𝑞𝑞𝑘𝑘𝑅𝑅𝑛𝑛�𝑝𝑝𝑤𝑤𝑤𝑤 (S5.27) 

 

further simplified via a common denominator, 

 

 
𝐽𝐽𝑝𝑝 =  qΦ�

𝛼𝛼𝛼𝛼𝛼𝛼−𝛼𝛼𝛼𝛼

1 + 𝛼𝛼𝛼𝛼
−

(1 + 𝛼𝛼𝛼𝛼)𝑒𝑒−𝛼𝛼𝛼𝛼

1 + 𝛼𝛼𝛼𝛼
+ 1� + 𝑞𝑞𝐷𝐷𝑝𝑝

𝑝̅𝑝 − 𝑝𝑝𝑤𝑤
𝛿𝛿

− 𝑞𝑞𝑘𝑘𝑅𝑅𝑛𝑛�𝑝𝑝𝑤𝑤𝑤𝑤 (S5.28) 

 

and rearranged to demonstrated cancellation of the first two terms, 

 

 
𝐽𝐽𝑝𝑝 =  qΦ�

𝛼𝛼𝛼𝛼𝛼𝛼−𝛼𝛼𝛼𝛼

1 + 𝛼𝛼𝛼𝛼
−
𝛼𝛼𝛼𝛼𝛼𝛼−𝛼𝛼𝛼𝛼

1 + 𝛼𝛼𝛼𝛼
−

𝑒𝑒−𝛼𝛼𝛼𝛼

1 + 𝛼𝛼𝛼𝛼
+ 1� + 𝑞𝑞𝐷𝐷𝑝𝑝

𝑝̅𝑝 − 𝑝𝑝𝑤𝑤
𝛿𝛿

− 𝑞𝑞𝑘𝑘𝑅𝑅𝑛𝑛�𝑝𝑝𝑤𝑤𝑤𝑤 (S5.29) 
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Finally, we substitute the original Gärtner current expression 𝐽𝐽𝐺𝐺 = 𝑞𝑞Φ�1 − 𝑒𝑒−𝛼𝛼𝛼𝛼

1+𝛼𝛼𝛼𝛼
� + 𝑞𝑞𝐷𝐷𝑝𝑝

𝑝̅𝑝
𝛿𝛿
, 

 

 
𝐽𝐽𝑝𝑝 = −𝑞𝑞𝑞𝑞 �1 −

𝑒𝑒−𝛼𝛼𝛼𝛼

1 + 𝛼𝛼𝛼𝛼
� + 𝑞𝑞𝐷𝐷𝑝𝑝

𝑝̅𝑝 − 𝑝𝑝𝑤𝑤
𝛿𝛿

− 𝑞𝑞𝑘𝑘𝑅𝑅𝑤𝑤𝑛𝑛�𝑝𝑝𝑤𝑤

= 𝐽𝐽𝐺𝐺 − 𝑞𝑞 �
𝐷𝐷𝑝𝑝
𝛿𝛿

+ 𝑘𝑘𝑅𝑅𝑤𝑤𝑛𝑛�� 𝑝𝑝𝑤𝑤 

(S5.30) 

 

This result is the original Gärtner current 𝐽𝐽𝐺𝐺  minus an extra term proportional to 𝑝𝑝𝑤𝑤 that 

describes additional recombination losses due to the hole transport limitation. The first term, 

𝑞𝑞𝐷𝐷𝑝𝑝𝑝𝑝𝑤𝑤/𝛿𝛿, is the amount of current fed back into the bulk, where the holes recombine, and the 

second term, 𝑞𝑞𝑘𝑘𝑅𝑅𝑤𝑤𝑛𝑛�𝑝𝑝𝑤𝑤, is the amount of current lost due to recombination in the depletion region. 

In the original Gärtner model the diffusion current 𝑞𝑞𝐷𝐷𝑝𝑝𝑝̅𝑝/𝛿𝛿 is typically not the major 

contribution to the total current because of the relatively small value of 𝑝̅𝑝; however, if the kinetics 

are slow and there is a large buildup of holes in the depletion region, there may be enough of a back 

current that 𝑝𝑝𝑤𝑤 exceeds 𝑝̅𝑝, leading to a net negative diffusion current. If 𝑝𝑝𝑤𝑤 becomes large enough, 

the diffusion current may eventually eclipse the generation current; when this occurs, we say that 

the current becomes limited by the hole transport. Depending on the relative values of 𝐷𝐷𝑝𝑝/𝛿𝛿 and 

𝑘𝑘𝑅𝑅𝑤𝑤𝑛𝑛�, a large 𝑝𝑝𝑤𝑤 may also limit the hole current via recombination in the depletion region. 

To couple this to the boundary conditions, we need to be able to relate 𝑝𝑝𝑤𝑤 to 𝑝𝑝𝑠𝑠. Using the 

quasiequilibrium assumption for the hole concentration profile Eq. S5.9, we have 𝑝𝑝𝑠𝑠 = 𝑝𝑝𝑤𝑤𝑒𝑒𝑉𝑉𝑠𝑠𝑠𝑠 , and 

we may write S5.30 in terms of 𝑝𝑝𝑠𝑠 

 

 
𝐽𝐽𝑝𝑝 = 𝐽𝐽𝐺𝐺 − 𝑞𝑞 �

𝐷𝐷𝑝𝑝
𝛿𝛿

+ 𝑘𝑘𝑅𝑅𝑤𝑤𝑛𝑛��
𝑝𝑝𝑠𝑠
𝑒𝑒𝑉𝑉𝑠𝑠𝑠𝑠

 (S5.31) 

 

A recombination current at equilibrium can then be defined by factoring out 𝑒𝑒
𝑉𝑉�𝑠𝑠𝑠𝑠

𝑝̅𝑝𝑠𝑠
 

 

 
𝐽𝐽𝑝𝑝 =  𝐽𝐽𝐺𝐺 + 𝑞𝑞𝑒𝑒𝑉𝑉�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠

𝑝𝑝𝑠𝑠
𝑝𝑝𝑠𝑠�
�
−𝐷𝐷𝑝𝑝
𝛿𝛿

− 𝑞𝑞𝑘𝑘𝑅𝑅𝑛𝑛�𝑤𝑤� 𝑝̅𝑝𝑠𝑠𝑒𝑒−𝑉𝑉
�𝑠𝑠𝑠𝑠  (S5.32) 

 

We arrive ae the final analytical solution – the generalized Gärtner model: 
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 𝐽𝐽𝑝𝑝 =  𝐽𝐽𝐺𝐺 − 𝐽𝐽𝑅̅𝑅𝑒𝑒𝑉𝑉
�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠

𝑝𝑝𝑠𝑠
𝑝𝑝𝑠𝑠�

 (S5.33) 

 

where  

 

 
𝐽𝐽𝑅̅𝑅 =  𝑞𝑞 �

𝐷𝐷𝑝𝑝
𝛿𝛿

+ 𝑘𝑘𝑅𝑅𝑤𝑤𝑛𝑛�� 𝑝̅𝑝𝑠𝑠𝑒𝑒−𝑉𝑉
�𝑠𝑠𝑠𝑠 (S5.34) 

 

is the depletion recombination current. Note that due to the appearance of w, this quantity is not 

exactly constant, but can be treated as such for practical purposes. We generally refer to this term 

as “depletion recombination” but note that it accounts for two more specific sub-processes: (1) 

holes passing from the depletion region back into the bulk and (2) holes recombining within the 

depletion region itself.   

By using this approximation and the common assumption8,9 that surface electrons are at 

quasi-equilibrium with the bulk 

 

 𝑛𝑛𝑠𝑠 =  𝑛𝑛�𝑒𝑒−𝑉𝑉𝑠𝑠𝑠𝑠  (S5.35) 

 

the numerical simulation can be dispensed with and the semiconductor transport, generation, and 

recombination processes can be described analytically.  

 

Section E.S6 Gärtner Generalization – Error Discussion 

Here we illustrate that the error in our generalization of the Gärtner model is proportional 

to 𝜆𝜆/𝛿𝛿 and is therefore valid when the Debye length is much smaller than the diffusion length.  We 

also show that when this assumption is relaxed, the current takes a form similar to the generalization 

in that it is linear in 𝐽𝐽𝐺𝐺  and  𝑝𝑝𝑤𝑤. Berz has also given an analysis of the validity of the 

quasiequilibrium assumption10 using a different method. It is important to note that this assumption 

changes the form of the depletion region recombination current relative to other classical 

treatments. 

We start with the hole continuity equation,  

 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 = −
𝑑𝑑𝐹𝐹𝑝𝑝(𝑥𝑥)
𝑑𝑑𝑑𝑑

+ 𝐺𝐺(𝑥𝑥) − 𝑅𝑅(𝑥𝑥) (S6.1) 
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and integrate once, 

 

 
𝐹𝐹𝑝𝑝(𝑥𝑥) = 𝐹𝐹𝑝𝑝 − � 𝐺𝐺(𝑥𝑥) − 𝑅𝑅(𝑥𝑥)

0

𝑥𝑥
𝑑𝑑𝑑𝑑 (S6.2) 

 

Here 𝐹𝐹𝑝𝑝 ≡ 𝐹𝐹𝑝𝑝(0), and  

 

 
𝐹𝐹𝑝𝑝(𝑥𝑥) = −µ𝑝𝑝

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑝𝑝 − 𝐷𝐷𝑝𝑝
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (S6.3) 

 

Solving this last equation with the boundary condition 𝑝𝑝(−𝑤𝑤) ≡ 𝑝𝑝𝑤𝑤 yields, 

 

 𝑝𝑝(𝑥𝑥) = 𝑒𝑒−𝜙𝜙(𝑝𝑝𝑤𝑤 − 𝑝𝑝†(𝑥𝑥)) (S6.4) 

 

where 

 

 
𝑝𝑝†(𝑥𝑥) = 𝐷𝐷𝑝𝑝−1 � 𝐹𝐹𝑝𝑝(𝑦𝑦)𝑒𝑒𝜙𝜙(𝑦𝑦)𝑑𝑑𝑑𝑑

𝑥𝑥

−𝑤𝑤
 (S6.5) 

 

Note that the electrostatic potential is defined 

 

 
𝜙𝜙(𝑥𝑥) =  −

(𝑥𝑥 + 𝑤𝑤)2

2𝜆𝜆2
 (S6.6) 

 

and the depletion width defined as 

 

 𝑤𝑤 =  𝜆𝜆√2𝑉𝑉 (S6.7) 

 

 

A generation integral is defined, 

 

 
𝐼𝐼𝐺𝐺(𝑥𝑥) ≡ � 𝐺𝐺(𝑦𝑦)𝑑𝑑𝑑𝑑 = � 𝛷𝛷𝑒𝑒𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑 =

0

𝑥𝑥

0

𝑥𝑥
𝛷𝛷(1 − 𝑒𝑒𝛼𝛼𝛼𝛼) (S6.8) 
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and a recombination integral, given 𝑛𝑛(𝑥𝑥) = 𝑛𝑛�𝑒𝑒𝜙𝜙, is defined, 

 

 
𝐼𝐼𝑅𝑅(𝑥𝑥) ≡ � 𝑅𝑅(𝑦𝑦)𝑑𝑑𝑑𝑑

0

𝑥𝑥

= 𝑘𝑘𝑅𝑅𝑛𝑛� � 𝑝𝑝𝑤𝑤 − 𝑝𝑝†𝑑𝑑𝑑𝑑
0

𝑥𝑥

= 𝑘𝑘𝑅𝑅𝑛𝑛� �−𝑝𝑝𝑤𝑤𝑥𝑥 − � 𝑝𝑝†
0

𝑥𝑥
𝑑𝑑𝑑𝑑� 

(S6.9) 

 

This integral requires additional work as it depends on 𝑝𝑝†. The first term of 𝐹𝐹𝑝𝑝(𝑥𝑥) gives rise to the 

resistance integral 

 

 
𝐹𝐹𝑝𝑝 � 𝑒𝑒𝜙𝜙(𝑦𝑦)

𝑥𝑥

−𝑤𝑤
𝑑𝑑𝑑𝑑 = 𝐹𝐹𝑝𝑝𝜆𝜆�𝜋𝜋/2  𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑤𝑤 + 𝑥𝑥
√2𝜆𝜆

� (S6.10) 

 

The full generation integral is then expressed 

 

 
� 𝑒𝑒𝜙𝜙(𝑦𝑦)
𝑥𝑥

−𝑤𝑤
𝐼𝐼𝐺𝐺(𝑦𝑦)𝑑𝑑𝑑𝑑

= 𝛷𝛷𝛷𝛷�𝜋𝜋/2 �𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑤𝑤 + 𝑥𝑥
√2𝜆𝜆

�

− 𝑒𝑒−𝛼𝛼𝛼𝛼+𝛼𝛼2𝜆𝜆2/2 �𝑒𝑒𝑒𝑒𝑒𝑒 �
𝛼𝛼𝛼𝛼
√2
� + 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑤𝑤 + 𝑥𝑥
√2𝜆𝜆

−
𝛼𝛼𝛼𝛼
√2
��� 

(S6.11) 

 

and the full recombination integral is expressed 

 

 
� 𝑒𝑒𝜙𝜙(𝑦𝑦)
𝑥𝑥

−𝑤𝑤
𝐼𝐼𝑅𝑅(𝑦𝑦)𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑅𝑅𝑛𝑛�𝑝𝑝𝑤𝑤𝜆𝜆 �𝜆𝜆 �1 − 𝑒𝑒−
(𝑤𝑤+𝑥𝑥)2
2𝜆𝜆2 � − 𝑤𝑤�

𝜋𝜋
2

 𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑤𝑤 + 𝑥𝑥
√2𝜆𝜆

��

− 𝑘𝑘𝑅𝑅𝑛𝑛� � 𝑒𝑒𝜙𝜙(𝑦𝑦) � 𝑝𝑝†(𝑧𝑧)
0

𝑦𝑦
𝑑𝑑𝑑𝑑

𝑥𝑥

−𝑤𝑤
𝑑𝑑𝑑𝑑 

(S6.12) 
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Now we calculate 𝑝𝑝𝑠𝑠 with the following approximations: 𝑉𝑉 is sufficiently large so that the 𝑒𝑒𝑒𝑒𝑒𝑒 �𝛼𝛼𝛼𝛼
√2
� 

terms are effectively equal to 1, and the product 𝛼𝛼𝛼𝛼 ≈ 0, since the Debye length can be assumed 

much shorter than the absorption length. To calculate the final integral, we let 𝑝𝑝† be constant 

throughout the depletion regions, such that 𝑝𝑝† = 𝑝𝑝𝑠𝑠
†. This is justifiable because the exact functions 

above become effectively constant a few Debye lengths away from the edge of the region. This 

leads to 

 

 
𝑝𝑝𝑠𝑠
† ≈

𝜆𝜆�𝜋𝜋/2
𝐷𝐷𝑝𝑝

�𝐹𝐹𝑝𝑝 − 𝛷𝛷(1 − 𝑒𝑒−𝛼𝛼𝛼𝛼)� +
𝜆𝜆�𝑤𝑤�𝜋𝜋/2 − 𝜆𝜆�

𝛿𝛿2
�𝑝𝑝𝑤𝑤 − 𝑝𝑝𝑠𝑠

†� (S6.13) 

 

Since 

 

 𝑝𝑝𝑤𝑤 − 𝑝𝑝𝑠𝑠
† = 𝑝𝑝𝑠𝑠𝑒𝑒−𝑉𝑉𝑠𝑠𝑠𝑠  (S6.14) 

 

we simplify to 

 

 
𝑝𝑝𝑠𝑠
† ≈

𝜆𝜆�𝜋𝜋/2
𝐷𝐷𝑝𝑝

�𝐹𝐹𝑝𝑝 − 𝛷𝛷(1 − 𝑒𝑒−𝛼𝛼𝛼𝛼)� +
𝜆𝜆�𝑤𝑤�𝜋𝜋/2 − 𝜆𝜆�

𝛿𝛿2
𝑝𝑝𝑠𝑠𝑒𝑒−𝑉𝑉𝑠𝑠𝑠𝑠  (S6.15) 

 

To write 𝑝𝑝𝑤𝑤 in terms of 𝑝𝑝𝑠𝑠 we use the following relationship 

 

 𝑝𝑝𝑤𝑤 = 𝑝𝑝𝑠𝑠𝑒𝑒−𝑉𝑉𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑠𝑠
† (S6.16) 

 

to arrive at 

 

 
𝑝𝑝𝑤𝑤 ≈

𝜆𝜆�𝜋𝜋/2
𝐷𝐷𝑝𝑝

�𝐹𝐹𝑝𝑝 − 𝛷𝛷(1 − 𝑒𝑒−𝛼𝛼𝛼𝛼)�

+ �1 +
𝜆𝜆�𝑤𝑤�𝜋𝜋/2 − 𝜆𝜆�

𝛿𝛿2
� 𝑝𝑝𝑠𝑠𝑒𝑒−𝑉𝑉𝑠𝑠𝑠𝑠 

(S6.17) 

 

We now take the main result of the generalized Gärtner model, 
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𝐽𝐽𝑝𝑝 = 𝐽𝐽𝐺𝐺 − 𝑞𝑞 �

𝐷𝐷𝑝𝑝
𝛿𝛿

+ 𝑘𝑘𝑅𝑅𝑤𝑤𝑛𝑛�� 𝑝𝑝𝑤𝑤 (S6.18) 

 

and substitute for 𝑝𝑝𝑤𝑤 to obtain, 

 

 𝐽𝐽𝑝𝑝

=
𝐽𝐽𝐺𝐺 −

𝑞𝑞𝐷𝐷𝑝𝑝
𝛿𝛿 �1 + 𝑤𝑤

𝛿𝛿� �1 +
𝜆𝜆�𝑤𝑤�𝜋𝜋/2 − 𝜆𝜆�

𝛿𝛿2 � 𝑝𝑝𝑠𝑠𝑒𝑒−𝑉𝑉𝑠𝑠𝑠𝑠 + 𝑞𝑞�𝜋𝜋/2 𝜆𝜆𝛿𝛿 �1 + 𝑤𝑤
𝛿𝛿�𝛷𝛷(1 − 𝑒𝑒

1 + �𝜋𝜋/2 𝜆𝜆𝛿𝛿 �1 + 𝑤𝑤
𝛿𝛿�

 
(S6.19) 

 

We compare this to the solution which assumes hole quasiequilibrium, 

 

 
𝐽𝐽𝑝𝑝 = 𝐽𝐽𝐺𝐺 − 𝑞𝑞 �

𝐷𝐷𝑝𝑝
𝛿𝛿

+ 𝑘𝑘𝑅𝑅𝑤𝑤𝑛𝑛��
𝑝𝑝𝑠𝑠
𝑒𝑒𝑉𝑉𝑠𝑠𝑠𝑠

 (S6.20) 

 

There are three new terms that occur when the hole profile is allowed to deviate from 

quasiequilibrium. The first is a term (𝑋𝑋𝐹𝐹) in the denominator 

 

 
𝑋𝑋𝐹𝐹 = �𝜋𝜋/2

𝜆𝜆
𝛿𝛿
�1 +

𝑤𝑤
𝛿𝛿
� (S6.21) 

 

This term represents a decrease in hole density due to the resistance of charge transport through the 

depletion region. The second (𝑌𝑌𝑅𝑅) is a new term in the numerator 

 

 
𝑌𝑌𝑅𝑅 =

𝜆𝜆�𝑤𝑤�𝜋𝜋/2 − 𝜆𝜆�
𝛿𝛿2

𝑝𝑝𝑠𝑠𝑒𝑒−𝑉𝑉𝑠𝑠𝑠𝑠  (S6.22) 

 

This term represents the decrease in hole density due to recombination. The third term (𝑌𝑌𝐺𝐺) is also 

in the numerator, 

 

 
𝑌𝑌𝐺𝐺 = 𝑞𝑞�𝜋𝜋/2

𝜆𝜆
𝛿𝛿
�1 +

𝑤𝑤
𝛿𝛿
�𝛷𝛷(1 − 𝑒𝑒−𝛼𝛼𝛼𝛼) (S6.23) 

 

and represents the increase in hole density due to generation.  
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 These new terms are proportional to 𝜆𝜆/𝛿𝛿. This means that ignoring these terms and 

assuming hole quasiequilibrium is equivalent to assuming that the recombination length is much 

larger than the Debye length, 𝛿𝛿 ≫ 𝜆𝜆. It is important to note that even when this assumption is 

relaxed, the form of 𝐽𝐽𝑝𝑝 remains the same in that it is linear in 𝐽𝐽𝐺𝐺  and 𝑝𝑝𝑠𝑠𝑒𝑒−𝑉𝑉𝑠𝑠𝑠𝑠 . Thus, from a modeling 

standpoint, including these effects would be equivalent to altering the values of 𝐽𝐽𝐺𝐺  and the 

coefficient of 𝑝𝑝𝑠𝑠𝑒𝑒−𝑉𝑉𝑠𝑠𝑠𝑠 . 

 

Section E.S7 Surface State Mediated Transfer Model  

Our surface state model is closely related to the Shockley-Read-Hall (SRH) recombination 

model as we have used a single energy level DOS for the surface states. However, because we 

allow for transfer between the surface states, catalyst, and solution, the steady-state occupancy of 

the surface states is different from that predicted by the SRH model. Some of the positive charge 

injected into the surface states does not participate in recombination but instead proceeds further to 

oxidize the catalyst and/or solution; this effect has been discussed before by van Maekelbergh11 

and is called surface state-mediated transfer. The results of this section are not required for solution 

of the model equations, but illuminate the relationship between our model and the SRH model and 

quantify the effect of surface state-mediated transfer. 

The occupancy of the surface states is determined by applying current equality through 

them;  

 

 𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  (S7.1) 

 

where  

 

 
𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 =  𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 �

𝑝𝑝𝑠𝑠𝑠𝑠
𝑝̅𝑝𝑠𝑠𝑠̅𝑠

−
𝑠𝑠+

𝑠̅𝑠+
� (S7.2) 

 

 
𝐽𝐽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 �

𝑠𝑠
𝑠̅𝑠
−
𝑛𝑛𝑠𝑠𝑠𝑠+

𝑛𝑛�𝑠𝑠𝑠̅𝑠+
� (S7.3) 

 

 
𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 �

𝑠𝑠+𝑐𝑐𝑠𝑠𝑠𝑠
𝑠̅𝑠+𝑐𝑐𝑠̅𝑠𝑠𝑠

−
𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠+

𝑠̅𝑠𝑐𝑐𝑠̅𝑠𝑠𝑠+
� (S7.4) 
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𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑠𝑠+

𝑠̅𝑠+
(𝑒𝑒∆𝑉𝑉𝐻𝐻 2⁄ ) −

𝑠𝑠
𝑠̅𝑠

(𝑒𝑒−∆𝑉𝑉𝐻𝐻 2⁄ )�  (S7.5) 

 

Solving for s+ and calculating the currents permits one to write them in the form 

 

 𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑟𝑟𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠  (S7.6) 

 

 𝐽𝐽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 = −𝐽𝐽𝑟𝑟𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠  (S7.7) 

 

Here, 𝐽𝐽𝑟𝑟𝑠𝑠𝑠𝑠 represents the surface state recombination current, and the others represent surface state-

mediated transfers, i.e. the current passed through the surface states from the semiconductor into 

the catalyst and solution. These currents are 

 

 𝐽𝐽𝑟𝑟𝑠𝑠𝑠𝑠 = 𝑢𝑢𝑠𝑠𝑠𝑠𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 �
𝑝𝑝𝑠𝑠𝑛𝑛𝑠𝑠
𝑝̅𝑝𝑠𝑠𝑛𝑛�𝑠𝑠

− 1� (S7.8) 

 

 
𝐽𝐽𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠 = 𝑢𝑢𝑠𝑠𝑠𝑠𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 �

𝑝𝑝𝑠𝑠𝑐𝑐
𝑝̅𝑝𝑠𝑠𝑐𝑐̅

−
𝑐𝑐+

𝑐𝑐̅+
� (S7.9) 

 

 𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠 = 𝑢𝑢𝑠𝑠𝑠𝑠𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑝𝑝𝑠𝑠
𝑝̅𝑝𝑠𝑠
𝑒𝑒∆𝑉𝑉𝐻𝐻 2⁄ − 𝑒𝑒−∆𝑉𝑉𝐻𝐻 2⁄ � (S7.10) 

 

 
𝐽𝐽𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠 = 𝑢𝑢𝑠𝑠𝑠𝑠𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 �

𝑐𝑐
𝑐𝑐̅
−
𝑛𝑛𝑠𝑠
𝑛𝑛�𝑠𝑠
𝑐𝑐+

𝑐𝑐̅+
� (S7.11) 

 

 𝐽𝐽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠 = 𝑢𝑢𝑠𝑠𝑠𝑠𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 �𝑒𝑒∆𝑉𝑉𝐻𝐻/2 −

𝑛𝑛𝑠𝑠
𝑛𝑛�𝑠𝑠
𝑒𝑒−∆𝑉𝑉𝐻𝐻/2� (S7.12) 

 

where 

 

 𝑢𝑢𝑠𝑠𝑠𝑠 = 1
𝑠𝑠̅+
�𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 �

𝑠𝑠̅
𝑠𝑠̅+

+ 𝑝𝑝𝑠𝑠
𝑝̅𝑝𝑠𝑠
� + 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 �

𝑛𝑛𝑠𝑠
𝑛𝑛�𝑠𝑠

𝑠𝑠̅
𝑠𝑠̅+

+ 1� + 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑠𝑠̅
𝑠𝑠̅+

𝑐𝑐
𝑐𝑐̅

+

𝑐𝑐+

𝑐𝑐̅+
� + 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑠𝑠̅
𝑠𝑠̅+
𝑒𝑒∆𝑉𝑉𝐻𝐻/2 + 𝑒𝑒−∆𝑉𝑉𝐻𝐻/2��

−1
  

(S7.13) 
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Eq. S7.8 is analogous to the main result of the SRH model, but is modified by the factor 

uss, which decreases when charge is transferred through the surface states instead of recombining. 

This factor essentially partitions the current into the surface states between recombination and 

further transfer out of the states. It is important to note that the presence of the catalyst can decrease 

the recombination current relative to a system without catalyst by moving charge out of the surface 

states and into the catalyst or solution. This acts to lower the surface state energy (Ess) hence 

reducing the states and leaving fewer holes in the surface states to recombine with electrons from 

the conduction band. The transfer currents (Eqs. S7.9 – S7.12) take the form of second-order rate 

expressions for direct transfer between semiconductor, catalyst, and solution, with more 

complicated “exchange currents” that depend on the applied bias through the factor uss. 

We note also that the same analysis can be applied to the catalyst, which can function both 

as a recombination center and as an intermediary by which charge can be passed from the 

semiconductor to the solution, in the same way that surface states can. However, because of the 

non-monoenergetic DOS of the catalyst, the analysis is more involved, but the basic mechanisms 

and conclusions are the same. 

 

Section E.S8 Analytical Solution to Model Equations – Solving for ps 

Four equations are required to solve the model; electro neutrality holds that the charge in 

the Helmholtz layer must be balanced by charge in the semiconductor and surface states: 

 

 𝑞𝑞𝑠𝑠𝑠𝑠 + 𝑞𝑞𝑠𝑠𝑠𝑠 = 𝑞𝑞𝐻𝐻 (S8.1) 

 

Current from the semiconductor to the surface states must equal current from the surface states to 

the solution: 

 

 𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  (S8.2) 

 

Current into the catalyst, from the semiconductor and surface states, must equal current from the 

catalyst to the solution: 

 

 𝐽𝐽𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐽𝐽𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐽𝐽𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 (S8.3) 
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The hole current (Jp) is equivalent to the current from the valance band to the surface states and 

from the valance band to the catalyst: 

 

 𝐽𝐽𝑝𝑝 = 𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 (S8.4) 

 

Eqs. S8.5, S8.6 and S8.7 can be applied to this final equation to solve the surface hole concentration: 

 

 𝐽𝐽𝑝𝑝 =  𝐽𝐽𝐺𝐺 − 𝐽𝐽𝑅̅𝑅𝑒𝑒𝑉𝑉
�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠

𝑝𝑝𝑠𝑠
𝑝𝑝𝑠𝑠�

 (S8.5) 

 

 
𝐽𝐽𝑣𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 = 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠  �

𝑝𝑝𝑠𝑠𝑠𝑠
𝑝̅𝑝𝑠𝑠𝑠̅𝑠

−
𝑠𝑠+

𝑠̅𝑠+
� (S8.6) 

 

 𝐽𝐽𝑣𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑝𝑝𝑠𝑠
𝑝̅𝑝𝑠𝑠
− 𝑒𝑒𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−Δ𝑉𝑉𝐻𝐻� (S8.7) 

 

Substituting into Eq. S8.4 yields: 

 

 
𝐽𝐽𝐺𝐺 − 𝐽𝐽𝑅𝑅�𝑒𝑒𝑉𝑉

�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠
𝑝𝑝𝑠𝑠
𝑝𝑝𝑠𝑠�

= 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠  �
𝑝𝑝𝑠𝑠𝑠𝑠
𝑝̅𝑝𝑠𝑠𝑠̅𝑠

−
𝑠𝑠+

𝑠̅𝑠+
� + 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 �

𝑝𝑝𝑠𝑠
𝑝̅𝑝𝑠𝑠
− 𝑒𝑒𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−Δ𝑉𝑉𝐻𝐻� (S8.8) 

 

We redistribute to isolate like terms 

 

 
𝐽𝐽𝐺𝐺 + 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠

𝑠𝑠+

𝑠̅𝑠+
+ 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−Δ𝑉𝑉𝐻𝐻 = 𝐽𝐽𝑅𝑅� 𝑒𝑒𝑉𝑉

�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠
𝑝𝑝𝑠𝑠
𝑝𝑝𝑠𝑠�

+ 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠
𝑝𝑝𝑠𝑠𝑠𝑠
𝑝̅𝑝𝑠𝑠𝑠̅𝑠

+ 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐
𝑝𝑝𝑠𝑠
𝑝̅𝑝𝑠𝑠

 

 
(S8.9) 

and factor out 𝑝𝑝𝑠𝑠
𝑝̅𝑝𝑠𝑠

 

 

 
𝐽𝐽𝐺𝐺 + 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠

𝑠𝑠+

𝑠̅𝑠+
+ 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−Δ𝑉𝑉𝐻𝐻 =

𝑝𝑝𝑠𝑠
𝑝𝑝𝑠𝑠�
�𝐽𝐽𝑅𝑅�𝑒𝑒𝑉𝑉

�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠
𝑠𝑠
𝑠̅𝑠

+ 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐� 

 
(S8.10) 

Isolating 𝑝𝑝𝑠𝑠
𝑝̅𝑝𝑠𝑠

 gives the analytical solution to the surface hole concentration (𝑝𝑝𝑠𝑠) 
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𝑝𝑝𝑠𝑠
𝑝̅𝑝𝑠𝑠

=
𝐽𝐽𝐺𝐺 + 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠

𝑠𝑠+
𝑠̅𝑠+ + 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐−Δ𝑉𝑉𝐻𝐻

�𝐽𝐽𝑅̅𝑅𝑒𝑒𝑉𝑉�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠 + 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠
𝑠𝑠
𝑠̅𝑠 + 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐�

 (S8.11) 

 

Section E.S9 Ideal and Non-ideal Photodiode Derivation 

The Gärtner model assumes that there is perfect hole conductivity and therefor neglects the 

behavior of holes in the depletion region. Ideal behavior is constructed by assuming that hole 

current is equivalent to the Gärtner current, and overall current is that minus the electron current 

 

 𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐽𝐽𝐺𝐺 − 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒−𝑉𝑉 (S9.1) 

 

To solve for the 𝑉𝑉𝑜𝑜𝑜𝑜 we set  𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 

 

 
𝑉𝑉𝑜𝑜𝑜𝑜 ≈ −𝑙𝑙𝑙𝑙 �

𝐽𝐽𝐺𝐺
𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠

� (S9.2) 

 

The generalized Gärtner model can be applied to account for depletion layer recombination. Doing 

so complicates the expression for hole current 

 

 𝐽𝐽𝑝𝑝 =  𝐽𝐽𝐺𝐺 − 𝐽𝐽𝑅𝑅� 𝑒𝑒𝑉𝑉
�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠

𝑝𝑝𝑠𝑠
𝑝𝑝𝑠𝑠�

 (S9.3) 

 

For the non-ideal current expression, we modify the Gärtner model by introducing a first order rate 

constant into the reverse current:  

 

 𝐽𝐽𝑛𝑛𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝐽𝐽𝐺𝐺 − 𝑘𝑘1𝐽𝐽𝑅𝑅�𝑒𝑒𝑉𝑉
�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠

𝑝𝑝𝑠𝑠
𝑝𝑝𝑠𝑠�
− 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒−𝑉𝑉 (S9.4) 

 

This allows us to write the following simplification, 

 

 𝐽𝐽𝑛𝑛𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  
𝐽𝐽𝐺𝐺

1 + 𝐽𝐽𝑅̅𝑅𝑒𝑒𝑉𝑉�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠
𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠

− 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑉𝑉
�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠  

(S9.5) 

 

where  
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 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘1
𝐽𝐽𝐺𝐺

𝑝𝑝𝑠𝑠/𝑝̅𝑝𝑠𝑠
− 𝐽𝐽𝑅𝑅� 𝑒𝑒𝑉𝑉

�𝑠𝑠𝑠𝑠−𝑉𝑉𝑠𝑠𝑠𝑠  (S9.6) 

 

The non-ideal photodiode equation is solved for the 𝑉𝑉𝑜𝑜𝑜𝑜 by setting 𝐽𝐽𝑛𝑛𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0, 

 

 
𝑉𝑉𝑜𝑜𝑜𝑜 = − ln��

𝐽𝐽𝐺𝐺𝐽𝐽𝑅̅𝑅
𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠

+
1
4
−

1
2
� + ln�

𝐽𝐽𝑅̅𝑅
𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠

� (S9.7) 

 

Section E.S10 Model Results – Only Catalyst (no surface states) 

The model can be compared to our previously employed differential equations based 

simulation if surface states are neglected.12 As expected, the catalyst potential shifts quickly at 𝑉𝑉𝑜𝑜𝑜𝑜 

to accommodate slower catalysts. Once catalysis becomes sufficiently slow (small 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠) 

depletion recombination limits device performance by limiting the maximum 𝐸𝐸𝑝𝑝,𝑠𝑠 (and 

consequently 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐) achievable at any given 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎. This can be seen in the shallower 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 vs. 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 

transition slope for the slowest two catalysts in Figure E.S4(d). 
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Figure E.S4. Simulation results for the system without surface states. Exchange currents for 

this simulation are, 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 = 10−4, 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 = 10−10 𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐−2. The simulation is solved for 

𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 = [10−6, 10−4, 10−2, 100, 102, 104]. 

 

These results are similar to the differential equation based model in that they predict slow 

catalysts can be compensated by increases in 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐.  While the limit of this behavior is determined 

by recombination in the depletion region, for both models, this model provides an analytical 

solution to the limitation.    

 

Section E.S11 Model Results – Only Surface States (no catalyst) 

A system with only surface states acts similar to the buried “metallic” junctions defined in 

our previous work.12 Since the monoenergetic surface state level cannot shift relative to the 

semiconductor bands (no internal charge screening), this system relies on a Helmholtz potential to 

drive oxidation. This is the same physical situation as found for impermeable catalysts, which also 

contain a large quantity of unscreened charge states and hence can only be affected by a change in 

the electrostatic potential drop between the catalyst and the solution. 
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Figure E.S5. Simulation results for the system without surface states. Exchange currents for 

this simulation are 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 = 10−6, 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 = 10−10 𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐−2. The simulation is solved for 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 

[10−6, 10−4, 10−2, 100, 102, 104]. 

 

For slow oxidation kinetics (small 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠) charge builds up in the surface states (Figure 

E.S5f) and produces a sizeable Helmholtz drop (Figure E.S5e). Surface state charging also 

increases surface state mediated recombination (Figure E.S5c), which accounts for the cathodic 

shift in the J-V behavior relative to curves for quicker oxidation kinetics (Figure E.S5a).  
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Section E.S12 Model Results – Parallel behavior 

For models containing both surface states and catalyst states there are two primary behavior 

regimes. If electronic communication between the surface states and catalyst states is poor (𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 

is small) we say that the system behaves in parallel. Whereas, good communication gives rise to 

series behavior. We examine the parallel behavior in this SI section and the series behavior in the 

subsequent section.  We note that series behavior is more likely to for real systems.  

 

 
Figure E.S6. Simulation results for model exhibiting parallel behavior (𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 = 0). Exchange 

currents for this simulation are 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 = 10−6, 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 = 10−10, 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 = 10−4, 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 = 10−10 , 

𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 10−2, and 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 = 0 𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐−2. The simulation is solved for 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 = [10−8, 

10−6, 10−4, 10−2, 100, 102]. 

 

This model shows two regions of behavior. In the first, for large 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 values, J-V 

characteristics collapse to the same limit given by the pure catalyst model in S10 (Figure E.S6a). 

This occurs because transfer from the valance band to the catalyst dominates which allows the 

system to act as if the surface states do not exist. Surface state occupancy remains low for these 

curves (Figure E.S6f). Once catalysis becomes sufficiently slow the second behavior region sets in. 

In this region, a larger surface hole concentration is needed to further oxidize the catalyst (Figure 

E.S7a). However, the increase in 𝑝𝑝𝑠𝑠 promotes surface state filling (Figure E.S6f), resulting in an 
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increased Helmholtz drop (Figure E.S6e) and the promotion of direct oxidation from the surface 

states (Figure E.S7d). The result is that 𝐽𝐽𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 becomes the dominant driver of current while 𝐽𝐽𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 

becomes negligible. The cathodic shift in the J-V behavior when moving from the 1st to the 2nd 

region is accounted for by surface state mediated recombination (Figure E.S6c) As the surface 

states fill they become recombination centers while simultaneously driving the OER. This 

recombination is also why the 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 vs. 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 slope diminishes for the slower 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 values (Figure 

E.S7c). The recombination precludes the surface hole quasi Fermi level from charging the catalyst 

to a potential necessary for OER.   

 

 
Figure E.S7. Additional simulation results for model exhibiting parallel behavior (𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 =

0). Colors correspond to those in Figure E.S6. 
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Section E.S13 Model Results – Series behavior  

Here we describe the behavior of a model containing both surface states and catalyst states 

where these elements behave in series with each other. That is, where 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 is sufficiently large to 

allow electronic communication between the surface states and catalyst.   

 

 
Figure E.S8. Simulation results for model exhibiting parallel behavior. Exchange currents for 

this simulation are 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑠𝑠𝑠𝑠 = 10−6, 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑠𝑠𝑠𝑠 = 10−10, 𝐽𝐽𝑣̅𝑣𝑣𝑣,𝑐𝑐𝑐𝑐𝑐𝑐 = 10−4, 𝐽𝐽𝑐̅𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐 = 10−10 , 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 = 10−2, 

and 𝐽𝐽𝑠̅𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 = 105 𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐−2. The simulation is solved for 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠 = [10−8, 10−6, 10−4, 10−2, 100, 

102]. 

 

Like the parallel model, results here exhibit two distinct regions of behavior.  In the first, 

for large 𝐽𝐽𝑐̅𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠  values, J-V characteristics collapse to the same limit given by the pure catalyst 

model in S10 (Figure. E.S8a). Unlike the parallel model, the transition to the second region (where 

the J-V curves have shifted cathodically) occurs much earlier here (at higher values of  Jc̅at,sol). 

The earlier transition is due to back transfer of holes from the catalyst to the surface states (Figure 

E.S9e).  This transfer occurs because the catalyst and surface states are now at quasi-equilibrium 

with each other (Figures E.S9b & E.S9c) and so the surface states act as a hole “sink” even when 

they cannot drive the OER themselves. The “sink” behavior means that the 2nd region exhibits an 

increase in the surface state occupancy and in the Helmholtz drop (Figures E.S8e & E.S8f). The 
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latter effect increases the ability for surface states to directly drive the OER (Figure E.S9d). 

Interestingly, the cathodic J-V shift when moving from the 1st to 2nd region is not explained by 

either depletion recombination or surface state mediated recombination (Figures E.S8b & E.S8c). 

Examining the conduction band to catalyst surface state mediated transfer (𝐽𝐽𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠 ) reveals the cause 

of this shift. Ultimately, recombination still occurs in the surface states, but the recombination is 

not direct – electrons from the conduction band recombine with holes back-transferring from the 

catalyst (Figure E.S9f).   

 

 
Figure E.S9. Additional simulation results for model exhibiting parallel behavior. Colors 

correspond to those in Figure E.S8.  
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Section E.S14 Full Model – Mathematica 

To facilitate comprehension, the Mathematica files are broken into four core components, 

(1) “Model Initialization and Logic”, (2) “Solving the Model”, (3) “Current Expression and 

Datasets”, and (4) “Plotting Functions”. The first and second components include all the model 

logic and the computational solve for the system of four equations. The final two components are 

purely cosmetic, in that they are used to generate datasets and then plot them. Note that teal code 

is Mathematica’s comment notation, these sections are incorporated to help the reader understand 

the subsequent code blocks.  

 

 
Figure E.S10. Model code section 1. Model initialization and key equations. 

 

 

Variables Defined:
s is s surface state concentration ,
sp is s oxidized surface state concentration ,
sq is s,
spq is s ,
c is c catalyst states ,
cq is c,
cp is c ,
cpq is c ,
ess is Ess surface state energy ,
esso is Eoss formal energy sans helmholtz drop ,
vh is VH,
vh0 is VH,
ec is Ecat,
p is ps ps,
v is Vapp,
jg is JG Ga..rtner Current ,
jd is JR Depletion recombination exchange current ,
jps is Jvb,ss,
jns is Jcb,ss,
jpc is Jvb,cat,
jss is Jss,sol,
jsc is Jss,cat,
jnc is Jcb,cat,
jcs is Jcat,sol,
ass is alpha reaction coordinate ,
vo is v,
cs is CS,
nss is Nss surface state DOS ,
nd is ND semiconductor dopant density ,
ch is CH helmholtz capacitance

Substitutions list for s, s , s, s , c, c , c, c
subs s 1 1 E^ esso vh ess , sp 1 1 E^ ess esso vh , sq 1 1 E^ esso vh0 , spq 1 1 E^ vh0 esso ,

c 1 1 E^ esso vh ec , cp 1 1 E^ ec esso vh , cq 1 1 E^ esso vh0 , cpq 1 1 E^ esso vh0 ;

Solving Jvb,ss Jvb,cat JG for p
jps ps sq sp spq jpc p E^ ec vh vh0 jg jdE^ v vh vh0 p .subs Simplify;
subs Join subs, Solve , p Flatten ; Adds p to substition list

The three primary equations
1 Jvb,ss Jcb,ss Jss,sol Jss,cat
2 Jvb,cat Jcb,cat Jss,cat Jcat,sol
3 qsc qss qH

eqn
jps ps sq sp spq jns s sq E^ v vh vh0 sp spq

jss sp spqE^ ass vh vh0 s sqE^ 1 ass vh vh0 jsc spc spqcq scp sqcpq ,
jpc p E^ ec vh vh0 jnc E^ ec vh vh0 E^ v vh vh0 jsc spc spqcq scp sqcpq jcs E^ ec 2 E^ ec 2 ,
nd Sqrt Abs v vo vh csnsssp chvh .subs Simplify;

Solving for Voc
eqn .subs . ec 0, ess 0, vh vh0, jd jd Simplify;
voc v .Solve 1 , v 2 .C 1 0;
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Figure E.S11. Model code section 2. Current continuity equations and logic used to solve the 

model. 

  

Constant Subsitutions: Jvb,ss, Jcb,ss, Jvb,cat, Jcb,cat, Jss,sol, Jss,cat, JG, Jdr, Nd, Nss, Eoss, v, ass, CH, CS
const jps 1 ^ 6, jns 1 ^ 10, jpc 1 ^ 4, jnc 1 ^ 10, jss 1 ^ 2, jsc 0 10^5, jg 10, jd 1 ^ 17, nd 1 0̂, nss 1 5̂,

esso 4, vo 32, ass 1 2, ch 200, cs 1 ^ 1 N;

Determine VH and add to Constant Substitions
AppendTo const, FindRoot eqn 3 .subs . ess 0, v 0, vh vh0 .const, vh0, 0 1 ;

Block solves the analytical expressions at various values of Jcat,sol
pmin and pmax are the boundary exponent values and dp is the transition between them, such that:
Jcat,sol 10pmin, 10pmin dp, 10pmin 2dp, ..., 10pmax dp, 10pmax

Outputs into the list: "data"

pmin 10;
pmax 4;
dp 2;
einc 0.0;
np pmax pmin dp;
out ;
eqc eqn .const;
legend Range pmin, pmax, dp ;
var jcs;
For ip pmin, ip pmax, ip dp,
Block jcs 10^ip ,
varv voc .const;
vmax 20;
vmin 30;
nv 200;
dv vmax vmin nv;
data varv, FindRoot eqc .v varv, ess, 0 , ec, 0 , vh, vh0 .const Quiet, var ;
varv dv;
For , varv vmax, varv dv,
AppendTo data,

varv, FindRoot eqc .v varv, ess, einc ess .Last data 2 , ec, einc ec .Last data 2 ,
vh, 0einc vh .Last data 2 , MaxIterations 300 Quiet, var ;

;
varv voc dv .const;
AppendTo data, varv, FindRoot eqc .v varv, ess, ess .data 1, 2 , ec, ec .data 1, 2 , vh, vh .data 1, 2 Quiet, var ;
varv dv;
For , varv vmin, varv dv,
AppendTo data,

varv, FindRoot eqc .v varv, ess, einc ess .Last data 2 , ec, 0einc ec .Last data 2 , vh, 0einc vh .Last data 2
Quiet, var ;

;
data SortBy data, First ;
;
AppendTo out, data ;
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Figure E.S12. Model code section 3. Current output expressions and data frames. 

  

Explicit expressions for Jtot, Jss,sol, Jcat,sol, Jss,cat, Jcb,cat, Jvb,cat, Jcb,ss, Jvb,ss, s , Ep,s, JG, Jdr, and JR
jexp jss sp spqE^ ass vh vh0 s sqE^ 1 ass vh vh0 jcs E^ ec 2 E^ ec 2 .subs Simplify;
jssexp jss sp spqE^ ass vh vh0 s sqE^ 1 ass vh vh0 .subs Simplify;
jcatexp jcs E^ ec 2 E^ ec 2 .subs Simplify;
jscexp jsc spc spqcq scp sqcpq .subs Simplify;
jncexp jnc E^ ec vh vh0 E^ v vh vh0 .subs Simplify;
jpcexp jpc p E^ ec vh vh0 .subs Simplify;
jnsexp jns s sq E^ v vh vh0 sp spq .subs Simplify;
jpsexp jps ps sq sp spq .subs Simplify;
spexp sp .subs Simplify;
epexp Log p vh vh0 .subs Simplify;
jgexp jg jdE^ v vh vh0 p .subs Simplify;
jdeprexp jdE^ v vh vh0 p .subs Simplify;
jrexp
jpsjns p E^ v vh vh0 1 1 spq

jps sq spq p jns E^ v vh vh0 sq spq 1 jsc sq spq c cq cp cpq jss E^ vh vh0 2 sq spq E^ vh vh0 2 ^
1 .subs Simplify;

jrvbcatexp
jpsjsc p c cq cp cpq 1 spq

jps sq spq p jns E^ v vh vh0 sq spq 1 jsc sq spq c cq cp cpq jss E^ vh vh0 2 sq spq E^ vh vh0 2 ^
1 .subs Simplify;

jrvbsolexp
jpsjss p E^ vh vh0 2 E^ vh vh0 2 1 spq

jps sq spq p jns E^ v vh vh0 sq spq 1 jsc sq spq c cq cp cpq jss E^ vh vh0 2 sq spq E^ vh vh0 2 ^
1 .subs Simplify;

jrcbcatexp
jnsjsc c cq cp cpq E^ v vh vh0 1 spq

jps sq spq p jns E^ v vh vh0 sq spq 1 jsc sq spq c cq cp cpq jss E^ vh vh0 2 sq spq E^ vh vh0 2 ^
1 .subs Simplify;

jrcbsolexp
jnsjss E^ vh vh0 2 E^ v vh vh0 E^ vh vh0 2 1 spq

jps sq spq p jns E^ v vh vh0 sq spq 1 jsc sq spq c cq cp cpq jss E^ vh vh0 2 sq spq E^ vh vh0 2 ^
1 .subs Simplify;

Expressions evaluated with the data list and stored in new lists
jdata 1 40, jexp .subs .const .var 3 . 2 & & out;
jssdata 1 40, jssexp .subs .const .var 3 . 2 & & out;
jcatdata 1 40, jcatexp .subs .const .var 3 . 2 & & out;
jscdata 1 40, jscexp .subs .const .var 3 . 2 & & out;
jncdata 1 40, jncexp .subs .const .var 3 . 2 .v 1 & & out;
jpcdata 1 40, jpcexp .subs .const .var 3 . 2 .v 1 & & out;
jnsdata 1 40, jnsexp .subs .const .var 3 . 2 .v 1 & & out;
jpsdata 1 40, jpsexp .subs .const .var 3 . 2 .v 1 & & out;
jgdata 1 40, jgexp .subs .const .var 3 . 2 .v 1 & & out;
jdrdata 1 40, jdeprexp .subs .const .var 3 . 2 .v 1 & & out;
jrdata 1 40, jrexp .subs .const .var 3 . 2 .v 1 & & out;
jrvbcatdata 1 40, jrvbcatexp .subs .const .var 3 . 2 .v 1 & & out;
jrvbsoldata 1 40, jrvbsolexp .subs .const .var 3 . 2 .v 1 & & out;
jrcbcatdata 1 40, jrcbcatexp .subs .const .var 3 . 2 .v 1 & & out;
jrcbsoldata 1 40, jrcbsolexp .subs .const .var 3 . 2 .v 1 & & out;

essdata 1 40, ess 40 . 2 & & out;
ecdata 1 40, ec 40 . 2 & & out;
vhdata 1 40, vh 40 . 2 & & out;
vscdata 1 40, v vo vh 40 .subs .const .var 3 . 2 .v 1 & & out;
epdata 1 40, epexp 40 .subs .const .var 3 . 2 .v 1 & & out;
spdata 1 40, spexp .subs .const .var 3 . 2 .v 1 & & out;
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Figure E.S13. Model code section 4. Plotting functions. 

  

All plotting functions
imsize 500, 400 ;

jrplot ListPlot jrdata, PlotRange 5, 12 , Joined True, PlotLabel "Jss,recombination", ImageSize imsize, Frame True,
FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;

jplot ListPlot jdata, PlotRange 5, 12 , Joined True, PlotLabel "Jtot", ImageSize imsize, Frame True,
FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ,
PlotLegends Placed LineLegend legend, LabelStyle GrayLevel 0.3 , Bold, 18 , LegendLabel "Jcat,sol 10x", LegendLayout "Row", 4 ,

LegendFunction Framed , 0.8, 0.35 ;
jssplot ListPlot jssdata, PlotRange 5, 12 , Joined True, PlotLabel "Jss,sol", ImageSize imsize, Frame True,

FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;
jcatplot ListPlot jcatdata, PlotRange 5, 12 , Joined True, PlotLabel "Jcat,sol", ImageSize imsize, Frame True,

FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;
jscplot ListPlot jscdata, PlotRange 12, 12 , Joined True, PlotLabel "Jss,cat", ImageSize imsize, Frame True,

FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;
jncplot ListPlot jncdata, PlotRange 12, 12 , Joined True, PlotLabel "Jcb,cat", ImageSize imsize, Frame True,

FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;
jpcplot ListPlot jpcdata, PlotRange 12, 12 , Joined True, PlotLabel "Jvb,cat", ImageSize imsize, Frame True,

FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;
jnsplot ListPlot jnsdata, PlotRange 12, 12 , Joined True, PlotLabel "Jcb,ss", ImageSize imsize, Frame True,

FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;
jpsplot ListPlot jpsdata, PlotRange 5, 12 , Joined True, PlotLabel "Jvb,ss", ImageSize imsize, Frame True,

FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;
jdrplot ListPlot jdrdata, PlotRange 5, 12 , Joined True, PlotLabel "Jdr", ImageSize imsize, Frame True,

FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;
jgplot ListPlot jgdata, PlotRange 5, 12 , Joined True, PlotLabel "JG", ImageSize imsize, Frame True,

FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;

jrvbcatplot ListPlot jrvbcatdata, PlotRange 10, 12 , Joined True, PlotLabel " Jss vb,cat", ImageSize imsize,
Frame True, FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;

jrvbsolplot ListPlot jrvbsoldata, PlotRange 10, 12 , Joined True, PlotLabel " Jss vb,sol", ImageSize imsize,
Frame True, FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;

jrcbcatplot ListPlot jrcbcatdata, PlotRange 10, 12 , Joined True, PlotLabel " Jss cb,cat", ImageSize imsize,
Frame True, FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;

jrcbsolplot ListPlot jrcbsoldata, PlotRange 10, 12 , Joined True, PlotLabel " Jss vb,sol", ImageSize imsize,
Frame True, FrameLabel "J mA cm2 ", None , "V", None , LabelStyle Directive 13 ;

essplot ListPlot essdata, PlotRange All, Joined True, PlotLabel "Ess", ImageSize imsize, Frame True,
FrameLabel "E V ", None , "V", None , LabelStyle Directive 13 ;

ecplot ListPlot ecdata, PlotRange All, Joined True, PlotLabel "Ecat", ImageSize imsize, Frame True,
FrameLabel "E V ", None , "V", None , LabelStyle Directive 13 ;

vhplot ListPlot vhdata, PlotRange All, Joined True, PlotLabel "VH", ImageSize imsize, Frame True, FrameLabel "V", None , "V", None ,
LabelStyle Directive 13 ;

vscplot ListPlot vscdata, PlotRange All, Joined True, PlotLabel "Vsc", ImageSize imsize, Frame True,
FrameLabel "V", None , "V", None , LabelStyle Directive 13 ;

epplot ListPlot epdata, PlotRange All, Joined True, PlotLabel "Ep,s", ImageSize imsize, Frame True,
FrameLabel "E V ", None , "V", None , LabelStyle Directive 13 ;

spplot ListPlot spdata, PlotRange All, Joined True, PlotLabel "s ", ImageSize imsize, Frame True,
FrameLabel "Occupancy", None , "V", None , LabelStyle Directive 13 ;

GraphicsGrid jplot, jrplot, jdrplot , PlotLabel "Relevant Currents", Frame True, FrameStyle Thick
Print "\n"
GraphicsGrid epplot, essplot, ecplot , vscplot, vhplot, spplot , PlotLabel "Energies and Potentials", Frame True,
FrameStyle Thick
Print "\n"
GraphicsGrid jpcplot, jncplot, jscplot , , jcatplot, , PlotLabel "Jvb,cat Jcb,cat Jss,cat Jcat,sol", Frame True,
FrameStyle Thick
Print "\n"
GraphicsGrid jpsplot, jnsplot , jssplot, jscplot , PlotLabel "Jvb,ss Jcb,ss Jss,sol Jss,cat", Frame True, FrameStyle Thick
Print "\n"
GraphicsGrid jpsplot, jpcplot , jgplot, , PlotLabel "Jvb,ss Jvb,cat JG,generalized", Frame True, FrameStyle Thick
Print "\n"
GraphicsGrid jrvbcatplot, jrvbsolplot , jrcbcatplot, jrcbsolplot , PlotLabel "Surface State Transfer Currents",
Frame True, FrameStyle Thick



177 
 

APPENDIX D. SUPPORTING INFORMATION FOR PAPER F 

 

Junction Behavior of n-Si Photoanodes Protected by Thin Ni Elucidated from Dual 

Working Electrode Photoelectrochemistry 

 

Section F.S1 

The electrical conductivity through the photoelectrochemical (PEC) activated Ni film is 

largely dependent on the state of the near-solution Ni species. If the surface Ni is in the Ni(OH)2 

phase it will behave as an insulator and impede charge transfer. When the catalyst is oxidized to 

NiOOH, it exhibits much higher conductivity.1-3 The electrical junction behavior of the composite 

dual working electrode (DWE) is dependent on what state the Ni is in prior to performing the Au 

thermal deposition to form the WE2 contact.  

A significant concern in depositing 10 nm of Au on 3 and 5 nm Ni films is the development 

of direct n-Si | Au shorting. To evaluate this concern, we produced DWE photoanodes wherein the 

redox active Ni is isolated as Ni(OH)2 prior to Au evaporation.  Devices created in this manner can 

be evaluated for shorting by examining the dark ex-situ J-V characteristics before and after Ni(OH)2 

solution oxidation (Figure F.S1). Without n-Si | Au shorting, the J-V characteristics exhibit poor 

conductivity which becomes rectifying only once the Ni(OH)2 is electrochemically oxidized to 

NiOOH. Devices were re-reduced after performing in-situ DWE experiments; these J-V 

characteristics exhibit good agreement with the initial film which indicates WE2 stability and 

sustained lack of shorting. Such “short-free” devices are suitable for further interface analysis. 

We note that devices where the Ni is electrochemically oxidized to NiOOH, directly prior 

to Au depositions, tend to exhibit electrical conductivity despite electrochemical re-reduction (to 

Ni(OH)2). We speculate that this is caused by small regions of previously redox-active NiOOH 

being isolated from solution by the thin gold layer. In effect, these regions of Ni are never able to 

fully re-reduce and thus remain conductive despite the majority of the film being converted to 

Ni(OH)2. Electrodes produced in this manner are useful in that the junction photovoltage can be 

sensed at all relevant potentials through WE2 (discussed more below). 
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Figure F.S1. Shorting test for photoelectrodes. Dark, ex-situ JV characteristics for a DWE 

photoanode with Ni(OH)2 isolation. Catalyst films were isolated as Ni(OH)2 by supplying a 

reducing potential for 10 min (200 mV cathodic of the reduction peak potential) and to NiOOH by 

supplying an oxidizing potential for 10 min (200 mV anodic of the oxidation peak potential).  

   

Section F.S2  

To examine electrode activity as a function of (long-term) cycling we photo-deposited 

additional Ni before evaporation of the Au WE2. This improved the cycling longevity of the DWE 

electrode. Such photodeposition of sacrificial Ni is also useful in that it consistently prevents n-Si 

| Au shorting (which is often observed for the thinner layers). We examine the 5 nm devices because 

they exhibit an intermediate photovoltage enhancement relative to the 3 and 20 nm devices. During 

a typical experiment, WE1 was cycled 49 times through the oxidation and reduction peak without 

significantly entering the OER region. On the 50th cycle a more extended CV was swept to include 

the OER region and then WE2 was cycled once to examine the catalyst activity independent of the 

semiconductor. After 250 cycles it becomes apparent that WE2 losses significant contact with the 

catalyst. This conclusion is consistent with the diminishing redox peaks, likely indicating the 

dissolution or detachment of sacrificial catalyst.  

Figure F.S2 expands on the data in Figure F.3 of the text, and demonstrates the continued 

effects of this process on both working electrodes. Results show that OER onset significantly 

improves over 250 cycles when measured from WE1 but only improves over the first 50 cycles 

when measured from WE2. Additionally, the improvement onset potential measured through WE2 

(i.e. catalyst) is ~100 mV while that measured through WE1 (i.e. semiconductor ohmic contact) is 

~400 mV.  
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Figure F.S2. Comparison of WE1 and WE2 with extended ageing. (a) Illuminated cycling 

experiments through WE1 on n-Si | 5 nm Ni | 10 nm Au DWE photoanodes. (b) Illuminated cycling 

experiments through WE2 on n-Si | 5 nm Ni | 10 nm Au DWE photoanodes.  Same device as Figure 

F.S2a. Both experiments were performed under 100 mW cm-2 of AM1.5G solar simulation in a pH 

9.8 K-borate buffer. 

   

Because sacrificial catalyst loss is apparent during cycling experiments we controlled for 

this effect by intentionally “pinning” the junction. To accomplish this a 10 nm Au interlayer was 

deposited between the n-Si and 5 nm Ni layer. CV experiments were conducted in an identical 

manner to those in Figure F.S2. Sacrificial Ni loss was also noticed in this instance but no change 

in the illuminated OER onset was seen when measured through WE1. Additionally, the redox peak 

locations remained largely unaffected by continued cycling, when measured through both WE1 and 

WE2. Whereas in the n-Si | 5 nm Ni junction the redox peaks moved mostly in step with the OER 

onset increases, when measured through WE1. This data is consistent with the expected behavior 
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of the buried n-Si | Au junction and shows that the cathodic shifts in photocurrent onset are 

produced specifically by changes to the n-Si | Ni junction. 

 

     

 
 

Figure F.S3. Dual-working-electrode technique applied to Au control. (a) Illuminated cycling 

experiments through WE1 on n-Si | 10 nm Au | 5 nm Ni | 10 nm Au DWE photoanodes. (b) 

Illuminated cycling experiments through WE2 on n-Si | 10 nm Au | 5 nm Ni | 10 nm Au DWE 

photoanodes. Same device as Figure F.S3a. Both experiments were performed under 100 mW cm-

2 of AM1.5G solar simulation in a pH 9.8 K-borate buffer. 

 

Section F.S3 

  Thermal evaporation of ~2 nm Ni on n-Si results in photoanodes which decay back to bare 

n-Si response within ~20 CVs (Figure F.S4). Limited lifetime is attributed to passivation via holes 

in the thermally evaporated film and oxidation of the underlying Si surface. 
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Figure F.S4. Illuminated degradation of an n-Si photoanode protected with 2 nm metallic Ni. 

The data was collected under 100 mW cm-2 of solar simulation in a pH 9.8 K-borate buffer. 

 

Similarly, cathodic electrochemical deposition of Ni(OH)2, accomplished by maintaining 

a current density of -0.1 mA cm-2 for 10 min in a 0.1 M, pH 7 NiSO4 solution, fail to protect 

photoanodes at all due to the electrolyte permeability of the catalyst layer (Figure F.S5). Deposition 

was sufficiently thick as to be visible by eye.   

 

 
Figure F.S5. Illuminated degradation of an n-Si photoanode protected with 

electrochemically deposited Ni. The voltammetry presented shows initial limited photoelectrode 

performance which degrades rapidly within ~10 cycles. Electrolyte permeable electrodeposited 

Ni (oxy)hydroxide cannot protect the Si surface. The data was collected under 100 mW cm-2 of 

solar simulation in a pH 9.8 K-borate buffer. 
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Section F.S4 

Dark linear sweep voltammagrams (LSVs) on control devices (i.e. with direct Au|Si 

Schottky contact) exhibited the expected behavior for a buried Schottky junction. When normalized 

to the junction voltage (Esem – Ecat) the reverse saturation current remained invariant despite 

stepping the potential at WE2 through a 500 mV range. In the forward bias regime (negative voltage 

in Figure F.S6), when normalized to the junction voltage, curves also collapsed upon each other at 

all WE2 potentials. The devices display rectifying behavior, consistent with well-established 

Schottky diode theory.4   

 

 
Figure F.S6. Dark in-situ LSV characteristics for an intentionally buried n-Si | Au junction. 

Results are normalized to the junction voltage to examine reverse saturation current – a function of 

barrier height. The data was collected in a pH 9.5 K-borate buffer.   

 

For DWE junction experiments the chemical state of the Ni during deposition of the 

secondary Au working electrode is an important consideration. The porous Au can either be 

deposited on surface Ni isolated as NiOOH or as Ni(OH)2. Isolation in the Ni(OH)2 state is useful 

in that it allows for identification of direct shorting from the Au to the n-Si (discussed above). 

However, Ni(OH)2 is insulating and will produce a switching behavior in the DWE measurements 

when oxidized to conductive NiOOH. Isolation in the NiOOH phase eliminates the switching 

behavior, but n-Si | Au shorting cannot be identified. Both situations are discussed in SI section S1.  

To understand better the interface character, we reproduced the DWE experiments with the 

Ni isolated in the NiOOH phase. Results are then compared to control devices wherein the junction 

is intentionally pinned; that is, where 10 nm of Au is thermally evaporated before Ni evaporation 

(Figure F.S6). The control devices behave as expected for a buried junction; rectifying behavior is 
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exhibited and each curve is nearly identical when normalized to the junction voltage. For DWE 

photoanodes where the Ni is isolated as NiOOH prior to gold evaporation, the LSVs depict buried 

junction behavior with a substantially reduced conductivity switch effect between Ni(OH)2 and 

NiOOH (Figure F.S7). In both the devices with 3 nm and 5 nm of Ni, the forward bias region is 

effected by the in-situ transition from Ni(OH)2 to NiOOH. In each case increases in conductivity 

appear to modestly enhance the current response. Interestingly this effect is more pronounced on 

the 3 nm Ni protected photoanodes perhaps as a result of fewer NiOOH regions protected by Au. 

However, examination of the reverse bias region in each case reveals an invariant current response, 

which is an indication of an invariant barrier height as the potential of the catalyst layer is changed.  

The data further supports our hypothesis that protected Si photoanodes in the size regimes explored 

exhibit buried-junction behavior. 
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Figure F.S7. Dark in-situ LSV characteristics for n-Si photoanodes protected with 3 and 5 

nm of Ni. (a) Dark in-situ LSV characteristics for a DWE n-Si | 3 nm Ni | Au junction. In these 

devices the Au layer was deposited after isolating the Ni in the conductive NiOOH form. (b) Dark 

in-situ LSV characteristics for a DWE n-Si | 5 nm Ni | Au junction. For both data sets Ecat is varied 

via WE2 in steps of 100 mV through the entire Ni redox region, while current voltage curves across 

the interface are collected for each Ecat by sweeping Esem (WE1). The data was collected in a pH 9.5 

K-borate buffer. 

 

Section F.S5  

To better distinguish the Ni redox peak from the OER region, slower LSVs at 10 mV s-1 

were collected before and after Fe incorporation. The offset between the two is ~ 99 mV at 2.5 

mA/cm2, consistent with the ~100 mV shift measured through WE2 at 100 mV s-1. 
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Figure F.S8. Illuminated 10 mV s-1 LSVs collected through WE1 before and after Fe 

incorporation.  Results are similar to 100 mV s-1 LSVs but better resolve the redox peak and OER 

onset. The data was collected under 100 mW cm-2 of solar simulation in a pH 9.8 K-borate buffer. 

 

Section F.S6 

  XPS was used to identify the elemental composition and oxidation states of n-Si protected 

with 3 nm of Ni before and after electrochemical cycling. The raw data was shifted such that the 

adventitious carbon 1s peak was centered at a binding energy of 284.8 eV. A depth profile, via Ar 

ion sputtering (2 keV, 3 µA), was conducted in 5 s increments to determine compositional changes 

as a function of depth. For the post-cycled electrodes (Figure F.S9) XPS data shows that the surface 

is primarily composed of nominally Ni hydroxide/oxyhydroxide (Figure F.S9a). However, the 

depth profile indicates that residual metallic Ni persists under this layer and becomes the dominant 

Ni species after 20 s of Ar ion sputtering. Interestingly, this layer later gives way to an XPS 

spectrum consistent with NiSi, demonstrating direct contact between Si and Ni, even in the 

electrochemically cycled device. The Si regional spectra (Figure F.S9b) illustrates that the SiO2 

layer has been milled through after ~75s of cumulative Ar ion sputtering. 
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Figure F.S9. XPS spectra of n-Si protected with 3 nm of Ni after electrochemical cycling. (a) 

The Ni region of the XPS profile exhibits a transition from Ni(OH)2 to Ni to NiSi. (b) The Si region 

of the XPS profile exhibits increased SiO2 character for the first 35 s before it completely 

diminishes after 75 s. This is consistent with a depth profile which has passed through a Si oxide 

layer consisting of the native oxide and any oxidized regions formed during electrochemical 

cycling. 

 

Peaks were identified using the ThermoScientific Avantage 4.75 software, comparisons to 

Mullins et al. monochromated Kα spectra, and comparisons to the NIST XPS Database 20, version 

4.1 binding energies.5,6 Select spectra are taken from Figure F.S9a above and labeled in more detail 

below (Figure F.S10).   



187 
 

 
Figure F.S10. Select sputter times selected from Figure F.S9a to identify key peak positions. 

Peak locations and general shapes were compared to monochromated Kα spectra from Mullins et 

al. and the NIST XPS database.    

 

As-deposited samples not subject to electrochemical cycling exhibit a metallic Ni peak 

before depth profiling (Figure F.S11). 
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Figure F.S11. XPS spectra at select sputter times for control samples of n-Si protected with 3 

nm of Ni without electrochemical cycling. (a) the regional Ni spectra and (b) the regional Si 

spectra.  

 

Reduction of Ni(OH)2 to metallic Ni by Ar ion sputtering has been documented in other 

systems.7 A control sample, fabricated by electrodepositing Ni(OH)2 onto an Au/Ti-coated glass 

slide, was used to examine the extent of Ni(OH)2 reduction from this process (Figure F.S12). 

During the first three sputter steps (identical conditions as above) the Ni regional spectrum changes 
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significantly as a shoulder grows into the Ni 2p 3/2 peak – consistent with the presence of metallic 

Ni. However, for subsequent sputter steps the spectrum remains largely unchanged – consistent 

with establishment of a steady state ratio of metallic Ni to Ni(OH)2 as the Ar ion milling removes 

material.  In the Ni-protected n-Si samples, analyzed after electrochemical cycling, a transition to 

purely metallic Ni is observed - this indicates the presence of metallic Ni before sputtering. The 

metallic Ni observed in the cylced photoelectrodes is thus not an artifact from Ar ion sputtering. 

 

 
 

Figure F.S12. XPS spectra of Ni(OH)2 electrodeposited (-2 mA for 60 s in a 0.1 Ni(NO3)2 

solution) onto Au, after electrochemical cycling. The Ni region of XPS profile shows the 

conversion of some Ni(OH)2 to metallic Ni and the establishment of a steady state ratio between 

the two species.    
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Section F.S7 

Non-saturated photocurrent and cleaning procedure dependence.  

The majority (95%+) of electrodes fabricated with the simple IPA cleaning procedure 

exhibit non-constant photocurrent in the saturated regime. As discussed in the main text, this 

behavior can be attributed to the pinch-off effect, arising from a spatially heterogenous junction. 

Interestingly, altering the cleaning procedure by adding a 1 min HF buffered oxide etch (BOE) 

followed by a 10 min Radio Corporation of America (RCA) SC-2 clean, produces constant 

photocurrent in the saturated regime. However, this change in photocurrent behavior is 

accompanied by a significantly diminished photocurrent onset and reduced redox peak integration 

(Figure F.S13). It appears that the altered cleaning procedure leads to a more-conformal coating 

which then reduces the electrolyte’s ability to permeate to the semiconductor | catalyst junction. 

Lack of permeation is apparent from the reduced redox integration. In turn, spatial barrier height 

heterogeneity decreases (as indicated by the saturated photocurrent profile at sufficiently anodic 

potential) and better photocurrent onset potentials are precluded because the pinch-off effect is no 

longer a dominant process.  

This view is supported by AFM analysis which depicts smoother films, post-Ni deposition, 

when the altered cleaning procedure is used. Additionally, the photocurrent onset of the 3 nm 

devices deposited with the altered cleaning procedure compares favorably with the devices 

protected by 20 nm of Ni in Figure F.2 of the main text. The data further supports our hypothesis 

that sufficient spatial barrier height heterogeneity allows the interface to generate larger 

photovoltages. 

A further consideration in employing the altered cleaning procedure is the possible 

alleviation of shallow defect states responsible for Fermi level pinning (as discussed in the main 

paper). Growth of a more conformal and dense SiO2 layer, via the RCA SC-2 clean, may 

accomplish this goal and result in a larger photovoltage. However, if this effect is present it is 

ultimately obscured by the apparent photovoltage loss associated with precluding development of 

spatially heterogenous barrier heights.    
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Figure F.S13. Comparison of illuminated CVs for n-Si protected with 3 nm Ni after 

activation protocol. The more rigorous cleaning procedure (black curve) results in a decreased 

onset potential and diminished redox integration. The data was collected under 100 mW cm-2 of 

solar simulation in a pH 9.8 K-borate buffer. 

 

Section F.S8 

Material characterization with AFM reveals a relatively smooth surface for electrodes 

imaged directly after 3 nm Ni evaporation (Figure F.S14a). We identify the surface speckles as 

adventitious particulate contamination incorporated during the fabrication process. This view is 

supported by the lack of these defects in films where additional cleaning procedures were used (1 

min 20:1 HF BOE and 10 min RCA SC2) and by the quick disintegration of these features during 

SEM imaging. After the standard PEC activation protocol, films roughen and develop island 

features > 100 nm in diameter and particulate contamination generally persists (Figure F.S14b). 

This is consistent with oxidation of the majority of the film to Ni (oxy)hydroxide.   
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Figure F.S14. AFM images of n-Si protected with 3 nm of Ni. (a) before electrochemical cycling 

and (b) after electrochemical cycling.  

 

Imaging the films after the activation protocol with SEM also reveals the island features 

(Figure F.S15). We hypothesize that incomplete Ni protection, caused by the oxidation to Ni 

(oxy)hydroxides, leads to rapid passivation (SiO2 growth) in most areas of the film, consistent with 

the XPS spectra shown earlier.  

 

 
Figure F.S15. SEM image of n-Si protected with 3 nm of Ni after electrochemical cycling. 
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APPENDIX E. SUPPORTING INFORMATION FOR PAPER G 

 

Nanoscale catalyst/semiconductor interfaces in photoelectrochemistry 

 

 Term Description Value and/or Units 

C
oo

rd
in

at
es

 

Z Depth into semiconductor orthogonal to 
semiconductor surface plane 

nm 

R 
Radial distance from center of patch, 
taken along or parallel to the 
semiconductor surface plane 

nm 

 

In
de

pe
nd

en
t V

ar
ia

bl
es

 

𝜙𝜙b0  Barrier height for region surrounding 
patch 

V 

𝑟𝑟  Radius of the nanoscale contact patch nm 
A Patch area nm2 
𝐼𝐼photo  Photocurrent mA 
𝐽𝐽photo  Photocurrent density mA cm-2 
𝐸𝐸sem  Semiconductor energy referenced to 𝐸𝐸sol eV 

𝐸𝐸cat  Catalyst energy referenced to 𝐸𝐸sol eV 

𝑉𝑉jxn  

Applied potential across the n-Si/Ni 
diode: 
 

𝑞𝑞𝑉𝑉jxn =  𝐸𝐸sem − 𝐸𝐸cat 
 
  

V 

𝑉𝑉sem  

Voltage drop between the bulk 
semiconductor and solution: 
 

𝑞𝑞𝑉𝑉sem =  𝐸𝐸sem − 𝐸𝐸sol 
 

V 

𝑉𝑉cat  

Voltage drop between the catalyst and the 
solution: 
 

𝑞𝑞𝑉𝑉cat =  𝐸𝐸cat − 𝐸𝐸sol 
 

V 

𝑉𝑉tip  

Voltage drop between the AFM tip and 
the solution 

𝑞𝑞𝑉𝑉tip =  𝐸𝐸tip − 𝐸𝐸sol 
 

V 

𝑓𝑓𝑓𝑓  Filling factor - fraction of surface covered 
by islands 

unitless 

 

C
on

st
an

ts
 𝑁𝑁D  Dopant Density 5.25·1015 cm-3 

𝑉𝑉n  Potential difference between conduction 
band and Fermi level  

0.217 V 
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𝜖𝜖s  Static permittivity of Si 12·8.854·10-14 F cm-1 
𝐴𝐴∗  Richardson constant 120,000 mA cm-2 K-2 
𝑘𝑘  Boltzmann constant 1.381·10-19 cm2 kg s-1 K-1 
𝑞𝑞  Elementary charge 1.602·10-19 C 
𝑇𝑇  Temperature 298.15 K 
𝜙𝜙bNi  Barrier height for n-Si/Ni contact 0.61 V 

ℰO2/OH− Thermodynamic potential for oxygen 
evolution, used as the reference potential 

defined as 0 V 

𝐸𝐸sol  
Solution energy, taken as the reference 
energy  𝑞𝑞ℰO2/OH− 

𝐽𝐽cato   Catalyst exchange-current density 3.5·10-7 A cm-2 

𝛼𝛼  Charge transfer coefficient 0.5 
 

D
ep

en
de

nt
 E

xp
re

ss
io

ns
 a

nd
 V

al
ue

s 

𝑉𝑉bb  Band bending in semiconductor depletion 
region 

V 

𝑉𝑉bi  
Built-in potential for the semiconductor 
depletion region in the dark at 
equilibrium 

V 

∆  
Difference in barrier between patch and 
surrounding region (𝜙𝜙b0 − 𝜙𝜙bNi) 

V 

𝐶𝐶a  Area adjustment term used in Tung 
model 

unitless 

𝐶𝐶b  Barrier height modification term used in 
Tung model 

V 

𝐸𝐸CB  

Conduction band energy referenced to the 
majority carrier Fermi level in the bulk of 
the semiconductor (unless otherwise 
noted) 

eV 

𝐸𝐸metal  Metal Fermi energy eV 
𝐼𝐼patch  Patch current mA 
𝐼𝐼cat  Catalyst current mA 
𝑉𝑉oc  Open circuit potential mV 

𝛾𝛾  
Patch model region parameter1 

𝛾𝛾 = �
3∆𝑟𝑟2

4
�
1/3

 

V1/3·cm2/3 

Table G.S1 List of all variables, dependent expressions, coordinates and constants for pinch-

off model. 

 

Section 1. Model System Fabrication & Characterization 

Fabrication of n-Si photoanodes with Ni nanocontacts was adapted from the 

electrodeposition-based reports of Loget et al.2 Phosphorous-doped n-Si [100] (0.65 - 0.95 ohm∙cm) 

wafers (University Wafer) were diced into 1 cm × 1 cm squares and sequentially sonicated for 10 

min each in acetone, isopropyl alcohol, and water (18.2 MΩ∙cm). The n-Si squares were placed in 



195 
 

boiling piranha (~100 °C – 3:1 by volume conc. aq. H2SO4 : 30% aq. H2O2 – both from Fisher 

Chemical) for 30 min and then vigorously rinsed with water (18.2 MΩ cm) before being dried under 

N2. An ohmic contact was established to the backside of each n-Si square by applying two drops of 

Ga-In eutectic (≥99.99%, Sigma Aldrich), scratching within the Ga-In with a diamond scribe to 

ensure contact, and then affixing one end of a Sn-Cu wire (~25 cm length – 30 AWG – McMaster 

Carr) within the eutectic using hot glue (SureBonder Mini). The Sn-Cu wire was fed through a 

glass tube (7 mm diameter) and constructed into an electrode suitable for side-illumination with the 

n-Si backside and adjacent Sn-Cu wire insulated by hot glue. The Ni electrodeposition solution (aq. 

0.01 M NiCl2 + 0.1 M H3BO3) was produced fresh for each batch of electrodes by dissolving 

NiCl2·6H2O (99.9%, Sigma Aldrich) and H3BO3 (≥99.5%, Sigma Aldrich) in water (18.2 MΩ∙cm) 

and sonicating until dissolution was complete (typically 10 min). Immediately prior to deposition, 

electrodes were submerged in a buffered hydrofluoric acid etching solution (20:1 buffered oxide 

etch, J. T. Baker) for 2 min and then rinsed with water (18.2 MΩ cm). For deposition of the Ni 

islands, the electrode, a Pt wire coil serving as a counter electrode, and a commercial Ag/AgCl 

reference electrode (BASi MF-2052) were placed in the NiCl2-based deposition solution and -1.5 

V vs. ℰAg/AgCl was applied for 5, 15, or 60 s using a BioLogic SP200 potentiostat (Figure G.S1).   

 

 
Figure G.S1. Typical chronoamperometry data for electrodepositions used to produce 

photoanodes with n-Si/Ni nanocontacts. In a 0.01 M NiCl2 + 0.1 M H3BO3 aq. solution -1.5 V 

vs. ℰAg/AgCl was applied for 5, 15, or 60 s. Only electrodes which exhibited the deposition character 

shown here (initial spike in current which relaxes to a steady-state value) were selected for further 

study.  
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The photoanodes’ photoelectrochemical behavior was tested in both 1 M KOH and a 1 M 

potassium borate buffer (K-borate) adjusted to pH 9.5. Characterization was conducted in 1 M 

KOH to illustrate the photoelectrochemical activity in an environment where oxygen evolution 

catalysis is facile. However, 1 M K-borate buffer was selected for operando studies with the PS-

EC-AFM to decrease any etching of the Si surface that might occur between initial topographical 

characterization and photovoltage measurement as well as to preserve the longevity of the EC-

AFM tips. For photoelectrode characterization, the electrodes were activated via 50 voltammogram 

cycles in either electrolyte solution under 100 mW cm-2 of solar simulation (Abet Technologies 

model 10500) using the Ag/AgCl reference and Pt counter electrodes. The activation potential 

range varied based on Ni-deposition time but was always conducted at 50 mV s-1 with one endpoint 

cathodic of the catalyst’s reduction peak, nominally NiOOH + e- + H2O → Ni(OH)2 + OH-, and the 

other endpoint positioned in the light-limited photocurrent range. Photocurrent-onset potentials (vs. 

ℰO2/OH−) and the magnitude of the light-limiting photocurrent were comparable for electrodes 

with the same electrodeposition time, irrespective of the electrolyte solution.  Photocurrent onset 

slopes were steeper when electrodes were measured in the 1 M KOH solution, consistent with the 

higher OER activity and electrolyte conductivity relative to measurements in the buffered solution.  

 The n-Si/Ni nanocontacts were physically characterized before and after activation with 

scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (TEM, 

Figure G.S2). SEM images (FEI Helios 600 DualBeam) of photoanodes with 5 s of Ni 

electrodeposition reveal a distribution of hemispherical islands ranging from 40 to 140 nm in 

diameter. It was noted that smaller islands with less separation could typically be found near the 

edge of the photoelectrode surface. Cross-sectional TEM (FEI Titan 80-200 TEM/STEM with 

ChemiSTEM) collected before (Figure G.S2b) and after (Figure G.S2c) activation in 1 M KOH 

revealed that the Si surface etches 10-15 nm during activation. High annular angular dark field 

(HAADF) images (Figure G.S2d) revealed some diminished density of material at the edges of the 

Ni islands near the n-Si/Ni interface. Energy dispersive x-ray analysis (EDX) data collected via 

ChemiSTEM (Figure G.S3) reveals increased oxygen concentration around the Ni island edge after 

activation which is consistent with the conversion of Ni to Ni(OH)2/NiOOH. 
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Figure G.S2. SEM, cross-sectional TEM, and high-angle annular dark field (HAADF) TEM 

images for Ni nanoislands electrodeposited for 5 s on n-Si. (a) SEM image collected on a FEI 

Helios 600 DualBeam at 5 kV at a 45° angle. The selected location illustrates a typical spread and 

size distribution for Ni particles, although larger and smaller particles can be found across the 

surface. (b) Cross-sectional TEM collected on a FEI TITAN 80-200 before activation. (c) Cross-

sectional TEM collected after a 50-cycle activation in 1 M KOH. Si etching is apparent. (d) HAADF 

image corresponding to the same island in panel c.   
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Figure G.S3. EDX composition maps collected using ChemiSTEM mode on a FEI TITAN 80-

200 TEM/STEM for islands before and after activation in 1 M KOH. The composite image for 

Ni, Si, and O counts prior to activation (a) and after activation (b) are displayed in the top panel. 

The isolated Si (c), Ni (e), and O (g) counts collected before activation are displayed in the left 

column. The isolated Si (d), Ni (f), and O (h) counts collected after activation are displayed in the 

right column. The EDX results demonstrate that a portion of the Ni island is oxidized during 

electrochemical activation, consistent with the observed increase in the Ni redox wave.  
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Section 2. Ideality Factor 

 Dry current-voltage data was collected for nanocontacts formed by 5 s of Ni 

electrodeposition using conducting AFM. Ideality factors (n) were calculated from the dry current-

voltage behavior by fitting the slope (m) of the ln(J) vs. V plot with the expression 

 

 𝑚𝑚 =
𝑞𝑞
𝑛𝑛𝑛𝑛𝑛𝑛

 (S1.1) 

 

Ideality factors generally increased as the contact size became smaller (Figure G.S4), although this 

was not accompanied by an increase in the barrier height (Figure G.2a).    

 

 
Figure G.S4. Ideality factors extracted from the dark J-V curves measured through single 

nanoislands via AFM. The same ln(J) vs. V data was used to calculate barrier heights in Figure 

G.2a of the main text.   

 

Section 3. Operando Potential-Sensing Electrochemical Atomic-Force Microscopy  

Operando potential sensing was achieved using commercial PeakForce SECM probes on 

a custom-modified Bruker Dimensional Icon AFM. Photoelectrodes were dissected, immediately 

following Ni electrodeposition, by using a razor blade to remove hot glue insulation. A custom cell 

was designed where the dissected n-Si square chip was affixed to a Kel-F baseplate featuring a hole 

to accommodate the ohmic back contact. Epoxy (Hysol Loctite 9460) was used to affix the 

photoanode and insulate the ohmic contact from electrolyte. A groove was machined around the 

photoanode mounting area which accommodated a Pt-coil counter electrode and a standard 

Ag/AgCl reference electrode (Pine Research). During experiments the cell was filled with 1 M K-
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borate (pH 9.5) such that the photoanode was covered by at least 1 mm of solution. A Bio-Logic 

SP300 potentiostat was used with the working electrode connection attached to the photoanode’s 

ohmic contact and the counter-electrode potential-sensing lead attached to the backside of the 

PeakForce SECM probe (through a strain-release module) to monitor the tip potential. The built-in 

AFM laser (power: 1 mW, illumination area: ~ 8·10-4 cm2, wavelength: 690 nm) which tracks with 

the AFM tip was used as a local illumination source. The surface was then imaged in PeakForce 

Tapping mode to identify suitable areas for photovoltage measurements (ideally where most Ni 

nanoparticles could be well-resolved from adjacent particles). After identifying a suitable area, bias 

was applied to the photoanode to oxidize the Ni(OH)2 shell while simultaneously producing no 

bubbles. This was accomplished either by setting a chronoamperometry condition (typically Vsem = 

0.7 V vs. Ag/AgCl) or chronopotentiometry condition (typically I = 1 μA). Once a stable bias was 

maintained, islands were landed upon using the Bruker software’s point-and-shoot function and the 

surface potential was recorded. An example raw data set and corresponding topography image is 

shown (Figure G.S5), corresponding to the data in Figure G.2d of the main paper.   

We also note Pt is known to dissolve under large positive biases. We have not noticed tip 

failure due to Pt dissolution through our studies here at the relatively mild positive potentials sensed 

at the catalyst surface. Repeated topographical imaging with the Pt tips does, however, result in 

loss of the electrically conductive Pt coating and failure of the tip as a potential probe. 

 

 
Figure G.S5. Raw operando photovoltage data corresponding to Figure G.2d in main 

manuscript. (a) The AFM topography image was collected with the SECM AFM tip prior to using 

point-and-shoot mode. Two islands were removed from the surface when the tip contacted them 

during subsequent scans (as indicated in the labels). (b) A chronopotentiometry condition (I = 1 

μA) was applied and resulted in a near-steady applied potential (Vsem ~ 0.11 V vs. ℰO2/OH−). The 

islands were landed on sequentially (from 1 to 21) and the resulting tip potential (Vtip) was recorded. 
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Light Source for Photovoltage Measurements. The Bruker AFM’s built-in laser was used as a 

constant illumination source for the in situ photovoltage experiments. The laser is a monochromatic 

690 nm source with a power of 1 mW and an illumination area of approximately 8 ·10-4 cm2. The 

illumination intensity is compared to the AM 1.5 G flux absorbable by Si (leading to a theoretical 

limiting photocurrent density of 43.8 mA cm-2) to give a ~15-sun-equivalent flux. During operation 

the AFM cantilever partially obscures the incident beam. A Si photodiode (Thorlabs UDT UV-005) 

was used to determine that ~65% of the incident light is obscured during measurement, leading to 

a ~5-sun-effective-illumination flux. Due to cantilever shadowing, we note that any measured Ni 

island is not under direct illumination. However, the bulk diffusion length of carriers in these Si 

wafers is several hundred microns. Further, the AFM’s built-in laser is housed within the same 

apparatus where the cantilever is mounted and thus the incident illumination profile remains 

constant relative to the tip position. Thus, all measured nanocontacts experience a near-identical 

photogenerated minority carrier flux to the interface. The incident illumination could be better 

controlled in future iterations of the operando AFM cell by using fiber optics to illuminate at a 

shallow angle relative to the semiconductor surface. Back illumination is also possible, but this will 

limit the minority carrier generation near the surface and will likely be non-viable for materials 

with direct band gaps.   

 

 
Figure G.S6. Built-in laser alignment for the Bruker AFM. (a) Laser illumination shown ex situ, 

next to a SCM-PIT v2 commercial conducting AFM tip. This tip was used for the ex situ J-V 

characterization of islands. (b) Laser illumination shown during operando measurements with the 

Peakforce SECM probe partially obstructing the incident beam. Characterization with a standard 

Si photodiode (Thorlabs UDT UV-005) reveals that ~65% of the incident beam is obstructed. Thus 
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a ~5-sun-equivalent illumination flux is incident on the surface in the ~ 8·10-4 cm2 illumination 

area. 

 

Nanoisland Dimension Corrections. The radii of the nanoislands throughout this work are 

calculated from the topographical AFM data assuming a circular n-Si/Ni contact area. The radii are 

then corrected to account for AFM tip broadening and the activation process which decreases the 

Ni volume via conversion to Ni(OH)2/NiOOH. To correct for the AFM tip broadening a series of 

AFM topographical images were compared to the same regions as measured by SEM. Examination 

of 50 islands revealed that the AFM measurement artificially increased the radii by 4 nm (± 3 nm) 

relative to the SEM measurement (Figure G.S7). To compensate for the activation process the 

cathodic redox peak on the 50th cycle was integrated and compared to the charge passed during 

deposition. This comparison, assuming that all the deposition current reduced Ni2+ salts to Ni metal 

on the electrode surface, reveals that 5.7% (± 1%) of the Ni has converted to Ni(OH)2/NiOOH by 

the 50th activation cycle. This is equivalent to a 2% decrease in the radii of the Ni islands.   

 

 
Figure G.S7. Comparison of AFM island dimensions to those measured by SEM. Each top 

panel AFM topographical image corresponds to the same area as measured by a FEI Helios 600 

DualBeam SEM at 5 kV in the bottom panel. Island areas were analyzed using the threshold 



203 
 

imaging mode of ImageJ. Radii were calculated assuming the n-Si/Ni contact area is circular, 

revealing that AFM-tip-induced broadening artificially increases the radii by 4 nm (± 1). AFM-

extracted radii were corrected to account for this broadening throughout the paper.  

 

Section 4. Analytical Model for Pinch-off 

The Tung analytical pinch-off model1,3 is used to interpret the operando photovoltage 

results. We employ the patch-geometry solution wherein a circular patch with a low barrier height 

(𝜙𝜙bNi) is surrounded by a larger barrier region (𝜙𝜙b0). Current-voltage behavior is modeled via the 

modified ideal-diode expression 

 

 
𝐼𝐼patch = 𝐴𝐴∗𝑇𝑇2𝐶𝐶𝑎𝑎𝑒𝑒

−𝑞𝑞𝜙𝜙b
0

𝑘𝑘𝑘𝑘 +𝐶𝐶b �1 − 𝑒𝑒
𝑞𝑞𝑉𝑉jxn
𝑘𝑘𝑘𝑘 � (S1.1) 

 

where the effective-area modification (Ca) and barrier-height modification (Cb) are  

 

 
𝐶𝐶a =

4𝜋𝜋𝜋𝜋𝜋𝜋
9𝑞𝑞

�
3∆𝑟𝑟2

4
�
1/3

�
𝜖𝜖s

𝑞𝑞𝑁𝑁D𝑉𝑉bb
�
2/3

 (S1.2) 

 

 
𝐶𝐶b =

𝑞𝑞
𝑘𝑘𝑘𝑘

�
3𝑞𝑞∆𝑟𝑟2𝑉𝑉bb𝑁𝑁D

4𝜖𝜖s
�
1/3

 (S1.3) 

 

and the ideality factor is taken to be the average experimental value (n = 1.42). For Voc modeling 

the expression is multiplied by the patch area and modified to include a photocurrent density term 

(Jphoto). With Jpatch = 0 the expression is then solved for Vjxn = Voc. 

 

 
𝐽𝐽patch = 0 = 𝐴𝐴𝐴𝐴∗𝑇𝑇2𝐶𝐶𝑎𝑎 �𝑒𝑒

−𝑞𝑞𝜙𝜙b
0

𝑘𝑘𝑘𝑘 +𝐶𝐶b� �1 − 𝑒𝑒
𝑞𝑞𝑉𝑉jxn
𝑛𝑛𝑛𝑛𝑛𝑛 � + 𝐽𝐽photo (S1.4) 

 

For modeling the aggregate photoelectrochemical data, the photocurrent term is taken to be the 

limiting current from the photoelectrochemical results for any given modeled photoanode. This is 

typically ~25 mA cm-2 for a photoanode with 5 s of Ni electrodeposition. For modeling the 

operando data, a photocurrent of 125 mA cm-2 is used which accounts for the 5-fold increase in 

locally generated minority carriers under the 690 nm laser.   
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For modeling of photoelectrochemical results the modified ideal-diode expression is placed 

in series with a Butler-Volmer expression which represents the catalytic behavior. The exchange 

current density (𝐽𝐽cato ) for the Butler-Volmer expression was determined by fitting the 

electrochemical OER response of a Pt electrode where Ni had been electrodeposited for 5 s (Figure 

G.S8 - identical deposition parameters as for n-Si electrodeposition). The potential applied to the 

semiconductor back contact (versus the solution potential) is partitioned between potential drops 

across the semiconductor/catalyst interface as well as the catalyst/solution interface such that 

current continuity is upheld, satisfying the relationship 

 

 𝑓𝑓𝑓𝑓
𝐴𝐴
𝐴𝐴∗𝑇𝑇2𝐶𝐶𝑎𝑎 �𝑒𝑒

−𝑞𝑞𝜙𝜙b
0

𝑘𝑘𝑘𝑘 +𝐶𝐶b��1 − 𝑒𝑒
𝑞𝑞(𝑉𝑉jxn)
𝑛𝑛𝑛𝑛𝑛𝑛 � + 𝐽𝐽photo = 𝐽𝐽cato �𝑒𝑒

𝛼𝛼𝛼𝛼
𝑘𝑘𝑘𝑘(𝑉𝑉cat)� (S1.5) 

 

For depictions of the conduction-band potential-energy surface, the “point-dipole” 

approximation was employed,1 simplified here as: 

 

 
𝐸𝐸CB�𝑅𝑅,𝑍𝑍,𝑉𝑉jxn� = 𝑞𝑞 �𝑉𝑉bb �1 −

𝑍𝑍
𝑤𝑤
�
2

+ 𝑉𝑉n + 𝑉𝑉jxn −
2𝛾𝛾3𝑍𝑍

27 (𝑍𝑍2 + 𝑅𝑅2)3/2� (S1.6) 

 

where R and Z are the radial and depth coordinates, respectively. We note that this approximation 

accurately reflects the potential profile except near the center of the patch at the n-Si/Ni interface.4 

This discrepancy is an outcome of the denominator in the final term approaching zero and is 

suppressed in the model by setting a minimum value for the expression.  
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Figure G.S8. The photoelectrochemical behavior of Ni islands electrodeposited onto a Pt 

substrate and Butler-Volmer fit. Electrodeposition was accomplished using the same deposition 

parameters as for a 5-s electrodeposition of Ni on n-Si (-1.5 V vs. ℰAg/AgCl in aq. 0.01 M NiCl2 + 0.1 

M H3BO3). The catalyst was then activated via a 50 cyclic voltammogram cycles in 1 M KOH at 

50 mV s-1.  Once activated, a Butler-Volmer relationship was fit to the current onset region using 

𝐽𝐽cat0 = 0.00035 mA cm-2.  

 

Section 5. Mott-Schottky Analysis for Bare n-Si 

 During photoelectrochemical activation the surface of the exposed n-Si passivates via 

formation of an SiOx layer. To evaluate whether this layer affects the pinched-off nanocontacts, the 

barrier height was extracted periodically during passivation of bare n-Si photoelectrodes. 

Photoelectrode construction followed the procedure previously described for the nanocontacts 

except without nanocontact deposition. The analysis was accomplished by alternating between 

cyclic voltammetry (0 – 0.7 V vs. ℰO2/OH−) in 1 M K-borate buffer (pH 9.5) under 1 sun 

illumination and impedance analysis in aq. 1 M KCl + 0.05 M K3Fe(CN)6 + 0.35 M K4Fe(CN)6. 

The ferro/ferricyanide redox electrolyte was selected to establish a well-defined solution 

electrochemical potential against which to measure the flat-band potential (and barrier height) of 

the n-Si.  The Nyquist form of the impedance data was fit with the Randall’s circuit to extract the 

parallel capacitance associated with the semiconductor depletion region as a function of reverse 

bias and Mott-Schottky analysis was used to extract the flat-band potential and barrier height. The 

results show that the barrier height drops below the n-Si/Ni Schottky barrier height (extracted from 

dry conducting-AFM J-V measurements) after the fourth anodic CV cycle (Figure G.S9a and S9b). 

Because the solution electrochemical potential remains constant, the changes in barrier height are 
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due to shifts in the band-edge position as the SiOx layer forms (Figures G.S9c and G.S9d). These 

results demonstrate that the SiOx layer, in the absence of the Ni-metal nanocontacts, tends to pin 

the barrier height to ~0.5 V. As the n-Si/SiOx barrier is less than the n-Si/Ni barrier, surface 

passivation to form SiOx cannot be responsible for setting the background large barrier height that 

surrounds the n-Si/Ni nanocontacts and therefore is not responsible for the experimentally observed 

pinch-off behavior. 

 

 
Figure G.S9. Mott-Schottky analysis results for bare Si as a function of activation cycles (50 

mV s-1 in 1 M K-borate buffer from 0 - 0.7 V vs. 𝓔𝓔𝐎𝐎𝟐𝟐/𝐎𝐎𝐎𝐎−). (a) Barrier heights decrease below 

those calculated for the n-Si/Ni nanocontacts (~0.61 V) within four cycles.  (b) Dopant densities 

are extracted to verify that the measured capacitances are from the semiconductor depletion region. 

The dopant densities are consistent with those reported by the manufacturer (range shown in grey). 

(c) The equilibrated band diagram is shown, as estimated based on the Mott-Schottky analysis, 

depicting the n-Si electrode in the ferro/ferri-cyanide solution. (d) The equilibrated band diagram 

after the 50 CV cycles shows a decrease in band bending, a decrease in the barrier height, and shifts 

in the band-edge positions. 𝐸𝐸f, 𝐸𝐸SiO2, 𝐸𝐸SiOx, and 𝐸𝐸sol are the electrochemical potential for the 
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semiconductor, native oxide, grown SiOx layer, and solution, respectively. 𝐸𝐸sol is set by the Nernst 

potential of the poised solution. Growth of the SiOx layer introduces surface states responsible for 

pinning/moving the semiconductor Fermi level relative to the solution level. 

 

Section 6. Dual-Working-Electrode Approach for Measuring n-Si/SiOx/NiOOH Barrier 

Height 

To understand how oxidized, nominally NiOOH, catalyst would affect the barrier height 

with n-Si, a dual-working-electrode-type device was constructed. Photoelectrode fabrication 

followed the procedure previously described for the nanocontacts except epoxy (Hysol Loctite 

9460) was used to insulate the backside of the electrode, as hot glue would melt during subsequent 

thermal evaporation of the metal layers. After construction of the photoelectrode, 2 nm of Ni metal 

was evaporated (0.02 nm s-1) onto the n-Si surface via electron-beam deposition (Ni-metal pellets, 

99.995%, packed in a Fabmate crucible, both from Kurt Lesker) using an Amod evaporation 

system. Excess Ni was then photodeposited onto the electrode surface by applying 0.625 V vs. 

ℰO2/OH−  for 30 s in 1 M K-borate buffer (pH 9.5) saturated with NiCl2 (sufficient NiCl2·6H2O 

was added to yield a 1 M solution but some did not dissolve) under 1 sun illumination. The 

electrodes were then cycled, at 50 mV s-1, in 1 M K-borate buffer (pH 9.5) under 1 sun illumination 

until the Ni layer fully converted into redox-active Ni(OH)2/NiOOH. Full conversion is marked by 

the passivation of the n-Si surface to SiOx which results in a flat photoelectrochemical response (no 

current flows). A porous Au layer was then evaporated onto the Ni(OH)2/NiOOH surface to serve 

as a second working electrode (WE2) and directly control the oxidation state of the catalyst. 

Impedance experiments were conducted in 1 M K-borate buffer (pH 9.5) while using WE2 to hold 

the Ni(OH)2/NiOOH either in its oxidized or reduced state. The Nyquist data (Figure G.S10 e & f) 

was fit to the Randall circuit and Mott-Schottky analysis was performed to extract the barrier height 

and dopant density (Figure G.S11).   
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Figure G.S10. Example impedance behavior of a dual-working-electrode device with the 

catalyst held in either an oxidized or reduced state. For impedance measurements, the catalyst 

is held in either its oxidized or reduced state while the semiconductor is biased from 0 to 0.6 V vs. 

Vcat in steps of 20 mV. (a) After photodeposition of excess NiOOH the device was cycled in 1 M 

K-borate buffer under 1 sun illumination. For the initial 125 cycles the photocurrent onset 

improves. (b) Upon continued cycling the photocurrent onset and limiting photocurrent both decay 

until no potential-dependence is apparent. This indicates that the Ni metal has fully converted to 
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electrolyte-permeable Ni (oxy)hydroxide and can no longer protect the Si from passivation. (c) 

Bode impedance results while the catalyst is held in its reduced state and the (d) analogous data 

when held in its oxidized state. (e) Nyquist impedance while the catalyst is held in its reduced state 

and (f) its oxidized state. The Nyquist form was fit with a Randall circuit and the parallel 

capacitance was extracted.  

 

 
Figure G.S11. Mott-Schottky data representation and fits for the dual-working-electrode 

devices. (a) The fit when the catalyst is reduced exhibits a low barrier height of ~0.67 V relative to 

the larger ~1.04 V barrier height (b) for the oxidized catalyst analogue. Dopant densities, extracted 

the slope fit, are similar in each case and within the manufacturer-reported range.   

 

 
Figure G.S12. Photovoltage measurements from the dual-working-electrode (DWE) devices. 

The voltammogram shows the Ni(OH)2/NiOOH redox behavior as it is cycled through the Au 

secondary working electrode at 20 mV s-1 in 1 M K-borate buffer at pH 9.5. Photovoltages are 
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collected by applying a constant potential to the Au secondary working electrode (i.e. top contact 

to the catalyst), under 1 sun illumination, and sensing the potential at the primary working electrode 

(ohmic back contact to semiconductor). Once a stable potential is achieved the photovoltage is 

calculated as the difference between the primary and secondary working electrodes: 𝑉𝑉cat − 𝑉𝑉sem. The 

results illustrate a correlation between extent of catalyst oxidation and improved photovoltage. This 

is consistent the hypothesized physical picture in which the barrier height increases as the catalyst 

is oxidized. However, we note that these results are qualitative, as illumination of the 

semiconductor is poorly defined. This dual-working-electrode architecture places a relatively thick 

Ni(OH)2/NiOOH layer and a 10 nm thick Au layer between the 1 sun illumination source and the 

n-Si surface, effectively blocking the majority of the incident light.  

 

Section 7. The Effect of Activation on Photocurrent Onset 

 A 50-cycle activation procedure was used in this work for all electrodes irrespective of Ni 

deposition time. This extent of activation was selected because it does not induce nanocontact 

passivation (as would be noted by a decrease in the limiting current) and because with the 50-cycle 

the nanocontact radius is only partially reduced compared to the as-deposited radius which 

facilitates quantitative evaluation of the pinch-off effect. Improvements in photocurrent onset can 

be realized by additional cycling (Figure G.S13a). This is likely caused by enhanced pinch-off as 

the Ni islands are increasing converted into Ni(OH)2/NiOOH and the n-Si/Ni cross-sectional area 

decreases. However, after ~400 cycles the photocurrent onset and limiting current decay (Figure 

G.S13b). This is likely caused by complete conversion of the Ni nanocontacts to Ni(OH)2/NiOOH 

and the related passivation of the underlying n-Si. 
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Figure G.S13. The effect of continued activation on n-Si photoanodes with 5 s Ni 

electrodeposition.  (a) Initially the photocurrent onset improves. This is likely caused by enhanced 

pinch-off as the n-Si/Ni cross-sectional area decreases.  (b) After 400 cycles the limiting current 

and photocurrent onset begin to decay. This is consistent with passivation of the n-Si as the Ni 

becomes electrolyte permeable and SiOx forms underneath the Ni(OH)2/NiOOH. (c) A qualitative 

depiction of the activation process at cycles 1, 400, and 800 is shown. Initially, at cycle 1, the 

islands are comprised of only metallic Ni. The activation cycles increasingly convert the outer shell 

of the metallic Ni to Ni(OH)2/NiOOH. This increases the magnitude of the pinch-off effect and is 

the hypothesized cause of the significant negative shift in photocurrent onset seen from cycles 1-

400. At cycle 400 the light-limited current begins to decrease, indicating that some of the smaller 

islands have fully converted to Ni(OH)2/NiOOH and a passivating SiOx layer has isolated them 

from the semiconductor (preventing them from collecting holes). By cycle 800, the 

Ni(OH)2/NiOOH reduction/oxidation peaks are largely absent which indicates  that most of the 

catalyst is no longer in contact with the underlying semiconductor. The remaining photocurrent is 

likely driven by a few large Ni features and a few remaining nanocontacts with significant resistive 

losses across the SiOx layer. 

 

Possible effects of optical shading induced by changes in Ni to NiOOH can be inferred by 

examining the light-limited photocurrent for the extended cycling experiment in Figure G.S13. 

Although conversion of Ni to Ni(OH)2/NiOOH increases between cycles 50 and 400, the light-
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limited photocurrent remains largely invariant. For an ideal diode, the relationship between the 

light-limited photocurrent and photovoltage is such that a one order of magnitude change in the 

light-limited photocurrent results in a ~60 mV change in the photovoltage. Thus, for the minor 

variability observed experimentally, we expect a negligible impact on the photovoltage. We also 

note that the hole diffusion length in n-Si is quite long (>100 μm). Any local suppression of hole 

generation due to shading will be averaged out by diffusion from adjacent non-shaded regions.    

 

Section 8. Spatial Extent of High-Barrier Region Required to Produce Pinch-off 

The analytical model for pinch-off assumes an extended high-barrier region surrounding 

the pinched-off nanocontact. The model does not account for a spatially limited high-barrier region 

which may more-accurately reflect the model system where the Ni nanocontact converts to NiOOH 

at the surface. To evaluate whether this discrepancy causes meaningful differences in the barrier 

height fits we numerically simulate pinch-off using COMSOL Multiphysics v4.4. An n-Si 

semiconductor (dopant density 5.25 · 1015 cm-3) cylinder with a 1-μm radius and a 1-μm height is 

modeled with a circular 60-nm-radius Schottky contact (𝜙𝜙b = 0.61 𝑉𝑉) in the center of the top face 

of the cylinder. A second contact is placed, surrounding the Schottky contact, extending either 25 

nm or 940 nm and with a barrier height of either 0.92 V or 1.03 V (Figure G.S14). The 25-nm 

extension represents an initially 85-nm-radius island where 25 nm has converted into NiOOH, 

whereas the 940 nm extension (to the edge of the model) represents the extended contact that the 

analytical model assumes. The barrier heights were selected to represent the analytically 

determined fit (0.92 V) and the DWE Mott-Schottky extracted barrier height (1.03 V).  
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Figure G.S14. COMSOL Multiphysics numerical model for pinched-off contacts. A cross-

section of the model is depicted running from the center of an n-Si/Ni contact (𝜙𝜙b = 0.61 𝑉𝑉) to the 

edge of the n-Si (radial symmetry is present around R = 0 μm). The conduction band energy (ECB) 

is shown as referenced to the metal Fermi level (Emetal) at Vjxn = -0.24 V (the Voc for a bulk n-Si/Ni 

contact). The data depict the (a) 25-nm edge contact with 𝜙𝜙b0 = 0.92 𝑉𝑉, (b) 940-nm edge contact with 

𝜙𝜙b0 = 0.92 𝑉𝑉, (c) 25-nm edge contact with 𝜙𝜙b0 = 1.03 𝑉𝑉, and (d) 940-nm edge contact with 𝜙𝜙b0 = 1.03 𝑉𝑉. 

The depictions indicate that more-extensive pinch-off is present for the extended high-barrier 

contacts. 

 

The numerical simulation data indicate that a larger pinched-off saddle point (~100 mV 

increase) is present for the extended barrier region (940 nm) relative to the limited region (25 nm). 

We extract dark J-V curves from the numerical model for each case (Figure G.S15a). To facilitate 

comparison with the experimental data in Figure G.3b of the main text, the Voc is determined (Figure 

G.S15a - inset) by adding the 5-sun-equivalent photocurrent (125 mA cm-2) and accounting for the 

fill factor of the Ni metal nanocontacts on the surface (ff = 0.1). The 500-mV Voc for the 940-nm 

edge contact with 𝜙𝜙b0 = 1.03 𝑉𝑉 is similar to the experimental data collected in Figure G.3b of the 
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main manuscript. The Voc data for the limited (25 nm) high-barrier contact is smaller than those 

experimentally measured. From a numerical modeling perspective, the discrepancy is partially 

accounted for by noting we do not explicitly treat the ideality factor in the model described above. 

The experimentally measured ideality factors (n = ~1.42) are not input into the model and ideality 

factors extracted from the model J-V curves are ideal (n = 1). Since an increased ideality factor 

suppresses the dark current, neglecting non-ideality artificially lowers the Voc. From the perspective 

of the model system, we note that the high barrier region may extend well beyond the initial 

nanocontact island. Photoanodes activated in 1 M K-borate buffer exhibit redeposition of the Ni-

based catalyst on the n-Si surface (Figure G.S15b). This effect is consistent with previous in situ 

morphology studies NiOOH-based catalysts.5 If the redeposited catalyst electrically contacts the 

nanoislands then it may be oxidized and serve as a high barrier contact. We note that the 

redeposition is not observable via ex-situ SEM imaging on the electrodes activated in 1 M KOH. 

The discrepancy is attributed to n-Si dissolution more readily occurring in 1 M KOH (as seen by 

cross-sectional TEM) which causes poor surface adhesion for any redepositing Ni catalyst (which 

is likely ion permeable). Although the redeposited catalyst is likely present during illuminated 

operation, where the SiO2 surface is stabilized by the quasi-hole Fermi level6, it is easily removed 

when illumination is ceased during any subsequent rinsing. We therefore expect that, in reality, the 

interface behaves somewhere intermediate between the ideal homogeneous background barrier and 

the high-barrier shell models described in Figure G.S14. 
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Figure G.S15. COMSOL Multiphysics numerical J-V data for pinched-off contacts and 

SEM/AFM images depicting catalyst redeposition after activation in 1 M K-borate. (a) J-V 

curves extracted from the model in Figure G.S14. The inset illustrates the four different model 

cases with variable high-barrier spatial extents and heights. A Voc is calculated for each case by 

adding the 5-sun-equivalent light-limiting current (125 mA cm-2) and accounting for the 

experimental Ni island fill factor from Figure G.3b in the main text (ff = 0.1). The case with a 940-

nm edge contact and 𝜙𝜙𝑏𝑏0 = 1.03 𝑉𝑉 is most similar to the experimental data, however we note that the 

model neglects ideality factors which would increase all Voc values. (b) A photoanode where Ni 

was deposited via the 5-s electrodeposition strategy is shown after a 50-cycle activation in 1 M K-

borate buffer under 1 sun illumination. The SEM image reveals that some Ni has dissolved and 

redeposited around the Ni islands. This redeposition should increase the extent of the high-barrier 

region if it remains in electrical contact with the Ni island. (c) An AFM image collected ex situ 

showing the lack of redeposition prior to photoanodic activation. (d) An AFM image collected in 

situ near the same area shown in (c), after 50 photoanodic activation cycles. The catalyst shell has 

become rougher and Ni(OH)2/NiOOH redisposition is apparent surrounding the Ni islands.   
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Section 9. Sequential Deposition Interspersed with Activation 

 To further illustrate the importance of the pinched-off nanocontacts, we show that 

photoanodes with 60 s of Ni electrodeposition can exhibit decent photocurrent onset potentials if 

the pinched-off junction is intentionally fabricated. This is demonstrated by pausing the 

electrodeposition after the 5 and 10 s marks to perform a full photoelectrochemical activation. The 

final cycle of each activation is shown in Figure G.S16. The electrodes fabricated in this manner 

exhibit decreased limiting current, consistent with the parasitic light loss due to increased Ni layer 

thickness, but the photocurrent onset potential remains near the 5-s electrodeposited samples. In 

fact, the electrode in Figure G.S16 with a sequential 5 + 5 + 50 s electrodeposition exhibits a lower 

limiting current than the 60-s continuous deposition but a photocurrent onset potential ~250 mV 

more negative. This behavior most likely occurs because the n-Si/Ni nanocontact formed after the 

first 5 s of electrodeposition is retained/protected during the activation procedure as SiOx grows. 

The continued electrodeposition is then prevented from disrupting the nanocontacts because SiOx 

prevents charge transfer everywhere except at the direct n-Si/Ni junctions. 

  

 
Figure G.S16. Comparison between photoanodes with continuous 60 s Ni electrodeposition 

and those with sequential electrodeposition where an activation procedure is performed at 5 

and 10 s. The sequentially deposited photoanode exhibits a photocurrent potential onset ~250 mV 

more negative than the photoanode fabricated by a continued 60 s deposition.    

 

Section 10. Design of Devices Utilizing Selective Contacts 

The understanding of how the pinch-off effect influences photoanode behavior may be 

useful in designing devices that are simultaneously efficient and durable. Intentional fabrication of 

pinched-off interfaces may be used to produce photoelectrodes with selective contacts from 
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material that might not otherwise produce selective contacts. An example is illustrated in Figure 

G.S17, wherein conductive contacts of sufficiently small dimension become selective contacts 

when surrounded by a suitable material capable of inducing pinch-off. The material could be 

deposited in a chemical form such that it induces pinch-off due to the formation of a large depletion 

region in the semiconductor, but the results of this work also illustrate an alternative path wherein 

a redox-active layer is converted during operation to a sufficiently large (or small) work function 

through the collection of minority carriers. For photoelectrochemical applications, either the 

conductive contacts or the surrounding contact could serve the catalytic role.  

 

 

 
Figure G.S17. A possible strategy for creating selective contacts using pinch-off. In the first 

step conductive nanocontacts are deposited onto a semiconductor. This contact will be used to 

collect photogenerated minority carriers.  In the second step a surrounding material is deposited to 

induce band bending in the semiconductor. This material could directly induce pinch-off or be 

electrochemically converted during operation to serve that function (as is the case for the NiOOH 

material investigated here). In a third, optional step, a protection layer is deposited which prevents 

solution penetration.  

 

Section 11. Python Code Compilation  

Modeling of pinch-off was coded in Jupyter Notebooks using Python 3. The source code 

has been exported from python and isolated in the 18 images presented below. The code is 

annotated with comments throughout.  
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Figure G.S18 Python 3 code for modeling pinch-off: #1. Import statements and initializing 

variables. 

 

 
Figure G.S19 Python 3 code for modeling pinch-off: #2.  Input variables and mesh. 
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Figure G.S20 Python 3 code for modeling pinch-off: #3. Single dimension pinch-off model. 

 

 
Figure G.S21 Python 3 code for modeling pinch-off: #4. Single dimension pinch-off model with 

variable barrier heights. 
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Figure G.S22 Python 3 code for modeling pinch-off: #5. Single dimensional pinch-off model 

with variable radii.  

 

 
Figure G.S23 Python 3 code for modeling pinch-off: #6. Modifications to the ideal diode 

equation to account for pinch-off. 
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Figure G.S24 Python 3 code for modeling pinch-off: #7. Example current-voltage behavior. 

 

 
Figure G.S25 Python 3 code for modeling pinch-off: #8. Example current-voltage behavior with 

variable radii. 
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Figure G.S26 Python 3 code for modeling pinch-off: #9. Example current-voltage behavior with 

variable barrier heights. 

 

Figure G.S27 Python 3 code for modeling pinch-off: #10. Initialization of 3D Voc surface. 
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Figure G.S28 Python 3 code for modeling pinch-off: #11. 3D surface plot illustrating the Voc as 

a function of radii and barrier heights. 

 

 
Figure G.S29 Python 3 code for modeling pinch-off: #12. 3D surface plot illustrating the Voc as 

a function of radii and barrier heights. Select curves projected onto xy, xz, and yz planes.  
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Figure G.S30 Python 3 code for modeling pinch-off: #13. 2D projection of the Voc as a function 

of radii and barrier heights.  

 

 
Figure G.S31 Python 3 code for modeling pinch-off: #14. The experimental photovoltages 

plotted vs. radius. 
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Figure G.S32 Python 3 code for modeling pinch-off: #15. Custom least squares regression for 

fitting the experimental data with the pinch-off model.   
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Figure G.S33 Python 3 code for modeling pinch-off: #16. Fits visualized with experimental 

photovoltages.  
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Figure G.S34 Python 3 code for modeling pinch-off: #17. Modified ideal diode equation placed 

in series with an experimentally fit Butler-Volmer expression to calculate photoelectrochemical J-

V behavior.  
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Figure G.S35 Python 3 code for modeling pinch-off: #18. Photoelectrochemical fits 

superimposed on the experimental J-V curves for the 5-s Ni deposition, 60-s Ni deposition, Ni 

deposited on Pt.  
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Figure G.S36 Python 3 code for modeling pinch-off: #19. Code to plot the conduction band 

energy vs. R and Z. 
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Figure G.S37 Python 3 code for modeling pinch-off: #20. ECB vs. Z & R.  

 
Figure G.S38 Python 3 code for modeling pinch-off: #21. Code to plot ECB at various applied 

potentials.  
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Figure G.S39 Python 3 code for modeling pinch-off: #22. ECB plotted at various applied 

potentials.  
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