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DISSERTATION ABSTRACT

JohnChristopher Stephen Myers

Doctor of Philosophy

Department of Physics

June 2019

Title: Search for Higgs Boson Pair Production in the bbWW* Channel in
√
s =

13 TeV Proton-Proton Collisions at the Large Hadron Collider Using the ATLAS
Detector

This dissertation presents a search for double Higgs production in the bb̄WW ∗

final state in proton-proton collisions at the ATLAS detector at the Large Hadron

Collider. Double Higgs production is predicted in the Standard Model with a cross

section of σHH = 33.53fb +4.3%
−6.0% ± 5.9%. Many Beyond the Standard Model theories

predict enhancements to the production cross section through resonant production.

The 2015-2016 ATLAS dataset has an integrated luminosity of 36.1 fb-1 with

a center of mass energy of
√
s = 13 TeV. Candidate events are broken into two

kinematic regions: a resolved selection containing one lepton (either an electron or

muon), 2 b-tagged calorimeter jets, 2 light-flavor jets, and missing transverse energy;

and a boosted analysis containing one lepton (electron or muon), two large radius

jets, one with two ghost associated, b-tagged track-jets and missing transverse energy.

No significant deviation from background was observed a cross section upper limit

iv



was set for the SM double Higgs production of 10 pb and for resonant production as

a function of HH invariant mass from 500 GeV to 3000 GeV.

This dissertation includes previously published coauthored material.
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CHAPTER I

INTRODUCTION

The Standard Model (SM) is the culmination of more than a century of work.

The first piece added to the puzzle was the electron, discovered in 1891. Since

then, 24 other particles have been discovered, with the final piece, the Higgs Boson,

being added in 2012. Since it was theorized, the SM has held up to rigorous

experimentation. Even though the SM is widely successful, it fails to explain all

observed phenomena. Dark matter, baryogenesis, the hierarchy problem, along with

other observations, all lack explanation within the SM. The remaining task is to

probe the extremes of the SM to either more precisely measure the parameters or

to find evidence for new physics effects. In this dissertation I will test the SM

by searching for anomalous production of di-Higgs events that is not predicted by

the SM. This anomalous production would be a clear signature of new phenomena

and would expand the current knowledge of the physical world by measuring new,

previously undiscovered particles.

This chapter gives an overview of the Standard Model with a focus on Electro-

Weak Symmetry Breaking and the Higgs mechanism. Chapter II includes a

discussion of di-Higgs production, both in the SM and beyond the SM. Chapter III

describes the experimental apparatus used in this dissertation. Chapter IV discusses

the generation of background samples and reconstruction of data for the search.

Chapter V and Chapter VI gives a detailed description of the analysis along with an

additional analysis technique. Chapter VII concludes the dissertation. Chapter V

includes material coauthored with the ATLAS Collaboration.
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1.1. The Standard Model

The Standard Model defines the basic building blocks of matter and force carriers

and the interactions between them. Everyday matter is made of protons, neutrons,

and electrons. Electrons are a fundamental particle, called a lepton, meaning they

are not made of smaller constituents. However, protons and neutrons are not

fundamental particles. They are a composite built of up and down quarks, along

with sea quarks and gluons, which are more fundamental particles. The protons are

“made of” two ups and a down and the neutrons are “made of” two downs and an

up. The up and down quarks, along with the electron, are types of fermions.

Fermions are spin-1
2

particles that make up all matter in the SM. The fermions

can be broken down into three “generations”. A generation contains two quarks,

one with electric charge +2
3

and one with electric charge −1
3
, one electrically charged

lepton, charge -1, and one electrically neutral lepton, along with their antiparticles.

The quarks have an additional color charge, of which there are three charges. This

is an additional quantum number associated with the strong force. In all, this gives

12 fermions.

Gauge bosons are spin-1 particles responsible for communicating the

fundamental forces in the SM. There are four physical gauge bosons in the

electroweak sector. The photon γ is a massless, charge neutral force carrier for

the electromagnetic force. The nuclear forces are carried by two massive gauge

bosons: an electrically neutral Z boson and a charged W boson, which has electron

charge = ±1. Together, these two bosons control the electroweak interactions in the

SM. The remaining gauge boson is the gluon, which comes in eight color-anticolor

combinations. The gluon is the force carrier for the strong nuclear interaction. A

2



Particle Spin Charge Mass

Quarks

u type u 2.4+0.6
−0.4 MeV

c 1
2

2
3 1.28± 0.03 GeV

t 173.1± 0.6 GeV

d type d 4.7+0.5
−0.4 MeV

s 1
2 − 1

3 96+8
−4 MeV

b 4.18+0.04
−0.03 GeV

Leptons
e doublet e 1

2 -1 0.5109989461± 0.000000003 MeV
νe 0 < 2 eV

µ doublet µ 1
2 -1 105.6583745± 0.0000024 MeV

νµ 0 < 2 eV
τ doublet τ 1

2 -1 1776.86± 0.12 GeV
ντ 0 < 2eV

Bosons
Vector γ 1 0 < 10−18 eV

g 1 0 0
W 1 ± 80.385± 0.0015 GeV
Z 1 0 91.1876± 0.0021 GeV

Scalar H 0 0 125.09± 0.21± 0.11 GeV

TABLE 1.1. Particles of the Standard Model [2]

gluon is a massless, electrically neutral particle that has two color charges.

The remaining piece of the SM is the Higgs Boson. The Higgs boson is a massive

scalar, spin-0, chargeless boson. The Higgs boson is responsible for giving mass to

the massive fundamental particles. The full list of SM particles and their properties

are in Table 1.1.

Along with the previously outlined particles, there are also anti-particles. Every

particle in the SM has a partner of identical mass but opposite charge. For example,

the anti-particle to the electron is the positron; a particles with electric charge of

+1. For the W boson, the positive and negative Ws are particle-antiparticle pairs.

Some particles are their own anti particle, for example, the anti-particle of a photon

is a photon, the same is true for the Z boson.
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1.1.1. Interactions

The SM explains interactions between fermions by the exchange of bosons

(integer spin). For leptons, the overarching theory is the electroweak theory.

This can be broken down further into the electromagnetic interaction (Quantum

Electrodynamics (QED)) and the weak interaction. The electromagnetic interaction

defines the interaction of electrically charged particles with photons. An example

electromagnetic interaction diagram is electron-positron annihilation Figure 1.1,

where an electron and a positron collide and produce two photons. This can also be

reversed, two photons interact and produce an electron-positron pair. The strength

of this interaction is the electrical charge e.

e−

e+

γ

γ

FIGURE 1.1. Electron-Positron Annihilation

The weak interaction defines the interaction of particles under the weak isospin

quantum number and hypercharge. In the SM, every fermion is a mix of a left and a

right-handed chirality. Particles with a right-handed chirality have a weak isospin T

= 0. Left-handed particles have a weak isospin T = 1
2
. These particles are part of a

doublets as illustrated in Table 1.2. For these particles, the third component of the

weak isospin T3, +1
2

for up-type quarks and charged leptons and −1
2

for down-type
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quarks and neutral leptons.

Left Handed Fermions, T = 1
2
, T3 = ±1

2
Right Handed Fermions, T = 0, T3 = 0(

u
d

)
,
(
c
s

)
,
(
t
b

)
,
(
e
νe

)
,
(
µ
νµ

)
,
(
τ
ντ

)
u, d, c, s, t, b, e, νe, µ, νµ, τ , ντ

TABLE 1.2. Fermion doublets and singlets [3]

The remaining pieces of the weak interaction are the W and Z bosons. The W

has an isospin of T = 1. This gives three options for the third component of isospin,

T3 = +1, 0,−1 which give the W+, the W0, and the W-. The W0 will be discussed

more in section 1.1.2. The W± either raises or lowers the T3 of the fermions. The Z

boson has a weak isospin of 0 meaning it does not change the isospin of the fermions.

Instead, the Z boson transfers momentum, energy, and spin in interactions that do

not change electric charge or weak isospin. Additionally, the Z boson couples to both

the left and right handed fermions. Figure 1.2 is an example of a weak interaction.

µ− νµ

e−

νe

W−

FIGURE 1.2. Muon emitting a muon neutrino and a W Boson

The last fundamental forces in the SM is quantum chromodynamics (QCD).

Unlike the electroweak force, as the distance between a pair of colored particles

increases, the force between them increases. A consequence of this is known as color

confinement. As the distance between the particles becomes greater, the energy
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stored grows until a new quark-antiquark pair is spontaneously is generated from the

vacuum between them to neutralize the color of the original quarks. This generation

of color neutral hadrons is known as hadronization and occurs whenever a quark

gains enough momentum to be ejected from an object. The same thing happens to

gluons, as they too cannot exist by themselves. After hadronization, the resultant

hadrons produce showers of particles when they interact with dense matter. These

showers are recontructed in detectors as objects called jets.

Gravity is outside the scope of the SM and is not explained here.

1.1.2. The Higgs Mechanism and Higgs Boson

The Electroweak portion of the Standard Model has four massless bosons: the

W1, W2, W3, and B. In order to generate observed massive bosons, the W and Z, and

the photon, Electroweak symmetry must be broken. This process of Spontaneous

Electroweak Symmetry Breaking is known as the Higgs Mechanism.

In Electroweak Theory, the four fundamental gauge bosons couple to a complex

scalar doublet, Φ ≡
(
φ+

φ0

)
. This doublet has a scalar potential of the form

V (Φ) = µ2|Φ†Φ|+ λ(|Φ†Φ|)2. (1.1)

When µ2 < 0, the potential looks like the wine bottle shaped potential seen in Figure

1.3, with a minimum energy at

〈φ〉 =

√
−µ

2

2λ
≡ v√

2
(1.2)
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FIGURE 1.3. The Higgs potential.[4]

called the vacuum expectation value (VEV) of φ. The choice of the direction of

fluctuation is arbitrary. By convention, we choose

φ0 =
1√
2

(
0

v

)
. (1.3)

After the direction is chosen, three Goldstone bosons are eaten and the only

remaining degree of freedom is the real scalar field h(x), giving

φ(x) = φ0 + h(x). (1.4)

The doublet can now be described by

Φ =
1√
2

(
0

v + h(x)

)
. (1.5)
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This field couples to the gauge bosons as

(
g

2
−→τ · −→W +

g′

2
B)φ0. (1.6)

Where −→τ are the Pauli matrices,
−→
W are W1,2,3 and g, g’ are the coupling constants for

weak and hypercharge respectively. The result of the coupling is the four eigenstates,

which are the observed bosons,

W± =
1√
2

(W 1
µ ∓ iW 2

µ)

Zµ =
−g′Bµ + gW 3

µ√
g2 + g′2

Aµ =
gBµ + g′W 3

µ√
g2 + g′2

(1.7)

Three of these eigenstates are massive, the W µ± and the Zµ. Aµ, the photon, remains

massless.

M2
W =

1

4
g2v2

M2
Z =

1

4
(g2 + g′2)v2

MA = 0

(1.8)

As we just saw, an additional scalar field, the Higgs Field, is required.

The Higgs Boson is an excitation of the scalar Higgs field theorized by Peter

Higgs [5] [6]; François Englert and Robert Brout[7]; and Gerald Guralnik, Carl Hagen

and Tim Kibble [8]. In 2012, a Higgs like scalar boson was discovered at the LHC

by the ATLAS and CMS experiments with a mass of 125 GeV [9].

Since the discovery, many measurements have been made of this Higgs Boson to

compare it to the SM Higgs Boson. So far, the Higgs Boson has held up to these tests.
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FIGURE 1.4. Invariant mass distribution of di-photon candidates for the combined
root

√
s= 7 TeV and

√
s = 8 TeV data samples. The result of a fit to the data of the

sum of a signal component fixed to mH = 126.5 GeV and a background component
described by a fourth-order Bernstein polynomial is superimposed. The bottom inset
displays the residuals of the data with respect to the fitted background component.

The Higgs Boson has spin-parity JP = 0+ [10], and its decay branching fractions

to bb [11], γγ, ττ [12], WW and ZZ have been measured with appropriate signal

strengths, and no significant deviations with respect to the SM have been observed

in any Run 2 analyses. However, there are still many parameters of the Higgs Boson

that still need measured. One of which is the triple Higgs coupling.
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CHAPTER II

DI-HIGGS PRODUCTION

Measuring di-Higgs production is necessary to further confirm the SM or find

evidence for beyond-the-SM physics. The small SM production rate makes the

channel an important place to look for new physics. In particular, the di-Higgs

production rate gives a handle to more accurately measure the Higgs potential. This

dissertation looks at both the measurement of the SM di-Higgs production rate and

to search for new physics through resonant di-Higgs production.

2.1. Standard Model

The Higgs self coupling potential in the SM is

Vself−coupling = λ(|Φ†Φ|)2 (2.1)

When Φ is expanded around the vacuum expectation value (VEV), v, the self

coupling term can be written as

Vself−coupling ⊃ λvΦ3 +
λ

4
Φ4 (2.2)

where the first term, λvΦ3 is the coupling between three Higgs bosons with strength

λHHH ≡ λv[13]. The tri-linear Higgs coupling can be probed at the LHC by

measuring the cross section of events with two Higgs Bosons in the final state.

Currently at the LHC, there are two dominant ways to produce di-Higgs events,

the tri-linear Higgs coupling gluon-gluon fusion (ggF) diagram and a box diagram,

10



Figure 2.1. These diagrams interfere destructively, resulting in a SM prediction for

the cross section,

σHH = 33.53fb+4.3%
−6.0%(QCD unc.)± 5.9%(other unc.) (2.3)

in pp collisions at 13 TeV [14]. With the current data sample, this small cross section

is challenging to measure. Additionally, since the cross section is so small, it is an

promising place to look for deviations from the SM, since any enhancement over the

SM predicted cross section would be indicative of new physics.

H

H

t/b
H∗ λHHH

H

H

t/b

FIGURE 2.1. The dominate production method for di-Higgs events at the LHC with√
s = 13 TeV, with the tri-linear Higgs coupling on the left

The SM di-Higgs production is a continuum production, with events produced

with an invariant mass above 2 mH . There can be events below this (off-shell H)

but the rate will go down quickly as you get further off-shell. Figure 2.2 shows the

continuum distribution, as expected, it is a falling power law distribution peaked

around 400 GeV.

2.2. Resonant Production

There are several BSM models that may enhance the rate of di-Higgs production

at the LHC. This section will give an overview of a few of these models

11



FIGURE 2.2. Normalized differential cross section for pp → hh in the SM as a
function of the invariant mass of the two Higgs bosons. The solid and dotted lines
correspond respectively to

√
s = 14 and 100 TeV .[15]

2.2.1. Complex Higgs Singlet

The addition of a complex scalar singlet to the SM results in three neutral scalar

particles after spontaneous symmetry breaking, which mix to give mass eigenstates,

including the observed 125 GeV scalar [16].
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The normalizable scalar potential is

V (Φ, Sc) =
µ2

2
Φ†Φ +

λ

4
(Φ†Φ)2

+(
1

4
δ1Φ†ΦSc +

1

4
δ3Φ†ΦS2

c

+a1Sc +
1

4
b1S

2
c +

1

6
e1S

3
c +

1

6
e2Sc|Sc|2

+
1

8
d1S

4 +
1

8
d3S

2
c |Sc|2 + H.C.)

+
1

4
d2(|S2|2)2 +

δ2

2
Φ†Φ|Sc|2 +

1

2
b2|Sc|2

(2.4)

After spontaneous symmetry breaking, the fields are defined as:

Φ =

(
0
h+v√

2

)
;Sc =

1√
2

(S + vs + i(A+ vA)). (2.5)

vA is set to 0 to conserve CP symmetry.

The mass eigenstate fields are given by:


h1

h2

h3

 =


c1 −s1 0

s1c2 c1c2 s2

s1s2 c1s2 −c2



h

S

A

 (2.6)

where ci = cos θi, h is the SU(2) doublet field, and S and A are the real and imaginary

components of the complex scalar Sc. Assigning the SM-like Higgs boson as h1 with

m1 = 125 GeV and v = 246 GeV, h2 and h3 are physical heavy Higgs bosons with

m2,m3 > m1. The coupling of h1 to SM particles is dominant, suppressed by a factor

of c1 from the SM rate, with the h2 couplings suppressed by s1c2 and h3 couplings

suppressed by s1s2. ATLAS has set limits on c1 > 0.94 at 95% CL in RUN I. As

the h1 couplings become more SM-like (θ1 → 0), the allowed h2 couplings become

13



suppressed.

hj

hk

hi

hj

hk

FIGURE 2.3. Feynman diagrams for the production of hjhk, i, j, k = 1, 2, 3.

In the limit of θ2 → 0, which is in agreement with the single Higgs rates, h3 does

not directly couple to SM fermions or vector bosons. The only way to produce h3

is through h1 or h2, with the largest production rate from gg → h2 → h1h3, Figure

2.3. For a range of masses m2 and m3 the rate of production of h1h3 � h1h1, Figure

2.4.

FIGURE 2.4. Regions of parameter space allowed by limits on oblique parameters S
T and U from Ref [17], perturbative unitarity of 2 → 2 scattering process [18], and
the minimization of the potential where the rate for h1h3 production is significantly
larger than the SM h1h1 rate at

√
S = 13 TeV.
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The enhancement can be see in the potential where

V → 1

2
λ211h

2
1h2 +

1

2
λ311h

2
1h3 +

1

2
λ331h1h

2
3 +

1

2
λ321h1h2h3 + ... (2.7)

So while the SM tri-linear Higgs coupling is determined by mh, with this extension,

the coupling is much less constrained. This leads to enhanced values seen in Figure

2.5. So while this model would definitely show up in SM di-Higgs production, through

the first two terms in equation 2.7, a search for one SM Higgs and a heavy Higgs

would be more sensitive. This is a promising search moving forward but is not the

focus of this dissertation.

FIGURE 2.5. Region of parameter space allowed by limits on oblique parameters,
perturbative unitarity and the minimization of the potential where the h1h1h1 tri-
linear coupling is greater than five times the SM value.
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2.2.2. Real Higgs Singlet Extension

One simple explanation of an enhanced di-Higgs production rate at the LHC is

the addition of a real scalar Higgs singlet, S [19]. In this model, S can only interact

with the SM through the Higgs field. In the case where there is no Z2 symmetry,

where S → −S the scalar field S mixes with the SM Higgs boson. If the mass is large

enough, it is possible for S to decay to two on-shell SM Higgs Bosons, significantly

enhancing the di-Higgs production rate.

The most general potential that can be added is

V (Φ, S) = −µ2Φ†Φ+λ(Φ†Φ)2+
a1

2
Φ†ΦS+

a2

2
Φ†ΦS+b1S+

b2

2
S2+

b3

3
S3+

b4

4
S4. (2.8)

Where Φ is φ0 = (h+v)√
2

and < φ0 >= v
2
, while S = s+ x where x is the VEV of S. By

shifting the field, it is possible the set x = 0. After electroweak symmetry breaking

the fields mix to give the two mass eigenstates

(
h1

h2

)
=

 cos θ sin θ

− sin θ cos θ

(h
s

)
(2.9)

With m1 = 125GeV , the free parameters are m2, θ, a2, b2 and b4. For di-Higgs

production, in the case of m2 > 2m1, the important piece of the potential is

V (h1h2) ⊃ λ111

3!
h3

1 +
λ211

3!
h2h

2
1 (2.10)

This gives an additional resonant double Higgs production diagram , Figure 2.6, for

250 GeV ≤ m2.

Varying the values of b4 and sin2 θ, it is found that the maximum branching

ratio (BR) for h2 → h1h1 if obtained with b4 = 4.2, sin2 θ = 0.12. Figure 2.7, shows
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h1

h1

h2

FIGURE 2.6. Feynman diagram for h2 → h1h1.

the minimum and maximum BR as a function of m2. The largest BR is when

m ≈ 280 GeV at BR(h2 → h1h1) = 0.76. This corresponds to an enhancement in

di-Higgs production of approximately 30 times the SM cross section.

2.3. Summary

The SM di-Higgs production rate is an important and achievable measurement

for the LHC and HL-LHC. It gives insight to the shape of the Higgs potential through

measurement of the tri-linear Higgs coupling. It is also a valuable discovery channel

for BSM physics, especially for models with an extended Higgs sector, through

resonant di-Higgs production. This dissertation will present results for both SM

and resonant di-Higgs production.
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FIGURE 2.7. Maximum and minimum allowed BR(h2 → h1h1) as a function of m2

for b4 = 4.2 and sin2 θ = 0.12.
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CHAPTER III

EXPERIMENTAL SETUP

3.1. Hadron Colliders

Hadron colliders use two beams of hadrons, particles made of three quarks,

typically proton-proton or proton-antiproton. The large mass of the hadrons results

in smaller synchrotron radiation in circular accelerators, when compared to lepton

colliders with equivalent energies, as the radiated power scales as 1
m4 . This allows

hadron colliders to reach much larger center of mass energies with the same size

circular ring.

While hadron colliders typically have larger collision energies, they also have

significantly “messier” collisions. In lepton colliders, the final state particles only

come from the colliding particles. In hadron colliders, not all of the constituent

partons of the hadrons interact in the hard collision. This means it is impossible to

know the exact longitudinal momentum.

3.2. The Large Hadron Collider

The Large Hadron Collider (LHC) is a 27 kilometer ring underneath the Franco-

Swiss border. The LHC accelerates beams of protons (or ions) to a center of mass

energy of up to 13 TeV(5 TeV) in two countercirculating beams around the ring.

The particles are then collided at four primary interaction points each of which has

a dedicated detector: ATLAS, CMS, ALICE, and LHCb.

In order to get the protons up to the collision energy, the LHC uses a series of

smaller accelerators in the injection chain. The start of the chain, and the source

of protons for the LHC, is the Linear Accelerator 2 (Linac 2) [20]. Hydrogen gas
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is taken from a bottle and the electrons are stripped off by an electric field. When

only the protons remain, they pass through radiofrequency (RF) cavities. These RF

cavities are shaped such that the electromagnetic waves are resonant inside of the

cavities and build up energy. When charged particles pass through the cavity, they

feel the force of the electric field and are pushed forward. The field in the RF cavities

oscillates at a frequency specific to the distance from the previous cavity, giving a

specific energy to a passing particle depending on the momentum. When a particle

arrives early to the cavity, the field gives a smaller impulse to the particle, when it

arrives late it gets a boost from the cavity to get it back to the target energy. When

a proton reaches the end of Linac 2, it has an energy of 50 MeV.

FIGURE 3.1. CERN accelerator complex [21]
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After the protons leave the Linac 2, they enter the Proton Synchrotron Booster

(PSB)[22]. The PSB accelerates the protons to an energy of 1.4 GeV and are passed

to the Proton Synchrotron (PS) in two batches, 1.2 seconds apart. The PS accelerates

protons to 26 GeV and delivers them to the next step in the injection chain, the Super

Proton Synchrotron (SPS) in a series of four batches, 3.6 seconds apart. The SPS is

the second largest accelerator at CERN. As protons pass through, they as boosted

to an energy of 450 GeV [23]. Once the particles reach this energy, they are split

and injected into the LHC in two opposite directions. Once in the LHC, the protons

are brought up to their target energy of 6.5 TeV per beam.

3.2.1. LHC Magnets

Accelerators depend on powerful magnets to bend and focus the colliding

particles. The LHC is the most powerful particle accelerator that has ever existed.

In order to make this possible, the LHC was constructed with the most advanced

magnet technology that could be produced on an industrial scale. These magnets

are cooled to below 2 K and produce an extremely uniform field of over 8 T.

The LHC uses 1104 superconducting, dipole magnets to bend the beam of

particles around the ring, and another 128 in the beam dump. Each dipole is 15 m

long and weighs 35 tonnes. A current of 11,000 Amps pass through an octant in series

to produce the magnetic field. Each octant is powered independently. A cross section

of a dipole can be seen in Figure 3.2. Inside of these dipoles, there are sextupole,

octopole and decapole magnets to correct for small imperfections in the magnetic

field at the outside of the dipole [24]. A key feature of the dipole magnets is the

2-in-1 configuration. Where each dipole generates a magnetic field in the opposite

direction in the two pipes, Figure 3.3. Allowing a single dipole to bend the two
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FIGURE 3.2. Cross-section of cryodipole (lengths in mm)

beams in opposite directions.

FIGURE 3.3. Magnetic field configuration of the dipole magnets [25]
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It is also important to focus the beam to a small area at each interaction point,

in order to maximize the collision rate. This is achieved by pair of quadrupole

magnets. One magnet focuses in the horizontal plane, defocusing in the vertical, and

the other focuses in the vertical plane, defocusing in the horizontal. These magnets

work together to focus the beam in both planes.

3.2.2. Luminosity and Pileup

In a collider, a key statistic is the rate of events produced. This value is called

luminosity (L) and is defined by equation 3.1 [26], where σ is the cross section, or

probability of collision.

L =
1

σ

dN

dt
(3.1)

In order to maximize this number, the LHC collides bunches of protons. These

bunches are made up of 1.15× 1011 protons. In the LHC during Run II, the LHC

beams had around 2500 bunches organized into a train of bunches, separated by

small gaps with a larger gap at the end of the train. The luminosity per proton pair

crossing, equation 3.2

L =
1

4πσxσy
(3.2)

is then multiplied by the number of protons per bunch for the two beams, N1 and N2,

and by the number of bunches Nb and the frequency f. The use of bunches changes

the luminosity calculation to equation 3.3)

L =
N1N2fNb

4πσxσy
(3.3)

By integrating the luminosity over the running time of the LHC, you obtain the

total delivered luminosity, Fig 3.4. By multiplying the integrated luminosity by the
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probably of a particular final state, or the cross section, it is possible to obtain the

number of times a final state is produced.

FIGURE 3.4. Cumulative luminosity versus time delivered to ATLAS (green) and
recorded by ATLAS (yellow) during stable beams for pp collisions at 13 TeV center-
of-mass energy in LHC Run II. (figure from the ATLAS Collaboration)

3.2.3. Pileup

By interacting bunches of protons at a time, it is possible for more that one

pair of protons to undergo an inelastic collision. In fact, during Run II, the average

number of interactions per bunch crossing, or pileup, was roughly 32. The profile of

the pileup for all of Run II can be seen in Figure 3.5.
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FIGURE 3.5. Shown is the luminosity-weighted distribution of the mean number
of interactions per crossing for the 2015-2018 pp collision data at 13 TeV centre-of-
mass energy. All data recorded by ATLAS during stable beams is shown, and the
integrated luminosity and the mean mu value are given in the figure. (figure from
the ATLAS Collaboration)

3.2.4. Detector Coordinates

Within the ATLAS detector, the interaction point defines the origin of the

coordinate system. The z-axis, the longitudinal axis, runs along the beam line,

the positive x-axis points toward the center of the LHC ring, and the positive y-

axis points toward the surface. The detector is also described in r, η, φ coordinates.

With the transverse plane, the plane perpendicular to the beam line, being described

by r and φ. The radial coordinate, r, describes the distance from the beam line.

The azimuthal angle, φ, is the angle from the x-axis around the beam line. The

final coordinate, η, is referred to pseudorapidity and is defined as η = − ln(tan( θ
2
)).
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With θ being the angle from the y-axis. Differences in η are Lorentz invariant

under longitudinal boosts. This means the difference in the rest frame of colliding

particles are not important for massless particles. In ATLAS, the large particle boost

allows for pseudo-rapidity to be a good estimate for the true rapidity of the particle.

Additionally, massless particle are produced uniformly in η. For these reasons, η is

preferred over θ. A pictoral representation can be seen in Figure 3.6. The variable

∆R =
√

∆η2 + ∆φ2 is often used to describe the distance between detector objects.

FIGURE 3.6. Detector coordinate system [27]
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3.3. Detector Overview

FIGURE 3.7. The ATLAS detector [28]

27



The ATLAS detector, Figure 3.7, is a general purpose detector and the largest

at the LHC. It is made up of concentric subsystems, each with a specialized task:

the inner detector, which is responsible for measuring the charge and momentum of

charged particles; the calorimeters, which are responsible for measuring the energy

of different electromagnetic and hadronic particles; the muon spectrometer, which

measures the momentum of minimum ionizing particles (MIP), like muons; and the

magnet system, which is responsible for bending the charged particles in the detector,

allowing their charge and momentum to be measured. The subdetectors feed into a

vast Trigger and Data Acquisition (TDAQ) system that is responsible for selecting

collision events with interesting characteristics and reading out detector elements.

3.3.1. The Inner Detector

Forward SCT

Barrel SCT

TRT

Pixel Detectors
FIGURE 3.8. Cross section of the Inner Detector.

The inner detector (ID), Figure 3.8, is the closest system to the beam pipe and is

made of four separate pieces. In order of distance from the beam pipe: the Insertable
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B-Layer (IBL) [29], the Pixel Detectors, the Semiconductor Tracker (SCT), and the

Transition Radiation Tracker (TRT) [30]. These subsystems work together to give

charged particle tracking information within the pseudorapidity range of |η| < 2.5.

When a charged particle passes through the silicon semiconductor detector in the

IBL, Pixel and SCT, an electron-hole pair is created in the silicon. These electron-

hole pairs drift toward the charged readout electrodes on the surface of the detector.

This gives a “hit” in the detector. The inner detector is immersed by a 2T solenoid

magnet, Section 3.3.4. The magnetic field causes charged particles to curve as they

pass through the ID. The hits they leave along the way are connected together into

“tracks” that show the trajectory of the particle as it passes through. The radius of

curvature and direction of the track gives the sign of the charge, positive or negative,

along with a momentum measurement of the particle. The other task of the ID is

vertexing, or determining if the transient particle came from the interaction point or

a slightly displaced point. This is used to identify long lived particles, like bottom

or charm quarks, which travel a small distance before decaying. This is discussed

further in section 4.2.4.

The IBL is the newest addition to the ID, being installed during the 2016

shutdown. It is placed directly outside the beam pipe in order to maintain good

vertexing and b tagging in increased pileup environments. In order to facilitate the

insertion of the IBL, the beam pipe inner radius was decreased by 4 mm between

Run I and Run II(from 29 mm to 25 mm). The IBL utilizes planar sensors, similar

to the Pixel Detector, and 3D sensors, allowing electrons to interact with the bulk

of the sensor as opposed to just the surface, and functions as a fourth pixel layer

of the Pixel Detector. The addition of the IBL significantly improves the vertexing

performance of the ID. Figure 3.9 show the improvements the vertexing with the IBL
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included. This improved vertexing allows for an increase in b-tagging performance,

described in Section 4.2.4.

FIGURE 3.9. Unfolded transverse impact parameter resolution measured with and
without the IBL as a function of pT,.[31]

The Pixel Detector is a network of high granularity, silicon pixels which measure

the 2D position of passing charged particles. The silicon pixels are n-doped silicon

wafers. A high voltage is applied to the wafer and when a charged particle passes

through the silicon many electron hole pairs are created. The electron drifts to the

electrode and creates a signal that is read out by the electronics. The Pixel detector

central barrel is divided into three cylindrical layers, the innermost layer is the B-

layer, followed by Layer 1 and Layer 2. Each is covered in 50µm x 400µm silicon

pixels. In order to ensure complete coverage, end cap modules are placed on each

side of the barrel. The end-caps consist of four wheels, each with an inner and outer

ring of trapezoid shaped silicon detectors.
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The SCT is made of a barrel detector and two end-cap detectors. The barrel SCT

has four cylindrical layers made up square modules covered with silicon microstrip

detectors. The end-cap SCT tracker is made of rings of SCT modules with either

silicon or galium arsenide. These rings are arranged into nine wheels on each side

of the barrel. In total, the SCT contains 61m2 of silicon detectors with 6.2 million

readout channels.

Outside of the silicon detectors lies the TRT. The TRT is a straw detector

comprised of 50,000, 4mm diameter straws in the barrel and 320,000 radial straws in

the end-caps. There are 420,000 electronic channels, which give a spatial resolution

of 170µm per straw. The straws are filled with various mixtures of xenon argon,

carbon dioxide, tetrafluoromethane and nitrogen gas. When a charged particle

passes through the radiator between the straws, made of polypropylene, they emit

transition radiation photons. These photons ionize the gas in the straws and the

free electrons are attracted to the positively charged wire and produce a signal that

is later amplified and read out. The xenon in the gas mixture allows for accurate

particle identification from the transition radiation photon detection. Transition

radiation is emitted when a particle moves between two materials with different

dielectric constants and is proportional to the Lorentz factor of the particle [32].

This gives a good discrimination between electrons and charged pions. This entire

system is enclosed within a solenoid magnet to bend the charged particles inside the

ID.

3.3.2. Calorimeters

Outside of the solenoid magnet lies the calorimetry system. The calorimeters are

responsible for measuring the energy of both charged and neutral particles, with the
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exception of MIPs and non-interacting particles such as neutrinos. The calorimeters

can be broken into two distinct pieces, the liquid Argon calorimeter (LAr)[33] and

the tile calorimeter (TileCal)[34].

The Liquid Argon (LAr) calorimeter is a sampling calorimeter that is used

for electromagnetic calorimetry for the entire range of acceptance (|η| < 4.8). It is

also used for hadronic calorimetry for higher pseudorapidity 1.4 < |η| < 4.8. The

central barrel of the calorimeter (|η| < 1.4) is made up of 1024 lead-stainless-steel

converters with copper-polyimde multilayer readout boards. The plates and readouts

are arranged in an “accordion-shaped” geometry. This allows for complete azimuthal

coverage with no gaps, giving an electromagnetic energy resolution that is uniform in

azimuth. In between the accordion layers, liquid argon is used as the active medium.

The system is enclosed in a cryostat to maintain the temperature of the detector. The

LAr barrel is divided radially into four sampling layers. The granularity of the layers

can be found in Figure 3.10. The layer closest to the beamline is the Presampler.

This layer sits inside of the cryostat and is responsible for correcting for the energy

loss in front of the calorimeter (the same is done in the endcap). Inside the cryostat,

there are three additional layers. The thickness of the layers is often described in

terms of radiation lengths χ0. A radiation length is the distance a electron travels

before it loses approximately 1/2 of it’s energy to photon emission. The front layer

has a thickness of 4.3χ0, followed by the middle layer with a thickness of 16χ0 and

the back layer of thickness 2χ0. The shower maximum is contained in the second

layer of the calorimeter, resulting in the bulk of the energy being absorbed in that

layer. The design of the calorimeter allows for an energy resolution for electrons of

σE/E ∼ 10%/
√

E
GeV

⊕
0.7% [35].

32



FIGURE 3.10. Sketch of the accordion structure of the EM calorimeter

Forward from the barrel, there are two electromagnetic endcap (EMEC) wheels

with a similar accordion structure to the barrel. One covering 1.4 < |η| < 2.5 and

one from 2.5 < |η| < 3.2. Outside of the EMEC is the Hadronic endcap (HEC).

This is also a copper-LAr sampling calorimeter. It has a simpler parallel plate

design. Finishing out the LAr calorimeter is the Forward Calorimeter (FCal), which

is contained in the endcap cryostat. This calorimeter is in the very forward region

of the detector. In this region, the particle flux is very high, so a dense calorimeter

is necessary to avoid energy leaking into other pieces of the detector. There are

three layers in the FCAL, the first is made of copper and the other two are made of

tungsten. They are matrices of metal with concentric tubes filled with Argon, see
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Figure 3.11

FIGURE 3.11. Sketch of the matrix and rods in the forward calorimeter

In the central region |η| < 1.7, the tile calorimeter (TileCal) is responsible for

the hadronic calorimetry. The TileCal is a sampling calorimeter with alternating

iron plate absorbers and plastic scintillating tiles; the orientation can be seen in

Figure 3.12. The scintillating tiles are placed perpendicular to the beamline and

are read out by wave-length shifting fibers on both ends of the module. The light

is passed to photomultiplier tubes (PMTs) on the outside of the system, and then

passed to the front-end electronics. It has a fixed central barrel and two extended

barrel sections that can be moved. The TileCal has a depth of 7.4λ, where λ is the
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nuclear interaction length, the mean distance a hadronic particle travels before it

undergoes an inelastic interaction. The readout has a granularity of 0.1× 0.1(η × φ)

FIGURE 3.12. Schematic showing the mechanical assembly and the optical readout
of the Tile Calorimeter, corresponding to a φ wedge. The various components of
the optical readout, namely the tiles, the fibers and the photomultipliers, are shown.
The trapezoidal scintillating tiles are oriented perpendicular to the colliding beam
axis and are read out by fibers coupled to their non-parallel sides [36]

3.3.3. Muon Detectors

To detect muons, ATLAS uses four different technologies to measure muons

with |η| < 2.7 [37]. For precision energy and position measurements, monitored drift

tubes (MDT) and cathode strip chambers (CSC) are used. The CSCs are used in

regions of high flux (2.0 < |η| < 2.7, where the MDTs are not suitable. For the muon
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trigger system, a fast detector is needed to keep up with the timing requirements

and high collision rate of the LHC. In the central region, resistive plate chambers

(RPC) are used, while in the forward region, where flux is higher, thin gap chambers

(TGC) are used. The muon system, much like the ID utilize a magnetic field to

determine the charge and momentum of passing particles. The magnet system is

further discussed in Section 3.3.4.

FIGURE 3.13. Cut-away view of the ATLAS muon system [38]

The MDTs are made up of six parallel layers of cylindrical aluminum drift

tubes with a tungsten-rhenium wires. The drift tubes are filled with a mixture of

argon, nitrogen and methane. The tubes are assembled on a support spacer and are

monitored for deformation by a built-in optical system, hence the monitored drift

tubes. The monitoring ensures a high accuracy in the position of the measurement

points. Allowing the MDTs to achieve a sagitta precision of 50µm and thus a

momentum precision at 1 TeV of ∆pT
pT

= 10%

While the MDTs are very good at precision measurements. However, they
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are not appropriate in areas with high rate counts (> 200Hz/cm2) due to their

large diameter and high operating pressure. This is the case for the first layer of

muon measurement with pseudorapidities of |η| > 2.0. For this region, CSCs are the

detector of choice. CSCs are multiwire proportional chambers with a cathode strip

readout. They gives good single and two track resolution in this high rate region.

In the barrel region, the muon trigger system employs RPCs, a low occupancy

chamber with fast response. RPCs are gaseous parallel-plate detectors of Bakelite

with a coating of linseed oil based paint. The system can operate in two modes,

avalanche and streamer. In streamer mode, a large potential across the plates

generates a discharge around the ionizing particle. For avalanche mode, a smaller

potential difference and large signal amplification in the electronics allows for

increased rate capability.

Finally, in the end-cap of ATLAS, TGCs provide two important components.

For the trigger system, TGCs have good timing resolution compared to the MDTs

and can deal with a rate of up to 100 kHz/cm2. For measurement, TGCs provide

the azimuthal coordinate to compliment the bending coordinate from the MDTs.

The TGCs are made up of anode wires and graphite cathodes in between layers of

fiberglass laminate.

3.3.4. Magnet System

The signature piece of the ATLAS detector is the Large Toroid magnet system.

The toroid has eight coils in the barrel and two endcaps, with eight coils each (Figure

3.14) [39]. The Toroid system provides a magentic field of 3.9 T(4.1 T) in the

barrel (end-cap) to the muon system. The coils of the three toroids are assembled

radially and symmetriclly around the beam axis. A toroid has two advantages over

a solenoid. The first is the field at the edges of the detector remains perpendicular
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to the outgoing particles, allowing for a better measurement at high pseudorapidity.

The other advantage is cost. It takes much less material to build a large toroid than

an equivalently sized solenoid. This allows ATLAS to have a very large volume for

particle bending in the muon system.

FIGURE 3.14. Geometry of magnet windings and tile calorimeter steel [38]

Along with the toroid, ATLAS has a solenoid magnet inside of the calorimeter.

This solenoid provides a 2 T magnetic field to the ID for bending of charged particles.

The solenoid is a single layer coil in a suporting cylinder. It is supported by the LAr

cryostat. It is very important the solenoid is thin, in order to minimize the amount

of material in front of the calorimeters. To achieve this, the vacuum of the solenoid

and LAr are combined into one and the coil is designed to be as thin as possible.
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3.3.5. Trigger System

The LHC delivers collisions at a rate of 40MHz. With each raw event being

about 1.6MB [40], this would give an output rate of 64TB/s. This rate of output

is beyond what can be handled by the computing resources available. In order to

reduce this rate to a manageable level, ATLAS employs a two level trigger system.

The first level trigger is a hardware based trigger, referred to as the L1 trigger. This

trigger lowers the rate to between 75 kHz and 100 kHz. This is sent to the second

level, software based, trigger, the High Level Trigger (HLT), where the rate is further

reduced to below 2kHz for full event readout. When combined with the partial event

readout, the total bandwidth around 3GB/s Fig 3.15 illustrates the ATLAS trigger

system data flow.

The L1 trigger begins with signals from either the calorimeters or the muon

detectors. A signal from the calorimeter is sent to the Level-1 Calo (L1 Calo) system.

The L1 Calo system uses low granularity calorimeter information to identify Regions

of Interest (RoIs) for electrons, photons, taus, jets, as well as high total energy and

missing transverse energy ( /ET ). L1 Calo received an upgrade in Run II in the form

of a new Multi-Chip Module (nMCM). This module allows for L1 Calo to suppress

the effects of pile-up on the system.

Signals from the muon system are fed into the L1 Muon system. L1 Muon uses

information from the RPC and TGC in the barrel and end-caps. In Run II, the

muon end-cap triggers required a coincident hit in the innermost muon chamber to

reduce the fake muon rate in the forward regions.

The signals from L1 Calo and L1 Muon are passed to the L1 Topological trigger

processor (L1 Topo) and the Central Trigger Processor (CTP) simultaneously. In the
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FIGURE 3.15. Schematic layout of the ATLAS trigger and data acquisition system
in Run-2.[41]

case of L1 Muon, the signals from the barrel and the end-cap are merged in the muon

Central Trigger Processor Interface (MuCTPi). In L1 Topo, a new system for Run

II, kinematic information from L1 Calo and L1 Muon are used to make topological

selections, like angular separation, invariant mass requirements, and total /ET , at

level 1.

Information from L1 Topo, and directly from L1 Calo and L1 Muon, are sent to

the CTP where the L1 trigger Accept and the LHC timing information are provided

to the sub-detector readout system. The CTP also sends the RoIs to the HLT to use

as inputs for higher level algorithms.

The HLT is made up of 40,000 processing cores which run around 2,500

independent trigger chains. A chain is an offline-like algorithm run over the RoIs

40



from L1. Partial event reconstruction, and even full event reconstruction can be

done within the HLT depending on the event stream. There are four types of data

streams depending on the purpose of the data, physics analysis, trigger level analysis,

monitoring, or detector calibration. For the physics analysis stream, the full event

is written out. For the other streams, only partial event information is written out,

saving bandwidth to allow for higher trigger rates.

The configuration of the trigger system is defined by the trigger menu. The

trigger menu is made from the primary physics analysis triggers along with support

triggers for efficiency measurements and monitoring, alternative triggers, backup

triggers and calibration triggers [42]. These triggers, L1 items and HLT triggers, are

regulated by prescale factors. A prescale factor is used to reduce the rate of selected

events. For a prescale of N, only 1/N events that meet the trigger requirement are

accepted. Prescales can be set to individual L1 items and to specific HLT chains

independently and as a function of luminosity. This allows triggers to maintain a

specific rate regardless of the luminosity. Typically, the L1 primary physics triggers

are unprescaled, this means, the other triggers are prescaled to a low rate to give

priority to the physics triggers. As a result, most of the bandwidth is occupied by

the physics chain.
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CHAPTER IV

SIMULATION AND EVENT RECONSTRUCTION

4.1. Simulation

In order to draw conclusion from ATLAS data, it is necessary to compare to

theoretical predictions. For particle collisions, it is not practical to create exact

predictions, especially including detector effects such as resolution. To get the best

estimate of these effects, ATLAS uses the Monte Carlo (MC) method to simulate

data and detector response to the incident particles. This is done in multiple steps as

illustrated by figure 4.1. These steps are the simulation of the hard process, where

the deep inelastic collision simulated using the initial state (Parton Distribution

Functions) and interaction amplitudes; the parton shower; the hadronization; the

detector simulation; and finally the reconstruction. These steps together form the

complete MC simulation of ATLAS data.

4.1.1. Parton Distribution Functions

At the energies at the LHC, collisions usually do not involve entire protons.

Instead, they involve constituents known as partons. Protons, while often described

as two up quarks and a down quark, also contain a sea of gluons. This sea of gluons

creates many virtual quark-antiquark pairs known as sea quarks. The valance quarks

for the proton are up and down quarks. These valance quarks are the primary role

players in lower energy inelastic interactions. At the LHC, the collision energies

are sufficient for deep inelastic scattering, where the affects of the sea quarks and

gluons are non-trivial. This internal structure of the proton is described by a Parton
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FIGURE 4.1. Pictorial representation of how an event is generated [43]

Distribution Function (PDF), figure 4.2. A PDF shows the probability density of

finding a parton carrying a momentum fraction x at a squared energy scale.

4.1.2. Hard Scattering

The hard scattering process can be described using Feynman diagrams. These

diagrams are a pictorial representation of amplitudes. These amplitudes go into

calculating the matrix elements (ME) of various interactions. This ME describes the

probability of a certain interaction occurring. In the event generation, these MEs

are calculated to a specified order in perturbation theory. Common examples are
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FIGURE 4.2. The bands are x times the unpolarized parton distributions f(x)
(where f = uv, dv, ū, d̄, s ' s̄, c = c̄, b = b̄, g) obtained in NNLO NNPDF3.0 global
analysis at scales µ2 = 10 GeV2 (a) and µ2 = 100 GeV2 (b), with αs(M

2
Z) = 0.118.

leading order (LO), next-to-leading order (NLO), and so on. The higher the order

of the calculation, the more accurate the predictions. However, higher orders can

be extremely hard to theoretically calculate, often restricting the level of the event

generator.

4.1.3. Parton Shower Calculation

After the ME generator, the hard partons are used as the inputs to the Parton

Shower (PS) calculation. A parton shower is the evolution from the quarks and gluons

produced in the hard interaction to the final state hadrons and other particles seen

in the detector through QCD processes. The PS calculation models this showering

process.

In an interaction, colored particles can spontaneously emit gluons. These gluons,
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in turn, create either more gluons, or quark-antiquark pairs. This can happen either

before (ISR) or after (FSR) the hard scattering process. The PS generator can also

describes the hadronization and subsequent decay of the hadrons into the final state

particles.

The precision of the PS generators are described similarly to the ME, with their

contributions coming in as leading log (LL), next-to-leading-log (NLL), etc. for the

parton showering process.

4.1.4. Detector Simulation

The MC simulation up to this point can be done with generators that are

written outside of the ATLAS collaboration. These generators are used by ATLAS to

simulate the underlying processes which are fed into the detector simulation software.

ATLAS uses geant4 to handle this propagation[44] through the detetor. geant4

uses a detailed geometric description of the ATLAS detector to simulate particle

interactions with the detector material. This includes simulation of energy deposition

and the readout process.

The final result of the MC event generation is a set of simulated data that

resembles actual data from the p-p collisions in the ATLAS detector.

4.1.5. Reconstruction

Once the data has been simulated, it is necessary to transform it into meaningful

objects through reconstruction. There are two main types of reconstruction in

ATLAS: turning patterns of hits in tracking detectors (Inner Detector and Muon

Spectrometer) into tracks with direction and momentum information, and turning

energy deposits in the calorimeter into calibrated energy deposits. These objects are
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then used to build a picture of the physics event through particle identification and

event reconstruction.

4.2. Particle Identification

For all events, either MC or actual collision data, it is important to be able

to identify and reconstruct the underlying physics event. In particle collisions, the

energy from the final state particles is deposited in the various subdetectors within

ATLAS. These energy deposits must be translated to physically meaningful objects.

This is the task of the event reconstruction, to use the ATLAS detector to recreate

the final state particles for any given interaction. For this analysis, the final state

particles present in the signal events are a lepton, either an electron or a muon; a

neutrino, in the from of missing transverse energy; two light flavor quarks; and two

b quarks. Each of these particles has a particular signal in each of the subdetectors,

figure 4.3.

4.2.1. Electrons

Electrons are reconstructed by fitting a track using the Inner Detector and

matching this track to an energy cluster in the EM calorimeter[46]. As an electron

passes through the EM calorimeter, it produces Bremsstahlung radiation photons.

These photons then convert back to electron-positron pairs and the process repeats.

This shower of electrons, positrons, and photons give the signature energy cluster in

the calorimeter. Particles with the required Inner Detector track and matching EM

energy cluster are selected as electron candidates.

Electron identification algorithms are applied to these electron candidates.

These algorithms separate prompt, isolated electron candidates from backgrounds

such as converted photons and misidentified jets. The electron identification
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FIGURE 4.3. Event Cross Section in a computer generated image of the ATLAS
detector [45]

algorithm uses the energy-momentum ratio, shower shape, track and track-to-

cluster matching to identify electron candidates, with E/p being the most important

discriminant. There are three identification working points for electron identification:

Loose, Medium, and Tight. The operating points with higher background rejection

are a subset of electron candidates with lower background rejection with a tighter

background rejection giving a lower electron efficiency.

The isolation variables quantify the energy around the electron candidate and

allow us to disentangle prompt electrons from other, non-isolated electron candidates

such as electrons originating from converted photons produced in hadron decays,

electrons from heavy flavor hadron decays, and light hadrons mis-identified as
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electrons. The isolation variable we use for reconstructed electrons is Track -based

isolation, pvarcone0.2
T , defined as the sum of transverse momenta of all tracks, satisfying

quality requirements, within a cone around the electron candidate of ∆R = 0.2 or

of 10 GeV/ET for high energy electrons, where ET is the transverse energy of the

electron candidate.

A more detailed discussion on the electron likelihood identification and isolation

variables and their performance with Run 2 data can be found in Ref. [47]. The

electron energy scale is calibrated such that it is uniform throughout the detector and

the residual differences between data and simulation are corrected. The calibration

strategy is based on the same strategy developed in Run 1 [48] and updates to the

calibration strategy for Run 2 is documented in Ref. [49].

4.2.2. Muons

The Muon Spectrometer (MS) specializes in muon detection and precision

momentum measurements. Unsurprisingly, this makes the MS a vital part of muon

identification, but it is not the only subdetector used. The Inner Detector is also

has an important part in reconstructing muons. In ATLAS, muon reconstruction is

performed independently in the Inner Detector and the MS. The information is then

combined to form muon tracks. In the Inner Detector, the muons are reconstructed

similarly to any other charged particle.

In the MS, the reconstruction looks for a hit pattern within each chamber to

form segments [50]. The MDT segments are combined using a straight-line fit within

a single layer. Segments in the CSCs are combined using a combinatorial search in

the η and φ planes.

Muon candidates are built by fitting together hits from segments in different

layers. A combinatorial search, using segments in the middle layer as seeds, is
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performed. The inner and outer layers are then used as seeds as the search is

extended. A minimum of two segments are required to build a track. It is possible

for a segment to be included in multiple tracks, an overlap removal algorithm selects

the best assigned track or can allow for a segment to be shared between two tracks.

A global χ2 fit is performed on the hits of each track. If the χ2 of the fit passes a

selection criteria, the track is accepted.

The information from the Inner Detector and the MS are then combined to give a

muon signature. The combination method depends on the information available. The

main method used is the Combined Muon reconstruction, where track reconstruction

is performed in the Inner Detector and MS independently. Most of these muons are

reconstructed using an “outside-in” reconstruction. This means tracks in the MS are

extrapolated inward and matched to an Inner Detector track.

The muon isolation variables are similar to the electron isolation variables

above which is the track -based isolation, pvarcone0.3
T , defined as the sum of transverse

momenta of all tracks, satisfying quality requirements, within a cone of ∆R =

min(0.3, 10 GeV/pT ) around the candidate muon.

The performance of the muon identification and isolation variables are

documented in Ref. [50].

Corrections to the muon momentum scale and resolution are applied to MC

simulation using the MuonCalibrationAndSmearingTool1 to correct for data/MC

differences. The correction factors were derived from data/MC simulation

comparisons with Z → µµ and J/Ψ → µµ events (the calibration procedure to

derive the factors is documented in Ref. [50]).

1 as prescribed in MCPAnalysisGuidelinesMC15 twiki
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4.2.3. Jets

Due to the strong force, quarks very quickly undergo showering, a process of

emitting gluons which then further produce quark-antiquark pairs and the process

repeats. Once the average energy of a quark (or gluon) reaches 1 GeV, the particles

hadronize, producing quark bound states such as pions and mesons that ultimately

deposit energy in the ATLAS detector. The top quark is the only quark that

decays before hadronizing. If we could measure every hadron and correctly assign

them to the underlying quarks, energy and momentum conservation would allow

the exact momentum and energy of the quark could be determined. Jet finding

is an algorithm that tries to do this. Collections of hadrons deposit energy in the

ATLAS detector. These collections of energy are called jets and can be made from

various detector object. In this analysis in particular, two different types of jets are

used: calo-jets, jets constructed from energy deposited in the calorimeters; and track-

jets, jets constructed from tracks in the Inner Detector. To form calo-jets, ATLAS

used topological clusters(topo-clusters) [51]. Topo-clusters are three dimensional

collections of topologically connected energy deposits. These topo-clusters are formed

by a growing-volume algorithm starting from a high significance seed signal. Topo-

clustering suppresses noise by removing cells with insignificant signals, making it

superior to basic energy summing.

Since a jet is not a physical object, rather a collection of energy-momentum

4-vectors, there are many ways to define a jet. A jet algorithm takes a set of input

4-vectors and combines them into one or more jet objects based upon some criteria

for separating and grouping inputs. Jets can be made with either energy deposits

(calo-jets) or tracks (track-jets). The process of creating calo-jets is described here
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but the method for making track-jets is similar. Two important characteristics of any

jet algorithm are Infrared (IR) Safety and Collinear (CL) Safety. For a jet algorithm

to be IR Safe, the addition or subtraction of small energy deposits will not change

the jet collection. A jet algorithm is CL Safe if splitting or merging high transverse

momentum particles does not change the jet collection. Figure 4.4 illustrates both

IR and CL Safety.

FIGURE 4.4. Illustration of the infrared sensitivity of a cursory designed jet
algorithm (top). Illustration of the product of a collinear unsafe jet algorithm. A
collinear splitting changes the number of jets (bottom). [52].

Some examples of jet algorithms are visualized in figure 4.5. For this analysis,

the anti-kt algorithm is selected. In addition to being IR and CL safe, the anti-kt

algorithm gives roughly circular jets. This makes calculating the energy density
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much easier than non-circular jets and thus easier to calibrate the jets. The anti-kt

algorithm calculates the distance between objects i and j (dij) and i and the beam B

(diB). If dij is smaller than diB, the objects are combined. If diB is smaller the object

is removed and the algorithm is rerun. An important distinction between anti-kt and

other jet algorithms is the definition of the distances dij and diB

dij = min(k2p
ti , k

2p
tj )

∆2
ij

R2
,

diB = k2p
ti

(4.1)

where kti is the transverse momentum, ∆ is the distance between objects, and p = −1.

The anti-kt algorithm has a radius parameter R. R acts as a cutoff radius for energy

clustering and is not strictly a radius, as objects with a ∆ > R can still be clustered

together. The track-jets used in the analysis have R = 0.2, while the R = 0.4 (small-

R) and R = 1.0 (large-R) calo-jets are used.

4.2.3.1. Large-R jets

For decays with a high momentum to rest-mass ratio, such as the W → qq

decay, it is impossible to separate energies cleanly into jets with R = 0.4. Instead,

to measure the energy/momentum of the W it is advantageous to use a larger radius

paramenter. The large-R jets are clustered using the anti−kt jet algorithm [53]

with topological calorimeter clusters as inputs. The clusters are calibrated to the

“local hadronic cell weighting”(LCW) scale [54]. In order to minimize the effects

from pileup on the large-R jet kinematics, the large-R jet is then groomed using the

trimming algorithm. The trimming algorithm removes subjets if the ratio of the

subjet pT over the large-R jet pT is below some threshold[55]. This removes energy

from pileup that is contained in the jet. The large-R jet energy and mass is then
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calibrated to the particle-level scale. The calibration factors were derived from MC

simulation of multijet events [56].

4.2.3.2. Track jets

Track jets are built by clustering Inner Detector tracks using the anti-kt

algorithm with a radius parameter R = 0.2. The selected tracks are required to

have pT greater than 400 MeV and pass a loose set of cuts, as listed in reference

[57]. The smaller R parameter coupled with the fact that tracks have better angular

resolution than calorimeter clusters, mean that the decay products of highly boosted

heavy objects can still be resolved. The selected track jets are then associated to the

large-R calorimeter jets via ghost association [58] method. A b-tagging algorithm is

used to identify track jets which are likely to contain b-hadrons which consist of the

b-quarks from the Higgs boson decay. The MV2c10 algorithm exploit the relatively

long lifetime of B-hadrons with respect to lighter hadrons, as well as the kinematics

of the charged particle tracks.

4.2.3.3. Small-R jets

Small-R jets are reconstructed from three-dimensional topological calorimeter

clusters [54] using the anti-kt jet algorithm [53] with a radius parameter of 0.4. This

is the standard jet used in most ATLAS analyses. Jet energies are corrected [59] for

detector inhomogeneities, the non-compensating nature of the calorimeter, and the

impact of multiple overlapping pp interactions. Correction factors are derived using

test beam, cosmic ray, pp collision data, and a detailed geant4 detector simulation.
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Jet cleaning is applied to remove events with jets built from noisy calorimeter cells

or non-collision backgrounds, requiring that jets are not of “bad” quality.2

To avoid selecting jets originating from pile-up interactions a “jet vertex tagger”

(JVT) criterion [60] is applied for jets with pT < 60 GeV and |η| < 2.5 requiring a

JVT > 0.59 cut. This cut corresponds to the Default working point, as described

on the JVTCalibration twiki.

FIGURE 4.5. A sample parton-level event, together with many random soft “ghosts”,
clustered with four different jets algorithms, illustrating the “active” catchment areas
of the resulting hard jets[61].

2 LooseBad jets, defined on the HowToCleanJets2016 twiki, are removed.
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4.2.4. b Tagging

Jets that originate from b-quarks have unique properties that allow them to

be distinguished from other jets. When a b-quark is produced, it hadronizes into

B-Hadrons. These hadrons have a relatively long lifetime compared to many other

hadrons that are produced. This long lifetime, combined with the relativistic speeds

the hadron is traveling allow the particle to travel a measurable distance before

it decays. Figure 4.6 illustrates a b-hadron decay. To tag a jet as a b-jet, a jet

that came from a b-quark, ATLAS relies on the tracks from the inner detector. By

reconstructing the tracks in an event, it is possible to find a place, outside of the

interaction point, where multiple tracks originate. This is referred to as the secondary

vertex. Additionally, it is possible to backtrack the tracks in the displaced vertex

to measure their impact parameter, or the minimum distance between the track

and the interaction point. Lastly, a decay chain MVA attempts to fully reconstruct

the decay chain of the jet. These three methods; secondary vertex identification,

impact parameter measurements, and decay reconstruction; are all used to identify

jets coming from b-quarks and reject those coming from light flavor quarks[62].

In this analysis, the MV2c10 is used to tag b-jets [62]. MV2 is a multivariate

discriminant that combines the b-tagging algorithms described above. The c10

signifies a 10% c-jet fraction in the background training sample. The three algorithms

that are used as inputs to the MV2 discriminant are: an impact parameter-based

algorithm, an inclusive secondary vertex reconstruction algorithm, and a decay chain

multi-vertex reconstruction algorithm. For this analysis, the 85% efficiency fixed-cut

working point is used for b-jet identification. This corresponds to a c-jet rejection

rate of 3.1 and a light-jet rejection rate of 33, Figure 4.7.
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FIGURE 4.6. Schmatic view of the tracks in a b-jet [63].

The difference in the efficiency of b-tagging between data and simulation is taken

into account by applying scale factors provided by the Flavour Tagging CP group, as

prescribed on the BTagCalib2015 twiki. The uncertainties associated with b-tagging

are considered for b-, c- and light-flavor-induced jets, separately.

4.2.5. Missing Transverse Momentum

Neutrinos do not interact with the detector as they pass through. This means

they cannot be measured like the other particles. In order to measure neutrinos,

ATLAS relies on the conservation of momentum. As previously mentioned, the exact

collision energy is unknown, as each partons does not carry a consistent fraction of

the proton energy. However, in the transverse plane, the plane perpendicular to the

beam line, the total momentum is known to be very small. Before the collision, there

is very little momentum in the transverse plane, on the order of 1 GeV. After the

collision, this must also be true. This implies the vector summation of all objects

should have approximately zero momentum in the transverse plane. Any imbalance
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FIGURE 4.7. Comparison of light-jet rejection as a function of b-jet tagging efficiency
for the Run 1 and Run 2 detector layouts.[64]

in this momentum is referred to as Missing Transverse Momentum ( /ET ). The energy

symbol is used, however we really mean the magnitude of the vector sum. The

/ET is constructed as the negative vector sum of all reconstructed objects with an

additional soft term reconstructed from detector signal objects not associated with

any object[65].

Emiss
x(y) = Emiss,e

x(y) + Emiss,γ
x(y) + Emiss,τ

x(y) + Emiss,jets
x(y) + Emiss,µ

x(y) + Emiss,soft
x(y) (4.2)
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From the x and y components of Emiss, the magnitude and azimuthal angle are

calculated.

/ET =
√

(Emiss
x )2 + (Emiss

y )2,

φmiss = arctan(Emiss
y /Emiss

x )

(4.3)

In this analysis, the /ET is reconstructed using VHLooseElectrons, VHLooseMuons

the analysis jets, and the track-based soft term.

The /ET vector is a vector in the transverse plane, meaning it does not directly

correspond to a neutrino. Additional information is needed to reconstruct a neutrino.

In this analysis, a Higgs mass constraint is used to supply the direction of the signal

neutrino.
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CHAPTER V

ANALYSIS

This chapter will present the results of a search for Higgs boson pair production

published in JHEP [66]. This chapter contains material coauthored with the ATLAS

Collaboration. I developed the framework for the analysis, optimized the signal

regions and developed the method for estimating QCD background. I was the

primary contributor to the kinematic figures. Other members of the analysis group,

members of the ATLAS Collaboration, estimated the other backgrounds that were

used to produce the final result presented in this chapter.

In this analysis, one Higgs boson decays via H → bb and the other via

H → WW ∗ . The WW ∗ system decays into lνqq (where l is either an electron

or a muon). There is a contamination from the leptonic τ decays but it is small and

not explicitly vetoed in the analysis. The Higgs boson decay modes chosen for this

analysis are a compromise between signal efficiency and background rejection. The

H → WW ∗ branching ratio of approximately 25% is the second largest after H → bb

(approximately 58%), 5.1.

The final state contains two b-quarks consistent with coming from one H, two

light jets, an identified electron or muon plus /ET , consistent with a WW decay. The

1-lepton final state gives a strong discriminator against multijet background. The

dominant backgrounds are tt̄ production, which has the same final state but with

different kinematic properties; W bosons produced in association with jets (W+jets),

where two of the associated jets come from b-quarks; and multijet events where a

jet is misidentified as a lepton. There are smaller background contributions from

single top-quark production, Z bosons produced in association with jets (Z+jets),
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FIGURE 5.1. Illustration of Higgs boson branching ratios[67]

and diboson production.

This analysis sets limits on both SM Higgs boson pair production and on

resonant production. Both production methods are discussed in detail in chapter

II. Figure 5.2 shows a Feynman diagram of resonant production of the Higgs boson

pairs with the subsequent decays H → WW ∗ and H → bb.

5.1. Analysis Overview

Two complementary techniques are used to reconstruct the Higgs boson

candidates that decays into two b-quarks. Both techniques use the anti-kt jet

algorithm but with different radius parameters. The first technique uses jets with

a radius parameter R = 0.4 and it is used when each b-quark from the H → bb

decay can be reconstructed as a distinct b-jet. This is referred to as the “resolved

analysis”[68]. The second technique uses jets with a radius parameter R = 1.0, also
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FIGURE 5.2. Schematic diagram of resonant Higgs boson pair production with the
subsequent Higgs and W boson decays.

know as large-R jets, and is used when the b-quarks cannot be reconstructed as

two distinct b-jets. Instead the H → bb candidate is identified as the single large-R

jet. This technique is referred to as the “boosted analysis”[69]. In both analyses,

the jets from the hadronically decaying W boson are reconstructed as anti-kt jets

with radius parameter R = 0.4. The non-resonant, SM production, search uses the

resolved analysis exclusively, while the resonant analysis is performed using resolved

analysis for resonant masses below 1300 GeV and the boosted analysis for resonant

masses above 1300 GeV. The cross-over point was chosen to maximize the sensitivity

of the search.
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5.2. Data and Monte Carlo Samples

5.2.1. Data

The analysis presented uses the full proton-proton collision dataset collected in

2015 and 2016 as the center-of-mass energy of 13 TeV passing data quality checks

requiring good conditions of all sub-detectors. The data that are currently used

correspond to an integrated luminosity of 36.1 fb-1 (3.2 fb-1 from 2015 plus 32.8 fb-1

from 2016)1.

.

5.2.2. Monte Carlo Samples

With the exception of the QCD multijet background described in 5.4.8, MC

simulated events are used to estimate SM backgrounds and the signal acceptances.

Table 5.1 summarizes the MC samples used for background estimation.

The tt̄ and single top-quark samples are generated with Powheg-Box v2 [70]

using CT10 parton distribution functions (PDF) interfaced to Pythia 6.428 [71]

for parton shower, using the Perugia2012 [72] tune with CTEQ6L1 [73] PDF for

the underlying event descriptions. EvtGen v1.2.0 [74] is used for properties of the

bottom and charm hadron decays and charmed hadron decays. The mass of the top

quark is set to mt = 172.5 GeV. At least one top quark in the tt̄ event is required to

decay to a final state with leptons, excluding taus. The cross section of tt̄ is known

to NNLO in QCD including re-summation of next-to-next-to-leading logarithmic

1 The following GoodRunLists (GRL) are used:
data15 13TeV.periodAllYear DetStatus-v79-repro20-02 DQDefects-00-02-
02 PHYS StandardGRL All Good 25ns.xml
and
data16 13TeV.periodAllYear DetStatus-v88-pro20-21 DQDefects-00-02-
04 PHYS StandardGRL All Good 25ns.xml.
The GRLs were retrieved from the GoodRunListsForAnalysisRun2 twiki
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Process Generator σ × BR [pb]
tt̄→ WWbb→ lνbb+X Powheg+Pythia6 451.65
Wt incl. Powheg+Pythia6 71.7
single t, s-channel, → lν +X Powheg+Pythia6 3.31
single t, t-channel, → lν +X Powheg+Pythia6 69.5
W+jets, W → lν Sherpa 61510
Z+jets, Z → ll Sherpa 6425
Dibosons incl. Sherpa 47.3
ggh incl. Powheg+Pythia8 48.5
tth, → lν +X aMC@NLO + Herwig++ 0.223

TABLE 5.1. SM MC samples used for background estimation.

(NNLL) soft gluon terms, and the reference value used in ATLAS is calculated using

Top++ 2.0 [75]. The parameter Hdamp, used to regulate the high-pT radiation

in Powheg, is set to mt for good data/MC agreement in the high pT region [76].

Each process of single top-quark (t-channel, s-channel and Wt-channel) is generated

separately. The cross section of single-top is calculated with the prescriptions in

Ref. [77, 78].

Sherpa v2.2.1 [79] with the NNPDF 3.0 [80] PDF set is used as the baseline

generator for the (W → `ν)/(Z → ``)+jets background. The diboson processes

(WW , WZ and ZZ) are generated with Sherpa with the CT10 PDF set.

The ggH and V BF inclusive samples are generated with Powheg using the

CT10 PDF set interfaced to Pythia8 for parton shower, while ttH is a semi-leptonic

sample generated with Madgraph5 aMC@NLO interfaced to Herwig++. The

ggF cross section is normalized by using computations including up to three QCD

loops (N3LO) [81]. VBF, Wh and Zh samples, with inclusive h, W and Z decays

are also generated using Pythia8.

Signal samples are generated with Madgraph5 aMC@NLO [82] interfaced to

Herwig++ according to the procedure defined in Ref. [83]. Events are generated
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with an effective Lagrangian in the infinite top-quark mass approximation, and re-

weighting the generated events with form factors that take into account the finite

mass of the top quark. This procedure partially accounts for the finite top-quark

mass effects [84]. After the full analysis chain was developed, there were also

developments in the theoretical front, which took full NLO calculation and top mass

into account [85, 86]. This led to a slight difference in mHH shape. A re-weighting

scheme was then developed to correct mHH shape as described in these slides. 2 The

overall effect in the sensitivity is a loss of signal efficiency by about 30%, which is

also seen by other analysis such as HH → bbbb.

Table 5.2 shows the list of HH signals. They use a heavy Higgs scalar model

as the signal hypothesis. The masses of the heavy Higgs range from 260 GeV to

3000 GeV while the Higgs width is set to 10 MeV, therefore the model is valid in

the Narrow Width Approximation (NWA). The non-resonant signal is normalized

to σ(pp → HH) × Br(HH → WWbb) = 0.590 pb (the expected SM cross section) ,

the resonant ones are normalized to 0.044 pb for mH < 2000 GeV and to 0.041 for

mH ≥ 2000 GeV (the Run I limits).

Process Generator
HH SM Madgraph5 aMC@NLO + Herwig++ including Form Factor

S → HH (mS = 260− 3000) GeV Madgraph5 aMC@NLO + Herwig++including Form Factor

TABLE 5.2. Di-Higgs signal samples used in the analysis.

Additional pp collisions generated with Pythia 8.186 are overlaid to model the

effects of the pileup for all simulated events. All simulated events are processed

with the same reconstruction algorithm used for data. All background samples are

processed through the full ATLAS detector simulation [87] based on GEANT4 [88]

while signal samples use the Atlas Fast simulation.

2 https://indico.cern.ch/event/652372/
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5.3. Object Reconstruction

The observable particles of this analysis includes electrons, muons, neutrinos

and jets, including b-jets. The identification criteria and the selection applied to the

reconstructed objects are defined in the present section.

5.3.1. Electrons

5.3.1.1. Electron reconstruction

For this analysis, two set of electron selections are defined. They are denoted as

VHLooseElectron and SignalElectron. The selections are defined as the following:

VHLooseElectron: The electron pT is required to be greater than 7 GeV. The

electron cluster should be in the range of |η| < 2.47. Loose likelihood identification

is applied in this criteria. Impact parameter significance (|dsig
0 | = d0/σd0) less than

10 standard deviations. and |∆zIBL
0 sin θ| < 0.5 mm are also required, where IBL

refers to the ATLAS Insertable B-Layer.

SignalElectron: The electron is required to pass the VHLooseElectron

selection with its pT required to be greater than 27 GeV. The electron cluster should

be in the range of |η| < 2.47 but excluded from the crack region (1.37 < |η| < 1.52).

Tight likelihood identification is applied in SignalElectron criteria with the impact

parameter significance required to be less than two. In addition, the electron is

required to be isolated by passing the FixedCutTightTrackOnly isolation working

point which corresponds to a cut on the ratio of pvarcone0.2
T to electron pT of 0.06 (i.e

pvarcone0.2
T /pT < 0.06).

A summary of the electron selections is shown in Table 5.3.
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Electron Selection pT |η| ID |dsig
0 | |∆zIBL

0 sin θ| Isolation
VHLoooseElectron >7 GeV < 2.47 LH Loose < 10 < 0.5 mm -

SignalElectron >27 GeV < 2.47 and /∈ [1.37, 1.52] LH Tight < 2 < 0.5 mm FixedCutTightTrackOnly

TABLE 5.3. Electron selection requirements.

5.3.2. Muons

5.3.2.1. Muon reconstruction

For this analysis, two sets of muon selections are defined. They are denoted as

VHLooseMuon and SignalMuon. The selections are defined as the following:

VHLooseMuon: The muon pT is required to be greater than 7 GeV. The

muon cluster should be in the range of |η| < 2.7. Loose identification is applied in

this criteria. Impact parameter significance (|dsig0 |) less than 6 standard deviations.

and |∆zIBL
0 sin θ| < 0.5 mm are also required.

SignalMuon: The muon is required to pass the VHLooseMuon selection with

its pT required to be greater than 27 GeV and should be in the range of |η| < 2.4.

Medium identification is applied in SignalMuon criteria with the impact parameter

significance required to be less than 2. In addition, the muon is required to be isolated

by passing the FixedCutTightTrackOnly isolation working point which corresponds

to a cut on the ratio of pvarcone0.3
T to muon pT of 0.06 (i.e pvarcone0.3

T /pT < 0.06).

A summary of the muon selections is shown in Table 5.4.

Muon Selection pT |η| ID |dsig
0 | |∆zIBL

0 sin θ| Isolation
VHLoooseMuon >7 GeV < 2.7 Loose quality < 6 < 0.5 mm -

SignalMuon >27 GeV < 2.4 Medium quality < 2 < 0.5 mm FixedCutTightTrackOnly

TABLE 5.4. Muon selection requirements.
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5.3.3. Jets

5.3.3.1. Large-R jets

For signal processes with a large resonant mass the b-jets produced by the Higgs

may be too close together to be resolved by the R=0.4 calorimeter-based jets (calo-

jets). This effect is expected to be noticeable when pHT > 500 GeV3. Our approach

to reconstructing the H → bb system in this “boosted” regime is to use a large radius

(large-R) jet with radius parameter R =1.0. The large-R jets are required to have

pT > 250 GeV and |η| < 2.0.

5.3.3.2. Track jets

To identify a large-R jet that is consistent, the decay of H → bb, a method

developed by ATLAS is to reconstruct subjets within the large-R jet and identify

the subjets whether it is a b-jet or not by using a b-tagging algorithm. The baseline

method is to use subjets built from tracks (track jets). For the boosted analysis, track

jets are required to have pT > 10GeV and |η| < 2.5 for them to be within the inner

detector acceptance. They are also required to have at least two track constituents.

The MV2c10 working point for track jets is the 77% Fixed Cut efficiency.

5.3.3.3. Small-R jets

Signal jets are defined as jets which passes the jet cleaning and JVT criteria,

described in the previous section. They are further required to have pT > 20 GeV

and |η| < 2.5.

Signal jets are labeled b-jets if they pass the MV2c10 85% WP cut and labeled

as light-jets if they fail the cut.

3 Using the rule of thumb ∆R = 2m/pT , where m = mH and ∆R = 0.4
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Table 5.5 summarizes the jets selection.

Signal Jets
Algorithm anti−kt

pT 20 GeV
|η| < 2.5

Quality not “bad” jet
Pile-up jet removal JVT > 0.59 when |η| < 2.5 and pT < 60 GeV

b-tagging MV2c10, 85% fixed-cut WP, labelled as b-jets pass cut, light-jets if fail cut

TABLE 5.5. Selection for jets with distance parameter R = 0.4.

5.3.4. Missing transverse momentum ( /ET )

The missing transverse momentum (MET, or /ET ) [65] used in this analysis is

computed by using electrons that pass the VHLooseElectron selection, muons passing

the VHLooseMuon selection and jets of the analysis.4 The track-based soft term5

(TST) is the recommended soft term component for the MET calculation. Photons

and hadronically decaying taus are included in the /ET calculation as jets since they

are not used explicitly in the event reconstruction.

5.3.5. Overlap removal

Each object identification algorithm in ATLAS runs independently. This means

the same physical object can be identified as multiple things. One example is

electrons and jets, both of which can have tracks and EM calorimeter signatures.

In order to uniquely identify objects, overlapping objects are removed according to

the overlap removal procedure defined in this section. Electrons and muons that

pass the VHLooseElectron and VHLooseMuon selections (as defined in Sec. 5.3.1.1

4 From MET Core AntiKt4EMTopo with the MissingETAssociationMap using the METMaker
tool. All calibrated jets are passed to the METMaker tool as prescribed on the EtMiss subgroup
twiki

5 Defined on this twiki.
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and 5.3.2.1) are considered for overlap removal. Calorimeter jets which pass the

JVT requirement are also considered for overlap removal. The procedure is defined

as follows.

If an electron and a muon shares a track, the muon is removed if it is calo-

tagged. Otherwise, the electron is removed. Calorimeter jets are then removed if

they are within ∆R(calo-jet, electron) < 0.2 of surviving electrons. Electrons that

satisfy ∆R(electron, calo-jet) < min(0.4, 0.04 + 10 GeV/Eelectron
T ) are removed. The

surviving calorimeter jets are removed if they are within ∆R(calo-jet,muon) < 0.2

and do not pass any of the following criteria:

– The number of tracks in the jet are more than two.

– pmuon
T /pcalo-jet

T < 0.5 AND pmuon
T /ptracks in calo-jet

T < 0.7.

Muons that satisfy ∆R(muon, calo-jet) < min(0.4, 0.04 + 10 GeV/pmuon
T )

are removed. The overlap removal procedure is implemented using ASG’s

AssociationUtils package and summarized in Table 5.6.

Overlapping Objects Removal Procedure

Electron - Muon If share track, remove muon if calo-tagged. Otherwise remove electron.

Electron - Calo-jet
If ∆R(calo-jet, electron) ¡ 0.2, remove calo-jet.
If ∆R(electron, calo-jet) ¡ min(0.4, 0.04 + 10 GeV/Eelectron

T ), remove electron.

Muon - Calo-jet

If ∆R(calo-jet,muon) ¡ 0.2, remove calo-jet if:
a) Number of tracks in calo-jet ≤ 2, OR

b) pmuon
T /pcalo-jet

T > 0.5 AND pmuon
T /ptracks in calo-jet

T > 0.7.
If ∆R(muon, calo-jet) ¡ min(0.4, 0.04 + 10 GeV/pmuon

T ), remove muon.

TABLE 5.6. A summary of the overlap removal procedure.

5.4. Resolved Analysis

5.4.1. Event Selection

The final state of interest consists of one charged lepton, one neutrino, and

four quarks, two of which are b-quarks. Hence the detector signature consists of
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one charged lepton (e/µ), large /ET , and four or more anti-kt jets of which two are

b jets from the h decay while the other two are light jets from the hadronic decay

of the W boson. One challenge in the event reconstruction is to correctly identify

the pair of light jets from the W boson decay. This information is also used to

solve the z component of the neutrino momentum. For the HH signal there is an

additional complication due to the fact that one of the W bosons is off-shell, and

thus for this W there is no W mass constraint. This section details the stages of the

event reconstruction and the progression towards the final selection which defines

the signal region. In addition, signal depleted control regions are defined in the next

section which are used to check the consistency of the SM background predictions

with the data in the control regions. The search has been kept “blinded” until the

comparison between data and simulation of backgrounds are well understood in the

signal depleted control regions.

5.4.2. Trigger requirement

Events are selected using the unprescaled single lepton triggers. The list of

triggers used in this analysis is shown in Table 5.7. Events are selected with a logical

OR between the triggers listed in Table 5.7.

5.4.2.1. Pre-selection

The following selection criteria are applied at the pre-selection level to the

recorded events:

– Good detector conditions are required based on data quality assessment. See

Appendix B.0.1 for more details.
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Dataset Trigger items

2015
mu20 iloose L1MU15

mu50
e24 lhmedium L1EM18VH (MC)
e24 lhmedium L1EM20VH (data)

e60 lhmedium
e120 lhloose

2016 - Period A

mu24 iloose L1MU15 (MC)
mu24 iloose (data)

mu40
e26 lhtight nod0 ivarloose

e60 lhmedium nod0
e60 medium

e140 lhloose nod0
e300 etcut

2016 - Period B-D3

mu24 ivarmedium
mu50

e26 lhtight nod0 ivarloose
e60 lhmedium nod0

e60 lhmedium
e140 lhloose nod0

e300 etcut

2016 - Period D4-E3

mu26 ivarmedium
mu50

e26 lhtight nod0 ivarloose
e60 lhmedium nod0

e60 lhmedium
e140 lhloose nod0

e300 etcut

2016 - Period ≥ F

mu26 ivarmedium
mu50

e26 lhtight nod0 ivarloose
e60 lhmedium nod0

e60 lhmedium
e140 lhloose nod0

e300 etcut

TABLE 5.7. Summary of trigger items used for 2015 and 2016 data. For 2016
data, different triggers were used for different data run periods. All triggers are
unprescaled.
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– The presence of a primary vertex with at least two tracks. Among all

primary vertices, that with the highest
∑
p2

T,trk, where pT,trk is the transverse

momentum of tracks associated with the vertex, is retained as the primary

interaction vertex;

– at least one SignalElectron (e) or SignalMuon (µ), as defined in Section 5.3.1.1

and Section 5.3.2.1, and it must be trigger matched to the corresponding HLT

object which fires the trigger;

– at least four jets, of which two and only two are b-tagged.

5.4.3. Event Reconstruction

Events are reconstructed by first requiring exactly two 2 b-tag jets and at least

two light jets and at most three light jets. In events with three light jets, the pair

with the lowest ∆R between them are selected as W jet candidates. This procedure

yields the correct jet assignment in 70% of the cases for signal events where the

hadronic daughters of the W boson can be correctly matched to reconstructed jets.

The event kinematics of the H → WW ∗ → lνqq topology can be fully

reconstructed. In fact, among all four-momenta of the final state particle, only the

component of the neutrino momentum along the beam axis, pz in the following, is

unknown while its transverse momentum is the measured /ET . Imposing the relation:

m2
h = (pl + pν + pj1 + pj2)2 (5.1)

where pi is the four-momenta of particle i, the neutrino pz can be reconstructed using

the relations:

pνE = Eν =
√
P 2
T + p2

z pνx = PT cos(φ) pνy = PT sin(φ)
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where φ is the azimuthal angle of the /ET , Eν the neutrino energy, px and py the

two transverse spatial components of the neutrino momentum. Equation 5.1 is a

quadratic expression in pz. It can have two real, one real or two complex solutions.

In the last case only the real part of the complex solution is taken into account,

therefore a single value of pz is obtained. In the first case the solution with the

neutrino direction closest to the charged lepton is retained. It has been shown that

this algorithm selects the correct solution in approximately 60% of the cases (see

Appendix F).
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5.4.4. bbττ analysis overlap removal

In order to remove overlap with the bbττ analysis we reject any event containing

at least one hadronic τ candidate that could be identified by the bbττ analysis, that

fullfill the following requirements:

– pT > 20 GeV and |η| < 2.5;

– one or three prongs;

– unit charge;

– pass the medium τ ID BDT working point.

The rejection of such events causes a signal efficiency drop of about 3%.

5.4.5. Kinematic selection

Kinematic selection is used to suppress mainly tt̄ background while keeping high

signal efficiency. A schematic view of the HH → WW∗bb and the tt̄→ WWbb event

topology is shown in Figure 5.3.

The tt̄ events are typically characterized by two b-jets and two W bosons such

that the ∆R separation between the two b-jets and between the W bosons is large.

On the contrary, in particular when the invariant mass of the mHH is high, the signal

is characterized by two b-jets which are close together in ∆R and by two W bosons

which are also relatively closer than in the tt̄ case. Moreover, while for the signal the

two b-jets have an invariant mass equal to mh, this is not necessarily the case for the

tt̄ background. Following these considerations, the typical separation variables are:

– the pT of the bb̄ pair (pbbT );

– the ∆R of the bb̄ pair (∆Rbb);
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FIGURE 5.3. Schematic view of a HH → WWbb event compared to a tt̄→ WWbb
event.

– the pT of the WW pair (pWW
T );

– the ∆R of the WW pair (∆RWW );

– the mass of the WW system computed using the calculated neutrino

longitudinal momentum (mWW). This value is exactly equal to mh if a real

solution is found, it is larger if no real solution is found;

– the invariant mass of the di-Higgs boson candidate system (mHH).

– the invariant mass of the 2 b-jets boson system (mbb).
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5.4.6. Signal region definitions

The signal selection criteria have been optimized by maximizing the Poisson

significance at the end of the selection based on MC simulation 6. The Poisson

significance formula depends on the absolute yield of expected signal and background

events. For the optimization formula the tt̄ background was normalized to data with

mbb < 100 GeV or mbb > 140 GeV, where the majority of the signal is rejected. Four

signal hypotheses have been used in the optimization:

– a heavy Higgs with mS = 500 GeV and mS = 700 GeV (defined as low-mass

analysis),

– a heavy Higgs with mS = 2000 GeV (defined as high-mass analysis) and

– a non-resonant di-Higgs production (defined as non-resonant analysis).

An additional mass point with mS = 1400 GeV was also checked. The resulting

selection and the corresponding sensitivity are very similar to the selection for mS =

2000 GeV, and hence that selection is dropped.7

The signal regions for the reference signal hypotheses are summarized in

Table 5.8.

The non-res and m500 selections are exclusively used for non-resonant signal

and resonant signal with mass 500 GeV respectively. The low-mass selection is

used for signal masses from 600 to 1300 GeV, while the high-mass selection is used

for signals with masses between 1400 and 3000 GeV. In addition, requirements are

6 a two step procedure has been implemented. In the first step each selection criteria is optimized,
in the second step, all selections are set to their optimal value and selections are varied one by one
to look for a different optimization point. Correlation among variables could in fact spoil the results
obtained at the first step.

7 See https://indico.cern.ch/event/641988/contributions/2604588/attachments/

1465307/2265002/bbWW_Weekly_Optimization_Revisited_24May2018.pdf
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variable Non-Res m500 low-mass high-mass
/ET (GeV) > 25 > 25 > 25 > 25

mWW (GeV) < 130 < 130 < 130 no-cut
pbbT (GeV) > 300 > 210 > 210 > 350
pWW

T (GeV) > 250 > 150 > 250 > 250
∆RWW no-cut no-cut no-cut < 1.5

mbb (GeV) 105-135 105-135 105-135 105-135

TABLE 5.8. Criteria for non-resonant, m500, low-mass and high-mass selection.
The mHH window is not applied for non-resonant signal, and for resonant signals
mHH depends on the mass.

mS (GeV) 500 600 700 750 800
mHH (GeV) 480-530 560-640 625-775 660-840 695 - 905
mS (GeV) 900 1000 1100 1200 1300
mHH (GeV) 760-970 840-1160 925-1275 1010-1390 1095-1505
mS (GeV) 1400 1500 1600 1800 2000
mHH (GeV) 1250-1550 1340-1660 1430-1770 1750-2020 1910-2170

mS (GeV) 2250 2500 2750 3000
mHH (GeV) 2040-2460 2330-2740 2570-2950 2760-3210

TABLE 5.9. Window selection on mHH as a function of the resonance mass mS.

placed on the reconstructed di-Higgs invariant mass mHH as a function of the signal

resonance mass mS, as shown in Table 5.9. The resolution of the reconstructed mHH

ranges from 6% at 500 GeV to 10% at 3000 GeV.

5.4.7. Background Determination

In the present analysis we expect that at the end of the event selection the

sample will be largely dominated by tt̄ and multi-jet background, therefore the tt̄

background normalization is derived from data while, as described in Sec. 5.4.8,

the multi-jet background is derived using a data-driven ABCD method. For all the

other backgrounds, e.g. di-boson, Higgs, W+jets, the MC is used appropriately

77



Selection non-res m500 m700 m2000
Buffer/SR 1.85 1.95 1.90 1.63

Sidebands/SR 20.5 12.6 13.4 5.6

TABLE 5.10. The ratios of S/B in the buffer zone and sidebands compared to the
S/B in the final SR.

normalized by using the expected cross sections and the integrated luminosity that

has been collected.

5.4.7.1. Top normalization and control region

The tt̄ background is normalized and validated using dedicated control regions

(CR). Three CR’s are defined, one for the SR’s of the non-res (CR1), one for the

low-mass analysis (CR2), and one for the high-mass analysis (CR3). The CRs are

defined in Table 5.11.

Table 5.12 through 5.15 show the number of observed events and expected

background events in the top CRs, and also in the sideband across selections

that serve as validation regions. The final signal region is defined by mbb of

105 GeV < mbb < 135 GeV based on optimization. The sidebands are orthogonal

to the SR by virtue of having the mbb reversed. mbb < 100 GeV or mbb > 140 GeV

defines the sidebands in which the control regions are defined. The 5 GeV buffer

region is kept on both sides so as to be less affected by systematic effects at the edge.

Fig. 5.4 shows mbb for various signal mass points. A comparative study of signal

over background in these three regions shows that S/B in the final SR is 5 (20) times

higher than in the sidebands for m2000 (non-resonance) while S/B in the final SR is

approximate twice as high as in the buffer zones. Table 5.10 shows the ratios of S/B

in the buffer zones and sidebands compared to the S/B in the final SR.
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variable CR1 CR2 CR3
mbb (GeV) mbb < 100 or mbb > 140 mbb < 100 or mbb > 140 mbb < 100 or mbb > 140
mWW (GeV) < 130 < 130 no-cut
pbbT (GeV) > 300 > 210 > 350

TABLE 5.11. Definition of the kinematic regions used to normalize the Top
background. mbb < 100 GeV or mbb > 140 GeV defines the sidebands in which
the control regions are defined. Expected SM backgrounds are then checked against
data at each subsequent selection.

CR1: mbb Sideband

Sample mww bbpt210 bbpt300 wwpt250
tt̄ 23776.6 ± 87.2 531.7 ± 13.1 109.9 ± 5.9 63.9 ± 4.6
QCD 13310.5 ± 500.3 250.2 ± 30.6 33.7 ± 4.1 21.4 ± 2.6
W+jets 3938.9 ± 31.1 124.7 ± 3.5 29.3 ± 1.4 17.1 ± 1.1
SingleTop 1605.4 ± 18.0 76.0 ± 3.8 20.1 ± 2.0 13.5 ± 1.7
Dibosons 109.9 ± 2.7 8.3 ± 0.8 2.2 ± 0.4 1.5 ± 0.4
Z+jets 1107.6 ± 8.4 27.1 ± 0.8 6.7 ± 0.4 2.4 ± 0.2

Background Sum 43849.0± 509.2 1017.9± 33.7 201.9± 7.6 119.8± 5.7

XhhSM 44.6 ± 2.2 9.1 ± 0.7 1.5 ± 0.2 1.1 ± 0.1
Data 43902.0 1069.0 206.0 138.0

TABLE 5.12. The number of observed events and expected background events in
the mbb side-bands for the non-res selection. The top CR1 is defined at the bbpt300
selection. No NF has been applied to the background yields to show the level of
data/expectation agreement before normalizing ttbar. Only statistical uncertainties
are shown.
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FIGURE 5.4. mbb resolution for signal samples.

Table 5.12 through 5.15 show the number of observed events and expected

background events in the top CRs before the normalization factors have been applied

to the top background sample.
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CR2: mbb Sideband

Sample mww bbpt210 wwpt150 hh500
tt̄ 23776.6 ± 87.2 531.7 ± 13.1 432.7 ± 11.8 35.5 ± 3.2
QCD 13310.5 ± 500.3 250.2 ± 30.6 206.3 ± 25.3 16.9 ± 2.1
W+jets 3938.9 ± 31.1 124.7 ± 3.5 105.9 ± 3.3 4.9 ± 0.6
SingleTop 1605.4 ± 18.0 76.0 ± 3.8 64.9 ± 3.5 2.8 ± 0.6
Dibosons 109.9 ± 2.7 8.3 ± 0.8 6.7 ± 0.8 0.9 ± 0.2
Z+jets 1107.6 ± 8.4 27.1 ± 0.8 19.0 ± 0.7 1.5 ± 0.2

Background Sum 43849.0± 509.2 1017.9± 33.7 835.5± 28.3 62.5± 3.9

Xhh500 3.2 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.2 ± 0.1
Data 43902.0 1069.0 898.0 73.0

TABLE 5.13. The number of observed events and expected background events in
the mbb side-bands for the low-mass selection, m500. The top CR2 is defined at the
bbpt210 selection. To show how well the prediction matches data, no NF has been
applied to any background. Only statistical uncertainties are shown.

CR2: mbb Sideband

Sample mww bbpt210 wwpt250 hh700
tt̄ 23776.6 ± 87.2 531.7 ± 13.1 175.6 ± 7.5 49.9 ± 3.9
QCD 13310.5 ± 500.3 250.2 ± 30.6 72.4 ± 8.9 28.4 ± 3.5
W+jets 3938.9 ± 31.1 124.7 ± 3.5 45.7 ± 2.1 13.7 ± 1.4
SingleTop 1605.4 ± 18.0 76.0 ± 3.8 28.4 ± 2.4 6.9 ± 1.1
Diboson 109.9 ± 2.7 8.3 ± 0.8 2.8 ± 0.5 0.7 ± 0.2
Z+jets 1107.6 ± 8.4 27.1 ± 0.8 5.8 ± 0.4 2.0 ± 0.3

Background Sum 43849.0± 509.2 1017.9± 33.7 330.7± 12.1 101.5± 5.5

Xhh700 4.2 ± 0.2 2.2 ± 0.1 1.5 ± 0.1 1.0 ± 0.1
Data 43902.0 1069.0 367.0 124.0

TABLE 5.14. The number of observed events and expected background events in
the mbb side-bands for the low-mass selection, m700. The top CR2 is defined at the
bbpt210 selection. To show how well the prediction matches data, no NF has been
applied to any background. Only statistical uncertainties are shown.
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CR3: mbb Sideband

Sample bbpt350 wwpt250 drww15 hh2000
tt̄ 8568.7 ± 52.1 7095.6 ± 47.5 1940.5 ± 25.1 122.3 ± 6.5
QCD 1538.7 ± 252.7 1359.5 ± 75.9 392.7 ± 21.9 20.7 ± 1.2
W+jets 2259.5 ± 7.9 1952.1 ± 7.4 696.6 ± 4.6 55.5 ± 1.1
SingleTop 1778.1 ± 19.4 1601.6 ± 18.4 405.4 ± 9.2 29.6 ± 2.6
Dibosons 170.6 ± 3.9 147.1 ± 3.7 46.8 ± 2.1 3.4 ± 0.6
Z+jets 403.6 ± 2.1 307.6 ± 1.8 95.6 ± 1.1 7.5 ± 0.3

Background Sum 14719.1± 258.9 12463.5± 91.8 3577.5± 35.0 238.9± 7.2

Xhh2000 25.7 ± 0.4 24.0 ± 0.4 9.6 ± 0.3 2.9 ± 0.1
Data 14862.0 12450.0 3761.0 250.0

TABLE 5.15. The number of observed events and expected background events in
the mbb side-bands for the high-mass selection. The top CR3 is defined at the
bbpt350 selection. No NF has been applied to the background yields. Only statistical
uncertainties are shown.

Top background normalization factors in the two CRs.
region NF σstat. σsyst.
non-res 1.04 ±0.20 ±0.43

low-mass 1.14 ±0.10 ±0.35
high-mass 1.02 ±0.02 ±0.07

TABLE 5.16. Normalization factors for the two CRs, the statistical error includes
only data statistics, the systematic error is obtained subtracting in quadrature the
statistical error from the total error.
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The top normalization factors are determined by a simultaneous fit of signal

and control regions, which include both Top CR and QCD CR 5.4.8. It also depends

slightly on the mHH window due to the presence of top background in the signal

region, and it is furthermore different for the non-res, low-mass and high-mass

analyses. The normalization factors of the three top control regions are shown in

Table 5.16.

Fig. 5.5 shows the mbb and mHH distributions in the two CRs.
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FIGURE 5.5. mbb and mHH in CR1, CR2 and CR3. tt̄ NFs as described in 5.4.7.1
have been applied. The uncertainties shown include the statistical and systematic
uncertainties described in 5.4.9. Data are blinded in the region 100 < mbb < 140.

5.4.8. Multi-jet background

Multi-jet backgrounds can enter in the event selection if a jet from heavy flavor

decays is mis-identified as an electron or a muon and used as a lepton in the
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analysis. Such phenomena are not accurately reproduced by MC simulation, due

to large uncertainties in the jet shower shape simulation and uncertainties in muon

fragmentation functions and kinematics. In order to estimate the contributions of

multi-jet processes, a data-driven ABCD method is used to estimate this background

in the present analysis.

The ABCD method uses three control regions (the B, C, and D regions) to

estimate the contribution of a given background in the signal (A) region. Selections

on two ideally orthogonal variables are used to create the signal and various control

regions, e.g. the A region passes both selections, the B and C regions each pass one

selection and fail the other, while the D region fails both selections. The absolute

value of the significance of the lepton impact parameter and the missing transverse

energy (MET) are used as the two variables used to define the regions in the ABCD

method for this analysis. The regions are thus defined:

– A region: MET > 25 GeV, |σd0 | < 2.0

– B region: MET < 25 GeV, |σd0| < 2.0

– C region: MET > 25 GeV, |σd0 | > 2.0

– D region: MET < 25 GeV, |σd0| > 2.0

Figure 5.6 shows a pictoral representation of the four regions.
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FIGURE 5.6. A pictoral representation of the four regions used in the ABCD
calculation.

Assuming that the two variables chosen to define the ABCD regions are

completely uncorrelated, the yield of the process being modeled (QCD multi-jets

in this case) in the A region is given by

NA = NC
NB

ND

(5.2)

where the yields Ni are yields calculated from data - all Monte Carlo backgrounds

(tt̄ , W/Z+jets, single top, diboson processes) in region i (Ni = Ndata
i − NMC Bkgs

i ).

The assumption underlying Equation 5.2 is that the relationship between the yields

in the B and D regions is the same as the relationship between the A and C regions,

i.e.

NA

NC

=
NB

ND

(5.3)
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Using equation 5.3, the quantity R = NCNB
NAND

can be defined. In the case of two

completely uncorrelated variables, R = 1 and the ABCD estimation reduces to

Equation 5.2. If the two variables are not completely uncorrelated, the R factor

enters as a correction to Equation 5.2 for the multi-jet estimation in the A region,

and the expression can be rewritten as

NA = R
NCNB

ND

(5.4)

The R factor is calculated for each selection (non-res, low-mass, and high-mass)

individually, and the results at each step of the selection is provided in Table 5.17.

QCD R Values, Non-resonant Selection

mww bbpt210 bbpt300 wwpt250
0.74 ± 0.04 0.79 ± 0.23 1.07 ± 1.18 —

QCD R Values, Low Mass Selection (m500)

mww bbpt210 wwpt150 hh500
0.74 ± 0.04 0.79 ± 0.23 — —

QCD R Values, Low Mass Selection (m700)

mww bbpt210 wwpt250 hh700
0.74 ± 0.04 0.79 ± 0.23 0.09 ± 0.14 —

QCD R Values, High Mass Selection

bbpt350 wwpt250 drww15 hh2000
0.48 ± 0.09 0.43 ± 0.08 0.50 ± 0.16 4.28 ± 5.30

TABLE 5.17. Values calculated for R at each stage in the non-res, low-mass, and
high-mass selections. The estimate of multi-jet contribution in the A region uses the
R value calculated after the first criteria of each selection.

In order to minimize the statistical error on R, the R value calculated after the

first criteria of each selection (0.74 and 0.48) is used in Equation 5.4 to estimate the

multi-jet background after each subsequent selection. This can be done given the

compatibility of the R value at the end of the cutflow with that at the point where

R is evaluated. In order to check such compatibility with higher statistics, the R
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value has been calculated applying each selection just after R is evaluated, in order

to check that R is not correlated with each of the selections. The result is shown in

Table 5.18.

QCD R Values, Non-resonant Selection

mww mww + bbpt210 mww + bbpt300 mww + wwpt250
0.74 ± 0.04 0.79 ± 0.23 1.12 ± 1.22 0.25 ± 0.20

QCD R Values, Low Mass (m500) Selection

mww mww + bbpt210 mww + wwpt150 mww + hh500
0.74 ± 0.04 0.79 ± 0.23 0.50 ± 0.08 0.52 ± 0.09

QCD R Values, Low Mass (m700) Selection

mww mww + bbpt210 mww + wwpt250 mww + hh700
0.74 ± 0.04 0.79 ± 0.23 0.25 ± 0.20 0.63 ± 0.13

QCD R Values, High Mass Selection

bbpt350 bbpt350 + wwpt250 bbpt350 + drww15 bbpt350 + hh2000
0.47 ± 0.06 0.44 ± 0.08 0.52 ± 0.17 1.07 ± 0.67

TABLE 5.18. Values of R obtained applying a single selection after R is nominally
evaluated.

Once the normalization of the multi-jet background in the A region is calculated

using Equation 5.4, the shape of the multi-jet template is taken from the data minus

Monte Carlo distribution in the C region since the two are kinematically identical

except for |σd0|.

The uncertainty due to the limited statistics in the B and D regions is the main

source of the multi-jet estimation method systematics. In order to minimise such

error, the yields from the B and D regions used in the ABCD calculation are frozen

at a level of the cutflow to minimise statistical fluctuations. The B and D region

yields are frozen after the pbbT > 210 GeV for the non-res and low-mass selection,

and after the pT (WW ) > 250 GeV for the high-mass selection. Appendix G details

the study carried out to select the stage at which to freeze the B and D regions.
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To further reduce the error coming from the C region, the shape of the data

minus Monte Carlo, i.e. non-prompt, mbb distribution was studied as a function of

each individual criteria for each selection. If the mbb shape is unchanged by the

additions of further kinematic selections, the C region shape can be taken from an

earlier stage in the cutflow, reducing the shape uncertainty and overall statistical

error on the QCD yield. To determine the stability of the mbb shape, the ratio of

events in the mbb signal region ([100, 140] GeV) over the numbers of events in the

full mbb spectrum was computed for each individual criteria using the C region of

the ABCD method. This ratio was found to be stable across each selection, and the

results of this calculation are provided in Table 5.19.

reOptNonRes: mbb SR/Total Ratios For Individual Selections

mww bbpt210 bbpt300 wwpt250
0.17 ± 0.02 0.15 ± 0.03 0.13 ± 0.05 0.16 ± 0.05

reOpt500: mbb SR/CR Ratios For Individual Selections

mww bbpt210 wwpt150 hh500
0.17 ± 0.02 0.15 ± 0.03 0.18 ± 0.02 0.22 ± 0.03

reOpt700: mbb SR/Total Ratios For Individual Selections

mww bbpt210 wwpt250 hh700
0.17 ± 0.02 0.15 ± 0.03 0.16 ± 0.05 0.16 ± 0.02

reOpt2000: mbb SR/Total Ratios For Individual Selections

bbpt350 wwpt250 drww15 hh2000
0.12 ± 0.08 0.16 ± 0.05 0.19 ± 0.02 0.11 ± 0.14

TABLE 5.19. The ratio of events in the mbb signal region ([100, 140] GeV) over the
numbers of events in the full mbb spectrum for each individual selection. Both event
yields are calculated in the C region of the ABCD method. The ratios are found to
be stable across each selection.

The normalized shapes of the full mbb distributions after each selection are shown

in Figure 5.7. The earliest selection with a consistent shape was chosen as the shape

for each cutflow and this corresponds to the shape obtained after the pbbT > 210 GeV
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for the non-resonant the m500 and m700 selections, and after the pWW
T > 250 GeV

for the m2000 selection.
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FIGURE 5.7. The normalized shapes of the full mbb distributions after each in each
selection. Shapes from the non-resonant cutflow are shown at the top left, shapes
from the low-mass selection are shown at the top left, and shapes from the high-mass
selection are shown at the bottom. The earliest selection with a consistent shape
was chosen as the shape for each cutflow and this corresponds to the shape obtained
after the mWW and pbbT > 210 GeV for the non-res and low-mass selections and after
the pbbT > 350 GeV and pWW

T > 250 GeV for the high-mass mass selection.

Since tt̄ and multi-jet contaminate the control regions used for their estimation,

additional studies were performed via an iterative procedure to ensure that the tt̄

and QCD yields converge to stable values and that the estimation technique is able

to disentangle between the two backgrounds. Appendix H details the results of

the study, and the yields were found to converge (stable within < 5%) after a few

iterations for each cutflow.
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To evaluate the systematic error of the estimation, a Sherpa multi-jet bb sample

is used to compare the ABCD prediction to the Monte Carlo expectation using events

with exactly one lepton and four jets. No b-tagging requirements or other event

selection criteria are applied. Pseudo-data is produced using the multi-jet Monte

Carlo and events from the nominal tt̄ Monte Carlo. The R factor is calculated using

the inclusive b-tag (0, 1, or 2 b-tags) and used to estimate the QCD contribution

in the two b-tag exclusive region. The percent difference between the number of

events from the ABCD estimation and the number of multi-jet events from Monte

Carlo used to produce the pseudo-data is taken as the systematic uncertainty. This

uncertainty is calculated to be 36%. In addition, the bb MC is used to calculate

the R factor for each selection (non-res, low-mass, and high-mass) and each lepton

channel, and the results at each kinematic criteria in each selection are provided in

the Table 5.20.

5.4.9. Background Shape and Cutflow

The modeling of the background was checked at all selection stages and, in

general, shows good agreement with data. Figure 5.8 shows the mT distribution of

the leptonic W boson candidate in the three top control regions. The mT variable is

defined as:

mT =
√

2p`T /ET · (1− cos∆φ) ,

where ∆φ is the azimuthal angle between p`T and /ET . The multijet background

populates the low values of the mT distribution, so any mis-modeling of the multijet

background would be clearly visible in the mT distribution.

Figures 5.9 and 5.10 show the mbb̄ distributions at the selection stage where all

requirements, including mHH , are applied except the one on mbb̄ itself. The expected
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FIGURE 5.8. The mT distribution in the three top-background control regions for
the non-res, low-mass, and the high-mass selections of the resolved analyses. The
signal contamination is negligible, and hence not shown. The lower panel shows the
fractional difference between the data and the total expected background with the
corresponding statistical and total uncertainty.
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Non-resonant: QCD Rnon−prompt Values

mww bbpt210 bbpt300 wwpt250
Combined 0.74 ± 0.04 0.80 ± 0.05 0.64 ± 0.08 0.62 ± 0.05
Electrons 0.72 ± 0.05 0.75 ± 0.06 0.68 ± 0.10 0.64 ± 0.06

Muons 0.81 ± 0.06 0.92 ± 0.11 0.55 ± 0.15 0.59 ± 0.10

Low-mass (m500): QCD Rnon−prompt Values

mww bbpt210 wwpt150 hh500
Combined 0.74 ± 0.04 0.80 ± 0.05 0.68 ± 0.03 0.50 ± 0.03
Electrons 0.72 ± 0.05 0.75 ± 0.06 0.65 ± 0.03 0.44 ± 0.04

Muons 0.81 ± 0.06 0.92 ± 0.11 0.75 ± 0.06 0.58 ± 0.07

Low-mass (m700): QCD Rnon−prompt Values

mww bbpt210 wwpt250 hh700
Combined 0.74 ± 0.04 0.80 ± 0.05 0.62 ± 0.25 0.60 ± 0.03
Electrons 0.72 ± 0.05 0.75 ± 0.06 0.64 ± 0.06 0.52 ± 0.04

Muons 0.81 ± 0.06 0.92 ± 0.11 0.59 ± 0.10 0.74 ± 0.08

High-mass: QCD Rnon−prompt Values

bbpt350 wwpt250 drww15 hh2000
Combined 0.47 ± 0.09 0.62 ± 0.05 0.68 ± 0.03 0.58 ± 0.13
Electrons 0.48 ± 0.10 0.64 ± 0.06 0.60 ± 0.04 0.57 ± 0.14

Muons 0.44 ± 0.20 0.59 ± 0.10 0.82 ± 0.07 0.65 ± 0.39

TABLE 5.20. Rnon−prompt calculated for the QCD Monte Carlo sample at using each
kinematic criteria individually from all selections. The lepton channels are shown
separated and combined.

background is in agreement with the data over the entire distribution, and close to

the signal region in particular. All simulated backgrounds are normalized according

to their theoretical cross-sections, except tt̄ , which is normalized in the top CRs.
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FIGURE 5.9. The mbb̄ distribution in the resolved analysis for the non-res and m500
selections at the end of the selection sequence, before applying the mbb̄ requirement.
The signals shown are from SM non-resonant HH production scaled up by a factor
of 300 (left) and from a scalar resonance with mass 500 GeV scaled to the expected
upper-limit cross section reported in Section 5.6.1 (right). The lower panel shows
the fractional difference between data and the total expected background with the
corresponding statistical and total uncertainty.
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FIGURE 5.10. The mbb̄ distribution in the resolved analysis for the low-mass and
high-mass selections at the end of the selection sequence, before applying the mbb̄

requirement. The signals shown are from scalar resonances with mass 1000 GeV (left)
and 2000 GeV (right) scaled to the expected upper-limit cross section reported in
Section 5.6.1. The lower panel shows the fractional difference between data and the
total expected background with the corresponding statistical and total uncertainty.
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SR: 100 < mbb < 140 GeV

Sample mww bbpt210 bbpt300 wwpt250 mbb
tt̄ 7461.0 ± 48.6 162.9 ± 7.3 27.9 ± 2.9 18.4 ± 2.4 15.4 ± 2.2
QCD 2756.2 ± 210.5 48.7 ± 14.2 6.6 ± 1.9 4.2 ± 1.2 3.6 ± 1.6
Wv221 640.8 ± 12.7 19.1 ± 1.4 5.0 ± 0.6 3.1 ± 0.5 2.3 ± 0.4
SingleTop 452.2 ± 9.6 14.3 ± 1.7 1.7 ± 0.5 1.0 ± 0.4 0.6 ± 0.3
Dibosonsv221 21.6 ± 1.3 0.6 ± 0.2 0.4 ± 0.2 0.0 ± 0.0 0.0 ± 0.0
Zv221 262.8 ± 4.4 3.1 ± 0.3 1.0 ± 0.2 0.2 ± 0.1 0.2 ± 0.1

Background Sum 11594.7± 216.7 248.6± 16.1 42.6± 3.6 27.0± 2.8 22.1± 2.8

XhhSM 68.3 ± 2.4 20.7 ± 0.9 6.7 ± 0.4 5.5 ± 0.3 4.8 ± 0.3
Data 11450.0 232.0 47.0 31.0 22.0

TABLE 5.21. The number of expected background and signal events in the mbb SR
for the non-resonant selection. Only statistical uncertainties are shown. No NF has
been applied.

SR: 100 < mbb < 140 GeV

Sample mww bbpt210 wwpt150 hh500 mbb
tt̄ 7461.0 ± 48.6 162.9 ± 7.3 141.7 ± 6.8 17.3 ± 2.2 12.6 ± 1.9
QCD 2756.2 ± 210.5 48.7 ± 14.2 40.2 ± 11.7 3.3 ± 1.0 2.9 ± 1.3
Wv221 640.8 ± 12.7 19.1 ± 1.4 15.3 ± 1.3 0.1 ± 0.0 -0.2 ± 0.1
SingleTop 452.2 ± 9.6 14.3 ± 1.7 12.2 ± 1.6 3.6 ± 0.8 2.8 ± 0.7
Dibosonsv221 21.6 ± 1.3 0.6 ± 0.2 0.5 ± 0.2 0.1 ± 0.0 0.1 ± 0.0
Zv221 262.8 ± 4.4 3.1 ± 0.3 1.9 ± 0.2 0.5 ± 0.1 0.4 ± 0.1

Background Sum 11594.7± 216.7 248.6± 16.1 211.8± 13.7 24.9± 2.5 18.6± 2.4

Xhh500 6.6 ± 0.2 1.9 ± 0.1 1.7 ± 0.1 0.9 ± 0.1 0.8 ± 0.1
Data 11450.0 232.0 194.0 32.0 26.0

TABLE 5.22. The number of expected background and signal events in the mbb SR
for the low-mass selection, m500. Only statistical uncertainties are shown. No NF
has been applied.

SR: 100 < mbb < 140 GeV

Sample mww bbpt210 wwpt250 hh700 mbb
tt̄ 7461.0 ± 48.6 162.9 ± 7.3 61.5 ± 4.7 21.9 ± 2.7 15.3 ± 2.2
QCD 2756.2 ± 210.5 48.7 ± 14.2 14.1 ± 4.1 5.5 ± 1.6 4.8 ± 2.2
Wv221 640.8 ± 12.7 19.1 ± 1.4 9.7 ± 1.1 4.1 ± 0.8 2.6 ± 0.6
SingleTop 452.2 ± 9.6 14.3 ± 1.7 2.6 ± 0.7 0.5 ± 0.2 0.3 ± 0.2
Dibosonsv221 21.6 ± 1.3 0.6 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
Zv221 262.8 ± 4.4 3.1 ± 0.3 0.6 ± 0.1 0.1 ± 0.0 0.1 ± 0.0

Background Sum 11594.7± 216.7 248.6± 16.1 88.7± 6.4 32.3± 3.2 23.3± 3.1

Xhh700 9.2 ± 0.3 7.8 ± 0.2 5.9 ± 0.2 5.0 ± 0.2 4.4 ± 0.2
Data 11450.0 232.0 75.0 25.0 22.0

TABLE 5.23. The number of expected background and signal events in the mbb SR
for the low-mass selection, m700. Only statistical uncertainties are shown. No NF
has been applied.
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SR: 100 < mbb < 140 GeV

Sample bbpt350 wwpt250 drww15 hh2000 mbb
tt̄ 1307.8 ± 20.2 1024.9 ± 17.7 287.5 ± 9.4 2.2 ± 0.8 1.4 ± 0.6
QCD 207.2 ± 99.5 191.2 ± 29.0 55.2 ± 8.4 2.9 ± 0.4 2.2 ± 0.5
Wv221 341.3 ± 3.4 291.5 ± 3.2 110.7 ± 2.1 4.8 ± 0.3 3.4 ± 0.3
SingleTop 144.1 ± 5.6 126.6 ± 5.3 29.2 ± 2.6 0.5 ± 0.3 0.5 ± 0.3
Dibosonsv221 25.9 ± 1.5 21.8 ± 1.3 6.6 ± 0.7 0.0 ± 0.0 0.0 ± 0.0
Zv221 53.8 ± 0.8 40.4 ± 0.7 13.2 ± 0.4 0.8 ± 0.1 0.7 ± 0.1

Background Sum 2080.1± 101.8 1696.5± 34.6 502.5± 13.1 11.2± 1.0 8.2± 0.8

Xhh2000 21.0 ± 0.4 19.3 ± 0.4 8.4 ± 0.2 3.4 ± 0.1 2.9 ± 0.1
Data 2182.0 1830.0 587.0 11.0 9.0

TABLE 5.24. The number of expected background and signal events in the mbb SR
for the high-mass selection, m2000. Only statistical uncertainties are shown. No NF
has been applied.

5.4.10. Systematic Uncertainties

This section describes the sources of systematic uncertainties considered in

the analysis. These uncertainties are divided into four categories: experimental

uncertainties, uncertainties on the data driven background estimation, uncertainties

on the modeling of background processes estimated from simulation, and theoretical

uncertainties on the signal processes. In the statistical analysis each systematic

uncertainty is treated as a nuisance parameter the names of which are defined below.

These systematic variations are estimated on the final expected yield in the signal

regions.

5.4.10.1. Experimental uncertainties

Each reconstructed object has several sources of uncertainties, each of which

are evaluated separately. Wherever possible, we follow the latest available

recommendations from the ATLAS combined performance (CP) groups. The leading

instrumental uncertainties are the uncertainty on the b-tagging efficiency and the
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jet energy scale (JES). The summary of experimental uncertainties is presented in

Table 5.25.
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Source Description Analysis Name
Muons pT resolution MS MUON MS
Muons pT resolution ID MUON ID
Muons pT scale MUON SCALE
Muons Isolation efficiency SF MUON ISO SYS
Muons Isolation efficiency SF MUON ISO STAT
Muons Reconstruction efficiency SF MUON EFF SYS
Muons Reconstruction efficiency SF MUON EFF STAT
Muons Trigger efficiency SF MUON EFF TrigStatUncertainty
Muons Trigger efficiency SF MUON EFF TrigSystUncertainty
Electrons pT resolution EG RESOLUTION ALL
Electrons pT scale EG SCALE ALL
Electrons Isolation efficiency SF EL EFF Iso TOTAL 1NPCOR PLUS UNCOR
Electrons Reconstruction efficiency SF EL EFF Reco TOTAL 1NPCOR PLUS UNCOR
Electrons Trigger efficiency SF EL EFF Trigger TOTAL 1NPCOR PLUS UNCOR
Electrons Identification efficiency SF EL EFF ID TOTAL 1NPCOR PLUS UNCOR
Tau Energy scale model TAUS TRUEHADTAU SME TES MODEL
Tau Energy scale detector TAUS TRUEHADTAU SME TES DETECTOR
Tau In-situ energy calibration TAUS TRUEHADTAU SME TES INSITU
MET Soft term MET SoftTrk ResoPerp
MET Soft term MET SoftTrk ResoPara
MET Soft term MET SoftTrk Scale
Small-R Jets JES strongly reduced JET SR1 JET GroupedNP 1
Small-R Jets JES strongly reduced JET SR1 JET GroupedNP 2
Small-R Jets JES strongly reduced JET SR1 JET GroupedNP 3
Small-R Jets JES strongly reduced JET SR1 JET EtaIntercalibration NonClosure
Small-R Jets Energy resolution JET JER SINGLE NP
Small-R Jets JVT efficiency SF JET JvtEfficiency
b-tagging Flavor tagging scale factors FT EFF Eigen Light 0
b-tagging Flavor tagging scale factors FT EFF Eigen Light 1
b-tagging Flavor tagging scale factors FT EFF Eigen Light 2
b-tagging Flavor tagging scale factors FT EFF Eigen Light 3
b-tagging Flavor tagging scale factors FT EFF Eigen Light 4
b-tagging Flavor tagging scale factors FT EFF Eigen Light 5
b-tagging Flavor tagging scale factors FT EFF Eigen Light 6
b-tagging Flavor tagging scale factors FT EFF Eigen Light 7
b-tagging Flavor tagging scale factors FT EFF Eigen Light 8
b-tagging Flavor tagging scale factors FT EFF Eigen Light 9
b-tagging Flavor tagging scale factors FT EFF Eigen Light 10
b-tagging Flavor tagging scale factors FT EFF Eigen Light 11
b-tagging Flavor tagging scale factors FT EFF Eigen Light 12
b-tagging Flavor tagging scale factors FT EFF Eigen Light 13
b-tagging Flavor tagging scale factors FT EFF Eigen B 0
b-tagging Flavor tagging scale factors FT EFF Eigen B 1
b-tagging Flavor tagging scale factors FT EFF Eigen B 2
b-tagging Flavor tagging scale factors FT EFF Eigen B 3
b-tagging Flavor tagging scale factors FT EFF Eigen B 4
b-tagging Flavor tagging scale factors FT EFF Eigen C 0
b-tagging Flavor tagging scale factors FT EFF Eigen C 1
b-tagging Flavor tagging scale factors FT EFF Eigen C 2
b-tagging Flavor tagging scale factors FT EFF Eigen C 3
b-tagging Flavor tagging scale factors FT EFF Eigen C 4
b-tagging Flavor tagging scale factors FT EFF Eigen extrapolation
b-tagging Flavor tagging scale factors FT EFF Eigen extrapolation from charm

TABLE 5.25. Qualitative summary of the object systematic uncertainties included
in this analysis.
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5.4.10.1.1. Luminosity The uncertainty in the combined 2015+2016 integrated

luminosity is 2.1%8. It is derived, following a methodology similar to that detailed in

[26], from a preliminary calibration of the luminosity scale using x-y beam-separation

scans performed in August 2015 and May 2016. The luminosity uncertainty is applied

to those backgrounds estimated from simulation and the signal samples.

5.4.10.1.2. Trigger Systematic uncertainties on the efficiency of electron

and muon triggers are evaluated as recommended by the corresponding combined

performance groups as documented here.9

5.4.10.1.3. Muons The following systematic uncertainties are applied to muons

in estimations based on the simulation:

– Identification efficiency: The efficiencies are measured with the tag and probe

method using the Z mass peak.

– Energy and Momentum scales: These are also measured with Z mass line

shape, and provided by the CP groups.

5.4.10.1.4. Electrons The following systematic uncertainties are applied to

electron in estimations based on the simulation:

– Identification efficiency: The efficiencies are measured with the tag and

probe method using the Z mass peak. They include contributions from

reconstruction, identification and isolation;

8 https://twiki.cern.ch/twiki/bin/view/Atlas/LuminosityForPhysics

9 el:https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/
ElectronEfficiencyRun2

mu:https://twiki.cern.ch/twiki/bin/view/AtlasProtected/MCPAnalysisGuidelinesMC15
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– Energy and Momentum scales: These are also measured with Z mass line

shape, and provided by the CP groups.

5.4.10.1.5. Jet uncertainties The jet energy uncertainties are derived based

on in situ measurements performed during Run 2 conditions [89]. The jet

energy resolution uncertainty is evaluated by smearing jet energies according to the

systematic uncertainties of the resolution measurement [90]. The uncertainty in the

b-tagging efficiency is evaluated by propagating the systematic uncertainty in the

measured tagging efficiency for b-jets [91]. The “Loose” reduction scheme is used.

5.4.10.1.6. Missing transverse energy The systematic uncertainties related

to the missing transverse energy are obtained by the propagation of the systematic

uncertainty on the objects that build the MET, in particular the muon, electron and

jets energy resolution and scale. The resolution and scale of the MET soft-term is

broken down into its components: METScale, METResoPara, METResoPerp, and

full uncertainties from each component is taken into account in the final fit.

5.4.10.1.7. dsig0 uncertainties The uncertainty due to the dsig
0 criteria has been

evaluated by making the ratio between the efficiency of the criteria for data and the

efficiency of the criteria for the MC background samples. We selected di-electron

or di-muon event, requiring an invariant di-leptons mass within 80-100 GeV Z Mass

window. To be as similar to our signal region as possible but to keep high statistics,

loose pre-selection criteria are applied in selecting the events. The leading lepton is

required to have pT > 27 GeV and /ET > 25 GeV. At least four resolved jets are

required of which exactly two are b-jets. The dsig
0 distributions for data and MC

samples for each lepton channel are shown in the Figure 5.11, in Figure 5.12 the

relative ratio of the total distributions is shown. The ratio of the efficiency of the
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dsig
0 criteria for data over MC samples si about 96%, this is equivalent if the ratio is

estimated by using only muons or only electrons. The difference of this ratio from

one is the fractional uncertainty due to the dsig
0 criteria efficiency.

This results in about 4% for the dsig
0 uncertainty independent from the lepton

flavor.
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FIGURE 5.11. dsig
0 distributions for data and background MC samples, identifying

the lepton channel.

5.4.10.2. Background modeling uncertainties

Several systematics have been evaluated to take into account the uncertainties

on the modeling of backgrounds.

5.4.10.2.1. Uncertainties from the modeling of tt̄ The dominant background

tt̄ is normalized in dedicated CRs. MC is used to extrapolate the shapes from the

control regions to the signal region, so theoretical uncertainties are related to such

extrapolation. PDF and scale uncertainties are evaluated by applying event selection

at truth level. The resulting uncertainties are approximately 5% to 6% and are

included in the final fit.
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FIGURE 5.12. dsig
0 distributions and the relative ratio for data and background MC

samples.

Additional uncertainties in tt̄ modeling stems from the difference in the matrix

element (ME) implementation across generators, hadronization and fragmentation

modeling (called parton shower, PS), and the amount of initial and final state

radiation (ISR/FSR). The ME uncertainty is computed by comparing the events

generated by aMC@NLO with the events generated by Powheg-Box v2, both

interfaced to Herwig++ for parton shower. The difference computed close to

the signal region with enough statistics is used. The PS uncertainty is computed
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Source Non-resonant Low-Mass High-Mass

Matrix Element 7.2 0.5 4.1
Parton Shower 3.7 16.4 9.5
ISR/FSR 14.7 4.9 8.2
PDF 5.2 3.5 6.1
Scale 3.3 2.2 3.7

TABLE 5.26. Extrapolation uncertainties in percentage from the CR to the SR for
all selections, provided to the fit for the tt̄ modeling systematics.

by comparing the the nominal Powheg+Pythia6 sample with the PS variation

Powheg+Herwig++ sample in a region close to the SR but with enough statistics.

For ISR/FSR, the dedicated radHi and radLo samples with modified hDamp

parameter are compared. The sample with the higher impact on the fit is kept as

the uncertainty due to ISR/FSR. Table 5.26 shows the numbers provided to the

fit for the various tt̄ modeling systematics for the low- and high-mass selections.

Since the uncertainties are computed based on extrapolation from the CRs, these

uncertainties are input to the statistical fit as rate uncertainties in the SR only.

5.4.10.2.2. Single top uncertainty Theoretical cross section uncertainties of

5.3% is assigned to the associated Wt production, 3.9% to the s-channel and 4.2%

to t-channel single top production. The dominant production for this analysis is the

Wt channel. The single top modeling systematic uncertainties have been calculated

employing the difference between the nominal (DR scheme) and the (available)

systematic variation sample (DS scheme) in SR for theWt channel. The uncertainties

are computed to be 48%, 48%, and 84% for non-resonant, low-mass and high-mass

analyses respectively. Single top is a very small background in the analysis. However,

the large difference between the two schemes warranted getting feedback from the Top

Group. We narrowed the huge difference down to very tight pT (bb). See Figure 5.13.

The Top Group is working on a better prescription but in the meantime this is
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the recommended method and the huge difference is what we keep. Additional

uncertainties on single top have been calculated employing the difference between

the nominal and the (available) systematic variation samples. The recommendation

is taken from the Top Twiki.10 The comparison is done between the nominal sample

and the Powheg+Herwig for fragmentation, MC@NLO for Matrix Element, and

RadHi/RadLo for ISR/FSR uncertainties. The comparison is done at the selection

where MC statistical uncertainties are small. This leads to pT (bb) < 120 for non-

resonance and low-mass selections, and ∆R(WW ) < 1.5 for high-mass selection.

The uncertainties vary across selections being 3.5% at the smallest to 23% at the

largest.

5.4.10.2.3. W/Z+jets modeling uncertainty Uncertainties on the modeling

of W+jets background were computed in each SR and top CR. Three sources of

uncertainties were considered: scale variation uncertainties, PDF uncertainties and

PS/modeling uncertainties. Scale uncertainties were computed by varying by a factor

of two the nominal renormalization and factorization scales, PDF uncertainties were

computed according to the NNPDF recipe, that is computing the standard deviation

of the 100 PDF eigenset, while modeling uncertainties were computed comparing

Sherpa with Alpgen+Pythia6. The values obtained in each region are summarized

in Table 5.27. Same uncertainties are used for the subleading Z+jets background.

5.4.10.2.4. QCD uncertainty An overall 36% uncertainty is assigned to the

QCD multijet background. The systematic uncertainty was calculated following the

steps described in Section 5.4.8.

10 https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopSystematics2015
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FIGURE 5.13. pT (bb) for DR and DS schemes for single top modeling.

5.4.10.3. Model uncertainties on the signal

Systematics on signal acceptance are computed generating multiple-weight

samples that include weights corresponding to variation of the normalization and

factorization scales by a factor (ξr, ξf ) = 2. The envelope is built excluding the

cases where ξr/ξf = 4 and ξr/ξf = 1/4. The fractional uncertainty is obtained

dividing 1/2 of the envelop by the central value. PDF uncertainties are compute

using PD4LHC mc 30 pdf sets, that include the envelope of three PDF sets, namely

105



Source Non-resonant Low-Mass High-Mass

SR CR SR CR SR CR
modeling/PS 37 37 37 37 18 18
PDF 7 30 10 36 17 31
Scale 25 35 17 31 29 28

TABLE 5.27. Theoretical uncertainties in percentage on W/Z+jets event yield
computed in the CR and the SR of all selections, provided to the fit for the W/Z
jets modeling systematics.

Signal model Non-resonant mH500− 1300 GeV mH > 1300 GeV

scale ±1.1% ±0.8 % ±0.7 %
PDF ± 1.3% ±1.3 % ± 1.3 %

TABLE 5.28. Theoretical uncertainties in percentage on the signal acceptance.

the CT14, MMHT’14, NNPDF3. The CTEQ error formula is used to compute the

uncertainties. Results are summarized in Table 5.28 for each signal hypothesis.

5.5. Boosted Analysis

5.5.1. Event Reconstruction

For the boosted analysis, events are reconstructed by requiring at least one

reconstructed lepton. This lepton will be referred to as the selected lepton. To

reconstruct the H → bb candidate, there should be at least one large-R jet with

∆R > 1.0 from the selected lepton. The highest pT large-R jet is chosen as the

H → bb candidate. The large-R jet is then required to have two at least two

track jets associated to it. Events with the large-R jet mass to be in the range

of 30 GeV < mlarge-R jet < 300 GeV are retained for further analysis.

In order to reconstruct W → qq candidate, events are required have at least two

signal small-R jets with ∆R > 1.4 of the H → bb candidate. The ∆R requirement

ensures that the small-R jets used for W → qq reconstruction do not overlap with

106



the H → bb candidate large-R jet. If there are exactly two signal small-R jets, they

are used to reconstruct the W → qq candidate. If there are at least three signal

small-R jets, the W → qq candidate is reconstructed from the combination of pairs

of the three highest pT small-R jets with the smallest ∆R between the small-R jets.

The full h→ WW ∗ → lνqq is reconstructed identically to the resolved

analysis as described in Section 5.4.3. With the H → bb candidate identified

and h→ WW ∗ → lνqq system fully reconstructed, the di-Higgs (HH) system is

reconstructed by the sum of four-momenta of the H → bb candidate large-R jet and

the reconstructed h→ WW ∗ → lνqq system. Figure 5.14 shows a diagram of the

event topology after the event reconstruction.

FIGURE 5.14. Diagram of the reconstructed event topology

5.5.2. Event Selection

After the event is reconstructed, a b-jet veto is applied on the event by requiring

all signal small-R jets do not pass b-tagging requirement to reject tt̄ events. The two

highest pT track-jets in the large-R jet are required to be b-tagged and events that
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passes this requirement is considered to be in the “2-tag” region. In addition, the /ET

is required to be more than 50 GeV to reject events from QCD multijet background.

5.5.3. Kinematic Selection

5.5.3.1. Signal Region

In order to enhance the sensitivity to a resonant HH signal, similarly to the

resolved analysis, it is required that the H → bb candidate large-R jet has a mass

consistent with the Standard Model Higgs boson mass. Events which have the

H → bb candidate large-R jet mass in a window of 90 GeV < mLarge−Rjet < 140 GeV

is considered to be in the signal region (SR). The signal region is blinded and the

blinding strategy is implemented by removing any events in data that passes the

signal region requirement on the large-R jet mass.

5.5.3.2. mBB Control Region

In order to asses the modeling of the backgrounds, a control region is defined to

be any events which fails the large-R jet signal region mass window requirement. Any

event which has a large-R jet mass 90 GeV < mLarge−Rjet or mLarge−Rjet > 140 GeV

falls in the mBB control region (mBBcr). By construction, this region is orthogonal

to the signal region.

5.5.4. Multijet Background

As with the resolved analysis, the QCD multijet background is estimated using

the same data-driven method with slight modifications.

The ABCD method uses three control regions (the B, C, and D regions) to

estimate the contribution of a given background in the signal (A) region. Cuts on
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two ideally orthogonal variables are used to create the signal and various control

regions, e.g. the A region passes both cuts, the B and C regions each pass one cut

and fail the other, while the D region fails both cuts.

For the boosted analysis, the ABCD regions are defined by using the same

variables as in the resolved analysis, which are the significance of the lepton impact

parameter (dsig
0 ) and the missing transverse momentum ( /ET ). A small difference

would be the higher cut value for the /ET with respect to the resolved analysis. The

regions are defined as follow:

– Region A: /ET> 50 GeV, |dsig
0 | < 2.0

– Region B: /ET< 50 GeV, |dsig
0 | < 2.0

– Region C: /ET> 50 GeV, |dsig
0 | > 2.0

– Region D: /ET< 50 GeV, |dsig
0 | > 2.0

Figure 5.15 shows the four regions represented on on the lepton d0 significance

vs /ET plane. Assuming that the two variables chosen to define the ABCD regions

are completely uncorrelated, the QCD multijet yield in region A can be predicted.

The The correlation between |dsig
0 | vs /ET is estimated in multiple MC background

samples and also in data, and they are found to negligible.

The ABCD method is done separately between the muon and electron channel

as it is expected that the
NQCD
B

NQCD
D

ratio and QCD multijet contribution to the total

predicted background will be significantly different between the channels.

5.5.4.1. Yield prediction

Table 5.29 lists the MC predicted prompt lepton backgrounds, observed data

and calculated multijet yields in Region B and D before the large-R jet mass is
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FIGURE 5.15. Regions defined in the ABCD method based on the lepton d0

significance vs /ET plane. Region A is the signal enriched region which we want to
estimate the multijet background. Region C is where the shape template is derived
from and used as shape prediction of the multijet background in region A. The ratio
of the multijet yields in region B to region D is used to scale the multijet yield in
region C to predict the multijet background yield in region A.

applied and Table 5.30 shows the yields in Region C mBB control region and signal

region.

The
NQCD
B

NQCD
D

ratio are calculated inclusively in the large-R jet mass distribution.

In other words, the ratio is calculated without the jet mass window selection, which

defines the SR and mBBcr, applied. The ratio is then used to scale the QCD multijet

yield in the SR and mBBcr of region C to predict the QCD multijet yield in region

A.

Table 5.31 shows the ratio in the electron channel and muon channel. As

expected, the electron channel ratio is larger than the muon channel. The muon
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Region B Region D
Samples Electron Muon Electron Muon
tt̄ 307.7 ± 11.5 279.8 ± 10.6 21.3 ± 2.7 18.3 ± 2.6
W+Jets 173.2 ± 5.2 179.3 ± 5.6 11.6 ± 1.4 10.6 ± 1.1
Single-top 42.9 ± 3.4 33.5 ± 3.6 3.0 ± 0.9 0.8 ± 0.5
Z+Jets 78.5 ± 1.9 72.5 ± 1.7 6.4 ± 0.6 5.5 ± 0.5
Dibosons 19.1 ± 1.5 17.7 ± 1.5 1.6 ± 0.4 2.2 ± 0.8
Total Prompt 621.3 ± 13.2 582.7 ± 12.7 44.0 ± 3.3 37.4 ± 3.0
Data 1003 ± 31.7 711 ± 26.7 144 ± 12.0 98 ± 9.9
QCD 381.7 ± 34.3 128.3 ± 29.5 100.0 ± 12.4 60.6 ± 10.4

TABLE 5.29. MC predicted prompt lepton backgrounds, observed data and
calculated multijet yields in Region B and D. The multijet yield is calculated by
subtracting the estimated total prompt lepton backgrounds from the observed data.
The statistical uncertainty on the yields is shown.

mBBcr SR
Samples Electron Muon Electron Muon
tt̄ 38.7 ± 4.2 46.8 ± 7.9 28.5 ± 3.1 22.0 ± 2.7
W+Jets 22.3 ± 2.0 20.0 ± 1.7 9.6 ± 1.3 10.0 ± 1.8
Single-top 7.6 ± 2.1 6.5 ± 1.3 7.1 ± 1.5 2.7 ± 0.8
Z+Jets 4.6 ± 0.8 3.8 ± 0.5 1.6 ± 0.3 1.9 ± 0.6
Dibosons 2.2 ± 0.6 1.2 ± 0.4 0.8 ± 0.3 1.7 ± 0.4
Total Prompt 75.4 ± 5.2 78.4 ± 8.2 47.5 ± 3.7 38.3 ± 3.4
Data 148 ± 12.2 126 ± 11.2 91 ± 9.5 71 ± 8.4
QCD 72.6 ± 13.2 47.6 ± 13.9 43.5 ± 10.2 32.7 ± 9.1

TABLE 5.30. MC predicted prompt lepton backgrounds, observed data and
calculated multijet yields in Region C mBBcr and SR. The multijet yield is calculated
by subtracting the estimated total prompt lepton backgrounds from the observed
data. The statistical uncertainty on the yields is shown.
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Multijet yield in region Electron Muon

NQCD
B 381.7 ± 34.3 128.3 ± 29.5

NQCD
D 100.0 ± 12.4 60.6 ± 10.4

NQCD
B /NQCD

D 3.8 ± 0.6 (15.3%) 2.1 ± 0.6 (28.7%)

TABLE 5.31. Multijet yields in region B and region D and also the ratio of the

yields for each lepton channel. The error on the
NQCD
B

NQCD
D

ratio is propagated from the

statistical uncertainties on the multijet yields in each region.

channel ratio has a larger uncertainty due to the more limited statistics in region B

and region D compared to the electron channel. The predicted yields of the QCD

multijet background in the mBB control region and signal region are presented in

Table 5.32. The QCD multijet background is estimated to be 19% of the total

background in the signal region (Table 5.52).

Multijet yield in region Electron Muon
SR

NQCD
C 43.4 ± 10.2 32.7 ± 9.1

NQCD
A 165.9 ± 46.6 (28.1%) 69.3 ± 27.7 (39.9%)

mBBcr

NQCD
C 72.6 ± 13.2 47.6 ± 13.9

NQCD
A 277.1 ± 66.0 (23.8%) 100.8 ± 41.3 (41.0%)

TABLE 5.32. Multijet yield in region C and predicted yield in region A in the SR.
The error on NQCD

A are propagated from the error on the NQCD
B /NQCD

D ratio and
statistical uncertainty on NQCD

C yield. The numbers in brackets are the relative
uncertainty in percentage.

5.5.4.2. Shape prediction

In order to predict the shape of the HH mass distribution (and also other

kinematic distribution) of the QCD multijet background, the shape template of all

kinematic distributions are obtained by subtracting all the MC backgrounds from

data in region C.
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It was found that distributions in region C suffer from lack of statistics due the

low number of data events which results in shape templates with severe statistical

fluctuations. To overcome this, the shape templates are derived from a sample of 1

b-tagged (1-tag) events in region C. This sample requires that one of the two leading

track-jet is b-tagged but not both at the same time.

5.5.4.3. Multijet yield uncertainties

5.5.4.3.1. Statistical The uncertainty on the predicted yield of the multijet

background is determined by propagating the statistical uncertainty of the
NQCD
B

NQCD
D

ratio, as shown in Table 5.31, and the statisical uncertainty on the multijet yield in

region C (NQCD
C ), as in Table 5.32.

5.5.4.3.2. 1-tag/2-tag jet mass acceptance Another source of uncertainty

on the multijet yield is the the difference of acceptance of the large-R jet mass cut

between 1-tag and 2-tag. This uncertainty is included since the template for or the

multijet shape prediction uses the multijet shape from the 1-tag region C. Table 6.6

shows the acceptance of the large-R jet mass signal and mBB control region selection

in the multijet 1-tag region C and 2-tag region C yields. The relative difference

between the acceptance in 1-tag region C and in 2-tag region C is considered as an

uncertainty on the normalization of the QCD multijet prediction.

5.5.4.3.3. mBB control region fit A likelihood fit of the large-R jet mass in the

mBB control region is performed with the normalization of the multijet background

to be unconstrained in the fit. In the muon channel, the post-fit normalization factor

is consistent with unity and in the electron channel, the normalization factor is 0.676

± 0.130. Due to this significant deviation from unity for the electron channel, we
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Region Electron Muon
SR

1-tag NSR

NInc
31.6 ± 2.7 % 27.9 ± 2.7 %

2-tag NSR

NInc
37.5 ± 9.7 % 40.7 ± 9.7 %

Rel. difference between 1-tag and 2-tag 15.6 % 31.5 %
mBBcr

1-tag NmBBcr

NInc
68.4 ± 2.7 % 72.1 ± 2.7 %

2-tag NmBBcr

NInc
62.5 ± 7.0 % 59.3 ± 7.0 %

Rel. difference between 1-tag and 2-tag 9.4 % 21.6 %

TABLE 5.33. The acceptance of the large-R jet mass signal region selection on the
multijet 1-tag and 2-tag region C. NSR(NInc) is the multijet yield with (without) the
signal region large-R jet mass selection.

assign a normalization uncertainty of 32.4% for the multijet background in both the

mBB control region and signal region.

5.5.4.3.4. tt̄ and W+jets MC modeling The uncertainties on the MC

modeling of the tt̄ and W+jets, the two largest prompt background predicted by

MC in region B,D and C are taken as a systematic on the predicted multijet

background in region A since the multijet background is calculated by subtracting

the prompt background from observed data. The uncertainties on the normalization

of tt̄ and W+jets in each region are calculated by comparing the yields between the

nominal tt̄ and W+jets samples with their alternative samples (see Section 5.5.10.2.2

and 5.5.10.2.3).

The uncertainty on the multijet yield prediction in region A is then calculated

by recalculating the multijet yield in each region with the tt̄ and W+jets yields be

varied up and down, simultaneously in all regions, by the uncertainty due to the MC

modeling of the background. The resulting multijet yield prediction in region A for

each background uncertainty is then compared to the nominal prediction in region A

and the difference is then taken as the uncertaintyon the multijet yield prediction in
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region A. Table 5.34 shows the uncertainty on the multijet yield prediction in region

A signal and mBB control region due to the the uncertainty on the tt̄ and W+jets

MC modeling.

Electron Muon
SR

tt̄ 26.5 % 60.1 %
W+jets 24.7 % 70.4 %

mBBcr
tt̄ 37.4 % 101.0%

W+jets 29.5 % 77.6%

TABLE 5.34. The uncertainty on the multijet yield prediction in region A due to
the normalization uncertainty of the tt̄ and W+jets backgrounds in region C.

5.5.4.3.5. Detector modeling of prompt backgrounds The detector

modeling systematic uncertainties on the prompt background in regions B, D and

C are propagated through the ABCD method to estimate the uncertainty on the

multijet yield prediction region A. Table 5.35 shows the uncertainties on the predicted

multijet yield in both lepton channels.

Electron Muon
SR

Total Uncertainty 46.0% 105.6%
mBBcr

Total Uncertainty 45.5% 127.3 %

TABLE 5.35. The total uncertainty on the multijet yield prediction in region A due
to the detector modeling uncertainties of the prompt backgrounds in region B, C and
D.

5.5.4.3.6. |dsig
0 | cut efficiency modeling The |dsig

0 | cut efficiency modeling

uncertainty for the prompt MC backgrounds are also taken into account in the
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ABCD method due to the tigther cut on the leptons’ |dsig
0 |, than the recommended

value. The determination of the |dsig
0 | cut efficiency modeling uncertainty is discussed

in Section 5.5.10.1.1. This uncertainty is propagated through the ABCD method

by varying the normalization of the prompt backgrounds in regions B, D and C

simultaneously to estimate the uncertainty on the multijet yield prediction region A

and is treated as anti-correlated between regions B and regions D,C. Table 5.36 shows

the uncertainties on the predicted multijet yield due |dsig
0 | cut efficiency modeling

uncertainty on prompt MC backgrounds in both lepton channels.

Electron Muon
SR

Total Uncertainty 46.4% 50.9%
mBBcr

Total Uncertainty 42.0% 110.6%

TABLE 5.36. The total uncertainty on the multijet yield prediction in region A due
to the |dsig

0 | cut efficiency modeling uncertainties of the prompt backgrounds in region
B, D and C.

5.5.4.3.7. Total uncertainty on the yield The total uncertainty on the multijet

prediction is calculated as the sum in quadrature of the uncertainties from the two

sources explained above. Table 5.37 summarizes the systematic uncertainties on the

predicted multijet yield in the electron channel and the muon channel.

5.5.4.4. Multijet shape uncertainties

The uncertainty on the mHH distribution prediction for the QCD multijet

background is estimated by comparing the mHH distribution shape in the 2-tag

region C and 1-tag region C (Figure 5.16).
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Source of uncertainty Electron Muon
SR

Statistical 28.1 % 39.9 %
2-tag/1-tag jet mass acceptance 15.6 % 31.5 %

mBB control region fit 32.3 % -
tt̄ MC modeling 26.5 % 60.1%

W+jets modeling 24.7 % 70.4%
Detector modeling of prompt backgrounds 46.0 % 105.6%

|dsig
0 | cut efficiency 46.4 % 50.9%

Total 87.5 % 157.8 %

mBBcr
Statistical 23.8 % 41.0 %

2-tag/1-tag jet mass acceptance 9.4 % 21.6 %
mBB control region fit 32.3 % -

tt̄ MC modeling 37.4 % 101.0%
W+jets MC modeling 29.5 % 77.6%

Detector modeling of prompt backgrounds 45.5 % 127.3%

|dsig
0 | cut efficiency 42.0 % 110.6%

Total 88.3 % 216.4 %

TABLE 5.37. Summary of systematic uncertainties on the QCD multijet yield in the
signal region and mBB control region for each lepton channel. The total uncertainty
calculated by adding in quadrature the uncertainties from all sources.
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5.5.4.5. Final prediction and validation

The predicted multijet yield and its uncertainty in the signal region and mBB

control region are shown in Table 5.38.

Region Electron Muon Combined
SR 165.9 ± 145.2(87.5%) 69.3 ± 109.3(157.8%) 235.2 ± 181.8 (77.3%)
mBBcr 277.1 ± 244.8(88.3%) 100.8 ± 218.1(216.4%) 377.9 ± 327.8 (86.8%)

TABLE 5.38. Predicted multijet yield with uncertainties in the signal region (SR)
and mBB control region (mBBcr) for each lepton channel.

The ABCD method is validated by assessing the agreement of data and total

background prediction with the QCD multijet background included in the mBB

control region. This is discussed in Section 5.5.9.

118



5.5.5. tt̄

MC simulation is used to model the shape of the tt̄ background. The background

is predicted to be the largest (∼ 52%) of the total background. A top-enriched control

region is used to validate the modeling of the tt̄ background.

5.5.6. V+jets

MC simulation is used to model the shape and predict the yield of the W+jets

and Z+jets background. The W+jets background is predicted to be the third largest

background (∼ 18%) of the total background while the Z+jets background is expected

to be ∼ 2% in the signal region (Table 5.52).

5.5.7. Single Top

MC simulation is used to model the shape and predict the yield of background

from single-top processes. This background is predicted to be ∼ 9% of the total

background (Table 5.52). The single-top background is predominantly consist of Wt

production process (∼ 90%), followed by the t-channel production (∼ 9%) and the

s-channel production (∼ 1%).

5.5.8. Diboson

MC simulation is used to model the shape and predict the yield of the diboson

background. This background is predicted to be 2% of the total background in the

signal region (Table 5.52).
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5.5.9. Data/Prediction comparisons in control regions

To asses the modeling of the background, the total predicted background is asses

with data in the mBB control region. The electron channel and the muon channel

are combined into a single channel.

Table 5.39 shows the predicted yield of each background. The data, collected

in 2015+2016, corresponding to the integrated luminosity of 36.1 fb−1 are used.

The MC backgrounds tt̄, W+jets, Single-top, Z+jets and Dibosons are normalized

to luminosity. The QCD multijet prediction is estimated from the ABCD method.

Statistical errors are shown for the individual backgrounds and the total predicted

background while the error due to systematic uncertainties are shown only for

the total predicted background. Detector modeling uncertainties, MC background

modeling uncertainties and uncertainties from the ABCD method for QCD multijet

background are considered. The predicted total background yield has an error of

about 27% due to systematic uncertainties and the observed yield in data is in good

agreement with the total background yield.

Figure 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23 and 5.24 show the distributions

of kinematic variables for events which fall into the mBB control regions. The

observed data (black circle) corresponds to an integrated luminosity of 36.1 fb−1. The

MC backgrounds tt̄ (orange), W+jets (blue), Single-top (red), Z+jets (green) and

Dibosons (yellow) are normalized to cross-section prediction scaled to luminosity of

36.1 fb−1. The QCD multijet background (grey) is predicted from the ABCD method.

The hashed grey band is the statistical uncertainty on the predicted background

and the red box band is the statistical+systematics uncertainty on the predicted

background. The systematics uncertainty on the predicted background consists of the
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Sample Yield Stats Unc Systs Unc

tt̄ 1005.6 ± 20.6
+283.6(+28.2%)
−288.8(−28.7%)

W+Jets 565.6 ± 10.3
+277.9(+49.1%)
−270.0(−47.7%)

QCD 377.9 ± 19.6
+328.0(+86.8%)
−328.0(−86.8%)

Single-top 161.3 ± 7.2
+114.4(+70.9%)
−114.4(−70.9%)

Z+Jets 55.9 ± 1.6
+27.7(+49.5%)
−27.2(−48.6%)

Dibosons 39.7 ± 2.6
+23.4(+58.9%)
−23.3(−58.7%)

Prediction 2206.0 ± 31.2
+593.7(+26.9%)
−586.1(−26.6%)

Data 2179 - -

Data/Pred 0.99 - -

TABLE 5.39. Predicted and observed yields in the mBB control region.
Detector modeling uncertainties, MC background modeling uncertainties and QCD
background modeling uncertainties from ABCD method are considered for the
systematic uncertainties.

detector modeling systematic uncertainties, MC background modeling uncertainties

and uncertainties from the ABCD method for QCD multijet background.

Figure 5.17 is the invariant mass of the reconstructed di-Higgs (HH)system

distribution, the /ET , and W → lν system transverse mass distributions and as it

can be seen that it is reasonably modelled. The good modeling observed of the

distributions gives confidence to the QCD multijet prediction as the events from the

background tend to have low values of /ET and transverse mass.
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FIGURE 5.17. The invariant mass of the reconstructed di-Higgs (HH) system, /ETand
transverse mass of the W → lν system distributions of events in the mBB control
region (mBBcr).
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FIGURE 5.18. Kinematic distributions of the reconstructed large-R jet in the mBB
control region (mBBcr).
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FIGURE 5.19. Kinematic distributions of the reconstructed h→ WW system in the
mBB control region (mBBcr).
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FIGURE 5.20. Kinematic distributions of the reconstructed W → qq̄ system in the
mBB control region (mBBcr).
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FIGURE 5.21. Kinematic distributions of the reconstructed W → lν system in the
mBB control region (mBBcr).
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FIGURE 5.22. Kinematic distributions of the selected lepton in the mBB control
region (mBBcr).
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5.5.10. Systematics

5.5.10.1. Dectector modeling uncertainties

The experimental uncertainties considered in the analysis are listed in

Table 5.40. The uncertainties are applicable to signal and background processes

that are modelled using MC simulation.

5.5.10.1.1. |dsig0 | cut efficiency modeling In this analysis, the |dsig
0 | cut value

used for electrons and muons are not the recommended value by CP groups. The

recommended value for electrons is 5 while for muons it is 3. The modeling of the |dsig
0 |

significance is assesed in a top-enriched control region. The event reconstruction and

selection criteria for the top-enriched control region are exactly the same as outlined

in Section 5.5.1 to 5.5.3.1 with the exception that the b-tagging requirement on the

event is different. For this control region, each event is required to have either the

leading or sub-leading track-jet to be b-tagged but not both track-jets to b-tagged.

The event is also required to have at least one b-tagged signal small-R jets, which is

in other words the b-jet veto is reversed. For the purposes of studying the modeling

the of the |dsig
0 | distribution, no |dsig

0 | requirement is applied on the reconstructed

leptons.

Figure 5.25 shows the |dsig
0 | distribution for the electron and the muon in the top-

enriched control region. A clear bias in Data can be observed and this is consistent

with other studies throught ATLAS. In order to take into account the effect of the

mismodeling of the dsig
0 bias on the tight dsig

0 cut used in this analysis, the efficiency

of the |dsig
0 | cut is evaluated and compared between Data and MC. Table 5.41 shows

the efficiency of the |dsig
0 | cut in Data and MC and the ratio of effieciency between

Data and MC in each lepton channel. The relative difference between Data/MC
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Systematic uncertainty Short description
Event

ATLAS LUMI 2015 2016 uncertainty on total integrated luminosity
PRW DATASF pile-up reweighting uncertainty

Electrons
EL EFF Trigger TOTAL 1NPCOR PLUS UNCOR trigger efficiency uncertainty
EL EFF Reco TOTAL 1NPCOR PLUS UNCOR reconstruction efficiency uncertainty
EL EFF ID TOTAL 1NPCOR PLUS UNCOR ID efficiency uncertainty
EL EFF Iso TOTAL 1NPCOR PLUS UNCOR isolation efficiency uncertainty
EG SCALE ALL energy scale uncertainty
EG RESOLUTION ALL energy resolution uncertainty

Muons
MUON EFF TrigStatUncertainty

trigger efficiency uncertainty
MUON EFF TrigSystUncertainty

MUON EFF STAT
reconstruction and ID efficiency uncertainty for muons

MUON EFF SYS

MUON ISO STAT
isolation efficiency uncertainty

MUON ISO SYS

MUONS SCALE energy scale uncertainty
MUONS ID energy resolution uncertainty from inner detector
MUONS MS energy resolution uncertainty from muon system

Small-R jets
JET SR1 JET GroupedNP 1

energy scale uncertainties strongly-reduced to 4 components.
JET SR1 JET GroupedNP 2

JET SR1 JET GroupedNP 3

JET SR1 JET EtaIntercalibration NonClosure

JET JER SINGLE NP energy resolution uncertainty
JET JvtEfficiency JVT efficiency uncertainty

Large-R jets
FATJET Medium JET Comb Baseline Kin

energy scale uncertainties (pT and mass scales are fully correlated)
FATJET Medium JET Comb modeling Kin

FATJET Medium JET Comb TotalStat Kin

FATJET Medium JET Comb Tracking Kin

FATJET JER energy resolution uncertainty
FATJET JMR mass resolution uncertainty

Track-jets and Small-R jets
FT EFF Eigen B

b-tagging efficiency uncertainties (“BTAG MEDIUM”): 3
components for b jets, 4 for c jets and 5 for light jets

FT EFF Eigen C

FT EFF Eigen L

FT EFF Eigen extrapolation b-tagging efficiency uncertainty on the extrapolation to high pT jets
FT EFF Eigen extrapolation from charm b-tagging efficiency uncertainty on tau jets

/ET
MET SoftTrk ResoPara track-based soft term related longitudinal resolution uncertainty
MET SoftTrk ResoPerp track-based soft term related transverse resolution uncertainty
MET SoftTrk Scale track-based soft term related longitudinal scale uncertainty

TABLE 5.40. Summary of the (nuisance parameter) names and meanings of the
detector modeling systematic uncertainties.
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ratio and unity is taken as the uncertainty on the |dsig
0 | significance cut efficiency and

it is assigned for all processes with prompt leptons modelled by MC simulation. The

nuisance parameter name associated to this uncertainty is LEP d0 CutEff

Electron Muon

|dsig
0 | < 2.0

Data 0.884 0.897
MC 0.926 0.937

Data/MC 0.955 0.957

|dsig
0 | > 2.0

Data 0.115 0.104
MC 0.074 0.063

Data/MC 1.572 1.640

TABLE 5.41. Efficiency of the |dsig
0 | cut for electrons and muons in Data and MC.

The Data/MC ratio is also calculated and the difference between the ratio and unity
is taken as the systematic uncertainty on the |dsig

0 | efficiency modeling for events with
leptons that pass (< 2.0) or fail (> 2.0) the |dsig

0 | cut.
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FIGURE 5.23. Kinematic distributions of the leading and sub-leading small-R jets
(of the reconstructed hadronic W) in the mBB control region (mBBcr).
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FIGURE 5.24. ∆R distribution between the selected lepton and the large-R jet and
∆R distribution between the track-jets inside the large-R jet in the mBB control
region (mBBcr).
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FIGURE 5.25. Electron and muon dsig
0 distributions in the top control region without

the large-R jet mass cut.
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5.5.10.2. Background and Signal modeling Systematics

5.5.10.2.1. Methodology Uncertainties in themHH distributions are assigned to

the dominant backgrounds, tt̄ and V+Jets and single top by comparing the nominal

MC samples to a number of alternative MC generators at the reconstruction level.

The comparisons are performed in with the same event selection in Section 5.5.

Each uncertainty contains two components, a shape systematic and a normalization

systematic due to acceptance.

The shape systematic corresponds to a reweighting function derived by fitting a

1st order polynomial to the ratio of mHH distribution of the variation sample over the

nominal sample. The mHH distribution for the the variation sample is normalized

to the same number of events of the norminal sample.

5.5.10.2.2. Top-quark processes (tt̄ & single top) Four alternative MC tt̄

samples are used to assess 3 aspects of the MC modeling, whilst five alternative MC

samples are used to assess 4 aspects of the MC modeling for single top quark pair

production. The alternative samples considered are:

– Powheg +Herwig++: The ME Powheg generator uses the same setup as

that used for the nominal Powheg +Pythia 6 configuration, but the parton

shower (PS) generator is swapped out for Herwig++ version 2.7.1 using the UE-

EE-5 tune and CTEQ6L1 PDF set. The purpose therefore of this comparison

is to test the PS, hadronisation, underlying event (UE) and Multiple Parton

Interation (MPI) models whilst maintaining the same hard scattering model

given by Powheg.

– aMC@NLO+Herwig++: The ME generator is swapped out for aMC@NLO

using the CT10 PDF set, interfaced with Herwig++ using the CTEQ6L1-UE-
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EE-5 tune and CTEQ6LI PDF set. This sample is compared to the previous

Powheg +Herwig++ sample. This fixes the PS generator component, but

alters the hard scattering generator, making this variation sensitive to the hard

scatter model.

– Powheg +Pythia 6 Radhi/RadLo: Using the same setup as that used

for the nominal Powheg +Pythia 6 sample, the RadHi and RadLo samples

correspond to either the enhancement (high) or reduction (low) of initial/final

state radiation (IFSR). The two samples are compared to the nominal sample

setup, and so are sensitive to variations of IFSR models.

∗ RadHi: The renormalization (µR) and factorisation scale (µF ) scales are

decreased by a factor of 0.5, the Powheg hdamp parameter is doubled

(2×mtop), and the high radiation PERUGIA2012 tune is used.

∗ RadLo: The renormalization (µR) and factorisation scale (µF ) scales are

increased by a factor of two, the Powheg hdamp parameter is kept at

mtop, and the low radiation PERUGIA2012 tune is used.

– Powheg +Pythia 6 Diagram Subtraction: For the production of a

single top quark in association with a W-boson (Wt) the interference with

the tt̄ production process at NLO in QCD is removed by subtracting the

cross-section associated with the tt̄ double resonance amplitude terms, rather

than subtracting the same terms from the amplitude prior to the calculation

(Diagram Removal).

Table 5.42 shows the estimated uncertainty on the normalization of the tt̄

background in the signal region from the comparison of the nominal tt̄ sample to

the alternative samples. The largest uncertainty comes the RadLo variation, which
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is about ∼8.4% with similar level of uncertainties from alternative ME generator

choice and alternative PS generator choice. The normalization of tt̄ background is

assinged with a single nuisance parameter with the total uncertainty set as the prior

uncertainty.

Shape comparisons of the mHH distribution between the nominal tt̄ sample to

the alternative samples were made and they are shown in Figure 5.26 and Figure 5.27.

Variation Uncertainty (%)
RadHi 1.4
RadLo 8.4

aMC@NLO 7.1
Herwig++ 7.8

PDF 1.9
Scale 5.0
Total 13.5

TABLE 5.42. The normalization uncertainty for the tt̄ background in the signal
region from different sources. The total uncertainty is calculated as the sum of
quadrature from all the sources.

For the single-top background, only the uncertainties on the modeling of the Wt

production process are considered since it is the dominant single-top process in the

signal region. Table 5.43 shows the estimated uncertainty on the normalization of

the single-top background. The biggest uncertainties comes from the PS generator

choice and comparisons to the DS sample. The total uncertainty is abnormally large,

which is larger than 100%.
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FIGURE 5.26. mHH distribution shape comparison between nominal tt̄ sample and
alternative samples. Plot on the left is a direct comparison between the nominal
and alternative sample while on the right, the variation comes from the reweighted
function applied to the nominal tt̄ sample. The linear fit in the ratio of the left plot
is used as the reweighted function.
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FIGURE 5.27. mHH distribution shape comparison between nominal tt̄ sample and
alternative samples. Plot on the left is a direct comparison between the nominal
and alternative sample while on the right, the variation comes from the reweighted
function applied to the nominal tt̄ sample. The linear fit in the ratio of the left plot
is used as the reweighted function.
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Variation Uncertainty (%)
RadHi 15.1
RadLo 19.0

Herwig++ 33.5
DR 72.5

aMC@NLO 25.4
Total 85.9

TABLE 5.43. The normalization uncertainty for the tt̄ background in the signal
region from different sources. The total uncertainty is calculated as the sum of
quadrature from all the sources.

5.5.10.2.3. V+Jets processes The nominal V+Jets prediction, uses the

ME+PS generator Sherpa 2.2.1 interfaced with the NNPDF 3.0 NNLO PDF set.

This default configuration provides a prediction for vector boson production plus

associated jets at NLO accuracy at the ME level for up to 2 extra partons, and

LO accuracy for 3 and 4 extra partons in QCD. The merging of additional parton

multiplicities arising from the internal Sherpa PS, is regulated by the MEPS@NLO

merging technique.

The alternative samples used to assess the modeling uncertainties are:

– MadGraph5+Pythia 8.186 : The LO ME generator MadGraph5 using the

NNPDF3.0(2.3) NLO(LO) PDF set interfaced with Pythia 8 version 8.186

using the A14 tune, offers a LO+NLL accurate prediction for vector boson

production in association with jets for up to four extra partons from the ME

and 4+ parton from Pythia 8 at NLL accuracy. The comparison between

the nominal Sherpa 2.2.1 sample with this sample convolves the ME and PS

model variation. Due to the unavailability of this sample at reconstruction

level, the comparison is made at (particle) truth level.
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– Sherpa 2.2.1 scale variations: Configured in the same manner as the

nominal V+Jets sample, the renormalization µR and resummation µF scales

are varied up/down by a factor of two.

– Sherpa 2.2.1 PDF variations: Configured in the same manner as the

nominal V+Jets sample. The 100 NNPDF3.0NNLO replicas variations are

available. The central values of two alternative PDF sets, MMHT2014NNLO

68% CL and CT14NNLO are also available.

– Sherpa 2.2.1 αs(PDF ) variations: Configured in the same manner as the

nominal V+Jets sample, the αs value used by the nominal NNPDF 3.0 NNLO

PDF is varied up and down according to a variation of the µR scale by a factor

of two.

Table 5.44 shows the estimated uncertainty on the normalization of the W+jets

background in the signal region from the comparison of the nominal W+jets sample

to the alternative samples. The largest uncertainty comes from the renormalization

and resummation scale, which is about ∼42% and dominates the total uncertainty

on W+jets background. The normalization of W+jets background is assinged with

a single nuisance parameter with the total uncertainty set as the prior uncertainty.

Shape comparisons of themHH distribution between the nominal W+jets sample

to the alternative samples were made and only one variation was found to have

noticeable difference: the scale variation of µR=0.5, µF=0.5 as in Figure 5.28.

Table 5.45 shows the estimated uncertainty on the normalization of the Z+jets

background in the signal region from the comparison of the nominal Z+jets sample

to the alternative samples. The largest uncertainty comes from the renormalization

and resummation scale, which is about ∼48% and dominates the total uncertainty

on Z+jets background. The normalization of Z+jets background is assinged with
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Variation Uncertainty (%)
Scale 41.9

αS(PDF) 8.4
PDF alternative set 1.6

NNPDF replicas 5.6
Madgraph+Pythia8 11.0

Total 44.5

TABLE 5.44. The normalization uncertainty for the W+jets background in the
signal region from different sources. The total uncertainty is calculated as the sum
of quadrature from all the sources.
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from the reweighted function applied to the nominal W+jets sample. The linear fit
in the ratio of the left plot is used as the reweighted function.
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a single nuisance parameter with the total uncertainty set as the prior uncertainty.

The uncertainty on the mHH shape is found to be negligible and therefore ignored.

Variation Uncertainty (%)
Scale 48.3

αS(PDF) 1.6
PDF alternative set 2.7

NNPDF replicas 1.4
Total 48.4

TABLE 5.45. The normalization uncertainty for the Z+jets background in the signal
region from different sources. The total uncertainty is calculated as the sum of
quadrature from all the sources.

5.5.10.2.4. Diboson processes The systematic uncertainty on the

normalization of the Diboson background is assigned to be 40%. This uncertainty

is taken from the resolved analysis. As the background is small, the uncertainty is

considered to be conservative.

5.5.10.2.5. Production Systematic uncertainties on the acceptance of signal

processes are computed by generating alternative variation signal samples and then

compare their acceptance with respect to the nominal signal samples. The difference

sources of uncertainty considered are:

– Scale variations: Configured in the same manner as the nominal signal

samples but the renormalization and resummation scales are varied up/down

by a factor of two.

– Parton shower choice: Configured in the same manner as the nominal signal

samples but with Pythia 8 chosen as the shower generator instead of Herwig++.

Table 5.46 lists the systematic uncertainties for four different scalar signal sample

mass points.
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Variation Xhh1000 Xhh1500 Xhh2000 Xhh2500 Xhh3000
Scale 0.2 0.2 0.4 0.4 0.4
PDF 0.4 0.2 0.4 0.2 0.1

Shower 0.4 0.8 1.6 3.4 4.1

TABLE 5.46. Theoretical uncertainties (in percentage) on the acceptance of several
signal mass points.

5.5.10.3. QCD multijet modeling

Systematic uncertainties related to the modeling of the multijet background

were discussed in Section 6.3.4.3 for the predicted yield and in Section 6.3.4.3 for the

predicted mHH distribution.

5.6. Results

5.6.1. Resolved analysis results

The resolved analysis is described in detail in Section 5.4. The event selection

is described in Section 5.4.1 and summarized in Table 5.8. For each selected event,

the invariant mass of the HH system (mHH) is reconstructed and its distribution

is shown in Figure 5.29 for the non-res and the m500 analyses, and in Figure 5.30

for the low-mass and the high-mass analyses. Data are generally in good agreement

with the expected background predictions within the total uncertainty. The signal

mHH distribution is shown in the figure for the non-resonant and the scalar

resonance. Because the scalar-resonance samples are simulated in the narrow-width

approximation, the reconstructed resonance width is exclusively due to the detector

resolution.

The mHH distribution is sampled with resonance-mass-dependent mHH

requirements as reported in Table 5.9. The numbers of events in the signal and
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control regions (the tt̄ control region and the C region of the multijet estimation

procedure) are simultaneously fit using a maximum-likelihood approach. The fit

includes six contributions: signal, W+jets, Z+jets, tt̄, single-top-quark production,

diboson and multijet. The tt̄ and multijet normalisations are free to float, the C

region of the ABCD method being directly used in the fit, while the diboson, W+jets

and Z+jets backgrounds are constrained to the expected SM cross sections within

their uncertainties.

The fit is performed after combining the electron and muon channel

distributions. Statistical uncertainties due to the limited sample sizes of the

simulated background processes are taken into account in the fit by means of nuisance

parameters, which are parameterised by Poisson priors. Systematic uncertainties are

taken into account as nuisance parameters with Gaussian constraints. For each

source of systematic uncertainty, the correlations across bins and between different

kinematic regions, as well as those between signal and background, are taken into

account. Table 5.47 shows the post-fit number of predicted backgrounds, observed

data, and the signal events normalized to the expected upper limit cross sections.

Expected event yields vary across mass because of varying selections. For instance,

the requirement on pbb̄T is higher in non-res selection than in low-mass selection.

Similarly, even within low-mass or high-mass selection, the requirement on mHH

vary across mass.

No significant excess over the expectation is observed and the results are used

to evaluate an upper limit at the 95% confidence level (CL) on the production cross

section times the branching fraction for the signal hypotheses under consideration.

The exclusion limits are calculated with a modified frequentist method [92], also

known as CLs, and the profile-likelihood test statistic [93]. None of the considered

systematic uncertainties is significantly constrained or pulled in the likelihood fit.
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Resonant analysis

mX [GeV] S Total Bkg. Data

500 18± 5 19± 6 26
600 13± 2 17± 6 16
700 16± 2 25± 8 22
750 20± 2 22± 9 27
800 18.4± 1.5 20± 8 28
900 16.3± 1.6 20± 7 23

1000 12.0± 1.3 14± 5 11
1100 9.6± 1.2 8± 3 8
1200 8.1± 0.9 6± 3 5
1300 5.1± 0.7 3.5± 1.8 1
1400 4.3± 0.3 1.1± 0.2 0
1500 3.5± 0.3 1.1± 0.2 0
1600 3.1± 0.3 0.4± 0.3 1
1800 14.1± 1.8 17± 5 21
2000 8.7± 1.0 8± 3 9
2250 7.9± 1.1 6± 2 7
2500 5.5± 0.8 3.3± 1.4 3
2750 5.7± 1.0 3.1± 1.3 3
3000 4.3± 0.7 2.1± 1.0 1

Non-resonant analysis

Rescaled SM signal Total Bkg. Data

17± 2 21± 8 22

TABLE 5.47. Data event yields, and post-fit signal and background event yields in
the final signal region for the non-resonant analysis and the resonant analysis in the
500–3000 GeV mass range. The errors shown are the MC statistical and systematic
uncertainties described in Section 5.4.9. The yields are shown for a scalar (S) signal
model. Signal event yields are normalized to the expected upper-limit cross section.
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In the SM signal hypothesis the observed (expected) upper limit on the σ(pp→

HH)× B(HH → bb̄WW ∗) at 95% CL is:

σ(pp→ HH) · B(HH → bb̄WW ∗) < 2.5
(
2.5+1.0
−0.7

)
pb.

The branching fraction B(HH → bb̄WW ∗) = 2 × B(H → bb̄) × B(H → WW ∗) =

0.248 is used to obtain the following observed (expected) limit on the HH production

cross section at 95% CL:

σ(pp→ HH) < 10
(
10+4
−3

)
pb,

which corresponds to 300 (300+100
−80 ) times the SM predicted cross section.

Including only the statistical uncertainty, the expected upper limit for the non-

resonant production is 190 times the SM prediction. This result, when compared with

other HH decay channels, is not competitive. This is mainly due to the similarity

of the reconstructed mHH spectrum between the non-resonant SM signal and the tt̄

background that makes the separation between the two processes difficult.

Figure 5.31 shows the expected and observed limit curves for the production

cross section of a scalar S particle. Different selections are used in different resonance

mass ranges without attempting to statistically combine them. The switch from one

selection to another is performed based on the best expected limit for that resonance

mass. The outcome of this procedure is that the m500 selection is used to set limits

on resonances of mass of 500 GeV, the low-mass selection is used up to masses of

1600 GeV, while the high-mass selection is used in the mass range 1600-3000 GeV.

Overall, the resolved analysis is most sensitive for a mass value of 1300 GeV

with an expected upper limit of 0.35 pb on σ(pp→ HH). At this mass the observed

exclusion limit is 0.2 pb. In both the non-resonant and resonant cases, the impact of
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FIGURE 5.31. Expected and observed upper limit at 95% CL on the cross section of
resonant pair production for the resolved analysis in the heavy scalar boson S model.
The plot also shows the expected limit without including the systematic errors in
order to show their impact.

the systematic uncertainties is observed to be large. In order to quantify the impact

of the systematic uncertainties, a fit is performed where the estimated signal yield,

normalized to an arbitrary cross-section value, is multiplied by a scaling factor αsig,

which is treated as the parameter of interest in the fit. The fit is performed using

pseudo-data and the contribution to the uncertainty in αsig from several sources is
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Statistical source Resolved analysis
Non-Res (%) 500 GeV (%) 1000 GeV (%) 2000 GeV (%)

Signal region +60/–40 +60/–60 +70/–60 +80/–70
Top control region +40/–30 +28/–30 +20/–12 +13/–13
Multijet control region +40/–30 +24/–26 +30/–30 +30/–30
Total statistical +80/–60 +70/–70 +80/–70 +90/–80

TABLE 5.48. Statistical contribution (in percentage) to the total error in the
scaling factor αsig for the non-resonant signal and three scalar-signal mass hypotheses,
500 GeV, 1000 GeV and 2000 GeV, in the resolved analysis. The values are extracted
by calculating the difference in quadrature between the total statistical error and the
error obtained after setting constant the normalisation factor of the background that
dominates the region of interest.

determined. The contribution of the statistical uncertainty to the total uncertainty

in αsig, shown in Table 5.48, is decomposed into signal region statistics, top CR

statistics and multijet CR statistics. The contribution of the systematic uncertainties

to the total uncertainty is decomposed into the dominant components and shown in

Table 5.49. The dominant systematic uncertainties vary across the mass range,

but some of the most relevant ones are due to tt̄ modelling, b-tagging systematic

uncertainties, and those related to jet measurements.
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Systematic source Resolved analysis
Non-Res (%) 500 GeV (%) 1000 GeV (%) 2000 GeV (%)

tt̄ modelling ISR/FSR +30/–20 +10/–5 +7 / –4 +2/–2
Multijet uncertainty +10/–10 +20/–10 +20 / –20 +30/–30
tt̄ Matrix Element +10/–10 — — —
W+jets modelling PDF +4/–7 +10/–10 +2 / –6 +7/–5
W+jets modelling scale +9/–10 +9/–4 +9 / –2 +20/–10
W+jets modelling gen. +10/–8 +10/–10 +9 / –1 +9/–9
tt̄ modelling PS +3/–2 +30/–20 +20 / –20 +2/–2
b tagging +30/–20 +11/–5 +7 / –6 +30/–30
JES/JER +13/–20 +20/–20 +50 / –50 +10/–6
Emiss

T soft term res. +20/–20 +8/–1 +9 / –7 +7/–7
Pile-up reweighting +3/–10 +5/–3 +9 / –10 +6/–6
Total systematic +60/–80 +70/–70 +60/–70 +40/–60

TABLE 5.49. Systematic contributions (in percentage) to the total error in the
scaling factor αsig for the non-resonant signal and three scalar-signal mass hypotheses,
500 GeV, 1000 GeV and 2000 GeV, in the resolved analysis. The first column quotes
the source of the systematic uncertainty. The ”−” symbol indicates that the specified
source is negligible. The contribution is obtained by calculating the difference in
quadrature between the total error in αsig and that obtained by setting constant the
nuisance parameter(s) relative to the contribution(s) under study.
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mX [GeV ] S G∗KK (c = 1.0) G∗KK (c = 2.0) Total Bkg. Data

2000 28 ± 0.5 36.4 ± 0.8 43.0 ± 0.7 1255 ± 27 1107

TABLE 5.50. Data event yields, and post-fit signal and background event yields in
the final signal region for the boosted analysis and the scalar S particle hypothesis.
The errors shown are the MC statistical and systematic uncertainties described in
Section 5.5.10. For illustration a signal mass point of 2000 GeV is reported in the
table. The signal samples are normalized to the expected upper limit cross sections.

5.6.2. Boosted analysis results

The boosted analysis applies the selection criteria described in Section 5.5.2.

After applying the large-R jet mass requirement 90 < mLarge-R jet < 140 GeV, the

mHH distribution is reconstructed and its shape is fit to data using MC signal and

background templates. The distribution is fit using 17 bins, with almost uniform

width except at low and high mHH , where the bin width is modified in order to have

a MC statistical uncertainty smaller than 20%. All backgrounds, except multijet,

are simulated using MC generators and normalized using the cross section of the

simulated process. The multijet background is estimated using the ABCD method,

and its normalisation obtained from this method is kept fixed in the fit. The bias

due to possible signal contamination in the ABCD regions was studied and found

to have negligible effect on the result. The integral of the mHH distribution for the

boosted analysis is shown in Table 5.50.

Systematic uncertainties affecting the mHH shape are parameterised as linear

functions of mHH , and the function parameters are treated as nuisance parameters

in the fit. Statistical uncertainties due to the limited sample sizes of the simulated

background processes are taken into account in the fit by means of further nuisance

parameters, which are parameterised by Poisson priors.
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Uncertainty source Boosted analysis

1500 GeV [%] 2000 GeV [%] 2500 GeV [%] 3000 GeV [%]

Data statistics +50/–52 +59/–61 +64/–66 +70/–72
Total systematic +87/–85 +81/–79 +76/–75 +71/–69

MC statistics +42/–48 +42/–50 +39/–48 +39/–49
tt̄ modelling +29/–31 +36/–38 +40/–45 +32/–39
Multijet uncertainty +11/–14 +19/–23 +16/–20 +11/–16
W+jets modelling +27/–30 +8/–12 +11/–10 +11/–10
Single-top modelling +22/–26 +5/–6 +4/–5 +5/–5

b tagging +31/–19 +36/–22 +36/–17 +34/–14
JES/JER +14/–14 +6/–6 +14/–11 +7/–9
Large-R jet +29/–10 +27/–8 +27/–7 +29/–8

TABLE 5.51. Statistical and systematic contributions (in percentage) to the total
error in the scaling factor αsig in the boosted analysis for four mass hypotheses:
1500 GeV, 2000 GeV, 2500 GeV and 3000 GeV. The first column quotes the source
of the uncertainty. The contribution is obtained by calculating the difference in
quadrature between the total error in αsig and that obtained by setting constant the
nuisance parameter(s) relative to the contribution(s) under study.

The systematic uncertainties included in the fit are described in Section 5.5.10.

The contribution of the systematic uncertainties to the total uncertainty is

decomposed into the dominant components and summarized in Table 5.51. The most

relevant systematic uncertainties are due to the limited size of the MC samples, the

tt̄ modelling and the b-tagging systematic uncertainties.
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Sample Yield Stats Err Systs Err

tt̄ 648.7 ± 16.4
+177.3(+27.3%)
−169.2(−26.1%)

W+Jets 217.0 ± 6.5
+104.3(+48.1%)
−100.9(−46.5%)

QCD 235.2 ± 18.9
+181.8(+77.3%)
−181.8(−77.3%)

Single-top 109.2 ± 6.0
+86.0(+78.8%)
−85.8(−78.6%)

Z+Jets 20.5 ± 1.1
+11.2(+54.6%)
−10.9(−52.9%)

Dibosons 24.4 ± 1.9
+15.3(+62.6%)
−14.7(−60.1%)

Prediction 1255.0 ± 26.7
+324.3(+25.8%)
−311.3(−24.8%)

Data 1107 - -

Data/Pred 0.88 - -

TABLE 5.52. Predicted and observed yields in the signal region. Detector
modeling uncertainties, MC background modeling uncertainties are considered for
the systematic uncertainties. The expected background yields are predicted from
MC and no normalization factors are applied.

Figure 5.32 shows the mHH distribution for data and the background

components for the boosted analysis. Data are generally in good agreement with

the background expectations within the quoted systematic errors. The signal mHH

distribution is shown in the figure for the scalar resonance. Figure 5.33 shows the

observed and the expected upper limit on the production cross section of the scalar

S particle.

153



 [GeV]HHm
0 500 1000 1500 2000 2500 3000

B
kg

D
at

a-
B

kg

0.5−
0

0.5 MC Stat Unc.

E
ve

nt
s/

10
0 

G
eV

0

50

100

150

200

250

300 ATLAS
 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

(c=1.0)*KKRescaled G
(c=2.0)*KKRescaled G

Rescaled Scalar
Other

Multijet

W+jets
tt

MC Stat + Syst Unc.

FIGURE 5.32. mHH distributions after the global likelihood fit for the boosted
analysis. The lower panel shows the fractional difference between data and the
total expected background with the corresponding statistical and total uncertainty.
The signals shown correspond to resonances of mass 2000 GeV. The scalar signal is
multiplied by a factor of four with respect to the expected upper-limit cross section.
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FIGURE 5.33. Expected and observed upper limits at 95% CL on the cross section of
resonant pair production for the heavy scalar boson S model in the boosted analysis.
The plot also shows the expected limits without including the systematic errors in
order to show their impact.

5.6.3. Combined results

Results of the two analyses are summarized in Figure 5.34 for the scalar

interpretation. The sensitivity of the boosted analysis is higher than the resolved

analysis (the expected limit being lower) for masses larger than 1300 GeV in the
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scalar interpretation. For masses lower than these values, the limits of the resolved

analysis are presented in the figure, otherwise the boosted-analysis limits are shown.

In addition, the expected limits of both analyses are shown near the mass values

where the switch between the two limit curves occurs.

Finally, the observed upper limits on the production cross sections range from

5.6 pb for mX = 500 GeV to 0.51 pb for mX = 3000 GeV for the scalar signal model.

No boosted analysis was performed for the non-resonant SM signal model.

For the non-resonant signal hypothesis the observed (expected) upper limit on

the σ(pp→ HH)× B(HH → bb̄WW ∗) at 95% CL is:

σ(pp→ HH) · B(HH → bb̄WW ∗) < 2.5
(
2.5+1.0
−0.7

)
pb,

which corresponds to 300 (300+100
−80 ) times the SM predicted cross section.
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FIGURE 5.34. Expected and observed upper limits at 95% CL on the cross-section of
the resonant scalar signal model hypotheses. The observed limits of the scalar signal
models are switched at a mass of 1300 GeV. The expected limits of both analyses
are shown in a region around the switching points. The switching point is chosen at
the mass value where the boosted analysis becomes more sensitive than the resolved
analysis.

5.7. Conclusion

A search for resonant and non-resonant Higgs boson pair production in the

bb̄WW ∗ decay mode is performed in the bb̄`νqq final state using pp collision data
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corresponding to an integrated luminosity of 36.1 fb−1, collected at
√
s = 13 TeV

by the ATLAS detector at the Large Hadron Collider. No evidence of a significant

excess of events over the background expectation is found. Limits are set on resonant

production as a function of the resonance mass for a scalar resonance and for spin-2

gravitons in the mass range 500 to 3000 GeV. Any excesses seen are local excesses

and need to be evaluated with the look elsewhere effect before anything can be said

about a global significance. An upper limit is set on the cross section of non-resonant

pair production σ(pp→ HH)·B(HH → bb̄WW ∗) < 2.5 pb at 95% CL corresponding

to 300 times the predicted SM cross section. Given the result of this work, in order

to bring relevant sensitivity improvement to the HH non-resonant SM searches in

this channel at the LHC and at future colliders, more advanced analysis techniques,

development of new methods for the normalisation of the tt̄ background, and a more

refined estimation of the multijet background, need to be deployed.

158



CHAPTER VI

IMPROVEMENTS TO THE BOOSTED ANALYSIS

The boosted analysis described in Chapter V is optimized for the case where

the H → bb system is boosted and the H → WW ∗ system is resolved. However, at

high resonant masses, one would expect both the H → bb and the H → WW ∗ to be

boosted. However, the semileptonic decay of the W boson pair adds an additional

complication of having a lepton within the radius of a large-R jet. This chapter will

describe a method for reconstructing this complex topology and the improvements

it offers to the boosted, semi-leptonic HH → bbWW ∗ analysis.

6.1. Motivation

The resonant analysis covers a large range of mass hypotheses, from 400 - 3000

GeV. As the resonant mass increases, the two Higgs systems become more and more

collimated. Figure 6.1 shows the average distance between final state partons as a

function of the resonant mass for simulated HH events. The WW bosons become

very collimated (within ∆R =
√

∆φ2 + ∆η2 = 0.5) around 1000 GeV.

On the H → bb side, this is accounted for through the boosted analysis selection

described in Secion 5.5.1. Moving toward the full Run II analysis, it is worthwhile

to look at the potential gain from including a boosted H → WW ∗ selection. This

“fully-boosted” analysis can be used in conjunction with the current boosted and

resolved analysis to increase sensitivity and reach.

The “fully-boosted” analysis piggybacks off of the analysis presented in Chapter

V. This means the data and Monte Carlo Samples , object reconstruction, and trigger
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FIGURE 6.1. Distance between the two b partons (top left); the two W bosons (top
right); the two light quarks (bottom left); and the lepton and the closest light quark
(bottom right) for resonant HH production as a function of resonant mass.

requirements are the same as the previously presented analysis.

160



6.2. Event Reconstruction

Identically to the boosted analysis, Section 5.5, events are reconstructed by

requiring at least one reconstructed lepton. To reconstruct the H → bb candidate,

there should be at least one large-R jet with ∆R > 1.0 from the selected lepton. The

highest of these large-R jets is selected as the H → bb candidate. This large-R jet is

then required to have at least two track jets associated to it. Events with a H → bb

in the range 30 GeV < mbb < 300GeV are retained for further analysis.

To reconstruct the H → WW ∗ candidate, there should be at least one large-

R jet with ∆R < 1.0 from the selected lepton. This large-R jet is selected as the

H → WW ∗ jet candidate. Once the H → bb jet has been selected, they are split into

either electron or muon channel for the full reconstruction.

Calorimeter jets are clusters of energy that are grouped together into an object

based on distances. If an electron, which deposits the majority of its energy into the

calorimeter, were to fall within the radius of a calorimeter jet, its energy should be

measured as part of the jet energy. Using this, it is possible to use a single large-R

to measure the energy of the W → qq system and the electron. With the large-R jet

and the /ET , it is possible to fully reconstruct the H → WW ∗ system. The neutrino

is reconstructed using a similar method as in Section 5.4.3. Imposing the relation:

m2
h = (pν + plarge−Rjet)2 (6.1)

the neutrino pz can be reconstructed using the relations:

pνE = Eν =
√
P 2
T + p2

z pνx = PT cos(φ) pνy = PT sin(φ)

161



where φ is the azimuthal angle of the /ET , Eν the neutrino energy, px and py the two

transverse spatial components of the neutrino momentum.

Muons do not deposit a significant amount of energy in the calorimeters, this

means we cannot use the same reconstruction as the electrons. Instead, the muons

are treated in a more traditional fashion. In the muon channel, the large-R jet

contains the energy of the W → qq system. The muon is reconstructed using the MS

and ID information and the neutrino is reconstructed identically to Section 5.4.3,

with the hadronic W as a single object.

Figure 6.2 shows a diagram of the event topology after the event reconstruction.

FIGURE 6.2. Diagram of the fully-boosted event topology

6.3. Event selection

After the event is reconstructed, a b-tag requirement is applied to the two track-

jets in the H → bb candidate. The /ET is required to be more than 50 GeV to reject

events from QCD background. Finally a pT requirement is placed on the H → WW ∗

candidate. It is important to cut on the same physics objects. To accomplish this,

an “adjusted pT ” (p
′
T ) cut of 250 GeV is applied. Table 6.1 defines the p

′
T for both

channels.
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Lepton Channel Alternative pT definition

Muon Channel p
′
T = pLarge−Rjet

T

Electron channel p
′
T =

√
(pLarge−R jet
x − pelectron

x )2 + (pLarge−R jet
y − pelectron

y )2

TABLE 6.1. Alternative pT definition for the electron and muon channels. A cut of
p
′
T > 250 GeV is applied to the selected H → WW ∗ large-R jet.

6.3.1. Comparison of reconstruction objects

Figure 6.3 and 6.4 show a comparison of the old boosted analysis reconstruction

and the new fully-boosted analysis for the electron and muon selection respectively.

The mWW ∗ distribution shows a much shorter tail in the fully-boosted analysis than

in the old boosted analysis. Along with this, the mHH distribution has a sharper

peak around the resonant mass. A sharper peak allows for tighter cuts around the

signal mass, leading to a better signal/background ratio.
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FIGURE 6.3. Comparison of reconstructed H → WW ∗ mass (top left), H → WW ∗

pT (top right), /ET (bottom left), and HH mass for the previous boosted analysis
reconstruction and new fully boosted selection for a resonant signal with a mass of
2000 GeV in the electron channel.

6.3.2. Signal Region Definition

As with the boosted analysis in Section 5.5, the h→ bb candidate must have

a jet mass in the window 90 GeV < mbb < 140 GeV to be considered in the signal

region (SR). The previous boosted analysis included a b-jet veto for all jets outside of
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FIGURE 6.4. Comparison of H → WW ∗ mass (top left), H → WW ∗ pT (top right),
/ET (bottom left), and HH mass for the previous boosted analysis reconstruction and
new fully boosted selection for a resonant signal with a mass of 2000 GeV in the
muon channel.

the H → bb candidate. In order to increase statistics for the QCD multijet estimate,

this requirement was removed from the fully boosted analysis.
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6.3.3. mBB Control Region

To check the modeling of the background, a control region is created with an

inverted mbb cut. Section 6.3.5 shows various kinematic distributions in the mBB

control region to check the background shape with respect to data.

6.3.4. Multijet Background

The QCD multijet background is estimated using the same data-driven

background as the boosted analysis. The ABCD method with the regions defined

as:

– Region A: /ET> 50 GeV, |dsig
0 | < 2.0

– Region B: /ET< 50 GeV, |dsig
0 | < 2.0

– Region C: /ET> 50 GeV, |dsig
0 | > 2.0

– Region D: /ET< 50 GeV, |dsig
0 | > 2.0

6.3.4.1. Yield Prediction

Table 6.2 lists the MC predicted prompt lepton backgrounds, observed data and

calculated multijet yields in Region B and D before the H → bb mass cut is applied

and Table 6.3 shows the yields in Region C mBB control region and signal region.

Table 6.4 shows the ratio in the electron channel and muon channel. The

predicted yields of the QCD multijet background in the mBB control region and

signal region are presented in table 6.5. The QCD multijet background is estimated

to be 13% of the total background in the signal region (Table 6.8).
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Region B Region D
Samples Electron Muon Electron Muon
tt̄ 138.7 ± 7.3 146.1 ± 8.3 14.4 ± 2.7 6.3 ± 1.5
W+Jets 27.3 ± 1.7 27.9 ± 1.9 1.1 ± 0.3 2.0 ± 0.4
Single-top 7.1 ± 1.4 5.2 ± 1.4 0.2 ± 0.2 0.4 ± 0.3
Z+Jets 18.3 ± 0.8 9.3 ± 0.5 1.9 ± 0.3 0.9 ± 0.2
Dibosons 3.1 ± 0.5 1.3 ± 0.3 0.2 ± 0.1 0.2 ± 0.1
Total Prompt 194.4 ± 7.7 189.9 ± 8.7 17.8 ± 2.7 9.8 ± 1.6
Data 274.0 ± 16.6 218.0 ± 14.8 34.0 ± 5.8 30.0 ± 5.5
QCD 79.6 ± 18.3 28.1 ± 17.1 16.2 ± 6.4 20.2 ± 5.7

TABLE 6.2. MC predicted prompt lepton backgrounds, observed data and calculated
multijet yields in Region B and D. The multijet yield is calculated by subtracting the
estimated total prompt lepton backgrounds from the observed data. The statistical
uncertainty on the yields is shown.

mBBcr SR
Samples Electron Muon Electron Muon
tt̄ 21.7 ± 4.1 12.8 ± 2.1 6.4 ± 1.4 5.4 ± 1.2
W+Jets 3.4 ± 0.6 2.3 ± 0.3 1.4 ± 0.3 1.2 ± 0.3
Single-top 0.7 ± 0.5 0.3 ± 0.2 0.4 ± 0.3 0.2 ± 0.2
Z+Jets 1.0 ± 0.2 0.4 ± 0.1 0.4 ± 0.1 0.2 ± 0.1
Dibosons 0.2 ± 0.1 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.0
Total Prompt 26.9 ± 4.1 15.9 ± 2.2 8.7 ± 1.5 7.0 ± 1.3
Data 53.0 ± 7.3 33.0 ± 5.7 12.0 ± 3.5 20.0 ± 4.5
QCD 26.1 ± 8.4 17.1 ± 6.1 3.3 ± 3.8 13.0 ± 4.7

TABLE 6.3. MC predicted prompt lepton backgrounds, observed data and calculated
multijet yields in Region C mBBcr and SR. The multijet yield is calculated by
subtracting the estimated total prompt lepton backgrounds from the observed data.
The statistical uncertainty on the yields is shown.

Multijet yield in region Electron Muon

NQCD
B 79.6 ± 18.3 28.1 ± 17.1

NQCD
D 16.2 ± 6.4 20.2 ± 5.7

NQCD
B /NQCD

D 4.9 ± 2.62 (46.0%) 1.4 ± 0.94 (67.2%)

TABLE 6.4. Multijet yields in region B and region D and also the ratio of the

yields for each lepton channel. The error on the
NQCD
B

NQCD
D

ratio is propagated from the

statistical uncertainties on the multijet yields in each region.
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Multijet yield in region Electron Muon
SR

NQCD
C 3.3 ± 3.8 13.0 ± 4.7

NQCD
A 16.4 ± 20.5 (126.8%) 18.1 ± 13.9 (76.8%)

mBBcr

NQCD
C 26.1 ± 8.4 17.1 ± 6.1

NQCD
A 128.3 ± 79.4 (61.9%) 23.9 ± 18.1 (75.7%)

TABLE 6.5. Multijet yield in region C and predicted yield in region A in the SR.
The error on NQCD

A are propagated from the error on the NQCD
B /NQCD

D ratio and
statistical uncertainty on NQCD

C yield. The numbers in brackets are the relative
uncertainty in percentage.

6.3.4.2. Shape prediction

The shape prediction follows the same procedure as described in Section 5.5.4.2.

6.3.4.3. Multijet yield uncertainties

6.3.4.3.1. Statistical The uncertainty on the predicted yield of the multijet

background is determined by propagating the statistical uncertainty of the
NQCD
B

NQCD
D

ratio, as shown in Table 6.4, and the statisical uncertainty on the multijet yield in

region C (NQCD
C ), as in Table 6.5.

6.3.4.3.2. 1-tag/2-tag jet mass acceptance Another source of uncertainty

on the multijet yield is the the difference of acceptance of the large-R jet mass cut

between the single b-tag (1-tag) and two b-tag (2-tag) selections. This uncertainty

is included since the template for or the multijet shape prediction uses the multijet

shape from the 1-tag region C. Table 6.6 shows the acceptance of the large-R jet

mass signal and mBB control region selection in the multijet 1-tag region C and

2-tag region C yields. The relative difference between the acceptance in 1-tag region
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C and in 2-tag region C is considered as an uncertainty on the normalization of the

QCD multijet prediction.

Region Electron Muon
SR

1-tag NSR

NInc
32% 23 %

2-tag NSR

NInc
11% 43 %

Rel. difference between 1-tag and 2-tag 26.4 % 46 %
mBBcr

1-tag NmBBcr

NInc
68% 77 %

2-tag NmBBcr

NInc
89% 56 %

Rel. difference between 1-tag and 2-tag 24 % 37 %

TABLE 6.6. The acceptance of the large-R jet mass signal region selection on the
multijet 1-tag and 2-tag region C. NSR(NInc) is the multijet yield with (without) the
signal region large-R jet mass selection.

6.3.5. mBB Control Region Plots

Figures 6.5 and s6.6 hows the mHH distribution in the mBB control region

for the electron and muon channels. The figure shows a reasonable agreement

between data and background in the mBB control region but with large uncertainties.

Appendix J has a more complete set of kinematic plots.
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FIGURE 6.5. mWW (top) and pWT W (bottom) distribution in the mBB control region
for the electron (left) and muon (right) channels.
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mX [GeV ] S Total Bkg. Data

2000 26.8 ± 0.5 271.0 ± 10.7 268

TABLE 6.7. Data event yields, and signal and background event yields in the final
signal region for the boosted analysis and the scalar S particle hypothesis. The errors
shown are the MC statistical uncertainties. For illustration a signal mass point of
2000 GeV is reported in the table. The signal samples are normalized to the expected
upper limit cross sections.
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FIGURE 6.6. /ET (top) and mHH (bottom) distribution in the mBB control region
for the electron (left) and muon (right) channels.

6.4. Results

The fully-boosted analysis reconstructs the mHH distribution and the shape is

fit to data using MC signal and background templates. The distribution is fit using
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Sample Yield Stats Unc

tt̄ 187.7 ± 8.8

W+Jets 33.7 ± 1.9

QCD 34.5 ± 5.5

Single-top 7.0 ± 1.3

Z+Jets 4.7 ± 0.4

Dibosons 3.3 ± 0.6

Prediction 271.0 ± 10.7

TABLE 6.8. Predicted and observed yields in the Signal region. Detector modeling
uncertainties, MC background modeling uncertainties and QCD background
modeling uncertainties from ABCD method are considered for the systematic
uncertainties.

17 bins, with almost uniform width except at low and high mHH . All backgrounds,

except multijet, are simulated using MC generators and normalised using the cross

section of the simulated process. The multijet background is estimated using the

ABCD method, and its normalisation obtained from this method is kept fixed in

the fit. The bias due to possible signal contamination in the ABCD regions was

studied and found to have negligible effect on the result. The integral of the mHH

distribution for the boosted analysis is shown in Table 6.7.

The dominant components of the systematic uncertainties are summarized in

Table 6.9.
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FIGURE 6.7. The mHH distribution for data and background in the final signal
region.

Figure 6.7 shows the mHH distribution for data and the background components

for the boosted analysis. Appendix K shows a more complete set of kinematic plots.

Data are generally in good agreement with the background expectations within the

quoted systematic errors. The signal mHH distribution is shown in the figure for the

scalar resonance. Figure 6.8 shows the observed and the expected upper limit on the

production cross section of the scalar S particle.
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Uncertainty Up/Down

SysFT EFF Eigen Light 0 AntiKt2PV0TrackJets 1down -12.9/12.5
SysFT EFF Eigen C 0 AntiKt2PV0TrackJets 1down -12.6/12.1

SysFT EFF Eigen C 0 AntiKt2PV0TrackJets 1up 11.3/-11.9
SysFT EFF Eigen Light 0 AntiKt2PV0TrackJets 1up 11.3/-11.9

SysFATJET Medium JET Comb Baseline Kin 1up -6.47/5.95
SysFATJET Medium JET Comb Baseline Kin 1down 5.83/-6.43
SysFT EFF Eigen B 0 AntiKt2PV0TrackJets 1down -3.49/2.97
SysFT EFF Eigen B 1 AntiKt2PV0TrackJets 1down -3.32/2.8
SysFT EFF Eigen C 1 AntiKt2PV0TrackJets 1down -2.97/2.45

SysFT EFF Eigen B 0 AntiKt2PV0TrackJets 1up 2.39/-2.94
SysFT EFF Eigen B 1 AntiKt2PV0TrackJets 1up 2.23/-2.78
SysFT EFF Eigen C 1 AntiKt2PV0TrackJets 1up 1.9/-2.45

SysFATJET Medium JET Comb Tracking Kin 1down 1.77/-2.38
SysFATJET Medium JET Comb Tracking Kin 1up -2.2/1.68

SysFT EFF extrapolation AntiKt2PV0TrackJets 1up -2.07/1.59
SysFATJET JMR 1up 1.41/-1.97

SysFT EFF extrapolation from charm AntiKt2PV0TrackJets 1up -1.62/1.1
SysFT EFF extrapolation AntiKt2PV0TrackJets 1down 0.963/-1.54

SysPRW DATASF 1down -1.47/0.94
SysJET SR1 JET GroupedNP 1 1down 0.764/-1.33

SysJET SR1 JET GroupedNP 1 1up -1.2/0.678
SysFATJET JER 1up 0.574/-1.16

SysFT EFF Eigen Light 1 AntiKt2PV0TrackJets 1up -1.12/0.576
SysFT EFF extrapolation from charm AntiKt2PV0TrackJets 1down 0.553/-1.1

SysFATJET Medium JET Comb TotalStat Kin 1down -1.03/0.498
Total Up 27.2
Total Do 27.9

TABLE 6.9. List of dominant systematic uncertainties for the fully boosted analysis.
The full list of systematic uncertainties is listed in Appendix H
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6.5. Conclusion

The fully-boosted HH → bbWW ∗ semi-leptonic analysis can strengthen the

limit on the cross section of the resonant pair production by approximately a factor

of two over the limit shown in Figure 5.34 for a large range of resonant masses.

Several improvements can be made to the fully-boosted analysis moving toward

the full Run II analysis. The isolated lepton trigger that is used for these studies

is not suitable for highly collimated topologies and likely leads to a loss of signal

efficiency at high resonant masses. A large-R jet trigger or a non-isolated lepton

trigger would allow for leptons much closer to other objects and could increase the

number of events, especially in the high resonant mass region. Additionally, the

QCD multijet estimation suffers from a lack of statistics in the C and D regions.

This gives a large error on the QCD background estimation. A different method of

QCD estimation, such as the matrix method, may be more suitable.

The fully-boosted analysis can be combined with the previous resolved and

boosted analysis for the full Run-2 search. By using all three analysis strategies, it

is possible to maximize the reach of the analysis across the entire mass range, even

extending the range higher. The main findings of the fully boosted analysis are

as follows:

– A Large-R jet offers a better resolution for the H → WW ∗ reconstruction than

the resolved reconstruction for mS > 1000 GeV.

– The lepton-inside-of-jets reconstruction accurately accounts for the lepton

energy for boosted topologies.

– An increase in resolution translates to a more sensitive search and should be

prioritized for the HH → bb̄WW ∗
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∗ This can be done through improving the neutrino reconstruction.

– Additionally, the ABCD data driven QCD estimate is limited by statistics and

needs to be improved.

176



 [GeV]Sm
1000 2000 3000

 h
h)

 [p
b]

→
 H

→
(p

p
σ

 L
im

it 
on

 

2−10

1−10

1

10

Expected Stats+Syst

Expected Stats Only

ATLAS Work in Progress
-1= 13 TeV, 36.1 fbs

FIGURE 6.8. Expected and observed upper limits at 95% CL on the cross section
of the resonant pair production for heavy scalar boson S model. The expected limits
without including the systematic errors is also shown to show their impact.
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CHAPTER VII

CONCLUSION

This dissertation presented a search for anomalous production of di-Higgs events

not predicted in the SM. The SM prediction for di-Higgs production was observed

and no evidence for new physics was found.

A search for resonant and non-resonant Higgs boson pair production in the bbWW ∗

decay mode is done in the bblνqq final state using pp collision data with an integrated

luminosity of 36.1 fb-1 collected at
√
s = 13 TeV by the ATLAS detector at the LHC.

No excess of events over the background only expectation is found. Limits are set

on resonant and non-resonant production.

In addition to the complete analyses presented in this dissertation, an

complimentary event reconstruction is presented. This new fully boosted analysis

offers roughly a factor of two increase in sensitivity for the same dataset and is

a promising addition to the HH → bbWW ∗ → bblνqq analysis for the full Run I

analysis.
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APPENDIX A

DERIVATION (HIGG5D2)

Pre-selection is applied to both data and MC samples using the derivation

framework in order to reduce the xAOD sample size. We use the HIGG5D2 derivation

for our DxAOD sample production. More information on the derivation framework

can be found in the Higgs group’s Twiki.1

1 https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HSG2xAODMigration
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APPENDIX B

COMPLETE LIST OF MC SAMPLES

The following MC samples have been used to simulate the signal and SM

backgrounds at the center-of-mass energy of 13 TeV. The detailed information

including cross section, k-factor (where applicable), and the corresponding job

options files are listed in the Twiki page1

B.0.1. Signal Samples

mc15_13TeV.342053.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_hh_WWbb.merge.DAOD_HIGG5D2.e4392_a766_a821_r7676_p2949

mc15_13TeV.343764.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m260_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343766.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m300_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343769.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m400_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343771.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m500_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343772.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m600_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343773.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m700_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343774.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m750_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343775.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m800_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343776.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m900_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343777.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m1000_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343778.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m1100_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343779.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m1200_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343780.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m1300_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343781.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m1400_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343782.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m1500_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343783.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m1600_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343784.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m1800_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343785.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m2000_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343786.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m2250_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343787.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m2500_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343788.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m2750_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

mc15_13TeV.343789.aMcAtNloHerwigppEvtGen_UEEE5_CTEQ6L1_CT10ME_Xhh_m3000_wwbb.merge.DAOD_HIGG5D2.e5153_a766_a821_r7676_p2949

B.0.2. Background Samples

B.0.2.1. tt̄

mc15_13TeV.410000.PowhegPythiaEvtGen_P2012_ttbar_hdamp172p5_nonallhad.merge.DAOD_HIGG5D2.e3698_s2608_s2183_r7725_r7676_p2949

B.0.2.2. Sherpa W+jets

mc15_13TeV.364156.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV0_70_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

1 https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/

CentralMC15ProductionList
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mc15_13TeV.364157.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV0_70_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364158.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV0_70_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364159.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV70_140_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364160.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV70_140_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364161.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV70_140_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364162.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV140_280_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364163.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV140_280_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364164.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV140_280_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364165.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV280_500_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364166.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV280_500_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364167.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV280_500_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364168.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV500_1000.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364169.Sherpa_221_NNPDF30NNLO_Wmunu_MAXHTPTV1000_E_CMS.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364170.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV0_70_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364171.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV0_70_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364172.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV0_70_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364173.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV70_140_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364174.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV70_140_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364175.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV70_140_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364176.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV140_280_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364177.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV140_280_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364178.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV140_280_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364179.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV280_500_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364180.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV280_500_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364181.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV280_500_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364182.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV500_1000.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364183.Sherpa_221_NNPDF30NNLO_Wenu_MAXHTPTV1000_E_CMS.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364184.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV0_70_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364185.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV0_70_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364186.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV0_70_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364187.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV70_140_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364188.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV70_140_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364189.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV70_140_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364190.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV140_280_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364191.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV140_280_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364192.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV140_280_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364193.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV280_500_CVetoBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364194.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV280_500_CFilterBVeto.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364195.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV280_500_BFilter.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364196.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV500_1000.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

mc15_13TeV.364197.Sherpa_221_NNPDF30NNLO_Wtaunu_MAXHTPTV1000_E_CMS.merge.DAOD_HIGG5D2.e5340_s2726_r7772_r7676_p2949

B.0.2.3. Z+jets

mc15_13TeV.364100.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV0_70_CVetoBVeto.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364101.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV0_70_CFilterBVeto.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364102.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV0_70_BFilter.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364103.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV70_140_CVetoBVeto.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364104.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV70_140_CFilterBVeto.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364105.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV70_140_BFilter.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364106.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV140_280_CVetoBVeto.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364107.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV140_280_CFilterBVeto.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364108.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV140_280_BFilter.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364109.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV280_500_CVetoBVeto.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949
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mc15_13TeV.364110.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV280_500_CFilterBVeto.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364111.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV280_500_BFilter.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364112.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV500_1000.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364113.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV1000_E_CMS.merge.DAOD_HIGG5D2.e5271_s2726_r7772_r7676_p2949

mc15_13TeV.364114.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV0_70_CVetoBVeto.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364115.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV0_70_CFilterBVeto.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364116.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV0_70_BFilter.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364117.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV70_140_CVetoBVeto.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364118.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV70_140_CFilterBVeto.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364119.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV70_140_BFilter.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364120.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV140_280_CVetoBVeto.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364121.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV140_280_CFilterBVeto.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364122.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV140_280_BFilter.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364123.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV280_500_CVetoBVeto.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364124.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV280_500_CFilterBVeto.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364125.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV280_500_BFilter.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364126.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV500_1000.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364127.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV1000_E_CMS.merge.DAOD_HIGG5D2.e5299_s2726_r7772_r7676_p2949

mc15_13TeV.364128.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV0_70_CVetoBVeto.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

mc15_13TeV.364129.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV0_70_CFilterBVeto.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

mc15_13TeV.364130.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV0_70_BFilter.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

mc15_13TeV.364131.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV70_140_CVetoBVeto.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

mc15_13TeV.364132.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV70_140_CFilterBVeto.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

mc15_13TeV.364133.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV70_140_BFilter.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

mc15_13TeV.364134.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV140_280_CVetoBVeto.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

mc15_13TeV.364135.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV140_280_CFilterBVeto.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

mc15_13TeV.364136.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV140_280_BFilter.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

mc15_13TeV.364137.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV280_500_CVetoBVeto.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

mc15_13TeV.364138.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV280_500_CFilterBVeto.merge.DAOD_HIGG5D2.e5313_s2726_r7772_r7676_p2949

mc15_13TeV.364139.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV280_500_BFilter.merge.DAOD_HIGG5D2.e5313_s2726_r7772_r7676_p2949

mc15_13TeV.364140.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV500_1000.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

mc15_13TeV.364141.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV1000_E_CMS.merge.DAOD_HIGG5D2.e5307_s2726_r7772_r7676_p2949

B.0.2.4. Dibosons

mc15_13TeV.361091.Sherpa_CT10_WplvWmqq_SHv21_improved.merge.DAOD_HIGG5D2.e4607_s2726_r7772_r7676_p2949

mc15_13TeV.361092.Sherpa_CT10_WpqqWmlv_SHv21_improved.merge.DAOD_HIGG5D2.e4607_s2726_r7772_r7676_p2949

mc15_13TeV.361093.Sherpa_CT10_WlvZqq_SHv21_improved.merge.DAOD_HIGG5D2.e4607_s2726_r7772_r7676_p2949

mc15_13TeV.361094.Sherpa_CT10_WqqZll_SHv21_improved.merge.DAOD_HIGG5D2.e4607_s2726_r7772_r7676_p2949

mc15_13TeV.361095.Sherpa_CT10_WqqZvv_SHv21_improved.merge.DAOD_HIGG5D2.e4607_s2726_r7772_r7676_p2949

mc15_13TeV.361096.Sherpa_CT10_ZqqZll_SHv21_improved.merge.DAOD_HIGG5D2.e4607_s2726_r7772_r7676_p2949

mc15_13TeV.361097.Sherpa_CT10_ZqqZvv_SHv21_improved.merge.DAOD_HIGG5D2.e4607_s2726_r7772_r7676_p2949

B.0.2.5. Single Top

mc15_13TeV.410011.PowhegPythiaEvtGen_P2012_singletop_tchan_lept_top.merge.DAOD_HIGG5D2.e3824_s2608_s2183_r7725_r7676_p2949

mc15_13TeV.410012.PowhegPythiaEvtGen_P2012_singletop_tchan_lept_antitop.merge.DAOD_HIGG5D2.e3824_s2608_s2183_r7725_r7676_p2949

mc15_13TeV.410013.PowhegPythiaEvtGen_P2012_Wt_inclusive_top.merge.DAOD_HIGG5D2.e3753_s2608_s2183_r7725_r7676_p2949

mc15_13TeV.410014.PowhegPythiaEvtGen_P2012_Wt_inclusive_antitop.merge.DAOD_HIGG5D2.e3753_s2608_s2183_r7725_r7676_p2949

mc15_13TeV.410025.PowhegPythiaEvtGen_P2012_SingleTopSchan_noAllHad_top.merge.DAOD_HIGG5D2.e3998_s2608_s2183_r7725_r7676_p2949

mc15_13TeV.410026.PowhegPythiaEvtGen_P2012_SingleTopSchan_noAllHad_antitop.merge.DAOD_HIGG5D2.e3998_s2608_s2183_r7725_r7676_p2949

B.0.2.6. Single Higgs

mc15_13TeV.342282.PowhegPythia8EvtGen_CT10_AZNLOCTEQ6L1_ggH125_inc.merge.DAOD_HIGG5D2.e4850_a766_a821_r7676_p2949

mc15_13TeV.342285.Pythia8EvtGen_A14NNPDF23LO_ZH125_inc.merge.DAOD_HIGG5D2.e4246_s2608_s2183_r7772_r7676_p2949
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B.0.2.7. QCD Multijet

mc15_13TeV.344715.Sherpa_CT10_bb_MassiveCB_2Bjets_Pt30_50.merge.DAOD_HIGG5D2.e5681_a766_a821_r7676_p2949

mc15_13TeV.344716.Sherpa_CT10_bb_MassiveCB_2Bjets_Pt50_80.merge.DAOD_HIGG5D2.e5681_a766_a821_r7676_p2949

mc15_13TeV.344717.Sherpa_CT10_bb_MassiveCB_2Bjets_Pt80_130.merge.DAOD_HIGG5D2.e5681_a766_a821_r7676_p2949

mc15_13TeV.344718.Sherpa_CT10_bb_MassiveCB_2Bjets_Pt130_200.merge.DAOD_HIGG5D2.e5681_a766_a821_r7676_p2949

mc15_13TeV.344719.Sherpa_CT10_bb_MassiveCB_2Bjets_Pt200_E_CMS.merge.DAOD_HIGG5D2.e5681_a766_a821_r7676_p2949
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APPENDIX C

DATA SAMPLES

In order to assure good data quality, events with bad detector conditions,

namely where large part of the detectors were missing from data acquisition due

to problems during a run, or when the performance of the detectors were affected

by large noise, have been rejected from the data analysis. A GRL selection

taken from data15 13TeV.periodAllYear DetStatus-v79-repro20-02 DQDefects-00-

02-02 PHYS StandardGRL All Good 25ns.xml and

data16 13TeV.periodAllYear DetStatus-v88-pro20-21 DQDefects-00-02-04 PHYS

StandardGRL All Good 25ns.xml is applied. Moreover, incomplete events or events

with bad detector information are rejected.
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APPENDIX D

LEPTON SELECTION OPTIMISATION
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FIGURE D.1. Lepton selection effciency as a function of signal Scalar resonance
mass for the electron-channel (top) and the muon-channel (bottom). The efficiency
for the SM di-Higgs signal sample (SMhh) is also shown. The plots on the left are
efficiences for the lepton selections as used in the ICHEP 2016 analysis while the plot
on the right are the optimised baseline lepton selections.
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APPENDIX E

LEPTON AND B-JET OVERLAP REMOVAL: IMPACT ON SIGNAL

EFFICIENCY

The overlap removal procedure, as presented in Sec. 5.3.5 requires calorimeter-

jets to be removed from the event if it is within. Due to the presence of b-jets from

the h → bb̄ decay, it is possible for a reconstructed muon or electron to be in close

proximity of the b-jets, due to semi-leptonic decays of the b-hadron, and the b-jets

fail the overlap removal criteria. Figure E.1 shows the signal efficiency to find the

leading and sub-leading b-jet in the event. In this study, the b-jets are identified by

requiring at least one b-hadron within the b-jets.

The efficiency loss due to electrons, which pass the VHLooseElectron selection,

to be within ∆R ¡ 0.2 of the b-jets are negligible as can be seen in the top figures. For

muons that pass VHLooseMuon selection, the impact is slightly more pronounced but

still small (∼3%). Note that in the jet-muon overlap removal procedure, additional

requirements are imposed on the muon and the overlapping jet before deciding to

remove the jet and this is expected to mitigate the lost of efficiency. The impact of

the additional requirements are not studied here.
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FIGURE E.1. The signal efficiencies to find the leading (left) and sub-leading (right)
jets which has at least 1 b-hadron within the jets. The red curves correspond to the
requirement that the jets do not have a VHLoose electrons (top) and muons (bottom)
within ∆R ¡ 0.2 from the jet axis.
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APPENDIX F

SOLVING FOR NEUTRINO LONGITUDINAL MOMENTUM

Neutrinos are not detected directly using the ATLAS detector. Instead,

their transverse momentum is determined using conservation of momentum. The

longitudinal momentum of neutrinos can be calculated in terms of the momentum

and masses of other particles in the event, but it is a solution to a quadratic equation,

and hence there are two possible solutions. Please see Section 5.4.3 for the equation.

We investigated the efficiencies of several different methods of picking the solution.

Several methods for selecting the sign were tested on truth level using the signal

Monte Carlo samples for resonant di-Higgs production with mass of 700 GeV, 2000

GeV and 5000 GeV. The choice of sign is said to be correct if the solution is within

10% of the truth value if the truth value is larger than 100 GeV or within 10 GeV if the

truth value is smaller than 100 GeV. This criterion was chosen to take into account

the fact that we do not need to know the exact momentum, just the momentum up

to errors from the detector resolution.

F.0.1. W mass method

The mass of the W that decays leptonically can be calculated from the

momentum of the lepton and neutrino since PW = Pl +Pν . The mass of the leptonic

W we calculate with the chosen solution depends on our choice of sign. As figure F.3

shows, the W mass distribution has peaks at 40 and 80 GeV. So for this method, we

will use the solution that minimizes |mW − 80| or |mW − 40|.
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FIGURE F.1. mW Distribution and the solution using W mass method.

F.0.2. η solution

The next method we tested was picking the sign in the solution that is the

opposite of the sign of η of the lepton. This was motivated by studying the same

problem for single W production and noticing that there is a correlation between

the the correct sign choice and the sign of η. This correlation is shown in figure F.5.

It is interesting to note that this method is mathematically equivalent to using the

opposite sign of the longitudinal momentum of the lepton. This can be verified by

looking at the definition of ηl = 1
2

log
pl+pl,z
pl−pl,z

. If pl,z < 0 then
pl+pl,z
pl−pl,z

< 1 so ηl < 0 and

similarly if pl,z > 0 then ηl > 0.

We also tested using the opposite sign of η of the lqq̄ system. Using the

additional information from the quark antiquark pair allows us to pick the correct

sign more often than just using ηl, F.4

F.0.3. ∆ R Method

We also investigated minimising ∆R(l, ν). This is motivated by the idea that

the neutrino and the charged lepton produced from the same W should be near each

if the W boson is boosted, which is often the case for heavy resonances decaying into
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FIGURE F.2. Single W ηl vs Correct Sign Choice

FIGURE F.3. ηl and the solution using ηl method in 700 GeV resonant sample.

FIGURE F.4. Higgs pair ηlqq̄ vs Correct Sign Choice

W boson. Fig. F.6 shows the ∆R(l, ν) and the solution using ∆R(l, ν) method in

700 GeV resonant sample.
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FIGURE F.5. ηl and the solution using ηl method in 700 GeV resonant sample.

FIGURE F.6. ∆R(l, ν) and the solution using ∆R(l, ν) method in 700 GeV resonant
sample.

F.0.4. Results

The fraction of the time each method picks the correct sign is given as a

percentage in the table below.

Method 700 GeV Sample 2000 GeV Sample 5000 GeV Sample

mW 55.7 56.3 58.3

ηl 52.9 47.6 47.4

ηlqq̄ 59.9 60.5 63.3

∆R(l, ν) 57 65 72.7
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APPENDIX G

FREEZING B AND D REGIONS IN QCD ESTIMATE

This appendix summarizes the study undertaken to select regions to ’freeze’ the

cuts in the B and D regions used in the ABCD estimation for QCD background. For

each selection, the B/D values diverge from the value calculated at the beginning of

the selection when the statistics in the B and/or D region drops significantly. To avoid

large statistical errors in the normalization calculated for the multi-jet contribution

in the A region, the yields from the B and D regions used in the ABCD calculation

are frozen, i.e. no further cuts applied after the earliest cut in the selection which

has a B/D ratio consistent with the last statistically stable B/D ratio. Using this

method, the multi-jet modelling is kept as close as possible to the phase space in the

final signal region while taking advantage of higher statistics earlier in the cutflow.

All numbers in this study were conducted with a tt̄ normalization factor equal to

1.0, i.e. no data-driven normalization was applied to tt̄ .

QCD B/D Values, Non-resonant Selection

mww bbpt210 bbpt300 wwpt250
0.36 ± 0.01 0.35 ± 0.07 0.49 ± 0.30 0.14 ± 0.10

QCD B/D Values, Low Mass (m700) Selection

mww bbpt210 wwpt250 hh700
0.36 ± 0.01 0.35 ± 0.07 0.04 ± 0.02 0.11 ± 0.07

QCD B/D Values, High Mass Selection

bbpt350 wwpt250 drww15 hh2000
0.29 ± 0.04 0.28 ± 0.04 0.22 ± 0.06 1.24 ± 0.86

TABLE G.1. Values calculated for B/D at each stage in the non-resonant, low mass,
and high mass selections. The estimate of multi-jet contribution in the A region uses
the R value calculated after the selection described in the text.
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The QCD and total background yields obtained in thembb control region without

freezing the B and D regions are shown in Tables G.2, G.3, and G.4.

Non-resonant Selection in mbb Control Region, No B/D Freezing

Sample mww bbpt210 bbpt300 wwpt250
QCD 13310.5 ± 500.3 250.2 ± 30.6 24.6 ± 3.0 54.8 ± 6.7

Background Sum 43849.0± 509.2 1017.9± 33.7 192.8± 7.1 153.2± 8.4

Data 43902.0 1069.0 206.0 138.0

TABLE G.2. QCD and total background yields for the non-resonant selection
without freezing the selection cuts used in the B and D regions, i.e. the yields
in the B and D region after each cut are used in the ABCD calculation up until the
mbb cut. Non-monotonic QCD yields are observed.

Low Mass (m700) Selection in mbb Control Region, No B/D Freezing

Sample mww bbpt210 wwpt250 hh700
QCD 13310.5 ± 500.3 250.2 ± 30.6 585.3 ± 71.7 54.8 ± 6.7

Background Sum 43849.0± 509.2 1017.9± 33.7 843.7± 72.1 104.7± 7.6

Data 43902.0 1069.0 367.0 89.0

TABLE G.3. QCD and total background yields for the low mass selection without
freezing the selection cuts used in the B and D regions, i.e. the yields in the B and
D region after each cut are used in the ABCD calculation up until the mbb cut.

High Mass Selection in mbb Control Region, No B/D Freezing

Sample bbpt350 wwpt250 drww15 hh2000
QCD 1538.7 ± 252.7 1359.5 ± 75.9 486.4 ± 27.1 4.6 ± 0.3

Background Sum 14719.1± 258.9 12463.5± 91.8 3671.3± 38.5 222.8± 7.1

Data 14862.0 12450.0 3761.0 250.0

TABLE G.4. QCD and total background yields for the high mass selection without
freezing the selection cuts used in the B and D regions, i.e. the yields in the B and
D region after each cut are used in the ABCD calculation up until the mbb cut.

The B/D ratio at the last cut in each selection have large errors (near or larger

than 100%) and are found to be unstable. The yields after freezing the B and D

regions to their yields after the earliest selection cut with a B/D ratio consistent
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with the last statistically stable B/D ratio (after pbbT > 210 GeV for the non-resonant

and low-mass selections and after pWW
T > 250 GeV for the high mass selection) are

shown in Tables G.5, G.6, and G.7.

Non-resonant Selection in mbb Control Region, B/D Frozen after pbbT > 210

Sample mww bbpt210 bbpt300 wwpt250
QCD 13310.5 ± 500.3 250.2 ± 30.6 33.7 ± 4.1 21.4 ± 2.6

Background Sum 43849.0± 509.2 1017.9± 33.7 201.9± 7.6 119.8± 5.7

Data 43902.0 1069.0 206.0 138.0

TABLE G.5. QCD and total background yields for the non-resonant selection after
freezing the selection cuts used in the B and D regions after requiring pbbT > 210 GeV.
Monotonic QCD yields are now observed.

Low Mass (m700) Selection in mbb Control Region, B/D Frozen after pbbT > 210

Sample mww bbpt210 wwpt250 hh700
QCD 13310.5 ± 500.3 250.2 ± 30.6 72.4 ± 8.9 16.3 ± 2.0

Background Sum 43849.0± 509.2 1017.9± 33.7 330.7± 12.1 66.2± 4.1

Data 43902.0 1069.0 367.0 89.0

TABLE G.6. QCD and total background yields for the low mass (m700) selection
after freezing the selection cuts used in the B and D regions after requiring pbbT > 210
GeV.

High Mass Selection in mbb Control Region, B/D Frozen after pWW
T > 250 GeV

Sample bbpt350 wwpt250 drww15 hh2000
QCD 1538.7 ± 252.7 1359.5 ± 75.9 392.7 ± 21.9 20.7 ± 1.2

Background Sum 14719.1± 258.9 12463.5± 91.8 3577.5± 35.0 238.9± 7.2

Data 14862.0 12450.0 3761.0 250.0

TABLE G.7. QCD and total background yields for the low mass selection after
freezing the selection cuts used in the B and D regions after requring pWW

T > 250
GeV.

After freezing, the yields in the non-resonant mbb control region are

monotonically decreasing as expected, and the absolute statistical error on the QCD
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estimate in the final signal region is significantly reduced compared to the yields

obtained without freezing the B and D regions.
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G.1. QCD Lepton Flavour Composition after Preselection Criteria for σd0

distribution

We estimate the lepton flavour composition in the QCD sample and SM signal

sample just after the preselection criteria. By using the σd0 distribution we identify

the lepton flavour and the origin of each lepton. The majority of the muons results

to be from bottom meson while most of the electrons come from photon conversion

(about 70%). The impact of the σd0 cut on the two population is mostly independent

from the lepton flavour, namely the cut |σd0| ≤ 2.0 removes for muon leptons (76 ±

100)% for QCD sample and (6.9 ± 1.1)% for signal sample, while for the electons

these fractions are (27.9 ± 5.0)% for QCD sample and (5.7 ± 0.9)% for signal. The

Table G.8 shows the complete lepton flavour composition.

Electrons

Photon Conversion 65.3%
Not Defined 15.0%

Bottom Meson 11.9%
Dalitz Decay 4.6%

Others ≤ 0.1%

Muons

Bottom Meson 99%
Charm Barion 1%

TABLE G.8. Lepton flavor composition in QCD sample. The lepton origin is
reported for each event passing the preselection criteria.
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APPENDIX H

STABILITY OF tt̄ NORMALIZATION IN QCD ESTIMATE

This appendix contains tables tables summarizing a study performed to test the

stability of the normalization factor applied to tt̄ events when calculated iteratively

with the ABCD method for QCD estimation. Since both the ABCD method and the

tt̄ normalization are calculated using data-driven techniques, and they contaminate

each other control region, the aim is to check that the tt̄ normalization and the QCD

estimate converge to stable values after a small number of iterations. The iterative

procedure begins with the QCD estimate set to zero and continues as follows:

– Calulate tt̄ NF at appropriate cut before QCD is calculated

– Start at beginning of cutflow, apply tt̄ NF, and calculate QCD

– Move through cutflow to tt̄ NF cut

– Calculate new tt̄ NF

– Repeat steps 2 - 4

If the procedure converges, the estimate is said to be stable. The following tables

show the iteration for the non-resonant, low mass, and high mass selections. Iteration

0 starts with zero QCD in the background estimate. Yields are provided for QCD

and tt̄ after the first selection cut (noted as sample first) and in the final mbb signal

region (noted as sample SR). The QCD yield at the tt̄ normalization cut is also

provided. The final column shows the calculated normalization factor for tt̄ . For

all selections, convergence (change in tt̄ normalization <5%) is observed after just

a few iterations.
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Iteration nQCD first n QCD nf nQCD SR ttbar first ttbar SR ttbarNF
0 0.00 0.00 0.00 24637.64 65.92 1.43 ± 0.02
1 4226.57 273.95 3.30 35249.05 94.31 0.92 ± 0.02
2 15765.74 1381.06 19.04 22708.20 60.75 0.94 ± 0.03
3 15311.64 1335.16 18.33 23145.35 61.92 0.94 ± 0.03
4 15254.28 1329.37 18.24 23200.59 62.07 0.94 ± 0.03
5 15247.34 1328.67 18.23 23207.28 62.09 0.94 ± 0.03
6 15246.50 1328.58 18.23 23208.09 62.09 0.94 ± 0.03
7 15246.40 1328.57 18.23 23208.18 62.09 0.94 ± 0.03

TABLE H.1. Iteration of tt̄ normalization and QCD estimate for the non-resonant
selection. The ’ first’ region is defined after the mWW < 130 GeV cut and the ’ nf’
region is defined after requiring pbbT > 150 GeV. Convergence is observed after two
iterations.

Iteration nQCD first n QCD nf nQCD SR ttbar first ttbar SR ttbarNF
0 0.00 0.00 0.00 24637.64 11.28 1.43 ± 0.02
1 4226.57 273.95 1.13 35249.05 16.14 0.92 ± 0.02
2 15765.74 1381.06 8.14 22708.20 10.40 0.94 ± 0.03
3 15311.64 1335.16 7.81 23145.35 10.60 0.94 ± 0.03
4 15254.28 1329.37 7.76 23200.59 10.62 0.94 ± 0.03
5 15247.34 1328.67 7.76 23207.28 10.63 0.94 ± 0.03
6 15246.50 1328.58 7.76 23208.09 10.63 0.94 ± 0.03
7 15246.40 1328.57 7.76 23208.18 10.63 0.94 ± 0.03

TABLE H.2. Iteration of tt̄ normalization and QCD estimate for the low mass
selection. The ’ first’ region is defined after the mWW < 130 GeV cut and the ’ nf’
region is defined after requiring pbbT > 150 GeV. Convergence is observed after two
iterations.

Iteration nQCD first n QCD nf nQCD SR ttbar first ttbar SR ttbarNF
0 0.00 0.00 0.00 8810.24 6.70 1.26 ± 0.02
1 92.73 40.56 0.11 11133.25 8.47 0.99 ± 0.02
2 1595.54 541.28 1.40 8679.56 6.60 1.03 ± 0.03
3 1238.18 432.83 1.12 9063.72 6.90 1.03 ± 0.02
4 1196.43 419.79 1.09 9108.80 6.93 1.03 ± 0.02
5 1190.60 417.96 1.09 9115.10 6.94 1.03 ± 0.02
6 1189.77 417.70 1.09 9115.99 6.94 1.03 ± 0.02
7 1189.65 417.66 1.09 9116.12 6.94 1.03 ± 0.02

TABLE H.3. Iteration of tt̄ normalization and QCD estimate for the low mass
selection. The ’ first’ region is defined after the pbbT > 350 GeV cut and the ’ nf’
region is defined after requiring pWW

T > 360 GeV. Convergence is observed after two
iterations.

198



APPENDIX I

FULLY BOOSTED SYSTEMATIC UNCERTAINTIES

Uncertainty Up/Down

SysFT EFF Eigen Light 0 AntiKt2PV0TrackJets 1down -12.9/12.5

SysFT EFF Eigen C 0 AntiKt2PV0TrackJets 1down -12.6/12.1

SysFT EFF Eigen C 0 AntiKt2PV0TrackJets 1up 11.3/-11.9

SysFT EFF Eigen Light 0 AntiKt2PV0TrackJets 1up 11.3/-11.9

SysFATJET Medium JET Comb Baseline Kin 1up -6.47/5.95

SysFATJET Medium JET Comb Baseline Kin 1down 5.83/-6.43

SysFT EFF Eigen B 0 AntiKt2PV0TrackJets 1down -3.49/2.97

SysFT EFF Eigen B 1 AntiKt2PV0TrackJets 1down -3.32/2.8

SysFT EFF Eigen C 1 AntiKt2PV0TrackJets 1down -2.97/2.45

SysFT EFF Eigen B 0 AntiKt2PV0TrackJets 1up 2.39/-2.94

SysFT EFF Eigen B 1 AntiKt2PV0TrackJets 1up 2.23/-2.78

SysFT EFF Eigen C 1 AntiKt2PV0TrackJets 1up 1.9/-2.45

SysFATJET Medium JET Comb Tracking Kin 1down 1.77/-2.38

SysFATJET Medium JET Comb Tracking Kin 1up -2.2/1.68

SysFT EFF extrapolation AntiKt2PV0TrackJets 1up -2.07/1.59

SysFATJET JMR 1up 1.41/-1.97

SysFT EFF extrapolation from charm AntiKt2PV0TrackJets 1up -1.62/1.1

SysFT EFF extrapolation AntiKt2PV0TrackJets 1down 0.963/-1.54

SysPRW DATASF 1down -1.47/0.94

SysJET SR1 JET GroupedNP 1 1down 0.764/-1.33

SysJET SR1 JET GroupedNP 1 1up -1.2/0.678

SysFATJET JER 1up 0.574/-1.16

SysFT EFF Eigen Light 1 AntiKt2PV0TrackJets 1up -1.12/0.576

SysFT EFF extrapolation from charm AntiKt2PV0TrackJets 1down 0.553/-1.1

SysFATJET Medium JET Comb TotalStat Kin 1down -1.03/0.498

SysFT EFF Eigen C 2 AntiKt2PV0TrackJets 1down -0.983/0.458
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SysMET SoftTrk Scale 1down -0.971/0.439

SysJET JER SINGLE NP 1up -0.936/0.375

SysEL EFF ID TOTAL 1NPCOR PLUS UNCOR 1up -0.935/0.405

SysFATJET Medium JET Comb Modelling Kin 1up -0.903/0.381

SysMUON EFF SYS 1up -0.88/0.353

SysJET SR1 JET GroupedNP 3 1up -0.871/0.346

SysJET SR1 JET GroupedNP 2 1up -0.826/0.289

SysFT EFF Eigen Light 2 AntiKt2PV0TrackJets 1down -0.825/0.301

SysJET SR1 JET EtaIntercalibration NonClosure 1up -0.792/0.261

SysEL EFF Iso TOTAL 1NPCOR PLUS UNCOR 1up -0.78/0.25

SysFT EFF Eigen C 3 AntiKt2PV0TrackJets 1up -0.767/0.233

SysFT EFF Eigen Light 3 AntiKt2PV0TrackJets 1up -0.762/0.229

SysEL EFF Trigger TOTAL 1NPCOR PLUS UNCOR 1up -0.71/0.179

SysFT EFF Eigen B 2 AntiKt2PV0TrackJets 1up -0.705/0.173

SysMUON ID 1down -0.698/0.166

SysFT EFF Eigen B 2 AntiKt4EMTopoJets 1down -0.662/0.13

SysFT EFF extrapolation AntiKt4EMTopoJets 1up -0.651/0.119

SysFT EFF Eigen B 0 AntiKt4EMTopoJets 1down -0.637/0.107

SysEL EFF Reco TOTAL 1NPCOR PLUS UNCOR 1up -0.611/0.0791

SysMUON EFF STAT 1up -0.604/0.0725

SysFT EFF Eigen B 1 AntiKt4EMTopoJets 1down -0.593/0.0613

SysMUON ID 1up -0.588/0.0559

SysFT EFF Eigen Light 2 AntiKt4EMTopoJets 1down -0.582/0.0499

SysMET SoftTrk Scale 1up 0.0485/-0.582

SysMUON ISO SYS 1up -0.576/0.0453

SysFT EFF Eigen Light 0 AntiKt4EMTopoJets 1down -0.572/0.0358

SysFT EFF Eigen Light 1 AntiKt2PV0TrackJets 1down 0.0513/-0.571

SysFT EFF Eigen Light 1 AntiKt4EMTopoJets 1up -0.567/0.0359

SysMUON MS 1up -0.558/0.0258

SysFT EFF Eigen C 1 AntiKt4EMTopoJets 1up -0.556/0.024

SysFT EFF Eigen Light 3 AntiKt4EMTopoJets 1down -0.555/0.0236

200



SysFT EFF Eigen Light 4 AntiKt2PV0TrackJets 1down -0.551/0.0151

SysFT EFF Eigen C 0 AntiKt4EMTopoJets 1up -0.546/0.0135

SysMUON ISO STAT 1up -0.545/0.0136

SysFT EFF Eigen C 3 AntiKt4EMTopoJets 1up -0.543/0.0112

SysFT EFF Eigen Light 4 AntiKt4EMTopoJets 1down -0.54/0.00864

SysFT EFF Eigen C 2 AntiKt4EMTopoJets 1up -0.539/0.00807

SysFT EFF extrapolation from charm AntiKt4EMTopoJets 1down -0.537/0.00495

SysLEPTON d0Eff Acc 1down -0.532/0

SysLEPTON d0Eff Acc 1up -0.532/0

SysMODEL DIBOSONS Norm Inc Acc 1down -0.532/0

SysMODEL DIBOSONS Norm Inc Acc 1up -0.532/0

SysMODEL DIBOSONS Norm Inc XS 1down -0.532/0

SysMODEL DIBOSONS Norm Inc XS 1up -0.532/0

SysMODEL QCD Norm Inc 1down -0.532/0

SysMODEL QCD Norm Inc 1up -0.532/0

SysMODEL STOP Norm Inc Acc 1down -0.532/0

SysMODEL STOP Norm Inc Acc 1up -0.532/0

SysMODEL STOP Norm Inc XS 1down -0.532/0

SysMODEL STOP Norm Inc XS 1up -0.532/0

SysMODEL TTBar Norm Inc Acc 1down -0.532/0

SysMODEL TTBar Norm Inc Acc 1up -0.532/0

SysMODEL TTBar Norm Inc XS 1down -0.532/0

SysMODEL TTBar Norm Inc XS 1up -0.532/0

SysMODEL WJETS Norm Inc Acc 1down -0.532/0

SysMODEL WJETS Norm Inc Acc 1up -0.532/0

SysMODEL WJETS Norm Inc XS 1down -0.532/0

SysMODEL WJETS Norm Inc XS 1up -0.532/0

SysMODEL ZJETS Norm Inc Acc 1down -0.532/0

SysMODEL ZJETS Norm Inc Acc 1up -0.532/0

SysMODEL ZJETS Norm Inc XS 1down -0.532/0

SysMODEL ZJETS Norm Inc XS 1up -0.532/0
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SysMUON SCALE 1down -0.532/0

SysMODEL TTBar Shape hhMass SR Shower 1up -0.532/0

SysMODEL TTBar Shape hhMass SR Shower 1down -0.532/0

SysMODEL WJETS Norm mbbcr XS 1up -0.532/0

SysMODEL WJETS Norm mbbcr XS 1down -0.532/0

SysMODEL ZJETS Norm SR XS 1up -0.532/0

SysMODEL ZJETS Norm SR XS 1down -0.532/0

SysMODEL ZJETS Norm SR Acc 1up -0.532/0

SysMODEL ZJETS Norm SR Acc 1down -0.532/0

SysMODEL WJETS Shape hhMass SR Scale 1up -0.532/0

SysMODEL WJETS Shape hhMass SR Scale 1down -0.532/0

SysMODEL DIBOSONS Norm mbbcr XS 1up -0.532/0

SysMODEL DIBOSONS Norm mbbcr XS 1down -0.532/0

SysMODEL DIBOSONS Norm mbbcr Acc 1up -0.532/0

SysMODEL DIBOSONS Norm mbbcr Acc 1down -0.532/0

SysMODEL QCD Norm mbbcr 1up -0.532/0

SysMODEL QCD Norm mbbcr 1down -0.532/0

SysMODEL STOP Norm mbbcr Acc 1up -0.532/0

SysMODEL STOP Norm mbbcr Acc 1down -0.532/0

SysMODEL STOP Norm mbbcr XS 1up -0.532/0

SysMODEL STOP Norm mbbcr XS 1down -0.532/0

SysMODEL TTBar Norm mbbcr Acc 1up -0.532/0

SysMODEL TTBar Norm mbbcr Acc 1down -0.532/0

SysMODEL TTBar Norm mbbcr XS 1up -0.532/0

SysMODEL TTBar Norm mbbcr XS 1down -0.532/0

SysMODEL WJETS Norm mbbcr Acc 1up -0.532/0

SysMODEL WJETS Norm mbbcr Acc 1down -0.532/0

SysMODEL ZJETS Norm mbbcr Acc 1up -0.532/0

SysMODEL ZJETS Norm mbbcr Acc 1down -0.532/0

ZJETS Norm mbbcr XS 1up -0.532/0

ZJETS Norm mbbcr XS 1down -0.532/0
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SysMODEL DIBOSONS Norm SR Acc 1up -0.532/0

SysMODEL DIBOSONS Norm SR Acc 1down -0.532/0

SysMODEL DIBOSONS Norm SR XS 1up -0.532/0

SysMODEL DIBOSONS Norm SR XS 1down -0.532/0

SysMODEL QCD Norm SR 1up -0.532/0

SysMODEL QCD Norm SR 1down -0.532/0

SysMODEL QCD Shape hhMass SR 1up -0.532/0

SysMODEL QCD Shape hhMass SR 1down -0.532/0

SysMODEL STOP Norm SR Acc 1up -0.532/0

SysMODEL STOP Norm SR Acc 1down -0.532/0

SysMODEL STOP Norm SR XS 1up -0.532/0

SysMODEL STOP Norm SR XS 1down -0.532/0

SysMODEL TTBar Norm SR Acc 1up -0.532/0

SysMODEL TTBar Norm SR Acc 1down -0.532/0

SysMODEL TTBar Norm SR XS 1up -0.532/0

SysMODEL TTBar Norm SR XS 1down -0.532/0

SysMODEL TTBar Shape hhMass SR Gen 1up -0.532/0

SysMODEL TTBar Shape hhMass SR Gen 1down -0.532/0

SysMODEL TTBar Shape hhMass SR RadLo 1up -0.532/0

SysMODEL TTBar Shape hhMass SR RadLo 1down -0.532/0

SysMODEL WJETS Norm SR Acc 1up -0.532/0

SysMODEL WJETS Norm SR Acc 1down -0.532/0

SysMODEL WJETS Norm SR XS 1up -0.532/0

SysMODEL WJETS Norm SR XS 1down -0.532/0

SysFT EFF extrapolation from charm AntiKt4EMTopoJets 1up -0.527/-

0.00495

SysJET JvtEfficiency 1up -0.526/-

0.00613

SysJET SR1 JET GroupedNP 2 1down -0.0414/-0.525

SysFT EFF Eigen C 2 AntiKt4EMTopoJets 1down -0.524/-

0.00814
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SysFT EFF Eigen Light 4 AntiKt4EMTopoJets 1up -0.523/-

0.00865

SysFT EFF Eigen C 3 AntiKt4EMTopoJets 1down -0.52/-0.0113

SysMUON ISO STAT 1down -0.518/-0.0136

SysFT EFF Eigen C 0 AntiKt4EMTopoJets 1down -0.518/-0.0125

SysMUON SAGITTA RESBIAS 1up -0.0125/-0.516

SysFT EFF Eigen Light 4 AntiKt2PV0TrackJets 1up -0.513/-0.015

SysFT EFF Eigen Light 3 AntiKt4EMTopoJets 1up -0.508/-0.0235

SysFT EFF Eigen C 1 AntiKt4EMTopoJets 1down -0.508/-0.0239

SysMET SoftTrk ResoPara 1up -0.505/-0.0311

SysFT EFF Eigen Light 0 AntiKt4EMTopoJets 1up -0.498/-0.0297

SysFT EFF Eigen Light 1 AntiKt4EMTopoJets 1down -0.496/-0.0358

SysMUON ISO SYS 1down -0.487/-0.0453

SysFATJET Medium JET Comb TotalStat Kin 1up -0.048/-0.484

SysFT EFF Eigen Light 2 AntiKt4EMTopoJets 1up -0.482/-0.0499

SysJET JvtEfficiency 1down -0.478/-0.0538

SysJET SR1 JET EtaIntercalibration NonClosure 1down -0.474/-0.0887

SysEG SCALE ALL 1down -0.471/-0.0611

SysMUON MS 1down -0.47/-0.0619

SysFT EFF Eigen B 1 AntiKt4EMTopoJets 1up -0.468/-0.0644

SysMUON SCALE 1up -0.462/-0.0696

SysMUON EFF STAT 1down -0.46/-0.0725

SysFT EFF Eigen C 2 AntiKt2PV0TrackJets 1up -0.0799/-0.459

SysEL EFF Reco TOTAL 1NPCOR PLUS UNCOR 1down -0.453/-0.0791

SysMUON SAGITTA RHO 1down -0.429/-0.106

SysMUON SAGITTA RHO 1up -0.429/-0.106

SysFT EFF Eigen B 0 AntiKt4EMTopoJets 1up -0.426/-0.107

SysFT EFF extrapolation AntiKt4EMTopoJets 1down -0.413/-0.119

SysEL EFF ID TOTAL 1NPCOR PLUS UNCOR 1down -0.129/-0.405

SysMET SoftTrk ResoPerp 1up -0.403/-0.13

SysFT EFF Eigen B 2 AntiKt4EMTopoJets 1up -0.402/-0.13
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SysEG SCALE ALL 1up -0.132/-0.4

SysFATJET Medium JET Comb Modelling Kin 1down -0.181/-0.384

SysJET SR1 JET GroupedNP 3 1down -0.369/-0.198

SysFT EFF Eigen B 2 AntiKt2PV0TrackJets 1down -0.358/-0.173

SysEL EFF Trigger TOTAL 1NPCOR PLUS UNCOR 1down -0.353/-0.179

SysMUON EFF SYS 1down -0.185/-0.352

SysMUON SAGITTA RESBIAS 1down -0.335/-0.2

SysPRW DATASF 1up -0.195/-0.322

SysFT EFF Eigen Light 3 AntiKt2PV0TrackJets 1down -0.301/-0.229

SysFT EFF Eigen Light 2 AntiKt2PV0TrackJets 1up -0.24/-0.3

SysFT EFF Eigen C 3 AntiKt2PV0TrackJets 1down -0.296/-0.233

SysEL EFF Iso TOTAL 1NPCOR PLUS UNCOR 1down -0.284/-0.25

Total Up 27.2

Total Do 27.9

TABLE I.1. List of systematic uncertainties for the fully boosted analysis
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APPENDIX J

MBB CONTROL REGION DISTRIBUTIONS

Kinematic distributions for the fully-boosted analysis in the mBB control region. Where

100GeV > mbb or mbb > 140GeV.

206



 [GeV]bbME
50 100 150 200 250 300

B
kg

D
at

a-
B

kg

1−
0

1 MC Stat Unc.

E
ve

nt
s/

10
 G

eV

0

10

20

30

40

50

60

70

80
ATLAS Work in Progress

 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

 [GeV]bbME
50 100 150 200 250 300

B
kg

D
at

a-
B

kg

1−
0

1 MC Stat Unc.

E
ve

nt
s/

10
 G

eV

0

10

20

30

40

50

60

70 ATLAS Work in Progress
 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

 [GeV]bb
TP

300 400 500 600 700 800 900 1000

B
kg

D
at

a-
B

kg

2−
0
2

MC Stat Unc.

E
ve

nt
s/

25
 G

eV

0

10

20

30

40

50

60

70 ATLAS Work in Progress
 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

 [GeV]bb
TP

300 400 500 600 700 800 900 1000

B
kg

D
at

a-
B

kg

2−
0
2 MC Stat Unc.

E
ve

nt
s/

25
 G

eV

0

10

20

30

40

50
ATLAS Work in Progress

 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

 [GeV]
bb

η
4− 3− 2− 1− 0 1 2 3 4

B
kg

D
at

a-
B

kg

1−
0

1 MC Stat Unc.

E
ve

nt
s/

0.
2 

G
eV

0

10

20

30

40

50

60

70
ATLAS Work in Progress

 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

 [GeV]
bb

η
4− 3− 2− 1− 0 1 2 3 4

B
kg

D
at

a-
B

kg

0.5−
0

0.5 MC Stat Unc.

E
ve

nt
s/

0.
2 

G
eV

0

10

20

30

40

50
ATLAS Work in Progress

 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

 [GeV]
bb

φ
4− 3− 2− 1− 0 1 2 3 4

B
kg

D
at

a-
B

kg

0.5−
0

0.5 MC Stat Unc.

E
ve

nt
s/

0.
4 

G
eV

0

10

20

30

40

50

60

70
ATLAS Work in Progress

 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

 [GeV]
bb

φ
4− 3− 2− 1− 0 1 2 3 4

B
kg

D
at

a-
B

kg

0.5−
0

0.5 MC Stat Unc.

E
ve

nt
s/

0.
4 

G
eV

0

5

10

15

20

25

30

35

40 ATLAS Work in Progress
 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

FIGURE J.1. mbb, p
b
T b, ηbb, and φbb (from top to bottom) distribution in the mBB

control region for the electron (left) and muon (right) channels.

207



 [GeV]
WW

η
4− 3− 2− 1− 0 1 2 3 4

B
kg

D
at

a-
B

kg

5−
0
5 MC Stat Unc.

E
ve

nt
s/

0.
2 

G
eV

0

10

20

30

40

50

60

70
ATLAS Work in Progress

 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

 [GeV]
WW

η
4− 3− 2− 1− 0 1 2 3 4

B
kg

D
at

a-
B

kg

10−
5−
0
5

10 MC Stat Unc.

E
ve

nt
s/

0.
2 

G
eV

0

10

20

30

40

50
ATLAS Work in Progress

 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

 [GeV]
WW

φ
4− 3− 2− 1− 0 1 2 3 4

B
kg

D
at

a-
B

kg

0.5−
0

0.5 MC Stat Unc.

E
ve

nt
s/

0.
4 

G
eV

0

10

20

30

40

50

60

70 ATLAS Work in Progress
 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

 [GeV]
WW

φ
4− 3− 2− 1− 0 1 2 3 4

B
kg

D
at

a-
B

kg

0.5−
0

0.5 MC Stat Unc.

E
ve

nt
s/

0.
4 

G
eV

0

5

10

15

20

25

30

35

40

45 ATLAS Work in Progress
 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 2000 GeV

X
Boosted, m

Data

Rescaled Signal

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

FIGURE J.2. ηWW , and φWW (from top to bottom) distribution in the mBB control
region for the electron (left) and muon (right) channels.
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APPENDIX K

SR DISTRIBUTIONS

Kinematic distributions for the fully-boosted analysis in the signal region. Where

100GeV < mbb < 140GeV.
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du CERN”. In: (Jan. 2016). General Photo. url: https://cds.cern.ch/
record/2119882.

[22] K.H. Reich. “The CERN Proton Synchrotron Booster”. In: (Jan. 1969). Round
Table On Booster Injectors. url: http : / / accelconf . web . cern . ch /
Accelconf/p69/PDF/PAC1969_0959.PDF.

214

https://doi.org/10.1016/j.physletb.2018.09.013
https://doi.org/10.1016/j.physletb.2018.09.013
https://arxiv.org/abs/1808.08238
https://arxiv.org/abs/1811.08856
https://arxiv.org/abs/1811.08856
https://doi.org/10.1103/PhysRevD.70.073017
https://arxiv.org/abs/hep-ph/0403303
https://arxiv.org/abs/1811.09689
https://doi.org/10.1103/PhysRevD.92.035001
https://doi.org/10.1103/PhysRevD.97.015022
https://link.aps.org/doi/10.1103/PhysRevD.97.015022
https://link.aps.org/doi/10.1103/PhysRevD.97.015022
https://doi.org/10.1007/JHEP12(2016)135
https://doi.org/10.1007/JHEP12(2016)135
https://doi.org/10.1007/JHEP12(2016)135
https://doi.org/10.1103/PhysRevD.16.1519
https://link.aps.org/doi/10.1103/PhysRevD.16.1519
https://link.aps.org/doi/10.1103/PhysRevD.16.1519
https://doi.org/10.1103/PhysRevD.96.035037
https://arxiv.org/abs/1701.08774
https://arxiv.org/abs/1701.08774
https://cds.cern.ch/record/1997427
https://cds.cern.ch/record/1997427
https://cds.cern.ch/record/2119882
https://cds.cern.ch/record/2119882
http://accelconf.web.cern.ch/Accelconf/p69/PDF/PAC1969_0959.PDF
http://accelconf.web.cern.ch/Accelconf/p69/PDF/PAC1969_0959.PDF


[23] Giorgio Brianti. “The CERN synchrotrons”. In: (1997). url: https://cds.
cern.ch/record/340514.

[24] Lyndon Evans and Philip Bryant. “LHC Machine”. In: Journal of
Instrumentation 3.08 (Aug. 2008), S08001–S08001. doi: 10.1088/1748-0221/
3/08/s08001. url: https://doi.org/10.1088%2F1748-0221%2F3%2F08%
2Fs08001.

[25] Xabier Cid Vidal Ramon Cid Manzano. Lorentz Force Taking a closer look at
LHC. url: https://www.lhc-closer.es/taking_a_closer_look_at_lhc/
0.lorentz_force.

[26] Morad Aaboud et al. “Luminosity determination in pp collisions at
√
s = 8 TeV

using the ATLAS detector at the LHC”. In: Eur. Phys. J. C76.12 (2016), p. 653.
doi: 10.1140/epjc/s10052-016-4466-1. arXiv: 1608.03953 [hep-ex].

[27] Genessis Perez. “Unitarization Models For Vector Boson Scattering at the
LHC”. PhD thesis. Jan. 2018. doi: 10.5445/IR/1000082199.

[28] The ATLAS Collaboration. “The ATLAS Experiment at the CERN
Large Hadron Collider”. In: Journal of Instrumentation 3.08 (Aug. 2008),
S08003–S08003. doi: 10 . 1088 / 1748 - 0221 / 3 / 08 / s08003. url: https :
//doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08003.

[29] M Capeans et al. ATLAS Insertable B-Layer Technical Design Report.
Tech. rep. CERN-LHCC-2010-013. ATLAS-TDR-19. Sept. 2010. url: https:
//cds.cern.ch/record/1291633.

[30] ATLAS inner detector: Technical Design Report, 1. Technical Design Report
ATLAS. Geneva: CERN, 1997. url: https://cds.cern.ch/record/331063.

[31] The ATLAS Collaboration. “Approved Plots of the Tracking Combined
Performance Group”. url: https://atlas.web.cern.ch/Atlas/GROUPS/
PHYSICS/PLOTS/IDTR-2015-007/.

[32] Boris Dolgoshein. “Transition radiation detectors”. In: Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 326.3 (1993), pp. 434–469. issn: 0168-
9002. doi: https://doi.org/10.1016/0168-9002(93)90846-A. url: http:
//www.sciencedirect.com/science/article/pii/016890029390846A.

[33] ATLAS liquid-argon calorimeter: Technical Design Report. Technical Design
Report ATLAS. Geneva: CERN, 1996. url: https://cds.cern.ch/record/
331061.

[34] ATLAS tile calorimeter: Technical Design Report. Technical Design Report
ATLAS. Geneva: CERN, 1996. url: https://cds.cern.ch/record/331062.

[35] Georges Aad et al. “Electron and photon energy calibration with the ATLAS
detector using LHC Run 1 data”. In: Eur. Phys. J. C74.10 (2014), p. 3071.
doi: 10.1140/epjc/s10052-014-3071-4. arXiv: 1407.5063 [hep-ex].

215

https://cds.cern.ch/record/340514
https://cds.cern.ch/record/340514
https://doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1088/1748-0221/3/08/s08001
https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08001
https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08001
https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.lorentz_force
https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.lorentz_force
https://doi.org/10.1140/epjc/s10052-016-4466-1
https://arxiv.org/abs/1608.03953
https://doi.org/10.5445/IR/1000082199
https://doi.org/10.1088/1748-0221/3/08/s08003
https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08003
https://doi.org/10.1088%2F1748-0221%2F3%2F08%2Fs08003
https://cds.cern.ch/record/1291633
https://cds.cern.ch/record/1291633
https://cds.cern.ch/record/331063
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2015-007/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2015-007/
https://doi.org/https://doi.org/10.1016/0168-9002(93)90846-A
http://www.sciencedirect.com/science/article/pii/016890029390846A
http://www.sciencedirect.com/science/article/pii/016890029390846A
https://cds.cern.ch/record/331061
https://cds.cern.ch/record/331061
https://cds.cern.ch/record/331062
https://doi.org/10.1140/epjc/s10052-014-3071-4
https://arxiv.org/abs/1407.5063


[36] Ana Maria Henriques Correia. The ATLAS Tile Calorimeter. Tech. rep. ATL-
TILECAL-PROC-2015-002. Geneva: CERN, Mar. 2015. url: https://cds.
cern.ch/record/2004868.

[37] ATLAS muon spectrometer: Technical Design Report. Technical Design Report
ATLAS. Geneva: CERN, 1997. url: https://cds.cern.ch/record/331068.

[38] Jeremy R Love. “A Search for Technicolor at The Large Hadron Collider”.
PhD thesis. Boston U., 2011-12-12.

[39] ATLAS magnet system: Technical Design Report, 1. Technical Design Report
ATLAS. Geneva: CERN, 1997. url: https://cds.cern.ch/record/338080.

[40] ATLAS Outreach. “ATLAS Fact Sheet : To raise awareness of the ATLAS
detector and collaboration on the LHC”. 2010. url: https://cds.cern.ch/
record/1457044.

[41] Aranzazu Ruiz-Martinez and ATLAS Collaboration. The Run-2 ATLAS
Trigger System. Tech. rep. ATL-DAQ-PROC-2016-003. Geneva: CERN, Feb.
2016. url: https://cds.cern.ch/record/2133909.

[42] Martin zur Nedden. The Run-2 ATLAS Trigger System: Design, Performance
and Plan. Tech. rep. ATL-DAQ-PROC-2016-039. Geneva: CERN, Dec. 2016.
url: https://cds.cern.ch/record/2238679.

[43] Chaowaroj Wanotayaroj and Jim Brau. “Search for a Scalar Partner of the Top
Quark in the Jets+MET Final State with the ATLAS detector”. Presented 25
Oct 2016. Nov. 2016. url: https://cds.cern.ch/record/2242196.

[44] S. Agostinelli et al. “GEANT4: A Simulation toolkit”. In: Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment (2003).

[45] Joao Pequenao. “Event Cross Section in a computer generated image of the
ATLAS detector.” Mar. 2008. url: https://cds.cern.ch/record/1096081.

[46] Grigore Tarna. Electron identification with the ATLAS detector. Tech. rep.
ATL-PHYS-PROC-2017-173. Geneva: CERN, Sept. 2017. url: https://cds.
cern.ch/record/2286383.

[47] ATLAS Collaboration. Electron efficiency measurements with the ATLAS
detector using the 2015 LHC proton-proton collision data. ATLAS-CONF-2016-
024. June 2016. url: https://cds.cern.ch/record/2157687.

[48] ATLAS Collaboration. “Electron and photon energy calibration with the
ATLAS detector using LHC Run 1 data”. In: Eur. Phys. J. C74.10 (2014),
p. 3071. doi: 10.1140/epjc/s10052-014-3071-4. arXiv: 1407.5063.

[49] ATLAS Collaboration. Electron and photon energy calibration with the ATLAS
detector using data collected in 2015 at

√
s = 13 TeV. Aug. 2016. url: https:

//cds.cern.ch/record/2203514.

216

https://cds.cern.ch/record/2004868
https://cds.cern.ch/record/2004868
https://cds.cern.ch/record/331068
https://cds.cern.ch/record/338080
https://cds.cern.ch/record/1457044
https://cds.cern.ch/record/1457044
https://cds.cern.ch/record/2133909
https://cds.cern.ch/record/2238679
https://cds.cern.ch/record/2242196
https://cds.cern.ch/record/1096081
https://cds.cern.ch/record/2286383
https://cds.cern.ch/record/2286383
https://cds.cern.ch/record/2157687
https://doi.org/10.1140/epjc/s10052-014-3071-4
https://arxiv.org/abs/1407.5063
https://cds.cern.ch/record/2203514
https://cds.cern.ch/record/2203514


[50] Georges Aad et al. “Muon reconstruction performance of the ATLAS detector
in proton-proton collision data at

√
s =13 TeV”. In: Eur.Phys.J. C76.5 (2016),

p. 292. doi: 10.1140/epjc/s10052-016-4120-y.

[51] Georges Aad et al. “Topological cell clustering in the ATLAS calorimeters and
its performance in LHC Run 1”. In: Eur. Phys. J. C77 (2017), p. 490. doi:
10.1140/epjc/s10052-017-5004-5. arXiv: 1603.02934 [hep-ex].

[52] Bora Isildak. “Measurement of the differential dijet production cross section in
proton-proton collisions at

√
s = 7 tev”. PhD thesis. Bogazici U., 2011. arXiv:

1308.6064 [hep-ex].

[53] M. Cacciari, C. P. Salam and G. Soyez. “The anti-kt jet clustering algorithm”.
In: JHEP 04 (2008), p. 063. doi: 10.1088/1126-6708/2008/04/063.

[54] ATLAS Collaboration. “Topological cell clustering in the ATLAS calorimeters
and its performance in LHC Run 1”. In: (2016). arXiv: 1603.02934 [hep-ex].

[55] David Krohn, Jesse Thaler, and Lian-Tao Wang. “Jet Trimming”. In: JHEP
1002 (2010), p. 084. doi: 10 .1007 / JHEP02(2010 ) 084. arXiv: 0912 .1342
[hep-ph].

[56] Jet mass reconstruction with the ATLAS Detector in early Run 2 data.
Tech. rep. ATLAS-CONF-2016-035. Geneva: CERN, July 2016. url: https:
//cds.cern.ch/record/2200211.

[57] Expected Performance of Boosted Higgs (→ bb̄) Boson Identification with the
ATLAS Detector at

√
s = 13 TeV. Tech. rep. ATL-PHYS-PUB-2015-035.

Geneva: CERN, Aug. 2015. url: https://cds.cern.ch/record/2042155.

[58] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The Catchment Area
of Jets”. In: JHEP 04 (2008), p. 005. doi: 10.1088/1126-6708/2008/04/005.
arXiv: 0802.1188 [hep-ph].

[59] ATLAS Collaboration. “ Jet energy scale measurements and their systematic
uncertainties in proton-proton collisions at sqrt(s) = 13 TeV with the ATLAS
detector ”. In: (2017). arXiv: 1703.09665 [hep-ex].

[60] ATLAS Collaboration. “Performance of pile-up mitigation techniques for jets
in pp collisions at

√
s = 8 TeV using the ATLAS detector”. In: Eur. Phys.

J. C76.11 (2016), p. 581. doi: 10.1140/epjc/s10052-016-4395-z. arXiv:
1510.03823 [hep-ex].

[61] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. “The anti-kt jet
clustering algorithm”. In: JHEP 04 (2008), p. 063. doi: 10 . 1088 / 1126 -
6708/2008/04/063. arXiv: 0802.1189 [hep-ph].

[62] Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run.
Tech. rep. ATL-PHYS-PUB-2016-012. Geneva: CERN, June 2016. url: https:
//cds.cern.ch/record/2160731.

217

https://doi.org/10.1140/epjc/s10052-016-4120-y
https://doi.org/10.1140/epjc/s10052-017-5004-5
https://arxiv.org/abs/1603.02934
https://arxiv.org/abs/1308.6064
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/1603.02934
https://doi.org/10.1007/JHEP02(2010)084
https://arxiv.org/abs/0912.1342
https://arxiv.org/abs/0912.1342
https://cds.cern.ch/record/2200211
https://cds.cern.ch/record/2200211
https://cds.cern.ch/record/2042155
https://doi.org/10.1088/1126-6708/2008/04/005
https://arxiv.org/abs/0802.1188
https://arxiv.org/abs/1703.09665
https://doi.org/10.1140/epjc/s10052-016-4395-z
https://arxiv.org/abs/1510.03823
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://cds.cern.ch/record/2160731
https://cds.cern.ch/record/2160731


[63] Per Ola Hansson Adrian. The ATLAS b-Jet Trigger. Tech. rep. arXiv:1111.4190.
Comments: 4 pages, 6 figures, conference proceedings for PIC2011. Geneva:
CERN, Nov. 2011. url: https://cds.cern.ch/record/1397942.

[64] B. Abbott et al. “Production and Integration of the ATLAS Insertable B-
Layer”. In: JINST 13.05 (2018), T05008. doi: 10.1088/1748-0221/13/05/
T05008. arXiv: 1803.00844 [physics.ins-det].

[65] Performance of missing transverse momentum reconstruction for the ATLAS
detector in the first proton-proton collisions at at

√
s= 13 TeV. Tech. rep. ATL-

PHYS-PUB-2015-027. Geneva: CERN, July 2015. url: https://cds.cern.
ch/record/2037904.

[66] Morad Aaboud et al. “Search for Higgs boson pair production in the bb̄WW ∗

decay mode at
√
s = 13 TeV with the ATLAS detector”. In: (2018). arXiv:

1811.04671 [hep-ex].

[67] AIDAN RANDLE-CONDE. “What next for the Higgs?” url: https://www.
quantumdiaries.org/2012/06/09/what-next-for-the-higgs/.

[68] Biagio Di Micco et al. Search for Higgs boson pair production in the bbWW
final state at

√
s = 13 TeV with the ATLAS detector. Tech. rep. ATL-COM-

PHYS-2016-486. Geneva: CERN, May 2016. url: https://cds.cern.ch/
record/2151893.

[69] Cigdem Issever et al. Boosted Analysis: Search for Higgs boson pair production
in the bbWW final state at

√
s = 13 TeV with the ATLAS detector. Tech. rep.

ATL-COM-PHYS-2017-1088. Geneva: CERN, July 2017. url: https://cds.
cern.ch/record/2276099.

[70] Stefano Frixione, Paolo Nason, and Carlo Oleari. “Matching NLO QCD
computations with Parton Shower simulations: the POWHEG method”. In:
JHEP 11 (2007), p. 070. doi: 10.1088/1126-6708/2007/11/070. arXiv:
0709.2092 [hep-ph].

[71] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. “PYTHIA 6.4
Physics and Manual”. In: JHEP 0605 (2006), p. 026. doi: 10.1088/1126-
6708/2006/05/026. arXiv: hep-ph/0603175 [hep-ph].

[72] Peter Zeiler Skands. “Tuning Monte Carlo Generators: The Perugia Tunes”.
In: Phys.Rev. D82 (2010), p. 074018. doi: 10.1103/PhysRevD.82.074018.
arXiv: 1005.3457 [hep-ph].

[73] J. Pumplin et al. “New generation of parton distributions with uncertainties
from global QCD analysis”. In: JHEP 0207 (2002), p. 012. arXiv: hep-ph/
0201195 [hep-ph].

[74] D. J. Lange. “The EvtGen particle decay simulation package”. In: Nucl.
Instrum. Meth. A462 (2001), pp. 152–155. doi: 10.1016/S0168-9002(01)
00089-4.

218

https://cds.cern.ch/record/1397942
https://doi.org/10.1088/1748-0221/13/05/T05008
https://doi.org/10.1088/1748-0221/13/05/T05008
https://arxiv.org/abs/1803.00844
https://cds.cern.ch/record/2037904
https://cds.cern.ch/record/2037904
https://arxiv.org/abs/1811.04671
https://www.quantumdiaries.org/2012/06/09/what-next-for-the-higgs/
https://www.quantumdiaries.org/2012/06/09/what-next-for-the-higgs/
https://cds.cern.ch/record/2151893
https://cds.cern.ch/record/2151893
https://cds.cern.ch/record/2276099
https://cds.cern.ch/record/2276099
https://doi.org/10.1088/1126-6708/2007/11/070
https://arxiv.org/abs/0709.2092
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1088/1126-6708/2006/05/026
https://arxiv.org/abs/hep-ph/0603175
https://doi.org/10.1103/PhysRevD.82.074018
https://arxiv.org/abs/1005.3457
https://arxiv.org/abs/hep-ph/0201195
https://arxiv.org/abs/hep-ph/0201195
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/S0168-9002(01)00089-4


[75] Michal Czakon and Alexander Mitov. “Top++: A Program for the
Calculation of the Top-Pair Cross-Section at Hadron Colliders”. In:
Compt/ Phys. Commun. (2014), p. 2930. arXiv: 1112.5675 [hep-ph].

[76] ATLAS Collaboration. Comparison of Monte Carlo generator predictions for
gap fraction and jet multiplicity observables in top-antitop events. Tech. rep.
ATL-PHYS-PUB-2014-005. Geneva: CERN, May 2014. url: https://cds.
cern.ch/record/1703034.

[77] Nikolaos Kidonakis. “Next-to-next-to-leading-order collinear and soft gluon
corrections for t-channel single top quark production”. In: Phys. Rev. D83
(2011), p. 091503. doi: 10.1103/PhysRevD.83.091503. arXiv: 1103.2792
[hep-ph].

[78] Nikolaos Kidonakis. “Two-loop soft anomalous dimensions for single top quark
associated production with a W- or H-”. In: Phys. Rev. D82 (2010), p. 054018.
doi: 10.1103/PhysRevD.82.054018. arXiv: 1005.4451 [hep-ph].

[79] T. Gleisberg et al. “Event generation with SHERPA 1.1”. In: JHEP 0902
(2009), p. 007. doi: 10.1088/1126-6708/2009/02/007. arXiv: 0811.4622
[hep-ph].

[80] Hung-Liang Lai et al. “New parton distributions for collider physics”. In:
Phys.Rev. D82 (2010), p. 074024. doi: 10.1103/PhysRevD.82.074024. arXiv:
1007.2241 [hep-ph].

[81] C. Anastasiou et al. “High precision determination of the gluon fusion Higgs
boson cross-section at the LHC”. In: JHEP 05 (2016), p. 058. arXiv: 1602.
00695 [hep-ph].

[82] J. Alwall et al. “The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching to parton shower
simulations”. In: JHEP 07 (2014), p. 079. doi: 10.1007/JHEP07(2014)079.
arXiv: 1405.0301 [hep-ph].

[83] R.Frederix et al. “Higgs pair production at the LHC with NLO and parton-
shower effects”. In: Phys. Lett. B732 (2014), p. 142. doi: 10.1016/j.physletb.
2014.03.026.

[84] G. Degrassi, P. P. Giardino, R. Groeber. “On the two-loop virtual QCD
corrections to Higgs boson pair production in the Standard Model”. In:
Eur.Phys.J. C76 (2016), p. 411. doi: 10.1140/epjc/s10052-016-4256-9.

[85] S. Borowka et al. “Full top quark mass dependence in Higgs boson pair
production at NLO”. In: JHEP 10 (2016), p. 107. doi: 10.1007/JHEP10(2016)
107. arXiv: 1608.04798 [hep-ph].

[86] S. Borowka et al. “Higgs Boson Pair Production in Gluon Fusion at Next-to-
Leading Order with Full Top-Quark Mass Dependence”. In: Phys. Rev. Lett.
117.1 (2016). [Erratum: Phys. Rev. Lett.117,no.7,079901(2016)], p. 012001.
doi: 10 . 1103 / PhysRevLett . 117 . 079901 , 10 . 1103 / PhysRevLett . 117 .
012001. arXiv: 1604.06447 [hep-ph].

219

https://arxiv.org/abs/1112.5675
https://cds.cern.ch/record/1703034
https://cds.cern.ch/record/1703034
https://doi.org/10.1103/PhysRevD.83.091503
https://arxiv.org/abs/1103.2792
https://arxiv.org/abs/1103.2792
https://doi.org/10.1103/PhysRevD.82.054018
https://arxiv.org/abs/1005.4451
https://doi.org/10.1088/1126-6708/2009/02/007
https://arxiv.org/abs/0811.4622
https://arxiv.org/abs/0811.4622
https://doi.org/10.1103/PhysRevD.82.074024
https://arxiv.org/abs/1007.2241
https://arxiv.org/abs/1602.00695
https://arxiv.org/abs/1602.00695
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://doi.org/10.1016/j.physletb.2014.03.026
https://doi.org/10.1016/j.physletb.2014.03.026
https://doi.org/10.1140/epjc/s10052-016-4256-9
https://doi.org/10.1007/JHEP10(2016)107
https://doi.org/10.1007/JHEP10(2016)107
https://arxiv.org/abs/1608.04798
https://doi.org/10.1103/PhysRevLett.117.079901, 10.1103/PhysRevLett.117.012001
https://doi.org/10.1103/PhysRevLett.117.079901, 10.1103/PhysRevLett.117.012001
https://arxiv.org/abs/1604.06447


[87] ATLAS Collaboration. “The ATLAS Simulation Infrastructure”. In: Eur.Phys.J.
C70 (2010), pp. 823–874. doi: 10.1140/epjc/s10052-010-1429-9. arXiv:
1005.4568 [physics.ins-det].

[88] S. Agostinelli et al. “GEANT4: A Simulation toolkit”. In: Nucl.Instrum.Meth.
A506 (2003), pp. 250–303. doi: 10.1016/S0168-9002(03)01368-8.

[89] ATLAS Collaboration. Jet Calibration and Systematic Uncertainties for Jets
Reconstructed in the ATLAS Detector at

√
s = 13 TeV. Tech. rep. ATL-PHYS-

PUB-2015-015. Geneva: CERN, July 2015. url: https://cds.cern.ch/
record/2037613.

[90] ATLAS Collaboration. “Jet energy measurement and its systematic uncertainty
in proton-proton collisions at

√
s = 7 TeV with the ATLAS detector”. In: Eur.

Phys. J. C75 (2015), p. 17. doi: 10.1140/epjc/s10052-014-3190-y. arXiv:
1406.0076 [hep-ex].

[91] ATLAS Collaboration. Calibration of b-tagging using dileptonic top pair events
in a combinatorial likelihood approach with the ATLAS experiment. Tech. rep.
ATLAS-CONF-2014-004. Geneva: CERN, Feb. 2014. url: http://cds.cern.
ch/record/1664335.

[92] A.L. Read. “Presentation of search results: the CLs technique”. In: J. Phys.
G28 (2002), p. 2693. doi: 10.1088/0954-3899/28/10/313.

[93] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests of new
physics”. In: Eur. Phys. J. C 71 (2011), p. 1554. doi: 10.1140/epjc/s10052-
011-1554-0. arXiv: 1603.00385 [hep-ph].

220

https://doi.org/10.1140/epjc/s10052-010-1429-9
https://arxiv.org/abs/1005.4568
https://doi.org/10.1016/S0168-9002(03)01368-8
https://cds.cern.ch/record/2037613
https://cds.cern.ch/record/2037613
https://doi.org/10.1140/epjc/s10052-014-3190-y
https://arxiv.org/abs/1406.0076
http://cds.cern.ch/record/1664335
http://cds.cern.ch/record/1664335
https://doi.org/10.1088/0954-3899/28/10/313
https://doi.org/10.1140/epjc/s10052-011-1554-0
https://doi.org/10.1140/epjc/s10052-011-1554-0
https://arxiv.org/abs/1603.00385

	Introduction
	  The Standard Model

	Di-Higgs Production
	  Standard Model
	  Resonant Production
	  Summary
	Experimental Setup
	  Hadron Colliders
	  The Large Hadron Collider
	  Detector Overview

	Simulation and Event Reconstruction
	  Simulation
	  Particle Identification

	Analysis
	  Analysis Overview
	  Data and Monte Carlo Samples
	  Object Reconstruction
	  Resolved Analysis
	  Boosted Analysis
	  Results
	  Conclusion
	Improvements to the Boosted Analysis
	  Motivation
	  Event Reconstruction
	  Event selection
	  Results
	  Conclusion

	Conclusion
	   Derivation (HIGG5D2)
	   Complete list of MC Samples
	   Data Samples




	   Lepton selection optimisation
	   Lepton and B-jet Overlap Removal: Impact On Signal Efficiency
	   Solving for Neutrino Longitudinal Momentum
	   Freezing B and D Regions in QCD Estimate
	  QCD Lepton Flavour Composition after Preselection Criteria for d0 distribution

	   Stability of tbart  Normalization in QCD Estimate
	   Fully boosted systematic uncertainties
	   mBB control region distributions
	   SR distributions
	REFERENCES CITED

